
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Metastable Failures in the Wild
Lexiang Huang, The Pennsylvania State University and Twitter; Matthew Magnusson

and Abishek Bangalore Muralikrishna, University of New Hampshire;
Salman Estyak, The Pennsylvania State University; Rebecca Isaacs, Twitter;

Abutalib Aghayev and Timothy Zhu, The Pennsylvania State University;
Aleksey Charapko, University of New Hampshire

https://www.usenix.org/conference/osdi22/presentation/huang-lexiang

Metastable Failures in the Wild
Lexiang Huang1,3*, Matthew Magnusson2*, Abishek Bangalore Muralikrishna2, Salman Estyak1,

Rebecca Isaacs3, Abutalib Aghayev1, Timothy Zhu1, and Aleksey Charapko2

1The Pennsylvania State University, 2University of New Hampshire, 3Twitter

Abstract
Recently, Bronson et al. [7] introduced a framework for un-
derstanding a class of failures in distributed systems called
metastable failures. The examples of metastable failures pre-
sented in that work are simplified versions of failures observed
at Facebook. In this work, we study the prevalence of such fail-
ures in the wild by scouring over publicly available incident
reports from many organizations, ranging from hyperscalers
to small companies.

Our main findings are threefold. First, metastable failures
are universally observed—we present an in-depth study of 22
metastable failures from 11 different organizations. Second,
metastable failures are a recurring pattern in many severe
outages—e.g., at least 4 out of 15 major outages in the last
decade at Amazon Web Services were caused by metastable
failures. Third, we extend the model by Bronson et al. to
better reflect the metastable failures seen in the wild by cate-
gorizing two types of triggers and two types of amplification
mechanisms, which we confirm through developing multi-
ple example applications that reproduce different types of
metastable failures in a controlled environment. We believe
our work will aid in a deeper understanding of metastable
failures and in coming up with solutions to them.

1 Introduction
Building reliable distributed systems has been the holy grail

of distributed computing research. Historically, academic re-
searchers studied the reliability of distributed systems under
the assumptions of fail-stop [31, 42, 46] and Byzantine [8, 32]
failure modes. The proliferation of cloud services led to
previously unseen scales and the discovery of new failure
modes, such as stragglers [9, 12, 62], fail-slow hardware fail-
ures [3,27,29], and scalability failures [34,53]. Most recently,
Bronson et al. [7] introduced a new class of failures called
metastable failures.

Bronson et al. define the metastable failure state as the
state of a permanent overload with an ultra-low goodput
(throughput of useful work). In their framework, they also
define the stable state as the state when a system experiences
a low enough load than it can successfully recover from tem-
porary overloads, and the vulnerable state as the state when a
system experiences a high load, but it can successfully handle
that load in the absence of temporary overloads. A system ex-
periences a metastable failure when it is in a vulnerable state
and a trigger causes a temporary overload that sets off a sus-
taining effect—a work amplification due to a common-case

*Equal contribution.

optimization—that tips the system into a metastable failure
state. The distinguishing characteristic of a metastable failure
is that the sustaining effect keeps the system in the metastable
failure state even after the trigger is removed.

This phenomenon of metastable failure is not new. How-
ever, instances of such failures look so dissimilar that it is
hard to spot the commonality. As a result, distributed systems
practitioners have given different names to different instances
of metastable failures, such as persistent congestion [51], over-
load [60], cascading failures [5], retry storms [2, 56], death
spirals [37], among others. Bronson et al. [7] is the first work
that generalizes all of these different-looking failures under
the same framework.

A key property of metastable failures is that their root cause
is not a specific hardware failure or a software bug. It is an
emergent behavior of a system, and it naturally arises from
the optimizations for the common case that lead to sustained
work amplification. As such, metastable failures are hard to
predict, may potentially have catastrophic effects, and incur
significant ongoing human engineering costs because auto-
mated recovery is difficult (since these failures are not under-
stood well). For example, in Section 6.3, we discuss how code
and configuration changes without truly understanding the
metastable failure can exacerbate the problem and lead to fu-
ture incidents. Incidentally, at the time of writing this paper, a
metastable failure at Amazon Web Services (AWS) disrupted
the operation of airlines [38], home appliances [30], smart
homes, payment systems [52], and other critical services for
several hours.

As Bronson et al. point out, operators choose to run their
systems in the vulnerable state all the time because it is much
more efficient than running them in the stable state. As a
simple example, an operator of a system with a database that
can handle 300 requests per second (RPS) can install a cache
with a 90% hit-rate and start serving up to 3,000 RPS. While
more efficient, the system is now operating in a vulnerable
state because a cache failure can overwhelm the database
with more requests that it can handle. The problem is that in
a complex, large-scale distributed system, we lack the ability
to analyze the consequences of this decision to run in a vul-
nerable state under different conditions; e.g., what happens
if load increases, or if the downstream latency increases, or
if messages increase in size and serialization/deserialization
starts to cost more CPU? So picking “how vulnerable” of a
state to operate in, under normal conditions, is a best guess
and not always the right choice, which is why we continue to
experience metastable failures.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 73

In this paper, we make four contributions that extend the
work of Bronson et al. and increase our understanding of
metastable failures:
• A study of metastable failures in the wild that confirms

metastable failures are universally observed and comprise a
substantial fraction of the most severe outages (Section 2).

• An improved model that categorizes two types of triggers
and two types of amplification mechanisms, which better
explains how metastable failures happen (Section 3).

• An insider view at Twitter of a new type of metastable
failure where garbage collection acts as an amplification
mechanism (Section 4).

• Three example applications on which metastable failures
are experimentally reproduced, which helps researchers
propose and test solutions to metastable failures (Section 5).
We have open-sourced these examples at https://github.com/
lexiangh/Metastability.
We hope our work will encourage more research into this

devastating kind of failure and help in building more robust
distributed systems, as our daily lives start to increasingly
depend on them [20, 30, 38, 52].

2 Metastability in the Wild
Bronson et al. [7] used simplified examples to illustrate the

mechanism of metastability and only asserted that the pattern
was common, but did not present any data about real-world
occurrences. Thus, we perform a large-scale study of actual
metastable failures in the wild by sifting through hundreds
of publicly available incident reports. It is an arduous task
that requires an in-depth analysis of each incident report to
understand if the failure is metastable, and the lack of details
in the reports makes it even more challenging. We identify 21
metastable failures (Table 1) that are severe enough to warrant
public incident reports in a range of organizations, including
four at AWS, four at Google Cloud, and four at Microsoft
Azure. Though this number may appear low compared to other
failure types in distributed systems [26,27,33,53], metastable
failures usually have devastating results that last many hours,
which makes them an important class of failures to study.
2.1 Methodology

To find examples of metastability, we searched through
troves of publicly available post-mortem incident reports from
large cloud infrastructure providers and significantly smaller
companies or services. Large infrastructure providers, such
as Amazon Web Services (AWS), Azure, and Google, are
held accountable by many paying customers, forcing greater
transparency into their reliability and operation practices.
Smaller businesses often operate with higher self-imposed
transparency goals until they grow large enough to become a
significant target for malicious attacks.

Infrastructure providers often maintain incident and outage
reporting tools [4, 11, 50], which became our primary source
for metastable failures. We analyzed hundreds of incidents to
find a handful that depicts systems in the metastable state. We

also found several smaller failures from other public sources
such as postmortem communities [13, 44, 45, 54], weekly
outage incident digests [14, 17, 55], etc.

The reports from different sources do not follow the same
format nor provide the same level of information, making our
job of finding examples of metastability more difficult. While
going through these reports, we focus on tell-tale signs of
metastability—temporary triggers, work amplification or sus-
taining effects, and certain specific mitigation practices. More
specifically, we look for patterns when a trigger initiates some
processes that amplify the initial trigger-induced problem and
sustain the degraded performance state even after the trigger
is removed. The sustaining effect can take multiple forms,
such as exacerbated queue growth or retries that create more
load. We also pay attention to mitigation efforts, as metastable
failures often require significant load shedding [57, 60] for
recovery.

We perform a comprehensive analysis of these incidents,
focusing on impact, trigger, work amplification mechanisms,
and mitigation practices. To study the impact, we focus on the
duration and number of impacted services. This information
is usually readily available in the reports. For the triggers, we
identify the triggers and classify them into several distinct
categories. We use a similar identification and classification
process to distill work-amplification mechanisms and mitiga-
tion patterns. We present our summarized findings in Table 1.
2.2 Summary of Metastable Failures in the Wild

In Table 1, we provide a breakdown of metastable failure
incidents we have found. The examples include instances
from both major cloud providers (e.g., Microsoft, Amazon,
Google, IBM) and smaller companies and projects (e.g., Spo-
tify, Elasticsearch, Apache Cassandra). Our summary table
describes high-level aspects of these failures: duration of the
incident, impacted services, triggers leading to the outage, the
sustaining effect mechanism, and corrective actions taken by
the engineers.

Due to the often limited scope of provided information, we
use our best judgment in identifying metastable failures. The
most important criteria we use is the sustaining effect mecha-
nism. We highlight several instances in gray color when the
incident description is not clear on the presence of such a sus-
taining effect, but metastable failure is plausible depending
on the interpretation and given the rest of the information
provided. Additionally, we assign each incident a unique iden-
tifier to refer to each incident later.

Triggers are the starting events in the chain leading to
metastable failures. Around 45% of observed triggers in Ta-
ble 1 are due to engineer errors, such as buggy configuration
or code deployments, and latent bugs (i.e., undetected pre-
existing bugs). These can be observed in incidents GGL1,
GGL2, GGL3, GGL4, AWS1, AWS3, AZR3, ELC1, SPF1.
Load spikes are another prominent trigger category, with
around 35% of incidents reporting it. A significant number of
cases (45%) have more than one trigger.

