
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Floem: A Programming System for
NIC-Accelerated Network Applications

Phitchaya Mangpo Phothilimthana, University of California, Berkeley; Ming Liu and
Antoine Kaufmann, University of Washington; Simon Peter, The University of Texas at Austin;

Rastislav Bodik and Thomas Anderson, University of Washington

https://www.usenix.org/conference/osdi18/presentation/phothilimthana

Floem: A Programming System for NIC-Accelerated
Network Applications

Phitchaya Mangpo Phothilimthana
University of California, Berkeley

Ming Liu
University of Washington

Antoine Kaufmann
University of Washington

Simon Peter
The University of Texas at Austin

Rastislav Bodik
University of Washington

Thomas Anderson
University of Washington

Abstract
Developing server applications that offload computation
to a NIC accelerator is complex and laborious. De-
velopers have to explore the design space, which in-
cludes semantic changes for different offloading strate-
gies, as well as variations on parallelization, program-
to-resource mapping, and communication strategies for
program components across devices.

We therefore design FLOEM — a language, compiler,
and runtime — for programming NIC-accelerated appli-
cations. FLOEM enables offload design exploration by
providing programming abstractions to assign computa-
tion to hardware resources; control mapping of logical
queues to physical queues; access fields of a packet and
its metadata without manually marshaling a packet; use
a NIC to memoize expensive computation; and interface
with an external application. The compiler infers which
data must be transferred between the CPU and NIC and
generates a complete cache implementation, while the
runtime transparently optimizes DMA throughput. We
use FLOEM to explore NIC-offloading designs of real-
world applications, including a key-value store and a dis-
tributed real-time data analytics system; improve their
throughput by 1.3–3.6× and by 75–96%, respectively,
over a CPU-only implementation.

1 Introduction

Network bandwidth is growing much faster than CPU
performance [5], forcing many data-center applications
to sacrifice application cycles for packet processing [9,
23, 37]. As a result, system developers have started to
offload computation to programmable network interface
controllers (NICs), dramatically improving the perfor-
mance and energy efficiency of many data-center appli-
cations, such as search engines, key-value stores, real-
time data analytics, and intrusion detection [12, 23, 26,
40]. These NICs have a variety of hardware architec-
tures including FPGAs [12, 33, 48], specialized flow

engines [6], and more general-purpose network proces-
sors [3, 32].

However, implementing data-center network applica-
tions in a combined CPU-NIC environment is difficult.
It often requires many design-implement-test iterations
before the accelerated application can outperform its
CPU-only version. These iterations involve non-trivial
changes: programmers may have to move portions of ap-
plication code across the CPU-NIC boundary and manu-
ally refactor the program.

We propose FLOEM, a programming system for
NIC-accelerated applications. Our current prototype
targets a platform with the Cavium LiquidIO [3], a
general-purpose programmable NIC that executes C
code. FLOEM is based on a data-flow language that is
natural for expressing packet processing logic and map-
ping elements (modular program components) onto hard-
ware devices. The language lets developers easily move
an element onto a CPU or a NIC to explore alternative
offloading designs, as well as parallelize program com-
ponents. Application developers can define a FLOEM el-
ement as a Python class that contains a C implementa-
tion of the element. To aid programming productivity,
we provide a library of common elements.

Further examining how developers offload data-center
applications to NICs, we have identified the following
commonly encountered problems, which led us to pro-
pose abstractions and mechanisms amenable to a data-
flow programming model that can solve these problems.

• Different offloading choices require different commu-
nication strategies. We observe that these strategies
can be expressed by a mapping of logical communi-
cation queues to physical queues, so we propose this
mapping as a part of our language.

• Moving computation across the CPU-NIC boundary
may change which parts of a packet must be sent across
the boundary. Marshaling the necessary packet fields

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 663

is tedious and error-prone. Thus, we propose per-
packet state — an abstraction that allows a packet and
its metadata to be accessed anywhere in the program
— while FLOEM automatically transfers only required
packet parts between a NIC and CPU.

• Using an in-network processor to cache application
state or computation is a common pattern for accelerat-
ing data-center applications. However, it is non-trivial
to implement a cache that guarantees the consistency
of data between a CPU and NIC. We propose a caching
construct for memoizing a program region, relieving
programmers from having to implement a complete
cache protocol.

• Developers often want to offload an existing applica-
tion without rewriting the code into a new language.
We let programmers embed C code in elements and
allow a legacy application to interact with FLOEM el-
ements via a simple function call, executing those ele-
ments in the host process of the legacy application.

We demonstrate that without significant programming
effort, FLOEM can help offload parts of real-world ap-
plications — a key-value store and a real-time analytics
system — improving their throughput by 1.3–3.6× and
75–96%, respectively, over a CPU-only configuration.

In summary, this paper makes the following contribu-
tions:

• Identifying challenges in designing of NIC-accelerated
data-center applications (Section 2)

• Introducing programming abstractions to address
these challenges (Sections 3 and 4)

• Developing a programming system that enables ex-
ploration of alternative offloading designs, including
a compiler (Section 5) and a runtime (Section 6) for
efficient data transfer between a CPU and NIC

2 Design Goals and Rationale

We design FLOEM to help programmers explore how
to offload their server network applications to a NIC.
The applications that benefit from FLOEM have compu-
tations that may be more efficient to run on the NIC than
on the CPU because of the NIC’s hardware-accelerated
functions, parallelism, or reduced latency when eliminat-
ing the CPU from fast-path processing. These computa-
tions include packet filtering (e.g., format validation and
classification), packet transformation (e.g., serialization,
compression, and encryption), packet steering (e.g., load
balancing to CPU cores), packet generation, and caching
of application state. This list is not exhaustive. Ulti-
mately, we would like FLOEM to help developers dis-
cover new ways to accelerate their applications.

The main challenge when designing programming ab-
stractions is to realize a small number of constructs that
let programmers express a large variety of implemen-
tation choices. This requires an understanding of com-
mon challenges within the application domain. We build
FLOEM to meet the following design goals.

Goal 1: Expressing Packet Processing
As described above, computations suitable for NIC of-
floading are largely packet processing. Programming ab-
stractions and systems for packet processing have long
been studied, and the Click modular router [34] is widely
used for this task. We adopt its data-flow model to ease
the development of packet processing logic (Section 3).

Goal 2: Exploring Offload Designs
A data-flow model is suitable for mapping computations
to desired hardware devices, as we have seen with many
Click extensions that support offloading [24, 27, 46].
Similarly, FLOEM programmers implement functionality
once, as a data-flow program, after which they can use
code annotations to assign elements to desired devices
and to parallelize the program. However, trivially adopt-
ing a data-flow model is insufficient to meet this design
goal. By inspecting the design of a key-value store and
a TCP stack offloaded with FlexNIC [23], we discover
several challenges that shape the design of our language.

Logical-to-physical queue mapping (Section 4.1).
One major part of designing an offloading strategy is
managing the transfer of data between the host and ac-
celerator. Various offloading strategies require different
communication strategies, such as how to steer packets,
how to share communication resources among different
types of messages, and whether to impose an order of
messages over a communication channel.

By examining hand-optimized offloads, we find that
developers typically express communication in terms of
logical queues and then manually implement them us-
ing the provided hardware communication mechanisms.
A logical queue handles messages sent from one element
to another, while a hardware communication channel im-
plements one physical queue. As part of an offload im-
plementation, developers have to make various mapping
choices among logical and physical queues. The right
mapping depends on the workload and hardware config-
uration and is typically realized via trial-and-error.

To aid this task, we design a queue construct with an
explicit logical-to-physical queue mapping that can be
controlled via parameters and by changing element con-
nections. Existing frameworks [24, 27, 46] do not sup-
port this mapping. To control the number of physical

664 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

queues in these frameworks, programmers have to ex-
plicitly: (1) create more logical queues by demultiplex-
ing the flow into multiple branches and making more el-
ements and connections, or (2) merge logical queues by
multiplexing multiple branches into one.

Per-packet state (Section 4.2). In a well-optimized
program, developers meticulously construct a message
by copying only the necessary parts of a packet to send
between a CPU and NIC; this minimizes the amount of
data transferred over PCIe. When developers move com-
putation between the CPU and NIC, they may need to re-
think which fields must be sent, slowing the exploration
of alternative offloading designs.

