
This paper is included in the Proceedings of the 
16th USENIX Symposium on Operating Systems  

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the  
16th USENIX Symposium on Operating  
Systems Design and Implementation  

is sponsored by

From Dynamic Loading to Extensible 
Transformation: An Infrastructure  

for Dynamic Library Transformation
Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye, Shiyuan Hu, Xu Wu,  

Wenqin Zheng, Wenfeng Zhang, and Xinwei Hu,  
Poincare lab, Huawei Technologies Co., Ltd, China

https://www.usenix.org/conference/osdi22/presentation/ren



From Dynamic Loading to Extensible Transformation:

An Infrastructure for Dynamic Library Transformation

Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye,

Shiyuan Hu, Xu Wu, Wenqin Zheng, Wenfeng Zhang, Xinwei Hu

Poincare lab, Huawei Technologies Co., Ltd, China

Abstract

The dynamic linker and loader has been one of the fundamen-

tal software, and more than 99% of binaries are dynamically

linked on Ubuntu. On one hand, vendors are going to break

production software into more and more dynamic libraries

to lower the maintenance cost. On the other hand, customers

require the dynamic loader to provide rich functionalities

to serve their isolation, security, and performance demands.

However, existing dynamic loaders are implemented in a

monolithic fashion, so they are difficult to extend, configure

and optimize.

This paper presents iFed, an infrastructure for extensible

and flexible dynamic library transformation. We design iFed

in a pass-based architecture to compose various functional

and optimization passes. iFed uses a runnable in-memory

format to represent libraries and coordinate among multiple

transformation passes. We further implement two optimiza-

tion passes in iFed, which efficiently leverages hugepages and

eliminates relocation overhead. iFed is implemented as a drop-

in replacement of the current system default dynamic loader.

We evaluate iFed and its optimization passes with a wide

range of applications on different hardware platforms. Com-

pared to the default glibc dynamic loader, iFed reduces an

order of magnitude of TLB miss. We improve the throughput

of a dynamic website by 13.3%, along with a 12.5% reduction

of tail latency without any modifications to the applications.

1 Introduction

Since the 1990s, dynamic linkers and loaders have been one

of the most critical software tools for computer programs and

applications [11, 15, 23]. Opposite to static linking, which

generates a single big application binary, dynamic loading 1

1Dynamic loading is also referred to as run-time loading, a mechanism

that an application opens, loads, and executes a library by explicitly calling

loader interfaces during program execution. As run-time loading shares

almost the same backend technology with dynamic loading, throughout this

paper, we use dynamic loading to refer to the integrated linking and loading

permits complex software to be shipped, delivered, and dis-

tributed as a collection of libraries, modules, or components.

For low-level languages, such as C/C++ and Rust, these com-

ponents are implemented as dynamic libraries, also called

dynamic-link libraries (.dll in Windows) or shared objects

(.so in Linux). Only when a program starts will its dynamic

libraries be integrated to form a runnable application by the

dynamic loader. In this way, each dynamic library can be

distributed and patched individually without modifying the

entire application. As a result, software maintenance cost is

greatly reduced while it gains much more flexibility. A study

shows that more than 99% of binaries are dynamically linked

on Ubuntu [46].

While the dynamic loader’s functional structure has been

mature and stable for more than one decade, we found it can-

not meet the requirements of rapidly developing software

and complicated architectures today. Two primary driving

factors call out a new infrastructure for extensible and mod-

ular transformation on dynamic libraries: (1) the massively

increasing number of dynamic libraries used in an application

and (2) the emerging diversity of manipulation and operations

on dynamic libraries.

Complex commercial software heavily relies on dynamic

libraries to decompose a single huge binary into many loosely-

coupled, fine-grained modules. This is particularly motivated

by two considerations. First, some open source license re-

quires all statically linked code should also be open-sourced.

This is so-called “license contamination”. GPL license [12]

(used by glibc) is one such example. Consequently, produc-

tion software has to use dynamic libraries to avoid “license

contamination”.

Second, modern software needs frequent updates because

of CVE fixes, bug fixes, or adding new features. However, it

is painful for vendors to re-compile or link the whole soft-

ware, and ask customers to reinstall the entire application.

Therefore, vendors always break up software into many fine-

grained dynamic libraries, and each library can be maintained,

phase when programs are launched.
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Figure 1: The number of dynamic libraries included in the CUDA

Toolkit over the past decade.

updated, or replaced independently. For instance, Figure 1

lists the number of dynamic libraries shipped in the CUDA

Toolkit. As it shows, the number has grown rapidly over the

last decade. Based on our observation from the industry, this

trend will continue in the future.

Along with the growing dynamic library count, the dynamic

loader is required to provide more features to make better use

of emerging hardware and software technologies. For exam-

ple, when using recent hardware memory protection (e.g. Intel

MPK [17] and SGX [16]) to achieve in-process isolation, the

dynamic loader has to perform more work. It loads isolated

libraries into different memory regions, setups up memory pro-

tection and permission properties, and optionally verifies the

signature of loaded binaries [7,14,37,38,40]. Load time code

randomization and binary rewriting, provided by the dynamic

loader, are widely adopted for profiling, security hardening,

and architectural adaptation [51, 53, 54]. Library debloating

relies on the dynamic loader to examine and eliminate unused

library code from program memory [33, 35]. Control-Flow

Integrity (CFI) and Sandbox also require miscellaneous mod-

ifications to the dynamic loader, such as analyzing relocation

entries and overwriting the entry point [24, 47, 58].

However, the current dynamic loading infrastructure is

insufficient and inefficient to offer rich functionalities over

a large number of dynamic libraries. This leads to ad-hoc

changes to the dynamic loader to satisfy various requirements

from different productions. Such customized modifications

are incompatible with each other, and cannot be integrated

or reused, causing enormous development and maintenance

costs. Even worse, the fundamental infrastructure of dynamic

loader has been kind of ignored by academia and industry.

Thus neither research nor open source community proposes

systematic solutions to deal with these issues. For instance,

while there are 100+ commits in glibc related to the dy-

namic loader in the last two years, they are almost bug fixes

or cleanup without new features developed.

According to our many years’ industry experience and

realistic production requirements, intrusive and customized

modifications cause unacceptable maintenance cost. On the

one hand, a large number of source code patches are hard

to be accepted by upstream. This also happens to academia

work listed above. On the other hand, production departments

do not have enough source code level knowledge to maintain

patches. Therefore, it is painful for the OS department to

maintain many ad-hoc patches and sometimes it has to release

different OS distributions with different loaders (along with

glibc). As a result, it motivates a new infrastructure which

satisfies following requirements:

• It offers more functionalities than existing loader.

• It can be flexibly configured for different trade-off and

extended to adopt future enhancements.

• Its modifications can be implemented in a modular way

that minimizes the effort to align with upstream and fix

conflicts due to patch maintenance.

In summary, the issue of current loader design is that it has

no interface to allow extensions, thus intrusive modifications

cannot be avoided. The loader is historically designed for a

few simple functionalities and acts as a “translator”. How-

ever, now it has to be redesigned, instead of re-engineer, to

adopt emerging functionalities and allow future updates in a

modular and flexible way, and becomes another platform for

application optimization.