74 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/lexiangh/Metastability
https://github.com/lexiangh/Metastability

ID Date
Duration
(hours) Services Impacted Triggers

Sustaining
Effect Mitigation

G
oo

gl
e

GGL1 [22] 03/12/19 4.17
Gmail, Photos, Drive, Cloud Storage,

various other GCP services
• load spike

• config change • cascading overload
• load shedding

• stop config deploy

GGL2 [23] 10/31/19 21.5 multiple components of GCE • software bug • retry
• load shedding

• reboot
• capacity increase

GGL3 [24] 04/08/20 3.2
Google BigQuery, Cloud IAM

3% of Cloud SQL HA
• config change
• software bug • retry

• config rollback
• policy change

GGL4 [21] 04/30/13 1.5 Google API infrastructure
• config change

• latent software bug
• traffic queue growth

• reboots
• config rollabck
• server reboot

A
W

S

AWS1 [47] 04/21/11 66.7 Amazon EC2, Amazon RDS
• network

config change • retry

• config rollback
• policy change
• load shedding

• capacity increase

AWS2 [48] 06/13/14 4.23 Amazon SimpleDB • power loss • retry
• load shedding
• server restart

AWS3 [49] 09/20/15 4.55
AWS SQS, EC2 Autoscaling,
CloudWatch, AWS Console

• load spike
• network disruption

• retry
• cascading server

demotion

• load shedding –
pause metadata ops
• capacity increase

AWS4 [51] 12/07/21 9.3
AWS DynamoDB, EC2, Fargate,

RDS, EMR, Workspaces, AWS Console,
Authorization services, internal DNS

• latent software bug
triggered by scale-up

led to load spike
• retry • load rebalancing

• load shedding

A
zu

re

AZR1 [4] 07/01/20 2.65
Azure SQL DB & SQL Data Warehouse,

Azure Database for
MySQL/PostgreSQL/MariaDB

• unspecified load
imbalance trigger

• latent config bug
• cascading overload • service restart

AZR2 [4] 04/01/21 1.15 Azure DNS
• software bug leading
to cache degradation • retry

• unknown automation
• capacity increase

AZR3 [4] 06/14/21 13.25
Management operations

of many Azure
Services

• latent software bug
• load spike

• unspecified queue
growth due to overload

and timeouts

• load shedding
• remove buggy software

• capacity increase

AZR4 [4] 07/12/21 7.92
Windows Virtual Desktop,

Azure Front Door,
Azure CDN Standard

• deployment of
software bug
• load spike

• retry
• other unspecified

• load rebalancing
• trigger hot fix
• policy change

O
th

er

IBM1 [11] 06/11/21 73.53
Private DNS, HS Crypto Service,

Cloudant DNS Services,
Osaka, Cloudshell services

• software bug • retry
• load shedding
• policy change
• trigger hot fix

SPF1 [19] 04/13 NA core app/service UI
• load spike

• policy failure • retry • load shedding

SPF2 [19] 06/04/13 8.33 core app/service UI
• load spike due to
unexpected service

dependency

• retry
• excessive logging

in failure case

• trigger hot fix
• load shedding

ELC1 [39] 04/02/19 6.67 Elasticsearch Service
• unspecified maintenance

• unspecified error
• load caused ZK churn

causing more load
• restart

• load shedding

WIK1 [58] 03/30/21 2.25 media upload, misc queued jobs • load spike
• unspecified causing

queue growth
• load shedding
• policy change

CCI1 [10] 07/07/15 18.33 Core product • load spike
• load increase

due to contention • load shedding

CAS1 [1] 07/27/17 NA Partial database outage • rolling restart
• self-sustaining and
increasing overload • policy change

CAS2 [43] 2020 0.16 ably services
• load spike of certain

costly operations • retry • trigger removal –
operated in stable state

FB1 [18] NA NA Facebook core services • load spike • software bug • hot fix
Table 1: Metastable failures from public sources. Azure and IBM do not provide a direct incident link. Gray highlight indicates a
plausible metastable failure, although the incident description lacked some necessary details.

Handling and recovering from metastable failures is not
easy, with our data suggesting that incidents cause significant
outages. For instance, the IBM1 incident lasted over three
days. More generally, we have observed outages in a range
of 1.5 to 73.53 hours, with 4 to 10 hours of outages being the
most common (35% of incidents reporting the outage period).

While triggers initiate the failure, the sustaining effect
mechanisms prevent the system from recovering. We ob-
served a variety of different sustaining effects, such as load

increase due to retries, expensive error handling, lock con-
tention, or performance degradation due to leader election
churn. By far, the most common sustaining effect is due to the
retry policy, affecting more than 50% of the studied incidents—
GGL2, GGL3, AWS1, AWS2, AWS3, AZR2, AZR4, IBM1,
SPF1, SPF2, and CAS2 incidents are all sustained by retries.

Recovery from a metastable failure is challenging and often
requires reducing load. Direct load shedding, such as throt-
tling, dropping requests, or changing workload parameters,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 75

Symbols Names
Lnorm,Cnorm Normal load and capacity without is-

sues (i.e., triggers)
Lorg(t),Corg(t) Organic load and capacity at time t

including effects from triggers
Lsys(t),Csys(t) System load and capacity at time t

including metastable amplification
over the organic load and capacity

Cstable Stable capacity below which the sys-
tem recovers from metastability

mtrigL, mtrigC Maximum load-spike and capacity-
decreasing trigger magnitudes

αL(t), αC(t) Workload and capacity degradation
amplification factors

∆ttrig Trigger overloading duration
wL(∆ttrig),
wC(∆ttrig)

Workload and capacity degradation
amplification upper bound functions

w∗
L, w∗

C Maximum workload and capacity
degradation amplifications

Table 2: Symbols of Metastability Framework.

was used in over 55% of the cases. Some indirect mecha-
nisms were also popular, such as reboots to clean the queues
or operation backlogs, or policy changes. An example of such
a policy change is the CAS1 incident where a feature was
turned off to allow the servers to join the cluster.

3 Metastability Framework
Based on our observations of real-world metastable failures,

we extend the model of Bronson et al. [7] in three ways. First,
while the previous framework presumes that a system enter-
ing a metastable failure state is usually due to a load increase,
we observe in multiple incidents that a software bug or a con-
figuration change may decrease the capacity of the system
and trigger a metastable failure even without a load increase.
Second, although the previous framework describes a system
sustaining in a metastable failure state due to workload am-
plification, we show examples of another type of metastable
failure sustaining effect where background activities such as
garbage collection cause the system’s capacity to degrade
or remain degraded even after the trigger is removed. Third,
based on our experiments on the reproductions of metastable
failures, we find that a vulnerable state is not a binary condi-
tion; whether a system transitions from a vulnerable state into
a metastable failure state is determined by the current degree
of vulnerability, the trigger magnitude, and its duration.

3.1 System Model
We devise our model based on the load and capacity of a

system, and a summary of the symbols are shown in Table 2.
The capacity of the system, Csys(t), is represented in terms
of abstract resource units (RUs) that the system can handle
per second (i.e., work per second). Each request consumes
some RUs from the system’s budget. For example, consider a
system with a constant Csys(t) = 100 RUs/sec; every second

such a system can process up to 100 requests, each costing
1 RU, or up to 50 requests, each costing 2 RUs. The load,
Lsys(t), represents the work per second arriving to the system
in terms of RUs/sec. So for a system to not be overloaded,
Lsys(t)<Csys(t).

Under normal idealized conditions, we assume the process-
ing capacity Csys(t) is constant, Csys(t) = Cnorm. However,
depending on circumstances it may diminish due to failures,
transient outages, or amplification effects of metastability.
Similar to Csys(t), we set Lsys(t) = Lnorm as the normal load
excluding transient effects and workload amplification.

Since metastability is fundamentally due to sustaining ef-
fects that amplify the load and degrade the system capacity,
we also define Lorg(t) and Corg(t) as the load and system ca-
pacity without amplification effects. That is, the organic load,
Lorg(t), is the load originating from the system’s clients. This
includes transient effects such as load spikes, but does not in-
clude workload amplification effects such as retries. Similarly,
the organic capacity, Corg(t), represents the system capacity
including transient capacity decreases, but without sustaining
degradation. For example, background interference may drop
the organic capacity in half temporarily until the interference
ends. But sustaining amplification effects such as garbage
collection would cause the system capacity to degrade further
or remain degraded even after the trigger is removed. We
illustrate these effects on capacity and load in Figure 1.
3.2 Triggers

Metastable failures begin with trigger events. In our survey
(Section 2), we have identified two broad types of triggers.
The first trigger type results from a sudden burst in organic
load, Lorg(t) (e.g., a celebrity posting their baby’s picture).
The left two scenarios in Figure 1 illustrate how such a trigger
could lead to a metastable failure, and incidents GGL1, AWS3,
AZR3, AZR4, SPF1, SPF2, WIKI1, CCI1, and CAS2 are ex-
amples of such failures. The second trigger type degrades the
system’s organic capacity, Corg(t) (e.g., a rack failure or de-
ployment of inefficient code). The right two scenarios in Fig-
ure 1 illustrate how such a trigger could lead to a metastable
failure, and incidents GGL2, GGL3, GGL3, AWS1, AWS2,
AZR4, and IBM1 are examples of such failures. While the
two types of triggers behave differently, they impact the sys-
tem’s operation similarly by changing the balance between
the load and capacity.
Definition 1 (Trigger). A trigger T (mtrigL,mtrigC) repre-
sents the total effect from one or more of the following events:
• A load-spike trigger is an event that increases the load on

the system by some maximum magnitude mtrigL such that
Lorg(t)−Lnorm ≤ mtrigL for all t.

• A capacity-decreasing trigger is an event that decreases
the system capacity by some maximum magnitude mtrigC
such that Cnorm −Corg(t)≤ mtrigC for all t.
We assume mtrigL and mtrigC represent upper bounds on the

total trigger effect across all the triggers in a trigger event.
In our survey, over half of the observed incidents had one

76 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Time

Cnorm

Lorg

Cstable

L sy
s

Workload amplification increases
the system load above the triggers'

effects in the organic load.

Lnorm

RUs

/sec

tmeta

Stable State
Vulnerable State

ttrig

Lsys(t) continues
to amplify after
fixing the trigger

Metastable Failure:

Lsys(t) - Csys(t) > mtrigL

W
or

kl
oa

d
A

m
pl

ifi
ca

tio
n

RUs

/sec

Csys=Corg

m
tri

gL

Time

Cnorm

Lorg

Stable State
Vulnerable StateCstable

Workload amplification
increases the system load;

organic load remains constant.

Lnorm

tmeta

Metastable Failure:

Lsys(t) - Csys(t) > mtrigC

Lsys(t) continues
to amplify after
fixing the trigger

ttrig

Capacity-decreasing Trigger

RUs

/sec

Csys=Corg

Lsys

m
tri

gC

C
ap

ac
ity

 D
eg

ra
da

tio
n

A
m

pl
ifi

ca
tio

n

Load-spike Trigger

Time

Cnorm

Cstable

Lnorm

tmeta

Stable State
Vulnerable State

Metastable Failure:
Lsys(t) - Csys(t) > mtrigL

Lsys=Lorg

Capacity degradation amplification
decreases the system capacity;

organic capacity remains constant.

ttrig Csys(t) continues
to degrade after
fixing the trigger

Time

Cnorm

Cstable

Capacity degradation amplification
decreases the system capacity below the
triggers' effects in the organic capacity.

m
tri

gC

Corg

Lnorm

Metastable Failure:

Lsys(t) - Csys(t) > mtrigC

tmeta

Stable State
Vulnerable State

Lsys=Lorg

Csys(t) continues
to degrade after
fixing the trigger

ttrig

RUs

/sec

Corg

Csys

Csys

m
tri

gL

Figure 1: Four metastability scenarios (Section 3.4). Two types of triggers (i.e., load-spike and capacity-decreasing) and two types
of amplification mechanisms (i.e., workload amplification and capacity degradation amplification) form the different scenarios.

overloading trigger, but to our surprise, incidents with multiple
triggers were also common (GGL1, GGL3, GGL4, AWS3,
AZR1, AZR3, AZR4, SPF1, and ELC1).

Not all triggers are dangerous; small variations of capacity
or load are normal and unavoidable. The triggers become dan-
gerous when they overload the system (i.e., Lsys(t)≥Csys(t)).
Definition 2 (Overloading trigger condition). If mtrigL +
mtrigC ≥ Cnorm −Lnorm, then the trigger(s) can overload the
system.
Theorem 1 (Overloading trigger). If the system does not
have an overloading trigger condition, then it will never have
a metastable failure. (Proof in Section A.1.)