Nevertheless, no existing system performs this opti-
mization automatically. ClickNP [27] sends an entire
packet, while NBA [24] and Snap [46] rely on develop-
ers to annotate each element with a packet’s region of
interest, specified as numeric offsets in a packet buffer.
We design FLOEM to automatically infer what data to
send across the CPU-NIC boundary and offer the per-
packet state abstraction as if an entire packet could be ac-
cessed anywhere in the program. This abstraction resem-
bles P4’s per-packet metadata [10] and RPC IDLs (e.g.,
XDR [14] and Google’s protobuf [18]). However, P4 al-
lows per-packet metadata to be carried across multiple
processing pipelines only within a single device, while
RPC IDLs generate marshaling code based on interface
descriptions, rather than automatically inferring.

Caching construct (Section 4.3). Caching application
state or memoizing computation in an in-network pro-
cessor is a common strategy to accelerate server applica-
tions [15, 22, 26, 30]. While the abstractions we have so
far are sufficient to express this strategy, implementing a
cache protocol still requires a significant effort to guar-
antee both data consistency and high performance when
messages between a CPU and NIC may arrive out-of-
order. Thus, we introduce a caching construct, a general
abstraction for caching that integrates well with the data-
flow model. This construct provides a full cache proto-
col that maintains data consistency between the CPU and
NIC. Unlike FLOEM, existing systems support caching
only of flow state [6, 27] — which typically does not re-
quire maintaining consistency between the CPU and NIC
— but not caching of application state.

Goal 3: Integrating with Existing Applica-
tions

Prior frameworks were designed exclusively to imple-
ment network functions and packet processing [13, 16,
24, 27, 34, 36, 46], where computation is mostly state-
less and simpler than in our target domain of server ap-

plications. While parts of typical server applications can
be built by composing pre-defined elements, many parts
cannot. In our target domain, developers often want
to offload an application by reusing existing application
code instead of writing code from scratch. Besides port-
ing existing applications, some developers may prefer to
implement most of their applications in C because a data-
flow programming model may not be ideal for the full
implementation of complex applications.

FLOEM lets developers combine custom and stock el-
ements, embed C code in data-flow elements, and inte-
grate a FLOEM program with an external program. As a
result, developers can port only program parts that may
benefit from offloading into the data-flow model. The
impedance mismatch between the data-flow model and
the external program’s model (e.g., event-driven or im-
perative) raises the issue of interoperability. Our solution
builds on the queue construct to decouple the internal
part from the interface part, which appears to the external
program as a function (Section 4.4). The external pro-
gram can execute the function using its own thread to (1)
retrieve a message from the queue and process it through
elements in the interface part, or (2) process a message
through the interface part and push it to the queue.

3 Core Abstractions

We use a key-value store application as our running ex-
ample. Figure 1 displays several offloading designs for
the applicaton: CPU-only (Figure 1a), split CPU-NIC
(Figure 1b), and NIC as cache (Figure 1c). Figure 1d
illustrates how to create an interface that an external pro-
gram can use to interact with FLOEM. We show how
to implement these offloads using our programming ab-
stractions in this and the next sections.

Elements. FLOEM programs are composed of ele-
ments. Upon receiving inputs from all its input ports, an
element processes the inputs and emits outputs to its out-
put ports. The listing below illustrates how to create the
classify element in our key-value store example, which
classifies incoming requests by type (GET or SET).
class Classify(Element): # Define an element class

def configure(self):
self.inp = Input(pointer(kvs_message))
self.get = Output(pointer(kvs_message))
self.set = Output(pointer(kvs_message))

def impl(self):
self.run_c(r’’’ // C code

kvs_message *p = inp();
uint8_t cmd = p->mcr.request.opcode;

output switch { // switch --> emit one output port
case (cmd == PROTOCOL_BINARY_CMD_GET): get(p);
case (cmd == PROTOCOL_BINARY_CMD_SET): set(p);

}
’’’)

classify = Classify () # Instantiate an element

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 665

(a) No offloading (b) CPU-NIC split
(see Section 4.1)

(c) NIC as cache
(see Section 4.3)

(d) Interface to external program
(see Section 4.4)

Figure 1: Several offloading strategies of a key-value store implemented in FLOEM

We specify input and output ports in the configure

method. We express the logic for processing a single
packet in the impl method by calling run_c, which ac-
cepts C code with special syntax to retrieve value(s) from
an input port and emit value(s) to an output port.

To create the program shown in Figure 1a, we connect
elements as follows:
from_net >> hash >> classify
classify.get >> hasht_get >> get_resp >> to_net
classify.set >> item >> hasht_put >> set_resp >> to_net

Note that .get and .set refer to the output ports of
classify.

Queues. Instead of pushing data to the next element
instantaneously, a queue can store data until the next el-
ement dequeues it. A queue can connect and send data
between elements on both different devices (e.g., CPU
and NIC) and on the same device.

Shared state. FLOEM provides a shared state abstrac-
tion that lets multiple elements share a set of variables
that are persistent across packets. For example, elements
hasht_get and hasht_put share the same state contain-
ing a hash table. FLOEM normally prohibits elements on
different devices from sharing the same state. Instead,
programmers must use message passing across queues to
share information between those elements. Shared state
lets programmers express complex stateful applications.

Segmented execution model. A segment is a set of
connected elements that begins with from a source ele-
ment, which is either a from_net element or a queue, and
ends with leaf elements (elements with no output ports)
or queues. A queue sends packets between segments.

Our execution model is run-to-completion within a seg-
ment. A source element processes a packet and pushes it
to subsequent elements until the packet reaches the end
of the segment. When the entire segment finishes pro-
cessing a packet, it starts on the next one. By default,
one thread on a CPU executes each segment, so elements
within a segment run sequentially with respect to their
data-flow dependencies.

The program in Figure 1a has a single segment, while
the program in Figure 1b has three. Note that not all
elements in a segment must be executed for each packet.
In our example, either hasht_get or hasht_put (not both)
will be executed depending on the port where classify

pushes a packet to.

Offloading and parallelizing. A segment is a unit of
code migration and parallelization. Programmers map
each segment to a specific device by supplying the
device parameter. They can also assign multiple threads
to run the same segment to process different packets in
parallel using the cores parameter. Programmers cannot
assign a segment to run on both the NIC and CPU in par-
allel; the current workaround is to create two identical
segments, one for NIC and another for CPU. Figure 2
displays a FLOEM program that implements a sharded
key-value store with the offloading strategy in Figure 1b.

4 Advanced Offload Abstractions

This section presents programming abstractions that we
propose to mitigate recurring programming challenges
encounters when exploring different ways to offload ap-
plications to a NIC.

666 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 Q1 = Queue(channel=2, inst =3)
2 Q2 = Queue(channel=2, inst =3)
3

4 class P1(Segment):
5 def impl(self):
6 from_net >> hash >> queue_id >> classify
7 classify.get >> Q1.enq[0] # channel 0
8 classify.set >> create_item >> Q1.enq[1] # chnl 1
9

10 class P2(Segment):
11 def impl(self):
12 self.core_id >> Q1.qid # use core id as queue id
13 Q1.deq[0] >> hasht_get >> Q2.enq[0]
14 Q1.deq[1] >> hasht_put >> Q2.enq[1]
15

16 class P3(Segment):
17 def impl(self):
18 scheduler >> Q2.qid # scheduler produces queue id
19 Q2.deq[0] >> get_resp >> to_net
20 Q2.deq[1] >> set_resp >> to_net
21

22 P1(device=NIC , cores =[0 ,1]) # run on core id 0,1
23 P2(device=CPU , cores =[0,1,2])
24 P3(device=NIC , cores =[2 ,3])

Figure 2: FLOEM program implementing a sharded key-
value store with the CPU-NIC split strategy of Figure 1b

4.1 Logical-to-Physical Queue Mapping
To achieve correctness and maximize performance,
FLOEM gives programmers control over how the
compiler instantiates logical queues for a par-
ticular offloading strategy. The queue construct
Queue(channel=n, inst=m) represents n logical queues
(n channels) using m physical queues (m instances). For
example, Q1 on line 1 of Figure 2 represents two logical
queues — displayed as red channels in Figure 1b —
using three physical queues. Different mappings of log-
ical to physical queues lead to different communication
strategies, as elaborated below.

