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Abstract

Owl provides high-fanout distribution of large data objects
to hosts in Meta’s private cloud. Owl combines a decentral-
ized data plane based on ephemeral peer-to-peer distribution
trees with a centralized control plane in which tracker ser-
vices maintain detailed metadata about peers, their cache state,
and ongoing downloads. In Owl, peer nodes are simple state
machines and centralized trackers decide from where each
peer should fetch data, how they should retry on failure, and
which data they should cache and evict. Owl trackers pro-
vide a highly-flexible and configurable policy interface that
customizes and optimizes behavior for widely-varying dis-
tribution use cases. In contrast to prior assumptions about
peer-to-peer distribution, Owl shows that centralizing the con-
trol plan is not a barrier to scalability: Owl distributes over
800 petabytes of data per day to millions of client processes.
Owl improves download speeds by a factor of 2-3 over both
BitTorrent and a prior decentralized static distribution tree
used at Meta, while supporting 106 use cases that collectively
employ 55 different distribution policies.

1 Introduction

Within Meta’s private cloud, efficient distribution of large, hot
content to end hosts is an increasingly important requirement.
Three dimensions express the scope of the task: (1) scale: the
same content may be read by anywhere from a handful of
clients to millions of processes running in data centers around
the globe, (2) size: objects to be distributed range from 1 MB
to a few terabytes, and (3) hotness: all clients may read an
object within a few seconds of each other, or their reads may
be spread over hours. At Meta, executables, code artifacts,
Al models, and search indexes are content types commonly
distributed within this scope.

Distribution requirements are exacting. First, content dis-
tribution must be fast: the predictive value of Al models
decreases over time, and slow executable delivery increases
downtime and delays deploying fixes. We expect to provide
data at a rate bounded by either the available network band-
width of the reading host or by the available write bandwidth
of its storage media.

Second, content distribution must be efficient. One dimen-
sion of efficiency is scalability, i.e., the number of clients that

can have their distribution needs met by a given number of
servers. Another dimension is network usage, which we mea-
sure both in terms of bytes transmitted and communication
locality (e.g., an in-rack data transfer is less costly than a cross-
region transfer) . A final dimension of efficiency is resource
usage on client machines; e.g., CPU cycles, memory, and disk
I/0. Not only should we use as few resources as possible, but
we should also adjust for their relative importance on different
clients; e.g., some services are memory-constrained, while
others are CPU-constrained or cannot afford to write to disk.

Finally, content distribution must be reliable. Reliability
is measured as the percentage of download requests that the
distribution system satisfies within a latency SLA. Opera-
tional ease-of-management is an oft-overlooked prerequisite
for high reliability. In a production environment, workloads
change, dependent service and infrastructure may have par-
tial outages, and performance faults in which a dependency
doesn’t meet its own SLA are not uncommon. In order to
maintain a high SLA for distribution, engineers need to be
alerted quickly about such events, and they need a clear pic-
ture of operational health for each client type. Finally, they
need simple knobs that adjust behavior when reliability, speed,
or efficiency starts to degrade in order to restore operational
health quickly.

Prior to our work, Meta used at least three different sys-
tems for large content distribution. No prior solution met all
of the above requirements. We identified two root causes: (1)
no prior system struck the correct balance between decen-
tralization and centralization, and (2) no prior system was
sufficiently flexible to meet all of the requirements of the
many different types of services at Meta that require content
distribution.

Meta previously implemented highly-centralized distribu-
tion via hierarchical caching, in which clients download con-
tent from first-level caches on remote hosts. These caches,
in turn, handle cache misses by reading from other caches,
with the final layer of the hierarchy being a distributed stor-
age system. Hierarchical caching is inefficient for hot content
distribution, and it is difficult to scale. Meta needed dedicated
hosts in great quantity to implement the cache hierarchy. The
number of hosts increased to keep pace with growth in work-
loads from services consuming the data and with growth in
the number of reading clients. Load spikes caused by hot con-
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tent were a continual problem: strict quotas were necessary
to protect the centralized caches. However, readers of hot
content were frequently throttled because they exceeded their
quotas. In general, provisioning for transient spikes caused
by hot content and setting quotas appropriately was quite
challenging.

Meta also used two highly-decentralized systems: a
location-aware BitTorrent [7] implementation and a static
peer-to-peer distribution tree based on consistent hashing,
which we will refer to as StaticTree. In both cases, a peer
is any process that wishes to download data, and there are
millions of such processes at Meta. The decentralized systems
scaled much better than hierarchical caching, but they brought
their own problems. First, because each peer made distribution
decisions based on local information, resource efficiency and
speed could be poor; e.g., with each peer making independent
caching decisions, the collection of peers could retain either
more or less copies of a data object than necessary. Perhaps
more importantly, these decentralized solutions were difficult
to operate. Engineers could not get a clear picture of health
and status without aggregating data from large numbers of
peers. Each peer had a different and limited view of the state
of distribution, so it was often hard to tell whether or not a
collection of peers was making good decisions. In general,
it was very hard to reason about system-wide correctness or
efficiency.

In summary, decentralized systems were inefficient and
difficult to operate, while centralized systems scaled poorly.
As a result, we chose to create a new, split design with a
decentralized data plane and a centralized control plane. The
decentralized data plane streams data from sources to clients
via a distribution tree. However, its trees are ephemeral, i.e.,
each tree tracks a single data chunk, and each edge in a tree
persists only while the chunk is being transferred from a
source to a peer.

The design realizes a mechanism-policy split. Peers are sim-
ple and provide the mechanism for caching and transferring
data chunks. The centralized control plane makes all detailed
policy decisions about distribution, e.g., from where peers
should get each chunk of content, when and how they should
cache content, and how they should retry failed downloads.
The control plane is implemented by a small set of trackers '.
Trackers have a complete picture of the distribution state; e.g.,
which data each peer is downloading, where these peers are
located, and which chunks are in each peer’s cache. Detailed
state enables trackers to make highly-optimized decisions
about data placement and distribution that minimize the use
of expensive network links and maximize cache hit rate. Cen-
tralizing the control plane has also made distribution easy to
operate and debug: engineers can understand which decisions
led to low availability, high latency, or poor hit rate because
these decisions are made by a tracker with a consistent view

borrowing terminology from BitTorrent

of distribution state.

When workloads scale beyond the capacity of a single
tracker, the detailed state is sharded across several cooperat-
ing trackers, each managing a distinct set of peers. Trackers
exchange lower-fidelity views of their individual state with
other trackers. Thus, each tracker has a fine-grained view of
the state it manages and a coarse-grained view of the entire
state. Trackers use the coarse-grained view to delegate deci-
sions to other trackers when using peers that those trackers
manage.

The second major problem faced by prior distribution sys-
tems was a lack of flexibility. At Meta, clients have vastly
different resources to spare for distribution; e.g., some clients
can dedicate gigabytes of memory or disk for peer-to-peer
caching, while others have no resources to spare. Client have
very different access patterns and scale. Finally, the objec-
tives for distribution can differ: some clients need low latency,
while others wish to reduce the load on external storage to
avoid throttling or excess quota requests. The variety in client
needs was one reason Meta needed many different distribu-
tion solutions; each solution was customized for a small set
of use cases. To unify the disparate distribution solutions, we
could not simply provide a one-size fits all solution because
that would regress many clients on their key metrics.