We address these challenges by designing iFed, a new in-

frastructure that achieves extensibility, modularity, and flex-

ibility for dynamic library operations. Our key idea is to

organize the iFed as a pipeline of distinct transformation

passes instead of a monolithic tool. Each pass only imple-

ments some specific manipulation on dynamic libraries to

realize its desired functionality, such as security enhance-

ment, memory isolation, or performance optimization. We

also design a runnable in-memory format (RiMF) to describe

the runtime status and properties of an application and its

dynamic libraries (§3.4). RiMF serves as an intermediate rep-

resentation that every pass operates on, thus different passes

are decoupled. By including complete status and information

of all dynamic libraries, RiMF further enables iFed passes

to do global and aggressive analysis and optimizations. A

pass manager orchestrates the series of passes to be applied

upon program launch (§3.5). Combined, these features pro-

duce the first infrastructure, as far as we know, that satisfies

diverse functional requirements without loss of extensibility,

flexibility, and modularity.

With various transformation passes plugged in, iFed is able

to support much richer features beyond existing dynamic link-

ing and loading. We demonstrate this by implementing two

performance optimization passes. The first pass combines the

same type of sections from different dynamic libraries into

a continuous one, and then leverages hugepages to load the

combined section (§3.6). The second one converts relocation

branches into direct function calls, thus reducing the overhead

of cross-library function calls (§3.7). iFed and its optimiza-

tion passes are implemented to replace the GNU dynamic

loader. We evaluate iFed with a large range of application
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benchmarks on different architectures. The results illustrate

how iFed optimization passes offer better throughput, latency,

and predictability than current dynamic loaders. Without any

modifications to the applications in a dynamic website, iFed

improves the throughput by 13.3% and reduces the average

end-to-end response time by 12.5%.

Our contributions are not only enhancing current loader

with some specific optimizations, but also proposing a new

infrastructure that is capable to host many other loader fea-

tures in production. Concretely, the contributions of this paper

include:

• We introduce iFed, a pass-based infrastructure for exten-

sible, flexible, and modular transformation on dynamic li-

braries during load time.

• We design two performance optimization passes in iFed.

One pass enables efficient utilization of hugepages by re-

arrangement and concatenation of multiple libraries. The

other pass aggressively eliminates the overhead of cross-

library invocations resulting from inefficient relocation.

• We implement iFed infrastructure with the above optimiza-

tion passes as a drop-in replacement of the default dynamic

loader in Linux (ld.so in glibc). iFed is fully compatible

with ld.so and its all interfaces.

• An exhaustive evaluation of iFed on different architectures

with a wide range of applications.

The rest of this paper is organized as follows. §2 provides

background and motivation for the redesigned dynamic load-

ers. §3 introduces iFed and discusses its design, while §4

details the implementation of iFed. In §5, we present the per-

formance evaluation of iFed for a wide range of applications.

§6 discusses the related work, and §7 concludes.

2 Background and Motivation

2.1 Insufficient Functionality

The basic functionalities of dynamic loading include three

parts: (1) library lookup and collection; (2) memory layout

preparation; and (3) symbol resolution and name binding.

The core jobs to implement these functionalities in existing

dynamic loaders are simple. The loader allocates memory

and maps libraries into the address space with the given lay-

out specified in library object files. Then it resolves external

symbols by populating some lookup tables with the actual

memory address. While these steps are just enough to exe-

cute programs with dynamic libraries, they are not able to

further transform libraries to meet diverse isolation, security,

and execution requirements. Thus, many projects have to cus-

tomize the loader to fulfill their system objectives. We list a

few examples here.

• CubicleOS [38] is a library OS that isolates components

in MPK protected memory regions, called cubicles. It im-

plements a new cubicle loader who acts as the dynamic

TLB 99th percentile Execution

miss IPC latency (cycle) time (s)

glibc 1,231,950 1.96 318 6.01

iFed 117,782 2.43 232 4.86

Table 1: Performance comparison between glibc and iFed on x86

machine.

loader. The loader is responsible for cubicle creation and

component loading. It additionally scans binaries to ensure

that there are no any MPK-related operations, and resoles

cross-cubicle calls with special trampolines.

• BlankIt [33] is a dynamic loading framework that predicts

and loads only the set of library functions that will be used

by the application. At load time, BlankIt iterates over all

executable’s dynamic libraries, wipes out unused functions

it predicates, and overwrites these functions with a mis-

predication trampoline.

• Shuffler [53] patches the loader to support continuous code

re-randomization. The modified loader implements con-

structor prioritization in multiple libraries, and employs

binary rewriting to track and update all code pointers.

In summary, while many projects illustrate the necessity

and benefit of loader modification, they have to do some re-

dundant work, yet their own work cannot be easily integrated

by others. Hence, a new infrastructure for extensible and mod-

ular dynamic loading is necessary.

2.2 Inefficient Performance

Even worse, current dynamic loaders fail to effectively utilize

modern hardware capabilities and global system resources,

resulting in sub-optimal performance. A representative case

is ineffective hugepage usage.

The current loader loads each dynamic library individu-

ally, and within each library, maps code and data section ran-

domly. Thus sections are likely loaded into fragmented mem-

ory which only uses small pages (4K) for physical memory.

This leads to more TLB miss, slower library function calls,

and unpredictable execution time. A better loading strategy

is combining the same sections of all libraries into a big one,

and loading it into hugepage memory. We study performance

penalties incurred by the current loader from glibc. On an

Intel machine, we conduct a micro-benchmark that simply

invokes 100 dynamic libraries, and each library contains only

one function accessing memory (full details in §5). Table 1

depicts the micro-architecture impact of (instruction) TLB

miss and instruction per cycle (IPC), as well as benchmark

results of 99th percentile library function call latency and total

execution time. Due to loading libraries with small pages, the

benchmark suffers frequent TLB miss, which further leads

to slow and unpredictable execution. In contrast, dynamic

library concatenation pass in iFed effectively loads libraries
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Figure 2: iFed architecture and workflow. The pass manager loads and invokes a series of transformation passes, which interact with RiMF.

The workflow of program launch starts from the operating system kernel, which loads both application and iFed binary. After iFed gets the

control, it discovers, parses and transforms dynamic libraries and finally boots up the application.

into hugepages, providing an order of magnitude reduction

on TLB miss and 23.6% improvement on execution time.

Next, we discuss how iFed enables more optimization and

transformation of dynamic libraries in a modular and flexible

way.

3 iFed Design

3.1 Design Principles

iFed integrates the lessons we learned from the experience

of supporting diverse production demands on the dynamic

loader. We below outline the key principles, the guidance

throughout iFed design.

Extensibility and Modularity (P1). Due to different security

or performance considerations, different production always

requires a distinct subset of loader features. Therefore, various

functionality should be organized in a loosely-coupled way

instead of a monolithic implementation. Additionally, iFed

should allow applying new features easily without intrusive

modification to the loader itself.

Flexibility and Customizability (P2). It is desirable that

iFed capabilities can be customized on per-application, cus-

tomer, or even per-run basis. Such flexibility is important for

system managers and end customers to have more control

over running applications, opposite to accepting everything

from the current loader passively.

