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Abstract
Hubble is a method-tracing system shipped on all supported
and upcoming Android devices manufactured by Huawei, in
order to aid in debugging performance problems. Hubble in-
struments every non-inlined bytecode method’s entry and exit
to record the method’s name and a timestamp. Instead of per-
sisting all data, trace points are recorded into an in-memory
ring buffer where older data is constantly overwritten. This
data is only persisted when a performance problem is detected,
giving engineers access to invaluable, detailed runtime data
Just-In-Time before the detected anomaly. Hubble is highly
efficient, with its tracing inducing negligible overhead in real-
world usage and each trace point taking less than one nanosec-
ond in our microbenchmark. Hubble significantly eases the
debugging of user-experienced performance problems and
has enabled engineers to quickly resolve many bug tickets
that were open for months before Hubble was available.

1 Introduction

Today, Android devices are pervasive and tightly integrated
into people’s daily lives, yet users still experience perfor-
mance problems when using these devices. Unlike Apple’s
iOS and iPhone, the Android platform is far from a tightly-
coupled monolithic ecosystem—the hardware (manufactured
by OEMs), infrastructure system software (maintained by
Google and customized by OEMs), and applications are pro-
vided by different parties, and all layers are released in a rapid
yet uncoordinated development cycle. This open platform
makes testing enough combinations of hardware, systems soft-
ware, and applications particularly challenging. Thus, many of
the performance bugs that escape current testing practices are
intermittent, manifesting across multiple components main-
tained by different entities.

When end users experience an issue, it is often systems
vendors that shoulder the blame, before the root cause is ex-
posed [49]. This is particularly true for Android given its huge
user base, many of whom are not tech-savvy. When such users

experience an intermittent performance problem, they quickly
assume that their device is at fault, simply because they could
not immediately reproduce the issue on another device. How-
ever, the root cause could be in the application itself, only
triggered under specific conditions or inputs. To combat these
assumptions, device vendors are forced to devote ample engi-
neering and support resources to these issues.

Yet, diagnosing performance problems that occur on a
user’s device is extremely challenging, owing to a lack of suf-
ficient runtime information. While approaches like Windows
Error Reporting (WER) [21] are widely adopted, they can
only record runtime information after a problem is detected.
Oftentimes this is too late, as it misses crucial information
just before and during the problem. This is exacerbated for
performance problems, especially intermittent ones, because
the issue may vanish after being detected, before recording
starts. Indeed, the primary use of WER is not to record enough
information to debug an issue, but to collect error statistics
that are then used to prioritize debugging effort.

Recording debugging information before the problem oc-
curs is challenging. We cannot accurately predict when a
problem will occur, so the only option is to continuously
trace the system during normal execution. However, over-
head is a concern. Unlike servers, mobile devices are heavily
resource-constrained and their workloads are overwhelmingly
interactive. Sampling-based profiling tools are available, but
their trade-off between informativeness and performance is
poor. Non-sampling-based profiling tools, on the other hand,
are too heavyweight for continuous tracing. For example,
existing profiling tools on Android like Systrace [25] and
Android Studio’s CPU Profiler [24] can trace every method
call of an application. However, enabling this type of tracing
noticeably slows down an application, sometimes by more
than 10×, which is unsuitable for continuous use in produc-
tion. Individual applications may implement their own in-app
tracing [18,23,46], but such traces are typically only available
to those applications themselves.

As a result, problems reported to Android device vendors
typically only include system logs, sampled statistical metrics,
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Design Unnoti- No Main- big.
ceable src. tain LITTLE

Instrumentation via JIT 3 3

Ring-buffer & encoding 3

Hand-optimized asm 3 3 3

Lock-free control 3

Table 1: Hubble’s designs and the requirements they satisfy. The
headings for the requirements are truncated as follows: “Unnotice-
able” refers to having unnoticeable overhead. “No src.” refers to
not requiring source code. “Maintain” refers to being maintainable.
“big.LITTLE” refers to supporting both big and little cores.

sparse Systrace traces, and details recorded after a problem
has occurred, like the device model, application name, and
symptom. Most times, this is not enough to be useful in de-
bugging intermittent performance problems, and engineers
are left “debugging in the dark.” Consequently, many bug tick-
ets are left open for months without any hope of resolution.
Worse yet, many bugs cannot even be properly triaged, and
after rounds of finger-pointing, it is often the low-level system
engineers that bite the bullet.

1.1 Challenges and Opportunities

Therefore, a production tracing system that can provide fine-
grained observability is desperately needed. However, con-
tinuous tracing in production is challenging; it needs to sat-
isfy a number of stringent requirements. First, the worst-case
overhead must be unnoticeable (it cannot exceed 3% or in-
crease the number of performance regressions throughout
the deployment cycle), regardless of whether the application
is running on the powerful (big) or weaker (little) cores in
ARM’s big.LITTLE architecture. In addition, the tool should
trace applications without access to their source. Finally, it
needs to be easy to maintain, and easy to merge with every
new (and often feature-breaking) Android release.

These goals and constraints are stricter than what is of-
fered by existing solutions. For instance, while record and
replay (R&R) can faithfully replay the entire execution, we
are not aware of any R&R system that can achieve worst-case
overhead below 3%. In fact, most literature [30,33,35,57] em-
phasizes the average overhead; for production tracing tools
on Android devices, engineers are primarily concerned with
the worst-case instead of the average. In addition, R&R tech-
niques typically require deep integration with the Android
runtime which means that they cannot be easily maintained.

Another challenge offered by the Android runtime environ-
ment is the semantic gap between an application written in
a high-level language (Java) and its native execution, which
renders a rich set of system profiling tools such as gprof [27]
ineffective without the runtime’s support. When applied to
runtime workloads, these profilers only profile the runtime’s
execution instead of the applications running on top of it. For

example, applying gprof to a runtime workload only provides
the call graph of the runtime itself (including the interpreter,
GC, and JIT-compiled code), instead of the call graph of the
Java application.

Android [26] and other runtimes [7] can output symbol
information during execution so that system profiling tools
can be applied to profile language-level executions. This ap-
proach does not completely close the semantic gap for a few
reasons. First, each profiling tool must support using these
symbols; currently only the sampling-based perf [39] tool
supports using the symbols, and only for JIT-compiled code.
Android extended and integrated perf such that it can also pro-
file the interpreter’s execution at the language-level [26]. In
addition, perf expects every symbol to have a unique memory
address, which is not always true; for instance, the runtime
may update JIT-compiled code with application hot-patching
or recompilation based on new profiling information, thus
unloading old mapped code and reusing the page [26].

Yet, the runtime environment also presents a unique op-
portunity: trace points can be embedded and removed trans-
parently by the runtime without modifying the application’s
source. This opportunity remains under-exploited despite the
popularity of managed languages (the five most popular lan-
guages on GitHub in 2021 were runtime languages). To the
best of our knowledge, none of the existing language runtimes
offer detailed tracing tools that can be used continuously in
production. For example, the OpenJDK JVM provides a pow-
erful JVMTI debugging interface that can embed breakpoints
in applications. However, this means that execution has to be
deoptimized and run in the interpreter (rather than JIT com-
piled). Therefore, it is mostly suitable for use in development
environments. Many runtimes also provide sampling-based
profiling features that show “hot” code paths, but none provide
continuous method-level tracing suitable for production.

1.2 Contributions

This paper presents the design and implementation of Hubble
that satisfies the aforementioned goals. Hubble can capture
most method entry and exit points of any application’s threads,
just-in-time before a failure. We designed Hubble by combin-
ing several well-known techniques in a novel way that takes
advantage of the Android platform. Table 1 shows Hubble’s
major designs and the requirements they satisfy.