An overloading trigger is a necessary precursor of a
metastable failure. Once the system is in an overloaded state,
its performance starts to degrade, which sets off alarms and
starts mitigation efforts. For instance, GGL2, GGL3, AZR2,
and AZR4, among others, relied on an automated monitoring
and notification system to initiate the mitigation efforts once a
drop in availability is detected. Although not always explicitly
mentioned, we believe that most, if not all, systems surveyed
have monitoring and notification capabilities. As the system

overloads, the latency of client operations will start to rise,
while the goodput will stay at or below the Csys(t).

The overloaded state, however, is not a metastable failure
state just yet. Getting out of overload is relatively straightfor-
ward — fix the trigger and restore the balance in the system,
such that Lsys(t) < Csys(t) again. If the load on the system
returns to a level below the system’s capacity when the trigger
is removed, then the system should eventually recover.

The duration of the trigger’s impact on the system is an-
other important aspect to consider. While the trigger persists,
the system is working in a reduced capacity or increased load
setting, depending on the trigger type. Some triggers are easy
to fix and end their impact on the systems. For instance, most
of the misconfiguration triggers (GGL1, GGL4, AWS1) and
buggy software deployment (AZR4) can be fixed by a roll-
back action. Some triggers are more difficult to address since
the ability to fix the trigger, ironically, may depend on the
system’s performance, which is degraded by the trigger. For
instance, CAS1 incident had a rolling server restart for main-
tenance. The restart lowers the overall capacity of the system
by the capacity of a server currently rebooting, placing more

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 77

load on other machines. A rebooted server needs to repair
itself by catching up, which requires both the rebooted server
to be fast enough to catch up with the missed and ongoing
load, and the rest of the system needs to be fast enough to
provide this repair service.
3.3 Sustaining Effect Loop

A metastable failure arises when the overloaded system
does not eventually return to a healthy state (Lsys(t)<Csys(t)).
Many reasons can keep the system in a failed state, such as
the inability to recover from the trigger or an uncontrolled
increase in load, among others. However, all of the reasons
share a common pattern of keeping systems inoperative. We
refer to this pattern as a sustaining effect.
Definition 3 (Sustaining effect). A sustaining effect is a
feedback loop that keeps the system in an overloaded state
such that Lsys(t)≥Csys(t) even after the trigger is removed.

The feedback mechanism itself may have existed prior to
the trigger, however, the overload made the feedback mecha-
nism self-sustaining, and we name this feedback mechanism
as metastable amplification. For instance, the AWS4 incident
occurred with networking overload due to a planned scale-up
operation. The overload resulted in connection timeouts and
retries, creating even more load and causing more timeouts
and retries.
Definition 4 (Metastable amplification). A metastable am-
plification W (αL(t),αC(t),wL(∆ttrig),wC(∆ttrig),w∗

L,w
∗
C)

exacerbates the system’s overload until it reaches a maximum
overload limit. The amplification can manifest itself by
increasing the load on the system Lsys(t) and/or decreasing
the system’s capacity Csys(t):
• Workload amplification is a feedback loop that increases

the system load Lsys(t) beyond the organic load Lorg(t)
(i.e., Lsys(t)≥ Lorg(t)). The workload amplification factor,
αL(t) = Lsys(t)/Lorg(t), can be upper bounded by some
workload amplification upper bound function wL(∆ttrig)
and max load amplification w∗

L such that 1 ≤ αL(t) ≤
wL(∆ttrig)≤ w∗

L for all t,∆ttrig, where wL is a monotonically
increasing function of the trigger overloading duration ∆ttrig
from wL(0) = 1 to wL(∞) = w∗

L.
• Capacity degradation amplification is a feedback loop

that decreases the system’s capacity Csys(t) below the or-
ganic capacity Corg(t) (i.e., Csys(t)≤Corg(t). The capacity
degradation amplification factor, αC(t) = Csys(t)/Corg(t),
can be upper bounded by some capacity degradation am-
plification upper bound function wC(∆ttrig) and max ca-
pacity degradation amplification w∗

C such that 1 ≥ αC(t)≥
1/wC(∆ttrig) ≥ 1/w∗

C for all t,∆ttrig, where wC is a mono-
tonically increasing function of the trigger overloading du-
ration ∆ttrig from wC(0) = 1 to wC(∞) = w∗

C.
Intuitively, the upper bounds allow us to reason about vul-

nerability and when a system enters a metastable failure state.
We do not assume the upper bounds are tight, and the intent
is to explain (i) there are two different types of amplification
(that may both be active simultaneously), and (ii) how the

amplification factors impact metastability.
Workload amplification can manifest in multiple ways. Re-

call that each request in our model has some RU cost. The
workload amplification, therefore, can use one of the two
broad mechanisms—increasing the number of requests in the
system or increasing the average cost of a request. We ob-
serve the former amplification method in incidents GGL2,
SPF1, AZR2, while the latter shows up in AWS3, WIKI1, and
SPF2. For example, the SPF1 incident was caused by retrying
the requests, while the SPF2 issue was exaggerated by extra
debug logging added for timed-out requests. In our model,
this corresponds to the top left scenario in Figure 1 where
a load-spike trigger (i.e., Lorg increases) starts a workload
amplification (i.e., Lsys increases) due to retries or an increase
in the average per-request cost.

Workload amplification does not necessarily start immedi-
ately with the trigger. A common type of workload amplifica-
tion is retry-driven amplification, observed in incidents GGL2,
AWS1, AWS2, AZR2, SPF1, and SPF2. It occurs when the
requests start to timeout after waiting for some timeout pe-
riod, and clients begin to retry the failed requests. Typically,
this type of amplification starts building after some amplifi-
cation delay. This delay depends on several factors, such as
the degree of overload in the system and request timeout. A
short request timeout is good for latency when retrying due
to a small transient issue. However, it can hurt the system’s
ability to handle larger problems by quickly starting the work-
load amplification. For example, AWS2 specifies that a small
handshake timeout was a contributing factor to starting and
sustaining the overload. The handshake timeout controlled the
frequency of heartbeat messages and the duration a server can
remain active without receiving a heartbeat. A longer time-
out would have both reduced the heartbeat load and allowed
for a longer heartbeat wait, potentially delaying workload
amplification.

Capacity degradation amplification is another common
type of sustaining effect. This effect occurs when the ini-
tial trigger overloads the system and causes the capacity to
degrade or remain degraded. For example, a system experi-
encing a trigger where background interference from other
co-located processes pushes it into an overloaded state may
now need to also deal with an increased amount of garbage
collection (GC) due to a queue buildup. In this case, the
GC amplifying effect would degrade the system capacity be-
yond the capacity decrease from the trigger. The metastability
arises when the capacity degradation from GC grows to be
high enough such that the system remains overloaded even if
the background interference is removed.

A sustained degradation is a special case of capacity degra-
dation amplification. The CAS1 incident discussed earlier is
an example of this. A different instance of this type of sus-
taining effect is the caching failure described in Bronson et
al. [7]. In a system backed by a look-aside cache, a partial
failure of a cache, such as a reboot of a caching server, may

78 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

result in a load spike on the underlying database and cause it
to timeout. Because of timeouts, all operations effectively fail,
preventing the system from filling the cache. This sustaining
effect causes the capacity to remain degraded.

Figure 1 shows the impact of workload amplification (top
scenarios) and capacity degradation amplification (bottom
scenarios) on metastability. While the scenarios look different
visually, they can all be understood under the metastability
model of a sustaining effect that amplifies the load and/or
capacity degradation to magnify an overload condition.
3.4 Metastability Scenarios

Figure 1 demonstrates four scenarios in which metastable
failures occur. We introduce two types of triggers and two
types of amplification mechanisms that impact the load and
capacity of the system. We use the terms “load-spike" for
triggers and “workload amplification" for amplification mech-
anisms impacting the load, and we use the terms “capacity-
decreasing" for triggers and “capacity degradation" for ampli-
fication mechanisms impacting the capacity. In practice, both
types of triggers and both types of amplification mechanisms
can occur simultaneously.

In the upper left scenario, when there is a load-spike trigger,
the organic load Lorg increases beyond the system capacity
Csys, and thus the system is overloaded. The workload am-
plification (e.g., retries) further increases the system load
Lsys above the triggers’ effects (i.e., mtrigL) in the organic
load Lorg. When the system overload (i.e., Lsys(t)−Csys(t))
is high enough (e.g., at time tmeta), even after removing the
trigger (i.e., the dip of Lorg and Lsys), the system remains over-
loaded and the workload amplification mechanism continues
to exacerbate the overload, which indicates the system is in a
metastable failure state.

In the upper right scenario, when there is a capacity-
decreasing trigger, the organic capacity Corg decreases below
the system load Lsys, and thus the system is overloaded. The
workload amplification (e.g., retries) increases the system
load Lsys. Once the amplification is high enough (e.g., at time
tmeta), even after removing the trigger (i.e., the recovery of
Corg by mtrigC), the system is still overloaded, and the work-
load amplification mechanism continues to exacerbate the
system overload. Hence a metastable failure.

In the bottom left scenario, when there is a load-spike
trigger, the organic load Lorg increases beyond the system
capacity Csys, and thus the system is overloaded. The capac-
ity degradation amplification (e.g., GC amplifying effect)
decreases the system capacity Csys. Once the amplification
is high enough (e.g., at time tmeta), even after removing the
trigger (i.e., the organic load Lorg decreases by mtrigL), the
system is still overloaded, and the capacity degradation am-
plification mechanism continues to exacerbate the system
overload. Hence a metastable failure.

In the bottom right scenario, when there is a capacity-
decreasing trigger, the organic capacity Corg decreases below
the system load Lsys, and thus the system is overloaded. The

capacity degradation amplification (e.g., GC amplifying ef-
fect) further decreases the system capacity Csys below the trig-
gers’ effects (i.e., mtrigC) in the organic capacity Corg. When
the system overload (i.e., Lsys(t)−Csys(t)) is high enough
(e.g., at time tmeta), even after removing the trigger (i.e., the
recovery of Corg and Csys), the system remains overloaded and
the workload amplification mechanism continues to exacer-
bate the overload. Hence a metastable failure.
3.5 System States

Based on Bronson et al. [7], we define three states (stable,
vulnerable, metastable failure) that a system operates in and
describe the boundaries between these states.
3.5.1 Stable State

Assuming a system has a metastable amplification mecha-
nism W (αL(t),αC(t),wL(∆ttrig),wC(∆ttrig),w∗

L,w
∗
C) and trig-

ger T (mtrigL,mtrigC), it will never have a metastable failure
if it’s running under low enough load Lnorm < Cstable. The
demarcation line between stable and vulnerable states de-
pends on the max amplification factors w∗

L,w
∗
C and the normal

capacity of the system, Cnorm.
Theorem 2 (Stable region). Define Cstable = Cnorm

(w∗
L∗w∗

C)
. If

Lnorm <Cstable, then the system will never have a metastable
failure. (Proof in Section A.2.)

