
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

ListDB: Union of Write-Ahead Logs and
Persistent SkipLists for Incremental

Checkpointing on Persistent Memory
Wonbae Kim, UNIST; Chanyeol Park, Sungkyunkwan University and Naver;

Dongui Kim, Sungkyunkwan University and Line; Hyeongjun Park, Sungkyunkwan
University; Young-ri Choi, UNIST; Alan Sussman, University of Maryland,

College Park; Beomseok Nam, Sungkyunkwan University
https://www.usenix.org/conference/osdi22/presentation/kim

ListDB: Union of Write-Ahead Logs and Persistent SkipLists
for Incremental Checkpointing on Persistent Memory

Wonbae Kim† Chanyeol Park§,¶ Dongui Kim§,£ Hyeongjun Park§

Young-ri Choi† Alan Sussman‡ Beomseok Nam§

UNIST† Naver¶ Line£ University of Maryland, College Park‡ Sungkyunkwan University§

Abstract
Due to the latency difference between DRAM and non-

volatile main memory (NVMM) and the limited capacity
of DRAM, incoming writes are often stalled in LSM tree-
based key-value stores. This paper presents ListDB, a write-
optimized key-value store for NVMM to overcome the gap
between DRAM and NVMM write latencies and thereby,
resolve the write stall problem. The contribution of ListDB
consists of three novel techniques: (i) byte-addressable Index-
Unified Logging, which incrementally converts write-ahead
logs into SkipLists, (ii) Braided SkipList, a simple NUMA-
aware SkipList that effectively reduces the NUMA effects
of NVMM, and (iii) Zipper Compaction, which moves down
the LSM-tree levels without copying key-value objects, but
by merging SkipLists in place without blocking concurrent
reads. Using the three techniques, ListDB makes background
compaction fast enough to resolve the infamous write stall
problem and shows 1.6x and 25x higher write throughputs
than PACTree and Intel Pmem-RocksDB, respectively.

1 Introduction
Non-Volatile Main Memory (NVMM) is a new tier in the

memory/storage hierarchy. NVMM has latency comparable
to DRAM, but ensures non-volatility of data, similarly to sec-
ondary storage. Because NVMM is installed in the memory
slot, it is byte-addressable and operates at memory bus speeds.

In order to locate and retrieve data from large datasets
in NVMM, an efficient persistent index that takes into ac-
count the characteristics of NVMM is required. In the past
few years, various NVMM-only persistent indexing struc-
tures [11,13,24,35,45,49,56,63] and hybrid DRAM+NVMM
persistent indexing structures [38, 40, 49, 63] have been pro-
posed. In addition, several key-value stores that manage
large datasets using such persistent indexes and background
worker threads have been developed [12, 29, 30, 57, 60].
While NVMM-only indexing structures such as Fast and Fair
B+tree [24], CCEH [45], and PACTree [32] provide orders
of magnitude higher performance than their disk-based coun-
terparts, their performance is still lower than a DRAM index

because commercial NVMM products, e.g., Intel’s Optane
DC Persistent Memory Module, a.k.a., DCPMM [26], fall
short of the performance of DRAM. Specifically, DCPMM
has (i) latency higher than DRAM, (ii) bandwidth lower than
DRAM, (iii) high sensitivity to NUMA effects, and (iv) a
larger media access granularity (i.e., 256-byte XPLine) [62],
which transforms a small write into a larger read-modify-write
operation.

To benefit from DRAM performance and avoid the short-
comings of NVMM, the hybrid DRAM+NVMM indexing
structures and key-value stores proposed in previous stud-
ies [12,49,57,60] place the complexity of indexing in volatile
DRAM. In this work, we question whether such a hybrid
approach that ignores the byte-addressability, keeps the en-
tire index in DRAM, and uses NVMM only as log space is
desirable, because it has two major limitations. First, the ca-
pacity of DRAM is small. If a dataset’s index does not fit in
small DRAM, or if DRAM is shared with the working sets
of other processes, the existing hybrid DRAM+NVMM ap-
proaches may suffer from memory swapping of large indexes.
Second, a volatile DRAM index needs to be reconstructed
from scratch when recovering from a system failure. If a large
number of key-value objects are stored without a persistent in-
dex that can survive system crashes, the recovery time can be
significant. To improve the recovery performance, a volatile
index can be periodically checkpointed [12]. However, such a
periodic synchronous checkpointing results in very high tail
latency because it blocks concurrent writes.

We advocate asynchronous incremental checkpointing,
merging small, high-performance DRAM indexes into a per-
sistent index in the background for data recovery. ListDB is a
write-optimized LSM (log-structured merge) tree-based key-
value store for NVMM. ListDB achieves high performance
comparable to DRAM indexes, and prevents a DRAM in-
dex from growing indefinitely by flushing to NVMM at high
throughput exceeding that of a DRAM index. ListDB buffers
bulk insertions in a small DRAM index, and runs background
compaction threads to incrementally checkpoint the buffered
writes to NVMM without data copy. Instead, ListDB restruc-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 161

tures log entries as a SkipList rather than flushing the entire
volatile index to NVMM. Simultaneously, such SkipLists are
merged in place, reducing NUMA effects, without blocking
concurrent read queries.

Specifically, ListDB proposes the following three novel
techniques - Index-Unified Logging, Zipper Compaction, and
Braided SkipList. Our contributions are as follows.

• Fast Write Buffer Flush: ListDB unifies the write-ahead
log with SkipList. Using Index-Unified Logging (IUL),
ListDB writes each key-value object to NVMM only once,
as a log entry. Taking advantage of NVMM’s byte address-
ability, IUL converts a log entry into a SkipList element
in a lazy manner, which masks the logging and MemTable
flush overhead. Therefore, it makes the MemTable flush
throughput higher than the write throughput of the DRAM
index, thus resolving the write stall problem.

• Reducing NUMA Effects: Braided SkipList effectively re-
duces the number of remote NUMA node accesses by mak-
ing the upper layer pointers point only to the SkipList ele-
ments on the same NUMA node.

• Fast Compaction with In-Place Merge-Sort: Zipper
compaction merge-sorts two SkipLists in-place without
blocking read operations. By avoiding copy, Zipper com-
paction alleviates the write amplification [21, 41, 53] prob-
lem and reduces the number of SkipLists fast and efficiently
to improve read and recovery performance.
Our performance study shows that the write performance of

ListDB outperforms state-of-the-art NVMM-based key-value
stores. For read performance, ListDB relies on classic caching
techniques.

The rest of the paper is organized as follows. In Section
2, we present the background and motivation. In Section 3,
we present the design of ListDB. In Section 4, we compare
the performance of ListDB against state-of-the-art key-value
stores. Finally, we conclude the paper in Section 5.

2 Background and Motivation
2.1 Hybrid DRAM+NVMM Key-Value Store

Intel’s Optane DCPMM is much faster than block device
storage. However, its performance is still worse than that of
DRAM in terms of latency, bandwidth, NUMA sensitivity,
and access granularity [62]. Furthermore, byte-addressable
persistency complicates failure-atomicity (i.e., reusability af-
ter a system crash) because the CPU cache replacement mech-
anism may evict dirty cachelines that are not ready to be
persisted. When a system recovers, such prematurely written
cachelines may corrupt data structures. To guarantee failure-
atomicity despite such unexpected cacheline flushes, NVMM-
only data structures carefully order machine instructions using
memory fence instructions and call expensive clflush in-
structions frequently to persist dirty cachelines, which incurs
significant overhead in NVMM [24, 39, 56]. To avoid this,

several hybrid DRAM+NVMM indexing structures and key-
value stores have been proposed. For example, NV-tree [63]
and FP-tree [49] are variants of B+tree that store internal tree
nodes in DRAM and leaf nodes in NVMM. The internal nodes
are lost upon a system crash but can be reconstructed from
persistent leaf nodes. With this approach, writes to internal
nodes do not need to be failure-atomic.

FlatStore [12] takes a rather radical approach, i.e., NVMM
is used only as a log space where key-value objects are ap-
pended in insert order rather than key order, whereas the index
resides in DRAM. Therefore, FlatStore has to reconstruct a
volatile index from persistent log entries after a system crash.
To mitigate the expensive recovery overhead, FlatStore pro-
poses to checkpoint the DRAM index onto NVMM period-
ically. However, a naive synchronous checkpointing, as in
FlatStore, takes a global snapshot while blocking incoming
writes, leading to unacceptably high tail latency.

2.2 Log-Structured Merge Tree
2.2.1 Asynchronous Incremental Checkpointing
A better approach is asynchronous incremental checkpoint-
ing [28], which checkpoints only the difference between
the current checkpoint and the last checkpoint state. Log-
Structured Merge (LSM) tree [47] is a classic index that con-
solidates checkpoint data over time [10, 17, 20, 33, 36, 48, 54].

2.2.2 Write in LSM Tree
An LSM tree buffers multiple write operations in an in-
memory buffer space called MemTable, which sorts key-value
objects using an ordered index such as SkipList [10,17,20,33,
36, 48, 54]. Since a MemTable is volatile, a key-value object
is written to a write-ahead log (WAL) for crash consistency
before it is inserted into the MemTable. If the MemTable size
exceeds a certain threshold, it is marked as immutable and a
new MemTable is created so that the new MemTable can serve
incoming clients’ requests while a background thread trans-
forms the immutable MemTable into a sorted array called
SSTable (Sorted String Table), flushes it to disk, and then
deletes the corresponding log entries. This design leverages
the high performance of DRAM for random writes and the
high sequential write bandwidth of block devices.