First, Android applications are typically downloaded as
bytecode and then either compiled or interpreted on the de-
vice; Hubble leverages this runtime environment to automat-
ically embed its tracing logic into the compiled binary or
interpreted logic. This enables efficient tracing, as the trac-
ing logic can be inlined into the application, avoiding more
expensive trampolines (i.e., jumps in control flow) that are
common in other tracing tools. In addition, this means that
Hubble is a purely black-box approach that does not depend
on the application’s source code.
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In addition, Hubble writes trace points to an in-memory
ring buffer that is only flushed when a problem is detected.
This allows it to run continuously and capture information
just-in-time leading up to a failure. By designing a concise,
variable-length encoding, such that most trace points occupy
eight bytes, a small (32MB) ring buffer is enough to capture
sufficient debugging information.

Third, Hubble’s performance-sensitive instrumentation
logic is written in assembly. This ensures that performance
is optimal even on a device’s low-power (little) cores, which
cannot perform out-of-order execution or have small instruc-
tion reordering buffers. In addition, this decouples Hubble
from the Android compiler’s compilation flow, so it avoids
having the compiler affect the correctness of the tracing logic,
and eases maintainability.

Finally, Hubble avoids using expensive synchronization
primitives [14] in two ways: threads write trace points to
thread-local buffers, avoiding inter-thread synchronization;
and, Hubble communicates with these threads by using a
purpose-built lock-free synchronization protocol.

The end result is a highly efficient method-tracing system
sufficient for debugging intermittent performance bugs. In
our microbenchmarks, each trace point costs less than one
nanosecond for nearly empty methods, and tracing overheads
are quickly amortized when methods perform meaningful
operations. Hubble’s tracing overhead is also unnoticeable in
Huawei’s continuous-integration performance testing infras-
tructure, which includes a variety of workloads and devices.
Hubble’s memory overhead is approximately 64 MB by de-
fault, accounting for two 32 MB ring buffers. As of 2021,
Huawei’s lower-end smartphones have at least 4 GB of RAM,
while higher-end ones can have up to 12 GB. Therefore, Hub-
ble’s memory overhead is less than 2%.

Hubble also strives to protect user privacy. Similar to ex-
isting error reporting systems such as WER [21], MacOS [2]
and Mozilla [34] crash reports, Hubble’s traces are only col-
lected with user consent. However, these other systems collect
a minidump of the memory image, whereas Hubble’s traces
are far less sensitive: they only consist of method names and
timestamps and do not contain any variable values.

Hubble has been integrated into Huawei’s core Android
OS codebase, deployed across a wide range of smartphone
and tablet product lines, since August, 2020. Older devices
may receive Hubble’s functionalities via an over-the-air OS
update. Since deployment, Hubble has significantly eased
the debugging of intermittent performance problems. In fact,
engineers were able to quickly resolve many performance
problems that remained unresolved for months.

This paper makes the following contributions:

• The design and implementation of Hubble, a highly efficient
method tracing subsystem for Android, that satisfies a set
of unique, practical constraints, some of which are rarely
mentioned by existing literature.

• Integration of Hubble’s traces with existing debugging
tools, like Perfetto [40] which can show call charts. This
significantly improved the trace’s utility, where developers
can cross-examine Hubble traces with other runtime data.

• Case studies on how Hubble diagnoses real-world perfor-
mance bugs which cannot be resolved without it.

Hubble also has the following limitations. First, it can
only embed tracing logic into executions that go through
the Android compiler or interpreter (from bytecode); Hub-
ble cannot trace native libraries like those invoked through
the Java Native Interface (JNI). In addition, Hubble’s trace
buffer could pollute the CPU cache and slow down cache-
optimized workloads (e.g., loop tiling [8]). However, while
cache-optimization is commonplace in server workloads, it
is uncommon on smartphones, especially in the interactive
UI-thread. Nonetheless, we evaluate this effect in §8.

2 Related Work

Record and replay (R&R) tools [10,15,16,29,30,35,36,38,50,
57] work by recording a user’s input and all non-deterministic
events (e.g., scheduling), so that the execution can be faith-
fully replayed. R&R tools do not meet our requirements for
a few fundamental reasons. The first is overhead. Among
all R&R tools, Reverb [35] reported the best performance,
yet its overhead is still 5.5% on average (the worst-case is
not reported). It works only on JavaScript web applications,
where threads communicate using a message-passing inter-
face. When threads share memory, R&R incurs even higher
overhead. For instance, DoublePlay [57] reported a worst-case
overhead of 11% for network-bound workloads (Apache web-
server), 19% for disk-bound workloads (MySQL), and 278%
for CPU-bound workloads (SPLASH-2 ocean). To achieve
low overhead, some tools [33, 38, 45] do not record all non-
determinism which prevents accurate replay. Second, since
intermittent performance bugs may take days to occur, R&R
traces will grow untenably large. While checkpointing could
allow replay from a partial trace, the checkpointing operation
itself is expensive [50]. Compared to a call chart, an R&R
trace also imposes much larger privacy concerns. Finally,
R&R tools require deep integration with the Android runtime
and compiler. For instance, applying DoublePlay’s approach
to Android would require the runtime to run a parallel execu-
tion of the application, checkpoint and compare state between
the two processes, and so on. Hence, R&R tools would be
difficult to maintain within Android.

An attractive alternative is to use hardware-support, like In-
tel PT or ARM ETM, to record branch-level traces [12,28,60].
These tools have a worst-case runtime overhead of 1–2%.
However, there are two challenges on ARM devices. First,
the semantic gap on Android’s runtime complicates the de-
coding of the branch-level trace, as it only provides the traces
of the runtime’s execution instead of the application. Second,
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hardware support for tracing is restricted to development plat-
forms (most ARM processors on production Android devices
do not support the feature) [4].

Only a limited set of bytecode method tracing tools are
available on the Android platform. Android Studio’s CPU
Profiler can trace every method call, but its overhead is incred-
ibly high (a worst-case of 921× in our evaluation), because
instead of embedding the tracing logic into the compiled bi-
nary, it jumps into the Android runtime after every method
call. Internal tracing utilities within Android mostly leverage
Java Agent, JVMTI, or equivalent ART instrumentation in-
terfaces to perform method tracing. These mechanisms are
also expensive as they force applications to be interpreted
only. Aspect-oriented frameworks such as Tai Chi [53] and
Logan [55] are also available to intercept method calls at run-
time to execute arbitrary tracing code. However, they either
require modifications to the application’s source code or root
access. The fastest available method tracing utility that we are
aware of, Nanoscope [54], primarily targets method tracing
inside an x86 Android emulator, costing up to 10× higher
memory usage and performance overhead, so it is mostly
useful in an application development environment.

Some tools are able to perform in-application tracing with
low overhead in production. For instance, Firebase perfor-
mance monitoring [23] collects various metrics (e.g., startup
time) and allows developers to insert additional trace points.
AppInsight [41] instruments Windows Phone application bi-
naries to log whenever the runtime calls into and returns from
application methods. The instrumentation has sufficient de-
tail to allow a server to reconstruct how a user request was
processed across different application threads and what the
critical path is. These tools typically trace the entire run of an
application, but at a low enough granularity that the trace does
not grow untenably large. As a result, they are useful for ap-
plication developers to locate bottlenecks in their application;
but the coarseness of the trace may necessitate additional de-
bugging information to locate the exact root cause, especially
if the bug is in the underlying systems which are not traced.
Timecard [42] goes beyond tracing by using AppInsight’s
traces to adjust the server’s computation quality (in real-time)
to meet an end-to-end response deadline.