Compatibility and Transparency (P3). Compatible with

the existing loader interface is critical for iFed to be

production-ready. Changes to the loader should be transparent

to application developers, and require minimal modification

of legacy code. Thus, we aim to design iFed as a drop-in

replacement for the existing loader from the beginning.

3.2 iFed Functionality and Usage

As discussed in §2.1, current dynamic loaders cannot keep up

with application demands on new functionalities. According

to these demands, we summarize the desired features a loader

should provide beyond existing ones.

• Memory management. The loader should be responsible

for memory allocation, library address space layout, and

content initialization. This has a large impact on application

performance or memory consumption. Some examples of

load time memory management are library debloating [33,

35], replaying the profiled hot regions [28], and hugepage

optimization (§3.6).

• Isolation. The loader is the first place to partition and load

different libraries into isolated regions. The customers’

strong demand to isolate untrusted or vulnerable third-party

libraries paired with the emerging MPK and SGX technolo-

gies, motivate the loader to offer more isolation capabili-

ties [7, 14, 40, 50] beyond the traditional read/write/execute

permission restrictions.

• Security enhancement. The loader is convenient to per-

form transparent security hardening regardless of running

applications. For instance, we can enable CFI or sand-

box [5, 24, 47, 58], apply code randomization [26, 51] or

perform binary encryption/decryption or signature verifica-

tion [25, 56].

• Binary rewriting and execution control. In addition to

traditional relocation, the loader is feasible to perform more

advanced binary rewriting and control program execution,

such as Shuffler [53] and Egalito [54]. Furthermore, load

time transformation is also necessary to migrate applica-

tions among heterogeneous environments or offload execu-

tion to smart devices [8, 52]. We will discuss a relocation

elimination pass in iFed in §3.7.

Current usage of dynamic loader is a mass of interplay among

build toolchains, such as compiler and linker. Some configu-

rations and functionalities are scattered in various parts. For

example, to prevent GOT overwrite attack [18], the following

gcc options are widely used: -Wl,-z,relro,-z,now. gcc

passes these options down to the linker, but these options do

not take effect until the dynamic loader marks the correspond-

ing memory region as read-only. However, existing usage is

not appropriate. We argue that the dynamic loader should

be hidden from application developers, but configured and

controlled totally by end users or system administrators. This

is because customers do not trust that developers properly
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build the software to meet their requirements. Thus, iFed con-

solidates all loader-related operations in one place, and gives

the control to end users who actually run the application.

3.3 iFed Architecture

When designing a loader, we should separate functional mod-

ules from low-level infrastructure. Functional modules will

impact the application run-time behavior and the infrastruc-

ture orchestrates these modules. Furthermore, functional mod-

ules can be easily replaced or combined without intrusive

modifications to the infrastructure and other modules.

We choose pass-based architecture for the loader design.

As a result, source code patches are no longer needed, and in-

dependent modules with enough semantics can be developed,

configured and maintained. The overall iFed architecture is

shown in Figure 2. The core component in iFed is a series of

transformation and optimization passes that manipulate and

transform dynamic libraries for various purposes related to

security, isolation, and performance. Each pass is a separate

module which can be enabled or disabled independently. Such

pass-based modular architecture gives great flexibility and ex-

tensibility to users to customize iFed functionality according

to their own demands. All passes are managed and controlled

by a pass manager (§3.5). Users configure the pass manager

to instruct it to construct and execute the pass pipeline. The

pass manager also maintains all libraries’ in-memory status,

and organizes them using RiMF format (§3.4). RiMF is an

intermediate representation that is shared by all passes. In this

way, passes are able to retrieve global information scatted in

many libraries and to perform advanced inter-library transfor-

mations. Same as the existing loader, iFed offers other utility

components as well, such as library discovery and elf parser.

3.4 Runnable In-memory Format

A main goal of iFed is splitting the current monolithic dy-

namic loader into extensible passes. On the one hand, it is

desirable that a pass does not rely on another, thus enabling

different passes to be developed and evolve independently.

On the other hand, when multiple passes run together, they

should be aware of how others transform libraries. Hence, we

need a kind of intermediate representation that captures all

libraries’ status originating from library objects and generated

by iFed passes on the fly. Runnable in-memory format (RiMF)

is intended to coordinate iFed passes by providing a central

place to hold library information at load time.

Passes in iFed do not communicate with each other directly,

instead, the shared RiMF is the only interface for library trans-

formation any pass can use. In this way, RiMF hides iFed

internal complexity and other pass’s implementation details

to pass developers. Currently, whenever modifying the dy-

namic loader to add new features, a developer has to under-

stand most of its codebase, even though much of them are

irrelevant. In contrast, all a developer needs to know to write a

transformation pass in iFed is the format and properties inside

RiMF, and the operations it exposes. iFed maintains a single

RiMF image which includes all dynamic libraries a program

requires, instead of a separate object file for every library as

today. Thus, iFed pass has more opportunities to apply global

analysis and optimization. Our dynamic library concatena-

tion pass demonstrates the power of global RiMF. Different

from ELF object file which is designed for the dense on-disk

format, RiMF rather focuses on load time in-memory repre-

sentation, such as isolation constraints, memory placement

and attributes, and code interposition.

The first-class object in RiMF is the isolation domain, which

composes a subset of libraries within the same protection

boundary. The actual isolation domain implementation de-

pends on the iFed pass. It could be implemented by MPK,

SGX or even device offloading. At the top level, RiMF con-

sists of a list of isolation domains, inter-domain invocations

that need to be resolved specially and a global application

entry point. Inside each isolation domain, similar to an ELF

file, RiMF provides sections, exposed symbols, and relocation

records. These information are organized in a set of tables.

Primary tables provided by RiMF are: (1) memory-mapping ta-

bles which describe library address space layout and memory

attributes; (2) symbol tables dealing with symbol definition,

binding, reference, and so forth; (3) section metadata tables

that associate RiMF sections to original ELF object files. A

RiMF section does not contain the actual binary, but maps to

one or more ELF sections initially. RiMF varies throughout

the iFed transformation pipeline. RiMF exports multiple inter-

faces to query, insert, modify and commit its internal tables.

For example, a pass can update section metadata tables to

combine different ELF sections into a new RiMF section. By

manipulating symbol tables, a pass is able to remove unused

code or override a function call with a customized trampoline.

The commit interface is used to apply table modifications to

the actual binary, such as interposing them in the library code

and loading sections to memory.

3.5 iFed Pass Manager

The iFed pass manager orchestrates transformation passes

to operate on RiMF sequentially. The pass manager takes a

user-provided configuration file and invokes each pass accord-

ingly. In essence, the pass manager is mainly responsible for

two tasks. First, the pass manager maintains the RiMF image

and provides interfaces to various passes to query and mod-

ify RiMF. Second, the pass manager acts as a meta loader,

which loads and executes each transformation pass. Consis-

tent with iFed overall design principle, each transformation

pass is also implemented as a dynamic library, which needs to

be loaded before execution as well. For simplicity, we reuse

the existing glibc loader for this minimal meta loader, so

any transformation trick is not applied to pass libraries.
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Current iFed does not contain a sophisticated scheduling

policy for running passes nor supports parallel pass execution.