The key range of a MemTable is not disjoint with those
of SSTables on disk. If a large number of MemTables are
converted into SSTables and the overlap between SSTa-
bles increases, background threads merge-sort them to in-
crementally construct fewer, eventually into one large sorted
array for fast search. This process, called compaction, is
the most significant performance bottleneck because the
same key-value object is repeatedly written to new SSTa-
bles [2, 9, 21, 29, 37, 41–43, 46, 53, 55].

2.2.3 Search in LSM Tree
For a read query, an LSM tree looks up a mutable MemTable,
immutable MemTables, and then SSTables from level 0 to

162 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 1: Two-Level LSM Tree without Level 0 Buffer Indexes

the upper levels, i.e., the recently stored objects are searched
first. The search performance of LSM trees is affected by the
degree of overlap between SSTables within and across levels
because a read query searches all SSTables whose key range
overlaps the search key until it finds a matched key. To reduce
the overlap and improve the search performance, compaction
threads merge-sort SSTables despite the high cost. Due to
overlap and multiple levels, the read performance of LSM
trees is worse than B+trees [27]. Nevertheless, LSM trees are
more popular than B+trees in NoSQL systems because simple
caching techniques can improve read performance. However,
improving write performance is not easy.

2.2.4 Side Effect of Write Buffer: Write Stall
The in-memory MemTable is effective in buffering writes.

However, despite buffering write bursts in the MemTable, tail
latency can be very high if the workload is write-intensive
because incoming writes can be blocked by artificial gov-
ernors [31]. For instance, if compaction is slow, immutable
MemTables will not be flushed to storage fast enough and
the number of immutable MemTables will increase. Sim-
ilarly, if SSTables are not merge-sorted quickly, the num-
ber of overlapping SSTables will increase, and search per-
formance will degrade. Most LSM tree-based key-value
stores [10, 17, 20, 33, 36, 48, 54] block clients from inserting
new objects into the MemTable until compaction finishes and
makes space for a new MemTable. This write stall problem
occurs frequently in disk-based LSM tree-based key-value
stores because of the high latency of the disk. If the write
stall problem occurs, the insertion throughput is bounded by
persistent storage performance, failing to benefit from the fast
write buffer (DRAM) performance.

2.2.5 Write Amplification in LSM Trees
2.2.5.1 Multi-Level vs. Two-Level Compaction

As SSTables accumulate in storage, LSM trees perform
compaction to merge-sort SSTables and reduce the overlap.
Compaction is particularly expensive in disk-based key-value
stores because they copy key-value objects between SSTable
files. That is, compaction threads select a set of overlapping
SSTables at level k and another set of SSTables that overlap at
the next level k+1, and merge-sort them to create a new set of
SSTables at level k+1. Such copy-based compaction allows
concurrent read queries to access old SSTables while new
SSTables are being created. However, copy-based compaction
requires the same objects to be repeatedly copied to new

Figure 2: Three-Level LSM Tree with Level 0 Buffer Indexes

SSTables. The number of times a key-value object is copied to
a new file, called write amplification factor, has been reported
to be as high as 40 [41, 53, 55]. The write amplification is
particularly serious if key-value stores use leveled compaction
and a large number of levels [53,55]. The leveled compaction
limits the number of SSTables per level and prevents any
overlap between the SSTables at the same level.

NVMM allows byte-addressable updates. Therefore, there
is an opportunity to avoid write amplification and improve
compaction performance by replacing multiple levels of SSTa-
bles with a high-performance single-level persistent index. In
particular, SLM-DB [29] uses two levels, i.e., MemTables
and a single persistent B+tree in NVMM. Using the two-level
design (shown in Figure 1), MemTables buffer multiple key-
value objects and later insert them into a large persistent index
in ascending order of keys, such that the large persistent index
is traversed only once for multiple writes and it yields a higher
write throughput than a single persistent index.

2.2.5.2 Decoupling Merge-Sort from Flush

The main problem with the two-level design is that the size
of the persistent index affects the performance of merging
volatile indexes into a persistent index, i.e., it fails to make
write performance independent of NVMM performance. This
is because MemTables are not flushed1 as-is, but merge-sorted
into the large, slow persistent index. Because NVMM has
higher latency than DRAM, merge-sort throughput is much
lower than insert throughput of volatile indexes, especially
when the persistent index is large.

To alleviate this problem, most key-value stores including
LevelDB [36] and RocksDB [54] employ an intermediate
persistent buffer level (level 0, L0) in storage. That is, they
flush MemTables to the intermediate buffer level without do-
ing merge-sort. Figure 2 shows such a three-level design. By
separating merge-sort from flush, MemTables can be flushed
to NVMM faster; the flush throughput becomes independent
of the database size.

A drawback of this design is that it results in a large num-
ber of overlapping SSTables, which hurts search performance.
Given its poor indexing performance, the intermediate per-
sistent buffer level does not appear to be very different from
write-ahead log. Furthermore, key-value objects are written

1To avoid confusion with the cacheline flush instruction (e.g., clflush),
writing a MemTable to NVMM is henceforth referred to as flush, and the
cacheline flush is referred to as persist.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 163

Figure 3: ListDB Architecture

to storage at least twice, i.e., once for WAL and once again
for MemTable flush.

TRIAD [3], WiscKey [41], and FlatStore [12] prevent the
same key-values (or just values) from being repeatedly writ-
ten. TRIAD is particularly inspiring because it considers the
commit log as an unsorted L0 SSTable. To enable efficient
search in the unsorted L0 SSTables (the commit log), TRIAD
creates a small index file for each L0 SSTable. The index
file does not store keys and values, only the offsets for each
object in sorted order of the keys. Although TRIAD reduces
the I/O traffic, each MemTable flush creates an index file and
calls the expensive fsync() to make it durable. However,
given the high overlap between L0 SSTables and also the fact
that L0 SSTables will be quickly merged into L1 SSTables,
it is questionable whether a separate index file for each L0
SSTable should be created and persisted at a very high cost.

2.3 NUMA Effects
NVMM is more sensitive to NUMA effects than DRAM
because of its lower bandwidth (1/6 for writes and 1/3 for
reads) [16,57,62]. As such, state-of-the-art persistent indexes,
such as FAST and FAIR B+tree [24] and CCEH [45] do not
scale with the number of threads due to irregular cacheline
accesses and NUMA effects [32, 57].

To mitigate the NUMA effects, Daase et al. [16] sug-
gest limiting the number of write threads to 4-6 per socket.
Nap [57] hides NUMA effects by overlaying a DRAM index
on top of NVMM-resident indexes such that the DRAM in-
dex can absorb remote NUMA node accesses. However, data
stored in NVMM is already in the memory address space, and
NVMM has latency comparable to DRAM. Therefore, using
DRAM as a fast cache layer over NVMM and copying data
between DRAM and NVMM back and forth can be wasteful.
For example, NVMM file systems such as EXT4-DAX and
NOVA [61] do not use the page cache but directly access
NVMM.

To mitigate NUMA effects in DRAM, various approaches,
including Delegation with hash-based sharding [4, 6, 7, 44]

and Node Replication (NR) [7] methods, have been investi-
gated. In Delegation methods, a designated worker thread is
assigned for all operations on a specific range of keys. There-
fore, client threads have to communicate with worker threads
and delegate operations using message passing. Due to the
significant message passing overhead, Delegation performs
sub-optimal, especially for lightweight tasks such as index-
ing operations [7]. Node Replication (NR) [7] implements a
NUMA-aware shared log, which is used to replay the same
operations for the data structures replicated across NUMA
nodes. However, this consumes memory for replicating the
same data structure across multiple NUMA nodes. Besides,
the performance falters due to cross-node communication, as
the number of NUMA nodes increases [7]. Considering that
the bandwidth of Optane DCPMM is much lower than that
of DRAM [62], replication can aggravate the low bandwidth
problem.

3 Design of ListDB
ListDB is a write-optimized key-value store with an LSM

tree structure that resolves the write stall problem. In this
section, detailed descriptions of ListDB’s key designs are
provided. First, the overall architecture of ListDB is pre-
sented (§3.1). Then, its key designs, i.e., Index-Unified Log-
ging (§3.2), NUMA-aware Braided SkipList (§3.3), in-place
Zipper Compaction (§3.4), lookup cache (§3.5), and recovery
algorithm (§3.6) are presented.

3.1 Three-Level Architecture
Figure 3 shows the three-level architecture of ListDB-

volatile MemTables, and L0 and L1 Persistent MemTables
(PMTables). MemTables and PMTables are essentially the
same SkipLists, but the node structure of PMTable has ad-
ditional metadata that MemTable does not need because
PMTable is a data structure transformed from the write-ahead
log. ListDB uses SkipList as the core data structure for all
levels because it enables byte-addressable in-place merge-sort
and avoids the write amplification problem [21, 41, 53], as
will be presented throughout the paper.

ListDB employs an intermediate persistent buffer level -
L0 (level 0) in NVMM. With level 0, a MemTable is flushed
to NVMM without being merge-sorted, making the flush
throughput independent of the next level persistent index size.
MemTables accumulated at L0 (L0 PMTables) are gradually
merged into the large L1 PMTable by compaction. To man-
age multiple PMTables, ListDB uses a metadata object called
MANIFEST to point to the beginning of each SkipList.