There are also a few high-performance logging solu-
tions like NanoLog [58] and Log20 [59] that can provide
nanosecond-level logging. Both write data to thread-local
ring buffers and NanoLog uses a specialized encoding to save
space. NanoLog uses only the existing log statements in the
application while Log20 can be used to determine where best
to place log statements based on profiling the application’s
usage pattern.1 In any case, the generated trace is only as
detailed as the developers’ instrumentation.

Outside of the Android platform, there are many call pro-
filing tools like gprof [27], Fay [17], ftrace [51], perf [39],

1In fact, the initial goal of this project was to integrate Log20 into
Huawei’s Android platforms.

DTrace [9], and SystemTap [52]. These tools support various
degrees of tracing from periodically sampling the call stack
to calling user-defined methods using dynamic instrumenta-
tion. However, to capture traces that are detailed enough to
diagnose intermittent bugs, these tools incur overhead that
prevents them from tracing continuously in production sys-
tems. These tools typically require calling a method in their
instrumentation, whereas Hubble directly inlines the tracing
code into each method.

There are a large number of tools designed to trace each
request in a distributed system. Examples include Project5 [1],
MagPie [5], X-Trace [20], Dapper [47], ÜberTrace [11], and
Pivot Tracing [31], as well as commercial tools like Data-
dog [13] and New Relic [44]. These tools typically embed
trace points in critical system or network events, such as RPCs,
and record an ID that is unique to each request.

3 Case Studies

We present two case studies to showcase how Hubble helped
in diagnosing real-world intermittent performance problems.
The first issue was within AppX, a third-party multipurpose
messaging, social media, and mobile payment application
with over a billion monthly active users. Occasionally, AppX
users experienced intermittent UI freezes (janks) of up to two
seconds. Engineers detected this problem by monitoring the
traces that Systrace continuously collects—namely, perfor-
mance alerts, sparse trace points, and metrics sampled at low
frequencies. Figure 1 (A) shows the available trace points ren-
dered as a method call chart in the Perfetto trace-visualization
tool. For the UI thread, this consists of only a few high-level
methods within the Android framework. The only conclusion
engineers can infer from this data is that the UI thread was
blocked for about two seconds during which it was supposed
to prepare the layout and content for rendering.

In contrast, the call chart based on Hubble’s trace, shown
in Figure 1 (B), accurately captures every method call in both
the application and the Android runtime. From the canonical
method names displayed in the chart, engineers were able
to quickly reconstruct the events that occurred before, dur-
ing, and after the UI jank. First, the user swiped back on the
device’s screen within AppX ( 1 ). Then, AppX initialized

a software keyboard to respond to the user’s action ( 2 ).
However, to display the keyboard, the scrollable chat compo-
nent must be resized ( 3 ), and this became the bottleneck.
Drilling down further, we can observe the series of method
calls responsible for generating the list of on-screen content
( 4 ). Specifically, we can see that the UI thread is primarily
blocked by various long-running methods belonging to AppX.
Now with concrete evidence, our engineers concluded that
the root cause was within AppX, and initiated a meaningful
collaboration with AppX’s developers.

The second issue was a longstanding performance bug
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Figure 1: Screenshot of method call charts in Perfetto for the UI thread, which performs all UI and Android framework operations. (A) Traces
generated by Systrace, (B) Traces with Hubble. Circled in red are 3rd-party application methods with long execution time. (A) includes all of
Systrace’s trace points recorded during this time period, whereas (B) is filtered to render only approximately 10% of all available methods.

within an internal business teleconferencing application. Af-
ter the end of a teleconference, the application occasionally
froze for up to a second on a small number of user devices.
This annoyed users but it was not until months later that a
particularly vocal employee reported the issue to manage-
ment, who then opened a support ticket requesting that the
issue be resolved. Our device support engineers attempted to
reproduce the problem on their own, but all attempts were
unsuccessful. The only method call captured by Systrace was
binder_transaction(), which does not explain why the issue
occurred. Further efforts to collaborate with the disgruntled
users were also ineffective as most users were either too busy
or otherwise unable to provide more detailed reproduction in-
structions. A few users were even invited to collaborate with
an engineer to reproduce the problem, but the intermittent
issue could not be reproduced after multiple attempts.

Several months later, Hubble, in pre-beta at the time, was
available for internal use. The disgruntled employees hap-

pily consented to deploying Hubble onto their mobile device
via an over-the-air Android OS update. Within a few days,
performance anomalies were detected and their associated
trace data was automatically collected. After a quick glance
at Hubble’s call chart, the support engineers identified that the
teleconferencing software was calling Thread.sleep() from
the UI thread after sending an Android Binder (IPC) system
service call. Closer inspection revealed that immediately after
a conference call ended, a series of method calls related to the
Audio Manager were performed, prior to the Thread.sleep().
This behavior was unexpected and if not for the complete
method call trace, which contained both the application and
Android framework layers, we would still be stuck with many
of our initial theories; e.g., the application could be collecting
and sending meeting summary data back to the teleconference
service or an unexplained scheduling issue.

With this new information, we brought in a developer with
expertise in the Android audio stack. After examining Hub-
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ble’s call chart, the developer immediately identified the root
cause. The problem can only be reproduced under very spe-
cific conditions where users must be connected to Bluetooth
headsets using a special mode prior to ending the meeting.
After the meeting ended, the application immediately rerouted
audio to Bluetooth devices connected over the A2DP stream-
ing protocol. This rerouting process requires re-initialization
of Bluetooth’s SCO (synchronous connection-oriented) link
where the Thread.sleep() was invoked to wait for the link
to be established. We were unfamiliar with these details, but
with the help of a developer with the necessary domain knowl-
edge, the issue was promptly fixed by moving the connection
and rerouting logic into an asynchronous event handler.

4 Background and Overview

This section first discusses Hubble’s design goals and the
role it plays in the failure diagnosis process, which helps to
understand Hubble’s design. We then provide an overview of
Hubble, leaving the details to the subsequent sections.

4.1 Goals and Requirements

Hubble’s performance overhead and resource usage must be
undetectable in all real-world usage scenarios. In practice,
this translates to two requirements: Hubble’s worst-case over-
head in real-world scenarios, in terms of both latency and
memory usage, should be less than 3%. This target was set
by our quality assurance team since they cannot reliably mea-
sure overhead below 2–3% on mobile platforms, even under
ideal conditions. Nonetheless, this is similar to the target set
by other practitioners; Google, for example, reported a 2%
overhead budget to deploy tracing tools in production server
workloads [32, 48]. The second requirement is that the over-
head budget should be respected regardless of whether Hubble
is tracing workloads on big or little cores. Besides not being
as fast as big cores, little cores also tend to lack advanced fea-
tures like out-of-order execution. Thus, they enforce stricter
restrictions on the tolerable overhead for Hubble. In any case,
satisfying the target overhead only allows a tool to pass the
deployment planning review. To be deployed in production,
the tool needs to go through a systematic procedure consisting
of three phases:

1. Internal testing. We simulate users using our devices
by sending a stream of pseudo-random inputs to a large
fleet of physical devices. Each device collects various met-
rics like application startup times, the number of dropped
frames, and so on. Each metric forms a statistical distribu-
tion over a large number of trials. We compare the distri-
bution before Hubble was added with the one after. If the
differences are statistically insignificant, Hubble has not
caused a noticeable change, and we move to phase 2.

2. Internal beta release. We push engineering builds to a
small group of internal beta testers on their daily-use de-
vices. We ask these users to report any performance re-
gressions they notice and any new performance issues will
need to be resolved before moving to the next phase.

3. Public beta release. A build is pushed to all beta users
(tens of thousands of users), and we monitor all new per-
formance anomaly reports. We only consider Hubble’s
overhead as undetectable when the beta build does not
show a statistically significant increase in reports. Only
then can the tool be further released to the entire public.