When the normal load is low enough relative to the nor-
mal system capacity, then even if the trigger overloads the
system and causes the maximum metastable amplification,
it will recover once the trigger is removed and hence is not
a metastable failure. For instance, in the CAS2 incident, the
Apache Cassandra cluster operated at a low load of 10% to
30% percent of the capacity. Despite a very significant trigger
and workload amplification, the cluster recovered itself when
the trigger was removed.
3.5.2 Vulnerable State

If the system has a normal load higher than Cstable, it’s
running in a vulnerable state. Bronson et al. [7] define the
vulnerable state as the state when a system experiences a high
enough load that temporary overloads can tip the system into
a metastable failure state. However, based on our experiments,
the vulnerable state is not a binary—there are many degrees
to it and many factors determine this degree of vulnerability.

As an overloading trigger event T (mtrigL,mtrigC) unfolds,
the system (and engineers) are in a race to mitigate the over-
load before the feedback loop of the sustaining effect makes
the failure unrecoverable without more drastic measures. In
such a system, a combination of amplification and trigger
factors impact the likelihood of a metastable failure.
Theorem 3 (Degrees of vulnerability). If the metastable
amplification during the trigger overloading duration ∆ttrig
is small enough relative to the system headroom (i.e.,
wL(∆ttrig) ∗wC(∆ttrig) <

Cnorm
Lnorm

), then the system will never
have a metastable failure. (Proof in Section A.3.)

Once the system is in a vulnerable state, a combination of
factors determines its degree of vulnerability. First, how close
Lnorm is to Cnorm impacts the vulnerability. The smaller the

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 79

Cnorm/Lnorm ratio, the easier it is to enter a metastable failure
state (i.e., the higher degree of vulnerability). The smaller
the Cnorm −Lnorm difference, the smaller the trigger magni-
tude needed to overload the system and potentially trigger the
metastable failure (Theorem 1). Second, the metastable ampli-
fication impacts the vulnerability. As described in Theorem 3,
higher metastable amplifications (wL(∆ttrig) and wC(∆ttrig))
increase the vulnerability to metastable failures. Since wL
and wC increase with the overloading trigger duration ∆ttrig,
longer triggers also increase the vulnerability.

The amplification delay, if present, is the first mechanism to
buy some time for mitigation efforts. Unfortunately, there is
very little control over this delay interval, aside from timeouts
in scenarios like retry-based workload amplification. The trig-
ger overloading interval ∆ttrig is another factor in determining
whether an overload develops into the metastable failure. In-
tuitively, short triggers mean that amplification may not have
started yet due to the amplification delay or has not escalated
too far. Recall that entering a metastable failure state requires
the system load to exceed the capacity even after fixing the
trigger. This means that the amplification factors αL(t) and
αC(t) play a role—a smaller amplification translates into a
more moderate system load growth that can buy the engineers
time to recover the trigger.
3.5.3 Metastable Failure State

The point when the trigger(s) cause the system to enter a
metastable failure state depends on the current amplification
factors αL(t) and αC(t) and trigger magnitudes.
Theorem 4 (Metastable failure boundary). If the
metastable amplification causes the system overload
to exceed the triggers’ effects (i.e., Lsys(t) − Csys(t) ≥
αL(t) ∗ mtrigL + αC(t) ∗ mtrigC), then the system is in a
metastable failure state. (Proof in Section A.4.)

Since the current amplification factors and trigger mag-
nitudes change over time, we can use the current amplifica-
tion factors and maximum trigger magnitudes to develop a
metastable failure boundary. If the overload Lsys(t)−Csys(t)
exceeds the boundary in Theorem 4, then there is a metastable
failure because the system is overloaded even after the trig-
ger is removed. If the overload Lsys(t)−Csys(t) is below the
boundary in Theorem 4 while the trigger(s) are in full ef-
fect, then the system is not in a metastable failure state yet.
This is because the removal of the trigger would result in a
non-overloaded state where the system can recover.

Theorem 4 indicates the boundary in the general case where
both types of triggers and amplifications occur simultaneously,
but for simplicity, Figure 1 depicts the specific boundaries for
each type of trigger and amplification in the four scenarios.
That is, mtrigL = 0 or mtrigC = 0 depending on the trigger, and
αL(t) = 1 or αC(t) = 1 depending on the amplification.

A practical takeaway from these results is that it is impor-
tant to monitor the overload and take more drastic measures
before it exceeds the metastable failure boundary. The key in-
sight is that the overload should not be so bad that the system

is overloaded even after the trigger is removed.
3.6 Recovery

Fixing the trigger is the first intuitive step many engineers
take in recovery efforts. The intuition is likely the result of
treating the trigger as the root cause of the failure. For in-
stance, many incidents caused by deploying bad configura-
tion involved rollbacks (GGL3, GGL4, AWS) or halting the
deployments (GGL1). Similarly, many incidents triggered
by software bugs involved hot-fixing the bug (AZR4, IBM1,
SPF2). All incidents caused by load spikes included some
form of load shedding (GGL1, AWS3, AZR3, CCI1, etc.).

However, once in the metastable failure state, the system
cannot recover all by itself as the sustaining effect keeps it
in the metastable failure state. Therefore, we need to remove
the sustaining effect from the system to recover. Two broad
strategies exist to recover from the failure. The first is load
shedding—bringing the load down below the stable threshold
Cstable. The second is to raise Cstable by increasing the system
capacity.

Load shedding was the most popular mitigation effort used
in over 50% of the incidents. This approach is intuitive in
any kind of overload situation. However, without a proper
understanding of the metastability and feedback loops, it is
hard to know just how much the load needs to be reduced.
This results in long mitigations and additional destructive
steps, such as server reboots (AWS2, GGL2).

Raising Cstable is more nuanced than load shedding. One
mechanism for changing the stable threshold is a policy
change that impacts the amplification thresholds w∗

L and w∗
C.

An example of such a policy change is decreasing the max-
imum number of retries per request. For instance, a policy
with at most two retries will not amplify the work more than
three times, while the policy with no cap effectively leaves the
system with no stable region. A more popular way of increas-
ing Cstable is to add the capacity to the system, essentially
raising its Cnorm. For a fixed w∗

L and w∗
C, increasing normal

capacity will also raise the stable threshold, per Theorem 2.
A few incidents in our study used this approach. For instance,
AZR2 added more capacity after performing load shedding
and fixing the trigger.

4 Metastability at Twitter
While publicly available incident reports provide enough

high-level information to identify the metastable failures, they
lack the depth and detail to understand the complex inter-
actions between components in large systems. In this case
study, we use insider information to describe in detail one
specific metastable failure occurring at Twitter, a large inter-
net company, due to garbage collection (GC). We identify
a sustaining loop where high queueing increases memory
pressure and mark-and-sweep processing during GC, causing
job slowdowns and thus higher queueing. The effect is more
pronounced at high system loads, where the system is more
vulnerable to spikes. Specifically, we see that a peak load test

80 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 20 40 60 80 100 120 140
Time (min)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
m

et
ric

s Test starts Test endsLoad shedding: 1st 2nd 3rd
--->
SR remains below SLO
for many minutes
until service restartsSystem load

GC duration
Queue length
Success rate (SR)

Figure 2: Timeseries of a core service under a peak load test at Twitter. Metrics are normalized except for the success rate, which
is scaled to show the trend dropping below the SLO.

0.4 0.6 0.8 1.0
Normalized queue length

0.25

0.50

0.75

1.00

No
rm

al
ize

d
GC

 d
ur

.

(a) Queue length vs. GC duration.

0.4 0.6 0.8 1.0
Normalized GC duration

0.8

1.0

No
rm

al
ize

d
la

te
nc

y

(b) GC duration vs. Latency.
Figure 3: Correlation between metrics during 3 normal days.

during a busy day triggers the system to enter a metastable
failure state where jobs start to fail, and it is only after suffi-
cient load shedding that the success rate stops dropping.

Peak load tests are one of the common types of tests used
regularly in industry to expose potential problems and high-
light the necessary steps to prevent incidents from happening.
Figure 2 shows the timeseries of system metrics at a core
service during a peak load test where we see a metastable fail-
ure. System load, GC duration, and queue length have been
normalized to show the trend only, while success rate (SR) is
scaled to demonstrate it dropping sharply below the SLO. All
metrics are measured using the standard observability tools
at Twitter, except for the (average) queue length, which is
inferred using Little’s Law [35]. By queue length, we mean
the count of all the requests in the system. The service is a
mature production service that’s well-tuned and has been run-
ning for several years, under all the usual operating practices
of frequent deployments, regular stress tests, and continuous
monitoring and alerting.

In this incident, the peak load occurs around the 48-minute
mark, and the SR starts to drop over time. Once the SR of
this service drops below a critical threshold (i.e., the SLO),
service operators are alerted to mitigate the problem. In this
incident, the operators start load shedding at around the 83-
minute mark and continue with more load shedding at 106
minutes. This had the desired effect of lowering the load,
which also lowers GC and queue length. However, the SR
still continues to drop and does not start to recover even when
the load is back down to the level before the test. SR remains
below the SLO until the service is restarted by operators. This
is because even after the load shedding, a sustaining effect is
still slowing down the system and causing it to remain in a
metastable failure state.

Studying the internal system metrics from the test has shed

some light on the problem. We find that the changes to GC
duration are highly correlated with load fluctuations, as more
load brings more memory allocation, thus requiring more
GC. However, the GC is busier than normal during the peak
load test. During the second load-shedding period between
106-118 minute marks, the load is more than 20% lower than
that at the 40-minute offset, yet the GC is busier and SR is
still dropping. At the same time, the queue length is also
more than 50% higher, which implies that there are more
jobs stuck in the system exacerbating GC. Thus, there is con-
tention between arriving traffic and GC consuming resources,
suggesting the metastability sustaining effect.

Specifically, the incident is caused by the sustaining effect
in the following steps: (i) a load spike (i.e., a Lorg increase)
caused by peak load test introduces initial high queue length
in the system; (ii) high queue length results in high GC behav-
iors; (iii) high GC behaviors slow job processing (i.e., Csys
decreases); (iv) more jobs get stuck in the system, which leads
to higher queue length.

To demonstrate each of these steps, we further study data
from this test as well as non-test data as a baseline. For (i),
we can see the initial trigger in Figure 2 at around minute
48 where the load spike causes a sharp increase in queue
length. For (ii), we see that queue length and GC duration
are correlated over time in Figure 2. Additionally, we plot
queue length vs. GC duration (Figure 3a) under 3 normal days
without the test to show these metrics generally exhibit a pos-
itive correlation. One might wonder whether the system load
affects these metrics, and we find that it is correlated to both
queue length and GC duration. But to eliminate the impact of
system load, we also filtered the data to only include results
with approximately the same system load, and we still see
a correlation between queue length and GC duration, which
suggests that high queue length leads to high GC. Correla-
tion does not imply causation, so we validate and reproduce
these effects in Section 5.1 via a simple example. For (iii),
we plot GC duration vs. latency (Figure 3b) during the same
period without peak load testing and observe that the latency
increases with GC duration. As GC consumes CPU cycles,
there is CPU contention with job processing, which causes
slowdowns to jobs as evidenced by the higher latencies. Nat-
urally, job slowdowns will cause additional congestion and
queueing, which completes the sustaining loop (iv).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 81

0 200 400 600 800 1000 1200
Time (s)

140

160

180

200

220

240

260

280

Re
qu

es
ts

 p
er

 se
co

nd

550

600

650

700

750

800

850

900

GC
 d

ur
at

io
n

(m
s)

0

10000

20000

30000

40000

50000

60000

Qu
eu

e
le

ng
th

(a) Timeseries of GC metastability.