We leave these as future work. Thus, the user has to explic-

itly deal with pass dependency and pass confliction in the

configuration file.

Pass Dependency. In general, passes are not aware of each

other because they only use RiMF as the communication

medium. However, the order of passes impacts the runtime

overhead a lot in some use cases. For example, a binary ver-

ification pass is preferred to run as early as possible, so fol-

lowing passes will not waste time on bad libraries. It is also

beneficial to place one pass behind another, if it can reuse

the analysis result from the previous pass, avoiding repeated

work.

Some special cases must be handled carefully. vDSO is one

such tricky example. vDSO is a virtual dynamic library (e.g.

linux-vdso.so) inserted into the application by the ker-

nel, but still uses the standard dynamic loading mechanisms.

Popular usage of vDSO is mapping some kernel regions into

the application’s address space, thus some system calls can

directly execute on these regions. As a consequence, vDSO

libraries must be loaded earlier than any pass that will is-

sue vDSO related system calls. Otherwise, iFed pass itself

will fault due to incomplete vDSO even before the applica-

tion starts running. Similarly, if a pass relies on malloc from

libc, it has to make sure that malloc is working properly

ahead of the pass execution.

Pass confliction. With more passes integrated together, they

are possible to introduce conflict transformations on libraries.

Different passes may partition libraries into different isola-

tion domains, or they have opposite optimization objectives.

Currently, iFed relies on users to construct the transforma-

tion pipeline properly. Automatic dependency extraction and

confliction detection will be supported in the future.

Figure 2 demonstrates a potential iFed transformation pass

pipeline. All libraries are verified first using security signa-

tures in the first verification pass. Then an isolation pass

divides libraries into several isolation domains. Libraries in

each domain are loaded into memory, where the memory

management pass allocates and sets up memory permissions

appropriately. The last binary rewriting pass completes sym-

bol resolution, relocation, and other intent manipulations.

3.6 Dynamic Library Concatenation

Hugepages (superpages) can greatly reduce the address trans-

lation overhead, because it eliminates one level page table

hierarchy and occupies fewer TLB entries. However, the cur-

rent loader does not explicitly leverage hugepages. As shown

in Figure 3 (a), the current loader individually maps every

section in each library into the process’s address space. If

these sections use a small amount of memory (i.e. smaller

than the size of a hugepage), the operating system is unlikely

to allocate hugepages for them automatically. As a result,

4K 4K 4K 4K 4K 4K

foo.so bar.so

.data .data.code .code.... .... .data .data.code .code.... ....

2M 2M

foo.so bar.so

bar barfoo foo.... ....

2M 2M

.code .data

.data .data.code .code.... ....

foo.so bar.so

2M 2M 2M 2M 2M 2M

4K pagefunction call data access

(a) (b) 

(c) (d) 

2M page

Figure 3: Different hugepage usage schemes for dynamic libraries.

frequent inter-library function calls will trigger more TLB

misses, causing expensive page table walk, stalling the CPU

instruction pipeline and slowing down applications.

The industry has two approaches to mitigate the impact of

high TLB miss, but neither of them is ideal. Figure 3 (b) de-

picts the first approach, which allocates hugepages to hold all

sections in the same library. While this approach reduces the

number of used TLB entries, it brings many security vulnera-

bilities. Since all sections are in the same hugepage, that page

should have all read/write/execute permissions required by

different sections. For example, .code section becomes write-

able and .data section is executable. Thus, this approach is

only used in some closed environments. This, once again,

indicates that the loader is capable to alter any policies desig-

nated during the development phase, making those policies

unreliable. Therefore, the loader should provide capabilities

to enforce security policies at load time.

The second method is illustrated in Figure 3 (c), such as

the transparent hugepages for file systems proposed in the

Linux kernel [27]. In this case, hugepages are used for large

sections in each library. While it works well for applications

using only a few large libraries, it cannot scale to a larger

number of libraries. However, as we discussed in §1, using

more and more libraries is the trend for production software,

which leads to that such method will be less effective.

In iFed, we design a different approach and implement

using in a iFed pass called dynamic library concatenation.

The basic idea is intuitive as Figure 3 (d) shows. We collect

the same sections, such .code, from all dynamic libraries

and concatenate them one by one to form a big section. This

combined section is large enough to fit in hugepages. More

importantly, all the sections share the same memory permis-

sions, so it is safe to place them in the same hugepage. Thanks

to RiMF holding all libraries’ information, the dynamic library

concatenation pass is able to disassemble and rearrange li-

braries easily.

By combining all libraries .code sections into a big one,

we might reduce the possible address range used by address

space layout randomization (ASLR). To mitigate this security
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concern, we have some options. (1) We can concatenate these

libraries in random order. 2 (2) Hugepages do not have to be

continuous in the virtual address space as long as the original

section does not cross two hugepages. (3) We can leverage

other code randomization techniques at load time [51] or run

time [53], which is easier to employ in iFed.

Another potential negative impact introduced by dynamic

library concatenation is library sharing. Dating back to the

early days of computing, the motivation for using dynamic

libraries is to save limited memory. When multiple running

processes require the same library, they only share a single

in-memory copy of the libraries. Library concatenation makes

the sharing more difficult, as different processes have to use

the same set of libraries. However, from our experience, this

issue is acceptable for the following reasons. (1) The shared

region is mainly the immutable code section. However, the

code size of libraries is negligible compared to today’s mem-

ory capacity. For instance, glibc has around 1.3 million lines

of code and its un-stripped binary is only 17 MB, while a com-

mon server in the data center has 500 GB memory. (2) Thanks

to the customizability of iFed, we can apply library concatena-

tion only to key applications, while other utility or background

processes still use the default memory management policy

to share dynamic libraries. (3) In some cases, such as edge

computing or micro-service, the same process will fork multi-

ple times to serve different customers [36]. Since the forked

process has the same address layout, they can share the con-

catenated library without any problem. (4) In the extreme case

where the library must be shared, we align sections from dif-

ferent libraries at the 4K boundary. Thus, the 4K page in the

middle of a hugepage can still be mapped to other applications

at the cost that others are unable to utilize hugepages.

3.7 Relocation Branch Elimination

An important job accomplished by dynamic loaders is relo-

cation, because the compiler cannot statically resolve cross-

library function calls due to lack of address information. After

the dynamic loader maps all libraries into process address

space, it populates the actual address of unresolved functions

in a lookup table. Then every call to a function in a dynamic

library first retrieves the address from the lookup table and

jumps to that destination. These extra actions result in a tram-

poline code, which is stored in another table.

