
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

MAGE: Nearly Zero-Cost Virtual Memory
for Secure Computation

Sam Kumar, David E. Culler, and Raluca Ada Popa,
University of California, Berkeley

https://www.usenix.org/conference/osdi21/presentation/kumar

MAGE: Nearly Zero-Cost Virtual Memory for Secure Computation

Sam Kumar, David E. Culler, and Raluca Ada Popa
University of California, Berkeley

Abstract
Secure Computation (SC) is a family of cryptographic prim-
itives for computing on encrypted data in single-party and
multi-party settings. SC is being increasingly adopted by in-
dustry for a variety of applications. A significant obstacle to
using SC for practical applications is the memory overhead of
the underlying cryptography. We develop MAGE, an execu-
tion engine for SC that efficiently runs SC computations that
do not fit in memory. We observe that, due to their intended
security guarantees, SC schemes are inherently oblivious—
their memory access patterns are independent of the input
data. Using this property, MAGE calculates the memory ac-
cess pattern ahead of time and uses it to produce a memory
management plan. This formulation of memory management,
which we call memory programming, is a generalization of
paging that allows MAGE to provide a highly efficient virtual
memory abstraction for SC. MAGE outperforms the OS vir-
tual memory system by up to an order of magnitude, and in
many cases, runs SC computations that do not fit in memory
at nearly the same speed as if the underlying machines had
unbounded physical memory to fit the entire computation.

1 Introduction
Secure Computation (SC) refers to cryptographic primitives
that allow computation on encrypted data. An example of SC
is secure multi-party computation, which allows two parties to
perform a collaborative computation on private input data. Ad-
vances in cryptography over the years have steadily brought
SC closer to practice. Recently, the use of SC in industry—in
particular, homomorphic encryption (HE) and secure multi-
party computation (SMPC)—has burgeoned. Companies offer
services based on SC [12,19,27,38,46,75] (from secure collab-
orative learning to decentralized authentication and custody),
large financial enterprises have added SC-based products [64],
and cryptocurrencies secure billions of dollars with SC [91].

SC not only has high CPU overhead, but also requires
high memory usage and, in the case of SMPC, high network
usage. For example, a 64-bit integer, which requires only 8 B
of memory when computing in plaintext, takes up 1 KiB
of memory when using a garbled circuit (a type of SMPC).
Efficiently running SC requires careful attention to not only
CPU efficiency, but also memory and network demands.

CPU overheads can be reduced using hardware accelerators
(e.g., GPUs, FPGAs) or specialized hardware (e.g., AES-NI).
Network bandwidth continues to grow exponentially accord-
ing to Nielsen’s Law [62], and recent cryptographic improve-
ments have relaxed network bandwidth demands for some SC

protocols [10, 15]. But memory management remains prob-
lematic. Many recent cryptographic systems based on SC re-
port that SC systems quickly run out of memory [66,79,94,95].
Once they do, the computation becomes prohibitively slow be-
cause the OS inefficiently swaps the large memory footprint to
secondary storage. For example, the authors of Conclave [79]
report that Obliv-C, an SMPC framework, can run a join on
only 30,000 records before running out of memory, and state
that SMPC “in practice only scales to a few thousand input
records.” Similarly, Senate [66], a secure collaborative ana-
lytics engine based on SMPC, can run a 16-party private set
intersection on only 10,000 integers per party.

In this context, we address the research question: Can SC
execute efficiently when it does not fit in memory? We
answer this in the affirmative with our system MAGE.1

A natural starting point for MAGE is to specialize the OS
page replacement policy to SC workloads. Unsurprisingly,
this design suffers from some of the same pitfalls as classic
virtual memory systems. Pages may not be fetched until a
page fault occurs, requiring multiprogramming to keep the
CPU busy [26]. Furthermore, classic page replacement algo-
rithms perform poorly on some workloads [3], and a policy
specialized to SC would likely be no different.

To mitigate these issues, we observe that SC is inherently
oblivious. In particular, many SC protocols have no data-
dependent memory accesses. This is because an SC proto-
col must not leak any information about the data contents
via its memory access pattern. Our key insight in MAGE is
that SC’s inherent obliviousness allows us to calculate the
access pattern for any computation in advance and use it
to manage memory in a fundamentally more efficient way
than classic OS paging. Unlike paging, which typically re-
sponds to page faults reactively, MAGE can proactively pro-
duce a memory management plan based on the program’s
memory access pattern. To highlight this distinction, we call
our approach memory programming and the resulting plan
a memory program. MAGE preplans the exact sequence of
memory-storage transfers to issue at runtime, given a target
memory consumption. Enabled by memory programming and
the compute-to-memory ratio of SC workloads, MAGE exe-
cutes certain SC programs that do not fit in memory at nearly
in-memory speeds, as if memory were unbounded—in effect,
virtual memory at nearly zero cost.

To understand the power of MAGE’s preplanning based on
SC’s obliviousness, consider Belady’s theoretically optimal

1MAGE stands for Memory-Aware Garbling Engine.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 367

paging algorithm (MIN) [3]. MIN, being a clairvoyant algo-
rithm, is not realizable in the classic formulation of paging;
it is typically used as a point of comparison to other realiz-
able heuristics. But in the context of memory programming,
MAGE can use MIN directly, because it knows the access
pattern in advance. Memory programming allows MAGE to
use an algorithm that is well-grounded in theory, instead of a
heuristic (e.g., LRU or LFU) that sometimes performs poorly.

Yet memory programming also raises the bar for possible
memory management strategies. For example, although MIN
is an optimal paging algorithm, it unfortunately does not pro-
duce an optimal memory program. The reason is that MIN,
like other paging algorithms, brings a page into memory only
at the moment it is needed, thereby causing the program to
stall while transferring the page. We can overcome this by
leveraging SC’s obliviousness once again, to prefetch accord-
ing to the access pattern (i.e., with no false positives or false
negatives) so that the program never stalls.

At its core, our approach to memory management is quite
simple: MAGE optimizes storage bandwidth by evicting
pages using MIN, and optimizes latency via prefetching and
asynchronous eviction. Whereas classic paging algorithms
typically rely on heuristics and empirical observations of
what works well in practice [9], our memory programming
approach is simple, well-grounded, robust, and performant.

While conceptually simple, the above strategy is challeng-
ing to instantiate efficiently. The reason is that MIN requires
the entire memory access pattern to be materialized at once; it
cannot be applied in a streaming fashion. Using Intel Pin [54],
we found that an SC workload that runs in under an hour can
issue trillions of memory accesses. Thus, materializing the
access trace could require terabytes of space.

To address this, we leverage the strong precedent for using
DSLs to specify SC programs [34, 78]. MAGE’s planner rep-
resents the program as a bytecode recording higher-level op-
erations specified in the DSL program. This is more succinct
than recording individual memory accesses. For example, con-
sider a program that adds two integers using garbled circuits,
an SMPC protocol. Garbled circuits support only AND and
XOR operations on encrypted bits, so the integer addition is
ultimately decomposed into encrypted AND and XOR opera-
tions, each of which comprises many memory accesses. Yet,
MAGE records the entire addition operation as a single entry
in the bytecode. This works well because most of the addition
operation’s memory accesses are “uninteresting”—they are
accesses to temporary variables (e.g., on the stack) that fit
easily in memory, or to SC protocol state that should remain
in memory for the entire program. The only consequential
accesses for memory management—reading the two input
integers and writing the output integer—are captured in the
single entry MAGE records.

Once MAGE allows SC to efficiently expand beyond the
physical memory limit, another limited resource (e.g., stor-
age/network bandwidth or CPUs) of a single machine could

become the bottleneck. Thus, we design MAGE to support
parallel SC execution across multiple network flows, CPU
cores, or machines. To do so, we observe that a distributed
memory programming model allows SC to be parallelized in
this way, without requiring MAGE’s planner to reason about
threads executing concurrently in the same address space.

Finally, we aim to support a variety of applications and
protocols, including new ones that may emerge in the coming
years. The challenge is that different SC protocols may be
very different cryptographically and may support different
operations efficiently. Fortunately, our memory programming
approach allows us to build MAGE entirely in userspace on
a Linux system, helping to make MAGE extensible to new
applications and protocols. We carefully design a layered
architecture for MAGE so that the DSL, bytecode, and inter-
preter can be extended for new SC protocols.

We implemented MAGE in C++ and apply it to two SC
protocols: (1) garbled circuits, a type of SMPC, and (2) CKKS,
a type of HE. We evaluated MAGE using 10 workloads, sized
such that they do not fit in memory. MAGE outperforms the
operating system’s virtual memory for all 10 workloads, and
outperforms it by 4–12× for 7 of them. Additionally, MAGE
executes all 10 workloads at within 60% of in-memory speeds,
and runs 7 of them at within 15% of in-memory speeds.

Even with our techniques, SC remains orders of magni-
tude slower than plaintext computation due to CPU and net-
work overheads. That said, various applications like federated
data analytics [1, 66], coopetitive machine learning [94], and
privacy-preserving recommendation [63] require SC. Due to
privacy constraints, running these applications in plaintext is
not an option. By bringing memory management overhead
for SC to nearly zero, MAGE helps make SC more practical
and potentially enables more SC-based applications.

2 Secure Computation Background
2.1 Circuit Representation
As explained earlier, SC is inherently oblivious, meaning
that any function f computed using SC cannot have data-
dependent memory accesses. Thus, it is natural to describe
the function f as a circuit C [13, 23, 37, 55]. C is a combina-
tional circuit that accepts the arguments to f as inputs and
produces the result of f applied to those arguments as its
output. We write C = (W,G), where W is a set of wires and
G is a set of gates. Each wire represents a datum whose type
is the unit of computation in the SC scheme (in most cases, it
is the information stored in a single ciphertext). We denote
the subset of W storing C’s input as I, and the subset of W
storing C’s output as O. Each gate represents a computation
supported by the SC scheme. We will typically assume that
each gate has exactly one output wire, and that each w 6∈ O is
the input wire of at least one gate. Thus, |W |= |G|+ |I|.

The particular data types represented in the wires and
the types of supported gates depend on the particular SC
scheme of interest. For the CKKS homomorphic encryption

368 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

scheme [16], each wire represents a vector of real numbers
and each gate represents an element-wise addition or mul-
tiplication of those vectors. For garbled circuits [88], each
wire represents a single bit and each gate represents a binary
AND operation or XOR operation on those bits. Other SC
schemes can be similarly formulated this way. Below, we
explain CKKS and garbled circuits in greater depth.

2.2 CKKS Homomorphic Encryption
In the CKKS scheme [16], each ciphertext encodes a vector
of real or complex numbers (stored with limited precision).
Given ciphertexts c1 = Enc(~v1) and c2 = Enc(~v2), one can
compute Enc(~v1 +~v2) and Enc(~v1 ◦~v2) (where ◦ is element-
wise multiplication). The dimension of each vector depends
on parameters chosen during key generation. Each ciphertext
is assigned a level, which is a nonnegative integer. When per-
forming the element-wise multiplication operation, both input
ciphertexts must have the same level; the level of the output
ciphertext is one less than the level of the inputs. Performing
element-wise addition does not reduce the ciphertext level
the way element-wise multiplication does. A ciphertext at
level 0 cannot be used for element-wise multiplication. The
maximum level of a ciphertext depends on the parameters
chosen during key generation. While one can run a bootstrap-
ping procedure to increase the level of a ciphertext, it is very
expensive, and therefore not implemented by all libraries.