Packet steering. Developers can easily implement
packet steering by creating a queue with multiple physi-
cal instances. For example, in the split CPU-NIC version
of the key-value store (Figure 1b), we want to shard the
key-value store so that different CPU threads can han-
dle different subsets of keys to avoid lock contention and
CPU cache misses. As a result, we want to represent
queue Q1 by multiple physical queues, with each CPU
thread having a dedicated physical queue to handle re-
quests for its shard. The NIC then steers a packet to the
correct physical queue based on its key. FlexNIC [23]
shows that such key-based steering improves throughput
of the key-value store application by 30–45%.

To implement this strategy, we create Q1 with multiple
physical queues (line 1 in Figure 2). Steering a packet
is controlled by assigning the target queue instance ID
to the qid field of per-packet state in the C code of any
element that precedes the queue. In this example, we set
state.qid = hash(pkt.key) % 3, where state refers to
per-packet state.

Client NIC thread CPU thread

set (k1, v1)

confirm k1 set k1

set (k2, v2)

confirm k2 set k2
evict (k1,v1)

set k1

get k1

get k1

miss

miss
no k1

no k1

Figure 3: Inconsistency of a write-back cache if mes-
sages from NIC to CPU are reordered

Resource sharing. Developers may want to map mul-
tiple logical queues to the same physical queue for re-
source sharing, or vice versa for resource isolation. For
example, they may want to consolidate infrequently used
logical queues into one physical queue to obtain a larger
batch of messages per PCIe transfer. In the sharded key-
value store, we want to use the same physical queue to
transport both the GET and SET requests of one shard
so that the receiver’s side processes these requests at the
same rate as the sender’s. To implement this, we use Q1 to
represent two logical queues (line 1 in Figure 2): one for
GET and one for SET. Different degrees of sharing can
vary application performance by up to 16% (Section 7.2).

Packet ordering. For correctness, developers may
want to preserve the order of packets being processed
from one device to another. For example, an alternative
way to offload the key-value store is to use the NIC as
a key-value cache, only forwarding misses to the CPU.
To ensure consistency of the write-back cache, we must
enforce that the CPU handles evictions and misses of the
same key in the same order as the cache. Figure 3 shows
an inconsistent outcome when an eviction and a miss are
reordered. To avoid this problem, developers can map
logical queues for evictions and misses to the same phys-
ical queue, ensuring in-order delivery.

The ability to freely map logical to physical queues
lets programmers express different communication
strategies with minimal effort in a declarative fashion. A
queue can also be parameterized by whether its enqueu-
ing process is lossless or lossy, where a lossless queue
is blocking. Note that programmers are responsible for
correctly handling multiple blocking queues.

4.2 Per-Packet State
FLOEM provides per-packet state, an abstraction that al-
lows access to a packet and its metadata from any el-
ement without explicitly passing the state. To use this

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 667

abstraction, programmers define its format and refer to
it using the keyword state. For our key-value store, we
define the format of the per-packet state as follows:
class MyState(State): # define fields in a state
hash = Field(uint32_t)
pkt = Field(pointer(kvs_message))
key = Field(pointer(void), size=’state.pkt ->keylen ’)

The provided element from_net creates a per-packet state
and stores a packet pointer to state.pkt so that sub-
sequent elements can access the packet fields, such as
state.pkt->keylen. The element hash computes the hash
value of a packet’s key and stores it in state.hash, which
is used later by element hasht_get. To handle a variable-
size field, FLOEM requires programmers to specify its
size, as with the key field above.

4.3 Caching Construct
With only minimal changes to a program, FLOEM of-
fers developers a high-level caching construct for explor-
ing caching on the NIC and storing outputs of expensive
computation to be used in the future. First, program-
mers instantiate the caching construct Cache to create
an instance of a cache storage and elements get_start,
get_end, set_start, and set_end. Programmers then in-
sert get_start right before the get query begins, and
get_end right after the get query ends; a get query is
computation we want to memoize. Programmers must
also specify what to store as a key (input) and a value
(output) in the cache; this can be done by assigning
state.key and state.keylen (key and keylen fields of
per-packet state) before the element get_start, and as-
signing state.val and state.vallen before get_end. If
the application has a corresponding set query, elements
set_start and set_end must be inserted, and those fields
of the per-packet state must be assigned accordingly for
the set query; a set query mutates application state and
must be executed when a cache eviction occurs. Finally,
programmers can use parameters to configure the cache
with the desired table size, cache policy (either write-
through or write-back), and a write-miss policy (either
write-allocate or no-write-allocate).

For our key-value store example, we can use the NIC
to cache outputs from hash table get operations by just
inserting the caching elements, as shown in Figure 1c.
Notice that queues Q1 and Q2 are parts of the expensive
queries (between get_start and get_end and between
set_start and set_end) that can be avoided if outputs
are in the cache.

Requirements. The get and set query regions cannot
contain any callable segment (see Section 4.4). Elements
get_start, get_end, set_start, and set_end must be on
the same device. Paths between get_start and get_end,
and between set_start and set_end, must pass through

the same set of queues (e.g., Figure 1c) to ensure the in-
order delivery of misses and evictions of the same key.
Multiple caches can be used as long as cached regions
are not overlapped. The compiler returns an error if a
program violates these requirements.

4.4 Interfacing with External Code
To help developers offload parts of existing programs
to run on a NIC, we let them: (1) embed C code in
elements, (2) implement elements that call external C
functions available in linkable object files, and (3) ex-
pose segments of FLOEM elements as functions callable
from any C program. The first mechanism is the stan-
dard way to implement an element. The second simply
links FLOEM-generated C code with object files. For the
last mechanism, we introduce a callable segment, which
contains elements between a queue and an endpoint, or
vice versa. An endpoint element may send/receive a
value to/from an external program through its output/in-
put port. A callable segment is exposed as a function
that can be called by an external program to execute the
elements in a segment.

In Figure 1d, we implement simple computation, such
as hashing and response packet construction, in FLOEM,
but we leave complex functionality, including the hash
table and item allocation, in an external C program. The
external program interacts with the FLOEM program to
retrieve a packet, send a get response, and send a set re-
sponse via function obtain_pkt, get_send, and set_send,
respectively. The following listing defines the function
obtain_pkt using a callable segment. This function takes
a physical queue ID as input, pulls the next entry from the
queue with the given ID, executes element retrieve_pkt
on the entry, and returns the output from retrieve_pkt as
the function’s return value.
class ObtainPkt(CallableSegment):

def configure(self):
self.inp = Input(int) # argument is int
self.out = Output(q_entry) # return value is q_entry

def impl(self):
self.inp >> Q1.qid
Q1.deq >> retrieve_pkt >> self.out

ObtainPkt(name=’obtain_pkt ’)

The external program running on the CPU calls
obtain_pkt to retrieve a packet that has been processed
by element hash on the NIC and pushed into queue Q1.

5 The FLOEM Compiler

The FLOEM compiler contains three primary compo-
nents that: (1) translate a data-flow program with el-
ements into C programs, (2) infer minimal data trans-
fers across queues, and (3) expand the high-level caching
construct into primitive elements, as depicted in Figure 4.

668 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: FLOEM system architecture

5.1 Data-Flow to C
FLOEM compiles a data-flow program into two exe-
cutable C programs: one running on the CPU and the
other on the NIC. Our code generator compiles a seg-
ment of primitive elements into a chain of function calls,
where one element corresponds to a function. The com-
piler replaces an output port invocation with a function
call to the next element connected to that output port.
The calling element passes an output value to the next
element as an argument to the function call. Earlier com-
piler passes transform queues (Section 5.2) and caching
constructs (Section 5.3) into primitive elements.

5.2 Inferred Data Transfer
In this section, we explain how the FLOEM compiler in-
fers which fields of a packet and its metadata must be sent
across each queue, and how it transforms queues into a
set of primitive elements.