20 40 60
Queue length

200

300

400

500

600

700

800

GC
 d

ur
at

io
n

(m
s)

250 500 750
GC duration (ms)

300

400

500

600

700

800

Ap
p.

 st
op

pe
d

du
r.

(m
s)

(b) Correlation between queue
length, GC, & application stalls.

60 80 100 120 140 160 180 200
Requests per second

0

10

20

30

40

50

60

Tr
ig

ge
r d

ur
at

io
n

(s
)

Stable
region

Metastable failure
region

Vulnerable region

Max heap size: 384MB

Max heap size: 256MB

(c) Degrees of vulnerabilities.
Figure 4: Metastability in Garbage Collection (GC).

Similar incidents recur many times, and engineers take
different approaches to mitigate/fix this issue. For example,
(i) observing unusually high latency spikes in backend ser-
vices resulted in work to improve their performance to lower
queue lengths, (ii) observing higher GC duration than nor-
mal resulted in adjusting the JVM memory configuration
(e.g., increasing max heap size) to tweak GC behavior, and
(iii) observing high resource utilization (e.g., CPU) resulted
in adding more servers to lower per-server load. These ap-
proaches decrease system vulnerabilities and make it more
robust to the trigger at the magnitude of the peak load test
level.

5 Replicating Metastability
We introduce three example applications and experimen-

tally reproduce metastable failures on them. One of these
applications reproduces the failure in the Twitter case study
(Section 4) at a small scale, and the other two reproduce
failures due to retries and look-aside caching described in
sections 2.1 and 2.2, respectively, of Bronson et al. [7].

5.1 Metastability due to GC
In this section, we develop a small-scale reproduction of

the GC metastable failure seen in Section 4. This allows us
to perform controlled experiments to validate the sustaining
effect and study the factors that affect vulnerability. We con-
firm that GC can cause metastability and that the vulnerability
increases with load. Since the sustaining effect is due to a
high queue length causing memory pressure and GC slow-
downs, we find that the memory size also impacts the degree
of vulnerability.

5.1.1 Experiment Setup
Our reproduction is a multi-threaded java program com-

piled via JDK 8 under default GC settings except we ex-
periment with MaxHeapSize. Each thread processes a job
consisting of many memory allocations. Each job allocates a
0.5MB array of arrays and then proceeds to allocate each row
in this 2D array, adding an additional 0.5MB of data. Once a
job completes, the allocated memory is unreferenced and will
eventually be garbage collected. The main thread launches
jobs following a Poisson process with a configured request
rate measured in requests per second (RPS). We launch the
java program in a docker container configured with 1GB of
memory running on an AWS EC2 m5.large instance.

5.1.2 Inducing Metastable Failures
To illustrate the metastability, we vary RPS over time and

plot the relevant metrics in Figure 4a. The initial RPS increase
causes queue length and the GC duration to increase. Even
as RPS is reduced over time, the sustaining effect causes the
queue length and GC duration to remain high.

To gain a deeper understanding of the sustaining effect that
causes the metastability, we extract detailed metrics from GC
logs. Figure 4b shows that queue length, which we directly
measure from arrival/completion timestamps, is correlated
with GC duration. This is because there are more active ob-
jects to process during a GC cycle when there’s a high queue
length, and there is higher memory pressure as well. The fig-
ure shows a scatterplot of the normal behavior, though we see
a similar correlation during metastable failures as well.

Figure 4b also shows that GC causes the application to
pause, which slows down the jobs. Here, we configure the
JVM to print a more detailed metric (PrintGCApplication-
StoppedTime) to indicate how the JVM impacts the job’s
running time. We find that GC activity is causing the applica-
tion to pause and slow down. As a result, the application isn’t
able to process jobs as efficiently, resulting in a higher queue
length, thus completing the feedback cycle.

We next study the factors that affect vulnerability by ex-
posing the example to varying trigger sizes. In our example,
we generate triggers by injecting 100% stalls in the program
for varying trigger durations. During the trigger, requests still
arrive, but are not launched and do not begin processing. Once
the trigger completes, there is effectively a large burst of back-
logged requests that creates a large spike in the queue length
until the backlog is handled. In our model, this corresponds to
the bottom left scenario in Figure 1 where a load spike trigger
(i.e., Lorg increases) starts a capacity degradation amplifica-
tion (i.e., Csys degrades) due to GC.

Figure 4c shows how the vulnerability varies as a func-
tion of RPS. At high RPS, even small delays would cause
the system to fall into a metastable failure state, whereas at
low RPS, the system can mostly recover unless there is a
very large trigger duration. The figure also shows how the
vulnerability changes with the JVM memory size. Striped
areas show regions where the metastability depends on the
higher or lower memory size. For example, the striped region
between the max heap (i.e., JVM memory) sizes indicates it
is a metastable failure region for the smaller size and a vulner-

82 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y

(lo
g

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S

(lo
g)

success
fail

(a) Trigger 10 s, -78% CPU.

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y

(lo
g

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S

(lo
g)

success
fail

(b) Trigger 10 s, -80% CPU.

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y

(lo
g

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S

(lo
g)

success
fail

(c) Trigger 9 s, -80% CPU.

0 20 40 60 80 100 120 140
Time (seconds)

10 1

101

La
te

nc
y

(lo
g

se
co

nd
s)

trigger

0 20 40 60 80 100 120 140
101

103

105

107

109

RP
S

(lo
g)

success
fail

(d) Trigger 10 s, -80% CPU, -30%
RPS.

Figure 5: Metastability in a Replicated State Machine (RSM) due to retries.

able or stable region for the larger memory size (depending
on RPS). Larger memory sizes decrease the memory pres-
sure, which lowers the effect of GC. Thus, the system is less
vulnerable with more memory and can sustain higher trigger
durations and higher RPS. Nevertheless, the system is still
subject to metastable failures, so understanding the degree of
vulnerability is important for managing the system.
5.2 Metastability due to Retries

We next demonstrate an example of a metastable failure in
a replicated state machine (RSM) model utilizing a popular
NoSQL database. RSMs are prone to slowdowns [28, 41] that
can act as capacity-decreasing triggers for metastable failures.
We use the slowdowns of varying magnitude and duration to
induce metastable failures where retries create the sustaining
effect.
5.2.1 Experiment Setup

For this experiment, we rely on MongoDB replicated
database [64] based on the Raft [42] replication protocol.
We operate the database in a strongly-consistent mode in a
cluster of 3 replicas. A primary and two secondary MongoDB
servers (version 4.4.9) are deployed on AWS EC2 m5a.large
instances with 2 vCPU and 8 GiB of RAM each using Docker
containers. A client application provides a constant baseline
workload of insert operations against the replicated MongoDB
database. We deployed the client on a bigger m5ad.2xlarge
instance with 8 vCPU and 32 GiB of RAM.

We keep the RSM in a vulnerable state by running a con-
stant client workload of approximately 6,200 successful RPS.
A client uses a 3-second timeout for requests and will retry
each operation up to 4 times after the timeout. To introduce
the slowdowns, we temporarily restrict the CPU resources on
the docker container running the primary node. In our model,
this corresponds to the top right scenario in Figure 1 where
a capacity-decreasing trigger (i.e., Corg decreases) causes a
workload amplification (i.e., Lsys increases) due to retries.
5.2.2 Inducing Metastable Failures

In Figure 5, we present the result of four experiments to
demonstrate the relationship between trigger magnitude, trig-
ger duration, and request rate. The figure truncates the experi-
ments at 150 seconds, however, we ran the workloads for 500

seconds to ensure there is no delayed recovery from failure.
We apply the capacity-decreasing trigger at the 60 second
mark, as indicated by the gray shaded region in each of the
subfigures.

(a) Baseline with no metastable failure. Figure 5a
demonstrates a trigger of 10 seconds with a 78% reduction in
CPU availability. This trigger briefly reduced the success rate
of client requests, as observed by the dip in throughput with a
corresponding increase in latency. The impact was brief with
the occurrence of limited failures and retries towards the end
of the trigger duration. The system does not enter a metastable
failure state and recovers shortly after the trigger is removed.

(b) Increased trigger magnitude causes metastable fail-
ure. Figure 5b demonstrates a metastable failure in an RSM.
This result illustrates that even a slight increase in a trigger
magnitude can push the system into metastability. In this in-
stance, the trigger is of the same duration (10 seconds) against
the same workload as (a) but with an 80% reduction in CPU
availability (2% additional reduction). With this trigger mag-
nitude, the system performance does not ever recover once
the trigger is removed. Latency plateaus at approximately
the client timeout of 3 seconds, and the total number of at-
tempted requests peaks at around 20,000 RPS (a 3× increase
over baseline), and goodput is reduced by ≈ 90% to 600 RPS.
The client retry mechanism provides the feedback loop that
prevents the system from resuming a normal state.

(c) Decreased trigger duration averts metastable fail-
ure. Figure 5c demonstrates that a minor change to a trigger
duration, compared to the previous experiment (Figure 5b),
can prevent a system from entering the metastable failure state.
The experiment setup is the same as (b), except the trigger
duration is reduced by 1 second from 10 seconds to 9 seconds.
Similar to (a), we observe a transient increase in latency and
a corresponding reduction in goodput. However, the system’s
performance recovers in this experiment, demonstrating the
impact of trigger duration on vulnerability.

(d) Reduced load averts metastable failure. Figure 5d
illustrates system performance when the base workload is
reduced to about 4,200 RPS (≈ 30% lower than the baseline
RPS) to show a system with more idle resources to handle
triggers. We used the same trigger magnitude and duration as

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 83

0 20 40 60 80 100 120
time (second)

0.00

0.25

0.50

0.75

1.00

1.25

la
te

nc
y(

se
co

nd
)

latency

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t r

at
e/

Er
ro

r r
at

e

Cache hit rate
Error rate

(a) Trigger at 10s induces a metastable fail-
ure where a low cache hit rate causes the
database to become overloaded. This results
in high sustained error rates and latencies.

60 120 180 240 300 360
Requests per second

0.0

0.2

0.4

0.6

0.8

1.0

Dr
op

 in
 c

ac
he

 h
it

ra
te

2 sec timeout
1 sec timeout

Stable region Metastable failure region

N
o

m
et

as
ta

bl
it

y
 fo

r
an

y
tr

ig
ge

r
si

ze

Vulnerable region

(b) Vulnerabilities for different request time-
outs. Striped area between lines indicates it is a
metastable failure region for 1 second timeouts
and a vulnerable region for 2 second timeouts.

200 400 600 800 1000 1200
Requests per second

0.0

0.2

0.4

0.6

0.8

1.0

Dr
op

 in
 c

ac
he

 h
it

ra
te ~95% Hit rate

~80%
 Hit rate

St
ab

le
 r

eg
io

n

Vulnerable region

Metastable failure region

(c) Vulnerabilities for different steady state
cache hit rates. Striped areas indicate the region
is different for the hit rates (e.g., metastable
failure for ~80% and vulnerable for ~95%).