We therefore chose to make customization a first-class
design priority. Trackers implement modular interfaces for
specifying different policies for caching and fetching data.
Further, each policy is itself configurable to allow for differ-
ent tradeoffs across client types and responses to changing
workloads. We use trace-driven emulation to search through
the space of possible customizations and find the best policies
and configurations for each observed workload.

This paper describes our solution, Owl, a highly-
customizable data distribution system with a centralized con-
trol plane and a decentralized data plane. Owl has been in
production use at Meta for almost 2 years. Owl has scaled
out rapidly (production traffic increased by almost 200x in
2021). Currently, Owl has over 10 million unique clients (bi-
naries concurrently using the Owl library), and it downloads
over 800 petabytes of data per day. Owl supports 106 unique
types of clients and has customized policies for 55 of these.
In production, Owl improved download latency over prior
systems by a factor of 2—3 for our most important use cases,
while requiring only a fraction of the resources needed by
prior centralized solutions.

In summary, this paper makes the following contributions:

1. Tt shows that a centralized control plane need not be a
barrier to scalability in peer-to-peer distribution.

2. It shows that tracker sharding and delegation retain the
benefit of fine-grained management even when load
grows beyond the capacity of a single tracker.

3. It shows that first-class support for flexible distribution
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Client API function and arguments

Description

read_blob (object, offset, length, deadline,
integrityChecker, decryptor)

Fetches all or part of an object to memory.

read_blob_to_file (object, fd, offset, length, deadline,
integrityChecker, decryptor)

Fetches all or part of an object to a file.

provide_file (object, fd, length)

Allows a file to be distributed ephemerally.

evict_file (fd)

Evicts a file from the peer cache.

Table 1: Owl client API

and caching policies can provide substantial gains in effi-
ciency and latency, especially when combined with tools
that automatically search the space of possible policies
for optimizations.

2 Design and Implementation

Owl has two basic components: peers, libraries linked into ev-
ery binary that uses Owl to download data, and trackers, ded-
icated Owl services that manage the control plane for a group
of peers. A physical host often has several Owl peers due to
container stacking and use of Owl by the Twine container in-
frastructure [16]. Each tracker manages many peers: over 10
million Owl peers are currently managed by 112 trackers. Ad-
ditionally, Owl has approximately 800 superpeers, dedicated
services running the Owl library that provide extra caching or
perform specialized tasks.

2.1 Peers

Owl peers provide a simple API for downloading data, shown
in Table 1. Client processes call read_blob to fetch con-
tent from a source object, specifying a range of data to read.
The object name encodes an external storage source and a
unique identifier for the object within the external storage
namespace. Owl currently supports 3 types of external stor-
age. The caller can optionally specify a deadline and classes
that check data integrity or decrypt provided data (discussed
in Section 2.9). read_blob returns a reference-counted mem-
ory buffer, while read_blob_to_file writes the content
to a file. The provide_file function allows peers to pro-
vide ephemeral content, as discussed in Section 2.11, and
evict_file lets clients manage disk caches shared with Owl,
as discussed in Section 2.7.

Owl peers cache data in memory and on disk. These caches
may be shared with the client binary if the client does not
modify downloaded data. Owl uses the caches to serve content
requests from other peers. Owl policies usually prefer to fetch
data from a peer rather than from an external data source, so
most requests are satisfied by peer-to-peer distribution.

In the design of Owl, a key principle is that peers should
be as simple as possible. This is achieved via a mechanism-
policy split, where peers provide the mechanism to perform

simple actions such as downloading a chunk of content from
a single source, caching or evicting a chunk in memory or on
disk, or providing cache data in response to a request from
another peer. When downloading content, peers ask trackers
to decide from where they should fetch content, how they
should retry failed downloads, and even which chunks they
should cache locally.

This design principle has been invaluable for operational
simplicity. At Meta, the Owl team can control the deployment
of its own service (i.e., trackers and superpeers); however, Owl
peers are linked with client binaries and so deploy according
to different schedules controlled by many other teams. The
Owl team deploys code changes to trackers daily, and the team
can change configuration values on trackers within seconds
if necessary. In contrast, peer code changes can take months
to fully deploy. By keeping peers as simple as possible, the
team minimizes the need to change a widely-deployed and
hard to modify part of the system.

Each peer is associated with a bucket, which uniquely iden-
tifies the type of the client binary with which the library is
linked. The bucket provides a way to customize Owl behavior
for each type of client and it lets us monitor usage, perfor-
mance, and reliability for each Owl customer individually.
Currently, Owl supports production traffic for 106 buckets.

2.2 Trackers

A tracker manages download state for a set of peers. Typi-
cally, peers and trackers are grouped by region (a region is
several co-located data centers), with 3—4 trackers per region
providing scale and redundancy. Trackers are homogeneous
and multi-tenant. In general, each tracker supports all Owl
buckets, and the association between peers and trackers in a
region is random. However, Owl uses a separate set of track-
ers in each region for binary distribution to provide strict
performance isolation for this sensitive workload.

Trackers associate data and peers. Downloaded objects
are divided into chunks; chunk size varies by bucket with
50 MB being the most common size. For each chunk, tracker
metadata specifies which peers are caching the chunk and
which are downloading it. Tracker metadata also specifies the
source of each peer’s download (e.g., an external source or
another peer). For each peer, the tracker metadata specifies the
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peer’s location (host, rack, region, etc.) and its cache state (the
chunks in the cache, last access time, and so on). In contrast
to highly-decentralized systems, Owl trackers can maintain
such detailed state because trackers make all major decisions
about caching and downloading chunks on behalf of peers.
As our evaluation shows, a single Owl tracker can scale to
handle 1.5-2.4 TB/s of distribution traffic, depending on as-
sumptions about cache hit rate for download requests. To
achieve this scalability, we have used careful, but mostly
standard, engineering practices. Trackers are implemented in
C++ and use common abstractions (coroutines, reader-writer
locks, and standard library containers). Trackers maintain
geographically-sorted indexes to order peers and the chunks
they cache by location; these indexes allow trackers to effi-
ciently find the nearest peers caching a particular chunk of
data. Geographically-sorted indexes are used frequently by
location-aware selection polices. Trackers store all metadata
in memory, and they rebuild their state quickly when restarted.
Peers associate with one tracker. Each peer picks a random
instance from the set of available trackers and registers by
sending an RPC. Peers register with a new random tracker
if their association with the current tracker fails. Section 2.8
describes how peers are sharded across multiple trackers.

2.3 Superpeers

Superpeers are tasks running the Owl peer library as a stan-
dalone process (without any client). Superpeers sometimes
provide specialized functionality. For example, some external
storage systems use mountpoints that are not available on
most hosts, so we access this storage only via superpeers that
have been configured with the necessary mountpoint. To read
external storage, the tracker directs such a superpeer to fetch
and cache a data chunk, and it directs a reading peer to get
the data from the superpeer.

Some Owl buckets need more peer resources than their
clients can provide. For example, some clients are extremely
memory and disk constrained and yet also require a high cache
hit rate to reduce load on external storage. Superpeers can use
all the resources of their hosts for caching, and so Owl uses
superpeer caches to supplement peer caches for such buckets.