Figure 4 (a) shows a simplified execution flow of reloca-

tion. The table used to serve address lookup is usually called

global offset table (.got) and the procedure linkage table (.plt)

saves the trampoline code. When functions in foo.so (e.g.

foo1 and foo2) call the function bar in bar.so, they call the

trampoline (bar@plt) instead. The trampoline issues an in-

direct jump instruction, whose destination address is fetched

2 Existing loader (e.g. ld.so) loads libraries in a deterministic way,

which is decided by its internal library discovery algorithm according to the

dependency information from application binaries.

bar@bar.sobar

.text

.plt

.got

.foo1:

.foo2:

bar@plt

bar@pltcall

bar@plt
bar@plt

call

*(bar@got)jump

(a) (b) 

(d) (c) 

.text

.foo1:

.foo2:

bar@bar.socall

bar@bar.socall

function call

data access

foo1

foo1

bar@bar.so

bar@bar.so

bar@got

bar@plt

bar@got

Figure 4: Function call relocation for dynamic libraries. Function

foo1 and foo2 in foo.so call function bar in bar.so. In (a),

function calls are first redirected to .plt, and consult .got entries

to get the destination address, and finally branch to the destination.

(b) depicts that the current relocation method incurs three memory

access and two code branches. As shown in (c), the relocation branch

elimination pass in iFed rewrites the function call sites so that they

directly jump to the destination. As a result, only one memory access

and code branch is needed in (d).

from an entry in .got (bar@got). Thus, the execution fi-

nally branches to the real address of bar (bar@bar.so). 3

The above relocation mechanism is applied to every function

calls across dynamic libraries, thus incurring pervasive per-

formance overhead. Figure 4 (b) depicts the performance cost

in detail.

More executed instructions. Obviously, the single call in-

struction is expanded to multiple trampoline instructions, con-

suming more CPU cycles. Even worse, the additional indirect

jump puts more challenge on the branch predictor. This is

exacerbated by the fact that the trampoline code is not densely

packed and .plt is often sparsely accessed, leading to more

branch misses.

Extra memory access. The existing relocation approach also

introduces more memory access. First, .plt asks for more

memory to store the trampoline. Second, the trampoline needs

to load from the extra .got memory. More memory access

compete for the TLB and cache more frequently. Worse still,

they are likely to be evicted from TLB and cache by other data

access within the applications, especially in data-intensive

scenarios, causing increased function call latency and unpre-

dictability.

3 This simplified execution flow omits some complexities. .got entries

are initially populated with a pointer to a loader’s own resolver function. So

when a library function is invoked at its first time, it branches to the resolver

function, which then updates the .got entry using the actual address. This

also requires additional instructions to be patched into the trampoline.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    655



However, there are no practical solutions to eliminate these

performance penalties. Switching to statically linked libraries

is not always feasible as discussed in §1, and some hardware

methods [1] are not available in production due to architec-

tural modifications. It is also difficult to replace the relocation

mechanism in the current dynamic loader with little effort.

Thanks to iFed, we have a chance to insert an optimization

pass to reduce the relocation cost in an extensible manner. We

design the relocation branch elimination pass for this purpose.

The key idea inside relocation branch elimination is pretty

intuitive. As shown in Figure 4 (c), we can directly rewrite

the call instructions to replace their target address using

the address of library functions, instead of the address of the

trampoline in .plt. The performance gain is obvious. We

eliminate the extra two memory access and one instruction

branch as shown in Figure 4 (d). As a result, we essentially

achieve the performance of static linking on top of dynamic

libraries. Despite its simple idea, we have to deal with in-

struction decoding, relocation sites management, and other

implementation issues carefully. Implementation details are

discussed in §4.

Rewriting instructions causes it more difficult to share li-

braries among applications, since they have to be organized

in the exact same address space layout. Thus, the relocation

branch elimination pass is preferred to be used in environ-

ments with sufficient memory. Another challenge that needs

to be overcome is the distance restriction of a relative branch.

When using relative addressing mode, the CPU has restric-

tions on the distance between the call site and the target

address. 4 Therefore, only rewriting the target address is not

always possible if the library functions are loaded far from

the call sites. This issue can be handled in multiple ways.

(1) When combined with the dynamic library concatenation

pass, it is rare that the distance exceeds the architectural con-

straint. (2) We can change the relative addressing to absolute

addressing mode at the cost of an extra instruction to load

the address into a register. This change can be done by re-

compiling the code or rewriting the instructions by the loader.

For instance, the Linux kernel module loader rewrites the in-

structions when detecting the constraint violation. (3) For the

call sites that are far away from the target function, we can

fall back to the existing relocation method using .plt and

.got.

3.8 Discussion and Summary

The pass-based architecture enables iFed to accommodate

much more load time technologies and functionalities. How-

ever, we do not argue that our architecture is the only or best

way to design a loader. Other methods are possible, such as

“Linux kernel module” or “systemd service unit” approach.

4 This is because only a subset of bits in the branch instruction is available

to encode the address. For example, x86 limits the range as ±2 GB, while

ARM has a limitation of ±128 MB.

This is an open and new research area, and researchers are

welcome to investigate more. iFed also brings side effects to

program launch time and binary size, and we discuss these

trade-offs below.

Loading Time. While iFed infrastructure itself does not in-

troduce additional overhead to program launch, boot time

will increase as more iFed transformation passes are enabled.

End users have to make the judgment on the trade-off be-

tween longer loading time and securer or faster application

in run time. According to our experience so far, the increased

loading time in iFed is acceptable. This is because (1) For

applications that already require a modified loader to provide

new functionalities, they do not suffer more extra launch costs

after switching to iFed; (2) For long-running services, such

as web server and database, the one-time overhead during the

startup is always negligible; and (3) For short-lived tasks in

high churn environments, we can explore process template

and in-memory caching technology [36] to fork processes

from an initialized template, thus all forked processes will

bypass iFed loading phase and its associated overhead. We

study how our dynamic library concatenation and relocation

branch elimination passes impact loading time in §5.

Binary Size. As some iFed transformation passes may need

extra binary information to perform in-depth analysis, it is

likely to bloat the application binaries. For example, the relo-

cation branch elimination optimization requires the linker to

retain all relocations in the executable file, resulting in larger

binaries. While it is possible to scan the binary to re-generate

these information, it is not wise to waste time on these re-

dundant work. So far, the bloated binaries are not a big deal

given the current massive persistent storage, but we argue the

ELF-based binary scheme can be improved in the following

senses. First, developers should keep relevant binary infor-

mation (e.g. data generated by static analysis or bitcode of

LLVM IR) as much as possible to reflect more comprehen-

sive semantics close to the source code, instead of throwing

them away at build-time and hiding them from the users. It is

the user who makes the decision whether these information

should be stripped at deploy- or install-time. Second, while

iFed uses ELF-based objects for compatibility now, it is better

to have a different object file format in iFed to match the pass-

based structure and RiMF image. Particularly, object files can

be disassembled into per-pass pieces, and these pieces can be

fetched, trimmed, or analyzed through per-pass configuration.

These improvements are left as future work.

Summary. We summarize how iFed resolves the issues dis-

cussed in §1 based on our design principles. Organizing iFed

with a collection of transformation passes inherently achieves

modularity (P1). Passes do not directly interact with each

other, but rely on the pass manager to mediate and operate

on RiMF image as the only interface for collaboration. New

passes are easily plugged into iFed, which significantly im-

proves extensibility in iFed (P1). Therefore, vendors do not

need to randomly modify the loader nor maintain multiple
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versions to satisfy customers’ different demands, and in the

meantime, customers are able to enjoy more features for free.