2.3 Garbled Circuits
Yao’s garbled circuit protocol [88] (referred to simply as gar-
bled circuits) allows two parties, called the garbler and the
evaluator, to jointly compute a function f over their private
inputs x1 and x2. The protocol requires f to be represented as
a boolean circuit C. Unlike CKKS, there are no restrictions on
C’s depth. However, both parties have to execute the circuit.

First, the two parties run a protocol called oblivious transfer
to obtain the (encrypted) wire values for their inputs without
revealing their inputs. Then the garbler encrypts C in a special
way called garbling to obtain C̃, called a garbled circuit. The
process of garbling is analogous to executing the circuit; a
gate cannot be garbled until the (encrypted) values of both
input wires are obtained, and garbling a gate produces, as a
side effect, the (encrypted) value of the output wire. Then, the
garbler sends C̃ to the evaluator. The evaluator executes the
circuit, executing each gate using the gate’s garbled informa-
tion in C̃. Finally, the two parties communicate to decipher
the plaintext values of the output wires.

If the parties would like to repeat the computation again
with different inputs, they must re-garble C. It is insecure to
reuse the same garbled circuit C̃ with different sets of inputs.

More comprehensive explanations of garbled circuits, their
underlying cryptography, and their state-of-the-art optimiza-
tions are available in other resources [6, 69, 86].

2.4 Efficiently Executing Circuits
In this section, we give background on existing techniques for
efficiently executing cryptographic circuits. Although many

of these techniques were developed for garbled circuits, they
mostly apply to homomorphic encryption as well.
2.4.1 Naïve Baseline
Early garbled circuit systems, like Fairplay [55], JKS [41],
and PSPW [65], allocate memory for all wires and store the
entire garbled circuit in memory. The memory overhead is
O(|W |+ |G|). Because, for a well-formed circuit, |G|+ |I|=
|W |, this is equivalent to O(|W |).
2.4.2 Pipelining Garbling and Evaluation
After the garbler garbles a gate to include in C̃, the garbler
does not use that gate’s garbled data. Similarly, once the eval-
uator evaluates a gate, it never again uses that garbled gate.
Based on this observation, the HEKM system [37] operates
without keeping the entire garbled circuit in memory, as fol-
lows. The garbler and the evaluator first agree on an order
in which to execute the gates in C. Then, the garbler garbles
each gate and streams the garbled gates to the evaluator, who
evaluates the gates in the same order. In this way, all gates are
garbled and evaluated, without materializing the full set of
garbled gates at any one time. Because space is allocated for
all wires in the circuit, the memory overhead is still O(|W |).
2.4.3 Reclaiming Wire Memory
When executing a circuit, one can discard the memory for
a wire once all gates it feeds into have been executed. Only
wires whose values have been computed and will be used in
the future—the live wires—must be kept in memory. The KSS
system [49] takes advantage of this by dynamically attaching
a reference count to each wire; PCF [48] statically calculates
when to reuse wire memory. Using interpretation techniques
developed in PCF [48] and refined in Frigate [60], not even the
plaintext circuit is materialized in memory. TinyGarble [73],
EMP-toolkit [82] (for semi-honest SMPC), and EVA [23]
also use variants of this technique. With this optimization, the
memory demand is O(w), where w is the size of the largest
set of live wires when executing the circuit. MAGE builds
on this line of work by exploring how to efficiently swap to
storage when w wires do not fit in memory.

3 Memory Overhead of Secure Computation
First, we discuss the memory overhead of SC. Then, we dis-
cuss the memory overhead for collaborative applications.

3.1 Analysis of the Memory Demand
The size of the circuit, for a computation, is proportional to
the size of the computation. But in many cases, the memory
demand is substantially smaller than the circuit size; only w
wires need to be stored, where w is the size of the largest set
of live wires when executing the circuit (§2.4.3).

In practice, circuits are often described in a programming
language [34,78] and gates are executed in the same order as
the program is interpreted. In this execution order, live wires
correspond to in-scope variables in the program. Thus, the
memory usage of running an SC program has the same order
of growth as running the same algorithm in plaintext.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 369

Program
...
while	(...)	{
		a[i]=b[i]+c[i]
}
...

Memory Program
add	32,64,96
issue-swap-in	6,8
add	108,120,152
finish-swap-in	6

MAGE's Planner
(memory

programming)

Memory Program
add	32,64,96
issue-swap-in	6,8
add	108,120,152
finish-swap-in	6

MAGE's
Interpreter

(engine+protocol)
Output

Input

(can be reused)

Figure 1: Overview of MAGE. It consists of two phases:
planning (top) and execution (bottom)

The memory cost of SC lies in the constant factors. When
executing a secure computation protocol, the wire values
are encrypted. Thus, a key parameter is the expansion factor
of the encryption. In garbled circuits using a 128-bit block
cipher, including state-of-the-art optimizations (Point-and-
Permute [2], Free XOR [47], Half Gates [90], and Fixed-Key
Block Cipher [5, 31]), each wire value is 16 bytes. Each wire
represents only 1 bit of plaintext, so this is a 128× expansion
factor. For CKKS, ciphertexts at higher levels are larger than
ciphertexts at lower levels. For the parameters we used in
our evaluation, each ciphertext is hundreds of kilobytes and
encodes a vector of dimension up to 4,096.

3.2 Scaling Collaborative Applications
SMPC supports collaborative applications over secret data,
such as federated data analytics [1] and cooperative machine
learning [59]. A common technique to reduce SMPC’s over-
head is to use SMPC in a minimal way. For example, some
approaches aim to use SMPC for only a small part of the over-
all computation [1, 43, 53, 79, 94]. Others carefully choose
algorithms that can be executed efficiently in SMPC or use
approximations that incur less overhead [58,59,68]. But even
with these approaches, the SMPC computation often has high
memory demands [66]. Thus, it remains important to effi-
ciently execute SMPC computations that do not fit in memory.

4 Overview of MAGE
SC workloads are oblivious by nature. Thus, MAGE can work
out the program’s memory access pattern in advance, and
use this information to produce a memory management plan,
called a memory program, tailored to the particular access
pattern. Importantly, obliviousness is not merely an artifact of
certain existing SC schemes; it is inherent to SC. Otherwise,
an adversary could potentially infer information about secret
data based on the memory access pattern.

To support this paradigm, MAGE’s workflow has two
phases, as shown in Fig. 1. An SC application is written in a
DSL internal to C++. MAGE’s planner unrolls the DSL code
to produce a bytecode, and then performs transformations on
the bytecode to produce a memory program. In MAGE, the
memory program is a bytecode that includes swap directives
describing when to transfer data between storage and memory.

Finally, the memory program is given to MAGE’s interpreter,
which executes it using the SC protocol.

For multi-party protocols, the parties run separate instances
of MAGE’s interpreter. In the case of garbled circuits, garbled
gates are streamed from the garbler to the evaluator, as de-
scribed in §2.4.2. Both the garbler and evaluator use MAGE to
follow a memory program and run with constrained memory.

Our approach of including swap directives in the memory
program relies on the planner knowing how much memory
will be available at runtime. An alternative approach is for
memory programs to be agnostic to the amount of available
memory. This would add runtime overhead, as MAGE’s inter-
preter would need to decide which pages to evict. In contrast,
our approach moves this overhead to the planning phase, keep-
ing the execution phase as lightweight as possible.

4.1 Address Translation in MAGE
The application programmer should not have to manage pag-
ing, so it is natural to write DSL programs in a virtual address
space that is, in effect, infinitely large. Central to designing
MAGE is deciding at which point in Fig. 1 to translate this
address space into a physical address space that fits in RAM.

One possibility (which MAGE does not use) is to perform
address translation at runtime, using standard operating sys-
tem mechanisms for prefetching and address translation. At
runtime, swap directives in the memory program would ask
the operating system to page parts of the virtual address space
out to storage or in to RAM. Unfortunately, the existing way
for a Linux process to do this—the madvise system call—is
too limited. As of Linux 5.10, pages brought into RAM using
the MADV_WILLNEED hint are not mapped in the page table,
so a minor page fault is incurred on the first subsequent ac-
cess. Similarly, the MADV_PAGEOUT hint merely marks pages
as inactive; it does not swap out pages immediately.

In contrast, MAGE does not rely on OS address transla-
tion for demand paging. MAGE’s engine moves data between
memory and storage via explicit I/O operations, so that its
resident set size never exceeds the available RAM. At the
surface, this is similar to buffer management in a DBMS. But
unlike a DBMS, MAGE’s planner can be viewed as solving
an address translation problem in advance. The DSL variables
declared by the programmer exist in a MAGE-virtual address
space, and the final memory program output by the planner
references data (i.e., wire values) in a MAGE-physical address
space that fits within RAM. MAGE’s planner creates these ad-
dress spaces and performs their translation in software during
the planning phase. It includes swap directives in the memory
program so that the interpreter does not run out of RAM.

To avoid confusion, we will refer to the addresses created by
the OS and sent over the memory bus as OS-virtual addresses
and OS-physical addresses. At runtime, MAGE’s interpreter
stores the program’s memory in an array, and each MAGE-
physical address in the memory program is treated as an
index into this array. Thus, MAGE-physical addresses roughly
correspond to the OS-virtual addresses of MAGE’s interpreter.

370 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

MAGE’s approach to address translation has several ad-
vantages. First, in contrast to an madvise-based approach,
MAGE’s planner has nearly complete control over when pages
are brought into memory and evicted to storage. Second, by
translating addresses in the planner, MAGE avoids address-
translation-related overheads at runtime. In contrast, relying
on OS address translation would mean minor page faults, page
table updates, and TLB invalidations at runtime.

MAGE’s approach also has a few drawbacks, however.
First, the planning phase takes longer because MAGE’s plan-
ner must translate all addresses in software. Second, memory
programs are considerably larger because they must contain
not only swap directives, but also a copy of the program trans-
lated to operate on MAGE-physical addresses. In particular,
the memory program’s length is proportional to the program’s
execution time because a variable local to a function or loop
could be assigned different physical addresses each time the
function is called or on each iteration of the loop.

Overall, we felt that the advantages of this design out-
weighed its drawbacks. Longer planning times seemed rea-
sonable because planning can happen offline and the resulting
memory program can be used repeatedly. The larger memory
program size was an acceptable tradeoff because MAGE’s
planner materializes an unrolled form of the program anyway
to run Belady’s algorithm. Meanwhile, MAGE’s planner is
afforded nearly full control of page eviction and replacement
and MAGE’s runtime overheads remain relatively small.

4.2 MAGE’s Bytecode Representation
Recall that MAGE’s planner expresses the program as an
unrolled (branch-free) bytecode, and performs transforma-
tions on it to compute the memory program bytecode. What
operations should the bytecode instructions support?

One possibility would be for the bytecode to describe low-
level operations similar to those supported by a CPU, exclud-
ing control flow instructions. Unfortunately, such a bytecode
includes the raw memory trace of the program, which, as
discussed in §1, can be impractically large.

One alternative, used by PCF [48] and Frigate [60]2 (but
not MAGE), is to have each instruction correspond to a gate
in the circuit C being executed. This approach would require a
protocol driver in MAGE’s interpreter that executes each gate
using the SC protocol. To understand why this is inefficient,
consider garbled circuits, for which gates are binary and wires
represent bits. The programmer specifies the circuit in terms
of operations on high-level types such as integers, which are
then compiled into bit-level operations. Thus, each time the
program performs a high-level operation (e.g., adding two
integers), the same subcircuit (e.g., describing integer addition
in terms of binary gates) is repeated in the bytecode.

To eliminate this repetition, MAGE has each instruction
describe a high-level operation directly. This requires not only
a protocol driver, but also an engine in MAGE’s interpreter

2Unlike MAGE, these systems also include control flow operations.