When used in this manner, a collection of superpeers can
be viewed as a hierarchical caching layer. It is possible to craft
Owl selection policies that direct all requests to superpeers
and bypass fetching from other peers. Early in the project, we
created one such policy to support an Al bucket that could
spare no memory or disk for peer caching. However, we soon
found that shared caching, discussed in Section 2.7, allowed
Owl to temporarily access data buffers in use by the applica-
tion to provide a decent peer-to-peer cache hit rate. Superpeers
are still valuable because their additional caching resources
improve the total Owl cache hit rate from the base peer-to-
peer rate up to the target needed by the Al team. Currently, the
Owl team discourages superpeer-only policies because there

are several existing systems at Meta that provide excellent
standalone caching solutions.

At the other end of the spectrum, it is also possible to craft
Owl selection policies that do not use superpeers at all. For
buckets with very large working sets and large numbers of
clients, the additional cache resources of superpeers make
little difference in overall cache hit rate. In practice, though,
Owl selection policies for these types of buckets still use
superpeers as a last level of retry if a direct fetch from storage
by the peer fails. We have found this to be useful in handling
rare corner cases such as particular peers being in a bad state
where they cannot fetch from external storage. Because peers
run on heterogeneous hosts not owned by the Owl team, they
can be less stable than superpeers. The superpeer layer thus
still plays a role in improving overall data availability.

Superpeers have occasionally been quite useful in mitigat-
ing production issues that lead to a poor cache hit rate. In
such scenarios, we have quickly stood up a large number of
superpeers in a region to provide temporary caching that re-
stores the desired hit rate until we are able to deploy a fix for
the underlying problem.

We originally implemented superpeers as a sharded service
built on a standard caching library [3]. This approach proved
to be insufficiently flexible; it was difficult to customize su-
perpeer cache behavior for each bucket. Later, we rewrote
superpeers to use the Owl peer library, which let us customize
superpeers via tracker policies and which also provided the
simplicity of code reuse for peers and superpeers. From the
point of view of a peer, there is no distinction between fetch-
ing a data chunk from a superpeer or another peer.

2.4 Tracker-Peer Communication

Peers register with a tracker by sending an RPC with their
bucket and location. Trackers customize behavior by bucket;
e.g., tracker configuration parameters assign specific down-
load and caching policies to each bucket. When registering,
peers select trackers randomly within a geographic scope, and
the association between a tracker and peer persists until a
peer terminates or cannot communicate with the tracker. On
failure to communicate with a tracker, peers re-register with a
randomly-chosen tracker.

To download data, an Owl1 peer first makes an RPC to the
tracker specifying the object to be downloaded and the range
of data to read. The tracker returns the chunk size (determined
by the bucket configuration). It initializes a state machine
to track the download of each chunk that has data in the
specified range. If the download later fails or times out, the
tracker cancels all per-chunk state machines for the download.
Otherwise, each chunk is handled independently.

Peers download chunks in parallel. Download concurrency
is limited by the per-bucket configuration, which specifies
both the maximum number of chunks each peer can download
in parallel and a maximum number of chunks that can be read
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Figure 1: Ephemeral distribution tree. This figure shows how a tracker uses a per-chunk ephemeral distribution tree to track

which peers cache a chunk and which are downloading the chunk.

in parallel for each individual read_blob request.

For each chunk, the peer first checks if the chunk is in its
cache already. If so, it sends an RPC to the tracker, which
terminates the per-chunk download state machine and updates
the access time in the peer metadata for LRU and similar evic-
tion policies. Otherwise, the peer sends a get Source RPC to
the tracker that asks how it should get the data. The tracker can
respond with a peer from which data can be obtained. Alter-
natively, the tracker may specify an external data source from
which the peer should fetch content directly. The get Source
response specifies whether the peer should cache the down-
loaded chunks and lists chunks that should be evicted from
the peer cache to make room. The tracker updates its peer
and chunk metadata, along with the per-chunk download state
machine to reflect its decision.

The peer next attempts to obtain the data in the manner
specified by the tracker, and it informs the tracker of the re-
sult. On success, the tracker terminates the state machine.
On failure, the tracker makes a new decision based on its
current metadata. Based on per-bucket policies and the fail-
ure type, the tracker may specify a new source (or possibly
retry the same source in rare cases), or it may tell the peer to
give up (e.g., because a maximum number of retries has been
exceeded or it believes the chunk is not available from any
source).

Prior systems such as BitTorrent [7] provide a list of candi-
date sources to a peer and let peers handle retries transparently.
Owl’s approach of involving trackers in retry decisions has
several advantages. First, trackers can pick a new source based
on the latest state about which peers cache the chunk and cur-

rent peer load. In contrast, the peers included in BitTorrent’s
initial list can be stale when retries are needed. Second, Owl
trackers maintain very detailed state about which peers are
fetching from others. This allows trackers to enforce precise
caps on the maximum number of inflows and outflows per
peer, and it allows trackers to make more informed selec-
tion decisions. Finally, this detailed state gives operators a
complete picture of Owl download state, making it easier to
determine why downloads may be slow or failing.

The peer simply follows the tracker’s instructions at each
step. On retry, if a prior step returned partial content before
failing, the peer resumes fetching from a new source after the
last byte it received (so failures do not lead to excess data
being transmitted).

If a chunk download fails (because the tracker tells the peer
to give up) or the download time exceeds a deadline specified
by the client, the peer cancels all remaining chunk downloads
and fails the read_blob request. Otherwise, the peer returns
the requested data either via a memory buffer or by writing
to a specified disk file. The tracker also sets a timeout for
each chunk download; it terminates a download and cleans up
download state if the peer does not respond within this time.

2.5 Ephemeral Distribution Trees

The ephemeral distribution tree is the core abstraction used
by the tracker to manage per-chunk download state. The root
of a tree is an external data source or a peer that caches the
chunk. Directed edges indicate which peers are actively down-
loading the chunk from others; e.g., in Figure 1(a), peer A
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is downloading the chunk from external storage, and peer
B is downloading the chunk from peer A. While prior dis-
tribution systems have commonly used trees to efficiently
distribute data, Owl’s trees are particularly ephemeral in that
each chunk of data has its own forest of trees, and nodes re-
main in a tree only while they are downloading a particular
chunk or providing a chunk to another peer.

In the data plane, chunks are streamed from the root to
leaves; i.e., bytes along each edge are sent in order, followed
by a per-chunk checksum used to verify integrity. Each peer
forwards data to its children as soon as it receives new bytes.
With large chunks, this design means that tree depth does
not strongly affect latency. Leaf-nodes see only the first-byte
latency of additional communication hops, which is often
quite small within a data center or region. In Figure 1(b),
when peers C and D request the chunk; the tracker tells them
to get it from B, which is still receiving data. Peer B first sends
its cached bytes and then forwards additional chunk bytes as
it receives them.

When a peer reports a failure fetching data, the tracker re-
moves the edge connecting the peer to its parent. If the tracker
chooses a new source, it creates an edge from the peer to that
source. Thus, the entire subtree rooted at the peer reporting
the failure is moved to a have a new parent in the tree. When
choosing a new peer, the tracker avoids creating download
cycles; i.e., it will not designate a descendent of a peer as a
new source for that peer. Tree repair minimally impacts down-
stream nodes because Owl resumes a new download after the
last byte fetched from the previous attempt. In Figure 1(c),
peer A fails, and the tracker tells peer B to fetch the remaining
bytes from external storage. Peers C and D are oblivious to
this change since they continue to download from B.