Liveness analysis. The compiler infers per-packet
state’s fields to send across each logical queue (each
queue’s channel) using a classical liveness analysis [7].
The analysis collects used and defined fields at each el-
ement and propagates information backward to compute
a live set at each element (i.e., a set of fields that are used
by the element’s successors). For each segment, the com-
piler also collects a use set of all fields that are accessed
in the segment.

Transformation. After completing the liveness analy-
sis, the compiler transforms each queue construct into
multiple primitive elements that implement enqueue and

(a) Before transformation (b) After transformation

Figure 5: The key-value store’s data-flow subgraph in the
proximity of queue Q1 from the split CPU-NIC version

dequeue operations. In the split CPU-NIC version of the
key-value store example, the compiler transforms queue
Q1 in Figure 5a into the elements in Figure 5b.

To enqueue an entry to a logical queue at a channel X,
we first create element fill_entry_X to reserve a space
in a physical queue specified by state.qid. We then
copy the live per-packet state’s fields at channel X into
the queue. To dequeue an entry, element dequeue_get

locates the next entry in a specified physical queue, clas-
sifies which channel the entry belongs to, and passes the
entry to the corresponding output port (i.e., demultiplex-
ing). Element save_entry_X allocates memory for the
per-packet state on the receiver’s side to store the use
fields and a pointer to the queue entry so that the fields
in the entry can be accessed later. Each save_entry_X is
connected to the element that was originally connected
to that particular queue channel. Finally, the compiler
inserts a dequeue_release element to release the queue
entry after its last use in the segment. These generated
elements utilize the built-in queue implementations de-
scribed in Section 6.

5.3 Cache Expansion

The compiler expands each high-level caching construct
into primitive elements that implement a cache policy us-
ing the expansion rules shown in Figure 6. Each node in
the figure corresponds to a subgraph of one or more ele-
ments. For a write-through cache without allocation on
write misses, the compiler expands the program graphs
that handle get and set queries in the left column into the
graphs in the middle column. For a write-back policy
with allocation on write misses, the resulting graphs are
shown in the right column. For get-only applications, we
skip the set expansion rule.

We apply various optimizations to reduce response
time. For example, when a new allocation causes an

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 669

Figure 6: Cache expansion rules

eviction in a write-back cache, we write back the evicted
key asynchronously. Instead of waiting for the entire
set query to finish before executing after get (e.g.,
sending the response), we wait only until the local part
of set query (on a NIC) reaches a queue to the remote
part of set query (on a CPU). Once we successfully en-
queue the eviction, we immediately execute after get.

5.4 Supported Targets

We prototype FLOEM on a platform with a Cavium Liq-
uidIO NIC [3]. We use GCC and Cavium SDK [2] to
compile C programs generated by FLOEM to run on a
CPU in user mode and on a NIC, respectively. If a
FLOEM program contains an interface to an external C
program, the compiler generates a C object file that the
external application can link to in order to call the inter-
face functions.

Intrinsics, libraries, and system APIs of the two hard-
ware targets differ. To handle these differences, FLOEM
lets programmers supply different implementations of a
single element class to target x86 and Cavium via impl

and impl_cavium methods, respectively. If impl_cavium

is not implemented, the compiler refers to impl to gen-
erate code for both targets. To generate programs with
parallelism, FLOEM uses pthread on the CPU for multi-
ple segments and relies on the OS thread scheduler. On
the NIC, we directly use hardware threads and assign
each segment to a dedicated NIC core. Consequently, the
compiler prohibits creating more segments on the NIC
than the maximum number of cores (12 for LiquidIO).

6 PCIe I/O Communication

To efficiently communicate between the NIC and CPU
over PCIe, FLOEM provides high-performance, built-in
queue implementations, which rely on the queue syn-
chronization layer (sync layer) to efficiently synchronize
data between NIC and CPU. Figure 4 depicts how these
components interact with the rest of the system. Cur-
rently, we support only a one-way queue with fixed-size
entries, parameterized during compile-time.

6.1 Queue Synchronization Layer
Because DMA engines on the NIC are underpowered,
they must be managed carefully. If we implemented
the queue logic together with data synchronization, the
queue implementation would be extremely complicated
and difficult to troubleshoot. Hence, we decouple these
layers. The sync layer can then additionally be used
for other queue implementations, such as a queue with
variable-size entries.

Our sync layer provides the illusion that the NIC
writes directly to a circular buffer in host memory, where
one buffer represents one physical queue. The layer
keeps shadow copies of queues in local NIC memory,
asynchronously synchronizes these copies with master
copies in host memory, batches multiple DMA requests,
and overlaps DMA operations with other computation.

To use this layer, a queue implementation must: (1)
maintain a status flag in each entry to indicate its avail-
ability, and (2) provide basic queue information and
queue entry’s status checking functions. In turn, the sync
layer provides access_entry and access_done functions
to the queue implementation; the queue implementation
must call access_entry and access_done before and after
accessing/modifying any queue entry, respectively.

6.2 Maintaining Coherent Buffers
The queue synchronization layer relies on FLOEM’s NIC
runtime to maintain coherence between buffers on the
NIC and the CPU by taking advantage of the circular
access pattern of reads followed by writes. We do not
explicitly track a queue’s head and tail; instead, we use a
status flag in each entry to determine if an entry is filled
or empty. We choose this design to synchronize both
the queue entry’s content and status using one DMA op-
eration instead of two. Thus, the runtime continuously
checks the state of every queue entry and performs ac-
tions accordingly.

Typically, a queue entry on the NIC cycles through
invalid, reading, valid, modified, and writing states, as
shown in Figure 7. An invalid entry contains stale con-
tent and must be fetched from host memory. An asyn-

670 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NIC thread Entry on NIC Runtime Controller
PCIe

(status
flag)

(state)

st = reading DMA readinvalid

reading

read completeif NIC own

st = validvalid

access entry

entry

access entry

NULL

access done

CPU own

NIC own

CPU own

local
change

if CPU own

st = modified
modified DMA write

st = writing
writing

write complete
st = invalidinvalid

Figure 7: Transitions of a queue entry’s status by a NIC
worker thread and a NIC runtime manager thread

chronous DMA read transitions an entry from invalid to
reading state. Once the read completes, and the entry is
NIC owned (indicated by the status flag), the entry tran-
sitions to valid state. It may transition back to invalid
if it is still CPU owned, for example, when the NIC at-
tempts to dequeue an entry that the CPU has not finished
enqueuing. The runtime uses the status checking func-
tions provided by the queue implementation to check an
entry’s status flag. The program running on the NIC can
access only valid entries; function access_entry returns
the pointer to an entry if it is in valid state; otherwise, it
returns NULL.

An entry transitions from valid to modified once the
queue implementation calls function access_done to in-
dicate that it is finished accessing that entry. An asyn-
chronous DMA write then transitions the entry to invalid
state, based on the assumption that the CPU side will
eventually modify it, and the NIC must read it from the
CPU. This completes a typical cycle of states through
which an entry passes.

Note that the CPU side does not need this sync layer or
track these states because, unlike the NIC, it does not
issue DMA operations.

6.3 I/O Batching
In the actual implementation, we do not track the state of
individual queue entries due to high overhead. Instead,
we use five pointers to divide a circular queue buffer into
five portions with the five states. When a pointer ad-
vances, we effectively change the states of a batch of en-
tries that the pointer has moved past. The runtime has a
dedicated routine to advance each pointer, and executes
these routines in round-robin fashion, overlapping DMA
read/write routines with other routines. To achieve DMA
batching, the DMA read routine issues a DMA read for
the next batch of entries instead of a single entry, as does
the DMA write routine. We use a configurable number
of dedicated NIC cores (manager threads) to execute the
runtime. Each core manages a disjoint subset of queues.

More details about our queue implementation and
queue synchronization layer beyond this section can be
found in Section 3.6 of the first author’s thesis [38].