Since users can choose which pass to be used in iFed via

iFed configuration, they can flexibly construct transforma-

tion pipelines to customize the application at load time (P2).

Paired with the iFed’s capability to transform libraries with

a global view, customers are flexible to determine the trade-

off among security, isolation, and performance. iFed is im-

plemented to be compatible with the current loader, so no

application modification is required (P3). More importantly,

iFed enables another level of transparency for system admin-

istrators. For example, managers can insert a default security

enhancement pass to iFed, regardless of if applications are

built with security options.

4 iFed Implementation

Figure 2 depicts the typical workflow of iFed during program

launch. A program’s binary is first loaded by the operating

system, which then loads the dynamic loader’s binary if nec-

essary. Next, the kernel returns to user space and hands over

the control to iFed. After discovering all required libraries,

iFed invokes the pass manager with an initial RiMF image

which simply contains all libraries in a single isolation do-

main. Based on the iFed configuration, the pass manager loads

and executes each pass in sequence. Finally, iFed invokes the

application’s entry point and completes the loading phase.

Compatibility. Current iFed is implemented on top of glibc

2.28. We reuse some utility components, such as library dis-

covery and ELF parser from the glibc. As a result, iFed is

able to load unmodified ELF binaries and supports common

loader extensions, such as LD_PRELOAD. For compatibility,

the existing dynamic loader (i.e. ld.so) is organized as a spe-

cial fake pass in iFed. Linux allows an application to specify

the dynamic loader it will use. Thus, we use this facility to

enable the usage of iFed within applications.

Dynamic Library Concatenation. In this pass, we collect

the same sections from all libraries and pack them into con-

tinuous memory backed by hugepages. To save memory, the

last page is converted to small pages if less than 64 KB mem-

ory is occupied. While the implementation is intuitive, we

must fixup the global variable access. Global variables are

always accessed via offset, which is the difference between

the address of the accessing instruction and the variable it-

self. For example, in Figure 3 (a) and (d), the offset between

the .code and .data section within the foo.so is changed

due to the rearrangement. Thus accessing variables in the

.data section is broken. Our current solution is to instruct

the compiler to emit all the symbol access information (e.g.

using �emit-relocs options in gcc), and to fix the offset

during the pass execution. The book-keeping infomation in-

side iFed is also updated according to the finalized address, so

as to serve run-time loader interfaces, such as dlsym() and

dladdr(). We only rearrange the libraries which are position

independent.

Relocation Branch Elimination. This pass rewrites the

branch instructions so that they do not need indirect jump

based on .plt and got. First, we identify all branch instruc-

tions from the relocation records. Each record saves the po-

sition of the instruction and the remote symbol it references.

The symbol could be either a function or a variable. Then,

we find the actual address of the symbol and modify the in-

struction to use the address instead. Modifying instructions

is architecture-dependent. We further optimize the function

pointer invocations. In case of the function address can be

determined at the loading time, we substitute the function

pointer with the actual function.

5 Evaluation

Our evaluation goals include:

• Illustrate the effectiveness of dynamic library concatena-

tion and relocation branch elimination pass using micro-

architecture statistics.

• Understand the applicability of iFed along with our opti-

mization with a wide range of applications.

• Assess the generality when running iFed on different hard-

ware architectures.

Setup. We evaluate iFed on two architectures. The first one

is two 26-core sockets Intel(R) Xeon(R) CPU @ 2.3GHz,

with hyper-threading enabled, resulting in 104 cores in total.

The other is ARM Kunpeng-920 CPU @ 2.6GHz with four

NUMA nodes, and each node has 24 cores. All experiments

run on openEuler 20.03 [30] based on Linux 4.19 kernel. We

compare iFed with the system default dynamic loader, ld.so

in glibc 2.28.

5.1 Micro-benchmarks

We conduct a set of micro-benchmarks to evaluate the perfor-

mance improvement of library concatenation and relocation

branch elimination passes in iFed. Each test calls functions

provided by a configurable number of dynamic libraries, and

each function accesses a certain amount of memory. Figure 5

and Figure 6 study the impact of different library counts and

working set sizes in the library function, respectively. All tests

are run 500K iterations on the Intel machine. We compare

four different implementations, (1) glibc – the system de-

fault dynamic loader. (2) iFed-hugepage – iFed with only

dynamic library concatenation pass. (3) iFed-relocation –

iFed with only relocation branch elimination pass. (4) iFed–

iFed with both optimization passes.

Micro-architecture Impact. Figure 5 (a) shows the num-

ber of misses in instruction TLB. With more libraries in-

volved, the total iTLB miss grows rapidly. glibc incurs the

most iTLB miss because it uses 4K pages to load libraries

and runs out of the limited number of iTLB entries. iFed-
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Figure 5: Micro-benchmarks: the working set is fixed at 256 KB.
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Figure 6: Micro-benchmarks: the number of dynamic library is 100.
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Figure 7: Library function invocation latency distribution.

relocation has little difference with glibc as it uses 4K

pages, too. However, iFed-hugepage and iFed perform much

better than glibc (note the log scale of y axis). Thanks to

the usage of hugepage, they reduce the iTLB miss by an or-

der of magnitude when the library count is smaller than 160,

and by 40% with larger library counts. Less TLB miss leads

to higher IPC as shown in Figure 5 (b). In addition to TLB

miss, fewer code branches also decrease IPC. Thus, glibc

has lower IPC than iFed-relocation, and iFed performs the

best after integrating both optimizations. While the purposed

optimizations almost work on .code sections, they also get

benefits with a varied amount of data access as shown in Fig-

ure 6. With more data access, they compete for the cache and

TLB when shared with .code, .plt and .got sections. This

glibc iFed-hugepage iFed-relocation iFed

1.42 ms 5.96 ms 7.02 ms 9.07 ms

Table 2: Loading time overhead comparison. These are the cost to

load a redis server which has 36195 relocation sites.

is illustrated in Figure 6 (a) where iFed-relocation triggers

less TLB miss than glibc. In Figure 6 (b), IPC increases

with the larger working set, as the memory access dominates

the program execution. However, glibc performs worse than

all iFed variants.

Latency Analysis. The improvements on micro-architecture

further lead to the reduction in total execution time as depicted

in Figure 5 (c) and Figure 6 (c). All execution time rise

linearly with the test scale, but iFed runs faster than glibc

in all cases. For instance, with 200 libraries and a 256 KB

working set, iFed is 6% faster than glibc. More importantly,

due to less TLB miss and branch, the predictability of library

function invocation is improved a lot. To better understand

the latency of library function calls, Figure 7 presents a CDF

of function call latencies under different configurations. From

the results, we observe that glibc has higher tail latency

than iFed. For the 99th percentile latencies under the three

configurations, iFed has improvements of 19%, 27%, and 3%,

respectively.

Loading Time Discussion. Since iFed incorporates more

functionalities, it inevitability slows down the time to launch a
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Figure 8: Phoronix test suite on ARM physical machine.
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Figure 9: Phoronix test suite on x86 virtual machine.

program. Table 2 reports the loading time spent in the interval

from the exec system call to the program’s main function,

when loading a redis server. As discussed in §4, the cur-

rent iFed contains the glibc loader for compatibility, thus

the result differences indicate the overhead of iFed optimiza-

tion passes. Dynamic library concatenation overhead mainly

comes from memory movement. The cost of relocation branch

elimination depends on the number of relocation sites that

has to be rewritten, thus it may incur a larger overhead.