3.2 Index-Unified Logging
ListDB aims to flush MemTables to NVMM without copy-

ing key-value objects. As discussed in Section 2.2.5.2, all
key-value objects in MemTables are already persisted in the
commit log in NVMM [3]. Besides, L0 indexes are known to
have very poor indexing performance due to large overlap.

164 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: Index-Unified Log Entry Layout

Figure 5: Index-Unified Logging

3.2.1 Conversion of IUL into SkipList

Index-Unified Logging (IUL) unifies write-ahead log en-
tries and SkipList elements by allocating and writing log
entries in the form of SkipList elements. Figure 4 shows the
structure of an IUL entry, which serves both as a log entry and
as a SkipList element. When a key-value object is inserted
into a MemTable, the object and its metadata (i.e., operation
code op_code and log sequence number LSN) are written and
persisted as a log entry in NVMM with SkipList pointers
initialized to NULL (Algorithm 1). Later, when a compaction
thread flushes its corresponding MemTable from DRAM, the
log entry is converted into a SkipList (L0 PMTable) element,
reusing the key and value stored in the log entry.

The information that L0 PMTable needs, but the log does
not have, is the sorted order of keys, which is managed as
SkipList pointers in MemTables. When converting the log into
an L0 PMTable, the addresses of the corresponding MemTable
elements are simply translated into NVMM addresses, i.e., the
log entry offsets, as shown in Algorithm 2. When the SkipList
pointers in IUL entries are set to NVMM addresses, the IUL
entries become SkipList elements.

Finally, the MANIFEST is updated to validate the new
L0 PMTable and invalidate the immutable MemTable in a
failure-atomic transaction.

3.2.2 MemTable Flush without clflush

When writing SkipList pointers to log entries, there is no
need to call persist instructions (e.g.,clflush) because the
key-value objects are already persistent in the log, and be-
cause the order of keys can be recovered without difficulty
in case of a crash. Instead of explicitly persisting cachelines
for updated pointers, Index-Unified Logging leaves that to
the CPU cache replacement mechanism, i.e., it waits until the
CPU evicts updated pointers from its cache. Through the CPU
cache replacement mechanism, multiple pointer updates to
the same 256-byte XPLine can be buffered and batched. That
is, each 8-byte small write is not eagerly transformed into a
256-byte read-modify-write operation. Not only does it defer
the read-modify-write problem, but also prevents background

Algorithm 1 Put(kvObject)
1: mutex.lock();
2: iul_entry← iul_tail;
3: iul_entry.LSN← GetNextLSN(); /* log sequence number */
4: iul_entry.height← RandomHeight(); /* SkipList element height */
5: iul_tail← iul_tail + sizeof(kvObject) + height∗8 + 8;
6: mutex.unlock();
7: iul_entry.op_code← OP_INSERT; /* operation type (insert, delete) */
8: iul_entry.kvObject← kvObject;
9: iul_entry.next[0..height]← NULL; /* initialize pointers */

10: pmem_persist(iul_entry, sizeof(iul_entry)); /* calls clwb */
11: memTable.Insert((SkipListElement)iul_entry); // classic SkipList insert

Algorithm 2 FlushImmutableMemTable(memTable)
1: element← memTable.head[0].next[0]; // smallest MemTable element
2: while element6=NULL do
3: L0_element← element.iul_address;
4: lookup_cache.Insert(L0_element);
5: for layer← 0; layer < element.height; layer++ do
6: L0_element.next[layer]← element.next[layer].iul_address;
7: /* no need to persist */
8: end for
9: end while

10: new_L0.iul_address← memTable.head[0].next[0].iul_address;
11: new_L0.next←MANIFEST.L0List().GetFront();
12: MANIFEST.L0List().PushFront(new_L0); /* CAS */
13: freeMemTable(memTable);

compaction threads from being affected by the read-modify-
write problem and high NVMM write latency.

3.2.3 Walk-Through Example
Let us walk through MemTable flush illustrated in Figure 5.

Suppose foreground client threads insert keys into the cur-
rently mutable MemTable in the order of 503, 912, and 3.
Each client thread persists the object, its metadata, and NULL
pointers in the log before it commits. Then, a background
thread marks the MemTable as immutable and creates a new
MemTable. Client threads insert two more keys, 716 and 217,
into the new mutable MemTable.

When a background compaction thread flushes the im-
mutable MemTable, i.e., (3, 503, 912), the pointers of each
MemTable element are simply translated into the IUL off-
sets of the corresponding log entries and the NULL pointers
are replaced with the IUL offsets so that the log entries be-
come a SkipList, as shown in Figure 6(a). As described in
Section 3.2.2, the updated pointers in the new L0 PMTable
may remain in the CPU cache and may be lost upon a system
crash, but the pointers are not required for crash consistency.

3.2.4 Checkpointing L0 PMTable
Although the log entries are now converted to L0 PMTable el-
ements, the boundary between logging space and L0 PMTable
space (denoted as a thick dotted line in Figure 6(a)) has not
moved, because it is not guaranteed that the pointers of the
new L0 PMTable are persistent. The boundary can only move
if clflush instructions are explicitly called for the updated
pointers. In our implementation, a background thread per-
sists dirty cachelines for L0 PMTables in batches. This op-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 165

(a) NVMM Layout Before Checkpointing

(b) NVMM Layout After Checkpointing

Figure 6: NVMM Layout of Index-Unified Logging

eration is referred to as checkpointing. Figure 6(b) shows
the NVMM layout after the pointers are explicitly persisted.
Once a PMTable is checkpointed, it is possible to move the
boundary of the logging space to reduce the number of log
entries to recover, as shown in Figure 6(b).
3.2.4.1 Lazy Group Checkpointing

Checkpointing reduces recovery time. However, ListDB
defers checkpointing as much as possible, because calling
clflush instructions is very expensive. Even if L0 PMTables
are not persisted at all, it does not affect crash consistency
because all the elements in all L0 PMTables will be treated
as log entries if the system crashes, and the key order of L0
PMTable elements can be reconstructed from the log.

In our implementation, multiple L0 PMTables are grouped
and dirty cachelines for them are persisted in batches. We call
this lazy group checkpointing. Note that there is a trade-off
between lazy group checkpointing and recovery time. Infre-
quent checkpointing increases the log size and it takes longer
to recover. In contrast, if checkpointing frequency is high,
recovery will be fast, but flush throughput degrades.

Zipper compaction, which will be described in Section 3.4,
persists pointers fast enough to prevent the number of L0
PMTables from increasing. That is, even if IUL does not
persist any L0 PMTable, Zipper compaction persists pointers
fast when merging an L0 PMTable into the L1 PMTable, and
the recovery time of IUL is much shorter than synchronous
checkpointing, as will be shown in Section 4.

3.3 NUMA Effects for SkipList
ListDB employs a NUMA-aware data structure, which is
more scalable and effective in minimizing NUMA intercon-
nect contention than Delegation and Node Replication [7].
3.3.1 NUMA-aware Braided SkipList
A SkipList has the invariant that the list at each layer2 is a
sorted sub-list of the bottom layer [52]. Unless this invariant

2To avoid confusion with the level of LSM trees, the level of SkipList
will be referred to as layer.

Figure 7: NUMA-aware Braided SkipList

is violated, correct search results are guaranteed because the
upper layer pointers are probabilistic shortcuts, which do not
affect the correctness of search results. However, an upper
layer does not need to be a sub-list of the next layer, as long
as it is a sub-list of the bottom layer. Even if a search does
not find a key closer to the search key in an upper layer, the
search falls back to a lower layer and eventually to the bottom
layer which contains all sorted keys.

The Braided SkipList of ListDB leverages this property to
mitigate NUMA effects in a simple and effective way. Upper
layer pointers ignore SkipList elements in remote NUMA
nodes; i.e., upper layer pointers of each element point to an
element with a larger key in the same NUMA node. Com-
pared to NUMA-oblivious conventional SkipLists, Braided
SkipList reduces the number of remote memory accesses to
1/N, where N is the number of NUMA nodes, as will be shown
in Section 4.

Figure 7 illustrates an example (The upper layers in NUMA
node 1 are illustrated upside down for ease of presentation).
Observe that the second layer pointer of element 3 on NUMA
node 0 points to element 7 on the same NUMA node, instead
of element 5 on NUMA node 1. Nonetheless, a correct search
is guaranteed. For example, suppose a client thread running
on NUMA node 0 searches for element 5. It will follow the
top layer to element 3, then 9. Since 9 is greater, the thread
moves down one layer in element 3, and then the search visits
element 7. Since 7 is greater than 5, the thread moves down
again and follows the bottom layer pointer to element 4. Since
the search key is greater than 4, it follows the bottom layer to
a remote SkipList element 5. The search then completes.

In our implementation of Braided SkipList, a NUMA ID is
embedded in the extra 16 bits of the 64-bit virtual address, as
in pointer swizzling [59], such that it can use 8-byte atomic
instructions instead of expensive PMDK transactions [50]. For
direct reference, Braided SkipList restores the virtual memory
address of a SkipList element by masking the extra 16 bits.

3.4 Zipper Compaction
With byte-addressable NVMM, Zipper compaction merge-
sorts L0 and L1 PMTables in-place by only updating pointers,
but without blocking concurrent read queries. The in-place
merge-sort avoids write amplification, thus it improves the
compaction throughput.