7 Evaluation

We ran experiments on two small-scale clusters to eval-
uate the benefit of offloading on servers with different
generations of CPUs: 6-core Intel X5650 in our West-
mere cluster, and 12-core Intel E5-2680 v3 in our Sandy
Bridge cluster (more powerful). Each cluster had four
servers; two were equipped with Cavium LiquidIO NICs,
and the others had Intel X710 NICs. All NICs had two
10Gbps ports.

We evaluated CPU-only implementations on the
servers with the Intel X710 NICs, using DPDK [4] to
send and receive packets bypassing the OS networking
stack to minimize overheads. We used the servers with
the Cavium LiquidIO NICs to evaluate implementations
with NIC offloading. The Cavium LiquidIO has a 12-
core 1.20GHz cnMIPS64 processor, a set of on-chip/off-
chip accelerators (e.g., encryption/decryption engines),
and 4GB of on-board memory.

7.1 Programming Abstraction
We implemented in FLOEM two complex applications
(key-value store and real-time data analytics) and three
less complex network functions (encryption, flow classi-
fication, and network sequencer).

Hypothesis 1 FLOEM lets programmers easily explore
offload strategies to improve application performance.

The main purpose of this experiment is to demonstrate
that FLOEM makes it easier to explore alternative of-
floading designs, not to show when or how one should
or should not offload an application to a NIC.

For the complex applications, we started with a CPU-
only solution as a baseline by porting parts of an existing
C implementation into FLOEM. Then, we used FLOEM
to obtain a simple partition of the application between
the CPU and NIC for the first offload design. In both case
studies, we found that the first offloading attempt was un-
successful because an application’s actual performance
can greatly differ from a conceptual estimate. However,
we used FLOEM to redesign the offload strategy to obtain
a more intelligent and higher performing solution, with
minimal code changes, and achieved 1.3–3.6× higher
throughput than the CPU-only version.

For the less complex workloads, FLOEM let us quickly
determine whether we should dedicate a CPU core to
handle the workload or just use the NIC and save
CPU cycles for other applications. By merely chang-
ing FLOEM’s device mapping parameter, we found that

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 671

it was reasonable to offload encryption and flow classifi-
cation to the NIC, but that the network sequencer should
be run on the CPU. The rest of this section describes the
applications in our experiment in greater detail.

Case Study: Key-Value Store

In this case study, we used one server to run the key-
value store and another to run a client generating work-
load, communicating via UDP. The workload consisted
of 100,000 key-value pairs of 32-byte keys and 64-byte
values, with the Zipf distribution (s = 0.9) of 90% GET
requests and 10% SET requests, the same workload used
in FlexNIC [23]. We used a single CPU core with a NIC
offload (potentially with multiple NIC cores); this setup
was reasonable since other CPU cores may be used to ex-
ecute other applications simultaneously. Figure 8 shows
the measured throughput of different offloading strate-
gies, and Table 1 summarizes the implementation effort.

CPU-only (Figure 1a): We ported an existing C im-
plementation, which runs on a CPU using DPDK, into
FLOEM except for the garbage collector of freed key-
value items. This effort involved converting the origi-
nal control-flow logic into the data-flow logic, replacing
538 lines of code with 334 lines. The code reduction
came from using reusable elements (e.g., from_net and
to_net), so we did not have to set up DPDK manually.

Split CPU-NIC (Figure 1b): We tried a simple
CPU-NIC partition, following the offloading design of
FlexKVS [23], by modifying 296 lines of the CPU-only
version; this offload strategy was carefully designed to
minimize computational cycles on a CPU. It required
many changes because the NIC (create_item element)
creates key-value items that reside in CPU memory. Un-
expectedly, this offload strategy lowered performance
(the second bar). Profiling the application revealed a
major bottleneck in the element that prepares a GET re-
sponse on the NIC. The element issued a blocking DMA
read to retrieve the item’s content from host memory.
This DMA read was not part of queue Q2 because that
queue sent only the pointer to the item, not the item it-
self. Therefore, the runtime could not manage this DMA
read; as a result, this strategy suffered from this addi-
tional DMA cost.

NIC caching (Figure 1c): We then used FLOEM to
explore a completely different offload design. Since the
Cavium NIC has a large amount of local memory, we
could cache a signification portion of the key-value store
on the NIC. This offload design, previously explored,
was shown to have high performance [26]. Therefore, we
modified the CPU-only version by inserting the caching
construct (43 lines of code) as well as creating segments
and inserting queues (62 lines of code). For a baseline
comparison, code relevant to communication on the CPU

 0

 1

 2

 3

 4

 5

 6

 7

Westmere Sandy Bridge

T
h
ro

u
g
h
p
u
t

p
e
r

C
P
U

 c
o
re

 (
G

b
it

s/
s)

CPU-only
Split CPU-NIC
cache-WT-#2
cache-WB-#1
cache-WB-#2

cache-WB-#3
cache-WB-#4
cache-WB-#5
cache-WB-#6

Figure 8: Throughput per CPU core of different imple-
mentations of the key-value store. WB = write-back, WT
= write-through. #N in “cache-WB-#N” is the configu-
ration number. Table 2 shows the cache sizes of the dif-
ferent configurations and their resulting hit rates.

Version Effort Details
(obtained from) (loc)

Existing 1708 Hand-written C program
CPU-only replace 538 Refactor C program into
(Existing) with 334 FLOEM elements.

Split CPU-NIC add 296 Create queues.
(CPU-only) NIC remotely allocates

items on CPU memory.
Caching add 43 Create a cache. Assign

(CPU-only) key, keylen, val, vallen.
NIC caching add 62 Create queues and

(Caching) segments.

Table 1: Effort to implement key-value store. The last
column describes specific modification details other than
creating, modifying, and rewiring elements. As a base-
line, code relevant to communication on the CPU side
alone was 240 lines in a manual C implementation.

side alone was already at 240 lines in a manually-written
C implementation of FlexKVS with a software NIC em-
ulation. This translated to fewer than 15 lines of code in
FLOEM. These numbers show that implementing a NIC-
offload application without FLOEM requires significantly
more effort than with FLOEM.

Regarding performance, the third bar in Figure 8 re-
ports the throughput when using a write-through cache
with 215 buckets and five entries per bucket, resulting
in a 90.3% hit rate. According to the result, the write-
through cache did not provide any benefit over the CPU-
only design, even when the cache hit rate was quite high.
Therefore, we configured the caching construct to use a
write-back policy (by changing the cache policy parame-
ter) because write-back generally yields higher through-
put than write-through. The remaining bars show the
performance when using a write-back cache with differ-
ent cache sizes, resulting in the different hit rates shown

672 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Config. #1 #2 #3 #4 #5 #6 #2 (WT)
of buckets 215 215 215 215 214 214 215

of entries ∞ 5 2 1 1 1 5
hit rate (%) 100 97.2 88.4 75.3 65.0 55.2 90.3

Table 2: The sizes of the cache (# of buckets and # of
entries per bucket) on the NIC and the resulting cache hit
rates when using the cache for the key-value store. All
columns report the hit rates when using write-back policy
except the last column for write-through. ∞ entries mean
a linked list.

in Table 2. This offloading strategy improved through-
put over the CPU-only design by 2.8–3.6× on Westmere
and 28–60% on Sandy Bridge when the hit rate exceeded
88% (configuration #1–3).

Notice that at high cache hit rates, the throughput for
this offload strategy was almost identical on Westmere
and Sandy Bridge regardless of the CPU technology. The
NIC essentially boosted performance on the Westmere
server to be on par with the Sandy Bridge one. In other
words, an effective NIC offload reduced the workload’s
dependency on CPU processing speed.

Case Study: Distributed Real-Time Data Analytics

Distributed real-time analytics is a widely-used applica-
tion for analyzing frequently changing datasets. Apache
Storm [1], a popular framework built for this task, em-
ploys multiple types of workers. Spout workers emit tu-
ples from a data source; other workers consume tuples
and may emit more tuples. A worker thread executes one
worker. De-multiplexing threads route incoming tuples
from the network to local workers. Multiplexing threads
route tuples from local workers to other servers and per-
form simple flow control. Our specific workload ranked
the top n users from a stream of Twitter tweets. In this
case study, we optimized for throughput per CPU core.
Figure 9 and Table 3 summarize the throughput and im-
plementation effort of different strategies, respectively.