Android applications are typically distributed as bytecode
compiled from high-level languages like Java. Once down-
loaded, this bytecode is either ahead-of-time (AOT) com-
piled, or executed within the Android runtime (similar to the
Java Virtual Machine). The Android runtime compiles fre-
quently executed code Just-in-Time (JIT), using the same
AOT compiler. An already-compiled application could also
be re-compiled, if runtime profiling reveals new optimization
opportunities. Applications could also contain native libraries,
i.e., code that was already compiled into native instructions.
Thus, Hubble must be able to operate with only access to the
downloaded or generated bytecode or native instructions.

Easy maintainability across Android versions is required.
Android is typically updated every six to twelve months, with
each new release potentially breaking features or making
large-scale changes internally. Thus, Hubble should be modu-
larized and decoupled from the upstream source.

Finally, as the case studies highlight, Hubble needs to be
able to trace both the executions of the application and the An-
droid framework to be useful. Ideally, device vendors would
only be responsible for analyzing and debugging bugs within
Android, and application developers would only be respon-
sible for bugs within the application. The reality, however,
is that bugs in the Android framework may manifest them-
selves in the application and vice versa. Furthermore, system
traces are not available to application developers (in order to
maintain users’ security) and in-application traces may not
be available to or easily understandable by device vendors.
Exacerbating the issue, application developers and even in-
ternal developers at Huawei are reluctant to investigate bug
reports without clear evidence that the bug is in their code.
Whole-system method traces allow engineers to infer roughly
what the application and framework are doing, together, so
that the problem scope can be narrowed down to specific
call chains and system services. Essentially, Hubble needs to
bridge the gap between system and application developers,
which in turn, will significantly ease triaging and debugging
for both parties.

Overall, these requirements highlight the practical chal-
lenges of designing and deploying tracing tools onto a com-
plex user-device platform such as Android.
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4.2 The Failure Diagnosis Process
To understand Hubble’s utility, we first need to overview the
failure diagnosis process. Android devices ship with a set
of anomaly detectors to detect common issues like lags in
the UI. When an anomaly detector fires, the system saves
several pieces of data such as logs, metrics, and traces. At an
appropriate time, these data will be uploaded to the device
vendor for analysis.

4.2.1 Anomaly Detection

Since Hubble’s utility depends on an anomaly detector firing,
we first provide background on the detectors available in
the Android Open Source Project (AOSP) and our version
of Android. There are two branches of anomaly detection
mechanisms that device vendors can use in the production
environment: Those implemented by Android itself and those
implemented by in-house engineering teams. Both branches
use information gathered either from the Android runtime
layer or from the Linux kernel. In addition, both branches are
generally tuned to be conservative to reduce the number of
false positives. However, if a severe performance issue occurs,
a signal will most likely be raised.

The anomaly detectors implemented in the AOSP have
been continuously developed for over a decade. For exam-
ple, the most frequently used anomaly detector is the UI jank
(lag) detector, which has an extremely close correlation to
user-observable performance issues. It will alert if a number
of consecutive display frames are delayed longer than a pre-
defined threshold. Android officially groups all its tracing,
profiling, and anomaly detectors under one umbrella term
known as systrace. In production environments, most of these
anomaly detection signals and alerts are continuously cap-
tured and analyzed in real time.

Internally, we utilize a number of additional black-box
anomaly detectors which monitor for a number of kernel level
indicators and hardware events. For example, we implemented
a system-level, HCI-based detector: Studies show users start
to perceive a delay after 400-600ms. So by instrumenting the
runtime where (1) a touch is detected by the screen, (2) when
the signal is delivered to the application, and (3) the appli-
cation generates a response, we can accurately measure the
delay between (1) and (3) and fire an alert when the delay is
longer than 400ms. Furthermore, we can attribute the delay to
either signal delivery in the runtime or within the application.

Other black-box anomaly detectors could be as simple as
monitoring whether the device has entered the thermal throt-
tling mode. Most detectors, however, don’t rely on a single
metric. Instead, they correlate multiple metrics. For example,
if a detector detects that the current GPU memory bandwidth
utilization is high, it then checks other metrics such as the ren-
dering queue backlog length; only if multiple of them suggest
an anomaly does the detector fire a warning. Experimental
anomaly detectors may further leverage real-time machine-

learning monitoring Android runtime metrics like the number
of locks held, memory allocation and garbage collection fre-
quency, and so on.

4.2.2 The Utility of Hubble

When Hubble’s traces are collected, they are integrated into
systrace and Perfetto when presented to engineers with other
runtime data. Perfetto and systrace are powerful debugging
tools that can visualize a variety of runtime data, including
visualizing the method trace as a call chart or flame graph.
The tools also have search and analytics (e.g., using SQL)
capabilities that allow developers to correlate data from dif-
ferent sources. For instance, developers can cross-examine
traces with logs and hardware metrics. Developers can also
alert based on traces. For example, one use case of Hubble
is to search for the call stack that matches a specific method
invocation order, get an average runtime, and alert when it
exceeds a threshold. As a result, Hubble is not a standalone
tool, nor the only debugging tool. Instead, developers usually
start debugging by first examining the data from existing logs
and metrics, and some bugs can be resolved with these alone.
However, the remaining bugs—typically hard-to-diagnose,
intermittent issues—require more insight, which is where
Hubble excels.2

Key to Hubble’s success is the visibility it provides into
application and framework-level behaviour, without which en-
gineers cannot triage issues. Hubble’s detailed method traces
also allow developers to better understand how a bug can
be reproduced; with a reproduction, developers can repeat-
edly reproduce the bug in a development environment (with
heavyweight tracing) until the issue is understood.

Nonetheless, there are some limitations to Hubble’s utility.
We have found Hubble’s traces are not as useful in the follow-
ing cases: (1) if the bug is in the system’s native code (which
is not traced), (2) if the method-level trace is not fine-grained
enough (e.g., an infinite loop without making any function
calls), or (3) if a bug is caused by incorrect data-flow (i.e.,
an incorrect variable value) that does not affect the call path
(otherwise it could be inferred by Hubble’s trace). However,
Hubble’s traces can still help developers to significantly nar-
row down the problem scope (e.g., they can locate the method
that contains the infinite loop). In theory, if the distance be-
tween the root cause and the symptom is too long, Hubble
could miss the cause due to the ring buffer size. However, we
have not yet encountered such a case in practice.

2We do not have an exact number of issues exclusively resolved by Hub-
ble, because Hubble’s traces are integrated into existing debugging tools
with other traces. However, we noticed the number of bug tickets containing
intermittent and difficult to reproduce bugs quickly dropped after Hubble
was first made available.
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4.3 Overview of Hubble

Hubble modifies the compiler and interpreter to instrument
tracing logic at the entry and exit of every non-inlined byte-
code method, whether it is interpreted, ahead-of-time com-
piled, JIT compiled, or recompiled. Portions of the Android
framework itself and factory installed apps, i.e., the apps that
are packaged by the OEM vendor, could be already in com-
piled form instead of bytecode; for these cases, the trace points
are embedded at the vendor’s site. Hubble can also trace calls
made using the JNI (when applications calls into the native li-
braries and the returns). However, function calls made within
native libraries cannot be traced by Hubble.

Hubble adds one system thread, the trace control thread,
to each application’s process that can turn tracing on or off
for any thread in the same process. Although Hubble instru-
ments all bytecode methods, by default, the control thread
only turns on tracing for the UI thread, which performs all
UI and Android framework operations. At every method en-
try and exit, Hubble’s tracing code writes an entry to a fixed
size in-memory ring buffer. When the buffer is full, the buffer
pointer will wrap around so the oldest data will be overwritten.