When a peer reports a successful download, the edge con-
necting it to its parent is removed. The tracker adds the peer
to the list of nodes that have the chunk fully cached if the
tracker asked the peer to retain the chunk. Since chunks may
be cached at multiple peers, the download state for a chunk is
a forest of ephemeral distribution trees rooted at multiple such
peers and/or the external data source. In Figure 1(d), peers B
and C have downloaded and cached the chunk, while peer D is
still downloading bytes from B. Thus, we have two ephemeral
distribution trees in the forest; a new peer that requests the
chunk may be directed to any of these peers or to external
storage, depending on the selection policy for the bucket.

At first glance, it might seem surprising that Owl often
prefers to download chunks from peers that have partially
downloaded a chunk in preference to peers that have the
chunk fully cached. However, selecting a peer that has par-
tially downloaded a chunk has little latency cost. The peer
immediately starts streaming out the bytes it has already down-
loaded and sends remaining bytes out as soon as they arrive.
Network locality and quick scale-out of hot contents are big-
ger concerns in practice. For instance, many peers in a rack
often request a chunk at the same time. Most Owl policies are

location-aware and build a tree so that a single peer downloads
data from outside the rack and other peers in the same rack get
the chunk from that peer or one of its children. Similarly, if
many peers in a data center request a chunk at the same time,
typically only one peer fetches the chunk from outside the
data center. Allowing peers to fetch from other peers that are
still downloading the chunk is essential to achieving network
locality for hot content.

2.6 Selection Policies

Each bucket has a selection policy that the tracker executes on
each getSource request. The selection policy considers the
result of all prior attempts by a peer to fetch a chunk, as well
as per-chunk state that includes the set of caching peers and
ephemeral distribution trees. The result of the selection policy
often directs a peer to fetch the chunk from another peer or
an external data source; these decisions add a new edge to an
ephemeral distribution tree. The policy is implemented as a
class inheriting from an abstract interface; each policy class
has a considerable number of parameters that can be further
customized via configuration [15].

A selection policy may use a superpeer to assist in the
download. The tracker directs the superpeer to fetch the chunk
from an external source, and it directs the requesting peer
to get the chunk from the superpeer. This creates a 2-edge
distribution tree. Usually, the tracker will have the superpeer
cache the chunk so other peers can fetch the same chunk
without reading from external storage; this is especially useful
when many chunk requests arrive within a short time window.

The location-aware policy is the default selection policy.
This policy selects the nearest peer that caches or is download-
ing the chunk, subject to per-peer constraints on maximum
fanout and bandwidth usage. Distance is determined by net-
work topology; peers on the same host are preferred over peers
in the same rack, which are, in turn, preferred over peers in
the same network cluster, etc. To make location-aware selec-
tions quickly, the tracker maintains a topological sort over all
peers caching or downloading a chunk. A selection policy
also specifies the number and type of retries. By default, the
location-aware policy tries up to 5 peers, then tries to fetch the
chunk via a superpeer, then tries to fetch the chunk directly
from a source before giving up. The policy also has unique
handling for specific errors, such as external source throttling.

Another common policy is the hot-cold policy, which re-
fines the location-aware policy by using superpeers for hot
data. If no peer can provide a chunk from its cache, this pol-
icy reads data from an external source via superpeers if the
chunk is hot or directly from the source if the chunk is cold.
Hotness is determined by examining the number of chunk
reads within a recent time window. The policy improves hit
rate in superpeer caches for buckets that have a mix of hot
and cold content.

Other policies implement load balancing; e.g., spreading

6 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



1 Decision selectSourceForData(

2 const ChunkMetadata& MD,

3 std :: shared_ptr <PeerMetadata> requester ,

4 const ChunkStatus& stat ,

5 const ShardedChunksMap& shardedChunks ,

6 const DownloadContext& context) override {
7

8

if (hasDirectFetchFailed(stat)) {

9 return Decision {GIVE_UP, nullptr};

10 }

11

12 if (cannotFindSuperpeer() Il

13 noMoreSuperpeerAttempts (stat) |l

14 noMoreAttempts(stat)) {

15 return Decision {DIRECT_FETCH, nullptr };
16 }

17

18 if (noMorePeerAttempts(stat)) {

19 return Decision {SUPERPEER_FETCH, nullptr };
20 }

21

22 peer = selectPeer (MD, requester , stat, context);
23 if (peer) {

24 return Decision {PEER_FETCH, peer};

25 }

26

27 delegation = findDelegation (shardedChunks);
28 if (delegation) {

29 return Decision {DELEGATED_FETCH, delegation)};
30 }

31

32 return Decision {SUPERPEER FETCH, nullptr };
33}

Figure 2: Pseudocode: Location-Aware Selection Policy

downloads from sources evenly. Still others always fetch via
superpeers, select random peers, and direct whether and how
chunks should be fetched from out-of-region peers.

To illustrate how policies are written, Figure 2 shows pseu-
docode for Owl!’s location-aware selection policy. Each policy
is implemented by overriding a C++ base class; in this case
we show the selectSourceForData method, which is used
to determine how and from where a peer should fetch data
on each chunk download attempt. The method’s inputs are:
chunk metadata that includes a topologically sorted index of
all peers and superpeers caching the chunk, metadata describ-
ing the peer requesting the data that incudes its location info,
a status object containing all prior attempts to fetch the chunk
for this download and their results, a list of other trackers that
have the chunk available for delegation, and bucket-specific
context about the chunk.

Policy implementations are usually a series of simple rules.
The location-aware policy first calls a helper function (line
22) to select the nearest peer or superpeer caching or down-
loading the chunk, as long as such a peer is healthy (no recent
failures reported) and would not exceed limits on number
of downloads, network bandwidth, etc. The helper function
considers past attempts and only tries each source once.

If the tracker has no more locally-managed peers or super-
peers caching the chunk, it tries to find a delegation for the
chunk from a peer tracker (line 27). If this fails, the policy
asks a superpeer to fetch the chunk from an external source,

cache it, and provide it to the requester (line 32).

The policy has configurable limits on the number of peer
and superpeer attempts. If there are no more peer attempts
allowed, the next retry asks a superpeer to fetch the chunk
from an external source (lines 18—19). If there are no more
superpeer attempts left or the policy has attempted to find a
free superpeer and failed, the peer is asked to fetch the data
from the external source directly (lines 12—15). If this direct
fetch fails, the policy gives up (lines 8-9).

2.7 Caching policies

Per-bucket caching polices determine how peers cache data.
Peers may cache data in memory or on disk, with some buck-
ets using both types of cache. Cache size is configurable; the
default memory cache size is 1 GB but size varies widely
across buckets, depending on memory constraints and desired
cache hit rates.

Some buckets use a shared peer cache, in which a single
copy of data is shared read-only between the client application
and Owl distribution. For in-memory caching, Owl returns
a reference-counted buffer from read_blob. The buffer re-
mains in the cache until the client releases the reference. For
example, one memory-constrained client type reads Al mod-
els using a shared cache. While the client has no memory to
spare, it retains data read for several seconds while it trans-
forms the model chunk into a different format. By sharing
the buffer with the client, Owl can satisfy many peer-to-peer
download requests during this time. This sharing is essentially
free because the data would reside in memory for the trans-
formation anyway. This particular bucket needed a good hit
rate to avoid overloading its external storage. Shared caching
got us most of the way there, and we used superpeer cache
capacity to further improve the hit rate to meet the bucket’s
requirement.