CPU-only: We ported demultiplexing, multiplex-
ing, and DCCP flow-control from FlexStorm [23] into
FLOEM but kept the original implementation of the
workers as an external program. We used callable seg-
ments (Section 4.4) to define functions inqueue_get and
outqueue_put for workers (in the external program) to
obtain a task from the demultiplexer and send a task
to the multiplexer (in FLOEM). This porting effort in-
volved replacing 1,192 lines of code with only 350 lines.
The code reduction here was much higher than in the
key-value store application because FlexStorm’s original
implementation required many communication queues,
which were replaced by FLOEM queues. The best CPU-
only configuration that achieved the highest throughput
per core used three cores for three workers (one spout,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Westmere Sandy Bridge

T
h
ro

u
g

h
p

u
t

p
e
r

C
P
U

 c
o
re

 (
G

b
it

s/
s) CPU-only

Spilt CPU-NIC
Redesigned CPU-NIC

Figure 9: Throughput per CPU core of different Storm
implementations

Version Effort Details
(obtained from) (loc)

Existing 2935 Hand-written C program
CPU-only replace 1192 Refactor C program into
(Existing) with 350 FLOEMelements.

Split CPU-NIC modify 1 Change device parameter.
(CPU-only)
Redesigned add 23 Create bypass queues.

(Split CPU-NIC)

Table 3: Effort to implement Storm. The last column de-
scribes specific modification details other than creating,
modifying, and rewiring elements.

one counter, and one ranker), one core for demultiplex-
ing, and two cores for multiplexing.

Split CPU-NIC: As suggested in FlexNIC, we of-
floaded (de-)multiplexing and flow control to the NIC, by
changing the device parameter (one line of code change).
This version, however, lowered throughput slightly com-
pared to the CPU-only version.

Redesigned CPU-NIC: The split CPU-NIC version
can be optimized further. A worker can send its output
tuple to another local worker or a remote worker over
the network. For the former case, a worker sends a tuple
to the multiplexer on the NIC, which in turn forwards it
to the target worker on the CPU. Notice that this CPU-
NIC-CPU round-trip is unnecessary. To eliminate this
communication, we created bypass queues for workers
to send tuples to other local workers without involving
the multiplexer. With this slight modification (23 lines of
code), we achieved 96% and 75% higher throughput than
the CPU-only design on the Westmere and Sandy Bridge
cluster, respectively.

Other Applications

The following three applications are common network
function tasks. Because of their simplicity, we did not
attempt to partition them across the CPU and NIC. Fig-
ure 10 reports throughput when using one CPU core on a
Sandy Bridge server or offloading everything to the Cav-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 673

 0

 2

 4

 6

 8

 10

AES Flow Seq

To
ta

l
T
h
ro

u
g
h
p
u
t

(G
b
it

s/
s)

CPU-AES-NI
CPU
NIC

Figure 10: Throughput of AES encryption, flow classifi-
cation, and network sequencer running on one CPU core
and the LiquidIO NIC. ‘CPU-AES-NI’ uses AES-NI.

ium NIC. In our experiment, we used a packet size of
1024 bytes for encryption and network sequencer, and
80 bytes for flow classification.

Encryption is a compute-intensive stateless task, used
for Internet Protocol Security. In particular, we imple-
mented AES-CBC-128. We wrote two CPU versions: (1)
using Intel Advanced Encryption Standard New Instruc-
tions (AES-NI), and (2) without AES-NI, which is avail-
able in only some processors. NIC Offloading improved
throughput by 2.5× and 17.5× with and without AES-NI
on CPU, respectively. Using AES-NI improved perfor-
mance on the CPU but to a lesser degree than utilizing all
encryption co-processors on the NIC. This result would
be difficult to predict without an empirical test.

Flow classification is a stateful task that tracks flow
statistics. We categorized flows using the header 5-
tuple and used a probabilistic data structure (a count-min
sketch) to track the number of bytes per flow. This appli-
cation ran slightly faster on the NIC. Therefore, it seems
reasonable to offload this task to the NIC if we want to
spare CPU cycles for other applications.

Network sequencer orders packets based on prede-
fined rules. It performs simple computation and main-
tains limited in-network state. This function has been
used to accelerate distributed system consensus [29] and
concurrency control [28]. Our network sequencer was
82% faster on the CPU core than on the NIC. Applica-
tion throughput did not scale with the number of cores
because of the group lock’s contention; the number of
locks acquired by each packet was 5 out of 10 on average
in our synthetic workload, making this task inherently se-
quential. Therefore, using one fast CPU core yielded the
best performance. We also tried running this program us-
ing multiple CPU cores, but throughput stayed the same
as we increased the number of cores. On the NIC, using
three cores offered the highest performance.

In summary, even for simple applications, it is not
obvious whether offloading to the NIC improves or de-
grades performance. Using FLOEM lets us answer these
questions quickly and precisely by simply changing the
device parameter of the computation segment to either
CPU or NIC. Comparing cost-performance or power-
performance is beyond the scope of this paper. Never-
theless, one can use FLOEM to experiment with different
configurations for a specific workload to optimize for a
particular performance objective.

7.2 Logical-to-Physical Queue Mapping
Hypothesis 2 Logical-to-physical queue mapping lets
programmers implement packet steering, packet order-
ing, and different degrees of resource sharing.

Packet steering. Storm, the second case study, re-
quired packet steering to the correct input queues, each
dedicated to one worker. This was done by creating a
queue with multiple physical instances and by setting
state.qid according to an incoming tuple’s type.

Packet ordering. The write-back cache implementa-
tion required in-order delivery between CPU and NIC to
guarantee consistency (see Section 4.1).

Resource sharing. For the split NIC-CPU version of
the key-value store, sending both GET and SET requests
on separate physical queues offered 7% higher through-
put than sharing the same queue. This is because we can
use a smaller queue entry’s size to transfer data for GET
requests. In contrast, for our Storm application, shar-
ing the same physical output queue between all workers
yielded 16% higher throughput over separate dedicated
physical queues. Since some workers infrequently pro-
duce output tuples, it was more efficient to combine tu-
ples from all workers to send over one queue. Hence, it is
difficult to predict whether sharing or no sharing is more
efficient, so queue resource sharing must be tunable.

7.3 Inferred Data Transfer
Hypothesis 3 Inferred data transfer improves perfor-
mance relative to sending an entire packet.

In this experiment, we evaluated the benefit of sending
only a packet’s live fields versus sending an entire packet
over a queue. We measured the throughput of transmit-
ting data over queues from the NIC to CPU when varying
the ratio of the live portion to the entire packet’s size (live
ratio), detailed in Table 4. The sizes of live portions and
packets were multiples of 64 bytes because performance
was degraded when a queue entry’s size was not a mul-
tiple of 64 bytes, the size of a CPU cache line. We used
numbers of queues and cores that maximized throughput.

674 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Live ratio 1/5 1/4 1/3 1/2 2/3 3/4 4/5
Live size (B) 64 64 64 64 128 192 256
Total size (B) 320 256 192 128 192 256 320

Speedup 3.1x 2.5x 2x 1.5x 1.3x 1.2x 1.2x

Table 4: Speedup when sending only the live portions
when varying live ratios from a micro-benchmark. Sizes
are in bytes (B).

As shown on the table, sending only live fields improved
throughput by 1.2–3.1×. Additionally, we evaluated the
effect of this optimization on the split CPU-NIC version
of the end-to-end key-value store, whose queues from
NIC to CPU transfer packets with a live ratio of 1/2. The
optimization improved the throughput of this end-to-end
application by 6.5%.

7.4 Queue Synchronization Layer
Hypothesis 4 The queue synchronization layer enables
high-throughput communication queues.

We measured the throughput of three benchmarks.
The first benchmark performed a simple packet forward-
ing from the NIC to CPU with no network activity, so its
performance purely reflects the rate of data transfer over
the PCIe bus rather than the rate of sending and receiving
packets over the network. We used packet sizes of 32, 64,
128, and 256 bytes. The other two benchmarks were the
write-back caching version of the key-value store and the
redesigned CPU-NIC version of Storm.