MAGE's Planner

Integer to
AND/XOR

Integer to
Binary

Garbled
Circuits WRK CKKS

Integer
DSL

Batched
Real DSL

Analytics (Sort,
Join, etc.)

Machine Learning
(Matrix-Vector
Multiply, etc.)

Application

DSL

Planner

Engine

Protocol
Ops supported by protocol

Instruction types output by DSL

Instruction formats output by DSL

Features provided by DSL

Figure 2: MAGE’s envisioned ecosystem, with planning as
the narrow waist

that expands each instruction into the relevant subcircuit at
runtime. MAGE’s planner does not need to materialize the
subcircuits because wires internal to the subcircuits are very
short-lived and therefore can be ignored.

4.3 MAGE’s Ecosystem and its Extensibility
An important consideration in MAGE’s design is to be appli-
cable to a range of SC protocols. For example, garbled circuits
and homomorphic encryption (CKKS) have quite different
computation models, yet we show how MAGE captures both.
MAGE’s envisioned ecosystem can be understood as a set of
layers with a narrow waist, as shown in Fig. 2. The narrow
waist is MAGE’s planner; MAGE’s core planning algorithms
can be used with a variety of applications and interpreters.

MAGE’s interpreter has two layers. The upper layer, called
the engine, decomposes each instruction into a subcircuit of
gates supported by the target SC protocol (§4.2). The lower
layer, called the protocol driver, evaluates gates with the SC
protocol. For example, when using a protocol that supports
only binary AND and XOR operations (e.g., garbled circuits),
one must use an engine that decomposes each instruction
into a circuit of AND and XOR gates. In contrast, when
using a protocol that supports all types of binary gates (e.g.,
TFHE [17]), one can use an engine that uses all types of gates.

One must choose compatible implementations at each layer.
For example, once one has selected an SC protocol, one should
choose an engine that executes each instruction using oper-
ations supported by that protocol. Then, one should select a
DSL that outputs instructions that the chosen engine under-
stands. Finally, one must write the application in that DSL.

MAGE’s planner, however, is universally compatible, al-
lowing it to be the “narrow waist” of the ecosystem. The
first reason is that MAGE’s planner does not have to un-
derstand what each instruction does, only what memory it
accesses. Thus, even if a new instruction is introduced into
a DSL, extending a header file to specify its format (which
includes which fields are memory addresses) is enough for
the planner to understand that instruction. The second reason
is that MAGE’s planner does not introduce any new instruc-
tions except for swap directives, which all engines understand.
Thus, if an engine understands the instruction types output by
MAGE’s DSL, then the engine will also be able to interpret
the planner’s output (i.e., the memory program).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 371

A number of frameworks and DSLs for SC [34, 78] aim
to make it easier for non-SC-experts to use SC. In contrast,
MAGE is an efficient SC execution engine; its DSLs are not
necessarily geared toward non-experts, do not optimize the
resulting circuit, and might expose low-level SC operations.
We discuss how these frameworks fit into Fig. 2 in §9.

5 MAGE’s Engine
MAGE’s execution engine is an interpreter for the final mem-
ory program. First, it allocates an array to store the program’s
data. Each MAGE-physical address is an index into this ar-
ray. To execute an instruction, MAGE reads the instruction’s
arguments from this array, makes calls to the protocol layer
to compute the output, and writes the output back to the ar-
ray. Each instruction in the memory program references its
input and output data directly by MAGE-physical address; the
engine sees no MAGE-virtual addresses. Some instructions,
such as those requesting pages to be transferred between stor-
age and memory, are handled directly by the engine, without
calling the protocol. We call such instructions directives.

5.1 Parallel/Distributed Engine
SC is resource-intensive, so it is natural to scale SC by ex-
ecuting the protocol in a distributed fashion across multiple
CPU cores or multiple machines. The multiple-machine case
is useful to overcome resource constraints associated with a
single machine such as limited CPU cores, limited storage
I/O, or, in the case of SMPC, limited network bandwidth. This
is different from having multiple parties in SMPC. Here, we
are parallelizing a single trust domain—for example, a single
logical party in SMPC may execute using multiple machines.

MAGE’s engine supports distributed execution across mul-
tiple workers. Each worker is a thread of computation, run-
ning MAGE’s engine, operating on its own memory region
(a MAGE-physical address space). Workers differ from OS
processes as follows: (1) each worker contains exactly one
thread, (2) workers are not necessarily isolated by hardware
such as an MMU—multiple workers in a MAGE computa-
tion could, in principle, run within the same process, and (3)
memory is statically partitioned among the workers.

MAGE’s planner does not automatically infer how to par-
allelize the computation. Rather, the programmer writes DSL
code in a distributed memory model, explicitly indicating
asynchronous network operations to transfer data among the
different workers. The resulting memory program bytecode
contains network directives that the engine interprets. Simi-
larly, the protocol driver must be written to function properly
when the computation is distributed over multiple workers.

Programs for MAGE are parameterized by the Worker ID.
MAGE’s planner is run once for each worker. To generate the
memory program for a worker, the planner processes only the
accesses for that worker—it does not need to consider other
workers’ accesses, because each worker can only access its
own memory region. Thus, the workers’ memory programs
can be generated independently and in parallel.

W

W W

W

W

W W

W
Party 1's MAGE

Computation
Party 2's MAGE

Computation
Figure 3: Example of distributed SMPC with MAGE. Workers
are denoted as circles with W. Solid lines indicate connections
managed by MAGE’s engine; dashed lines indicate connec-
tions managed by the protocol driver

Using a distributed memory model provides two benefits.
First, it allows MAGE to be agnostic to whether workers are
placed on a single machine or across multiple machines. Sec-
ond, it guarantees that the access pattern for each region of
memory consists of a single well-defined sequence, simplify-
ing planning. To ease the difficulty of explicitly specifying
network transfers, one can build easier-to-use DSL libraries
for common communication patterns (e.g., our implementa-
tion provides a ShardedArray<T> abstraction).

5.2 Distributed SMPC
Some SC protocols, like SMPC, require interaction over the
network between mutually distrusting parties. For such proto-
cols, each party runs a separate MAGE computation, with its
own set of workers. Whereas the MAGE engine handles intra-
party communication between workers in the same party, the
protocol implementation handles inter-party communication
among workers in different parties. The inter-party topology
is up to the protocol driver; our protocol driver for garbled
circuits uses a one-to-one inter-party topology (Fig. 3).

6 MAGE’s Planner
Our memory programming approach is to calculate the mem-
ory access pattern in advance and use it to preplan memory
management. One can potentially preplan the following:
• Placement. How should we divide up a circuit into pages?
• Ordering. In what order should we evaluate the gates in

the SC circuit to result in the best memory behavior?
• Scheduling. When should pages that will be used in the

future be swapped in from storage?
• Replacement. How should we choose pages to evict when

making room for pages from storage?
MAGE produces an approximate solution, using a heuristic
for placement and optimizing scheduling and replacement.
Note that MAGE does not optimize ordering; it evaluates
gates in the order implicit in the DSL program for the circuit.3

6.1 Organization of MAGE’s Planner
We organize MAGE’s planner into stages (Fig. 4):

3Optimizing ordering may be NP-hard [76]. A system that does so would
be very powerful—for example, it would automatically block a loop join or
tile a matrix multiplication. It is beyond the scope of this work.

372 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Program
...
while (...) {
 a[i]=b[i]+c[i]
}
...

Virtual Bytecode
...
add 160,192,224
add 256,288,320
...

Memory Program
add 32,64,96
issue-swap-in 6,8
add 108,120,152
finish-swap-in 6

Placement

Execute DSL

Annotations
...
Page 1 next used
at Instr. 12
...

Replacement
Belady's
Algorithm

Physical Bytecode
...
add 32,64,96
add 108,120,152
swap-in 6,8
...

Scheduling
Add

Prefetching

Reverse
Pass

Figure 4: MAGE’s planner’s workflow, with its three stages

1. Placement. This stage accepts a DSL program and orga-
nizes wires into MAGE-virtual pages. It outputs instruc-
tions referencing wires by MAGE-virtual address.

2. Replacement. This stage adds instructions to swap pages
to/from storage, deciding which pages to evict. It outputs
instructions referencing wires by MAGE-physical address.

3. Scheduling. This stage moves swap instructions within
the instruction stream and relocates wires to mask the
latency of moving data between memory and storage.
For a parallel/distributed program, MAGE’s planner is

invoked separately for each worker, with separate MAGE-
virtual and MAGE-physical address spaces. Network direc-
tives in the program transfer data among those address spaces.

MAGE’s planner does not benefit from MAGE’s memory
programming techniques, so it is important that planning does
not consume an unreasonable amount of memory. We keep the
planner’s memory usage lightweight by (1) writing/reading
the intermediate bytecodes to/from files instead of keeping it
all in memory, (2) designing the DSLs to be lightweight, and
(3) keeping track of pages instead of individual bytes.

6.2 MAGE’s First Stage: Placement
MAGE’s placement module is, in effect, a page-aware mem-
ory allocator for the DSL. It unrolls the DSL, allocating space
for each variable and intermediate value in the MAGE-virtual
address space. It outputs a bytecode for the program in which
each variable is referenced by its MAGE-virtual address.
6.2.1 Unrolling the DSL Code
MAGE’s DSLs are internal to C++. This means that the DSL
is a set of convenient C++ APIs to specify the program’s
behavior, often involving operator overloading. The program
is specified as a C++ function that uses these APIs.

Fig. 5 shows a program that solves Yao’s Millionaire’s prob-
lem [87]. Integer<width> describes an Integer datum with
the specified width in bits. Bit is an alias for Integer<1>.

MAGE’s planner does not parse the DSL program’s source
code or manipulate its AST. Instead, it simply calls the C++
function containing the DSL program. As the DSL code exe-
cutes, it produces a bytecode describing the computation. For
example, the overloaded + operator for Integer emits an Add
instruction in the output bytecode; it does not actually add
integers using secure computation. Each output instruction
references its operands by MAGE-virtual address. Thus, the
DSL (e.g., the Integer class) calls MAGE’s placement mod-

void millionaire(const ProgramOptions& args) {
Integer<32> alice_wealth, bob_wealth;
alice_wealth.mark_input(Party::Garbler);
bob_wealth.mark_input(Party::Evaluator);
Bit result = alice_wealth >= bob_wealth;
result.mark_output();

}

Figure 5: Example code in an Integer-based DSL internal to
C++ to solve Yao’s Millionaire’s problem

ule to allocate memory in the MAGE-virtual address space
for intermediate results, including those stored in variables.

For example, see Fig. 5. On the mark_input and >= oper-
ations, an allocation request is made to MAGE’s placement
module to obtain a MAGE-virtual address, and an instruction
is emitted to perform that operation (obtain input or integer
comparison) and store the result at that MAGE-virtual address.
Once an Integer’s destructor is called, or if an Integer is
reassigned to a new MAGE-virtual address, a deallocation
request is made to MAGE’s placement module for the MAGE-
virtual address previously held by that Integer.

For a parallel/distributed program, the worker ID and total
number of workers are provided via the ProgramOptions
structure. The C++ code can branch on these variables, to
have each worker operate differently and exchange data ap-
propriately to perform the parallel/distributed computation.

Each Integer object contains only the MAGE-virtual
address of its contents; other attributes, such as width, are
template arguments and do not consume memory. Thus,
Integers and other DSL-provided data types are typically
smaller than the encrypted data items they represent. For
example, a 32-bit integer encrypted for the garbled circuit pro-
tocol is 1 KiB in size, whereas an Integer<32> object used
during planning is just 8 B (a single MAGE-virtual pointer).
This helps keep the memory cost of the planning phase small.