Buckets with disk caching often use shared caching. Down-
loaded objects are written to files with Owl retaining an open
file handle so that it can serve cached file content to peers.
The client controls when files are garbage collected by call-
ing evict_file in Table 1. Owl also provides an interface
that watches downloaded files and calls evict_file on the
client’s behalf if the file is deleted. In lieu of controlling evic-
tion explicitly, some clients provide a 7TL (time-to-live) that
specifies how long downloaded data should be cached before
eviction.

For private (non-shared) caching, Owl trackers manage
peer caches. On each get Source request, the caching policy
determines whether the peer should cache the requested chunk
and which chunks to evict to make room in the cache. Peers
specify their current cache state when registering with a new
tracker so management persists across tracker failures.

The default caching policy is LRU (least recently used).
Another popular policy, used for shared caching, never evicts
chunks because the eviction is done explicitly by each peer.

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 7



Many clients that need good peer-to-peer cache hit rates use a
least rare policy that prefers to evict chunks cached on more
peers over chunks cached on fewer peers. A hybrid policy
uses least-rare eviction for hot chunks and LRU eviction for
cold chunks. Owl also supports random chunk eviction, which
often has good properties for hot data [18].

2.8 Tracker sharding

For the first year of operation, Owl used a single tracker per
region, with hot spares providing primary-backup fault toler-
ance. The simplicity of a single tracker allowed us to start serv-
ing production traffic 3 months after the start of the project.
However, we knew that our workload would eventually exceed
the capacity of a single tracker. Thus, we added the capability
to shard peers across multiple trackers.

With sharding, trackers have equivalent responsibilities. A
sharded tracker maintains the complete peer state for a given
set of peers, but per-chunk and per-download state is split
across the shards. Peers and superpeers register with random
trackers.

Sharded trackers periodically exchange the set of chunks
cached by at least one peer or superpeer that they manage.
Trackers normally send incremental updates once a second
with additions to and removals from this set. However, a re-
ceiving tracker may request a full snapshot when needed; e.g.,
because it just restarted or it missed an incremental update.
Thus, each tracker has a coarse-grained and slightly stale view
of the global distribution state that maps chunks to trackers
rather than to specific peers.

Selection policies can decide to fetch a chunk from another
sharded tracker; typically, this happens when the chunk is not
cached on any peer managed by the local tracker and another
tracker has reported that it has the chunk. The tracker running
the selection policy sends a delegation request to the other
tracker. In turn, that tracker selects and returns a peer caching
or downloading the chunk. The delegation request fails if no
such peer exists.

On successful delegation, each tracker updates state for the
peer it manages. The getSource response simply specifies
the endpoint of the delegated peer, so peers are oblivious to
delegation. When the downloading peer reports success or
failure, its tracker forwards the report to the delegating tracker
and both trackers update their individual state accordingly.

On receiving a successful delegation response, a tracker
starts a new ephemeral distribution tree. The root of a tree is
a delegated peer, which indicates that the peer is managed
by another tracker. The tracker grows the tree as other peers
request the chunk, since selection policies commonly prefer
to fetch from a locally-managed peer over a delegated one.

The ephemeral distribution tree for a chunk is now parti-
tioned across multiple trackers with a node in the tree of one
tracker serving as the root of a subtree in another tracker. In
order to prevent cycles in this partitioned tree, a tracker will

External
Storage

Delegation _: -

LT

Figure 3: Delegation with 2 sharded trackers. Peer E fetches
a chunk from a peer managed by another tracker to reduce
load on external storage.

not provide any peer in a tree rooted at a delegated peer in
response to a delegation request.

Figure 3 shows an ephemeral distribution tree sharded be-
tween 2 trackers. Tracker 2 initially receives a getSource
request from peer A and instructs peer A to read the chunk
from external storage. At this point, tracker 2 starts advertising
that it has the chunk to other sharded trackers. Next, tracker 1
receives a get Source request from peer E. It does not have
the chunk on any of its peers, but it knows that tracker 2 has
advertised the chunk. Tracker 1 sends a delegation request to
tracker 2, which selects and returns peer A. Tracker 1 tells
peer E to fetch the chunk from peer A. When tracker 1 re-
ceives subsequent get Source requests from peers F and G,
the bucket’s selection policy prefers locally-managed peers,
and so these peers are directed to fetch from peer E. As this ex-
ample shows, delegation improves cache hit rate for sharded
trackers. Without delegation, both peers A and E would fetch
from external storage. With delegation, there is only a single
fetch by peer A, which achieves the same overall cache hit
rate that would have been achieved without sharding.

Some data sources accessed by Owl are regional. In these
cases, when an out-of-region peer requests a chunk that is not
cached by another peer, selection policies use delegation to
ask an in-region tracker to have one of its superpeers read the
chunk. The requesting peer is directed to that superpeer for
the data. Selection policies consider cross-region latency to
find the closest location from which to read data.
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2.9 Security and integrity

All communication between Owl components in encrypted,
and all RPCs are checked against access control lists. Many
data sources read by Owl encrypt data at rest, so chunks in
Owl caches are often encrypted. Owl clients can provide de-
cryption functions to read decrypted data. For shared caching,
Owl must cache and share unencrypted data with clients (be-
cause that is how they consume the data). In this case, Owl
decrypts each chunk when writing it to the cache and re-
encrypts it to share it with another peer.

Owl generates an internal checksum when reading chunks
from external sources, passes the checksum with the chunk
data, and validates chunks with the checksum before returning
them to clients. Many Owl clients generate end-to-end hashes
when writing to external storage. These clients can optionally
provide Owl an integrity checker class containing these hashes
and the hash calculation function to validate that the data
being read is the same as what they originally wrote. Owl
calls the integrity checker as data is being written to a disk or
a memory buffer. It fails the download if the integrity checker
reports that the calculated hash does not match the write hash.

2.10 Virtual superpeers

One of our original design principles for Owl was that peers
should not fetch content that their clients do not read. This
led to high network efficiency and made it easier to convince
users to adopt Owl since their clients would not be doing work
for other services.

However, one recent bucket demonstrated a drawback with
this approach. For this bucket, reducing load on external stor-
age is crucial; if data is read too fast, the external storage
system throttles readers and performance degrades rapidly.
Periodically, a new search index is generated and distributed,
which each client then reads at a random time over the next
few hours. The first client reads the index directly from ex-
ternal storage, but its memory cache fits only a few chunks.
The next client reads those chunks from the first client, and
it reads the remainder of the index from external storage. As
more clients download the index, their collective caches are
eventually sufficient to hold all the data (especially since we
use the least-rare caching policy to maximize hit rate for the
bucket). However the clients together read many extra chunks
from external storage until the index is fully cached, and this
causes the external storage system to throttle readers.