Leveraging the SkipList invariant (§3.3.1), various lock-
free SkipLists have been studied in the literature [22, 23],
and the Java™ SE ConcurrentSkipListMap class has been

166 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Scan Phase (b) Merge Step 1 (c) Merge Step 2 (d) Merge Step 3,4

(e) Merge Step 5 (f) Merge Step 6 (g) Merge Step 7,8 (h) Compaction Done

Figure 8: Zipper Compaction: Merging SkipLists from Tail to Head

shown to perform well in practice [34]. Zipper compaction
algorithm allows concurrent read operations to access L0
and L1 PMTables while merging them without violating the
invariant of SkipList.

A classic lock-free SkipList avoids locks for multiple writ-
ers. In contrast, ListDB does not perform concurrent writes;
the only writers are the compaction threads, and ListDB coor-
dinates them to avoid write-write conflicts. For parallelism,
multiple compaction threads write to disjoint shards. A shard
is a disjoint key range from an element with the maximum
height to the next element with the maximum height in L1
PMTable. To merge L0 elements into L1, a compaction thread
must acquire a lock on the corresponding shard.

Zipper compaction proceeds in two phases; (i) a forward
scan from head to tail and (ii) a backward merge from tail
to head, hence the name. To guarantee correct search results
without blocking concurrent readers, L0 PMTable elements
are merged into L1 PMTable from tail to head while concur-
rent read operations are traversing them from head to tail.

3.4.1 Scan Phase
In the forward scan phase, a compaction thread traverses L0
and L1 PMTables from head to tail and determines where each
L0 PMTable element should be inserted in the L1 PMTable.
However, in this phase, it does not make any change to the
PMTables but pushes necessary pointer updates on a stack.
The backward merge phase pops the stack to apply and persist
the updates to the L1 PMTable.

The scan phase follows the bottom layer of L0 PMTable.
For each L0 element, it searches the L1 PMTable to find
where to insert the L0 element. For this, it keeps track of
the rightmost element smaller than the current search key
(L0 element) in each layer to avoid repeatedly traversing L1
PMTable. Since keys are sorted in both PMTables, the next
larger key in L0 PMTable can reuse the previous rightmost
elements, and backtrack to the top-layer rightmost element for

the next search. Therefore, the complexity of the scan phase
is O(n0 + logn1) where n0 and n1 are the sizes of L0 and L1
PMTables, respectively.

Algorithm 3 shows the pseudo-code of Zipper com-
paction. For NUMA-aware Braided SkipLists, Zip-
per compaction requires a two-dimensional array -
rightmost[numa_id][layer] to keep as many rightmost
elements in each layer as the number of NUMA nodes for
Braided SkipList. But, note that a Braided SkipList element
does not need more pointers than a conventional SkipList
element as it embeds NUMA node ID in the 8-byte address.

Figure 8(a) shows an example of Zipper scan. For ease
of presentation, all SkipList elements are assumed to be on
the same NUMA node. The first element A in L0 will be
placed in the first position in L1. Hence, H0 and H1 of the
head element in L1 are the current rightmost pointers that
need to be updated for A. This information is stored on the
stack. Note that A0 and A1 need to point to B, but they are
not pushed onto the stack because B is pointed by the current
rightmost elements that are already pushed on the stack. Each
L0 element is inserted between two L1 elements and only the
previous (i.e., rightmost) element in each layer needs to be
pushed on the stack because the next element can be found
from the previous elements. Next, the scan phase visits the
second element D in L0 and searches L1. Inserting D requires
updating B2, C1, and C0. Again, they are pushed onto the stack.
Finally, it visits the last element E in L0 and searches L1. Note
that L1 PMTable has not changed and the current rightmost
pointers are still B2, C1, and C0. Thus, the scan phase pushes
C1 and C0 on the stack to make them point to E.

3.4.2 Merge Phase
The merge phase applies pointer updates from tail to head.
When a compaction thread pops a pointer update XN → Y
from the stack, the Nth layer pointer in element Y is updated
to the current value of XN . Then, XN is set to the address of Y .

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 167

Algorithm 3 BraidedZipperCompaction(L0SkipList, L1SkipList)
1: LogZipperCompactionBegin(L0SkipList); // micro-logging
2: L0_element← L0SkipList.head[0].next[0]; // smallest L0 element
3: local_numa_id← DecodeNumaId(L0_element); // not always 0
4: for i← 0; i < NumNUMA; i++ do
5: rightmost[i][]← L1SkipList.head[i].next[]; // array copy
6: end for
7: bottom_L1_element← L1SkipList.head[0].next[0];
8: L1_element← L1SkipList.head[local_numa_id]; // local head
9: // I. scan phase: from head to tail

10: while L0_element6=NULL do
11: // NUMA-aware local search for upper layer pointers
12: for layer← L0_element.height−1; layer > 0; layer−− do
13: while L1_element.next[layer] 6= NULL &&

L1_element.next[layer].key < L0_element.key do
14: L1_element← L1_element.next[layer];
15: // update the rightmost for the current layer
16: rightmost[local_numa_id][layer]← L1_element;
17: end while
18: end for
19: // NUMA-oblivious search for bottom-layer pointer, i.e., layer = 0
20: L1_element← bottom_L1_element;
21: <<same while loop with line 13–17 >>
22: // push an array of NUMA local upper-layer pointers and a NUMA-

oblivious bottom layer pointer
23: stack.push(L0_element, rightmost[local_numa_id][]);
24: // fetch the next L0_element and update local NUMA ID
25: L0_element← L0_element.next[0];
26: local_numa_id← DecodeNumaId(L0_element);
27: bottom_L1_element← L1_element;
28: L1_element← rightmost[local_numa_id][L0_element.height−1];
29: end while
30: // II. merge phase: from tail to head
31: while stack is not empty do
32: (L0_element, rightmost2update[])← stack.pop();
33: for layer← 0; layer < L0_element.height; layer++ do
34: // Pop and apply the updates without worries about NUMA IDs
35: L0_element.next[layer]← rightmost2update[layer].next[layer];
36: if layer = 0 then
37: persist(L0_element.next[layer]);
38: end if
39: rightmost2update[layer].next[layer]← L0_element;
40: if layer = 0 then
41: persist(rightmost2update[layer].next[layer]);
42: end if
43: end for
44: second_chance_cache.Insert(L0_element);
45: end while
46: MANIFEST.L0List().PopBack(); /* CAS */
47: LogZipperCompactionDone(L0SkipList); // micro-logging

In the example, shown in Figure 8(b), the compaction thread
pops C0→E and sets E0 to F, which is the current value of C0.
At this point, the upper layer pointer of element E (E1) is not
pointing to element F. However, as described earlier, upper
layer pointers are probabilistic shortcuts, which do not affect
the correctness of search. Therefore, there is no need to update
E0 and E1 atomically. In the next step, shown in Figure 8(c),
the compaction thread sets C0 to the address of E. In the
next step, shown in Figure 8(d), the compaction thread pops
C1→E, sets E1 to F, and makes C1 point to E. Each pointer
update is removed from the stack one by one, and is applied
in order, as shown in Figures 8(e), 8(f), 8(g), and 8(h). Zipper
compaction assumes 8-byte pointer updates are atomic. To

make the updates failure-atomic, it persists each bottom layer
update immediately using memory fence and cacheline flush
instructions. In the final step, the compaction thread deletes
the head element of L0 PMTable from the MANIFEST object,
thus completing compaction.

3.4.3 Lock-Free Search
Zipper compaction does not violate the correctness of concur-
rent search, i.e., a read thread will not miss its target SkipList
element without acquiring a lock. This is because a read
thread accesses PMTables from head to tail and from L0 to
L1, whereas a compaction thread merges them from tail to
head. During Zipper compaction, every element is guaran-
teed to be pointed by at least one head. Consider the example
shown in Figure 8, which shows how a sequence of atomic
store instructions merges the two example SkipLists. Even if
a concurrent read thread accesses the PMTables in any state
shown in Figure 8, it returns a correct result.

The algorithm remains correct even if a read thread is
suspended during compaction thread is making changes to
SkipLists. For example, suppose a read is suspended while
accessing an L0 element. When it resumes, the element might
have been merged into L1. When the read thread wakes up,
it will continue traversing to the tail if it does not find the
search key. Once it reaches the tail, it is done with L0 and
will start searching L1, into which L0 elements have been
merged. Consequently, the read thread might visit the same
elements multiple times, but it will never miss the element it
is searching. Multiple visits might hurt search performance.
To avoid this, a read stops searching the L0 if it detects the
level of the current element is L1.

3.4.4 Updates and Deletes
An update in LSM trees duplicates the same key because
writes are buffered in MemTables and gradually flushed to the
last level. ListDB does not eagerly delete the older version in
L1. Instead, when a compaction thread scans L0 and L1 levels
for Zipper compaction, it marks the older version in L1 obso-
lete. Similarly, a delete in ListDB does not physically delete
an object but inserts a key-delete object into the MemTable.
If an LSM tree physically deletes the most recent version of a
key from MemTables or L0 PMTables, older versions of the
key will come back to life. Zipper compaction places a more
recent key-value or key-delete object before its corresponding
old objects. Therefore, a read query always accesses the more
recent object before older ones, and thus returns a correct
search result.

3.4.5 Fragmentation and Garbage Collection
Using libpmemobj library [50], ListDB allocates and deallo-
cates a memory chunk (e.g., 8 MB) for multiple IUL entries
in PMDK’s failure-atomic transaction so that the number of
calls to expensive PMDK transactions can be reduced. ListDB
deallocates a memory chunk if all elements in the chunk are
marked obsolete or deleted. Note that ListDB does not re-
locate SkipList elements for garbage collection. To address

168 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the lasting fragmentation, a compaction thread may perform
CoW-based garbage collection. We leave this optimization
for our future work.