6.2.2 Memory Allocation Strategy
When MAGE’s placement module allocates memory for a
variable, it ensures that the variable is contained in a single
MAGE-virtual page; a variable must never straddle two pages.
The reason is that two adjacent MAGE-virtual pages may not
be adjacent in the OS-virtual address space at runtime.

A key issue in designing the placement module’s memory
allocator is internal fragmentation [25, 67]. Some fragmen-
tation, which we call classic fragmentation, arises from the
inability to pack variables onto pages (e.g., part of a page’s
space cannot store any variable). Another type of fragmenta-
tion, which we call effective fragmentation, arises from the
page’s lifetime exceeding some of the variables it stores; if
even one wire on a page is alive, the entire page remains alive.

To reduce classic fragmentation, MAGE’s placement stage
uses techniques from slab allocators [8]. Each page contains
only variables of a particular size. When a variable goes out
of scope in the DSL, its “slot” in its page is marked as free.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 373

When a space for a variable must be allocated, MAGE’s place-
ment module look for a free slot in a page containing variables
of that size; if no such pages have free slots, it allocates a new
page for variables of that size. The slab size is one MAGE-
virtual page. This ensures that no variable will straddle a page
boundary. Just as in slab allocators, some leftover space at the
end of a page may be unusable, but this can be controlled by
tuning the page size. Unlike slab allocators, MAGE’s place-
ment module does not preserve object state across allocations.

To reduce effective fragmentation, MAGE’s placement
stage uses the following heuristic when allocating memory
for a variable. If multiple pages, for the specified variable
size, have free slots available, then MAGE uses the candidate
page with the fewest free slots. This allows the number of live
pages to decrease if the number of live variables decreases,
by giving a chance for all variables on a page to die.

6.3 MAGE’s Second Stage: Replacement
We apply Belady’s MIN algorithm [3]. MIN is theoretically
optimal in the number of SWAP-IN operations, but it does
not minimize the number of swap operations if SWAP-OUT
operations are also considered. The reason is that only dirty
pages need to be written back to storage (i.e., “swapped out”).
Minimizing the number of swaps when taking this into ac-
count is NP-hard [28]. Regardless, MIN produces a solution
with at most 2× as many swaps as the theoretical optimum,4

so it is useful in MAGE’s replacement stage.
To use MIN, we first make a backward pass over the pro-

gram to determine, each time a page is used, the time (instruc-
tion ID) at which it is used next. Then we make a forward
pass over the program, using the annotated next use time to
determine which page to swap out. This requires us to main-
tain a priority queue of resident pages, so that we can quickly
identify which one’s next use is farthest in the future. Each
instruction, even if its arguments are already resident, requires
us to also perform a decrease_key operation on the priority
queue to adjust pages’ next use time. Therefore, if N is the
number of instructions and T is the number of pages that fit
in memory, applying Belady’s MIN algorithm is O(N logT).

This stage outputs an instruction stream that contains swap
directives and references wires by MAGE-physical address.
To support this, MAGE’s planner maintains a data structure
that maps MAGE-virtual page numbers to MAGE-physical
frame numbers, similar to a page table.

When planning a parallel/distributed program, the planner
must be careful to not steal a page that is currently being used
for network I/O. Thus, MAGE’s replacement phase reads
the network directives to infer the outstanding asynchronous
network operations. When stealing pages, it issues network
barrier directives, as necessary, to ensure that the engine waits
for the relevant network I/Os to complete.

4This occurs in the worst case where it evicts only dirty pages, but there
is an optimal solution that evicts the same number of clean pages.

6.4 MAGE’s Third Stage: Scheduling
We introduce a parameter ` called the lookahead. To prefetch
data, MAGE’s scheduling algorithm attempts to move SWAP-
IN directives ` instructions earlier in the instruction stream.
However, this does not work if one of the ` intervening in-
structions uses the page frame into which we are bringing in
data. We solve this by budgeting B extra physical page frames,
called the prefetch buffer; the replacement stage is now run
with a capacity of T−B frames, not T frames. Data is brought
asynchronously into a free slot in the prefetch buffer. Only
when it is finally needed is it copied from the prefetch buffer
into its destination physical page frame. Instead of SWAP-IN
directives, the memory program contains ISSUE-SWAP-IN
directives, which initiate the transfer of a page into memory,
and FINISH-SWAP-IN directives, which block execution until
a swap operation has completed. Ideally, swap operations will
be scheduled such that FINISH-SWAP-IN never blocks, but
it serves as an important fallback to prevent old/corrupt data
from being used if the transfer is unpredictably delayed.

We use the prefetch buffer similarly to swap out pages. The
page to be swapped out is copied into a free slot in the prefetch
buffer and then swapped out to storage with an ISSUE-SWAP-
OUT directive while execution of subsequent instructions con-
tinues. Unlike SWAP-IN operations, there is no clear deadline
by which the write to storage must complete. Thus, we delay
issuing a FINISH-SWAP-OUT directive for as long as possible;
we only issue it when allocating a slot in the prefetch buffer
fails. In such a situation, we identify the oldest ISSUE-SWAP-
OUT operation, issue the FINISH-SWAP-OUT directive for it,
and reclaim its page in the prefetch buffer.

One could eliminate the copying of pages to/from the
prefetch buffer by rewriting future instructions. We did not
implement this optimization because it would introduce addi-
tional complexity and MAGE performs well without it.

A natural question is how large B must be. SSDs have band-
widths less than 10 GB/s and latencies that are usually less
than 1 ms. Based on these measurements, Little’s Law gives:
B = 10 GB/s ·1 ms = 10 MB. For server-class machines, this
is < 1% of physical memory. In practice, we use 16–32 MiB
to account for burstiness/queuing, still only a small fraction
of available memory. Thus, MAGE’s scheduling promises to
mask storage latency with only a small memory penalty.

7 Implementation
We implemented a prototype of MAGE in C++, including
support for two protocols: garbled circuits and CKKS. Using
cloc, we found that our implementation is ≈ 11,000 lines
of code, excluding comments and blank lines, broken down
as follows: ≈ 2,800 for common libraries used throughout
MAGE (e.g., data buffering for I/O, configuration file pars-
ing, etc.); ≈ 1,300 for MAGE’s planner; ≈ 900 for protocol
drivers (not including the underlying cryptography); ≈ 1,000
for MAGE’s DSLs and libraries for those DSLs (e.g., for
sharding data);≈ 1,100 for MAGE’s engines;≈ 1,600 for SC

374 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

programs written in MAGE’s DSLs, used for testing and eval-
uating MAGE; ≈ 1,900 for the underlying cryptography for
garbled circuits, much of which is based on EMP-toolkit [82];
and ≈ 400 for in-progress (not yet complete) support for a
third protocol. We build MAGE using clang++ version 10.0.0
with the optimization flags -Ofast -march=native. MAGE
runs as a Linux process, with no changes to kernel code.

7.1 MAGE’s Interpreter
Engine. The Engine class implements common functional-
ity for the engine layer, including support for directives. It
establishes pairwise TCP connections among workers within
a single party, to support network directives. Swap directives
are implemented using the aio facility provided by the kernel
(not to be confused with POSIX aio); the swap file/device
is opened with the O_DIRECT flag. MAGE engines are im-
plemented as class templates that extend (inherit from) the
Engine class. The protocol driver class is provided to the en-
gine as a template argument, so the engine can make calls to it.
We avoided using virtual functions for this, as their overhead
can be significant (e.g., for free XORs).
Protocol Driver. The protocol driver exposes the SC pro-
tocol’s native operations to the engine as a set of methods.
When the engine invokes these methods, it provides pointers
to data to operate on, stored in a large array representing the
MAGE-physical address space. The protocol driver specifies
the type of entries in the engine’s array, in effect dictating
what each MAGE-physical address actually corresponds to
for its protocol (plaintext bits, ciphertext bytes, etc.), and pro-
vides a plugin to the DSL so it can allocate MAGE-virtual
memory accordingly. The protocol driver must not store point-
ers to dynamically allocated memory in the array. The reason
is that the engine swaps out only the contents of the array,
not including any dynamically-allocated memory it points to.
In addition to the SC protocol’s cryptographic routines, the
driver manages all protocol-specific operations. This includes
sharing protocol-specific state among workers within a party,
obtaining input data, writing output data, and managing intra-
party communication where necessary (e.g., sending garbled
gates from the garbler to the evaluator).

7.2 Extending MAGE with New Protocols
To extend MAGE with a new protocol, one must, at minimum,
write a protocol driver to support it. If the operations exposed
by the new protocol driver are identical to those exposed by
an existing protocol driver, then one can use the same engine
that works with the existing protocol. Otherwise, one must
implement a new engine or modify an existing engine. This
involves deciding which instruction types the new engine
will be compatible with. If the supported instruction types
differ from what existing DSLs produce, then one may have
to implement a new DSL or modify an existing DSL.

We implemented protocol drivers for garbled circuits and
CKKS. Garbled circuits and CKKS support different op-
erations, so we implemented a separate DSL (Integers vs.

Batches) and engine (AND-XOR vs. Add-Multiply) for each
protocol. This conveniently allows us to showcase MAGE’s
ability to support different implementations of each layer.
That said, it is not uncommon for related SC protocols to
expose similar interfaces. For example, the WRK proto-
col [83, 84] exposes the same interface as garbled circuits
(AND-XOR), so support for WRK, if added, could reuse our
Integer DSL and AND-XOR engine.

7.3 Garbled Circuit Protocol Driver
For garbled circuits, wires have uniform size, so we allow
MAGE address spaces to be wire-addressed; the DSL is un-
aware of the size of wires in bytes. Some subcircuits used
by the AND-XOR engine are based on those used by Obliv-
C [89]. Our garbled circuit driver uses cryptographic kernels
from EMP-toolkit [82]. We implement oblivious transfer (OT)
using multiple background threads. Concurrently with our
work, EMP-toolkit was updated to use the MiTCCRH hash
function [31]; our implementation is based on an older version
of EMP-toolkit based on fixed-key AES [5]. When we com-
pare MAGE to EMP-toolkit in §8, we use the older version of
EMP-toolkit so the comparison is fair. This is not a limitation
of MAGE; our driver could be changed to use MiTCCRH.

7.4 CKKS Protocol Driver
CKKS ciphertexts vary in size depending on their level, so
for CKKS’ DSL and engine, MAGE address spaces are byte-
addressed. The protocol driver provides a plugin to the DSL
describing the particular wire sizes in bytes. It uses the CKKS
implementation in Microsoft SEAL [71]. We chose param-
eters for CKKS that allow a multiplicative depth of 2. A
challenge was that SEAL ciphertext objects contain pointers
and dynamically-allocated memory. MAGE cannot swap such
objects to storage (see §7.1). Thus, TE protocol driver serial-
izes ciphertexts using SEAL’s built-in serialization methods
when they are not in use; each operation (e.g., add, multiply)
deserializes the arguments, computes the result, and then seri-
alizes the result. We quantify the cost of serialization in §8.
This overhead is not fundamental; CKKS ciphertexts could be
implemented as flat buffers, or homomorphic operations could
be implemented to operate directly on serialized ciphertexts.

After a multiplication, CKKS ciphertexts are typically re-
linearized and rescaled before the next multiplication. But
if two products are added (e.g., ab+ cd), one can perform
relinearization once for the overall result instead of for each
multiplication separately (e.g., ab and cd). MAGE’s DSL
supports this optimization, which is crucial to achieve good
performance on rstats and the linear algebra workloads.

