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Abstract
Serverless applications represented as DAGs have been grow-
ing in popularity. For many of these applications, it would
be useful to estimate the end-to-end (E2E) latency and to
allocate resources to individual functions so as to meet prob-
abilistic guarantees for the E2E latency. This goal has not
been met till now due to three fundamental challenges. The
first is the high variability and correlation in the execution
time of individual functions, the second is the skew in exe-
cution times of the parallel invocations, and the third is the
incidence of cold starts. In this paper, we introduce ORION
to achieve this goal. We first analyze traces from a produc-
tion FaaS infrastructure to identify three characteristics of
serverless DAGs. We use these to motivate and design three
features. The first is a performance model that accounts for
runtime variabilities and dependencies among functions in a
DAG. The second is a method for co-locating multiple paral-
lel invocations within a single VM thus mitigating content-
based skew among these invocations. The third is a method
for pre-warming VMs for subsequent functions in a DAG
with the right look-ahead time. We integrate these three in-
novations and evaluate ORION on AWS Lambda with three
serverless DAG applications. Our evaluation shows that com-
pared to three competing approaches, ORION achieves up to
90% lower P95 latency without increasing $ cost, or up to
53% lower $ cost without increasing P95 latency.

1 Introduction
Serverless computing (a.k.a., FaaS) has emerged as an at-

tractive model for running cloud software for both providers
and tenants. Recently, serverless environments are becoming
increasingly popular for video processing [12, 58], machine
learning [18,55], and linear algebra applications [32,48]. The
requirements of these applications can vary from latency-
strict (e.g., Video Analytics for Amber Alert responders [61])
to latency-tolerant but cost-sensitive (e.g., Training ML mod-
els [28]). Accurate latency estimation is essential to meet
the requirements for both, as the cost in FaaS platforms is
based on resource usage and runtime. The workflow of these

serverless pipelines is usually represented as a directed acyclic
graph (DAG) in which nodes represent serverless functions
and edges represent data flow dependencies between them.

Serverless platforms experience high performance variabil-
ity [4, 27, 35, 40, 42, 56] due to three primary reasons: First,
some function invocations have cold starts. Second, there is
skew in the execution time of various functions because of
different content characteristics that the functions operate on.
Third, there exists skew in the execution time due to variabil-
ity in infrastructure resources (e.g., network bandwidth for
an allocated VM). Because of this variance in performance,
predicting the mean (or median) execution time of individ-
ual functions is not sufficient to meet percentile-specific la-
tency requirements (e.g., P95) for serverless DAGs. Rather, a
distribution-aware modeling technique is essential to capture
this variability and provide accurate latency SLOs.
Key Idea. We propose ORION, a novel technique for perfor-
mance modeling of serverless DAGs to estimate the end-to-
end (E2E) execution time (synonymously, E2E latency). We
leverage this model to enable system optimizations such as
allocating resources to each function to reduce E2E latency
while keeping $ costs low and utilization high. The differ-
ent components of ORION are shown in Figure 1. We derive
insights about serverless DAGs from analysis of production
traces at Azure Durable Functions [13]. This analysis drives
our performance model and the design features.

First, we observe the inherent performance variability in
serverless DAGs and therefore represent the latency of a sin-
gle function, as well as that of the entire DAG, as a distribution
rather than a single value. For example, Figure 5 shows the
variance in execution times for the top-5 most frequently
invoked DAG-based applications. The execution times of in-
vocations of the same DAG vary significantly, and the P95
latency is 80X of the P25 latency, averaged over the 5 applica-
tions. Thus, our performance model profiles the latency distri-
bution for each function in the DAG and builds a performance
model to capture the impact of varying the resource alloca-
tion to that function on its latency distribution. Afterward, we
estimate the DAG E2E latency distribution by applying a se-
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Figure 1: ORION Overview. ORION profiles the DAG, estimates E2E latency CDF using CONV and MAX,
and performs three system optimizations — right-sizing, bundling, and right pre-warming.
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Figure 2: Illustration of DAG Depth (i.e.,
number of in-series stages) and Width (i.e.,

Maximum fanout degree).

ries of two statistical combination operations, convolution
and max, for in-series and in-parallel functions, respectively.
Moreover, we observe it is essential to consider the correlation
between the workers across stages and within the same stage
to accurately estimate the joint distributions. Our performance
model does not require expensive profiling, as is needed for
the leading technique, Bayesian Optimization [3, 5, 15].

We then use our performance model to design three op-
timizations for serverless DAGs. (1) Right-sizing: Finding
the best resource configurations for each function to meet
an E2E latency objective (e.g., 95-th percentile latency < X
sec) with the minimum cost. (2) Bundling: Identifying stages
where co-locating multiple parallel instances of a function
together to be executed on a single VM will be beneficial.
The benefit arises when there is computation skew among
the parallel workers caused by different content inputs. (3)
Right pre-warming: The VMs to execute the functions in the
DAG are pre-warmed just right, ahead of time, so that cold
starts can be avoided while keeping provider-side utilization
of resources high. With these three optimizations, ORION
accurately meets latency SLOs while reducing execution cost
(Figure 3).

ORION can be deployed by either the cloud service provider
or by the end consumer. For the former, the use case is to pro-
vision its resources better to meet client SLOs. For the latter,
the driving force is the appropriate resource provisioning to
minimize E2E latency while minimizing execution cost.
Evaluation and Insights. We evaluate ORION on three server-
less applications on AWS Lambda: two variants of Video An-
alytics [35], an ML Pipeline [17], and an NLP Chatbot [44]
application. Our evaluation, comparing to three approaches:
Best-Memory [2, 59], Speculative-Execution [30], and Cher-
ryPick [5], shows that the benefits of ORION persist across the
different applications with different DAG structures, skews in
execution times, and invocation frequencies. Our evaluation
brings out the following insights:
(1) Latency correlation across stages and within a stage is
important (Tables 1 and 2). Even when correlations are weak,
not taking them into account can introduce significant error in
the latency estimations. Further, to make the solution scalable,

we have to compute the E2E latency estimation using just the
right degree of correlation.
(2) Selecting the best VM sizes for serverless functions in
a DAG is challenging (Table 3). This is because different
resources in a VM scale up differently with their size. For
example, for AWS-λ, CPU cores go from fractional to a max-
imum of six, network bandwidth only increases till a level,
and disk capacity stays constant.
(3) Bundling multiple parallel instances of a function within a
single VM helps when there is content skew and the functions
are scalable, i.e., they can make use of additional resources
(Figure 16). Here also, the degree of bundling has to be care-
fully determined so as not to cause resource contention.
(4) Using the DAG structure and the function latency model,
we can estimate the right time to pre-warm VMs and thus
mitigate cold starts (Figure 15). With pre-warming, lower P95
latency is achieved with higher resource utilization.

In summary, the main contributions of ORION are the fol-
lowing: (1) Workload characterization for serverless DAGs
seen by Azure Durable Functions. (2) A performance model
for E2E latency of serverless DAGs; (3) A method for as-
signing the right resources for serverless DAGs to meet the
E2E latency requirements within a reduced $ cost; (4) An
application-independent way to bundle multiple function in-
vocations to mitigate skews. (5) A method for deciding when
to start pre-warming VMs for functions in a serverless DAG
to minimize initialization latency while providing acceptable
resource utilization.

