
Pollux: Co-adaptive Cluster Scheduling 
for Goodput-Optimized Deep Learning

Aurick Qiao

OSDI’21
7/14/2021

Aurick Qiao1,2, Sang Keun Choe2, Suhas Jayaram Subramanya2, Willie 
Neiswanger1,2, Qirong Ho1, Hao Zhang1,3, Gregory R. Ganger2, Eric P. Xing4,1,2

1Petuum Inc., 2Carnegie Mellon University, 3UC Berkeley, 4MBZUAI



Deep Learning Training in Shared Clusters

2

Shared compute clusterMany users and training jobs

Scheduler

Cluster scheduler decides how to allocate resources to jobs in order to 
minimize training time, maximize cluster utilization, or ensure fairness.

Expensive hardware (e.g., GPUs)Time/compute-intensive



Example Shared-Cluster DL Training Workflow

3

Train my model 
using X GPUs

Submit to Scheduler

OK, I will allocate X
GPUs for your job

How to determine number of GPUs X?
Depends on:
• Cluster contention: changes dynamically
• Job scalability: needs expert knowledge

How to configure training parameters 
to utilize the allocated GPUs efficiently?
• Tune batch size and learning rate.

Inter-dependent, 
dynamic decisions

Not managed by existing cluster schedulers for DL training!



Pollux: Co-adaptive Cluster Scheduler for DL

Automatically and dynamically:
A. Allocates resources considering cluster-wide performance and fairness.
B. Tunes the batch size and learning rate for each individual training job.

Co-adaptive:
• Cluster-wide scheduling decisions account for the tuning happening at the per-job level.
• Individual jobs are tuned adaptively to the resources allocated by the cluster scheduler.

Results: reduces manual job configuration, improves average training time by 37-50%.

4



Outline

1. Motivation
2. Background on DL Training
3. Design of Pollux
4. Evaluation Results

5



Background: Distributed DL (Data Parallelism)

(1) Partition mini-batch

∇𝐹!

∇𝐹"

∇𝐹#

(2) Calculate gradients
(compute-heavy)

(3) Average gradients
(network-heavy)

∇𝐹

−𝜂∇𝐹

−𝜂∇𝐹

−𝜂∇𝐹

(4) Update parameters

Batch size Learning rate

6



System Throughput and Impact of Batch Size

7

DL training scales sub-linearly: too many GPUs doesn’t help to increase system throughput! 

Hard to know how many 
GPUs to use, depends on:
• Model architecture
• Cluster hardware
• Training batch size
• …

Common strategy: 
Use a larger batch size 
to improve system 
throughput/scalability

(ResNet-18 on CIFAR10)

Batch size



(Shallue et al. 2018)

8

Why not keep increasing the batch size?

1. Need to carefully tune learning rate to 
keep the model quality consistent.

2. Increasing the batch size decreases the 
statistical efficiency of DL training.

3. Even further increasing the batch size 
results in worse model generalization.

Statistical Efficiency and Impact of Batch Size

“Perfect” 
statistical 
efficiency

Actual 
statistical 
efficiency

Extra compute 
required to train
(more epochs)



Illustration of Overall Training Performance

Training performance

Statistical 
efficiency

System throughput

Batch Size

9

Find this batch size



Illustration of Overall Training Performance

Batch Size
Statistical efficiency increases during training
→ Optimal batch size changes dynamically!

(by 10x or more, McCandlish et al. 2018)

Statistical 
efficiency

System throughput

10

Training performance



Implications for Cluster Scheduling

1. The preferred GPU allocation for a DL training job depends on its batch size, while the 
preferred batch size of the job depends on its allocated GPUs (inter-dependency).

2. GPU allocation also depends on cluster-wide factors such as fairness and contention.
3. Batch size also depends on per-job factors such as scalability and statistical efficiency.

Hard for users to account for these inter-dependent factors when submitting jobs.

A cluster scheduler that jointly controls these factors can better optimize for DL training.

11



Pollux Cluster Scheduler

Configure Cluster/Jobs Model Training Performance

Resources Batch Size

(Re-)

Optimize resource allocations, 
batch sizes, and learning rates

12

Co-adaptively allocates 
cluster-wide resources
and tunes per-job batch 
sizes and learning rates



13

Pollux optimizes for a new measure of DL training performance called the goodput.

Key Idea: Goodput, not Throughput

GOODPUT! 𝑎,𝑚, 𝑠 = THROUGHPUT 𝑎,𝑚, 𝑠 ×EFFICIENCY! 𝑀

System throughput
(training examples / second)

Statistical efficiency
(progress / training example)

Automatically determined 
by Pollux for each job 

during training

𝒂: Allocation vector, 𝒂𝒏 = #GPUs on node 𝒏
𝒎: Per-GPU batch size
𝒔: Gradient accumulation steps (enables total 

batch sizes larger than GPU memory limit)

𝑴: Total batch size, 𝑴 = 𝒂 ×𝒎×𝒔



Modeling System Throughput

14

Time per 
training 
iteration

Time to 
compute 
gradients

Time for 
network 

communication

Overlap between 
computation and 
communication 

Gradient 
accumulation 

steps



Modeling System Throughput

15

Accurately model observed throughput for 
various numbers of GPUs and batch sizes.