8 Evaluation
8.1 Workloads
We now establish a set of SC workloads for our evaluation.
Garbled circuits and CKKS support different operations—
bitwise operations for garbled circuits, and add-multiply cir-
cuits of low multiplicative depth for CKKS—so we design

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 375

separate workloads for each protocol. These workloads are
data-intensive “kernels” that may be used as part of larger SC
applications. We discuss larger SC applications in §8.8.
8.1.1 SMPC Collaborative Applications
One application of SMPC is federated data analytics [66, 79].
Aggregations (GROUP BY operations) and joins are particu-
larly memory-intensive. A federated data analytics system
may express equi-joins as set intersections (SI) and aggrega-
tions as set unions (SU), both of which can be implemented
by merging sorted lists [66]. This inspires our first benchmark,
merge: merging sorted lists of records. In some cases, the
input lists may not be already sorted. This inspires our second
benchmark, sort: sorting a list of records. For joins other than
equi-joins, the system must fall back to a classic loop join.
This is our third benchmark, ljoin: loop join. For concrete-
ness, we assume that each record is 128 bits long, and that
the first 32 bits are the key used for sorting or joining; the
problem size n is the number of records per party.

Privacy-preserving machine learning applications inspire
our fourth benchmark, mvmul: matrix-vector multiply with
8-bit integers. A recent proposal for secure neural network
inference, XONN [68], suggests binarizing the neural net-
work. This inspires our fifth benchmark, binfclayer: binary
fully-connected layer. It consists of a series of XNOR and
PopCount operations similar to multiplying a binary matrix
by a binary vector, followed by a binary activation function.
For simplicity, we do not include batch normalization.
8.1.2 CKKS Homomorphic Encryption
We restrict ourselves to workloads for which CKKS is
efficient—workloads that can be expressed as arithmetic cir-
cuits of low multiplicative depth. The sixth workload is rsum:
sum of a list of real numbers, which requires no multiplica-
tions. The seventh workload is rstats: computing the mean
and variance of real numbers, which requires a multiplicative
depth of 2. These represent simple data analytics workloads;
the problem size n is the number of elements.

Our remaining workloads are inspired by machine learn-
ing and linear algebra. The eighth workload is rmvmul:
matrix-vector multiply with real numbers. Finally, we consider
two variants of matrix multiplication. The ninth workload is
n_rmatmul: matrix-matrix multiply with a naïve nested for
loop. The tenth workload is t_rmatmul: tiled matrix-matrix
multiply. The problem size n is the length of one side of the
matrix (also for mvmul and binfclayer).
8.1.3 Implementation of Workloads
For simplicity, our implementations of some of these work-
loads only support power-of-two sizes and power-of-two
number of workers, but this is not a fundamental limitation
of MAGE. Some workloads can, in principle, be optimized
through streaming. For example, rsum could read each in-
put one at a time, add the result to an accumulator, and then
output the accumulator, instead of holding the entire input
dataset in memory. We deliberately avoided such “optimiza-
tions,” as they would not be possible if the workload were

part of a larger computation whose intermediate results are
held in memory. Thus, each workload operates in three non-
overlapping phases: (1) the inputs are read into memory, (2)
the computation is performed, materializing the output in
memory, and (3) the output is written to a file.

For the parameters we chose, the CKKS scheme encrypts
vectors of dimension 4096. Thus, each of our workloads for
CKKS could be applied to 4096 instances of the problem in a
SIMD fashion with no additional overhead. There are ways to
use the 4096 slots in the vector to speed up a single problem,
for example, by vectorizing matrix multiplication [42]. Our
workloads, for simplicity, do not apply such techniques, but
MAGE is not incompatible with them.

8.2 Empirical Methodology
We compare MAGE’s performance to an upper bound and a
lower bound. The upper bound, OS Swapping, is the speed
when relying on the operating system’s paging. The lower
bound, Unbounded, is the speed when the entire computation
fits in memory. We measure these three scenarios as follows:
1. Unbounded. MAGE’s planner is run assuming enough mem-
ory to fit the program. Thus, MAGE’s planner does not insert
swap directives in the memory program. Finally, MAGE’s
engine executes the memory program outside of any cgroup.
2. OS Swapping. A memory program is generated in the same
way as for the Unbounded solution. However, it is executed
in a cgroup that limits physical memory to a fixed amount.
3. MAGE. MAGE’s planner is run assuming a fixed physical
memory capacity, minus the prefetch buffer and the inter-
preter’s overhead. The resulting plan is run within a cgroup
that limits physical memory to 1 GiB or 16 GiB, to ensure
that the memory overhead fits in the limit.

Except where stated otherwise, we used D16d_v4 instances
on Microsoft Azure [57]. We chose this instance type for a
few reasons. First, it has enough memory to fit the entire com-
putation for most experiments, necessary for the Unbounded
scenario. Second, it contains a local “temporary” SSD. We
use it for swap space (one of its recommended uses [20]) and
for the file containing the memory program. Third, it provides
enough network bandwidth so as not to be a bottleneck for
garbled circuits (we explore the WAN setting in §8.7).

We set MAGE’s parameters as follows. For garbled circuits,
we used a page size of 64 KiB, lookahead ` of 10,000 instruc-
tions, and prefetch buffer size B of 256 pages. For CKKS, we
used a page size of 2 MiB, lookahead ` of 100 instructions,
and a prefetch buffer size B of 16 pages. Because CKKS ci-
phertexts are large, we used a larger page size (slab size) than
for garbled circuits to reduce external fragmentation. Addi-
tionally, we left an additional 32–64 MiB of memory unused,
to accommodate the memory used by MAGE’s interpreter.

8.3 Comparison to Existing Frameworks
We compare MAGE’s garbled circuits performance to that
of EMP-toolkit. Our goal is to demonstrate that MAGE’s
techniques do not limit the performance of garbled circuits

376 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 200000 400000
Problem Size (Records Per Party)

0

50

100

150

200

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
EMP 1 GiB

0 500000 1000000
Problem Size (Records Per Party)

0

200

400

600

800

1000

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
EMP 1 GiB

Figure 6: Comparison of MAGE and EMP-toolkit

0 1000 2000 3000 4000
Problem Size (Number of Elements)

0

2

4

6

8

10

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
SEAL 1 GiB

0 5000 10000 15000
Problem Size (Number of Elements)

0

50

100

150

200

250

Ti
m

e
(s

)
OS 1 GiB
Unbounded
MAGE 1 GiB
SEAL 1 GiB

Figure 7: Comparison of MAGE and SEAL

compared to an existing system. We use merge for the com-
parison. We implemented merge in EMP-toolkit’s DSL, and
used EMP-toolkit’s library for merging sorted arrays.

We discovered that EMP-toolkit is an order of magnitude
slower than MAGE. This was because EMP-toolkit performs
a separate invocation of OT extension, which involves a net-
work round-trip, each time an Integer input is read for the
evaluator. Our garbled circuits implementation for MAGE
does not have this problem because it performs OTs in larger
batches using background threads, regardless of the units by
which the program reads the input. To eliminate this effect,
we exclude the time to read the input, for both EMP-toolkit
and MAGE, for this experiment only; we measured the time
to merge the two arrays once they are materialized in memory.

We also compare MAGE’s CKKS performance on rstats to
a C++ program that uses SEAL directly. The main source of
overhead in MAGE is the need to deserialize the input cipher-
texts and serialize the output ciphertext, for each instruction.

The results are shown in Fig. 6 and Fig. 7. The graphs on
the left are zoomed in to smaller problem sizes to show the
point where memory demand exceeds available physical mem-
ory. “OS” refers to scenario 2 in §8.2; “EMP” and “SEAL”
refer to those systems similarly running in a cgroup. EMP
performs about 3× worse than OS when the problem fits in
memory; when it does not, the relative overhead is small (≈
33%). We found that EMP performs worse than OS primarily
due to (1) the overhead of its “real-time circuit optimization”
feature, (2) inefficient data buffering when using the network,
and (3) virtual function overhead when executing the circuit.
OS uses MAGE’s runtime, so it does not have these issues.
SEAL is faster than OS when the problem fits in memory,
but only slightly (less than 20%), indicating that the serializa-
tion overhead is not large. When the problem size does not
fit in memory, SEAL improves further compared to OS, but
remains less than 2× faster than OS.

8.4 Overhead of Swapping Pages
We ran the three scenarios on all 10 workloads, using a 1 GiB
memory limit. The results are shown in Fig. 8. We ran 8 trials

on different Azure instances (8 different pairs of instances,
for garbled circuits) and plot the median; error bars are the
quartiles. We additionally ran experiments using a 16 GiB
memory limit. We increased the problem sizes so that their
memory use exceeded 16 GiB (necessary for the OS scenario)
but fit within the 64 GiB available on the virtual machines
(necessary for the Unbounded scenario). Our methodology is
the same as for the 1 GiB memory limit. We do not include
sort in our results for the 16 GiB memory limit, because
the intermediate bytecodes produced while planning were
too large for the local SSD. The results are shown in Fig. 9.
MAGE outperforms OS swapping by at least 4× on 7 of the
workloads, with improvements of≈ 12× for ljoin and≈ 10×
for rsum. Its performance is within 15% of Unbounded for 7
of the workloads (including sort from Fig. 8).

MAGE’s improvement compared to OS is higher for binf-
clayer and rmvmul than for mvmul; although all three have
similar access patterns, mvmul has lower memory intensity
because multiplying integers in a garbled circuit has high
overhead. For complex access patterns, like merge and sort,
MAGE’s improvement is not markedly higher than for simple
scans like ljoin, rsum, and rstats (note that both input tables
for ljoin fit in memory; it is the output, populated in order,
that does not fit). MAGE is less affected by high memory
intensity than OS, allowing it to perform well.

8.5 Overhead of Planning
The time and peak memory use for planning each workload
for the MAGE scenario in Fig. 8 and Fig. 9 is shown in Table
1. Note that MAGE’s planning is outside of the critical path:
for a given circuit, MAGE’s planner can be run before the
parties’ inputs are known. For garbled circuits, although the
garbled circuit C̃ cannot be reused if the computation is re-run,
MAGE’s memory program can be safely reused.

The planning time and final memory program size are linear
in the size of the computation (size of C), not in the size of
the memory demand. Nevertheless, the planning times are
generally less than the time to perform the execution and the
planner’s memory consumption is significantly smaller than
the available memory at runtime for all experiments.

Generating memory programs for CKKS is more efficient
than for garbled circuits. This is because each instruction for
CKKS operates on more memory than for garbled circuits,
which means that the problem sizes that fill a given physical
memory size tend to require smaller bytecodes for CKKS than
for garbled circuits. For example, an instruction operating on
integers in a garbled circuit program may operate on a few
kilobytes of memory (each bit of each integer is 16 bytes),
but for CKKS, each instruction operates on a vector of real
numbers, whose encrypted size is hundreds of kilobytes.

For CKKS, the final memory programs were < 100 MiB
for Fig. 8 and < 1 GiB for Fig. 9. For garbled circuits other
than sort, they were < 5 GiB for Fig. 8 and < 65 GiB for Fig.
9. For sort, it was less than < 25 GiB for Fig. 8. MAGE’s
planner requires about 4–5× times more storage space than

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 377

merge
n = 1048576

sort
n = 1048576

ljoin
n = 2048

mvmul
n = 8192

binfclayer
n = 16384

rsum
n = 65536

rstats
n = 16384

rmvmul
n = 256

n_rmatmul
n = 128

t_rmatmul
n = 128

0

5

10

15

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

16
3.

7

13
50

50
.4

31
0.