ORION is open sourced and we release its code, the work-
load characterization data, and the evaluation applications at:
https://github.com/icanforce/Orion-OSDI22

2 Motivation
2.1 Workload Characterization

Definitions. A DAG is a chain of two or more serverless
function stages that execute in-series. A stage consists of one
or more parallel invocations (a.k.a. instances) of the same
serverless function. DAG depth is the number of stages in
the DAG. DAG width is the max number of parallel worker
functions (a.k.a. fanout degree) across all stages in the DAG.
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Figure 3: ORION improves both latency and cost of Video Analytics DAG.
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A DAG with width = 1 means it is a chain of sequential
function invocations, whereas a DAG with width > 1 means
it has at least one parallel stage. We show an illustration of
DAG depth and width in Figure 2. Finally, we define skew
in a parallel stage as the ratio of the execution times of the
slowest to the fastest worker function.
Analysis. In this section, we characterize the workload of
serverless DAGs from Azure Durable Functions. We collect a
subset of the logs of DAG executions from six datacenters —
three located in the US, two in Europe, and one in Asia from
10/19/21 to 10/25/21 (1 week). The workload we analyze
includes 20M-30M DAG executions/day. From our charac-
terization, we draw the following conclusions, which in turn
motivate various design decisions of ORION.
(1) DAG Structure and Execution Time. We study the depth
and width of serverless DAGs and their distributions in Fig-
ure 4. We account for the DAG invocation frequencies — if
a DAG is invoked N times, its width and depth are included
N times in the CDFs. First, we notice that DAG depth is low,
with a median of 3 stages and a P95 of 8 stages. Second,
although 65% of the DAGs are linear chains (no fanout), the
width can grow to as high as 37 in the 95th percentile. We
also study the execution time of DAGs and find that they
can range from 10 ms to 112 min, with a median of 3.7 sec
and a mean (weighted by invocation frequencies) of 48 sec.
This motivates the need for considering DAG structure while
minimizing the E2E latency.
(2) DAG Invocation Frequency and Relation to Cold Starts.
Figure 7 shows the frequency of invocations/day for each
DAG and the corresponding percentages of cold starts. We no-
tice that the frequency of invocations is heavily skewed, with
the top-5 most frequent DAGs accounting for 46% of all in-
vocations. Thus, the optimized executions of these frequently
invoked DAGs result in higher cost savings. We also notice
that the percentage of cold starts decreases with higher invoca-
tion frequency. For example, DAGs invoked ≥ 100 times/day
have very low percentages of cold start with a median of
0.35%. However, most of the DAGs are rarely invoked: 80%
of the DAGs have an invocation frequency of < 100 times/day,
and these experience a high percentage of cold starts with a
median of 50%. This shows an increase in the proportion of

infrequent serverless applications (DAG-based in our case)
compared to a prior study [47], which showed that 55% of the
serverless applications are invoked less than 100 times/day.

Hence, using keep-alive policies (as done by most major
FaaS platforms) for those DAGs will not be sufficient and pre-
warming becomes essential to mitigate cold starts. Even for
the DAGs that are not the most frequently invoked, keeping
E2E latency low is a desirable feature.
(3) Variance in DAG Execution Time. Figure 5 shows a
boxplot for the execution time of the top-5 most frequently
invoked DAGs (which contribute 46% of all invocations). We
notice that the variance in execution times across different
invocations of the same DAG is high. For example, the P95
latency is 80X the P25 latency, averaged over the five DAGs.
We also notice that the distribution of execution times can be
heavily skewed. For example, P50 is not centered between
MIN and MAX, or between P25 and P75. Hence, it is essential
to represent E2E latency of serverless DAGs as a distribution
when modeling their performance to capture this variability.
(4) Degree of Skew. Figure 6 shows the skew distribution for
parallel stages for different ranges of DAG widths. We notice
that skew among parallel worker functions is at least 2× for
98.2% of the DAGs and increases as the width increases. This
motivates the need for a mechanism to mitigate latency skew
of parallel worker functions to reduce the E2E latency.

2.2 Performance Modeling
Modeling Latency as a Distribution rather than a Single
Statistic. To estimate the E2E latency and cost of a serverless
DAG, it is essential to model the latency of each component as
a distribution. For example, the latency of the image classifica-
tion function (Classify-Frame) in the Video Analytics DAG
can vary by up to 2× when processing different frames, even
when keeping the VM-size fixed to 1 GB. Although similar
performance variability can be observed in server-centric plat-
forms, our model is geared to serverless platforms due to their
ability to scale resources according to demand virtually un-
boundedly and hence showing negligible queuing times [56].
Now consider a simple stage of two Classify-Frame func-
tions running in parallel. Let X and Y be random variables
representing the latency of each. The E2E latency of the two
workers combined is given as P(Z ≤ z) = P(X ≤ z,Y ≤ z),
which depends on the slowest of the two and hence know-
ing their median or even their P99 latencies is not sufficient
to estimate their combined CDF. In fact, we need the entire
distribution of both components to estimate the E2E latency
distribution. Moreover, simply using statistical tail bounds
is not suitable for our purpose. For example, Chebyshev’s
inequality uses the mean and variance to establish a loose tail
bound and it is not known how to combine tail bounds for
in-series and in-parallel functions with their correlations.
Modeling Correlation. To accurately estimate the combined
latency distribution for in-series or in-parallel functions, we
need to capture the correlation between their execution times.
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Ignoring correlation by assuming statistical independence
leads to over-estimating the combined distribution for in-
parallel functions, while it leads to under-estimation for in-
series functions. In our evaluation, we give quantitative evi-
dence of these effects (§ 5.4.2) and show that a performance
model that is distribution-agnostic (e.g., SONIC [40]), or
correlation-agnostic (e.g., [26]), fails to provide accurate E2E
latency estimates.

3 Design

We first describe the performance model and E2E latency
estimation. Then, we describe how we use the performance
model to perform our three optimizations.

3.1 Modeling E2E Latency Distribution
Modeling Functions Runtimes. We represent the runtime
of a function as the sum of its initialization and execution
times. Since both phases have a high variance, we represent
them as separate distributions. This separation allows us to
estimate the gains from each optimization. Allocating the
right resources and bundling mainly impacts the execution
times, whereas pre-warming reduces initialization times.
Combining Latency Distributions. Given a latency distribu-
tion for every function, ORION applies a series of statistical
operations to estimate the DAG E2E latency distribution.

For two in-series functions with latency distributions rep-
resented as random variables X and Y , we use Convolution
to estimate their combined distribution as: P(Z = z) =

∑∀k P(X = k,Y = z− k).
If X and Y are independent, we simplify the computation:
P(Z = z) = ∑∀k P(X = k) ·P(Y = z− k).

The latter is simpler to estimate since it only requires the
marginal distributions of the two components, which can be
profiled separately, rather than jointly.

On the other hand, if the two functions execute in parallel,
then their combined latency distribution will be defined by
the max of the two. Therefore, we use the Max operation to
combine their CDFs as follows: P(Z ≤ z) = P(X ≤ z,Y ≤ z).
Similar to the Convolution operation, a simpler form can be
used when X and Y are independent: P(Z ≤ z) = P(X ≤ z) ·
P(Y ≤ z), which uses the marginal CDFs of the two functions,
rather than their joint CDF.
Handling Correlation Among Functions.

We consider two types of statistical correlation in the DAG:
in-series and in-parallel correlation. For example, our Video
Analytics application (Figure 8) has high correlation between
Pre-process and Classify stages, and also high correlation
between parallel Extract invocations or parallel Classify in-
vocations. (Table 1). By analyzing the correlation between
the stages as well as the correlation between the parallel in-
vocations in the same stage, ORION identifies both types of
correlation. We consider a Pearson correlation coefficient
value > experimental parameter θ, as an indication of correla-
tion. This then determines whether to apply the independent
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or dependent formulation for the CONV or the MAX operation.
In our experiments, we find that the performance of ORION
is relatively insensitive for θ ∈ (0.2,0.5) and we run all the
experiments with θ = 0.4.

To determine the length of correlation chains (pairwise,
etc.), ORION uses conditional entropy measurements of the ex-
ecution time and compares the reduction in entropy by includ-
ing additional terms. Thus, if marginal entropy of stage Y is
H(Y )≫ H(Y |Xi)≈ H(Y |Xi,X j)≈ H(Y |Xi,X j, ...,Xs), where
Xi denotes the random variable of invocation i’s execution
time, then ORION infers that correlations across stages are at
most pairwise. We find that correlations in all our application
DAGs across stages are at-most pairwise. Our formulation,
however, can handle any degree of correlation, not just pair-
wise. Only the amount of profiling data needed will increase
with higher degrees of correlation.

In case of high correlation between N parallel invocations
in the same stage, the max operation can be expanded by the
chain rule: P(Z ≤ z) = P(X1 ≤ z).P(X2 ≤ z|X1 ≤ z).....P(XN ≤ z|X1 ≤
z,X2 ≤ z, . . . ,XN−1 ≤ z), which is further simplified in case of
pairwise correlations by only conditioning on one invocation,
hence all conditional terms reduce to: P(Xi ≤ z|Xi−1 ≤ z).