5.2 Application Benchmarks

We evaluate iFed with Phoronix test suite v10.4.0 [42], which

has a wide range of common applications and realistic work-

loads. We selected 23 applications from multiple domains

that stress different components in the system, such as mem-

ory (zstd-compress), processor (botan), disk (postmark)

and network (iperf). These tests also cover different run-

ning forms of multi-process, single- and multi-thread. We run

these tests in two environments, the ARM Kunpeng server

and a 60-core KVM-based virtual machine hosted in the In-

tel machine, because VMs are popularly deployed to hold

applications today. Hardware virtualization is enabled, and

the VM is configured with 128G memory. The guest OS is

also openEuler 20.03 based on Linux 4.19 kernel. We en-

able all optimization passes in iFed, and report the average

performance speedup compared to glibc in Figure 8 and

Figure 9. The data is gathered from the built-in performance

comparison tool in Phoronix. Since better hugepage usage

and eliminated .got/.plt indirection in iFed will improve

many tightly correlated micro architecture factors, we use

perf to measure some typical CPU events for each bench-

mark. Table 3 lists the percentage of TLB miss reduction,

branch miss reduction, and IPC improvement compared to

glibc on both ARM and Intel testbeds.

Whether an application can get benefits from iFed depends

on its bottleneck. For computing intensive applications who

do not suffer from TLB miss or branch mispredictions, iFed

keeps the same performance with glibc. For example, botan

is a C++ crypto library and the benchmark measures the

performance of many cryptographic algorithms. iFed has less

than 1.5% performance difference with glibc in all test cases.

As shown in Table 3, iFed has a negligible impact on IPC.

xsbench tests a key computational kernel of the Monte Carlo

neutronics application OpenMC. iFed does not reduce branch

misses on ARM, thus the performance difference between

iFed and glibc is less than 2%.

When the application is memory bound and its data com-

pete for the shared TLB and cache with the code, iFed is able

to mitigate the interference and improve the performance.

For instance, the zstd-compress benchmark compresses

and decompresses a 1 GB Linux kernel image. iFed reduces

the number of TLB misses by 16.56% and 19.4% on Intel and

ARM machine, respectively. Please note that our dynamic

library concatenation deals with both .code and .data sec-

tion, thus iFed does not only reduce iTLB misses. As a result,

iFed speedups the benchmark by 7.3% on Intel and 25.7% on

ARM.

For complicated applications that have complex function

call patterns across libraries or use many dynamic libraries,

iFed can boost their performance. For example, leveldb

from Google gets 1.1% and 21.2% better performance on

Intel and ARM platform, respectively. On ARM, glibc in-
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curs 109 instruction TLB misses, while iFed just incurs 105

iTLB misses! ncnn is a mobile neural network inference

framework developed by Tencent. Its IPC is improved by

3.04% and 6.36% on Intel and ARM platform respectively,

and correspondingly iFed gets 7.7% and 24% overall better

performance. iperf and nuttcp have a large performance

boost because both benchmark server and client are loaded

by iFed.

In some cases, iFed shows large relative improvements

on perf events while has little impacts on the benchmark

performance. That is because the event’s absolute numbers

are so small that slight variations of the event result in large

percentage difference. For example, on the Intel machine,

optcarrot shows 10.45% less TLB misses while its per-

formance is only 2.9% better. After examining the absolute

number of TLB misses, we found there are only 1.8 million

misses with glibc and iFed lowers it to 1.6 million. Those

numbers are several orders of magnitude smaller than those

in other memory intensive benchmarks. Another example

is branch miss reduction in botan benchmark on the ARM

platform. botan experiences around 323K and 311K branch

misses under glibc and iFed respectively. Despite 3.65%

reduction in branch misses, iFed does not have speedup over

glibc.

To further validate our results, we analyse the rocksdb

benchmark on the Intel VM in depth. The benchmark con-

tains 3857 .got entries and 8153 .plt entries, and 94327

relocation sites point to these entries. With glibc, 15.6% of

total cycles are spent on page table walk due to TLB misses,

while this ratio is reduced to 10% after iFed optimization.

Relocation branch elimination pass contributes 6% improve-

ment, and dynamic library concatenation pass continues to

improve 10%, leading to an overall improvement of 18%. We

also tested a statically linked version which performs 9% bet-

ter than the dynamic one with glibc. This improvement is

less than iFed with the hugepage optimization, but is better

than iFed with relocation elimination since static linking has

more chance to apply link-time optimization.

In general, we do not observe the loading time overhead

causing performance degradation even for the benchmarks

which need to frequently boot up and shut down the test

programs. On the Intel virtual machine, compared to glibc,

the average TLB miss is reduced by 8.58%, the average branch

miss is reduced by 3.28%, and the average IPC is improved

by 3.02%. iFed is 3.7% better than glibc on average and

achieves 18% maximum improvement. On the ARM physical

benchmark

name

x86 ARM

tlb miss branch miss instruction per cycle tlb miss branch miss instruction per cycle

apache 12.27% 8% 4.98% 5.44% 1.82% 0%

botan 8.01% 3.13% 0.09% 0.05% 3.65% 0%

couchdb 3.86% 0.79% 4.64% 4.94% 0% 0%

daphne 8.25% 5.56% 2.22% 2.15% 4.25% 4.47%

espeak 12.6% 1.33% 0.26% 32.04% 0.07% 0.37%

git 3.85% 6.71% 2.54% 1.36% 0.46% 3.09%

iperf 7.58% 5.03% 5.73% 27.95% 3.91% 19.44%

kripke 4.56% 10% 4.31% 17.79% 1.12% 5.41%

lame 7.4% 11.52% 1.17% 18.1% 0.7% 1.19%

leveldb 3.15% 1.37% 4% 34% 5.29% 32.43%

minion 13.66% 0.71% 1.63% 1.01% 0.37% 1.54%

ncnn 7.98% 5.03% 3.04% 37.05% 2.87% 6.36%

nuttcp 3.12% 3.03% 5.92% 34.55% 6.95% 56.52%

optcarrot 10.45% 1.39% 3.85% 0.24% 1.65% 1.49%

postgresql 5.93% 2.21% 1.56% 10.33% 2.4% 4.05%

postmark 3.3% 0.7% -0.47% 9.97% 0.63% 0.85%

redis 6.4% 1.01% 1.54% 12.78% 2.12% 2.23%

rocksdb 35.9% 4% 13% 13.52% 2.71% 8.16%

tjbench 14.82% -0.34% 3.59% 2.83% 0.1% 0.61%

tnn 1.4% 1.09% 0.57% 2.69% 1.11% 1.26%

x264 1.99% 0.64% 1.28% 1.88% 0.51% 0.62%

xsbench 4.21% 1.27% 1.78% 9.96% -0.58% 0%

zstd-compress 16.56% 1.32% 2.25% 19.4% 0.48% 18.52%

average 8.58% 3.28% 3.02% 13.04% 1.85% 7.33%

Table 3: Application benchmarks: percentage of TLB miss reduction, branch miss reduction, and IPC improvement..
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Figure 10: Dynamic web serving performance. All data are normalized to the result of 10 concurrent users with glibc. (a) shows the

throughput across all operations, the higher the better; (b) shows the average response time of postwire operation (similar to posting a tweet),

the lower the better; (c) shows the 99th percentile latency of postwire operation, the lower the better.
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Figure 11: Performance of each operation with concurrent 110 users. All data are the speedup ratio normalized to the glibc, the higher the

better.

machine, iFed reduces 13.04% TLB miss, lowers the branch

miss by 1.85%, and improves the IPC by 7.33%, on average.