Memory management for lock-free data structures is a hard
problem because there is no easy way to detect whether deal-
located memory space is still being accessed by concurrent
reads [5, 14, 19]. ListDB employs a simple epoch-based recla-
mation [14]; ListDB does not deallocate memory chunk im-
mediately but waits long enough for short-lived read queries
to finish accessing the deallocated memory chunk. A back-
ground garbage collection thread periodically checks and
reclaims a memory chunk if all objects in the memory chunk
are obsolete or deleted. For obsolete objects, the garbage col-
lection thread checks its newer version’s LSN. If it is also old
enough, it considers the obsolete objects are not accessed by
any reads, removes them from L1 PMTable, and physically
deallocates the memory chunk.

3.4.6 Linearizability
Theorem 1. Zipper compaction is linearizable with a single
writer and multiple readers.

Proof. For some element e, there is a single linearization
point [23] for a writer when its level changes from L0 to L1,
by atomic update of the bottom-layer next pointer. We denote
this linearization point as e.merge_to_L1.

There are two linearization points e.search_L0 and
e.search_L1 for a reader, as it searches L0 and then L1
PMTable in order. Let a→ b if an event a happens before
another event b. There are three cases to consider.

1. e.merge_to_L1→ e.search_L0→ e.search_L1
2. e.search_L0→ e.merge_to_L1→ e.search_L1
3. e.search_L0→ e.search_L1→ e.merge_to_L1
In case 1, e.search_L1 will find e in L1. In case 2,

e.search_L0 will find e in L0. If the search does not stop after
finding e in L0, e.search_L1 will also find e in L1. In case 3,
similarly, e.search_L0 will find e. Since all three cases suc-
ceed in finding e, Zipper compaction is linearizable, meaning
a read always succeeds in finding an element if the element
was inserted by a committed write transaction, regardless of
whether the element is in L0 or L1 PMTable.

3.5 Look-up Cache
ListDB requires that a read query accesses at least two in-

dexes, i.e., a mutable MemTable and L1 PMTable. Therefore,
the read throughput of ListDB is significantly lower than a
highly-optimized persistent B+tree, as we show in Section 4.

To mitigate this problem, ListDB uses a lookup cache in
DRAM. Flushing a MemTable hashes each element into a
fixed-sized static hash table. Unlike disk-based designs, the
lookup cache does not duplicate the element in it, but only
stores its NVMM address because the element in NVMM is
already in the memory address space and its address never
changes. Hence, regardless of the level at which the PMTable
element is present, the lookup cache can locate the PMTable

Algorithm 4 Get(key)
1: iter←MANIFEST.GetTableIterator();
2: table← iter.GetTable(); // get mutable MemTable
3: while table 6= NULL && table.IsPMTable() = false do
4: value← table.Search(key); // SkipList lookup
5: if value 6= NULL then
6: return value; // Found: return value
7: end if
8: table← (++iter).GetTable(); // immutable MemTables
9: end while

10: /* L0 Cache Lookup */
11: cached← lookup_cache.Lookup(key);
12: if cached 6= NULL && cached.GetElement().key = key then
13: return cached.GetElement().value;
14: end if
15: /* L0 Search */
16: while table 6= NULL && table.Level() = 0 do
17: value← table.Search(key); // SkipList lookup
18: if value 6= NULL then
19: return value; // Found: return value
20: end if
21: table← (++iter).GetTable(); // L0 PMTables
22: end while
23: /* L1 Search */
24: rightmost← second_chance_cache.Lookup(key);
25: value← table.SearchFromElement(key, rightmost);
26: if value 6= NULL then
27: return value; // Found: return value
28: end if
29: return NOT_FOUND;

element. SkipList pointers are frequently updated by com-
paction threads in ListDB. By caching immutable addresses,
not mutable content, the lookup cache can avoid frequent
cache invalidation. If a hash collision occurs on a bucket, the
old address is overwritten (i.e., FIFO replacement policy).

ListDB constructs a SkipList in DRAM as a second chance
lookup cache for tall elements evicted from the hash table. The
purpose of the second chance lookup cache is to accelerate
PMTable search. Even if a key is not found in the second
chance cache, a query can start the search from the closest
PMTable element found in the cache. Algorithm 4 shows how
a read query uses the lookup caches. Suppose a read searches
for key 100 but finds element 85 is the closest smaller element
in L1. Then, the search continues from element 85 in L1
PMTable instead of the beginning of L1. ListDB does not use
the second chance lookup cache for L0 search because small
L0 PMTables are merged into L1 fast, and L0 elements are
mostly cached in the lookup hash table, The second chance
lookup cache uses the SIZE replacement policy [58], i.e., it
compares heights and evicts elements with shorter heights.

3.6 Recovery
A system may crash while L0 and L1 PMTables are being

merged by Zipper compaction. To recover from such failures,
a compaction thread performs micro-logging to keep track of
which L0 PMTable is being merged into L1 PMTable. When a
system restarts, ListDB checks the compaction log to redo un-
finished compactions. For redo operations, Zipper compaction
has to check duplicate entries since many entries in the tail of

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 169

Algorithm 5 RecoverDB()
1: ScheduleUnfinishedZipperCompactionJob();
2: curr_table← NULL;
3: while log_iter.Valid() do
4: iul_entry← log_iter.GetIULEntry();
5: table_id← GetTableIdByLSN(iul_entry.LSN);
6: if curr_table = NULL || table_id 6= curr_table.Id() then
7: curr_table←MANIFEST.GetTableById(table_id);
8: curr_table.ResetSkipListHead();
9: end if

10: curr_table.InsertEntry(iul_entry); /* SkipList Insert */
11: log_iter.Next(); /* from old to latest */
12: end while

L0 PMTable can be shared with L1 PMTable.
The recovery algorithm of ListDB, shown in Algorithm 5,

is similar to that of conventional LSM trees. First, a recovery
process locates the boundary of WAL, which is recorded by
compaction threads in the compaction log. Then, it sorts log
entries and restores L0 PMTables. At this point, the system
returns to the normal execution mode and starts processing
clients’ queries. Compaction between L0 and L1 will be done
in the background as normal.

As for the lookup cache, ListDB can process clients’
queries without restoring the cache although the search perfor-
mance will be poor until the cache is populated. By avoiding
the reconstruction of DRAM cache and index, the recovery
performance of ListDB is superior to synchronous checkpoint-
ing [12], as we show in Section 4.

4 Evaluation

4.1 Experimental Setup
Experiments are conducted on a four-socket NUMA server
with Intel Xeon Gold 5215 CPU (2.50 GHz, 20 vCPUs) per
socket, 256 GB of DDR4 DRAM (16x 16 GB), and 2 TB (16x
128 GB) Optane DCPMM (4 DCPMM’s and 4 DRAM’s per
each socket) in app-direct mode. Our testbed server supports
only the directory coherence protocol, but not snoop protocol,
despite its known NUMA bandwidth meltdown issues [32].

All implementations are compiled using gcc 7.5.0 with
-O3 optimization. Using PMDK [50], ListDB creates an
auto-growing directory-based persistent memory poolset
(pmempool) on each NUMA node [50]. For NUMA-oblivious
designs, we use the device mapper to create a single persistent
memory poolset interleaved on four sockets.

We evaluate the performance of ListDB3 using two in-
dividual sets of experiments. First, the performance effects
of each part of the design of ListDB are quantified. Sec-
ond, the performance of ListDB is compared against that
of state-of-the-art persistent indexes, including FAST and
FAIR B+tree [24] and PACTree [32], and LSM tree-based key-
value stores for NVMM, i.e., NoveLSM [30], SLM-DB [29],
and Intel’s industry-optimized Pmem-RocksDB [51]. Pmem-
RocksDB [51] is a variant of RocksDB for NVMM that Intel

3Source code is available at http://github.com/DICL/listdb.

Figure 9: Low Flush Throughput Results in Write Stalls

has optimized in two respects. First, Pmem-RocksDB sepa-
rates keys and values to mitigate write amplification issues, as
in WiscKey [41]. Second, Pmem-RocksDB mmaps SSTables
and writes directly to NVMM by using non-temporal stores
(i.e., ntstore) to bypass the cache hierarchy and eliminate
context switching.

Our experiments use YCSB [15] and the Facebook bench-
mark [8]. The Facebook benchmark generates more realistic
workloads than YCSB as it emulates real-world RocksDB
workloads in Facebook/Meta datacenters. Specifically, the
Facebook benchmark adds mathematical models (e.g., sine
distribution) to db_bench [18] such that it can vary key sizes,
value sizes, and query arrival rates over time.

4.2 Evaluation of Index-Unified Logging
4.2.1 IUL vs. WAL: Flush Throughput
This section compares the performance effect of IUL to stan-
dard WAL with respect to write stalls. For the experiments
shown in Figure 9, a single YCSB [15] client thread (Load
A) and a single compaction thread are used to evaluate how
fast a MemTable absorbs bursts of 20 million writes (8-byte
key and 8-byte value objects), and how fast a single back-
ground compaction thread flushes MemTables to NVMM. To
prevent memory usage from increasing indefinitely, the max-
imum number of immutable MemTables is set to 4. Zipper
compaction threads are disabled to evaluate only the effect
of IUL, i.e., L1 is not used. put denotes the client’s query
processing throughput over time (i.e., the number of records
inserted into MemTables per second), and flush denotes how
many records are flushed from MemTables to NVMM by the
compaction thread.