Figure 11 displays the speedup when using the sync
layer versus using primitive blocking DMA without
batching (labeled “without sync layer”). The sync layer
offered 9–15× speedup for pure data transfers in the
first benchmark. Smaller packet sizes showed a higher
speedup; this is because batching effectiveness increases
with the number of packets in a batch. For end-to-end
applications, we observed a 7.2–14.1× speedup for the
key-value store and a 3.7× speedup for Storm. Note that
the sync layer is always enabled in the other experiments.
Hence, it is crucial for performance of our system.

7.5 Compiler Overhead
Hypothesis 5 The FLOEM compiler has negligible
overhead compared to hand-written code.

We compared the throughput of code generated from
our compiler to hand-optimized programs in C. To mea-
sure the compiler’s overhead on the CPU, we ran a sim-
ple echo program, Storm, and key-value store. The C im-
plementations of Storm and key-value store were taken
from FlexStorm and one of FlexKVS’s baselines [23];
these implementations are highly-optimized and perform
better than the standard public implementations of Storm
and memcached. On the NIC, we compared a simple

 0

 2

 4

 6

 8

 10

 12

 14

Inqueue-32

Inqueue-64

Inqueue-128

Inqueue-256

KVS-cache-#3

KVS-cache-#4

KVS-cache-#5

KVS-cache-#6

Storm

N
o
rm

a
liz

e
d

 t
h
ro

u
g

h
p

u
t

without sync layer
with sync layer

Figure 11: Effect of the queue synchronization layer.
Throughput is normalized to that without the sync layer.

echo program, encryption, flow classification, and net-
work sequencer. On average, the overhead was 9% and
1% on CPU and NIC, respectively. We hypothesize that
the higher overhead on the CPU was primarily because
we did not implement computation batching [24, 46],
which was used for hand-optimized programs.

8 Discussion and Future Work

Multi-message packets. FLOEM can support a packet
whose payload contains multiple requests via Batcher

and Debatcher elements. Given one input packet,
Debatcher invokes its one output port n times sequen-
tially, where n is the number of requests in the payload.
Batcher stores the first n− 1 packets in its state. Upon
receiving the last token, it sends out n packets as one
value. The Debatcher element can inform the value of n
to the Batcher element via the per-packet state. One can
also take advantage of this feature to support computa-
tion batching, similar to Snap [46].

Multi-packet messages and TCP. Exploring the TCP
offload with FLOEM is future work. FLOEM supports
multi-packet messages via Batcher and Debatcher ele-
ments and could be used together with a TCP offload on
the NIC, but our applications do not use TCP.

Shared data structures. In FLOEM, queues and
caches are the only high-level abstractions for shared
data structures between the NIC and CPU. However, ad-
vanced developers can use FLOEM to allocate a memory
region on the CPU that the NIC can access via DMA op-
erations, but they are responsible for synchronizing data
and managing the memory by themselves.

Automation. Automatic program partitioning was
among our initial goals, but we learned that it cannot be
done entirely automatically. Different offloading strate-
gies often require program refactoring by rewriting the
graph and even graph elements. These program-specific

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 675

changes cannot be done automatically by semantics-
preserving transformation rules. Therefore, we let pro-
grammers control the placement of elements while refac-
toring the program for a particular offload design. How-
ever, FLOEM would benefit from and integrate well with
another layer of automation, like an autotuner or a run-
time scheduler, that could select parameters for low-level
choices (e.g., the number of physical queues, the number
of cores, and the placement of each element) after an ap-
plication has been refactored.

Other SmartNICs. The current FLOEM prototype tar-
gets Cavium LiquidIO but can be extensible to other
SmartNICs that support C-like programming, such as
Mellanox BlueField [32] and Netronome Agilio [6].
However, FPGAs [12, 33, 48] require compilation to
a different execution model and the implementation of
bodies of elements in a language compatible with the
hardware.

9 Related Work

Packet processing frameworks. The FLOEM data-
flow programming model is inspired by the Click
modular router [34], a successful framework for pro-
grammable routers, where a network function is com-
posed from reusable elements [34]. SMP Click [13]
and RouteBricks [16] extend Click to exploit paral-
lelism on a multi-processor system. Snap [46] and
NBA [24] add GPU offloading abstractions to Click,
while ClickNP [27] extends Click to support joint CPU-
FPGA processing. Dragonet, a system for a network
stack design, automatically offloads computations (de-
scribed in data-flow graphs) to a NIC with fixed hardware
functions rather than programmable cores [43, 44].

Other packet processing systems adopt different pro-
gramming models. PacketShader [19] is among the first
to leverage GPUs to accelerate packet processing in soft-
ware routers. APUNet [17] identifies the PCIe bottleneck
between the CPU and GPU and employs an integrated
GPU in an APU platform as a packet processing accel-
erator. Domain-specific languages for data-plane algo-
rithms, including P4 [10] and Domino [45], provide even
more limited operations.

Overall, programming abstractions provided by exist-
ing packing processing frameworks are insufficient for
our target domain, as discussed in Section 2.

Synchronous data-flow languages. Synchronous
data-flow (SDF) is a data-flow programming model in
which computing nodes have statically known input
and output rates [25]. StreamIt [47] adopts SDF for
programming efficient streaming applications on mul-
ticore architectures. Flextream [20] extends StreamIt

with dynamic runtime adaptation for better resource
utilization. More recently, Lime [21] provides a unified
programming language based on SDF for programming
heterogeneous computers that feature GPUs and FPGAs.
Although some variations of these languages support
dynamic input/output rates, they are designed primarily
for static flows. As a result, they are not suitable for
network applications, where the flow of a packet through
a computing graph is highly dynamic.

Systems for heterogeneous computing. Researchers
have extensively explored programming abstractions and
systems for various application domains on various
heterogeneous platforms [8, 11, 31, 35, 39, 41, 42].
FLOEM is unique among these systems because it is de-
signed specifically for data-center network applications
in a CPU-NIC environment. In particular, earlier sys-
tems were intended for non-streaming or large-grained
streaming applications, whose unit of data in a stream
(e.g., a matrix or submatrix) is much larger than a packet.
Furthermore, most of these systems do not support a pro-
cessing task that maintains state throughout a stream of
data, which is necessary for our domain.

10 Conclusions

Developing NIC-accelerated network applications is ex-
ceptionally challenging. FLOEM aims to simplify the
development of these applications by providing a uni-
fied framework to implement an application that is split
across the CPU and NIC. It allows developers to quickly
explore alternative offload designs by providing pro-
gramming abstractions to place computation to devices;
control mapping of logical queues to physical queues;
access fields of a packet without manually marshaling it;
cache application state on a NIC; and interface with an
external program. Our case studies show that FLOEM
simplifies the development of applications that take ad-
vantage of a programmable NIC, improving the key-
value store’s throughput by up to 3.6×.

Acknowledgments

This work is supported in part by MSR Fellowship, NSF
Grants CCF–1337415, NSF ACI–1535191, NSF 16-606,
and NSF 1518702, the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corpo-
ration (SRC) program sponsored by DARPA, grants from
DARPA FA8750–16–2–0032, by the Intel and NSF joint
research center for Computer Assisted Programming for
Heterogeneous Architectures (CAPA) as well as gifts
from Google, Intel, Mozilla, Nokia, Qualcomm, Face-
book, and Huawei.

676 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Apache Storm. http://storm.apache.org. Ac-
cessed: 2017-11-15.

[2] Cavium Development Kits. http://www.cavium.
com/octeon software develop kit.html. Ac-
cessed: 2017-11-15.

[3] Cavium LiquidIO. http://www.cavium.com/
LiquidIO Adapters.html. Accessed: 2017-11-
14.

[4] DPDK: Data Plane Develepment Kit. http://
dpdk.org/. Accessed: 2017-11-07.

[5] IEEE P802.3bs 400 GbE Task Force. Adopted
Timeline. http://www.ieee802.org/3/bs/
timeline 3bs 0915.pdf. Accessed: 2017-11-16.

[6] Netronome Agilio SmartNICs. https:
//www.netronome.com/products/smartnic/
overview/. Accessed: 2017-11-14.

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ull-
man. Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2006.