9

27
.1

22
.7

38
.8

98
.4

14
96

15
10

17
4.

5

13
60

58
.3

31
3.

9

33
.7

31
.7

42
.1

10
5.

6

15
80

15
44

69
8.

1

21
42

43
5.

4

42
9.

4 13
4.

0

22
4.

3

18
9.

8

59
3.

3

71
48

24
13

Unbounded
MAGE 1 GiB
OS 1 GiB

Figure 8: Performance of Unbounded, OS Swapping, and MAGE, normalized by the time for Unbounded; absolute times, in
seconds, are printed at the upper left corner of each bar

merge
n = 8388608

ljoin
n = 3840

mvmul
n = 20480

binfclayer
n = 57344

rsum
n = 458752

rstats
n = 147456

rmvmul
n = 448

n_rmatmul
n = 256

t_rmatmul
n = 224

0

5

10

15

20

25

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

11
89

12
6.

7

14
47

27
2.

2

13
8.

6

33
4.

8

30
9.

0

11
58

4

78
34

12
61

16
0.

0

15
58

35
5.

6

22
0.

2

37
7.

1

32
8.

8

11
73

3

79
1266

45

18
89

32
65 18

54

21
87

24
02 25
90

52
58

3

13
95

5

Unbounded
MAGE 16 GiB
OS 16 GiB

Figure 9: Repeat of Fig. 8, with larger problem sizes and a 16 GiB memory limit (note the larger y-axis scale)

Problem Time (8) Mem. (8) Time (9) Mem. (9)
merge 38.0 42.6 291.6 299.4
sort 367.3 42.7 N/A N/A
ljoin 6.7 121.0 23.6 411.4

mvmul 56.0 527.5 298.2 3268
binfclayer 77.2 19.1 1041 165.7

rsum 0.04 9.6 0.29 30.2
rstats 0.04 10.9 0.34 48.5

rmvmul 0.09 16.4 0.24 36.9
n_rmatmul 2.2 246.1 18.6 1927
t_rmatmul 2.3 246.5 12.9 1246

Table 1: Planning times (s) and peak memory use of the plan-
ner (MiB) for workloads in Fig. 8 and Fig. 9

the final memory program due to the need to materialize inter-
mediate bytecodes of similar size, but this could be optimized
by pipelining stages of MAGE’s planner where it is possible
to do so (e.g., replacement and scheduling in Fig. 4).

8.6 Impact of Parallelism
We now explore how the relative performance of Unbounded,
OS, and MAGE are affected by parallelizing the computation.
We did experiments parallelizing the computation across four
workers (per party, for garbled circuits). We place each worker
on a separate VM instance, each with a separate SSD.

We ran each experiment three times, using the same cluster
of machines for all trials, and report the median in Fig. 10.
Most experiments follow a similar pattern as Fig. 8, indicat-
ing that MAGE’s performance gains persist when we paral-
lelize the computation. For two experiments, merge and sort,
MAGE’s improvement over OS Swapping visibly increases.
Whereas the other workloads are parallelized by splitting
the input among the workers in a communication phase at
the beginning and then computing independently thereafter,
merge and sort have a communication phase in the middle
of the computation (several such phases in the case of sort).

That OS Swapping performs worse for these workloads, but
MAGE does not, suggests that the OS virtual memory system
might be introducing jitter, which interacts poorly with the
communication phase and induces stragglers.

8.7 SMPC in Wide-Area Networks
SC does not always require significant data transfer over the
wide area. In HE, computation is done by a single logical party.
Even in SMPC, there may be ways for multiple parties to co-
locate for an SMPC computation while remaining physically
and logically distinct. But in some cases, it is desirable to run
SMPC over a wide-area network. We explore this below.

We measure performance of garbled circuits with the two
parties hosted on different cloud providers. The garbler was
always on Azure in the US West 2 region (Oregon). The eval-
uator was on Google Cloud (n2-highcpu-2 [30]). We com-
pare two setups: one where the evaluator was in us-west1
(Oregon) and one where it was in us-central1 (Iowa).

Initially, higher latencies and limited single-flow bandwidth
limited performance. For example, the round-trip time in the
Oregon setup was ≈11 ms, which made OTs a bottleneck.

First, we tuned the local TCP stack, increasing the maxi-
mum window size to 32 MiB. Then, we increased the number
of OT rounds performed concurrently, pipelining multiple OT
rounds over a single connection, which significantly improved
performance (Fig. 11a). Additionally, we explore paralleliz-
ing the computation, assigning multiple workers to the same
machine, so that multiple TCP flows are used. The results
are in Fig. 11b. The dashed line at the bottom is the time
to run the experiment with both the garbler and evaluator on
Azure (taken from Fig. 8). For the Oregon setup, we can come
close to the Local performance using two flows. The Iowa
setup is more challenging because less bandwidth is available
per flow. Using multiple parallel flows helps, but the perfor-
mance improvement in the Iowa setup is limited by variation
in wide-area flow performance, which induces stragglers.

378 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

merge
n = 4194304

sort
n = 4194304

ljoin
n = 4096

mvmul
n = 16384

binfclayer
n = 32768

rsum
n = 262144

rstats
n = 65536

rmvmul
n = 512

n_rmatmul
n = 256

t_rmatmul
n = 256

0

5

10

15

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

20
5.

3

16
87

50
.5

31
1.

7

29
.7

23
.0

39
.6

99
.9

33
07

30
55

22
4.

7

20
75

58
.5

31
4.

3

36
.5

31
.9

42
.7

10
6.

7

33
62

31
04

14
42

51
75

48
9.

2

45
8.

3 13
5.

5

22
3.

5

19
1.

0

58
4.

1

14
33

7

47
36

Unbounded
MAGE 1 GiB
OS 1 GiB

Figure 10: Normalized performance of Unbounded, OS Swapping, and MAGE, parallelized over p = 4 workers (per party)

0 100 200
OT Concurrency

500

1000

1500

Ti
m

e
(s

)

us-west1

(a) Time to run merge vs. number
of concurrent OTs

1 2 3 4
Number of workers

0

250

500

750

1000

Ti
m

e
(s

)
Local (US West 2)
us-west1
us-central1

(b) Time to run merge vs. number
of workers

Figure 11: Wide-area garbled circuit performance in MAGE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Users/Passwords Per Party 1e8

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(h
ou

rs
)

MAGE with all available RAM
OS with all available RAM

Figure 12: Scaling password reuse detection with MAGE

In both cases, the performance overhead of operating in the
wide area is less than the performance overhead of swapping
(Fig. 8), indicating that MAGE’s techniques confer substantial
benefit even in wide-area settings.

8.8 Applications
For these experiments, we did not use cgroups to limit RAM.
The OS and MAGE setups ran using all of the available RAM.
8.8.1 Detecting Password Reuse
When users reuse a password across multiple websites, they
become prone to “credential stuffing” attacks, in which an
attacker uses a user’s password leaked by one site to com-
promise that user’s account on other sites. To address this
problem, sites may wish to identify which of their users reuse
their passwords on other sites [81]. Senate [66, Query 2 in §2]
proposes a protocol for this. First, the sites arrange to assign
user IDs and hash passwords such that they will match across
sites. Then, they use SMPC to detect which user IDs are
shared between the sites and have the same password hash.
Note that user IDs and password hashes cannot be shared
directly, since they are sensitive (the hashes can be reversed).

We write a two-party version of the password reuse pro-
gram in MAGE’s DSL for garbled circuits, based on Senate’s
password reuse program. Senate uses a different SMPC pro-
tocol, so its results are not directly comparable to ours.

We use MAGE to scale the password reuse program to 227

users per party, which requires 1.125 TiB on each party. A sin-
gle D16d_v4 instance does not have enough swap space. Thus,

0.0 0.5 1.0 1.5 2.0
Number of Batches (4096 Real Numbers Per Batch) 1e6

0

20

40

60

80

Ex
ec

. T
im

e
(m

in
ut

es
)

MAGE with all available RAM
OS with all available RAM

Figure 13: Scaling computational PIR with MAGE

we use four D16d_v4 instances on Azure for the garbler party,
and four n2-highmem-4 instances on Google Cloud [30] for
the evaluator party. As explored in §8.7, we use two workers
per instance (total of eight workers per party) to efficiently use
wide-area network bandwidth. The results are shown in Fig.
12. For a given time budget, MAGE increases the number of
user-password records by ≈ 3×. This improvement may have
been larger had we been able to obtain Ddv4-series instances
with a greater swap-space-to-RAM ratio.
8.8.2 Private Information Retrieval
Private Information Retrieval (PIR) is a family of protocols
that allow a user to retrieve a data item at a particular index
from a database without the database learning which item
was accessed. PIR can be used to support public queries on
private data [80]. We evaluate MAGE by using CKKS to
instantiate the classic Kushilevitz-Ostrovsky single-server
computational PIR scheme [50, §3]. PIR’s access pattern is
particularly simple—a linear scan over the database—so ad-
hoc approaches to prefetching, or multi-threading to improve
swap performance, may be quite effective. Our focus is on
what MAGE optimizes automatically, so we do not include
such ad-hoc optimizations in the OS baseline. We use a single
worker (thread) to compute the PIR. The database consisted
of plaintext data pre-encoded into batches to use with CKKS.
We wrote a DSL program that populates the database (with
hardcoded elements) and then performs a PIR query on it;
the reported measurements are the time to perform the PIR
query, not including the time to populate the database. The
results are in Fig. 13. For a given time budget, MAGE allows
for ≈ 5× as many database elements to be processed.

9 Related Work
Much existing work has looked at high-performance algo-
rithms for SMPC [21, 22, 44, 45, 84] and HE [17, 29]. These
works focus on the cryptography, not how to manage a com-
puter’s resources to perform large computations efficiently.

A complementary line of work explores tailoring SMPC

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 379

computations to a specific application [15,43,68,94]. The goal
of MAGE is to perform the same computation more efficiently,
so its techniques generalize across different applications. For
an application, one may first simplify the computation us-
ing application-specific observations, and then execute the
resulting computation as efficiently as possible.

Research works including Fairplay [55], HEKM [37],
KSS [49], MLB [61], PCF [48], and TinyGarble [73] are
frameworks for garbled circuit execution. We described many
of them in §2.4. One work [11] explores parallelizing execu-
tion of a garbled circuit, using programming language tools
to automatically extract parallelism. None of them explore
how to efficiently swap memory to storage, as MAGE does.

There already exist many DSLs and compilers for
SMPC [34, 36, 51, 60, 82, 89, 93] and HE [13, 23, 78]. These
tools often aim to make SC more accessible to non-expert
developers, by automatically optimizing the SC program.
MAGE addresses the complementary problem of executing
the resulting SC circuit more efficiently. To use an existing
tool with MAGE (as in Fig. 2), one could modify it to out-
put its optimized circuits in one of MAGE’s DSLs, and then
run MAGE’s planner on that DSL code. Alternatively, one
could modify the tool to output a bytecode directly usable by
MAGE’s planner (e.g., the “Virtual Bytecode” in Fig. 4).

AIFM [70] uses similar C++ language features as MAGE’s
DSLs. AIFM uses them at runtime for fine-grained memory
management. In contrast, MAGE (1) executes DSL programs
only to extract the memory access pattern during the planning
phase and (2) manages memory at the granularity of pages.

There is an extensive literature concerning memory man-
agement in traditional operating systems [3, 4, 24–26]. A re-
lated line of work looks at how operating systems can give
memory-intensive applications, such as scientific simulations,
more control over paging [32]. While these works focus pri-
marily on paging in the classic sense, our work explores
memory programming. Additionally, our work, unlike sci-
entific simulations, is capable of general computations within
SC. Scheduling page movement according to real-time con-
straints imposed by computation also draws from the real-time
scheduling literature [52]. These techniques do not manage
memory directly and are complementary to ours.