Figure 9 (a) shows that with standard WAL, put throughput
is higher than flush throughput because inserting key-value
objects into a SkipList in DRAM is much faster than flushing
(i.e., copying key-value objects from DRAM to NVMM) and
persisting a SkipList in NVMM. Each spike in put throughput
indicates that a new empty mutable MemTable was created;
it takes about 5 seconds to fill a 64 MB MemTable. In 40
seconds, the number of MemTables exceeds the threshold,
and subsequent writes are blocked. Even if the threshold is set
to a higher value than four, it is only a matter of time before a
write is stalled, because flush throughput is lower than put
throughput.

In contrast, Figure 9 (b) shows that with IUL, flush
throughput is much higher than put throughput. flush
throughput of IUL fluctuates because each flush takes less
time than filling a MemTable, i.e., the compaction thread be-

170 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Load A (b) Workload A (c) Workload B (d) Workload C (e) Workload D

Figure 10: Performance Effect of Index-Unified Logging

comes idle. This high flush throughput is because IUL does
not copy key-value objects from DRAM to NVMM and does
not call cacheline flush instructions. So, write stalls do not
occur and the compaction thread often becomes idle, allowing
the CPU to perform other work.

4.2.2 Evaluation of IUL using YCSB
The experiments shown in Figure 10 compare the perfor-
mance of IUL to standard WAL with varying the number
of client threads for YCSB workloads. The number of back-
ground compaction threads is set to half the number of client
threads. The MemTable size and the maximum memory usage
for MemTables are set to 256 MB and 1 GB, respectively, i.e.,
a maximum of 4 MemTables are allowed. We set the lookup
cache size to 1 GB (979 MB hash-based lookup cache and
45 MB for the second chance lookup cache). For the experi-
ments, Braided SkipList and Zipper compaction are enabled
so that L0 PMTables are merged into L1 PMTable and read
queries can run faster. The Load A workload populates the
database with 100 million records (8-byte keys and 8-byte
values). All other workloads submit 100 million queries each.

Figure 10(a) shows that increasing the number of client
threads increases the write throughput of both logging meth-
ods, up to 80 threads. With 80 client threads, the throughput
of IUL (14.513 million ops/sec) is approximately 1.8x higher
than that of WAL (8.101 million ops/sec). However, when the
number of client threads exceeds the number of logical cores
throughput degrades due to the high overcommit rate. That
is, 100 client threads and 50 background compaction threads
compete for 80 logical cores. Still, the throughput of IUL is
99% higher than WAL.

For Workload B (95% reads), Workload C (100% reads),
and workload D (read latest), WAL has similar or slightly
better performance than IUL because WAL does copy-on-
writes to store records in ascending order of keys, and read
operations benefit from higher memory access locality than
IUL. Nevertheless, IUL outperforms WAL in Workload A
(50:50 Read:Write) due to its better write performance.

4.3 Evaluation of Braided SkipList
This section evaluates NUMA effects in NVMM using a sin-
gle PMTable. The performance of the NUMA-aware Braided
SkipList (denoted as BR) is compared with three other meth-
ods that were discussed in Section 2.3; i.e., (i) NUMA-
oblivious SkipList (denoted as Obl), (ii) delegating client

(a) Memory Access Count (b) Response Time Breakdown

Figure 11: PUT Performance (80 Clients)

(a) Memory Access Count (b) Response Time Breakdown

Figure 12: GET Performance (80 Clients)

queries to a worker thread, using shared memory (denoted as
Deleg), and (iii) a write-optimal local SkipList (denoted as
Local), which manages a SkipList per NUMA node. BR and
Obl manage one large PMTable, whereas Deleg and Local
create four smaller PMTables. Deleg partitions key-value
records according to hash keys, but Local allows a write
client to insert data into the SkipList on its local NUMA node
regardless of the key. Consequently, a read query has to search
all four SkipLists. Even if a key is found in the local index, it
must search remote indexes because a remote index may have
a more recent update. Therefore, when there are n NUMA
nodes, the ratio of local accesses is always 1/n.

Our experiments, shown in Figures 11 and 12, run YCSB
Load A (100 million inserts, 5-25 bytes string keys, 100-byte
values) and Workload C (10 million queries).

PUT: Figure 11(b) shows that Local has the lowest write
response time because it always inserts into the local PMTable.
This eliminates remote NUMA node access for writes as
shown in Figure 11(a). Braided SkipList (denoted as BR) has
a higher write response time than Local because BR accesses
remote NVMM via bottom layer pointers. Figure 11(a) shows
that most NVMM accesses using BR are local, unlike NUMA-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 171

(a) WAL (b) WAL+Zipper (c) WAL+Braided (d) WAL+Zipper+Braided

(e) IUL (f) IUL+Zipper (g) IUL+Braided (h) IUL+Zipper+Braided

Figure 13: Put/Flush/Compaction Throughput over Time (YCSB Load A)

oblivious SkipList (20.1% vs. 74.1% remote accesses). Obl
and BR access NVMM more than Deleg and Local.

Similar to Local, Deleg also completely removes remote
NVMM access, but the write response time is significantly
higher due to delegation overhead. That is, threads use slow
atomic instructions to access the shared queue and make a
memory copy for queries and results. Figure 11(b) shows that
the queueing delay accounts for 77.1% of query response time
with 80 client threads. Because put/get operations on a lock-
free index are very lightweight, the synchronization overhead
incurred by delegation dominates the overall response time.

GET: Figure 12(a) shows that the response time of BR for
read queries is lower than the other methods. While Local
outperforms BR for writes, the read response time of Local
is about 4x higher than BR because Local must search all
4 PMTables. Although BR avoids visiting a more efficient
search path that follows remote elements, Figures 11(a) and
12(a) show that it has almost no effect on the traversal length.
Deleg shows the fewest memory accesses. However, due to
synchronization overhead, its query response time is about 2x
higher than BR, so its performance is even lower than Obl.

4.4 Putting It All Together
Figure 13 presents a factor analysis for ListDB. 4 We en-
able and disable each design feature of ListDB and measure
write throughput (denoted put), flush throughput (MemTable
→ L0 PMTable, denoted flush), and compaction through-
put (L0→ L1 PMTable, denoted comp.) over time. We run
80 client threads and 40 background compaction threads for
YCSB Load A, inserting 500 million 8-byte keys and 8-byte
values. Figure 13(a) shows that disabling all three optimiza-
tions causes client threads to stall for more than 50 seconds.
Enabling Zipper compaction improves the L0→ L1 com-

4Note that the scale of the x axis differs between the subfigures.

paction throughput as shown in Figure 13(b), but the write
stall problem still occurs because of the memory copy over-
head for flushing the MemTable. If Braided SkipList is used,
accessing remote NUMA nodes can be avoided when flushing
the MemTable. Therefore, flush throughput doubles, which
results in less frequent write stalls, as shown in Figure 13(c).
Enabling both Zipper compaction and Braided SkipList re-
sults in shorter write stall times, and the workload completes
in less than 120 seconds (Figure 13(d))

If IUL is used instead of WAL, flush throughput becomes
comparable to put throughput, as shown in Figure 13(e). By
avoiding expensive memory copy, write stalls are less frequent
than WAL. However, note that compaction throughput is
much lower than flush throughput. This increases the number
of L0 PMTables and degrades search performance. As shown
in Figure 13(f), if additionally IUL and Zipper compaction
are enabled, the NVMM bandwidth improves by reducing
the number of memory copies. Thus, it improves compaction
and flush throughput. Enabling IUL and Braided SkipList,
as shown in Figure 13(g), avoids NUMA effects, which im-
proves both compaction and flush throughput. Finally, with
all three optimizations enabled, the workload completes in
under 65 seconds with virtually no write stalls (Figure 13(h))
compared to 300 seconds in figure 13(a).

4.5 Recovery Performance
We evaluate the recovery performance of asynchronous incre-
mental checkpointing for ListDB and periodic synchronous
checkpointing. Using the Facebook benchmark, we populate
a database with 100 million objects and measure the time to
recover using a checkpoint and write-ahead log entries. De-
spite using the same workload, the recovery performance of
synchronous checkpointing is affected by the checkpointing
interval, whereas asynchronous checkpointing is only affected
by the query arrival rate. This is because the number of the

172 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 14: Recovery Performance Figure 15: Comparison with Other Designs

Figure 16: Comparison
with NoveLSM and
SLM-DB

log entries varies with asynchronous checkpointing, which
background compaction threads have not yet merged into L1.
If the query arrival rate is higher than the Zipper compaction
throughput, the number of the IUL entries increases and the
recovery process has to create a larger L0 PMTable with more
log entries.

Figure 14 shows that a synchronous checkpointing takes
about 90 seconds to serialize and flush the in-memory B+tree
using the binary_oarchive class from the Boost library.
This causes concurrent queries to block for 90 seconds while
the checkpointing is being performed, resulting in unaccept-
ably high tail latency. To alleviate the problem, checkpointing
can be performed less frequently, but that increases the recov-
ery time (i.e., the time to restore the checkpointed index and
insert log entries to it) as more log entries accumulate.