Since all components within a stage are identical, we esti-
mate the above equation as follows:

P(Z ≤ z) = P(Xi ≤ z).[P(Xk ≤ z|Xi ≤ z)]n−1 ,k ̸= i (1)

Therefore, we use two distributions to model the max for any
number of parallel components — the marginal distribution
and the conditional distribution.

In practice, all individual components are used to estimate
the marginal distribution and all pairs of components are used
to estimate the conditional distribution, as all marginal distri-
butions are identical and so are all conditional distributions.

Using this performance model, ORION designs three op-
timizations for serverless DAGs, which we describe next
— Right-sizing in § 3.2, Bundling in § 3.3, and Right pre-
warming in § 3.4.

3.2 Allocating the Right Resources
The target of this optimization is to assign the right re-

sources for each function in the DAG so that the entire DAG
meets a latency objective with minimum cost. Normally, the
user picks the VM-size for each function, and the VM-size
controls the amount of allocated CPU, memory, and network
bandwidth capacities. What makes this problem challenging
is twofold — the scaling of multiple orthogonal resources
is coupled together and the scaling of different resources is
not linear. As an example, the Classify-Frame function in
the Video Analytics DAG has a small memory footprint (540
MB). However, increasing its VM-size above 1,792 MB (as
that size comes with a full vCPU [7]) reduces latency. This
is because larger sizes come with a fraction of a second core
up to six cores, which this function utilizes. The first step in
this optimization is to map a given configuration candidate
(i.e., a vector of VM-sizes, with one entry per stage) to the

corresponding latency distribution. To achieve this, we build
a per-function performance model that maps VM-sizes to
latency distributions. Next, we combine these distributions to
estimate the E2E latency distribution.
Per-function Performance Model. For each function in the
DAG, we collect the latency distributions for the following
VM sizes: min (the minimum VM size needed for this func-
tion to execute), 1,024 MB, 1,792 MB, and max. We pick
1,024 MB as it is the point of network-bandwidth saturation
(increasing VM-size beyond it does not provide more band-
width), and 1,792 MB as it comes with one full CPU core.
Hence, this initial profiling divides the configuration space
into 3 regions: [Min, 1024), [1024, 1792), and [1792, Max].

In order to estimate latency distribution for intermediate
VM-sizes, we use percentile-wise linear interpolation. For
example, the P50 for 1408 MB is interpolated as the average
between the P50 for 1,024 MB, and the P50 for 1,792 MB
settings. This generates a prior distribution for these interme-
diate VM-size settings. To verify the estimation accuracy in a
region, ORION collects a few test points using the midpoint
VM-size in that region to measure its actual CDF (i.e., the pos-
terior distribution) and compares it with the prior distribution.
If the error between the prior and posterior CDFs is high,
ORION collects more data for the region midpoint and adds
it to its profiling data. In summary, this approach divides the
space of a potentially non-linear function into a set of approx-
imately linear functions, and hence, more complex functions
get divided into more regions, with a profiling cost overhead.
In practice, we find that 5 to 6 regions accurately model the
latency distributions for all functions in our applications.
Optimizing Resources for a Latency Objective. Since the
performance model estimates the E2E latency distribution of
the DAG, we can use it to choose a configuration (i.e., the
set of VM sizes) to execute a DAG in order to meet a user-
specified latency objective while reducing $ cost. We search
for the configurations using a heuristic based on Best-First
Search (BFS) [57]. The pseudo-code is shown in Algorithm 1.

The algorithm starts by creating a priority queue, in which
all the new states are added. A state here represents a vector
of VM sizes, one for each stage. Each new state expands the
current state in one dimension (with a step-size of 64 MB)
and the start state S0 has the minimum VM size for every
function. The priority is set to be the difference between the
target latency and each state’s estimated latency multiplied
by the $ cost of the new state (lower value means higher
priority). Our chosen heuristic is suitable for our problem
because latency is a monotonically non-increasing function of
resources allocated to a function. The worst-case complexity
of BFS is O(n∗ log(n)), where n is the number of states.

3.3 Bundling Parallel Invocations
Stragglers can dominate an application’s E2E latency [11,

16, 36, 53]. Here we show how to bundle multiple parallel
invocations in one stage within a larger VM, rather than the
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Algorithm 1 Best-First algorithm to identify the best VM sizes for
functions in a DAG given a user-defined latency objective.
Input: Latency-Percentile=P, Latency-Objective: TO
Output: Best VM sizes=Sbest

1: ## Initialize priority queue pq, performance model GetLatency, cost
model GetCost, StepSize = 64 MB

2: ##Set start state S0 to minimum VM size for every function in DAG
3: pq.insert(s0)
4: while pq is not empty do
5: Snext = pq.pop()
6: ## Create N new states by adding StepSize to each function
7: ## Set the priority of each state and add to pq
8: for i = 0−> |Snext | do
9: Snew = Snext

10: Snew.VMsize[i] = Snext .VMsize[i] + StepSize
11: Snew.latency = GetLatency(Snew, P)
12: Snew.priority = -1 × Snew.latency × GetCost(Snew)
13: pq.insert(Snew)
14: ## Check if latency objective is met
15: if Snew.latency ≤ TO then
16: return Sbest = Snew
17: end if
18: end for
19: end while
20: ## If no explored state meets the latency objective
21: return State Sbest with closest latency to TO

current state-of-practice of executing each in a separate VM.
This promotes better resource sharing, thus mitigating skew.

To understand how bundling works, consider the example
shown in Figure 9 for a stage of 4 parallel worker functions ex-
periencing load imbalance. Specifically, the load for workers
#2 and #4 is low and both require only one time step of execu-
tion. In contrast, the load for workers #1 and #3 is higher and
requires 7 and 3 time steps of execution, respectively. Also,
assume that the workers are scalable and can actually make
use of additional resources made available. If we execute each
worker function on a separate VM, say with 1 core each, the
E2E latency is dominated by the slowest worker and the en-
tire stage will take 7 time steps. However, if we bundle the
workers together in a single VM with 4 cores, the E2E latency
reduces to 3 time steps only. This is because the straggler
workers get access to more resources when the lightly loaded
workers finish their execution. Notice that the cost remains
the same in both cases because they consume 1 core × 12
time steps or 4 cores × 3 time steps for the entire stage.

We make a few observations about the applicability of
bundling. First, bundling is useful in reducing the latency if
the execution skew is due to load imbalance, which arises
from processing bigger partitions of data, or inputs that re-
quire more computation. We detect load imbalances due to
content by subtracting latency CDF #1 from #2: (#1) When
the function is executed multiple times with the same input.
(#2) When the function is executed multiple times with dif-
ferent inputs. Moreover, the higher the correlation between
workers, the lower the gap between their execution times, and
hence, the lower is the benefit from bundling.

Second, for bundling to be useful, the function has to be

scalable to benefit from the additional resources. We iden-
tify a function’s scalability using our performance model
to estimate the impact on the function’s latency CDF when
given more resources (§ 3.2). We benefit from the fact that
the community has developed many highly scalable libraries,
e.g., [10], which are widely used in serverless applications.

Third, our example in Figure 9 assumes there will be no con-
tention between bundled workers. However, in practice, we
find that this contention can be high, especially for network-
bound or IO-bound functions, as these resources do not scale
linearly with the VM size. For example, all VM sizes in AWS
Lambda get the same disk space of 512 MB and network
bandwidth scales only for VM sizes until 1,024 MB.

Based on these three requirements, ORION identifies the
best bundle size in two steps. First, ORION identifies func-
tions that experience execution skew and are scalable using
the performance model. Second, ORION searches the space
of bundle sizes through multiplicative increase (i.e., bundle
sizes of 1, 2, 4, etc.). At each step, ORION collects very few
profiling runs (we use 10) to capture contention. The search
terminates when bundling more workers causes contention
and hence increases the E2E latency. ORION strives to spread
stragglers across different VMs, by performing a “redistribute”
operation if needed, so that each straggler has excess resources
to speed up its execution. Since skew often shows up with
temporal locality, we spread the parallel functions among the
available bundles in a round-robin manner. For example, for
the Video Analytics application, load typically varies gradu-
ally across consecutive frames.

ORION’s security considerations: ORION does not cur-
rently bundle functions in different stages for security pur-
poses. Moreover, all the invocations to be bundled together
belong to the same user and the same DAG invocation. Addi-
tionally, in cases when the stages have very different resource
requirements, it becomes counter-productive to come up with
one VM size that fits multiple stages. We defer the possibility
of bundling invocations across different functions as future
work.