When a performance anomaly detector detects a perfor-
mance problem, the control thread will be notified. It then
notifies the UI thread to stop tracing, preventing useful de-
bugging data prior to the problem from being overwritten.
Once tracing has stopped, the control thread flushes the ring
buffer to disk, before restarting tracing. The saved trace file
could be sent back to Huawei to aid postmortem debugging,
or post-processed and analyzed on the device, off the critical
path, if a summary needs to be sent.

Each traced thread writes to a private ring buffer local to
itself. Hubble keeps at most N buffers in the system, from the
N threads that most recently executed in the foreground. Older
buffers will be reclaimed by the system. N is configurable and
the method trace logic can be programmatically enabled and
disabled for individual threads, either via the runtime or by
the user application itself. This means that any background
threads from almost any process, even short lived ones, can
be traced. However, if there are too many concurrent threads
being traced, Hubble will run into memory usage issues. To
solve this, we could have a ring buffer per core rather than per
thread; to differentiate trace points from different threads, we
could record the thread’s ID (available from a register in the
runtime) in each trace point. By default, N is set to 2. This
is sufficient to capture both the current foreground and most
recent background application’s UI threads.

5 In-memory Tracing

This section describes the design and implementation of Hub-
ble’s tracing logic. We first explain the information recorded
in each trace point and its encoding. We then discuss how we
integrated the tracing code into Android’s optimizing com-

ts      ptr

 ts     0x1
Entry

Exit

ptr
ts      ptr

 ts     0x0

64-bit mode 32-bit mode

(A)

(B)

 ts     0x0

Figure 2: Format and encoding of trace points at method entry
and exit, and in 64-bit and 32-bit execution modes. “ts” and “ptr”
are timestamp (generic timer count) and method pointer. A solid
bordered box represents a 64-bit slot. Underscores represent lossy
encodings of timestamps.

piler so that compiler optimizations do not affect our instru-
mentation.

5.1 Data Format and Encoding
Figure 2 shows the format of each trace point. As shown,
method entry points have a varying encoding depending on
the CPU’s execution mode and other factors explained later.
The CPU will change mode when executing a 32-bit or 64-bit
application. Method entry trace points contain a timestamp
and a method pointer, while exit points contain a timestamp
and the constant 0x0.

For timestamps, Hubble uses the Generic Timer [3] count
instead of the standard system clock. A Generic Timer is
a high resolution clock (nanosecond precision) and its tick
value can be directly read from a register on modern ARM
SoCs. It ticks at a constant frequency regardless of the CPU
operation speed and the counter value starts at 0 when reset.
When the trace is persisted, Hubble records the current time,
which can be used to reconstruct the absolute timestamp of
each trace point from the Generic Timer count.

The method pointer is the memory address of a metadata
object, ArtMethod, that describes each loaded class-method
and can be used to decode a method’s canonical name. As
part of the ClassLoader initialization process in Android’s run-
time (ART), an array of ArtMethods is allocated in a memory
region outside the managed heap (ignored by garbage collec-
tion). ArtMethods can only be added to this array and never
be modified nor removed. ART ensures that immediately af-
ter entering a method, the address of its ArtMethod is stored
in register r0. Since the lifecycle of the main ClassLoader,
which is responsible for loading all of the executed bytecode
methods, spans the entire duration of the application, we can
safely store the ArtMethod pointer in the trace buffer and
reconstruct the method name after the trace data is persisted,
so long as this happens before the application exits. Note that
applications could use additional custom ClassLoaders with
shorter lifecycles. If we persist the trace data after the custom
ClassLoader exits, we could dereference pointers that are no
longer valid. To avoid this, we install a cleanup hook for cus-
tom ClassLoaders to invalidate the trace buffer (or optionally
persist the trace data).

794    16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0x8888888800000003

0x8888888800000001

0x88888887FFFFFFFF

0x8888888800000002

tr

Overflow

Detected

t3

t2

t1

STOP

Figure 3: Iteratively Recover Truncated Timestamps.

For each thread that is traced, the control thread allocates
storage for the trace in the traced thread’s local storage (Java
ThreadLocal [37]). This includes a ring buffer and metadata
such as where content in the buffer begins and ends. The ring
buffer is carved into an array of 64-bit wide integers in both
64-bit and 32-bit mode.

For the timestamp in each trace point, Hubble only stores
the lower 32 bits of the Generic Timer counter, regardless of
execution mode. (Even in 32-bit mode, the Generic Timer
counter is 64 bits wide because the value is fetched from a
co-processor that is not subject to the mode change.) Thus,
the recorded timestamp may wrap around, which we handle
during decoding.

Figure 3 shows how Hubble reconstructs the accurate times-
tamp from truncated ones. The last timestamp is a reference
timestamp (tr), which is the complete 64-bit Generic Timer
counter value recorded when the trace is persisted. Using tr,
we can iteratively reconstruct the upper 32 bits of the previous
three timestamps: if a previous timestamp has a lower value
than the current one (e.g., t3 versus tr), we assume it has the
same upper 32 bits; if it has a higher value (e.g., t1 versus
t2), we assume a wrap around occurred and the upper 32 bits
should be decremented by one.

Theoretically, this could lead to an error: if between two
consecutive trace points more than 232 ticks occur, the re-
constructed timestamp will be inaccurate. However, this is
unlikely to happen in reality. It takes 223.7 seconds on a Qual-
comm ARM SoC and a little over 37 minutes on a Huawei-
designed SoC for the lower 32-bit Generic Timer counter to
tick 232 times. So only if a method executes for more than
223.7 seconds, without calling another method or returning,
will an inaccuracy occur.

5.1.1 Format under 64-bit Mode

Hubble uses a variable-width encoding for the ArtMethod
pointer when executing in 64-bit mode. In this mode, the
pointer is 64 bits; but for real-world applications, the vast
majority of the pointers’ upper 32 bits have the value 0x0.
We exploited this observation to increase encoding efficiency.
When the upper 32 bits are 0x0, Hubble only records the lower
32 bits of the pointer (Figure 2 (A)). Together with the lower
32 bits of the timer count, a method entry trace point occupies
a single 64-bit buffer slot. If the upper 32 bits of the method

pointer are not 0x0, a method entry trace point occupies two
buffer slots (Figure 2 (B)). The first 64-bit slot is used to save
the complete 64-bit method pointer; in the second slot, the
upper 32 bits store the timer count and the lower 32 bits store
the constant 0x1.

The method exit trace point occupies a single 64-bit slot.
The upper 32 bits store the timer count, and the lower 32-bit
stores 0x0, indicating it is a method exit trace point.

Traces in this format can always be unambiguously de-
coded in reverse. To decode each trace point, Hubble first
checks the lower 32 bits of the previous slot. Depending on
whether its value is 0x0, 0x1, or another value, Hubble knows
that this trace point is either a method exit, a method entry that
is two slots wide (Figure 2 (B)), or a method entry that is one
slot wide (Figure 2 (A)). 0x0 and 0x1 cannot be method point-
ers since they are invalid method pointer memory addresses. A
method exit point is matched with the corresponding method
entry point in a LIFO manner (implemented using a stack).
Note that the decoding occurs server-side, after the persisted
trace has been sent back.

5.1.2 Format under 32-bit Mode

In 32-bit mode, both method entry and exit trace points use
a single buffer slot. The upper 32 bits are always the lower
32 bits of the timer count, like in 64-bit mode. For method
entry points, the lower 32 bits store the method pointer, and
for method exit points, the lower 32 bits store 0x0.