In contrast, Figure 14 (b) shows that ListDB recovers in-
stantly if it crashes when the write query arrival rate is lower
than 3 million insertions/sec. If the query arrival rate varies
between 7 and 9 million insertions/sec, ListDB takes about
19 seconds to recover. With a higher query arrival rate, the
recovery time of ListDB increases.

4.6 Comparison with Other Designs
The experiments shown in Figure 15 compare the perfor-
mance of ListDB with state-of-the-art persistent indexes; i.e.,
BzTree [1], FP-tree [49], FAST and FAIR B+tree [24], and
PACTree [32], We run the experiments on a two-socket ma-
chine, because PACTree is hardcoded for two sockets. The
two-socket machine has the same Intel Xeon Gold 5215 CPUs
(40 logical cores in total), 128 GB DRAM (8x 16GB), and
1 TB (8x 128 GB) DCPMM. The database is pre-loaded with
100 million key-value records and then 40 clients submit
10 million queries with uniform distribution (generated from
YCSB Workload A) with various read-write ratios. These tree-
structured indexes are not optimized for (or do not support)
large variable-length string keys and values. Therefore, we
generated 8-byte numeric keys and 8-byte pointer values for
the workload, which is favorable for tree-structured indexes
with large fanouts.

Figure 15 shows that ListDB outperforms tree-structured
persistent indexes for write-intensive workloads. For the write-

only workload, ListDB(0GB) shows 79x, 17x, 2.3x and 1.6x
higher throughput than BzTree, FPTree, FAST and FAIR
B+tree, and PACTree, respectively. However, for the read-
only workload, tree-structured indexes benefit from faster
search performance. In particular, FAST and FAIR B+tree
and PACTree show 3.88x and 4.61x higher search throughputs,
respectively, than ListDB(0GB). With the lookup cache en-
abled, ListDB outperforms or shows comparable performance
to tree-structured indexes. The numbers in parentheses in the
graph key show the lookup cache size. With a lookup cache
larger than 768 MB, ListDB outperforms PACTree unless the
read ratio is higher than 80%.

These results confirm that standard caching techniques
can easily improve read performance. However, the lookup
cache that indexes the location of key-value records cannot be
used for PACTree, FAST FAIR B+tree, FPTree, etc. because
they frequently relocate key-value records to different tree
nodes due to tree rebalancing operations. That is, employing
a DRAM cache for a tree-structured persistent index is not
as simple as our address-only lookup caching. For example,
Nap [57] has a very complicated caching mechanism.

4.6.1 Write Amplification
Although LSM trees have better write performance than tree-
structured indexes, they have higher write amplification, as
a critical limitation in block device storage [21, 41, 53]. To
compare write amplification, we used Intel PMwatch [25]
to measure the total number of accessed bytes in the experi-
ments shown in Figure 15. All indexing methods suffer from
high write amplification. DCPMM’s internal write combining
buffer transforms a small write (8-byte key and 8-byte value)
into a 256-byte read-modify-write operation, resulting in at
least 16x write amplification. In ListDB, the writes are further
amplified by merge-sort operations in L0 and L1 PMTables.
However, the write amplification of ListDB (104.4) is lower
than that of FAST and FAIR B+tree (126.789) and compa-
rable to that of PACTree (91.5) because ListDB merge-sorts
SkipLists in-place.

4.7 Comparison with NoveLSM and SLM-DB
Figure 16 shows the single-threaded read and write through-
put of NoveLSM, SLM-DB, Pmem-RocksDB, and ListDB.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 173

The experiments run a single client thread (db_bench, 100
million random 8-byte keys and 1 KB values) because Nov-
eLSM crashes when multiple threads concurrently access
the database. NoveLSM and SLM-DB were designed to use
NVMM as an intermediate layer on top of the block device
file system, but our experiments store all SSTables in NVMM
formatted with EXT4-DAX for a fair comparison.

NoveLSM shows the worst performance, not because of
its design but because it is implemented on top of LevelDB,
which is known to have poor performance. SLM-DB is also
implemented on top of LevelDB but shows better performance
because it uses FAST and FAIR B+tree as its core index. Since
SLM-DB is not yet ported to use PMDK, it has no overhead
imposed by run-time flushing or transactional updates, i.e.,
it shows DRAM performance and does not survive a system
crash. Nonetheless, SLM-DB does not show better perfor-
mance than Pmem-RocksDB, a fully persistent key-value
store. Compared to Pmem-RocksDB, ListDB(0GB) shows
twice the write throughput, but read performance is slightly
worse unless the lookup cache is enabled. This is because
Pmem-RocksDB benefits from memory locality by storing
keys contiguously in NVMM in sorted order, whereas ListDB
does not relocate data.

4.8 Comparison with Pmem-RocksDB
Finally, we compare the performance of ListDB with Intel’s
Pmem-RocksDB using the Prefix Dist workload in the Face-
book benchmark. The experiments shown in Figure 17 run
80 client threads and use the default key and value sizes of
the benchmark (48-byte string keys and variable-length val-
ues ranging from 16 bytes to 10 KB). The workload submits
queries according to a query arrival rate (QPS parameter) that
follows a sine distribution with a noise factor of 0.5. The
put/get ratio of the workload is 3 to 7.

For various parameter settings, ListDB consistently outper-
forms Pmem-RocksDB. The results of two different settings
are presented in Figure 17 - an idle workload (0.1 ∼ 0.3 mil-
lion write queries and 0.2∼ 0.7 million read queries arrive per
second; 200 million queries in total), in which the throughput
of Pmem-RocksDB is saturated, and a heavy workload (2.4∼
7.2 million write queries and 5.6∼ 16.8 million queries arrive
per second; 5 billion queries in total), in which the through-
put of ListDB is saturated. The lookup cache is disabled for
ListDB while setting the maximum DRAM usage for both
key-value stores to 1 GB and allowing Pmem-RocksDB to
use the default 8 MB block cache.

For the idle workload, Pmem-RocksDB suffers from ex-
cessive NVMM writes, so its put throughput saturates at
200 Kops. For the Facebook benchmark, a get query has
to wait for its previous put query to commit. Therefore, the
get throughput of Pmem-RocksDB saturates at 400 Kops
in the experiment. In contrast, Figure 17(b) shows that the
throughput of ListDB follows the sine distribution, i.e., the
query arrival rate, without blocking queries.

(a) Pmem-RocksDB (idle) (b) ListDB (idle)

(c) Pmem-RocksDB (heavy) (d) ListDB (heavy)

Figure 17: Throughput over Time (Facebook Benchmark)

For the heavy workload, Pmem-RocksDB’s throughput
is still saturated. On the other hand, the put throughput of
ListDB is 25x higher than that of Pmem-RocksDB, i.e., 5
million ops. Similarly, the get throughput of ListDB is up to
22x higher than that of Pmem-RocksDB (i.e., 13 million vs.
0.6 million ops). As such, ListDB completes the workload
19.4x faster than Pmem-RocksDB (i.e., 380 vs. 7400 seconds).

5 Conclusion
In this work, we design and implement ListDB - a key-value
store that leverages the byte-addressability to avoid data
copies by restructuring data in-place and high-performance
of NVMM to reduce the write amplification and avoid write
stalls. We show that ListDB significantly improves write per-
formance via asynchronous incremental checkpointing and
in-place compaction. With its three-level structure, ListDB
outperforms state-of-the-art persistent indexes and NVMM-
based key-value stores in terms of write throughput. A stan-
dard lookup cache can help mitigate the problem of having
multiple levels. For future work, we are exploring the possibil-
ity of improving search performance by introducing another
level, namely L2 PMTable, to opportunistically rearrange L1
PMTable elements for spatial locality and garbage collection.

Acknowledgement
We would like to give special thanks to our shepherd Dr.
Marc Shapiro and to the anonymous reviewers for their valu-
able comments and suggestions. This research was supported
in part by Samsung Electronics, and also by the R&D pro-
gram of National Research Foundation of Korea (NRF) (grant
No. NRF2018R1A2B3006681) and IITP (grant No. 2018-0-
00549 and 2021-0-01817) and Electronics and Telecommuni-
cations Research Institute (ETRI) grant (grant No. 20ZS1310)
funded by the Korean government. The corresponding author
is Beomseok Nam.

174 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,
and Per-Ake Larson. BzTree: A High-Performance
Latch-Free Range Index for Non-Volatile Memory. Pro-
ceedings of the VLDB Endowment, 11(5):553–565, jan
2018.

[2] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and
Larry L. Peterson. HashCache: Cache storage for the
next billion. In Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 123–136, 2009.

[3] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: Creating Synergies
Between Memory, Disk and Log in Log Structured Key-
Value Stores. In Proceedings of the 2017 USENIX An-
nual Technical Conference (USENIX ATC), pages 363–
375, 2017.

[4] Sergey Blagodurov, Sergey Zhuravlev, Mohammad
Dashti, and Alexandra Fedorova. A Case for NUMA-
Aware Contention Management on Multicore Systems.
In Proceedings of the 2011 USENIX Annual Technical
Conference (USENIX ATC), 2011.

[5] Trevor Brown. Reclaiming Memory for Lock-Free Data
Structures: There has to be Better Way. In Proceed-
ings of the 34th ACM Symposium on the Principles of
Distributed Computing (PODC’15), 2015.

[6] Irina Calciu, Justin Gottschlich, and Maurice Herlihy.
Using Elimination and Delegation to Implement a Scal-
able NUMA-Friendly Stack. In Proceedings of the 5th
USENIX Workshop on Hot Topics in Parallelism (Hot-
Par 13), June 2013.