3.4 Pre-warming to Mitigate Cold Starts
We describe our approach to mitigating cold starts, leverag-

ing the DAG structure of the application. We describe how to
identify when to start pre-warming the VMs for each stage in
the DAG, in order to balance the E2E latency and the utiliza-
tion of the computing resources. This step is performed after
we perform the previous two optimizations: Right-sizing and
Bundling. Figure 10 shows conceptually the impact of differ-
ent pre-warming delays on E2E latency and utilization. At the
extreme, a delay of zero for every stage minimizes the E2E la-
tency but also minimizes the utilization. The other extreme is
no pre-warming at all, which is the state-of-practice. First, we
define pre-warming delay for a stage S as the time elapsed
between the start of the DAG execution and the beginning of
initialization of the VMs for that stage. For a given DAG of
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Figure 9: (Left) Separate VMs: workers #2 & #4 finish early, while
workers #1 & #3 take longer. (Right) Bundling: after workers #2 & #4

finish, workers #3 & #4 get more resources reducing stage latency.
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Figure 10: Impact of different pre-warming decisions on the E2E latency
and utilization for a chain of two in-series functions. Without

pre-warming, the E2E latency increases due to added initialization time
of function F2. Both early and late pre-warming are not desirable.

N stages, we want to select a vector d⃗ = [d1,d2, ...dN ] repre-
senting the pre-warming delays for each stage in the DAG.
For the first stage in the DAG, we have the degenerate case
and set its delay (d1) to zero. This is because pre-warming
requires predicting when the DAG will be invoked, which
is challenging in the general case. The optimal delay vector,
given a performance model P , is defined as follows:

d⃗∗ = argmin
d⃗

E2E-Latency(P , d⃗)

subject to Util(P , d⃗)≥ Target Utilization
(2)

The selected vector is the one that minimizes the DAG E2E
latency while achieving the target resource utilization as set
(and dynamically adjusted) by the provider. Both the utiliza-
tion and the E2E latency are estimated by our performance
model P . The metric Util(P , d̄) measures the utilization for
a given delay vector using the performance model, and is esti-
mated as BusyTime(V M)

BusyTime(V M)+IdleTime(V M) . BusyTime(V M) includes
both initialization and execution times, while IdleTime(V M)
is the time between when the initialization completes to when
the function starts executing. We again use Best-First Search
(BFS) to select vector d⃗∗ as follows. We start by setting all val-
ues of di = 0. In each iteration, we add a delta (100 ms) to the
delay factor di that yields the best improvement in utilization
over the current state without increasing the E2E latency. The
algorithm terminates when adding delta to any delay factor
does not improve utilization but increases E2E latency.

3.5 Further Design Considerations
Deployment. ORION is designed to serve as a DAG optimiza-
tion layer. Although the primary use case is to be deployed by
the provider, ORION can also be deployed by end-users. In the
latter, users are able to select the VM sizes for their functions.
For this, the end-user will need to profile her code and also
send pre-warming requests to the provider at the right times,
as identified by ORION. However, users do not need to change
their function code for Bundling. Instead, ORION identifies
the bundle size for each parallel stage in the DAG and exe-
cutes multiple invocations together. The cloud provider still
decides the mapping of specific VMs to function bundles.

Naturally, ORION’s performance model is trained faster for
functions with higher invocation frequency as they provide
natural training data points. As discussed in 2.1, frequently

invoked DAGs dominate the total set of DAG invocations. For
example, the 5%-most frequent DAGs have an invocation rate
of 2.3K per day. Hence, it will take us less than 3.5 hours
to gather 300 training samples per function. We can acceler-
ate this, and also handle less frequently invoked DAGs, by
inserting synthetic but realistic DAG invocations to generate
training data points. It is also possible that we will have to
re-train our models from time to time when the workload
characteristics have changed significantly, or less commonly,
the application DAG or the infrastructure characteristics has
changed significantly. This incremental training is not a com-
putationally heavy task as it involves updating only parts
of the distribution curves. Maintaining the latency data for
performing such updating is also not a memory-heavy task.

4 Implementation
We implement ORION in C# and Python 3.8 with 2,100

LOC. We execute the serverless DAG applications in AWS
Lambda and use Amazon S3 for data passing between the
functions. We use AWS Step Functions [6] to orchestrate the
DAG. Function bundling is implemented without any code
change by using a wrapper around the (developer-provided)
entry point to each function. We use the Python multiprocess-
ing library [9] to execute bundled invocations together.
Runtime Overhead. In theory, the worst-case runtime of Al-
gorithm 1 increases exponentially with the number of stages
in the DAG. However, we find that ORION’s BFS algorithm
has a very low overhead in practice: Each iteration in Algo-
rithm 1 takes [3,7.5] msec, and the best solution takes between
6 and 88 iterations while exploring < 1% of all possible states.
The number of iterations depends on the latency target, the
steepness of the latency-VM size relation, and the step size
(we use 64 MB). For finding the best pre-warming delays,
BFS takes between [0.4,3] seconds across all applications.
Scalability. We evaluate the scalability of ORION in Figure 18
with respect to increasing the number of stages. We syntheti-
cally replicate the last (and most time consuming) stage of the
Video Analytics application to create a DAG of up to 8 stages.
The overhead is defined as the inference time divided by the
application lifetime, and it ranges between 0.12% for 3 stages
to 0.07% for 8 stages. Also, increasing the number of stages,
the prediction error increases, but slowly. Specifically, with
up to 8 stages, P50 error is stable, and P90 and P95 increase
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slowly but never reach 15%. With wider DAGs, our inference
time remains unchanged as the fanout degree is used as a
parameter in our estimation of MAX (Eq. 1).
Pre-warming. Ideally, implementing pre-warming in AWS
Lambda requires our control over assigning invocations to
warm containers or VMs. Since we do not have such control,
we rely on AWS Lambda’s container reuse to implement pre-
warming. Specifically, we perform pre-warming by sending a
dummy call to a function, then send the actual call right after
the response from the dummy call is received.

5 Experimental Evaluation
We evaluate ORION running on AWS Lambda. First, we

describe the three serverless DAG applications used in our
evaluation. Then, we show an E2E evaluation compared to
three alternatives. Next, we show a set of microbenchmarks
to evaluate each component of ORION. Finally, we provide a
unit experiment on Azure Functions, a platform that allows
less configurability for an external mechanism like ORION.

5.1 Serverless DAG Applications
Video Analytics. This application, adopted from Pocket [35],
analyzes an input video by extracting representative frames
from the video and classifying each frame. The application
stages are shown in Figure 8. The first variant of this appli-
cation directly calls a third function, Classify-Frame, which
uses a YOLO [45] pre-trained DNN model to classify ob-
ject(s) in the frame into 1,000 classes. The second variant
calls an intermediate pre-processing function, Pre-process,
which applies a sharpening filter to improve image quality be-
fore classification. We refer to this variant as “Video Analytics
w/ Preprocess” (VA-Pre, for short). Finally, all classification
results are uploaded to remote storage. For VA-Pre, there is
a high correlation between the times of the Pre-process and
the Classify functions. We use 600 YouTube videos (300 for
profiling, 300 for testing), each of length 1 min, belonging to
the “Nature” and “News” categories.
ML Pipeline. This application is a machine learning pipeline
(adopted from Cirrus [18]).It consists of three stages: dimen-
sionality reduction (PCA), model training, and testing (Com-
bine). The second function, Train-Model, runs in parallel and
each instance trains a decision tree model using the LightGBM
Python library [37]. In this stage, a user-specified number of
functions is triggered (we use 64 trees in our evaluation),
and every function trains a different decision tree. The third
function, Combine, combines the trained models into a ran-
dom forest and evaluates its joint accuracy on a held-out test
dataset. We use the MNIST [23] database of handwritten dig-
its that has a total of 60K images. We execute the application
with 600 runs (300 profiling, 300 test), and in each run, we
use 5K images to train the ML model, and 15K for testing.
Chatbot. This application trains a domain-specific Natural
Language Understanding (NLU) model, whose task is to iden-
tify the accurate “intent” of a user-spoken utterance. We use

the Chatbots Intent Recognition Dataset, available on Kag-
gle [44], which consists of 22 intents and 455 utterances. As
before, we evaluate with 300 profiling and 300 test runs. The
first lambda in this application parses the dataset and con-
structs bag-of-words representation for all utterances. Next, a
stage of parallel lambdas trains One-vs-Rest classifiers with
one lambda per intent. The models are then uploaded to re-
mote storage for real-time intent detection.