The average speedup is 7% and the largest improvement is

33%. In most cases, iFed achieves a larger improvement on

the physical machine than the virtual machine. This is because

VMs have an extra address translation layer. Thus if the host

OS allocates small pages to the guest OS, iFed will get less

benefit by enabling hugepage in the guest OS.

5.3 Web Serving

Finally, we evaluate iFed in a system-wide scenario with a

web serving benchmark from Clousuite [10]. This benchmark

is a dynamic website hosting a production-quality social net-

working engine. Since the current Clousuite is not supported

on ARM architecture, we port it to our ARM machine, and

upgrade its components to newer versions. Particularly, we

use nginx 1.16.1, mysql 8.0.17, PHP 7.2.10, and elgg 3.0.7.

We run the client and server on two ARM machines under the

same ToR switch. The client simulates multiple users who

browse the website and issue different operations, such as reg-

ister, login, and send messages to a friend. These operations

are mixed in a distribution that favors common operations

(e.g. send a message and post a tweet), while containing fewer

login/logout operations. Each test case runs 5 minutes, and

Clousuite collects the throughput and response time.

Figure 10 shows the normalized performance with various

simulated concurrent users. The efficiency is seen in the im-

proved throughput, reduced response time, and tail latency.

The performance keeps increasing with more users until the

system is saturated. For the peak performance, iFed has 13.3%

higher throughput, 14.7% smaller average response, time and

12.5% lower 99th percentile latency. Figure 11 shows the

detailed performance statistics of each operation with 110

concurrent users. iFed is better than glibc in most cases. For

the throughput of register operation, iFed is lower because

the client issues less register operation due to the proba-

bilistic workload distribution. This is also confirmed by the

reduced response time from Figure 11 (b) and (c). To summa-

rize, these results demonstrate that optimizations in iFed are

effective in the realistic multi-application environment.

6 Related Work

Loader modification and improvement. Many projects

have to modify the loader to achieve their specific goals,

even though the loader is not of their research contribu-
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tion. However, the current dynamic loading infrastructure

is neither flexible nor extensible to accommodate those mod-

ifications, causing their research to have limited applica-

tions in the industry. When utilizing MPK [14, 38, 50] or

SGX [7,13,32,37,40,44,60] for stronger isolation or security,

most works have to modify the loader to be aware of such iso-

lation facility. Besides hardware-assistant isolation, software

implementation also require to coordinate with loader, such

as sandbox [5,6,24,55] and CFI [22,25,47,58]. It is necessary

to change the loader to support program migration and exe-

cution on remote, heterogeneous, or smart devices [3, 8, 52].

Kard [2] leverages MPK for per-thread memory protection to

implement a dynamic data race detector, which uses a custom

loader to handle global variables. Shuffler [53] continuously

re-randomizes code locations in a separate thread, but requires

a small loader patch for bootstrap. With iFed, these modifica-

tions will be made easily and further reused across different

projects.

Agrawal et al. propose a speculative hardware mechanism

to avoid executing relocation trampolines [1], while we pro-

vide a pure software approach to eliminate relocation over-

head in iFed. Stephen Kell et al. describe the formal semantics

for static linking [19]. As iFed decouples a monolithic dy-

namic loader into smaller pieces, we expect a similar formal

method can be applied to dynamic linking as well.

Load time technologies. There is a large body of research

focusing on load time technology. Paschalis Mpeis et al. in-

troduce a capture and replay mechanism [28] that detect and

profile hot code regions, and optimize them offline. Instead of

the original code from binary, these captured and optimized

hot regions are fed into the loader to replay. Egalito [54] is

a binary transformation framework that supports dynamic

analyses or code-generation at load time. Load time binary

stirring [51] randomly reorders some code sections and re-

pairs code pointers accordingly. ASLR-Guard [26] contains

a dynamic loader, which decouples code sections from data

sections and encrypts some sensitive regions. Library debloat-

ing [33,35] is a type of load time optimization that loads only

the set of library functions that will be used at each library

call site within the application at runtime. iFed provides a plat-

form to explore and integrate broader load time technologies.

Wei Dong et al. propose a holistic dynamic linking and load-

ing mechanism in networked embedded systems to generate

minimal code size [9].

Loader on new system and architecture. Since dynamic

loader is a basic toolkit, it has to be rewritten whenever a

new system or hardware comes. For example, RedLeaf [29]

is a rust-base OS with a new abstraction, called Domains,

for lightweight isolation, and supports dynamically loaded

Domains. CARAT [41] allows programs to run efficiently

in a physical address space and needs a loader to collabo-

rate properly. Different loaders are also implemented within

different system architectures, such as microkernel [20, 49],

unikernel [43] or LibOS [4, 34, 45, 59]. Similarly, the loader

is always needed to be updated to explore new hardware fea-

tures for isolation [39], security [31], communication [48],

container [57], and embedded device [21]. With the help of

iFed’s modular design, we are able to extract the system ag-

nostic or architecture independent parts and reduce the porting

effort.

7 Conclusions

We introduce iFed, an infrastructure for dynamic library trans-

formation. While iFed is compatible with the current dynamic

loader, its function goes beyond the traditional dynamic link-

ing and loading. By a pass-based architecture and RiMF, iFed

can provide much richer functionalities over isolation, secu-

rity, and optimizations in a flexible, extensible, and modular

way. We demonstrate the extensibility of iFed by implement-

ing two optimization passes. One pass reduces TLB miss and

improves IPC because of the effective usage of hugepages.

The other pass rewrites the call sites to eliminate function

relocation overhead. Modularity and extensibility are crucial

to reducing the development, deployment, and maintenance

costs of today’s complicated system software. We believe it is

an open research area to investigate modular design in many

other monolithic system software, not just in the loader.

Our evaluation shows optimizations in iFed improve per-

formance and predictability for a wide range of applications

on multiple architectures and platforms. On an ARM physical

machine, iFed achieves up to 33% speedup, and on an Intel

virtual machine, iFed gets a maximum improvement of 18%.

In a complex dynamic website that requires collaboration

among multiple applications, iFed improves the throughput

by 13.3% and achieves a 12.5% reduction of end-to-end 99th

percentile latency. More importantly, iFed boosts the perfor-

mance transparently with no application changes. Building

on both customers’ demands from industry and load time

technology advances from academia, the dynamic library ma-

nipulation infrastructure is a promising area of research. We

believe that iFed paves the first example of a new generation

of dynamic loaders for integrating research advancement of

load-time transformations and technologies.
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