Accurately model the effect of accumulating 
gradients locally without synchronization.

Accurately model the effect of GPUs being 
allocated on different nodes vs same node.

Enables Pollux to automatically:

1. Determine the right # GPUs and 
batch size.

2. Use gradient accumulation to 
increase the batch size beyond 
the limits of GPU memory.

3. Try to pack a job’s GPUs onto 
fewer nodes to minimize 
network overhead.



16

Modeling Statistical Efficiency

φ! = (Pre-conditioned) Gradient Noise Scale
(McCandlish et al. 2018)

Pollux also models the statistical efficiency for each DL training job:

Gradient noise scale intuition:
• Higher gradient noise → larger mini-batch is 

helpful → higher statistical efficiency.
• Lower signal-to-noise near convergence → 

better statistical efficiency later in training.

User provides a static 
baseline batch size 𝑀"

EFFICIENCY of batch 
size 𝑀 is measured 
relative to 𝑀"

User can simply pick a small 𝑀" and not worry 
about system throughput or scalability.

Rely on Pollux to pick different 𝑀 that balances 
system throughput and statistical efficiency.



17

Modeling Statistical Efficiency

Lower observed EFFICIENCY for larger batch sizes, improves later in training.

Accurately predict what EFFICIENCY would be if using a different batch size.

GOODPUT# 𝑎,𝑚, 𝑠 = THROUGHPUT 𝑎,𝑚, 𝑠 ×EFFICIENCY# 𝑀

Putting it all together:

Pollux quickly predicts what the GOODPUT of a training job would be 
using 𝑎,𝑚, 𝑠 without needing to run the training job using 𝑎,𝑚, 𝑠 .



Pollux Optimizes Goodput for Each DL Job

Given an allocation of GPUs 𝑎, solve: 𝑚∗, 𝑠∗ = argmax
=, >

GOODPUT! 𝑎,𝑚, 𝑠

18

(ResNet-18 on CIFAR10 with 
𝑎 and 𝑠 fixed to a constant)

Changing the batch size means the learning rate 
must be re-tuned.

Pollux lets user select a suitable learning rate 
scaling rule established in the DL community:
• Linear scaling
• Square-root scaling
• AdaScale (Johnson et al. 2020)
• …



Optimizing Cluster-Wide Allocations

19

Pollux finds an allocation matrix 𝐴, where 𝐴?@ = #GPUs on node 𝑛 allocated to job 𝑗.

Optimization objective:

where Best goodput with 
given allocation 𝐴$

Best goodput with 
fair-share of GPUs 
(normalize across jobs)

Search for 𝐴 with a metaheuristic algorithm.
• Pollux uses a Genetic Algorithm.

Additional scheduling considerations:
• Avoid frequent re-allocations (high overhead).
• Avoid distributed jobs sharing a node (interference).

𝑝 is a tunable parameter that 
controls fairness between jobs.

Accounts for 
job-level tuning!



Evaluation of Pollux

A primary benefit of Pollux is automatically configuring jobs in shared clusters.

Important evaluation objective: demonstrate that even if jobs are given ideal 
static configurations, Pollux still outperforms alternative DL cluster schedulers.

• Real-world job distributions from Microsoft’s DL cluster traces (Jeon et al. 2019).
• Mix of training tasks: image classification, object detection, speech recognition, question 

answering, and recommendation.
• Manually tuned #GPUs, batch size, learning rate, and gradient accumulation ahead of time

• For setting up strong baselines, does not benefit Pollux!

20



Scheduling Expert-Configured Jobs

16 nodes w/ 4 GPUs each (Nvidia T4)

160 DL jobs submitted over 8 hours

21

Uses expert-configured jobs.
Can elastically adapt resources, 
but not batch size/learning rate.
(Peng et al. 2018)

Uses expert-configured jobs.
Can pause/resume jobs based
on their GPU-time metrics.
(Gu et al. 2019)

37-50% faster average training time

More realistic job configs:
>70% faster average training time



Cluster-wide Statistical Efficiency

22

Period of high cluster contention:
Pollux reduces #GPUs and batch size and 
trains with higher statistical efficiency.

Period of low cluster contention:
Pollux accepts lower statistical efficiency 
to train with higher system throughput.

Key trade-off made by Pollux



More Experiments in our Paper!

• Scheduling fairness
• Sensitivity studies
• Hyper-parameter tuning workloads
• Improving auto-scaling in the cloud
• …

23



Conclusion

• Pollux co-optimizes both cluster-wide and per-job parameters for DL training.
• Pollux introduces goodput, a measure of training performance that combines

system throughput and statistical efficiency.
• Pollux improves average training time in shared clusters by 37-50%, even against 

unrealistically strong baselines.

Open-sourced at https://github.com/petuum/adaptdl.

aqiao@andrew.cmu.edu

24

https://github.com/petuum/adaptdl