The three applications cover important characteristics of
serverless DAGs. Specifically, Video Analytics and Chatbot
have scatter communication pattern, whereas ML Pipeline has
a broadcast pattern. They also cover different fanout degrees
(22 for Chatbot, 32 for Video Analytics, 64 for ML Pipeline)
and their execution times resemble the average latency of
DAGs in our workload characterization (§ 2.1). Moreover,
Video Analytics and ML Pipeline are both compute bound,
whereas Chatbot is network bound.

5.2 ORION and Competing Approaches
We compare our E2E latency and cost to multiple resource

allocation, skew mitigation, and pre-warming approaches:
(1) Best-Memory: This is a resource allocation approach
that uses our performance model and progressively increases
the VM size for every function in the DAG till the latency
objective is met. This mimics the standard VM autoscaling
that is employed in many cloud scheduling solutions [2, 59].
All invocations run in separate VMs of the same size.
(2) CherryPick [5]: CherryPick uses Bayesian-Optimization
(BO) to find latency-optimized memory configurations. BO
relies on an acquisition function to propose new points to
sample next. This makes BO a distribution-agnostic base-
line as each VM size is profiled once, then a new size is
selected by the acquisition function. We set the loss func-
tion in BO to be the difference between the achieved latency
and the user-specified latency target. Since CherryPick is dis-
tribution agnostic, it cannot detect execution time skew and
hence performs no bundling. We choose CherryPick as it (BO
with Gaussian processes) was recently demonstrated as the
most competitive approach in the category [15] and recent ap-
proaches have used it for configuring serverless functions [3].
(3) Speculative-Execution: This is a skew mitigation ap-
proach that identifies stragglers at runtime and executes a du-
plicate invocation on a different VM. Speculative execution
is widely used in MapReduce, Hadoop, and Spark systems
for skew mitigation to reduce tail latency [11, 19, 31, 51]. We
adapt this baseline from Spock [30] (specifically the technique
called “conservative autoscaling in predictive mode”). Since
the skew is caused by the input’s content, the new invocation
will likely take as long as the first one unless it is assigned
more resources. Accordingly, we modify the technique by as-
signing the “Max” resources (10 GB) for the new invocation.
(4) ORION Right-Sizing: This variant of ORION performs
Right-Sizing only, and not the other two optimizations.
(5) ORION Full: This is our complete solution, which includes
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Figure 11: Skew is varied by changing the detection probability threshold
as: 2%, 10%, and 15%, with lower values resulting in more detected

objects and higher skews [22].

Figure 12: Skew is varied by changing the maximum value for each
hyper-parameter, e.g., we vary the max number of trees as: 50, 100, and

200, and these map to 2.6×, 4.4×, and 10× skews.

Figure 13: Skew is altered to 1×, 2×, and 4× by changing the number of
training epochs as: 100, 500, and 200.

Figure 14: E2E evaluation with cold starts. ORION achieves the lowest
latency and cost compared to all baselines.

Right-Sizing, Bundling, and Pre-Warming.

5.3 End-to-End Evaluation

We show the P95 latency (primary Y-axis, shown using
bars) and cost (secondary Y-axis, shown using lines) of each
approach in Figures 11, 12, and 13 for the three applications.
The numbers above the bars are the latency improvements
of ORION Full relative to the alternates. First, we set the la-
tency objective to the minimum achievable latency, which
is identified by executing all functions with max VM size,
while computation skew is minimized. For each application,
we vary the skew in a controlled manner through application-
specific parameters. For each solution and for each exper-
imental point, we execute each application 300 times and
highlight the gains of ORION’s right sizing and bundling. In
this part, we take care to eliminate all cold starts for the ex-
perimental data points. Later, we show the impact of cold
starts and the additional gain due to ORION’s pre-warming
design in Figure 14. Compared to Best-Memory, ORION has
a slightly higher latency since Best-Memory assigns high re-
sources to all workers, including stragglers. However, this
baseline increases the cost significantly by assigning identical
resources for each stage and parallel running workers in sep-
arate VMs, which over-provisions the resources to meet the
latency objective. ORION provides [33%,71%] lower cost by
assigning the right resources for each function and bundling
parallel workers. Compared to Speculative-Execution, we no-
tice that ORION has consistently lower latency and cost across
all skews. For example, with the lowest skew, ORION shows

[18%, 32%] lower latency and [46%, 57%] lower cost for
the three applications. This is because Speculative-Execution
detects straggling workers (using a user-specified threshold)
and re-executes them on new VMs with the max size. This
causes an additional delay due to the wasted execution time.
It also increases cost as it sometimes mistakenly re-executes
workers that would finish shortly after the threshold. ORION’s
bundling does not require any user-specified threshold to de-
tect straggling workers, assigning them more resources once
co-located workers finish and release their resources.

For CherryPick, since it is distribution-agnostic, we mod-
ify the BO algorithm so that 100 points are profiled for each
point selected by BO’s acquisition function to measure the
latency percentiles. We run CherryPick for 100 iterations total
(a generously high number compared to the original work and
follow-on works), resulting in 10K profiles for each applica-
tion. Notice that ORION requires only 300 profiling runs to
model the E2E latency distribution, reducing the profiling bur-
den of CherryPick by 97%. Compared to CherryPick, we no-
tice that ORION Full consistently provides lower latency and
cost, except for Chatbot where CherryPick has higher latency
but lower cost. Specifically, with the highest skew, ORION
Full shows [16%, 90%] lower latency and [38%, 53%] lower
cost for Video Analytics and ML Pipeline. For Chatbot, this
application has a lower bundle size than the others, reducing
the gain from ORION’s bundling mechanism. Compared to
ORION Right-Sizing, adding bundling significantly reduces
the latency across the three applications. However, bundling
causes a slight increase in the cost for Video Analytics by
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Figure 15: Impact of pre-warming on latency and utilization. We use VM
and bundle sizes selected by ORION and compare different execution
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improvements in P95 Latency (over ORION Cold-Start) and Utilization

(over ORION Zero-Delay pre-warming).

22% (relative to No-Bundling), while it causes a decrease
in cost for ML Pipeline by 30%. The reason is that the ML
Pipeline experiences higher skews (up to 10X), and for higher
skew, Bundling is more beneficial. We also notice that the
reduction in latency increases with higher skews. For Chatbot
also, bundling reduces the latency compared to no bundling,
but increases the cost by 163%. This is because the Chatbot
application is more network bound and not compute bound
than the other two, and hence the best bundle size is only 2, vs
[6,8] for the other applications. However, cost with bundling
is still 33% lower than Best-Memory, which is the closest to
us in latency among all baselines.
Mitigating Cold Starts with Pre-warming. So far, we have
compared ORION to the baselines with only warm executions.
Now we show the gain of our pre-warming technique and how
useful it is in reducing cold starts. Figure 14 shows ORION’s
latency and cost vs other baselines in the case of cold start for
every function in the DAG. We notice that all baselines are
impacted by cold starts and their latencies increase, whereas
ORION’s pre-warming technique is able to mitigate the impact
of cold starts. For example, Best-Memory shows an increase
of E2E latency over ORION by 19%, 36%, and 12% for Video
Analytics, ML Pipeline, and Chatbot, respectively. Similarly,
Speculative-Execution suffers from cold starts twice, once for
the first execution with the small VM, and once more for the
second execution with the max VM size. Hence, ORION’s im-
provements in latency over Speculative-Execution increase to
42%, 36%, and 17% for the three applications. To summarize,
ORION’s three optimizations of Right-sizing, Bundling, and
Right pre-warming provide lower E2E latency and cost over
all competing approaches. In the next section, we show a set
of microbenchmarks to separately evaluate the performance
of each component of ORION.