[7] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and
Marcos K. Aguilera. Black-Box Concurrent Data Struc-
tures for NUMA Architectures. In Proceedings of the
22nd International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), page 207–221, 2017.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at
Facebook. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 209–223, 2020.

[9] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. HashKV: Enabling Efficient Updates in
KV Storage via Hashing. In Proceedings of the 2018
USENIX Annual Technical Conference (USENIX ATC),
pages 1007–1019, 2018.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
BigTable: A Distributed Storage System for Structured
Data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2006.

[11] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-
Volatile Main Memory. Proceedings of the VLDB En-
dowment, 8(7):786–797, 2015.

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the 25th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), page
1077–1091, 2020.

[13] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo.
Lock-free Concurrent Level Hashing for Persistent
Memory. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC), pages 799–812,
July 2020.

[14] Nachshon Cohen and Erez Petrank. Efficient Memory
Management for Lock-Free Data Structures with Opti-
mistic Access. In Proceedings of the 27th ACM sym-
posium on Parallelism in Algorithms and Architectures
(SPAA’15), 2015.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), pages
143–154, 2010.

[16] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson,
and Tilmann Rabl. Maximizing Persistent Memory
Bandwidth Utilization for OLAP Workloads. In Pro-
ceedings of the 2021 International Conference on Man-
agement of Data (SIGMOD), page 339–351, 2021.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In Proceedings of the 21th ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP).

[18] Facebook. db_bench. https://github.com/
facebook/rocksdb/wiki/Benchmarking-tools.

[19] Thomas E. Harta, Paul E. McKenneyb, Angela Demke
Brown, and Jonathan Walpole. Performance of Memory

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 175

https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools

Reclamation for Lockless Synchronization. Journal
of Parallel and Distributed Computing, 67:1270–1285,
2007.

[20] HBase. https://hbase.apache.org/.

[21] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The Unwritten Con-
tract of Solid State Drives. In Proceedings of the 12th
European Conference on Computer Systems (EuroSys),
pages 127–144, 2017.

[22] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir
Shavit. A Simple Optimistic Skiplist Algorithm. In
Proceedings of the 14th International Conference on
Structural Information and Communication Complexity
(SIROCCO), pages 124–138, 06 2007.

[23] Maurice Herlihy and Nir Shavit. The Art of Multipro-
cessor Programming. Morgan Kaufmann Publishers,
2008.

[24] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In Proceedings
of the 16th USENIX Conference on File and Storage
Technologies (FAST), pages 187–200, 2018.

[25] Intel. PMWatch. https://github.com/intel/
intel-pmwatch.

[26] Intel Optane Persistent Memory. https:
//www.intel.com/content/www/us/
en/architecture-and-technology/
optane-dc-persistent-memory.html.

[27] Varun Jain, James Lennon, and Harshita Gupta. LSM-
Trees and B-Trees: The Best of Both Worlds. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data (SIGMOD), page 1829–1831, 2019.

[28] Ashok Joshi, William Bridge, Juan Loaiza, and
Tirthankar Lahiri. Checkpointing in Oracle. In Pro-
ceedings of the 24th International Conference on Very
Large Data Bases (VLDB), page 665–668, 1998.

[29] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. SLM-DB: Single-
Level Key-Value Store with Persistent Memory. In Pro-
ceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST), pages 191–205, 2019.

[30] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for Nonvolatile Memory with Nov-
eLSM. In Proceedings of the 2018 USENIX Annual
Technical Conference (USENIX ATC), pages 993–1005,
2018.

[31] Dongui Kim, Chanyeol Park, Sang-Won Lee, and Beom-
seok Nam. BoLT: Barrier-Optimized LSM-Tree. In
Proceedings of the 21st International Middleware Con-
ference (Middleware), page 119–133, 2020.

[32] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree: A
High Performance Persistent Range Index Using PAC
Guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP),
page 424–439, 2021.

[33] Avinash Lakshman and Prashant Malik. Cassandra:
A Decentralized Structured Storage System. ACM
SIGOPS Operating Systems Review, 44(2):35–40, April
2010.

[34] D. Lea. Java Platform SE 8,
java.util.concurrent.ConcurrentSkipListMap. https:
//docs.oracle.com/javase/8/docs/api/java/
util/concurrent/ConcurrentSkipListMap.html.

[35] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In Pro-
ceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), pages 257–270, 2017.

[36] LevelDB. https://github.com/google/leveldb.

[37] Hyeontaek Lim, Bin Fan, David G. Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP), pages 1–13, 2011.

[38] Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees:
Optimizing Persistent Index Performance on 3DX-
Point Memory. Proceedings of the VLDB Endowment,
13(7):1078–1090, mar 2020.

[39] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L. Scott, Sam H. Noh, and Changhee Jung. iDO:
Compiler-Directed Failure Atomicity for Nonvolatile
Memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–
270, 2018.

[40] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory. Pro-
ceedings of the VLDB Endowment, 13(8):1147–1161,
apr 2020.

[41] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 133–148, 2016.

176 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://hbase.apache.org/
https://github.com/intel/intel-pmwatch
https://github.com/intel/intel-pmwatch
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://github.com/google/leveldb

[42] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, and Raju Rangaswami. NVMKV: A Scalable,
Lightweight, FTL-aware Key-Value Store. In Proceed-
ings of the 2015 USENIX Annual Technical Conference
(USENIX ATC), pages 207–219, 2015.

[43] Fei Mei, Qiang Cao, Hong Jiang, and Lei Tian Tintri.
LSM-tree Managed Storage for Large-scale Key-value
Store. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC), pages 142–156, 2017.

[44] Zviad Metreveli, Nickolai Zeldovich, and M. Frans
Kaashoek. CPHASH: A Cache-Partitioned Hash Table.
In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), page 319–320, 2012.

[45] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In Proceedings of the
17th USENIX Conference on File and Storage (FAST),
pages 31–44, 2019.

[46] Suman Nath and Aman Kansal. FlashDB: Dynamic Self-
tuning Database for NAND Flash. In Proceedings of the
6th International Conference on Information Processing
in Sensor Networks (IPSN), pages 410–419, 2007.

[47] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-structured Merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, June 1996.

[48] Oracle Berkeley DB. https://www.oracle.com/
technetwork/database/database-technologies/
berkeleydb/overview/index.html.

[49] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data (SIGMOD),
pages 371–386, 2016.

[50] Persistent Memory Development Kit (PMDK). https:
//pmem.io/pmdk/.

[51] PMEM-RocksDB. https://github.com/pmem/
pmem-rocksdb.

[52] William Pugh. Skip Lists: A Probabilistic Alterna-
tive to Balanced Trees. Communications of the ACM,
33(6):668–676, June 1990.

[53] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores Using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), pages 497–514, 2017.

[54] RocksDB. https://rocksdb.org/.

[55] Subhadeep Sarkar, Dimitris Staratzis, Ziehen Zhu, and
Manos Athanassoulis. Constructing and Analyzing the
LSM Compaction Design Space. Proceedings of the
VLDB Endowment, 14(11):2216–2229, jul 2021.

[56] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and Durable
Data Structures for Non-Volatile Byte-Addressable
Memory. In Proceedings of the 9th USENIX confer-
ence on File and Storage Technologies (FAST), 2011.

[57] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
Black-Box Approach to NUMA-Aware Persistent Mem-
ory Indexes. In Proceedings of the 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 93–111, July 2021.

[58] Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghaleb Abdulla, and Edward A. Fox. Removal Policies
in Network Caches for World-Wide Web Documents.
In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), 1996.

[59] Paul R. Wilson. Pointer Swizzling at Page Fault Time:
Efficiently Supporting Huge Address Spaces on Stan-
dard Hardware. SIGARCH Computeer Architecture
News, 19(4):6–13, jul 1991.

[60] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC),
pages 349–362, 2017.

[61] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST), pages
323–338, February 2016.

[62] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST), pages 169–182,
February 2020.

[63] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
and Khai Leong Yong. NV-Tree: Reducing Consistency
Const for NVM-based Single Level Systems. In Pro-
ceedings of the 13th USENIX conference on File and
Storage Technologies (FAST), 2015.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 177

https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://rocksdb.org/

	Introduction
	Background and Motivation
	 Hybrid DRAM+NVMM Key-Value Store
	Log-Structured Merge Tree
	Asynchronous Incremental Checkpointing
	Write in LSM Tree
	Search in LSM Tree
	Side Effect of Write Buffer: Write Stall
	Write Amplification in LSM Trees

	NUMA Effects

	Design of ListDB
	Three-Level Architecture
	Index-Unified Logging
	Conversion of IUL into SkipList
	MemTable Flush without clflush
	Walk-Through Example
	Checkpointing L0 PMTable

	NUMA Effects for SkipList
	NUMA-aware Braided SkipList

	Zipper Compaction
	Scan Phase
	Merge Phase
	Lock-Free Search
	Updates and Deletes
	Fragmentation and Garbage Collection
	Linearizability

	Look-up Cache
	Recovery

	Evaluation
	Experimental Setup
	Evaluation of Index-Unified Logging
	IUL vs. WAL: Flush Throughput
	Evaluation of IUL using YCSB

	Evaluation of Braided SkipList
	Putting It All Together
	Recovery Performance
	Comparison with Other Designs
	Write Amplification

	Comparison with NoveLSM and SLM-DB
	Comparison with Pmem-RocksDB

	Conclusion