Figure 6: Metastability in Look-aside cache.

in (b) (a trigger intensity of 80% and a trigger duration of 10
seconds) that pushed a more loaded system into a metastable
failure. With more idle resources to handle the transient perfor-
mance degradation, the system handled the trigger gracefully
with only a temporary increase in latency.

Throughout our experiments on a replicated database, we
have established that a trigger that sets off the retry process
can lead to the feedback loop that prevents a distributed sys-
tem from recovering. Moreover, even small changes to a trig-
ger had a significant impact—a 2%-decrease in available CPU
or a 1-second increase in duration separated successful recov-
ery from a metastable failure. All experiments exhibit a small
number of failed requests immediately before the trigger is
removed. However, (b) demonstrates an increased level of
failures and retries during the last second of the trigger. This
suggests that timely removal of the trigger can prevent the
transition into the metastable failure state.
5.3 Metastability due to Look-aside Cache

We next illustrate another type of metastable failures due to
look-aside caching. Look-aside caching is a popular caching
strategy where an application looks for data in a cache and
will retrieve data from a backend system for cache misses.
The application is then responsible for putting the data from
the backend into the cache.

The metastability arises because the application is not al-
ways able to add the data from the backend into the cache.
Specifically, if a trigger causes the cache hit rate to drop,
then that would result in a higher rate of misses and an un-
expectedly high rate of requests to the backend system. This
amplified workload would in turn cause the backend to slow
down, which would lead to timeouts in the application and/or
backend. When there are timeouts, the application is unable to
put data into the cache. As a result, the cache hit rate remains
low, which sustains the metastability.
5.3.1 Experiment Setup

To replicate this metastability, we build an example web
application with a MySQL database (34.6 million entries,
totaling 15GB) and a memcached cache (1GB). If the web
application is unable to find an item in the cache, it queries the
database and stores the result in the cache. Items are requested
following a Zipf distribution—a common distribution for

representing cache entry popularity [6].
The arrival times are generated via a standard Poisson pro-

cess at the desired RPS from our load generator. Our web
server runs a standard Nginx + PHP setup, and we configure 1
second timeouts for the requests, which are much higher than
the normal request processing times.
5.3.2 Inducing Metastable Failures

Figure 6a shows an example of a metastable failure when
a trigger causes the hit rate to unexpectedly drop at time 10s.
We see that the backend traffic sharply increases, which results
in timeouts and errors. Since the application is unable to get
the data before the timeout, no new data is added to the cache,
which sustains the low hit rate for long periods of time.

We next run the system under different RPS and inject trig-
gers of different magnitudes to evaluate whether the system is
able to recover. We inject triggers by deleting the hottest items
in the cache*. In our model, this corresponds to the bottom
right scenario in Figure 1 where a capacity-decreasing trigger
(i.e., Corg decreases) starts a capacity degradation amplifica-
tion that causes the degradation to persist even after the cache
memory is available for use (i.e., Csys remains degraded). Af-
ter the trigger, we run the system for an hour to see if it can
recover or if the metastable failure persists. If the system
doesn’t recover within an hour, we mark this as a metastable
failure. Caching systems by nature are self-healing, and we
would expect the system to eventually recover if there’s a
non-zero chance that a request would successfully add data
to the cache. However, long-term outages are catastrophic to
companies so we still deem these cases as metastable failures.

Figure 6b illustrates the different degrees of vulnerability in
our look-aside caching example. Under low RPS, the system
is stable and can recover even if the entire cache is wiped.
As the RPS increases, the system becomes more vulnerable
where smaller drops in hit rate could cause the system to fall
into a metastable failure region and not recover.

Figure 6b also illustrates the impact of the request timeout
parameter. When increasing the timeout from 1 second to 2
seconds, the vulnerability at each RPS is decreased (i.e., a
higher trigger magnitude is needed to cause metastable fail-

*Dropping the hottest items gives a conservative bound on the metastable
region since these are the easiest items to recover.

84 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ures). So there is a trade-off with setting the request timeout—
a higher timeout decreases the vulnerability, but it takes longer
to detect failed requests, whereas a lower timeout can quickly
detect issues, but increases the metastable vulnerability.

Figure 6c demonstrates the impact of the steady state cache
hit rate on vulnerability. When comparing a workload with
a ≈ 80% cache hit rate vs. a workload with a ≈ 95% cache
hit rate, we see that the higher hit rate is less vulnerable.
This is because the workload has a more skewed popularity
distribution where a small number of keys constitutes a large
fraction of the requests. This skewness makes it easier to
recover from a drop in hit rate. However, higher hit rates
enable the system to operate at higher RPS where the system
is vulnerable, and we see that the ~95% workload has a much
wider range of vulnerability in terms of RPS. Thus one still
needs to consider metastable issues at high hit rates.

6 Discussion
6.1 Multi-System Failures

Many metastable failures involve a combination of systems
or components interacting together. Often, these failures are
described as cascading failures (GGL1), where the failure of
one system causes further faults in other components. The
interactions between systems make it more difficult to iden-
tify the sustaining effect and enact quick fixes. Our caching
example is a good illustration of such a multi-system failure.

In our caching example, the cache and storage systems
are coupled together. When a cache fails, the result is a load
spike in the storage system – a capacity degradation of one
component cascades to a load increase in another. Even in the
absence of workload amplification, this multi-system example
has a sustaining effect. The complete cache-storage system
needs the storage component to respond in time to fill the
cache and reduce the load on storage. At the same time, the
storage cannot do so due to the overload, creating a sustained
condition where the overload cannot be alleviated even after
the cache has all servers back up again.
6.2 Human Factors

Around 50% of the observed triggers have some direct
human involvement, such as the deployment of buggy con-
figuration (GGL3, GGL4, AWS1), rushed testing and de-
ployment (AZR4), incomplete testing that fails to find bugs
(GGL2, GGL4, AZR2, AZR3, IBM1), and regular mainte-
nance (ELC1). For instance, in the AZR4 incident, engineers
rushed a buggy code for deployment without proper testing.
The bug would increase CPU consumption on some back-
ground tasks, essentially decreasing the system’s processing
capacity. Moreover, the deployment was happening on Friday
before a long holiday weekend when the load on the system
was lower than usual, potentially preventing the deployment
procedure from catching the capacity degradation. After the
holiday weekend when traffic returned to normal, the system
was overwhelmed, which increased latency, caused timeouts,
and failed user requests. This issue could have been avoided

with more complete testing and better deployment practices.
Another example of a human factor in metastability is the
GGL4 incident where engineers bypassed the testing phase
and released a buggy configuration to production.
6.3 Fix to Break

Misunderstanding the processes that cause the failure can
lead engineers to adapt long-term fixes or changes that can
further exacerbate the vulnerability for metastable failures.
For example, not realizing the existence of a feedback loop
may cause engineers to introduce changes that make the feed-
back loop more severe. In the AWS2 incident that brought
down AWS SimpleDB, the storage servers frequently com-
municate with the locking service to ensure they are still part
of the system. When an overload to the locking service oc-
curred, the storage servers started to timeout and retry, further
adding to the locking service overload. After several retries,
the servers would demote themselves and stop serving the
storage workload. The locking service remained overloaded
for as long as enough storage servers were alive to keep the
lock service busy. In the aftermath of the incident, engineers
decided that servers must continue to retry the locking ser-
vice instead of giving up, as the lack of prolonged retries was
seen as the reason for botched recovery. Unlimited retries,
however, can put a lot more workload amplification on the
system and make the sustaining effect more severe. A similar
incident (AWS3) happened to the DynamoDB database about
a year later. The storage nodes did not back out of retrying to
get updated membership data, causing a massive workload
amplification and metastable failure.

Another example of this is the SPF1 and SPF2 incidents.
In the aftermath of the first incident, engineers added signifi-
cant logging to the error path of request execution to better
understand the cause of the load spikes and retries. In SPF2,
the additional logging after a load spike and initial retries in-
creased the cost of each retry, adding more load to the system
and causing more requests to retry.
6.4 Mild Metastable Failures

Many metastable failures are severe enough to cause a
significant service disruption. However, this is not necessarily
the case for all metastable failures. The CAS1 incident is an
example of metastable behavior that did not cause a significant
outage. Another example is our Twitter case study. While the
metastable failure was severe enough to trigger internal alerts,
it was very far from becoming an outage. This mildness was
partly due to monitoring of key performance metrics and a
timely response.
6.5 Prevention and Mitigation

A crucial aspect of preparing for metastable issues is under-
standing the system’s vulnerability. As we have seen through-
out our experiments with retries, caching, and GC, many fac-
tors impact the vulnerability of a system, ranging from the
load to trigger magnitude and duration and to sustaining effect
mechanisms, such as workload amplification growth. With
a proper understanding of the processes involved, we can

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 85

have better control over both the triggers and sustaining ef-
fects. For example, our Twitter case study showed that even
if the sustaining effect cannot be eliminated, knowing and
understanding its characteristics can help engineers adjust
parameters and reduce its impact in the future.

Similarly, systems may not be able to avoid all possible
triggers, but they can often mitigate the trigger’s impact. For
instance, designing systems to be more resilient to component
slowdowns [41] can help reduce the severity of triggers and
reduce the system’s vulnerability. Designing automated miti-
gation strategies can reduce the trigger duration, which result
in a small performance blip instead of a metastable failure.

While autoscaling of resources can help mitigate
metastable failures in some cases, it does not necessarily pre-
vent metastable failures. Autoscaling is a way to increase the
normal capacity Cnorm of a system in response to load events,
which should also raise the stable threshold Cstable and help
the system recover sooner. However, autoscaling can be ex-
tremely costly for large systems and large work amplification
factors. For instance, a loss of a cache with 99% hit-rate can
result in a 100X amplification. Whether the current autoscal-
ing techniques can scale up fast enough to avert a metastable
failure requires further research. Furthermore, it is not always
possible to autoscale services due to stateful components and
system complexity (e.g., case Azure LL1H-9CZ).

7 Related Work
Since metastable failures were established as a class very

recently [7], there have not yet been any studies particu-
larly about them. However, researchers have discovered other
classes of failures that we think are relevant to metastability.
Specifically, the types of failures and bugs that we discuss
below often act as triggers that lead to metastable failures.

One such class is fail-slow failures [27], which were ex-
tensively studied under different names: fail-stutter [3], gray-
failure [29], and limpware [15, 16, 25]. Fail-slow failures hap-
pen when a hardware experiences a significant slowdown but
is still functional. Since fail-slow failures can occasionally
exhibit transient stops [27], they can trigger metastable fail-
ures. Unlike metastable failures, however, fail-slow failures
are essentially subtle hardware failures that can be fixed by
replacing the faulty hardware.

Another related class of failures is due to scalability
bugs [34, 53]. These are latent software bugs that are scale-
dependent—they only surface in large-scale deployments
and are not discoverable in small-scale testing. As a result,
load spikes can expose scalability bugs, which can trigger
metastable failures. We have observed several incidents where
load spikes exposed a bug that triggered a metastable failure.