5.4 Microbenchmarks
5.4.1 Impact of Pre-warming on Utilization & Latency

Figure 15 shows the latency and utilization achieved by
ORION versus its two variants. The first, called ORION Cold-
Start, does not perform any pre-warming and hence suffers
from increased latency, yet has very high utilization as it

causes no idle times. The second, called ORION Zero-Delay,
initializes all the containers with zero delay for all stages,
i.e., at the beginning of the DAG execution. Hence it ensures
the lowest latency that can be achieved, but incurs increased
idle times due to early pre-warming and hence suffers from
low utilization. On the other hand, ORION Full uses the right
delay times identified by BFS (§ 3.4). As shown in Figure 15,
ORION Full consistently achieves lower latency than ORION
Cold-Start, and consistently higher utilization over ORION
Zero-Delay for all three applications. We also notice that the
latency gains are higher for ML Pipeline and Video Analyt-
ics than for Chatbot, which is due to the higher initialization
times observed in these two applications when download-
ing the heavy ML packages and the large pre-trained object
detection models. Therefore, estimating the right values of
the delays for each stage, as done by ORION, is essential to
mitigate cold starts without significantly reducing utilization.

5.4.2 Evaluation of Performance Model

Capturing Correlation between Functions.
Here we evaluate how much correlation exists in our target

applications. We calculate the Pearson’s correlation coeffi-
cient between in-series functions (e.g., between Split-Video
and Extract-Frame), and between in-parallel functions (e.g.,
between multiple instances of Extract-Frame). We show the
correlation scores in Table 1 for Video Analytics.

Table 1: Correlation between execution times of functions in the Video
Analytics DAG. In-series correlation is low but in-parallel correlation is

high.

VM-Sizes (in MB) In-series
Correlation

In-parallel
Correlation

Split, Extract, Classify
Split
⇕

Extract

Extract
⇕

Classify

Preprocess
⇕

Classify
(VA-Pre)

Extract Classify

192, 192, 576 0.09 0.04 0.45 0.05 0.43
1024, 1024, 1024 0.07 0.02 0.61 0.34 0.44
1792, 1792, 1792 -0.07 -0.04 0.69 0.48 0.58
3008, 3008, 3008 0.05 -0.01 0.88 0.65 0.51

The correlation scores between in-series components are
close to zero (0.036 on average for Video Analytics, 0.06
for ML Pipeline, and 0.04 for Chatbot), while the correla-
tion scores between functions in the same stage are high for
Video Analytics (0.55), while low for ML Pipeline (0.052)
and for Chatbot (0.03). For Video Analytics w/ Preprocess,
Pre-process has a high correlation with in-series Classify
functions (0.65). Therefore, we apply the dependent conv
operation between Pre-process and Classify, while we
use the independent conv operation for all other in-series
functions for all applications. Additionally, we incorporate
correlation when performing max operation (if correlation is
detected) by using the conditional distribution.
Estimating E2E Latency Distribution. Here we evalu-
ate the accuracy of ORION in predicting the E2E latency
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Table 2: Video Analytics: Error rates for ORION’s E2E latency
estimation. Abbreviations: S→Split, E→ Extract, and C→Classify

Video Analytics
VM Sizes

(MB) ORION
Distribution

Agnostic
Correlation

Agnostic [26]
S, E, C P50 P95 P50 P95 P50 P95

512 , 1280 , 1536 14.0% 13.0% 40.0% 15.6% 78.7% 47.5%
768 , 1280 , 2240 14.0% 12.0% 35.4% 11.6% 67.7% 38.3%
1536 , 512 , 1536 13.0% 11.0% 39.7% 16.7% 79.4% 49.9%
1792 , 1792 , 576 6.4% 11.8% 11.6% -39.0% 49.7% -18.2%
6000, 6000, 6000 14.5% 10.7% 24.2% 3.3% 56.9% 30.5%

MAPE 13.0% 12.0% 32.0% 21.0% 68.0% 39.0%

distribution for the entire DAG. We compare to two base-
lines — distribution-agnostic (as mentioned earlier, any BO-
based technique like CherryPick falls in this category) and
correlation-agnostic (e.g., [26]). The results are shown in
Table 2 for Video Analytics.

ORION estimates the E2E latency distribution for the appli-
cations with low error rate (<15%), much lower than those of
both baselines. We find through drill down of our estimation
error that: (i) our estimated length of correlation chains as
pairwise (§ 3.1) is accurate and hence does not lead to much
error (ii) the dominant source of error lies in the interpola-
tion of the CDFs for each function for the unseen memory
configurations. This is despite our design, where if the inter-
polation causes too much error, the memory region is split
into two and further data points are collected (§ 3.2). These
observations hold across all three applications. Error rates are
higher in Video Analytics relative to ML Pipeline because
the execution time is content sensitive for the former. Our
technique does not create content-specific models since we
(and any provider-side tool) cannot have visibility into user
data due to privacy concerns. The Distribution-Agnostic base-
line uses the median execution times and predicts the median
execution times for unseen configurations by interpolation.
This baseline has a high error rate in the range of [-39%,
40%] for Video Analytics, [-5%,108%] for ML Pipeline, and
[-6%, 66%] for Chatbot. The Correlation-Agnostic baseline
from [26] also has a higher error rate in the range of [-18%,
79%] for Video Analytics, [-5.4%,103%] for ML Pipeline, and
[80%, 111%] for Chatbot. Note that the majority of the errors
for the Correlation-Agnostic baseline are over-estimation,
which is caused by ignoring the correlation between parallel
workers. In conclusion, it is important to take into account the
latency distributions and not simply a point estimate and to
account for the correlation across stages and across workers
within a stage, even when the correlations are quite weak
(Table 1).

5.4.3 Optimizing Resources for a Target E2E Latency

We profile the applications to build the E2E performance
model in ORION for all three applications as mentioned in
§ 5.4.2, then set 6 latency targets per application. ORION pro-
poses the DAG configuration (i.e., VM size for each function

in the DAG) to meet each latency target at while reducing cost.
We validate ORION’s accuracy by executing the application
with the proposed configuration and comparing the achieved
latency to the user requirement.We notice that ORION’s pro-
posed configurations are very close to the latency requirement
in all applications, with error rate of [-2.75%, 4.93%] for
Video Analytics, [-1.37%, 2.6%] for ML Pipeline, and [-3.5%,
3.7%] for Chatbot. Table 3 lists detailed configurations for
Video Analytics. We notice that expectedly, ORION tends
to assign more resources as the latency percentile increases
(i.e., P50 → P95) or as the latency requirement decreases
(50 sec → 30 sec). Also ORION decides to increase the al-
located resources for a subset of functions and by different
amounts, based on the latency requirement. For example, for
ML Pipeline, ORION increases the VM-size of PCA from 768
MB to 832 MB to achieve a latency requirement of (P90 ≤
50 sec). However, ORION decides to increase the VM-size of
Combine from 1,408 MB to 1,472 MB to achieve a latency
requirement of (P90 ≤ 40 sec). This shows ORION’s BFS
adjusts the Best function to increase its resources according
to the estimated latency of the current state.

5.4.4 Impact of Varying Bundle Size

We evaluate the impact of varying bundle sizes on the E2E
latency CDF and cost (Figure 16). First, we run our Video
Analytics application with the best VM size selected by BFS
but without bundling. This is an application that is both CPU
bound and scalable, and thus a good candidate for demonstrat-
ing the effect of bundling. Next, we progressively increase
the bundle size and the VM size proportionally. For example,
if the best VM size selected by BFS is 1,792 MB (1 core), we
use a VM of size 1,792 × 2 when we bundle pairs together,
and so on. We notice that increasing the bundle size from
2 to 6 workers reduces the latency; however, increasing the
bundle size beyond that (to 10 and 30) causes an increase in
the latency. This is because the maximum number of cores
available in AWS Lambda is 6 and hence, at the higher bundle
sizes (10 or 30), each worker is getting less than its required
resource.

Thus, the design of ORION to choose the best bundle size
is essential to optimize latency by avoiding contention.

5.5 Generalizability to Microsoft Azure
To test if ORION generalizes to other FaaS providers, we

evaluate our model using Azure Functions as the serverless
environment. Azure Functions supports a few plans, but the
most popular one is the Consumption Plan. In this plan, users
are charged for the exact amount of resources consumed by
their functions at runtime, whereas all other plans have a flat
rate pricing model. Although we have no control over the
resources assigned to individual functions when selecting the
Consumption Plan, we wanted to measure the accuracy of
ORION’s E2E latency estimates compared to the actual la-
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Figure 16: Video Analytics: Impact of varying bundle sizes.
No-bunling has high latency due to computation skew. The optimal

bundle size here is 6, and using a bundle size of ≥ 10 causes
contention and the latency increases.
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Figure 17: ORION’s estimated latency CDF vs Actual CDF for Video
Analytics application deployed in Azure Functions. Ignoring in-parallel
correlation leads to higher errors for the Correlation-Agnostic baseline.