To solve this problem, we added a new Owl abstraction
called a virtual superpeer. If a bucket is configured with a
virtual superpeer, the tracker divides each peer’s cache into
a normal portion and a portion reserved for the virtual super-
peer. The tracker aggregates the virtual superpeer portions
and manages the collection in the same way that it would
manage a superpeer dedicated solely to the bucket. When the
first client reads the index, the bucket selection policy routes

the ephemeral distribution tree for each chunk through the
virtual superpeer. The tracker uses the per-bucket policy to
select one peer to fetch the chunk from external storage and
cache it; the tracker also selects chunks to evict from the vir-
tual superpeer portion of that peer’s cache, if necessary. The
requesting peer streams each chunk from the peer that fetched
it from the external source. After the index is loaded by one
peer, the next peer to fetch the index finds all chunks in the
virtual superpeer cache. Thus, Owl makes no additional reads
to external storage, and it achieves a high cache hit rate.

The benefit of virtual superpeers over non-virtual (physi-
cal) superpeers is that virtual superpeers use spare memory
capacity on peers rather than dedicated machines. The bucket
described in this section would require approximately 640
physical superpeers to achieve the same cache hit rate as Owl
achieves with virtual superpeers. Another bucket that we are
currently onboarding would require approximately 10,000
physical superpeers; we are avoiding this cost by leveraging
spare peer memory via virtual superpeers.

Virtual superpeers are a tracker-only concept; peers are
unaware of the abstraction because they simply follow tracker
instructions for where to fetch data and which chunks to cache.
Further, the abstraction is implemented almost entirely via
Owl selection and caching policies (we added a few hun-
dred lines of tracker code to implement cache partitioning
and eliminate double-buffering). Overall, virtual superpeers
demonstrate the flexibility of Owl policies: we were able to
implement a substantial change not envisioned in the original
Owl1 design primarily by writing new policies.

2.11 Ephemeral data sources

Owl was originally designed to download content from ex-
ternal storage. However, several clients wanted to use Owl
to distribute content produced by instances of their service
directly to other instances, bypassing storage entirely. For Al
models and search indexes that have diminishing value over
time, durable storage provides little benefit. Yet, the resources
used to read and write large data objects to distributed storage
can be significant. We modified Owl to support these use
cases by adding ephemeral data sources.

An ephemeral data source is simply a peer that promises
to supply specific content when requested. The client calls
provide_file in Table I to specify a file containing content
for a given unique identifier. In turn, the peer tells the tracker
that this content is now in its cache. When other peers re-
quests chunks from this content, the tracker builds ephemeral
distribution trees rooted at the providing peer to distribute the
chunks. The tracker also advertises and provided content to
other sharded trackers, which makes the content available via
delegation.

Owl guarantees that the data will be provided only as long
as an ephemeral data source provides the data. It caches
ephemeral content on peers and superpeers as normal, and
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it falls back to the peer(s) providing the data as a last resort.
Ephemeral data sources must re-register with a new tracker
if their connection with the current tracker fails; they send
heartbeats every second to their trackers to proactively detect
failures and re-register quickly. A client may stop providing
content by calling evict_file.

2.12 Fault tolerance

Tracker sharding allows Owl to tolerate tracker faults. When
a peer detects that its tracker has failed, it re-registers to use a
new tracker. Trackers have only soft state, and a new tracker
learns a peer’s existing cache state as part of registration.
We regularly test failover by continuously deploying tracker
code each workday, during which trackers are sequentially
killed and restarted. We occasionally experiment by killing
and restarting all sharded trackers simultaneously to ensure
that performance does not drop below SLA bounds when all
trackers restart. This has proved enlightening; e.g., we added
peer re-registration when we noticed that SLA bounds had
been violated during one such trial.

The RPC routing layer at Meta (not part of Owl) load
balances requests among sharded trackers at the granularity
of each new chunk download. However, peer associations
with trackers are typically long-lived, as rebalancing does not
need to be done often in steady state. In contrast, Owl load
balances superpeers among trackers itself because the number
of superpeers per tracker is small and we want to maintain a
tighter balance than the RPC router layer provides.

Trackers detect peer failures when a peer reports that it can-
not reach a peer from which it is trying to get data. Peers are
marked down (and not used to serve further requests) after a
configurable number of consecutive failures. Peers are marked
up again when they re-register with a tracker. The Owl library
explicitly deregisters on shutdown, but many peers don’t shut
down cleanly, in which case there is no deregistration.

Generally, we do not allow peers to fail over and use track-
ers outside their region. Experiences with other systems left
us concerned about cascading failures in which a failure in
one region causes out-of-region requests to overload services
in other regions. We use a separate set of global trackers for
buckets that require peers to contact out-of-region trackers.

2.13 Emulation and customization

Over time, Owl has become more customizable as we have
added new policies and enabled different behavior via con-
figuration within each policy. This flexibility often makes it
difficult to determine the best set of policies for each bucket.

The Owl team writes all policies and helps Owl users pick
the best policy for their needs. If the team identifies a specific
need not covered by an existing policy, we write a new policy;
the development of the virtual superpeer policy, described in
Section 2.10, is a good example of this process.

Choosing the best policy is difficult. Many engineers who
wish to use Owl do not understand their service traffic patterns
well. In some cases, it is not clear whether their workload
would benefit from peer-to-peer distribution. In other cases, it
is difficult to choose the best set of policies or explain specific
configuration tradeoffs; e.g., how much additional cache hit
rate can the bucket expect for each additional gigabyte of
peer memory used? For existing users of Owl, traffic patterns
and distribution goals change over time (e.g., a service can
spare less memory or require better cache hit rate to reduce
external storage load). Thus, initial policy choices often need
to be tuned to keep pace with client changes. As the number
of buckets using Owl grew, it became infeasible for the Owl
team to manually choose and tune policies for each unique
workload.

Owl uses offline, trace-driven emulation to guide policy
choices. On a per-bucket basis, Owl can be configured to
log basic information about each client request to a database;
e.g., the timestamp of the request, the object, and data range
read. When we onboard a new bucket that reads data from an
external source, we first use an evaluation mode policy that
always instructs the peer to fetch from the external source and
not cache data. The peer thus performs the same actions it
would perform without Owl except that each request is routed
through a tracker for logging. For existing buckets, logging is
always enabled.

An Owl emulator runs our actual tracker service with mock
peers and superpeers that generate traffic and service requests.
The emulator is event-driven and uses a virtual clock to de-
termine when events occur. Mock peers register, deregister,
and generate requests at the times recorded in the production
traces. The emulator adds configurable network and storage
delays, and can simulate different error profiles. Because we
run the actual tracker code, we can emulate any Owl policy
or configuration. The emulator reports key statistics such as
overall cache hit rate, load on external storage, and tracker
CPU usage.

To find the best policy, we compare statistics from multiple
emulation runs with the same trace and different policy/con-
figuration settings. As the setting space is quite large, we use
random-restart hill climbing [10] to search for the best choice
for each bucket. Currently, we run the emulator weekly on
existing Owl buckets, and we use the emulator to evaluate all
new buckets during onboarding.

3 Evaluation
Our evaluation answers the following questions:

1. How well does Owl provide hot content distribution in
production?

2. How does Owl compare to other centralized and decen-
tralized distribution solutions?
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Figure 4: Owl traffic over a 24 hour period. The top line
shows total bytes downloaded by all clients averaged every
minute. The bottom line shows the total bytes read from
external storage. The difference between the two lines is the
reduction in external storage load due to Owl peer-to-peer
caching and distribution.