5.1.3 Efficient Recording

The tracing logic can be efficiently implemented by a few
assembly instructions. For example, Hubble uses only two
assembly instructions to store the method entry trace point
under 32-bit execution mode:

1 MRRC(al, scratch1 , scratch0 , 0b0001 , 0b1111 , 0b1110);
2 STRD(r0, scratch1 , MemOperand(buffer , 8, PostIndex ));

The first MRRC instruction is used to fetch the 64-bit Generic
Timer counter value into two 32-bit CPU registers: scratch1
and scratch0 (readers can ignore the other operands). Then
a STRD instruction is used to (1) store scratch1, which con-
tains the lower 32-bits of the Generic Timer counter, and r0,
which contains the ArtMethod pointer, to the memory address
stored in buffer register, and (2) increment buffer by 8 bytes
after the memory operation completes. So after this store
instruction, buffer will point to the next buffer slot.

Hubble’s tracing assembly is directly inlined in the basic
block at each method entry and exit. Comparatively, in other
profilers that use compiler instrumentations, the instrumented
code will call a special tracing function. For example, gcc -pg

instruments a call to the special function mcount(), which is
required for tools like gprof. While easier to maintain and
more portable, the added function call introduces overhead.
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When tracing is stopped, the valid portion of the ring buffer
is flushed to disk using an fwrite call. Three metadata files
are generated. First, a complete 64-bit Generic Timer counter
value (i.e., the reference timestamp) and the absolute system
timestamp are collected at the same time; this facilitates the
reconstruction of the actual, non-relative timestamp of each
trace point if needed. Then the current buffer position and size
are recorded. Finally, Hubble computes a symbol table, map-
ping each unique ArtMethod pointer value to the method’s
canonical name.

5.1.4 Alignment

Each trace point is always eight-byte (a word on 64-bit de-
vices) aligned. Eight-byte aligned memory accesses are cru-
cial to achieving the highest performance in both 32-bit and
64-bit mode on modern ARM SoCs. Unaligned accesses take
at least one more cycle than a properly aligned memory ac-
cess. In the worst case, a single unaligned access can cross a
cache-line boundary and generate two cache misses or even
two consecutive page faults. Worse yet, unaligned memory
accesses are an unsupported operation on low-power or older
ARM processors, so additional memory accesses and mas-
saging logic are required. Accordingly, we use 32 bits to
represent the constants 0x0 and 0x1, since the performance
gains of aligned accesses outweigh encoding inefficiency.

5.2 Hand-optimized Assembly

There are a few reasons to write the tracing logic in assem-
bly. First, it decouples Hubble from the Android compiler’s
compilation flow. If written in C++, the compiler could move,
reorder, or even remove the tracing logic (e.g., the tracing
logic accesses global variables without a memory barrier (§6),
which is an undefined behavior). By writing the logic in as-
sembly, we can insert it after the compilation stage, bypassing
any optimizations that are at odds with the tracing. To do
so, early in the compilation stage, instead of generating the
actual tracing code, we simply insert a special placeholder
instruction at every method entry and exit (including exits
due to exceptions); we then configure the Android compiler
to exempt this instruction from its later optimization stages.
After all the optimizations are performed, we replace this
placeholder instruction with the actual tracing instructions.
This also makes Hubble easy to maintain, as it is decoupled
from any compiler changes that are not backward compatible.

Using assembly also allows us to optimize for both big and
little cores. The Android compiler’s optimization is heavily bi-
ased toward the big core. For example, the compiler skips the
architecture-specific optimizations when they are unnecessary
on big cores that support out-of-order execution. However,
the little cores do not support out-of-order execution, so run-
ning the compiled code will result in poor performance. For
instance, each trace point needs to check if we are at the end

Trace point:
 7  if (start)

 8    trace...

 9    if (stop) {

10      stop=buffer;

11      start=0x0;

12    }

// Initialization

start=0x0;  stop=0x0;

    T1:L1

Control thread:
1  start=buffer;

2  wait(signal);

3  stop = 0x1;

4  while(stop==0x1)

5    sleep(..);

6  persist(..);

T2

T3:L3

T4

T5 T6:L1

T7
Traced thread

Control thread

Figure 4: Lock-free Synchronization Protocol.

of the ring buffer (and if so, we need to wrap around). This
check requires fetching the value of the ring buffer pointer
from memory. If we manually prefetch this pointer (in assem-
bly), it results in an approximate speedup of 35% on the little
core. The compiler, however, did not perform this prefetching,
because it expects the big core will perform the prefetching
automatically.

Finally, because we have domain knowledge of the tracing
logic and processor microarchitecture, we can perform better
optimizations than the compiler, regardless of whether it is
on the big or little core.

6 Tracing Control

Recall a system thread is responsible for notifying the traced
thread to turn tracing on or off. The traced thread (e.g., the UI
thread) is only responsible for (1) checking whether tracing
is turned on, and if so, (2) writing the trace points into the
trace buffer, and (3) turning tracing off if necessary. The rest
of this section describes how the two threads communicate
efficiently without synchronization primitives.

Figure 4 shows the communication between the control
thread and the traced thread. Lines 1–6 are the control thread’s
logic, whereas lines 7–12 are executed at every trace point
in the traced thread. Hubble uses two eventually-consistent,
shared variables, start and stop. start is unidirectional, i.e.,
it is set by the control thread and read by the traced thread,
and stop is bidirectional, as it can be set and read by both
threads. Initially, both variables are set to 0x0. To start tracing,
the control thread sets start to the address of the next buffer
slot (line 1 in Figure 4), and waits for a signal to stop tracing.
Therefore, the value of start indicates two things: whether
tracing is on or off, or the buffer position. At each trace point,
the traced thread first checks if start is 0x0, and only proceeds
with tracing if it is not (line 7).

To turn tracing off, the control thread sets stop to 0x1

(line 3 in Figure 4), and then enters a polling loop until stop
is changed to a value greater than 0x1 (lines 4–5). In the
meantime, the traced thread performs tracing and evaluates
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the value of stop at the end of every trace point (line 9). Once
the traced thread detects that stop was changed to a non-zero
value, it enters the logic to stop tracing. The traced thread first
sets stop to the address of the current buffer pointer, i.e., the
end position of the buffer, at line 10. So stop also serves dual
purposes: whether tracing should stop (with value 0 or 1),
or the buffer end position. (Note that 0x0 and 0x1 are invalid
buffer memory addresses, so after line 10, stop will be greater
than 0x1.) Then the traced thread sets start to 0x0 at line 11,
to guarantee that tracing will be disabled immediately. Finally,
the control thread detects that the traced thread has stopped
tracing, so it can persist the trace or clean up the ring buffer.

Figure 4 also shows an example trace control-flow. Each
circle represents a trace point, with filled and blank shading
indicating whether trace data is written or not. At the begin-
ning, tracing is off. At T1, the control thread turns tracing
on at line 1 (L1) by setting start to a non-zero value. This
new value is propagated to the traced thread at time T2, as the
result of eventual consistency in the memory cache coherence
protocol. Then, the following three trace points are written to
buffer. At T3, the control thread turns tracing off by setting
stop to 0x1, which is propagated to the traced thread at T4.
The traced thread then executes lines 10–11, and at T5, the
control thread detects that stop was changed to a value greater
than 0x1; so it breaks out of the polling loop and persists the
trace. After the trace is persisted, the control thread restarts
tracing at time T6 (line 1).

This design is highly efficient. Each trace point needs to
check the values of start and stop only if the trace has been
started. start and stop are regular shared variables that are
almost always cached. In comparison, any alternative design
that uses synchronization primitives or atomic variables would
introduce much higher overhead in each trace point, which is
on the critical path.

Since tracing is stopped and the current ring buffer location
is written to the stop variable by the traced thread itself, no
additional trace point will be written to the buffer afterwards
and the buffer metadata will be consistent. For example, if
the last trace point is a 64-bit method entry occupying two
slots, it is guaranteed that both slots are written with the buffer
pointer correctly incremented before tracing is stopped.