Table 3: ORION’s E2E latency-optimized VM sizes. ORION meets the
latency objective with a low error rate in the range of [-2.75%, 4.93%]

Video Analytics
User
Requirement

ORION’s configs (MB) Achieved
Latency

Error
Rate

Split,Extract,Classify
P50 ≤18 s 192, 192, 640 18.3 s 1.5%
P95 ≤18 s 384, 192, 768 17.5 s -2.8%

P50 ≤17.5 s 192, 192, 704 18.4 s 4.9%
P95 ≤17.5 s 640, 192, 768 17.4 s -0.5%
P50 ≤17 s 256, 192, 768 17.8 s 4.4%
P95 ≤17 s 832, 256, 1024 17.3 s 2.0%

tency observed with this plan. We show ORION’s estimated
CDF and actual CDF in Figure 17. We use our Video Ana-
lytics application with the earlier-mentioned 600 YouTube
videos.

We use our E2E performance model to estimate the CDF
for the entire DAG. For fair comparison to AWS-Lambda, we
also rely on remote-storage (i.e., Azure Blob Storage) for data-
passing between the functions. We also show the estimated
CDF when correlations among functions are ignored — this
corresponds to the "Correlation-Agnostic" baseline from our
earlier experiment (§ 5.4.2). We notice that ORION predicts
the E2E latency with very low error rates (-0.12% for P50,
1.9% for P90, and 2.5% for P95 latencies). The Correlation-
Agnostic baseline has significantly higher errors (11.6% for
P50, 14.4% for P90, and 29.2% for P95). Thus, the baseline
suffers more for higher percentiles.

6 Pre-warming Policy Simulator
To better understand different pre-warming policies without

being constrained by privileges granted by the cloud provider,
we build a policy simulator, implemented in Python 3.8 with
1,058 LOC. The simulator takes as input the latency CDFs
for stages in the DAG. Policies are implemented through a
state machine with different actions being taken in each state
(such as FUNC_START, FUNC_END, FUNC_PREWARM,
etc.). The output of the simulator are the E2E latency CDF of
the DAG and the overall resource utilization. We open source

the simulator for future exploration of serverless DAGs [1].
Simulation Results. Figure 19 shows the utilization achieved
by a policy with optimal pre-warming using an Oracle that
knows the exact runtimes of each function invocation. The
input DAG has 2 stages with width of 10 for each stage. The
X-axis denotes the skew on the runtime of the first stage. The
Y-axis denotes the percentage of variance on the delay chosen
by the Oracle for pre-warming functions of the second stage
— so if the value is X% and ORION calculated deterministic
delay is Y , then the Oracle can pick a delay in the range [Y −
X% of Y,Y +X% of Y ]. Thus, the range of values the Oracle
can choose from is capped even if the Oracle determines the
optimal pre-warming time for a specific function invocation
lies outside of the range. The lowest point on the Y-axis is
the optimal deterministic delay determined by ORION for all
function invocations in the second stage. We find that the E2E
latency is unaffected (not shown) by increasing the size of
the range on higher skews, but utilization increases. This is
because the policy is able to pre-warm with the ideal delay and
hence does not incur any idle time. This shows the theoretical
best achievable utilization since we use an Oracle. However,
implementing this Oracle has two challenges: (1) Predicting
per-function exact latency is impractical. (2) Selecting a delay
factor for each function invocation rather than each stage
increases search space exponentially with DAG width.

7 Related Work
Minimizing cost and/or execution time for serverless chains

is the target of a few recent studies. For example, Sequoia [52]
makes the observation that current serverless platforms treat
functions within a DAG separately, without making use of
the DAG structure. SONIC [40] reduces the communication
latency between in-series serverless functions by optimizing
the data passing strategy. SONIC selects from among the data
passing strategies: direct passing, remote storage, and local
VM-storage, where only the latter two can be implemented
directly in AWS Lambda. Caerus [60] stresses the importance
of optimizing latency and cost jointly for serverless DAGs,
and achieves this by identifying pipeline-amenable data de-
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Figure 18: ORION’s error with varying number of stages. More stages
increase the error for the tail, while the median stays stable. Figure 19: Simulation of an Oracle pre-warming policy where

utilization improves with the width of distribution from which
the pre-warming delays are chosen. ORION’s strategy

corresponds to the 0% variability, i.e., deterministic delay.

pendencies between stages to find ideal task launch times.
Xanadu [21] and Kraken [14] tackle the problem of cascad-
ing cold starts in a dynamic DAG. Neither can determine the
optimal pre-warming time to mitigate cold starts.

Overall, no prior work in this category considers execution
time variance and its impact on cost or utilization.

Latency and Cost Prediction for Serverless Functions. A
few prior studies have targeted predicting the execution time
and cost for serverless functions. For example, [25] predicts
(a point estimate) and optimizes resources for a single server-
less function by building regression models from a host of
synthetic functions. The authors in [26] also observe a vari-
ance in execution time in serverless environments, and hence,
apply mixture density networks to predict the distribution
of the function cost. However, their Monte-Carlo simulation
mechanism is very sample inefficient.

ORION uses a more direct method by applying statistical
operations to combine the distributions of individual
functions and thus, to infer the E2E latency distribution. A
number of prior works target reducing the cost of serverless
DAGs by optimizing the intermediate data transfer between
functions, such as, Costless [27], SONIC [40], Locus [43],
and Pocket [35]. They solve an orthogonal problem to ours,
namely, reducing the cost of intermediate data transfer.
ORION does not introduce a new mechanism for intermediate
data transfer, nor does it limit or specify the method for state
transfer between functions. We use state-of-practice remote
storages, such as AWS S3 and Azure Blob Storage. However,
ORION would integrate seamlessly with the mentioned
systems as the read/write times are included in the latency
profiles used in ORION ’s model.

Scheduling in Serverless Computing. Photon [24] optimizes
single-stage serverless functions by doing the equivalent of
bundling in ORION, but not for skew mitigation. Its main
motivation is to reduce the memory footprint of parallel invo-

cations of a function, while its design sophistication is meant
to address security concerns of bundling (out of scope for
ORION). One work that targets meeting latency SLAs for
serverless DAGs is Atoll [50].

It takes a complementary approach to ours—partitioning
a cluster to lower scheduling overheads, and proactively
starting up containers and then routing function requests to
the appropriate containers.

Resource Optimization in the Cloud. Black-box configu-
ration tuning systems such as CherryPick [5], Selecta [34],
OptimusCloud [39], and Ernest [54] target optimizing the
cloud resources for a wide range of applications by selecting
the right VM type and size, which vary in the amount of allo-
cated resources. However, these systems treat the application
as a single component, and thus, do not take the DAG work-
flow information into account. Further, they are not directly
applicable to serverless applications.
Cold Starts Mitigation. Many prior works identified cold
starts as a major performance bottleneck in FaaS platforms.
Accordingly, several solutions have been proposed such as
keeping containers alive [29], leveraging checkpoint/restore
operations [49], or using Pause containers [41]. Although
these solutions reduce the initialization time significantly,
there is still a significant user-observable initialization time.
ORION hides this initialization time through pre-warming and
decides the right time to start pre-warming to minimize idle
time, hence keeps resource utilization high.