Some systems in other domains, like neural network train-
ing, formulate memory management problems as an integer
linear program and use an exponential-time solver [40]. This
approach exploits the high-level structure of the application to
coarsen the dataflow graph. For MAGE, the dataflow graph is
much larger because general SC computations do not conform
to any particular high-level structure. By operating on a pro-
gram representation of the circuit (§4.2), MAGE does coarsen
the graph, but it nevertheless remains enormous. Thus, we
use our staged approach (§6) to find a good approximation.

Some systems use observations of past memory accesses or
past working sets (e.g., from prior invocations of a program)
to perform targeted prefetching [33,35,56,77,92] and approx-

imate Belady’s algorithm (MIN) [72]. SC’s obliviousness and
our memory programming approach allow MAGE to compute
the memory access pattern without first running the program,
and then apply these techniques using the access pattern itself.

The recent DEMAND-MIN [39] algorithm combines MIN
with prefetching. DEMAND-MIN tells which item to evict
given an access pattern sequence and prefetch sequence fixed
in advance. It is not directly applicable to MAGE because
MAGE’s prefetch sequence is not fixed in advance.

At a technical level, MAGE’s planning is similar to register
allocation in compiler theory [14, 18, 74, 85]—variables, reg-
isters, and memory in register allocation correspond to wire
values, slots in memory, and storage swap space in the context
of MAGE. The key difference is that register allocators must
deal with conditional branches whose outcomes cannot be
predicted at compile time. From the perspective of register
allocation, the entire circuit that MAGE operates on would
be viewed as a single basic block. We discussed a result from
register allocation theory for a single basic block in §6.3. An-
other result is that, for a fixed number of registers, there is a
linear-time algorithm that can reorder instructions within a
structured program to optimize its register allocation [7, §3.2]
(though the time is exponential in the number of registers).

10 Conclusion
This paper explores how to efficiently execute SC computa-
tions that do not fit in memory. Our key observation is that SC
is inherently oblivious. This enables memory programming,
in which one computes the access pattern of an SC program
in advance and uses it to produce a memory management plan.
By using memory programming to preplan data transfers be-
tween memory and storage, MAGE runs SC up to an order of
magnitude faster than the OS virtual memory system and can
execute some SC programs at nearly in-memory speeds.

Some non-SC programs, like plaintext neural network infer-
ence and programs designed for hardware enclaves like Intel
SGX, are also oblivious. Applying memory programming to
such workloads is an interesting direction for future work.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Na-
dav Amit, for their helpful feedback. We would also like to
thank Katerina Sotiraki and other students/postdocs from the
RISELab Security Group for their feedback on early drafts.

This work is supported by NSF CISE Expeditions Award
CCF-1730628, NSF CAREER 1943347, and gifts from the
Sloan Foundation, Bakar Fellows Program, Alibaba, Amazon
Web Services, Ant Group, Ericsson, Facebook, Futurewei,
Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk, and
VMware. This research is also supported in part by the Na-
tional Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE-1752814. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

380 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] J. Bater, G. Elliott, V. Eggen, S. Goel, A. Kho, and

J. Rogers. SMCQL: Secure querying for federated
databases. VLDB, 10(6), 2017.

[2] D. Beaver, S. Micali, and P. Rogaway. The round com-
plexity of secure protocols. In STOC. ACM, 1990.

[3] L. A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Syst. J., 5(2), 1966.

[4] L. A. Belady, R. A. Nelson, and G. S. Shedler. An
anomaly in space-time characteristics of certain pro-
grams running in a paging machine. CACM, 12(6),
1969.

[5] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In S&P.
IEEE, 2013.

[6] O. Biçer. Efficiency optimizations on Yao’s garbled
circuits and their practical applications. Master’s thesis,
Istanbul Şehir University, 2017. Chapters 3 and 4.

[7] H. Bodlaender, J. Gustedt, and J. A. Telle. Linear-time
register allocation for a fixed number of registers. In
SODA. SIAM, 1998.

[8] J. Bonwick. The slab allocator: An object-caching
kernel. In USENIX Summer Technical Conference.
USENIX Association, 1994.

[9] D. P. Bovet and M. Cesati. Page frame reclaiming. In
Understanding the Linux Kernel, chapter 17, page 679.
O’Reilly Media, 2006.

[10] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl,
and P. Scholl. Efficient pseudorandom correlation
generators: Silent OT extension and more. Cryptol-
ogy ePrint Archive, Report 2019/448, 2019. https:
//eprint.iacr.org/2019/448.

[11] N. Buescher and S. Katzenbeisser. Faster secure com-
putation through automatic parallelization. In USENIX
Security. USENIX, 2015.

[12] Cape Privacy. https://medium.com/dropoutlabs.

[13] S. Carpov, P. Dubrulle, and R. Sirdey. Armadillo: A
compilation chain for privacy preserving applications.
In SCC. ACM, 2015.

[14] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein. Register allocation
via coloring. Computer Languages, 6(1), 1981.

[15] H. Chen, M. Kim, I. P. Razensteyn, D. Rotaru, Y. Song,
and S. Wagh. Maliciously secure matrix multiplication
with applications to private deep learning. 2020. https:
//eprint.iacr.org/2020/451.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomor-
phic encryption for arithmetic of approximate numbers.
In ASIACRYPT. Springer, Cham, 2017.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In ASIACRYPT. Springer, Berlin,
Heidelberg, 2016.

[18] K. D. Cooper and L. T. Simpson. Live range splitting
in a graph coloring register allocator. In CC. Springer,
Berlin, Heidelberg, 1998.

[19] Curv. Curv | digital asset security infrastructure. https:
//www.curv.co/.

[20] D. McDaniel. Virtual machines best practices:
Single VMs, temporary storage and uploaded disks.
https://azure.microsoft.com/en-us/blog/
virtual-machines-best-practices-single-
vms-temporary-storage-and-uploaded-disks/,
2014.

[21] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart. Practical covertly secure MPC for
dishonest majority – or: breaking the SPDZ limits. In
ESORICS. Springer, Berlin, Heidelberg, 2013.

[22] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Mul-
tiparty computation from somewhat homomorphic en-
cryption. Cryptology ePrint Archive, Report 2011/535,
2011. https://eprint.iacr.org/2011/535.

[23] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine,
and M. Musuvathi. EVA: An encrypted vector arith-
metic language and compiler for efficient homomorphic
computation. ACM, 2020.

[24] P. J. Denning. Thrashing: its causes and prevention. In
AFIPS. ACM, 1968.

[25] P. J. Denning. Virtual memory. CSUR, 2(3), 1970.

[26] P. J. Denning. Working sets past and present. IEEE
Trans. Softw. Eng., SE-6(1), 1980.

[27] Duality. https://dualitytech.com/.

[28] M. Farach and V. Liberatore. On local register allocation.
In SODA. SIAM, 1998.

[29] C. Gentry, S. Halevi, and N. P. Smart. Fully homo-
morphic encryption with polylog overhead. In EURO-
CRYPT. Springer, Berlin, Heidelberg, 2012.

[30] Google Cloud. Machine types. https://
cloud.google.com/compute/docs/machine-types.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 381

https://eprint.iacr.org/2019/448
https://eprint.iacr.org/2019/448
https://medium.com/dropoutlabs
https://eprint.iacr.org/2020/451
https://eprint.iacr.org/2020/451
https://www.curv.co/
https://www.curv.co/
https://azure.microsoft.com/en-us/blog/virtual-machines-best-practices-single-vms-temporary-storage-and-uploaded-disks/
https://azure.microsoft.com/en-us/blog/virtual-machines-best-practices-single-vms-temporary-storage-and-uploaded-disks/
https://azure.microsoft.com/en-us/blog/virtual-machines-best-practices-single-vms-temporary-storage-and-uploaded-disks/
https://eprint.iacr.org/2011/535
https://dualitytech.com/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types

[31] C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu. Better
concrete security for half-gates garbling (in the multi-
instance setting). Cryptology ePrint Archive, Report
2019/1168, 2019. https://eprint.iacr.org/2019/
1168.

[32] K. Harty and D. R. Cheriton. Application-controlled
physical memory using external page-cache manage-
ment. In ASPLOS. ACM, 1992.

[33] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan. Learning
memory access patterns. In ICML, 2018.

[34] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic.
SoK: General purpose compilers for secure multi-party
computation. In S&P. IEEE, 2019.

[35] J. He, J. Bent, A. Torres, G. Grider, G. Gibson,
C. Maltzahn, and X.-H. Sun. I/O acceleration with
pattern detection. In HPDC. ACM, 2015.

[36] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith.
Secure two-party computations in ANSI C. In CCS.
ACM, 2012.

[37] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. USENIX,
2011.

[38] Inpher. https://inpher.io/.

[39] A. Jain and C. Lin. Rethinking belady’s algorithm to
accommodate prefetching. In ISCA. ACM/IEEE, 2018.

[40] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel,
K. Keutzer, I. Stoica, and J. Gonzalez. Checkmate:
Breaking the memory wall with optimal tensor remate-
rialization. In MLSys, 2020.

[41] S. Jha, L. Kruger, and V. Shmatikov. Towards practical
privacy for genomic computation. IEEE, 2008.

[42] X. Jiang, M. Kim, K. Lauter, and Y. Song. Secure out-
sourced matrix computation and application to neural
networks. ACM, 2018.

[43] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
GAZELLE: A low latency framework for secure neu-
ral network inference. In USENIX Security. USENIX,
2018.

[44] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious
transfer. In CCS. ACM, 2016.

[45] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT. Springer, Cham,
2018.

[46] Keyless. Keyless | zero-trust passwordless authentica-
tion. https://keyless.io/.

[47] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In ICALP.
Springer, Berlin, Heidelberg, 2008.

[48] B. Kreuter, B. Mood, A. Shelat, and K. Butler. PCF:
A portable circuit format for scalable two-party secure
computation. In USENIX Security. USENIX, 2013.

[49] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
USENIX Security. USENIX, 2012.

[50] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single databse, computationally-private infor-
mation retrieval. In FOCS. IEEE, 1997.

[51] C. Liu, X. Wang, K. Nayak, Y. Huang, and E. Shi.
ObliVM: A programming framework for secure com-
putation. In S&P. IEEE, 2015.

[52] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1), 1973.

[53] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural
network predictions via MiniONN transformations. In
CCS. ACM, 2017.

[54] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI. ACM, 2005.

[55] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
— a secure two-party computation system. In USENIX
Security. USENIX, 2004.

[56] H. Al Maruf and M. Chowdhury. Effectively prefetching
remote memory with leap. In ATC. USENIX, 2020.

[57] Microsoft Azure. Ddv4 and Ddsv4-series.
https://docs.microsoft.com/en-us/azure/
virtual-machines/ddv4-ddsv4-series, 2020.

[58] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa. Delphi: A cryptographic inference service
for neural networks. In USENIX Security. USENIX,
2020.

[59] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In S&P.
IEEE, 2017.

[60] B. Mood, D. Gupta, H. Carter, K. R. B. Butler, and
P. Traynor. Frigate: A validated, extensible, and efficient
compiler and interpreter for secure computation. In
EuroS&P. IEEE, 2016.