Finally, there have been multiple studies on failures in
distributed systems caused by configuration changes [40, 59]
and software upgrades [63] both of which were predominant
triggers of metastable failures in our study.

In general, most prior studies classify incidents according
to their main root cause, for example, software bugs, hardware

faults, misconfiguration, etc. The metastable failure model,
where a service in the vulnerable state is tipped over to failure
by a trigger, allows a richer, multi-dimensional characteri-
zation of bugs. Metastability would likely explain some of
the bugs others have studied, but to date, researchers have
lacked a framework for identifying such failures. It is notable
that in [61] the authors observe that failures often “require
an unusual sequence of multiple events with specific input
parameters from a large space”, which suggests that they may
have in fact encountered metastable failures.

The cloud outage study of [26], which examines almost
600 publicly reported outages in popular Internet services,
discusses the idea of “hidden single points of failure” and ob-
serves that the recovery process itself is often faulty or simply
doesn’t run because the right metrics are not being monitored.
Our model for metastable failures may help identify the met-
rics that may act as triggers. They also note that the recovery
process can be a source of metastable amplification, such as
with retry storms or failover to cold caches.

In the Azure incidents studied by Liu et al. [36], running-
environment mitigation techniques are commonly applied,
such as restarting or migrating processes or adding capacity
resources. The authors note that to date there has been little
work on automation of such recovery methods – this would
also be a fruitful direction in mitigating metastable failures.

What sets a metastable failure apart from all of the above
is that its root cause is not a specific hardware failure or a
software bug. It is an emergent behavior of a complex system
that naturally arises from optimizations for the common case.
Specifically, if the aforementioned failures do not trigger a
metastable failure, then identifying and eliminating them re-
stores the system functionality. If, however, they do trigger a
metastable failure, then eliminating them will not restore the
system’s functionality.

8 Conclusion
Metastable failures are a class of system failures character-

ized by sustaining effects that keep systems in a degraded state
and resist recovery. While relatively infrequent, metastable
failures were behind big outages at large internet companies
(including a recent AWS outage on December 7th, 2021). In
this work, we confirm this observation by studying public
incident reports. We then extend the metastability framework
based on our observations for a more accurate metastability
model. We validate our model by building three applications
and reproducing different instances of metastability on them.
We hope our work spurs further research into understanding
and preventing metastable failures.

Acknowledgments
We thank our shepherd Atul Adya and the anonymous

reviewers who provided constructive and helpful feedback.
We also thank Nathan Bronson for his insightful comments
and suggestions. This research was supported in part by AWS
Cloud Credit for Research.

86 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Appendix
A Proof of model theorems
A.1 Proof of Theorem 1

Assuming no overloading trigger, then by Definition 2 we
have Cnorm −Lnorm > mtrigL +mtrigC. So,

Lorg(t)≤ Lnorm +mtrigL (Definition 1)
<Cnorm −mtrigC (assumption)
≤Corg(t) (Definition 1)

Since Lorg(t)<Corg(t) for all t, then ∆ttrig = 0. Since wL(0)=
1 and wC(0)= 1, then αL(t)= 1 and αC(t)= 1 for all t. There-
fore, Lsys(t) = Lorg(t)<Corg(t) =Csys(t) for all t by Defini-
tion 4. Thus, the system is never overloaded and never in a
metastable failure state.

A.2 Proof of Theorem 2

Assume Lnorm <Cstable =
Cnorm

(w∗
L∗w∗

C)
. So,

Lnorm ∗αL(t)≤ Lnorm ∗w∗
L (Definition 4)

<Cstable ∗w∗
L (assumption)

=Cnorm ∗w∗
L/(w

∗
L ∗w∗

C) (assumption)
=Cnorm/w∗

C (algebra)
≤Cnorm ∗αC(t) (Definition 4)

Thus, under the normal conditions without triggers, the am-
plification factors are bounded such that the system is always
stable even with the worst-case amplification factors.

A.3 Proof of Theorem 3

Assume wL(∆ttrig)∗wC(∆ttrig)<
Cnorm
Lnorm

. So,
Lnorm ∗αL(t)≤ Lnorm ∗wL(∆ttrig) (Definition 4)

<Cnorm/wC(∆ttrig) (assumption)
≤Cnorm ∗αC(t) (Definition 4)

Thus, under the normal conditions without triggers, the am-
plification factors are bounded such that the system is always
stable.

A.4 Proof of Theorem 4
Assume at time t, Lsys(t) − Csys(t) ≥ αL(t) ∗ mtrigL +

αC(t)∗mtrigC. So,
Lnorm ∗αL(t)

= Lorg(t)∗αL(t)− (Lorg(t)−Lnorm)∗αL(t) (algebra)
≥ Lorg(t)∗αL(t)−mtrigL ∗αL(t) (Definition 1)
= Lsys(t)−mtrigL ∗αL(t) (Definition 4)
≥Csys(t)+αC(t)∗mtrigC (assumption)
=Corg(t)∗αC(t)+αC(t)∗mtrigC (Definition 4)
≥Corg(t)∗αC(t)+αC(t)∗ (Cnorm −Corg(t)) (Definition 1)
=Cnorm ∗αC(t) (algebra)

Thus, if at time t we removed the triggers and reverted to the
normal load and capacity, then the amplifying factors would
cause the system to remain in an overloaded state. So the
system is in a metastable failure state.

References
[1] Anonymous. Overload because of hint pres-

sure + MVs. Apache Cassandra Issue Tracker:
https://issues.apache.org/jira/projects/CASSANDRA/
issues/CASSANDRA-13810?filter=allopenissues,
2017.

[2] Azure Architecture Performance Antipatterns. Retry
Storm antipattern. https://docs.microsoft.com/en-us/
azure/architecture/antipatterns/retry-storm/, 2021.

[3] R.H. Arpaci-Dusseau and A.C. Arpaci-Dusseau. Fail-
stutter fault tolerance. In Proceedings Eighth Workshop
on Hot Topics in Operating Systems, pages 33–38, 2001.

[4] Microsoft Azure. Azure status history. https://status.
azure.com/en-us/status/history/, 2021.

[5] Betsy Beyer, Jennifer Petoff, Niall Richard Murphy, and
Chris Jones. Site Reliability Engineering: How Google
Runs Production Systems. https://sre.google/sre-book/
table-of-contents/, 2016.

[6] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: evidence and
implications. In IEEE INFOCOM ’99. Conference on
Computer Communications. Proceedings. Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat.
No.99CH36320), volume 1, pages 126–134 vol.1, 1999.

[7] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko,
and Timothy Zhu. Metastable Failures in Distributed
Systems. In Proceedings of the Workshop on Hot Top-
ics in Operating Systems, HotOS ’21, page 221–227,
New York, NY, USA, 2021. Association for Computing
Machinery.

[8] Miguel Castro and Barbara Liskov. Practical Byzan-
tine Fault Tolerance. In 3rd Symposium on Operating
Systems Design and Implementation (OSDI 99), New
Orleans, LA, February 1999. USENIX Association.

[9] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,
Gregory R. Ganger, Garth Gibson, Kimberly Keeton,
and Eric Xing. Solving the Straggler Problem with
Bounded Staleness. In Proceedings of the 14th USENIX
Conference on Hot Topics in Operating Systems, Ho-
tOS’13, page 22, USA, 2013. USENIX Association.

[10] CircelCI. DB Performance Issue Incident Report
for CircleCI. https://circleci.statuspage.io/incidents/
hr0mm9xmm3x6, 2015.

[11] IBM Cloud. Incident reports. https://cloud.ibm.com/
status/incident-reports, 2021.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 87

https://issues.apache.org/jira/projects/CASSANDRA/issues/CASSANDRA-13810?filter=allopenissues
https://issues.apache.org/jira/projects/CASSANDRA/issues/CASSANDRA-13810?filter=allopenissues
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/retry-storm/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/retry-storm/
https://status.azure.com/en-us/status/history/
https://status.azure.com/en-us/status/history/
https://sre.google/sre-book/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://circleci.statuspage.io/incidents/hr0mm9xmm3x6
https://circleci.statuspage.io/incidents/hr0mm9xmm3x6
https://cloud.ibm.com/status/incident-reports
https://cloud.ibm.com/status/incident-reports

[12] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In OSDI’04:
Sixth Symposium on Operating System Design and Im-
plementation, pages 137–150, San Francisco, CA, 2004.

[13] Down Detector. Downtime Detector). https://
downdetector.com, 2020.

[14] Availability digest article. Availability Digest). https:
//www.availabilitydigest.com/articles.htm, 2020.

[15] Thanh Do and Haryadi S. Gunawi. The Case for
Limping-Hardware Tolerant Clouds. In 5th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
13), San Jose, CA, June 2013. USENIX Association.

[16] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the Impact of Limpware on Scale-out
Cloud Systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing, SOCC ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

[17] Data Dynamics. Data center dynamics). https://www.
datacenterdynamics.com/en/news/?term=outages, 2020.

[18] Facebook. Solving the Mystery of Link Im-
balance: A Metastable Failure State at Scale).
https://engineering.fb.com/2014/11/14/production-
engineering/solving-the-mystery-of-link-imbalance-a-
metastable-failure-state-at-scale/, 2020.

[19] David Pobladori Garcia. Incident Management at
Spotify. https://engineering.atspotify.com/2013/06/04/
incident-management-at-spotify/, 2013.

[20] Jeremy M. Goldberg. The future of critical infrastruc-
ture is in the cloud. https://cloudblogs.microsoft.com/
industry-blog/government/2021/10/25/the-future-of-
critical-infrastructure-is-in-the-cloud/, 2021.

[21] Google. Google API infrastructure outage
incident report. Google Developers blog:
https://developers.googleblog.com/2013/05/google-
api-infrastructure-outage_3.html, 2013.

[22] Google. Google App Engine Incident #19007. https:
//status.cloud.google.com/incident/appengine/19007,
2019.

[23] Google. Google Compute Engine Incident #19008.
https://status.cloud.google.com/incident/compute/
19008, 2019.

[24] Google. Google Cloud Infrastructure Components Inci-
dent #20005. https://status.cloud.google.com/incident/
zall/20005, 2020.

[25] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. What
Bugs Live in the Cloud? A Study of 3000+ Issues in
Cloud Systems. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, page 1–14, New York,
NY, USA, 2014. Association for Computing Machinery.

[26] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why Does the Cloud Stop Com-
puting? Lessons from Hundreds of Service Outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, page 1–16, New York, NY, USA,
2016. Association for Computing Machinery.

[27] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production
Systems. In 16th USENIX Conference on File and Stor-
age Technologies (FAST 18), pages 1–14, Oakland, CA,
February 2018. USENIX Association.

[28] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Deepthi Srinivasan, Biswaranjan
Panda, Andrew Baptist, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert
Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,
Mingzhe Hao, and Huaicheng Li. Fail-slow at scale:
Evidence of hardware performance faults in large pro-
duction systems. ACM Trans. Storage, 14(3), oct 2018.

[29] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray Failure: The Achilles’ Heel of Cloud-
Scale Systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
150–155, New York, NY, USA, 2017. Association for
Computing Machinery.