3. How much benefit does Owl realize from delegation?
4. What are the benefits of flexible distribution policies?

5. How well does Owl scale and how many peer resources
does it require?

3.1 Reducing load on external storage

Figure 4 shows a recent (and typical) 24 hours of Owl produc-
tion traffic, aggregated by minute. The top line is the amount
of data read by clients; this is the load they would impose
on external storage without Owl. The bottom line shows the
load on external storage with Owl. During the 24 hours, Owl
clients read 717 PB of data, yet only 36.5 PB was read from
external storage, for a cache hit rate of 94.9%.

The cumulative read rate across all Owl clients varies from
a minimum of 6.84 TB/s to a maximum of 14.75 TB/s. Fig-
ure 4 shows that peer-to-peer distribution and caching hides
the client load spikes almost entirely from external storage;
in fact, the load on external storage never exceeds 0.72 TB/s.

A CDN or hierarchical caching could also reduce the load
on external storage, as in a recently reported study of Cache-
Lib [3]. In that study, each caching node could sustain a max-
imum data rate of approximately 640 MB/s. Thus, even as-
suming perfect load distribution, it would require over 23,000
caching nodes to handle Owl’s peak client request rate for the
reported period, which is more that 200 times the number of
current Owl trackers (112).

Figure 5 shows the scalability benefit of Owl’s decentral-
ized data plane by comparing the relative growth in production
traffic and servers (trackers and superpeers) in 2021. While
Owl’s peak traffic is almost 200 times greater than traffic at
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Figure 5: 2021 growth in traffic and server usage. The top
line shows Owl’s daily 2021 traffic load relative to the load at
the beginning of the year, and the bottom line shows the num-
ber of servers (trackers and superpeers) used in production
relative to the number used at the beginning of the year.

the beginning of the year, server usage has grown by less than
a factor of 4.

When Owl replaced hierarchical caching solutions at Meta,
we also saw latency speedups from 50% to 100% for several
large buckets due to better network locality and elimination
of throttling errors.

3.2 Benefits of delegation

Figure 6 shows the number of successful and failed delegation
requests for all Owl trackers over the same 24 hour period.
97.5% of delegation requests are successful; they return a
peer that provides the requested content. The primary reason
why delegation requests fail is because a sharded tracker’s
list of cached objects is stale. The low rate of delegation
failure indicates that a 1 second update interval is sufficient
for the majority of our workloads. We verified this by reducing
the delegation interval to 250 ms in one region for 24 hours.
Owl’s largest bucket saw only a 1% improvement in cache
miss rate, and overall cache miss rate did not improve within
experimental error.

Delegation provides 10.1% of the total data read by Owl
in the 24 hour period. In other words, without delegation,
the Owl cache hit rate would decrease from 94.9% to 85.4%
(increasing the miss rate by nearly a factor of 3). Delegation is
thus an essential factor in providing good download efficiency
with sharded trackers.

3.3 Comparison with prior systems

We next compare Owl with the two peer-to-peer distribution
systems it replaced at Meta. The first such system was a
location-aware implementation of BitTorrent. We configured
roughly half the hosts in one region to download binaries
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Figure 6: Delegation success rate over a 24 hour period.
The top line shows the number of successful delegation re-
quests, and the bottom line shows the number of unsuccessful
delegation requests.

for provisioning via Owl; the remaining half used BitTor-
rent. Both systems had identically-sized disk caches. During
a 24 hour experiment, these hosts downloaded 17.6 million
binaries with a median size of approximately 300 MB. Ta-
ble 2 compares results for the two systems. Owl is signif-
icantly faster than BitTorrent, almost doubling the median
per-client download throughput and more than quintupling
the p95 throughput. Because the client writes downloaded
binaries to local storage, the maximum throughput of Owl
was often capped by the available write bandwidth of local
media on each host; in contrast, BitTorrent rarely reached
the storage bandwidth limit. Additionally, Owl reduces the
load on external storage by 42% due to its higher cache hit
rate (99.21% for Owl and 98.64% for BitTorrent). Both Owl
and BitTorrent provided 4 9’s of availability. BitTorrent had
slightly higher availability due to allowing more retries with
additional backoffs; we later adjusted OwI’s retry policies for
this bucket to more closely match BitTorrent’s policy.

The second prior download system at Meta, StaticTree,
used a relatively-static distribution tree constructed via consis-
tent hashing. Each chunk has one primary cacher that fetches
the chunk from storage and caches it. The primary cacher is
determined by hashing the unique chunk id and selecting a
host from a membership list stored in Zookeeper [9]. Each
tree level corresponds to a location type (e.g., region, data
center, rack, etc.) with the node at each level and location
responsible for a chunk again selected via consistent hashing.
Secondary nodes at each level provide fault tolerance.

Table 3 compares important download metrics for Owl and
StaticTree. Experiments ran for 1-7 days and consisted of
millions of production requests to both systems. Both sys-
tems use identically-sized memory caches. Owl provides 4
9’s of availability in 3 of the 5 experiments and 3 9’s in the re-
maining experiment. StaticTree provides substantially lower
availability because of the time needed to detect and route

around failed nodes in the tree, as well as the need to remove
failed nodes from the membership list in Zookeeper. In con-
trast, with Owl, ephemeral distribution trees let trackers avoid
using a peer immediately for new chunk downloads as soon
as that peer is suspected of being unhealthy or slow.

Compared to StaticTree, Owl improves pS0 download la-
tency by an average of 55% and p99 latency by 32% across the
five experiments. While Owl’s latency improvement comes
partially from better failure handling, the improved latency
also results from the tracker dynamically picking the best
data source for a chunk on each getSource request. Trackers
improve latency by considering load on peers and network
locality based on detailed peer and chunk state.

Improving per-chunk download latency often translates
into even greater improvements for application-level metrics.
Table 4 compares the average time to load six different types
of Al models in production via Owl and StaticTree. Owl
speeds up model loading time from 1.44x to 3.48x, for an
average speedup of 2.92.

Cache hit rates are roughly equivalent for the two systems
(StaticTree provides better cache hit rate in 3 out of 5 experi-
ments, but Owl’s cache hit rate improvement in Bucket D is
by far the most substantial). We also examined network local-
ity for peer-to-peer data transfers between the two systems;
we found locality to be roughly the same as both systems
optimize for this metric.

3.4 Optimization results

Owl currently has 106 buckets that use 55 distinct policies
and configurations. We use the Owl emulator to regularly
search for potential policy improvements. Table 5 shows the
optimizations that we found in the previous month. We report
savings in either peak or total storage usage over 24 hours that
we achieved by modifying bucket policies in production. All
of these buckets were seeing throttling from external storage
at the time, so reducing storage usage was an important goal.

For the first two buckets, emulation lets us inform bucket
owners how much improvement in cache hit rate they could
expect from allocating more peer memory to Owl caching.
Because these clients had memory to spare, we were able to
achieve a substantial reduction in peak load. For the remaining
three buckets, we achieved better cache hit rate without the
need for any additional peer resources simply by changing
the policies used by the tracker to manage each bucket.