[8] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In Proceedings of the International
Conference on High Performance Computing, Net-
working, Storage and Analysis, SC ’12, 2012.

[9] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Through-
put and Low Latency. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, 2014.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-
eown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet Proces-
sors. SIGCOMM Computer Communication Re-
view, 44(3):87–95, July 2014.

[11] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun. A Hetero-
geneous Parallel Framework for Domain-Specific
Languages. In Proceedings of the 2011 Interna-
tional Conference on Parallel Architectures and
Compilation Techniques, PACT ’11, 2011.

[12] A. M. Caulfield, E. S. Chung, A. Putnam,
H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Mas-
sengill, K. Ovtcharov, M. Papamichael, L. Woods,
S. Lanka, D. Chiou, and D. Burger. A cloud-scale
acceleration architecture. In Proceedings of the
49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’16, 2016.

[13] B. Chen and R. Morris. Flexible Control of Paral-
lelism in a Multiprocessor PC Router. In Proceed-
ings of the General Track: 2001 USENIX Annual
Technical Conference, 2001.

[14] Cisco. Introduction To RPC/XDR.
http://www.cisco.com/c/en/us/td/docs/
ios/sw upgrades/interlink/r2 0/rpc pr/
rpintro.html. Accessed: 2018-09-07.

[15] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,
J. E. Gonzalez, and I. Stoica. Clipper: A low-
latency online prediction serving system. In
Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’17, 2017.

[16] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism
to Scale Software Routers. In Proceedings of the
22nd ACM Symposium on Operating Systems Prin-
ciples, SOSP ’09, 2009.

[17] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and
K. Park. APUNet: Revitalizing GPU as Packet
Processing Accelerator. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’17, 2017.

[18] Google. Protocol Buffers. http://developers.
google.com/protocol-buffers/. Accessed:
2018-09-07.

[19] S. Han, K. Jang, K. Park, and S. Moon. Packet-
Shader: A GPU-accelerated Software Router. In
Proceedings of the 2010 ACM Conference on Spe-
cial Interest Group on Data Communication, SIG-
COMM ’10, 2010.

[20] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah,
T. Mudge, and S. Mahlke. Flextream: Adaptive
compilation of streaming applications for hetero-
geneous architectures. In Proceedings of the 2009
International Conference on Parallel Architectures
and Compilation Techniques, PACT ’09, 2009.

[21] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rab-
bah. Liquid Metal: Object-Oriented Program-
ming Across the Hardware/Software Boundary. In

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 677

Proceedings of the 22nd European Conference on
Object-Oriented Programming, ECOOP ’08, 2008.

[22] X. Jin, X. Li, H. Zhang, R. Soule, J. Lee, N. Fos-
ter, C. Kim, and I. Stoica. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In
Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles, SOSP ’17, 2017.

[23] A. Kaufmann, S. Peter, N. K. Sharma, T. Ander-
son, and A. Krishnamurthy. High Performance
Packet Processing with FlexNIC. In Proceedings of
the 21st International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, ASPLOS ’16, 2016.

[24] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and
S. Moon. NBA (Network Balancing Act): A
High-performance Packet Processing Framework
for Heterogeneous Processors. In Proceedings of
the 10th European Conference on Computer Sys-
tems, EuroSys ’15, 2015.

[25] E. A. Lee and D. G. Messerschmitt. Static Schedul-
ing of Synchronous Data Flow Programs for Digital
Signal Processing. IEEE Transactions on Comput-
ers, C-36(1):24–35, Jan 1987.

[26] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Put-
nam, E. Chen, and L. Zhang. KV-Direct: High-
Performance In-Memory Key-Value Store with
Programmable NIC. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles,
SOSP ’17, 2017.

[27] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. ClickNP: Highly
Flexible and High Performance Network Process-
ing with Reconfigurable Hardware. In Proceedings
of the 2016 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’16,
2016.

[28] J. Li, E. Michael, and D. R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using
In-Network Concurrency Control. In Proceedings
of the 26th ACM Symposium on Operating Systems
Principles, SOSP ’17, 2017.

[29] J. Li, E. Michael, N. K. Sharma, A. Szekeres,
and D. R. K. Ports. Just Say NO to Paxos Over-
head: Replacing Consensus with Network Order-
ing. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, OSDI ’16, 2016.

[30] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishna-
murthy, and K. Atreya. IncBricks: Toward In-
Network Computation with an In-Network Cache.
In Proceedings of the 22nd International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17,
2017.

[31] C. K. Luk, S. Hong, and H. Kim. Qilin: Exploiting
parallelism on heterogeneous multiprocessors with
adaptive mapping. In Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’09, 2009.

[32] Mellanox Technologies. BlueField Multicore
System on Chip. http://www.mellanox.com/
related-docs/npu-multicore-processors/
PB Bluefield SoC.pdf, 1018. Accessed: 2018-
04-25.

[33] Mellanox Technologies. Innova - 2
Flex Programmable Network Adapter.
http://www.mellanox.com/related-docs/
npu-multicore-processors/PB Bluefield
SoC.pdf, 1018. Accessed: 2018-04-25.

[34] R. Morris, E. Kohler, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. In Proceed-
ings of the 17th ACM Symposium on Operating Sys-
tems Principles, SOSP ’99, 1999.

[35] E. B. Nightingale, O. Hodson, R. McIlroy, C. Haw-
blitzel, and G. Hunt. Helios: Heterogeneous Mul-
tiprocessing with Satellite Kernels. In Proceedings
of the 22nd ACM Symposium Symposium on Oper-
ating Systems Principles, SOSP ’09, 2009.

[36] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker. NetBricks: Taking the V out of
NFV. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, OSDI ’16, 2016.

[37] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The Operating System is the Control Plane.
In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation,
OSDI ’14, 2014.

[38] P. M. Phothilimthana. Programming Abstrac-
tions and Synthesis-Aided Compilation for Emerg-
ing Computing Platforms. PhD thesis, EECS De-
partment, University of California, Berkeley, Sept
2018.

678 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[39] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley,
and S. Amarasinghe. Portable Performance on
Heterogeneous Architectures. In Proceedings of
the 18th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, ASPLOS ’13, 2013.

[40] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh,
J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Y. Xiao, and D. Burger. A Reconfigurable Fabric
for Accelerating Large-scale Datacenter Services.
In Proceedings of the 41st Annual International
Symposium on Computer Architecture, ISCA ’14,
2014.

[41] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray,
and E. Witchel. PTask: Operating System Abstrac-
tions to Manage GPUs As Compute Devices. In
Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles, SOSP ’11, 2011.

[42] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and
D. Fetterly. Dandelion: A Compiler and Runtime
for Heterogeneous Systems. In Proceedings of the
24th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, 2013.

[43] P. Shinde, A. Kaufmann, K. Kourtis, and T. Roscoe.
Modeling NICs with Unicorn. In Proceedings of
the Seventh Workshop on Programming Languages
and Operating Systems, PLOS ’13, 2013.

[44] P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaes-
tle. We Need to Talk About NICs. In Proceedings
of the 14th USENIX Conference on Hot Topics in
Operating Systems, HotOS ’13, 2013.

[45] A. Sivaraman, A. Cheung, M. Budiu, C. Kim,
M. Alizadeh, H. Balakrishnan, G. Varghese,
N. McKeown, and S. Licking. Packet Transactions:
High-Level Programming for Line-Rate Switches.
In Proceedings of the 2016 ACM Conference on
Special Interest Group on Data Communication,
SIGCOMM ’16, 2016.

[46] W. Sun and R. Ricci. Fast and Flexible: Parallel
Packet Processing with GPUs and Click. In Pro-
ceedings of the Ninth ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, ANCS ’13, 2013.

[47] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
StreamIt: A Language for Streaming Applications.
In Proceedings of the 11th International Confer-
ence on Compiler Construction, CC ’02, 2002.

[48] N. Zilberman, Y. Audzevich, G. Kalogeridou,
N. Manihatty-Bojan, J. Zhang, and A. Moore.
NetFPGA: Rapid Prototyping of Networking De-
vices in Open Source. In Proceedings of the 2015
ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, 2015.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 679