382 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://eprint.iacr.org/2019/1168
https://eprint.iacr.org/2019/1168
https://inpher.io/
https://keyless.io/
https://docs.microsoft.com/en-us/azure/virtual-machines/ddv4-ddsv4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ddv4-ddsv4-series

[61] B. Mood, L. Letaw, and K. Butler. Memory-efficient
garbled circuit generation for mobile devices. In FC.
Springer, Berlin, Heidelberg, 2012.

[62] J. Nielsen. Nielsen’s law of Internet bandwidth. Ac-
cessed: May 26, 2020.

[63] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regres-
sion on hundreds of millions of records. In S&P. IEEE,
2013.

[64] T. Peng. Shared machine learning: Ant fi-
nancial’s solution for data privacy. https:
//medium.com/syncedreview/shared-machine-
learning-ant-financials-solution-for-data-
privacy-8069cffe7bb6.

[65] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams.
Secure two-party computation is practical. In ASI-
ACRYPT. Springer, Berlin, Heidelberg, 2009.

[66] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa,
and J. M. Hellerstein. Senate: A maliciously-secure
MPC platform for collaborative analytics. In USENIX
Security. USENIX, 2021.

[67] B. Randell. A note on storage fragmentation and pro-
gram segmentation. CACM, 12(7), 1969.

[68] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter,
and F. Koushanfar. XONN: XNOR-based oblivious
deep neural network inference. In USENIX Security.
USENIX, 2019.

[69] M. Rosulek. A brief history of practical garbled circuit
optimizations, 2015. https://simons.berkeley.edu/
talks/mike-rosulek-2015-06-09, https:
//www.youtube.com/watch?v=FTxh908u9y8.

[70] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In OSDI. USENIX, 2020.

[71] Microsoft SEAL (release 3.6). https://github.com/
Microsoft/SEAL, 2020. Microsoft Research, Red-
mond, WA.

[72] Z. Song, D. S. Berger, K. Li, and W. Lloyd. Learning
relaxed Belady for content distribution network caching.
In NSDI. USENIX, 2020.

[73] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schnei-
der, and F. Koushanfar. TinyGarble: Highly compressed
and scalable sequential garbled circuits. In S&P. IEEE,
2015.

[74] O. Traub, G. Holloway, and M. D. Smith. Quality and
speed in linear-scan register allocation. In SIGPLAN.
ACM, 1998.

[75] Unbound. https://www.unboundtech.com/.

[76] Laakeri (https://cs.stackexchange.com/users/
95646/laakeri). Is there an algorithm to min-
imize working set during a topological traver-
sal? Computer Science Stack Exchange, 2020.
https://cs.stackexchange.com/q/120274.

[77] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and
B. Grot. Benchmarking, analysis, and optimization of
serverless function snapshots. In ASPLOS. ACM, 2021.

[78] A. Viand, P. Jattke, and A. Hithnawi. SoK: Fully homo-
morphic encryption compilers. In S&P. IEEE, 2021.

[79] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia,
A. Lapets, and A. Bestavros. Conclave: secure multi-
party computation on big data. In EuroSys. ACM, 2019.

[80] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and
M. Zaharia. Splinter: Practical private queries on public
data. In NSDI. USENIX, 2017.

[81] K. C. Wang and M. K. Reiter. How to end password
reuse on the web. In NDSS. Internet Society, 2019.

[82] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016.

[83] X. Wang, S. Ranellucci, and J. Katz. Authenticated
garbling and efficient maliciously secure two-party com-
putation. In CCS. ACM, 2017.

[84] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure
multiparty computation. In CCS. ACM, 2017.

[85] C. Wimmer and H. Mössenböck. Optimized interval
splitting in a linear scan register allocator. In VEE. ACM,
2005.

[86] S. Yakoubov. A gentle introduction to Yao’s garbled
circuits, 2017. http://web.mit.edu/sonka89/www/
papers/2017ygc.pdf.

[87] A. C.-C. Yao. Protocols for secure computations. In
FOCS. IEEE, 1982.

[88] A. C.-C. Yao. How to generate and exchange secrets. In
FOCS. IEEE, 1986.

[89] S. Zahur and D. Evans. Obliv-C: A language for
extensible data-oblivious computation. Cryptology
ePrint Archive, Report 2015/1153, 2015. https://
eprint.iacr.org/2015/1153.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 383

https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://simons.berkeley.edu/talks/mike-rosulek-2015-06-09
https://simons.berkeley.edu/talks/mike-rosulek-2015-06-09
https://www.youtube.com/watch?v=FTxh908u9y8
https://www.youtube.com/watch?v=FTxh908u9y8
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://www.unboundtech.com/
https://cs.stackexchange.com/users/95646/laakeri
https://cs.stackexchange.com/users/95646/laakeri
https://cs.stackexchange.com/q/120274
https://github.com/emp-toolkit
https://github.com/emp-toolkit
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
https://eprint.iacr.org/2015/1153
https://eprint.iacr.org/2015/1153

[90] S. Zahur, M. Rosulek, and D. Evans. Two halves make a
whole: Reducing data transfer in garbled circuits using
half gates. In EUROCRYPT. Springer, Berlin, Heidel-
berg, 2015.

[91] Zcash. Parameter generation. https://z.cash/
technology/paramgen/.

[92] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr.
Fast restore of checkpointed memory using working set
estimation. In VEE. ACM, 2011.

[93] W. Zheng, R. Deng, W. Chen, R. A. Popa, A. Panda,
and I. Stoica. Cerebro: A platform for multi-party cryp-
tographic collaborative learning. In USENIX Security.
USENIX, 2021.

[94] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica.
Helen: Maliciously secure coopetitive learning for linear
models. In S&P. IEEE, 2019.

[95] R. Zhu, D. Cassel, A. Sabry, and Y. Huang. NANOPI:
Extreme-scale actively-secure multi-party computation.
In CCS. ACM, 2018.

A Artifact Appendix
Abstract
Our artifact consists of a MAGE prototype and scripts to use
it to run our experiments from §8. The MAGE prototype can
execute SC efficiently even when the computation does not
fit in memory. It does so by using memory programming
to provide a very efficient virtual memory abstraction. Our
prototype supports distributing an SC computation across
workers that communicate over the network, allowing for
parallel and distributed SC execution. The MAGE prototype
presently supports two SC protocols: garbled circuits and
CKKS. It follows the layered architecture described in §4.3.

Scope
Our artifact can be used to validate our central claim that,
using memory programming, MAGE can execute SC compu-
tations that do not fit in memory at nearly in-memory speeds.
Specifically, our artifact can be used to validate the perfor-
mance claims made in the figures and table in §8. Our submit-
ted artifact package allowed the artifact evaluation committee
to reproduce those results present in our submitted paper; we
have since added support for reproducing the measurements
we have added since the original submission.

Our artifact can also be used to run SC computations unre-
lated to our evaluation of MAGE in §8. The user can describe
a custom SC computation using a DSL internal to C++, and
then use our MAGE prototype to generate a memory program
for it and execute it efficiently.

Contents
Our artifact comprises (1) a prototype of MAGE and (2)
scripts to run experiments from §8.

Prototype. Our MAGE prototype includes:
• The planner and interpreter for the MAGE system.
• A utility program to read the bytecode format used by our

implementation and print a memory program in human-
readable form.

• Implementations of the workloads used in our evaluation
(§8.1) in MAGE’s DSLs.

• Utility programs to prepare inputs for these workloads.
• A wiki page that walks the user through using our MAGE

prototype to perform a computation.

Scripts. Our scripts to run our experiments include:
• A program, magebench.py, that can spawn cloud instances

on Microsoft Azure and Google Cloud and run experiments
on the resulting cloud setup. The command line parameters
passed to this program can be used to specify the cloud
setup and experiments to run; the user can change these
command line parameters to change aspects of the setup
(e.g., number of workers, memory size, problem size, etc.).

• A README file that describes how to use magebench.py
to run our experiments from §8 and obtain log files contain-
ing the results.

• An IPython notebook to produce graphs from the log files
output by magebench.py.

• Utility scripts to help automate invoking magebench.py to
run experiments from §8.

Hosting
Our artifact is available on GitHub. Our MAGE prototype is
available at https://github.com/ucbrise/mage and our
scripts to run our experiments are available at https://
github.com/ucbrise/mage-scripts. The version we pro-
vided to the artifact evaluation committee is marked in both
repositories using the osdi21ae tag. However, we encourage
users to use the latest versions of each repository (on the main
branch), as they include the newest features and bug fixes,
including scripts for additional experiments in §8.

Requirements
We developed and tested our artifact on Intel x86-64 sys-
tems running Ubuntu 20.04. We used clang++ 10.0.0 to
compile our MAGE prototype. The magebench.py script
spawns cloud instances with an environment appropriate for
building and running our MAGE prototype. Spawning those
cloud instances requires a subscription to Microsoft Azure
and Google Cloud. The particular software dependencies for
our artifact are specified in the README files of our two
GitHub repositories.

Workflow
To use our MAGE prototype, the user first writes a config-
uration file in YAML describing the execution setup (e.g.,
network information and swap file for each worker, number

384 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://z.cash/technology/paramgen/
https://z.cash/technology/paramgen/
https://github.com/ucbrise/mage
https://github.com/ucbrise/mage-scripts
https://github.com/ucbrise/mage-scripts

of concurrent OTs for garbled circuits, etc.). For SMPC, in-
formation needed only by other parties (e.g., the swap file
for other parties’ workers) can be omitted from the configu-
ration file. Next, the user writes a program in a DSL internal
to C++ specifying the computation to run. Then, the user
runs MAGE’s planner, which accepts the DSL program and
configuration file as input, for each worker the user will run,
and outputs a file containing a memory program for each
worker. The user prepares a file for each worker describing
that worker’s input for the computation. Finally, the user runs
MAGE’s interpreter for each worker, which accepts files con-

taining the memory program, configuration, and input data
and writes a file containing the program’s output. Further
details are given in the README file and wiki pages of the
mage repository on GitHub.

To use our script to run experiments, the user invokes
magebench.py to spawn cloud virtual machines. The user
can then invoke magebench.py to run MAGE on those cloud
virtual machines, copy the resulting log files to the machine
where magebench.py is run, and finally, deallocate the cloud
virtual machines. Further details are given in the README
file of the mage-scripts repository on GitHub.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 385

	Introduction
	Secure Computation Background
	Circuit Representation
	CKKS Homomorphic Encryption
	Garbled Circuits
	Efficiently Executing Circuits
	Naïve Baseline
	Pipelining Garbling and Evaluation
	Reclaiming Wire Memory

	Memory Overhead of Secure Computation
	Analysis of the Memory Demand
	Scaling Collaborative Applications

	Overview of MAGE
	Address Translation in MAGE
	MAGE's Bytecode Representation
	MAGE's Ecosystem and its Extensibility

	MAGE's Engine
	Parallel/Distributed Engine
	Distributed SMPC

	MAGE's Planner
	Organization of MAGE's Planner
	MAGE's First Stage: Placement
	Unrolling the DSL Code
	Memory Allocation Strategy

	MAGE's Second Stage: Replacement
	MAGE's Third Stage: Scheduling

	Implementation
	MAGE's Interpreter
	Extending MAGE with New Protocols
	Garbled Circuit Protocol Driver
	CKKS Protocol Driver

	Evaluation
	Workloads
	SMPC Collaborative Applications
	CKKS Homomorphic Encryption
	Implementation of Workloads

	Empirical Methodology
	Comparison to Existing Frameworks
	Overhead of Swapping Pages
	Overhead of Planning
	Impact of Parallelism
	SMPC in Wide-Area Networks
	Applications
	Detecting Password Reuse
	Private Information Retrieval

	Related Work
	Conclusion
	Artifact Appendix