If the traced thread is executing native code, either through
the JNI or a custom ClassLoader, it cannot respond to the
control thread’s stop tracing request, because the logic to stop
tracing is only instrumented in bytecode methods. Therefore,
the control thread further checks whether the traced thread
is in native execution when it attempts to stop tracing. If so,
the control thread will first obtain ART’s state transition lock
that prevents the traced thread’s execution from changing
state, i.e., from native execution back to the bytecode world
(either the interpreter or compiled code). Then the control
thread forcibly copies the buffer position to stop, and sets
start to 0x0, followed by a memory fence. Finally, the control
thread can release the state transition lock. A subtle data

race could occur during state transition where just before
the lock is obtained, the traced thread transitions back to the
bytecode world. Debugging this unfortunately took weeks,
but we fixed it by rechecking the traced thread’s execution
state after obtaining the lock.

7 Privacy and Security

Security and privacy are some of our top priorities. Hubble
does not collect personally identifying information, such as
phone numbers or user IDs. Hubble’s traces only contain
method names and timestamps, there are no actual data values,
not even parameter values. Widely-adopted error reporting
systems like Windows Error Reporting (WER) [21], MacOS’
crash report [2], or the Mozilla Crash Reporter [34], record
a subset of the memory state or often collect system logs. In
comparison, Hubble’s traces are far less sensitive. Similar
to WER and other widely-adopted error reporting systems,
Hubble uses an informed consent policy.

Even when user consent is given, Hubble further strives
to minimize the amount of data that leaves the device. Hub-
ble has the capability to perform the same analyses that are
performed server-side, locally on a user’s device, with only a
summary being sent back to the vendor. For example, Hubble
can quickly scan the trace files and compute the top methods
with the longest “self-execution-time”, or it can automatically
isolate and extract the longest method call chains from when
a performance anomaly occurred. Performance bug models
could be distributed to client devices, containing “signatures”
of problematic method names or method call chains, and if
there is a match, statistics could be sent back instead of the
complete trace.

Hubble also exploits many built-in data security features in
Android and the Linux kernel to protect trace data. The traces
are stored inside an application-private storage area that is
protected by the kernel-level application sandbox. Only the
application itself with matching its UID, device vendors, and
application developers—when they configure their mobile
device in debug mode—have access to the trace files.

8 Evaluation

Hubble has been repeatedly tested on Huawei’s performance
testing framework, which included the top 100 popular ap-
plications, with workloads including startup, stress testing
(simulated random screen touches at a high rate), and normal
usage simulations, on all supported devices. Overall, we have
found Hubble’s overhead is statistically insignificant in real-
world use-cases. Hubble tracing is now enabled by default in
all Huawei testing frameworks.

We have designed a few experiments to stress test and
study Hubble’s runtime characteristics, aiming to answer four
questions: (1) What is the runtime cost of Hubble’s tracing?
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(2) What is Hubble’s effect on cache behavior and memory
bandwidth? (3) What is Hubble’s overhead in the most de-
manding real-world scenarios? (4) How long of an execution
trace can be stored in the ring buffer? We did not evaluate
power consumption. Despite best-effort attempts, we could
not reliably observe battery overhead in any experiments.
Huawei’s devices are shipped with aggressively tuned power-
saving profiles and thus far, we have not observed an increase
in reports of battery drain.

Unless otherwise specified, experiments were performed
on a Google Pixel 1 phone that is well-supported by the
open-source version of Android (AOSP). The phone con-
tains a Qualcomm Snapdragon 821 processor with two high-
performance cores each with a 64 KB L1 (divided equally
for instructions and data) and 1.5 MB L2 cache, and two
low-power cores each with a 64 KB L1 and 512 KB L2 cache.

We compared three execution modes: (1) baseline – the
phone running unmodified Android; (2) tracing off – Hubble
is enabled and applications are instrumented, but tracing is
turned off; and (3) tracing on. Baseline experiments were
performed on AOSP’s android-10.0.0_r2 [56] branch. We
recompiled the same branch with Hubble enabled.

Hubble’s overhead could only be measured reliably in CPU-
intensive and unrealistic microbenchmarks. Repeatedly run-
ning the two microbenchmarks in §8.1 and §8.2 causes the
CPU to quickly reduce its clock speed due to severe thermal
throttling. To improve the validity and reproducibility of the
experiments, we placed the phone on bags of ice water.

8.1 Trace Point Overhead

Hubble’s tracing overhead is amortized by the amount of work
performed by the traced method. Since Hubble’s tracing logic
does not impose any dependencies on the traced method, nor
does it use synchronization primitives on the critical path,
the amortization effect will be enlarged by the deeper CPU
pipeline. We evaluated both the cost of an individual trace
point as well as the overall runtime overhead as the method
performs more work. For comparison, we also evaluated An-
droid’s built-in method tracing utility, typically invoked via
Android Studio’s CPU profiler, henceforth referred to ASMT.

Listing 1 shows the method used. The amount of work done
can be controlled through the work parameter. To prevent the
method from being inlined by the JIT compiler, we added
tail-recursion on line 5. In addition, we executed the method
with a depth of 10 since the compiler still performs inlining
at lower depths. sum is carried across calls to ensure that the
loop is not optimized away by dead code elimination.

We ran the method with work values of 0, 1, 10, 100, and
1,000. We measured the runtime of two billion iterations. The
cost of a trace point is calculated as the overhead of the 0-work
experiment divided by two, since each method call contains
a method-entry and method-exit trace point. To ensure the
method is compiled by the JIT compiler before evaluation, we

Average
Cost (ns)

Standard
Deviation (ns)

Performance
Overhead (%)

ASMT
Tracing ON

32-bit 3,911.575 59.2450 920,587%
64-bit 3,366.050 57.8026 748,510%

Hubble Method
Tracing ON

32-bit 0.725 0.0551 171%
64-bit 0.650 0.0023 145%

Hubble Method
Tracing OFF

32-bit 0.001 0.0030 0%
64-bit 0.008 0.0027 2%

Table 2: Cost of a Single Trace Point
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Figure 5: Performance Overhead Over Work Iterations

ran the experiment until its runtime stabilized to a maximum
variance of five percent. The method is then executed ten
times for each experiment.

1 public long Test(int depth , int work , long sum) {
2 for (int i = 0; i < work; i++) {
3 sum *= i - 1; sum /= i + 2;
4 }
5 if (depth > 1) return Test(depth - 1, work , sum);
6 return sum;
7 }

Listing 1: Program used for measurement.

Table 2 shows the results of the 0-work experiment, with
the other work values in Figure 5. The 0-work experiment
shows that on average, each Hubble trace point costs less
than one nanosecond when tracing is on, and less than 10
picoseconds when tracing is off. This is far less than ASMT’s
overhead which is on the order of microseconds. Figure 5
shows the amortization effect: as the amount of work done by
the method is increased, Hubble’s tracing overhead percentage
decreases quickly. Note that in reality, small methods like this
would likely be inlined, excluding them from being traced.

8.2 Cache Effects Microbenchmark
We used matrix-multiplication (MM) to measure Hubble’s
effects on the cache. MM is a classic workload that can either
benefit heavily from caching or suffer ample cache misses [8].
When multiplying large matrices, a naïve implementation
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Figure 6: Cache and Memory Effects

causes many unnecessary cache misses. However, the major-
ity of these cache misses can be avoided using loop-tiling, i.e.,
partition each matrix into many small tiles, where each fits in
the cache, and perform all accesses on one tile before moving
on to the next. We examined Hubble’s effect on each level of
the cache by gradually increasing the tile size.