3.5 Overheads

We measured Owl overhead on peers by profiling one thou-
sand hosts during production usage. Owl’s CPU overhead is
only 0.05% on 26-core Intel Cooper Lake processors. Owl
allocates memory for data caches and for network buffers;
both uses of memory are configurable and controlled by the
per-bucket policy depending on the client’s tradeoff between
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Auvailability | Cache hit rate | Per-host throughput (MB/s) | Latency (s)

pS0 P95 pS0 | p99

Owl 99.994% 99.21% 130.1 20.17 2 132
BitTorrent | 99.996% 98.64% 66.9 3.89 4 255

Table 2: Comparing download metrics for Owl and BitTorrent. Both systems are used side-by-side to download binaries in
one region for 24 hours. We compare the percentage of successful downloads (availability), the reduction in load on external
storage (cache hit rate), the median and 95th percentile throughput (download rate), and the median and 99th percentile download

latency for five different buckets.

Bucket | Experiment | Downloaded System Availability | Cache Latency (s)
duration bytes hitrate | Average | p99
A 7 days 14PB Owl 99.99% 85% 46.7 479
StaticTree 99.60% 86% 72.2 78.2
B 1 day 30PB Owl 99.99% 99.34% 48.8 107.5
StaticTree 99.91% 99.50% | 51.48 122.8
C 1 day 1PB Owl 99.99% 69.47% 1147 | 507.9
StaticTree 99.99% 72.52% 180.5 630.8
D 7 days 22PB Owl 99.91% 92.70% 44.8 119.0
StaticTree 99.83% 81.87% 99.8 128.4
E 7 days 50PB Owl 99.96% 99.63% 8.5 69.1
StaticTree 99.95% 99.47% 13.3 112.1

Table 3: Comparing download metrics for Owl and StaticTree. Both systems are used side-by-side in production. We compare
the percentage of successful downloads (availability), the reduction in load on external storage (cache hit rate), and the median

and 99th percentile download latency for four different buckets.

Model | Loading Latency (sec.) | Speedup
Oowl StaticTree
A 31 97 3.13
B 138 199 1.44
C 78 264 3.38
D 75 261 3.48
E 82 282 3.44
F 137 465 3.39

Table 4: Latency improvement in AI model loading Each
row compares the average loading time using StaticTree with
the average loading time using Owl for a different bucket.

performance and resource usage. Outside of these two uses,
Owl uses less than 0.01% of RSS (resident set size) memory
on hosts with 64 GB memory. For comparison, StaticTree
uses 0.15% CPU and 0.03% memory for roughly the same
workload, which is 3x the resources used by Owl.

To verify scalability, we ran a load test with Owl trackers
running on hosts with 64 GB memory, a 26-core Intel Cooper
Lake processor, and a 25 Gb/s NIC. Our load tests showed
that each such Owl tracker can support 2.4 TB/s client traffic
when the Owl cache hit rate is 99%, or 1.5 TB/s client traffic
when the Owl cache hit rate is 70%. The trackers are CPU-
bound at these traffic levels. As an additional confirmation of
being CPU-bound, over 30 days of operation, tracker memory

(RSS) stayed at 11% or less on 64 GB hosts, while CPU
usage spiked up to a maximum of 37%. In practice, Owl
uses many more trackers than these numbers would indicate
to provide redundancy for failures, regional failure isolation,
and performance isolation among critical buckets.

4 Related work

BitTorrent is the most widely-recognized solution for peer-
to-peer data distribution. Classic BitTorrent [7] is highly-
decentralized; the trackers simply help peers find each other.
Trackers originally returned a random list of peers containing
desired data, but later BitTorrent implementations introduced
refinements. For instance, the BitTorrent version at Meta sorts
peers by location before returning the list. Many recent BitTor-
rent versions replace trackers with a decentralized distributed
hash table [14] for so-called trackerless torrent.

Recently, peer-to-peer distribution has been used to pro-
vision containers and virtual machines in public and pri-
vate clouds. Some implementations have used BitTorrent
directly [5]. Uber’s Kraken [1] uses a BitTorrent-like archi-
tecture to provision containers. Kraken uses trackers that re-
turned an ordered list of candidate peers for downloading data,
and it uses dedicated seeders to read from external storage.
Alibaba’s Dragonfly [2] also provides peer-to-peer container
provisioning. Dragonfly’s SuperNodes combine tracker and
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Bucket Metric Before After Optimization
A Peak storage usage | 124 GB/s | 54 GB/s | Increase peer cache size from 0.2 GB to 4 GB
B Peak storage usage | 63 GB/s | 27 GB/s | Increase peer cache size from 0.2 GB to 4 GB
C Peak storage usage | 95 GB/s | 18 GB/s | Change selection policy from location-aware to hot-cold
D Daily storage usage 1.7 PB 1.3 PB | Change eviction policy from LRU to least-rare
E Daily storage usage | 11.7 PB | 10.7 PB | Change eviction policy from LRU to least-rare

Table 5: Savings from continuous offline analysis. 5 production buckets were optimized in a 1 month period baed on offline
analysis results. The table shows the key metric being optimized and the value of the metric before and after optimization.

seeder functionality.

FaaSNet [17], also from Alibaba, takes an even more de-
centralized approach for distributing serverless containers,
foregoing the use of all centralized nodes and instead utilizing
a tree-based network overlay. Dadi [13] and VMThunder [19]
also use a tree overlay to distribute container/VM images
among peers, with cache misses serviced by nodes higher
in the tree. These approaches are similar to Meta’s Static-
Tree, except that StaticTree constructs locality-aware trees
that minimize the network distance between sibling nodes.

Classically, many tree- and mesh-based networks have
been proposed for high-bandwidth data distribution to many
hosts [4,6,11,12]. While Owl] uses a forest of distribution trees,
these trees are per-data-chunk and ephemeral, with edges per-
sisting only for the time needed for a peer to download a single
chunk of data. The trees in prior works are longer-lasting and
used for more than just a single data chunk.

In contrast to all of these prior distribution systems, Owl’s
control plane is significantly more centralized. Owl trackers
make explicit decisions on behalf of peers about what data
to cache and evict, where to download each chunk from, and
how to retry failed downloads. Owl trackers consequently
have a much more complete view of download and peer state,
which allows for making more optimal, global decisions. Cen-
tralization also improves ease-of-management. The classic
argument against centralizing the distribution control plane
has been a projected scalability bottleneck; Owl refutes this ar-
gument by demonstrating that careful design can scale even a
highly-centralized control plane to support millions of clients
and hundreds of petabytes of data distributed per day. Addi-
tionally, Owl demonstrates more flexibility than prior systems
through its customized policies; container provisioning is
currently just a small portion of Owl’s total workload.

The control plane and data plane taxonomy used in this pa-
per comes from software defined networking (SDN). Recently,
Google’s Orion [8] demonstrated the benefits of centralizing
the SDN control plane. Distribution and SDNs both provide
routing and store-and-forward-style caching. Yet, Owl tracks
each individual chunk of data at a level of detail that is in-
feasible for network packets. This is possible because Owl
operates on much larger units of data.

5 Conclusion

Owl distributes over 800 PB of hot content per day to millions
of peers at Meta. Owl combines a decentralized peer-to-peer
data plane with a highly-centralized control plane in which
trackers make detailed decisions for peers such as for where
to fetch each chunk of data, how to retry failed fetches, and
which chunks to cache in peer memory and storage. Owl
is highly-customizable through tracker policies that allow a
unique configuration for each type of client.
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