[30] The Wall Street Journal. Amazon Outage Disrupts
Lives, Surprising People About Their Cloud Depen-
dency. https://www.wsj.com/articles/amazon-outage-
disrupts-lives-surprising-people-about-their-cloud-
dependency-11638972001, 2021.

[31] Leslie Lamport. The Part-Time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

88 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://downdetector.com
https://downdetector.com
https://www.availabilitydigest.com/articles.htm
https://www.availabilitydigest.com/articles.htm
https://www.datacenterdynamics.com/en/news/?term=outages
https://www.datacenterdynamics.com/en/news/?term=outages
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.atspotify.com/2013/06/04/incident-management-at-spotify/
https://engineering.atspotify.com/2013/06/04/incident-management-at-spotify/
https://cloudblogs.microsoft.com/industry-blog/government/2021/10/25/the-future-of-critical-infrastructure-is-in-the-cloud/
https://cloudblogs.microsoft.com/industry-blog/government/2021/10/25/the-future-of-critical-infrastructure-is-in-the-cloud/
https://cloudblogs.microsoft.com/industry-blog/government/2021/10/25/the-future-of-critical-infrastructure-is-in-the-cloud/
https://developers.googleblog.com/2013/05/google-api-infrastructure-outage_3.html
https://developers.googleblog.com/2013/05/google-api-infrastructure-outage_3.html
https://status.cloud.google.com/incident/appengine/19007
https://status.cloud.google.com/incident/appengine/19007
https://status.cloud.google.com/incident/compute/19008
https://status.cloud.google.com/incident/compute/19008
https://status.cloud.google.com/incident/zall/20005
https://status.cloud.google.com/incident/zall/20005
https://www.wsj.com/articles/amazon-outage-disrupts-lives-surprising-people-about-their-cloud-dependency-11638972001
https://www.wsj.com/articles/amazon-outage-disrupts-lives-surprising-people-about-their-cloud-dependency-11638972001
https://www.wsj.com/articles/amazon-outage-disrupts-lives-surprising-people-about-their-cloud-dependency-11638972001

[32] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems, pages 382–
401, July 1982.

[33] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan
Lu, and Haryadi S. Gunawi. TaxDC: A Taxonomy of
Non-Deterministic Concurrency Bugs in Datacenter Dis-
tributed Systems. SIGARCH Comput. Archit. News,
44(2):517–530, mar 2016.

[34] Tanakorn Leesatapornwongsa, Cesar A. Stuardo, Riza O.
Suminto, Huan Ke, Jeffrey F. Lukman, and Haryadi S.
Gunawi. Scalability Bugs: When 100-Node Testing
is Not Enough. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
24–29, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[35] John D. C. Little. A proof for the queuing formula: L =
λw. Oper. Res., 9(3):383–387, jun 1961.

[36] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 155–162, 2019.

[37] Sean Lynch. Avoiding Death Spirals in Distributed
Systems. https://blog.couchbase.com/avoiding-death-
spirals-distributed-systems/, 2021.

[38] Aaron McDade. Significant Outage for Amazon
Web Services Stalls Netflix, Delta Airlines, Oth-
ers. https://www.newsweek.com/significant-outage-
amazon-web-services-stalls-netflix-delta-airlines-
others-1657077, 2021.

[39] Panagiotis Moustafellos and Ben Osborne. Elas-
tic Cloud Incident Report: February 4, 2019.
https://www.elastic.co/blog/elastic-cloud-incident-
report-feburary-4-2019, 2019.

[40] Kiran Nagaraja, Fabio Oliveira, Ricardo Bianchini,
Richard P. Martin, and Thu D. Nguyen. Understanding
and Dealing with Operator Mistakes in Internet Services.
In 6th Symposium on Operating Systems Design & Im-
plementation (OSDI 04), San Francisco, CA, December
2004. USENIX Association.

[41] Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. Tol-
erating slowdowns in replicated state machines using
copilots. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
583–598. USENIX Association, November 2020.

[42] Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual

Technical Conference, USENIX ATC’14, page 305–320,
USA, 2014. USENIX Association.

[43] Byers Paddy. Cassandra counter columns: nice in theory,
hazardous in practice. https://ably.com/blog/cassandra-
counter-columns-nice-in-theory-hazardous-in-
practice, 2021.

[44] peakscale + postmortem. Postmortem reports). https:
//pinboard.in/u:peakscale/t:postmortem/, 2020.

[45] Postmortems. Postmortems info). https://postmortems.
info, 2020.

[46] Richard D. Schlichting and Fred B. Schneider. Fail-
Stop Processors: An Approach to Designing Fault-
Tolerant Computing Systems. ACM Trans. Comput.
Syst., 1(3):222–238, aug 1983.

[47] Amazon Web Services. Summary of the Amazon EC2
and Amazon RDS Service Disruption in the US East Re-
gion. https://aws.amazon.com/message/65648/, 2011.

[48] Amazon Web Services. Summary of the Amazon Sim-
pleDB Service Disruption. https://aws.amazon.com/
message/65649/, 2014.

[49] Amazon Web Services. Summary of the Amazon Dy-
namoDB Service Disruption and Related Impacts in
the US-East Region. https://aws.amazon.com/message/
5467D2/, 2015.

[50] Amazon Web Services. AWS Post-Event Sum-
maries. https://aws.amazon.com/premiumsupport/
technology/pes/, 2021.

[51] Amazon Web Services. Summary of the AWS Service
Event in the Northern Virginia (US-EAST-1) Region.
https://aws.amazon.com/message/12721/, 2021.

[52] Isabella Steger. How Amazon Outage Left Smart
Homes Not So Smart After All. https://www.bloomberg.
com/news/articles/2021-12-08/amazon-outage-sparks-
anger-as-fridges-stop-people-locked-out, 2021.

[53] Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O.
Suminto, Huan Ke, Jeffrey F. Lukman, Wei-Chiu
Chuang, Shan Lu, and Haryadi S. Gunawi. ScaleCheck:
A Single-Machine Approach for Discovering Scalability
Bugs in Large Distributed Systems. In 17th USENIX
Conference on File and Storage Technologies (FAST 19),
pages 359–373, Boston, MA, February 2019. USENIX
Association.

[54] Thousandeyes. Internet Outages Map. https://www.
thousandeyes.com/outages/, 2020.

[55] SRE Weekly. SRE Weekly Digest. https://sreweekly.
com/about-sre-weekly-2/, 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 89

https://blog.couchbase.com/avoiding-death-spirals-distributed-systems/
https://blog.couchbase.com/avoiding-death-spirals-distributed-systems/
https://www.newsweek.com/significant-outage-amazon-web-services-stalls-netflix-delta-airlines-others-1657077
https://www.newsweek.com/significant-outage-amazon-web-services-stalls-netflix-delta-airlines-others-1657077
https://www.newsweek.com/significant-outage-amazon-web-services-stalls-netflix-delta-airlines-others-1657077
https://www.elastic.co/blog/elastic-cloud-incident-report-feburary-4-2019
https://www.elastic.co/blog/elastic-cloud-incident-report-feburary-4-2019
https://ably.com/blog/cassandra-counter-columns-nice-in-theory-hazardous-in-practice
https://ably.com/blog/cassandra-counter-columns-nice-in-theory-hazardous-in-practice
https://ably.com/blog/cassandra-counter-columns-nice-in-theory-hazardous-in-practice
https://pinboard.in/u:peakscale/t:postmortem/
https://pinboard.in/u:peakscale/t:postmortem/
https://postmortems.info
https://postmortems.info
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65649/
https://aws.amazon.com/message/65649/
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/premiumsupport/technology/pes/
https://aws.amazon.com/premiumsupport/technology/pes/
https://aws.amazon.com/message/12721/
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.bloomberg.com/news/articles/2021-12-08/amazon-outage-sparks-anger-as-fridges-stop-people-locked-out
https://www.thousandeyes.com/outages/
https://www.thousandeyes.com/outages/
https://sreweekly.com/about-sre-weekly-2/
https://sreweekly.com/about-sre-weekly-2/

[56] AWS Well-Architected. Design Interactions in a
Distributed System to Mitigate or Withstand Failures.
https://docs.aws.amazon.com/wellarchitected/latest/
reliability-pillar/design-interactions-in-a-distributed-
system-to-mitigate-or-withstand-failures.html, 2021.

[57] Matt Welsh, David Culler, and Eric Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable Internet
Services. In Proceedings of the Eighteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’01, page
230–243, New York, NY, USA, 2001. Association for
Computing Machinery.

[58] Wikitech. Incident documentation/2021-03-30
Jobqueue overload. https://wikitech.wikimedia.
org/wiki/Incident_documentation/2021-03-
30_Jobqueue_overload, 2021.

[59] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tian-
wei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pa-
supathy. Do Not Blame Users for Misconfigurations. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 244–259,
New York, NY, USA, 2013. Association for Computing
Machinery.

[60] David Yanacek. Using load shedding to avoid over-
load. https://aws.amazon.com/builders-library/using-
load-shedding-to-avoid-overload/, 2021.

[61] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Ro-
drigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and
Michael Stumm. Simple testing can prevent most crit-
ical failures: An analysis of production failures in dis-
tributed data-intensive systems. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 249–265, Broomfield, CO, October
2014. USENIX Association.

[62] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving mapreduce
performance in heterogeneous environments. In Pro-
ceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, page
29–42, USA, 2008. USENIX Association.

[63] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi,
Kirk Rodrigues, Shan Lu, and Ding Yuan. Understand-
ing and Detecting Software Upgrade Failures in Dis-
tributed Systems, page 116–131. Association for Com-
puting Machinery, New York, NY, USA, 2021.

[64] Siyuan Zhou and Shuai Mu. Fault-Tolerant replica-
tion with Pull-Based consensus in MongoDB. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 687–703. USENIX
Association, April 2021.

90 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-interactions-in-a-distributed-system-to-mitigate-or-withstand-failures.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-interactions-in-a-distributed-system-to-mitigate-or-withstand-failures.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/design-interactions-in-a-distributed-system-to-mitigate-or-withstand-failures.html
https://wikitech.wikimedia.org/wiki/Incident_documentation/2021-03-30_Jobqueue_overload
https://wikitech.wikimedia.org/wiki/Incident_documentation/2021-03-30_Jobqueue_overload
https://wikitech.wikimedia.org/wiki/Incident_documentation/2021-03-30_Jobqueue_overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload/

	Introduction
	Metastability in the Wild
	Methodology
	Summary of Metastable Failures in the Wild

	Metastability Framework
	System Model
	Triggers
	Sustaining Effect Loop
	Metastability Scenarios
	System States
	Stable State
	Vulnerable State
	Metastable Failure State

	Recovery

	Metastability at Twitter
	Replicating Metastability
	Metastability due to GC
	Experiment Setup
	Inducing Metastable Failures

	Metastability due to Retries
	Experiment Setup
	Inducing Metastable Failures

	Metastability due to Look-aside Cache
	Experiment Setup
	Inducing Metastable Failures

	Discussion
	Multi-System Failures
	Human Factors
	Fix to Break
	Mild Metastable Failures
	Prevention and Mitigation

	Related Work
	Conclusion
	Proof of model theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