We evaluated Hubble’s effect on MM with eight differ-
ent tile sizes: 16×16, .., 2048×2048. The input matrices are
2048×2048, and each element is a four-byte integer. This
means tile sizes 64×64 and below fit within the L1 cache; tile
sizes 256×256 and below fit within L2; and all remaining tile
sizes exceed both cache levels. To evaluate the highest amount
of interleaved memory-contention that Hubble may have with
MM, we performed each multiply and add operation inside
a method such that two trace points are produced for each
step of MM. We also inserted a dummy tail recursion call so
that the JIT compiler does not inline the method. For each tile
size, we ran the experiment five times. We did not compare
with ASMT because it was too slow.

Figure 6 shows the results. With Hubble’s tracing turned off,
we could not reliably observe any overhead. With Hubble’s
tracing turned on, for the smallest tile size that fits within the
L1 cache, Hubble has a min / max / mean overhead of 41% /
70% / 54%. When the tile size still fits within the L2 cache
at 128×128, the overhead increased slightly to a min / max
/ mean of 64% / 83% / 70%. Finally, when the tile size is
much larger than the L2 cache, caching is no longer effective.
In this region, the increased execution time when tracing is
turned on did not deviate significantly from smaller tile sizes,
but the amortized overhead decreased.

Thus, in the absolute worst case scenarios, Hubble indeed
affects programs heavily optimized for caching and, to some
extent, memory-bound programs. However, in practice, simi-
lar small methods invoked in a tight loop would be inlined and
excluded from tracing, not to mention that such loop-tiling is
unlikely to be used in an application’s UI thread.

8.3 Startup Overhead Macrobenchmark
We measured Hubble’s overhead on application startup, one of
the most demanding but realistic workloads for a method trac-
ing tool since it comprises hundreds of thousands of method
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Figure 7: Application Startup Time

calls in a short period of time. These methods perform data
loading and processing to prepare the application’s UI and are
often optimized to ensure the application loads quickly [22].

Since the performance of the application startup process
varies significantly in practice, we took additional measures
to minimize variation across benchmark runs. Specifically,
we ran all experiments while disconnected from the network,
eliminating variance introduced by network connections. We
launched the target application repeatedly until its startup
time stabilized to within a maximum variance of 5% (without
these measures, the normal variance can be as much as 100%
as shown on the left hand side of Figure 7). Each applica-
tion was launched programmatically, avoiding any extraneous
touch input that would occur with manual interactions. The
startup time was obtained from a syslog message that indi-
cates the duration from when the application process launched
to the time after the application’s UI has been drawn on the
screen. To force cold starts (where the application starts com-
pletely unloaded), we manually killed each application before
starting it again. Furthermore, we performed tests in quick
succession to encourage the scheduler to place the application
process on the performance-oriented CPU core operating at
the maximum clock speed.

We ran the benchmark on the three applications that had the
most downloads in 2020 [6]: TikTok, WhatsApp, and Face-
book. The results are presented as a box and whisker chart
on the right hand size in Figure 7. As the figure shows, the
measured startup times vary considerably. To determine if
Hubble causes a statistically significant difference in appli-
cation startup time in our tightly controlled test environment,
we performed two single-tailed dependent (paired sample)
t-tests with a significance level of 5%. The t-test on the results
of tracing turned off produced a p-value of 14.25% and the
t-test of tracing turned on produced a p-value of 33.18%, both
of which exceed the 5% threshold. Thus, we cannot conclude
that Hubble causes a statistically significant difference in
application startup time. In contrast, ASMT increased the av-
erage startup time of the three applications by approximately
10 times.

Although application startup overhead fluctuates signifi-
cantly under real world scenarios, the number of methods
executed remains nearly constant. When disconnected from
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the network, TikTok, WhatsApp, and Facebook filled 6.0 MB,
3.8 MB, 6.4 MB of Hubble’s ring buffer respectively; this cor-
responds to roughly 400,000, 250,000, and 420,000 methods
invocations. When connected to the internet, the ring buffer
content increased to 14 MB, 5.1 MB, and 11 MB because
the applications loaded the user’s content. In all three ap-
plications, the 32 MB of ring buffer proved to be more than
sufficient to capture the entire application startup sequence. In
Huawei’s Hubble deployment, the 32 MB trace buffer is able
to store the duration of almost all application startup and in-
termittent performance anomalies that our support engineers
have encountered.

The results of the macrobenchmark were also in-line with
results from our automated performance-regression testing,
as well as feedback from support engineers and application
developers. Recall that in part one of Huawei’s three-phase
deployment process (§4.1), we ran automated tests across a
large fleet of devices and any significant statistical deviation
in the results will prevent a new build from being deployed.
In the automated performance-regression tests, we measured
the application startup-time (both cold and warm startup) of
the 100 most-downloaded third-party applications in addition
to all our own applications. We categorized startup times into
increments of 500 ms and count the number of applications
that fall in each increment. After Hubble’s deployment, we
have not recorded any statistically-significant changes in the
number of applications in each bucket for both cold and warm
startup times.

The choice of 500 ms may seem high; however, Farrer et al.
showed that users do not feel any loss of control (i.e., that an
application is not responding to their action) until the response
times reach approximately 350 ms [19], and users feel like
they have completely lost control when response times exceed
approximately 750 ms. Thus, our QA teams (and others [43])
have found that 500 ms increments are a good categorization
to qualitatively evaluate loading speed—response times below
500 ms are considered excellent, 500–1000 ms is considered
good, and above one second is considered slow.

9 Experiences

Hubble was shipped in the production branch of Huawei’s An-
droid system in August, 2020. An early prototype was merged
into the main development branch in 2019, and engineers have
been using it since. Huawei also runs a beta program where
users can receive new features before public release. There
are currently tens of thousands of beta users, and Hubble is en-
abled on their daily-use devices. For other end users, Hubble
can only be enabled with their express consent.

The trace collection frequencies and retention policies vary
depending on the type of users, the level of consent granted,
operating region and local regulations, and device model. In-
ternal beta users may not have any data upload restrictions.
However, there are often additional restrictions on public

users (including those beta users that are outside of Huawei).
A common policy is that each user device can upload at most
three traces per week. Which three traces to upload is config-
urable. For instance, sometimes there is a targeted campaign
to improve specific applications, so in that case, only traces of
anomalies for those applications are uploaded; other times we
collect traces for anomalies whose symptoms are extremely
severe; or, in the default case, we collect the first three anoma-
lies detected. Although three traces is a low threshold, with
a large user base, we are usually able to collect one or a few
traces for each important issue.

Besides debugging production issues, Hubble is equally
useful for debugging problems discovered during automated
testing. Before Hubble, developers used ASMT to debug per-
formance regressions, but due to its overhead it could only
be enabled when debugging. This is cumbersome, and many
problems simply could not be reproduced while debugging or
worse, new issues would appear with ASMT enabled. Now,
whenever a performance regression is detected, Hubble’s
traces are automatically collected, helping developers quickly
narrow down the root cause without reproducing the issue.

A happy accident of implementing the tracing in assembly
was that we discovered a bug in ARM’s reference design on
an older CPU model. While optimizing and testing the tracing
assembly on a large number of devices, we found that when a
specific permutation of 32-bit assembly instructions is used
together with the Generic Timer counter, a segmentation fault
could occur on the out-of-order performance cores. The bug
was confirmed by the chip design team and fixed in later CPU
models. On the buggy CPU model, we work around the issue
by using an ISB instruction to flush the CPU pipeline after
fetching the Generic Timer counter.

10 Concluding Remarks

Call profilers are known to be useful in debugging, however,
their use has been limited to the development environment as
a result of their overhead. Hubble shows that by leveraging
Android’s on-device compilation process, a just-in-time flush-
ing strategy, and together with careful system-level design
and engineering, we can achieve a highly efficient tool that
can collect fine-grained call traces even in production envi-
ronments. Hubble has proved its usefulness by significantly
easing engineers’ postmortem debugging processes.
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