8 Discussion
Profiling and Modeling Overheads. ORION requires moni-
toring the execution of the application for a number of runs to
accurately capture the latency distribution for each function
in the DAG. In our evaluation, for all the applications, a total
of 300 profiling runs was found sufficient for accurate 95-
percentile latency estimates. Initially, and before convergence
is reached, the data collection is performed as a background
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process while the DAG executes with user-provided configu-
rations. An important design consideration for ORION is that
this data collection does not have to happen purely offline
and in batch mode. Rather, that is complemented with online
data collection and incremental model refinement, which is
a lightweight task. When predicted and observed latencies
differ significantly (as can happen if the workload or the ap-
plication changes), we restart the data collection phase to
capture the changes in the latency distributions.
Bundling and Performance Model Interaction. Bundling
changes the DAG structure (by reducing the fanout degree),
and hence, the performance prediction model needs to be
updated. Therefore, this becomes an iterative process, with
each iteration being Performance model building ⇒ Resource
optimization ⇒ Bundling. In practice, we find that a single
iteration, or at most two iterations, leads to convergence.
Impact of The Three Optimization. The three optimizations
of ORION can have a negative impact on performance, re-
source utilization, or $ cost if not performed carefully. First,
over-provisioning the VM size for all workers to mitigate
execution skew (as done by the Best Memory baseline in
our evaluation) unnecessarily increases the $ cost (Figures
11, 12,& 13). Second, excessive Bundling (bundle size > right
bundle size) can lead to resource contention and increase of
the latency (Figure 16). Third, early pre-warming (delay <
right delay) decreases resource utilization, whereas late pre-
warming increases latency (Figure 15). This motivates the
need for an accurate performance model to accurately per-
form these three optimizations. In terms of cost, we notice that
users do not pay for initialization times, hence pre-warming
does not impact cost. However, the provider should treat a
pre-warming request as a hint since a true invocation is always
more important.
Applicability of Performance Model.

ORION is tailored to model the performance for serverless
DAGs. In general, the response time of a job includes queuing
and execution times. Cloud providers operate large server-
less platforms, providing virtually infinite capacity, reducing
queuing delays to primarily cold-start latencies [38]. Further,
serverless platforms typically limit the execution time of each
invocation [8] favoring modular reusable functions. The com-
bination of short queuing and execution times enables ORION
to model E2E latency, without the need to predict variable
(and long), heavy-tailed queuing times that appear in other
environments [20, 33, 46].
Mitigating Infrastructure-caused Delays. In serverless plat-
forms, two types of stragglers can be observed: (1) Strag-
glers that experience longer execution times due to their input
content (e.g., larger data portions or more complex inputs
such as video frames with many objects). (2) Stragglers that
appear due to infrastructure causes (e.g., network fluctua-
tions). Bundling mitigates the first type of stragglers. The
second type is well studied in the literature, and solutions
such as Speculative Execution [11] work well in practice.

Nevertheless, Bundling has a positive side effect of using
fewer VMs/containers, reducing the likelihood of occurrence
for infrastructure stragglers.
Supporting Dynamic DAGs. In a dynamic DAG, the exe-
cution flow is identified at runtime, say based on input data.
Such DAGs appear in microservice-based applications [14],
among others. ORION, as well as other provider-side tools,
cannot have visibility into user data due to privacy concerns.
Hence, ORION cannot support dynamic DAGs where the path
is determined based on request content.
Future Work. Our bundling approach increases VM size
proportionally with the bundle size. For example, assuming
a single function invocation use a VM of size V Msingle, we
bundle N invocations in a VM with a size of N ×V Msingle.
There is, however, room to explore choosing other VM sizes
beyond linear scaling. Furthermore, combining two or more
in-series functions together to execute in a single VM can
improve performance compared to invoking those function in
separate VMs (e.g. due to avoiding remote storage communi-
cation). We plan to explore the performance benefits of these
ideas.

9 Conclusion
We proposed ORION as a novel optimization technique for

serverless DAGs. It presents four design innovations: a dis-
tribution and correlation-aware performance model for E2E
latency, a resource optimization strategy, a design for bundling
multiple invocations of a function within a stage to mitigate
execution time skews, and a pre-warming strategy to mitigate
cold starts. We evaluate ORION on AWS Lambda on three
serverless applications with different DAG structures, skews
in execution time, and communication patterns. We compare
ORION to three competing approaches and show significant
improvements in E2E latency, $ cost, or both. We highlight the
following insights: (1) It is challenging to decide on the right
resource configurations that accurately meet latency SLOs
for serverless DAGs. (2) It is important to bundle parallel
workers together to mitigate skew, yet it is challenging to
pick the right bundle size that avoids resource contention. (3)
We can leverage the DAG structure information along with
latency CDF estimates to find efficient pre-warming delays
that minimize E2E latency without degrading utilization.
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A Artifact Appendix
Abstract

This artifact appendix includes all the necessary informa-
tion to reproduce the main evaluation results of the OSDI’ 22
paper: ORION and the Three Rights: Sizing, Bundling, and
Prewarming for Serverless DAGs.

Scope and Usage
ORION is a serverless DAG optimization layer imple-

mented in C# and Python 3.8. ORION accepts a DAG as
an input and profiles the execution time for each function
in the DAG as well as the entire DAG. The execution times
are represented as distributions (CDFs) to capture the vari-
ability in runtimes. Afterward, users provide ORION with
requirements such as a latency target (e.g., P95 ≤ 20 sec-
onds) and/or an upper limit on the budget (e.g., cost of 1K
executions ≤ $1000). Next, ORION performs three optimiza-
tions to achieve user-provided requirements. The three op-
timizations are: (1) Right-sizing: Finding the best resource
configurations for each function to meet the E2E latency ob-
jective with the minimum cost. (2) Bundling: Identifying
stages where co-locating multiple parallel instances of a func-
tion together to be executed on one VM will be beneficial.
The benefit arises when there is computation skew among
the parallel workers caused by different content inputs and
functions are scalable. (3) Right pre-warming: The VMs to
execute the functions in the DAG are pre-warmed just right,
ahead of time, so that cold starts can be avoided while keeping
provider-side utilization of resources high. With these three
optimizations, ORION accurately meets latency service level
objectives (SLOs) while reducing execution cost. The output
of ORION is a transformed DAG that has the same semantics
as the user-provided DAG, but with higher performance (i.e.,
lower latency) and lower execution cost.

Contents
1. Benchmarks-AWS-Lambda: This folder contains the

code for the three evaluation applications (Video-
Analytics, ML-Pipeline, and NLP-ChatBot). By running
deploy_application.sh in each application directory,
a DAG serverless workflow can be deployed on AWS
Lambda using AWS Step Functions.

2. DAG_Profile: This folder contains the code for our DAG
profiler. The code is generic enough to profile any appli-
cation defined as a standard state machine on AWS Step
Functions.

3. DAG_Modeler: This folder contains the code used to
build the E2E performance model of the DAG. This
module also contains the VM_Size_Optimizer to select
the best VM size for each function in the DAG.

4. Bundling_Manager: This folder contains the code of
ORION’s Bundling optimization. This component of
ORION profiles the DAG with varying bundle sizes and

shows the P50 Latency, P95 Latency, and $ cost for each
bundle size.

5. Prewarming_Optimizer: This folder contains the code
to select the best pre-warming delays for each stage in
the DAG.

6. Comparison_to_Baselines: This folder contains the
code that compares ORION to two baselines: Best mem-
ory and CherryPick. The script produces the tail latency
and cost (in $) for ORION as well as the two baselines.

7. Policy_simulator: This folder contains the code for our
pre-warming policy simulator. This component com-
pares different pre-warming policies without being con-
strained by what is possible in commercial public cloud.

Hosting
ORION is open sourced and we release its code, the work-

load characterization data, and the evaluation applications. All
these components can be obtained at: https://github.com/
icanforce/Orion-OSDI22

Requirements
The artifact uses AWS Lambda to host serverless functions,

and AWS Step Functions to orchestrate the functions and orga-
nize them in a DAG. Some functions have large dependencies
and hence are deployed as images on AWS ECR (Amazon
Elastic Container Registry). Accordingly, users need to install
the following dependencies:

1. Amazon AWS CLI: Can be obtained at: https://
aws.amazon.com/cli/

2. Docker: Can be obtained at: https://
www.docker.com/

Environment Setup
1. First, deploy one of the evaluation applications from

Benchmarks-AWS-Lambda directory in AWS StepFunc-
tions.

2. Then, use the DAG_Profiler to profile and generate the
latency distributions for each function in the DAG.

3. Use DAG_Modeler to build the E2E performance
model of the DAG, this module also contains the
VM_Size_Optimizer to select the best VM size for each
function in the DAG.

4. Use Bundling_Manager to select the best bundle size.

5. Use Prewarming_Optimizer to select the best pre-
warming delays for the stages in the DAG.

6. Use Comparison_to_Baselines to compare Orion
with CherryPick and Best Memory baselines.
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