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Abstract
This paper presents Occualizer, a mechanical source code

transformation for adding scalable optimistic synchronization
to a sequential search tree implementation. Occualizer injects
synchronization only to the update steps of tree operations,
leaving traversal steps to execute unsynchronized, thereby
maximizing parallelism.

We use Occualizer to create concurrent versions of a se-
quential B+tree, trie, and red-black tree. Evaluation on a 28-
core machine shows that Occualizer’s trees significantly out-
perform prior mechanically-crafted trees on non-read-only
workloads and are comparable (within 4%) on read-only work-
loads. Overall, Occualizer shrinks the performance gap be-
tween mechanically- and hand-crafted trees by up to 13×.
When using Occualizer’s B+tree as the index in the STO
main-memory database, the system’s throughput degrades by
less than 30% compared to the default Masstree index, and it
scales better.

1 Introduction
In-memory tree data structures, or search trees, lie at the
foundation of many systems, from databases [30, 58–60, 80]
through operating systems [19–21] to storage engines [46,
68, 71]. Performance in such multicore systems depends not
only on the sequential (single-threaded) speed of searching
the tree, but also—often, mostly—on the scalability of the
tree’s synchronization protocol, which ensures correctness of
concurrent tree operations [29, 47].

Scalable synchronization protocols typically apply opti-
mistic concurrency control (OCC). In an optimistic protocol,
traversals of tree paths are read-only and do not perform syn-
chronization such as acquiring locks or executing atomic read-
modify-write (RMW) instructions [11, 16, 29, 71]. Synchro-
nization occurs only if and when an operation starts updating
the tree. The optimistic approach thus limits serialization of
tree operations (due to locking and/or cache coherence con-
tention) mostly to the step that physically mutates the tree,
allowing other steps to execute completely in parallel. The
result is scalable performance that improves as the amount of
hardware parallelism grows (unless the workload is contended
at the semantic level, e.g., operations updating the same key).

Deploying an optimistic concurrent search tree in a system
can be a hard problem, however. Systems often cannot deploy
“off the shelf” trees, as their target use cases and workloads call

for new, customized data structures [6, 17, 65, 67, 71, 80]. But
designing a scalable synchronization protocol for a custom
data structure—particularly an optimistic protocol—is notori-
ously challenging, because it involves concurrent reasoning
to verify the algorithm’s correctness under any possible thread
interleaving allowed by the protocol [55, 64]. This effort also
needs to be repeated whenever the data structure’s algorithm
changes, e.g., due to new optimizations or features.

To solve the problem of manually adding synchronization
to a data structure, concurrency research has proposed auto-
matic transformations such as universal constructions [2, 3,
18,26,35,40,51,52] and transactional memory [54,77]. These
transformations receive a sequential data structure implemen-
tation (code) and produce a correctly synchronized version.

When applied to search trees, however, the automatic trans-
formations do not produce efficient, scalable data structures.
Some transformations inject pessimistic synchronization,
which fully serializes all operations [18, 40, 51, 52] or all non-
read-only operations [5, 26, 35]. Transactional memory-style
transformations [2, 3, 31, 35, 41, 77] use optimistic synchro-
nization, but block or restart operations whose path crosses
nodes modified by a concurrent update operation, which de-
grades scalability. Overall, current automatic transformations
produce trees whose throughput flatlines beyond 12 cores if
even 3% of the workload’s operations are not lookups (§ 7),
as typically happens in dynamic workloads [4, 20, 58, 71].

Solution: Occualizer. This paper proposes Occualizer, a
mechanical transformation for augmenting common sequen-
tial search tree implementations with scalable optimistic syn-
chronization,1 producing linearizable [56] concurrent trees.
Occualizer’s transformation requires the input tree to satisfy
certain natural prerequisites, which most algorithms we are
aware of meet, and our current prototype requires some man-
ual effort to transform the input code. Occualizer injects syn-
chronization only to the update steps of an operation (if any),
leaving traversal steps to execute unsynchronized, unchanged
from their baseline sequential code. Our key idea is to design
Occualizer’s injected synchronization so that it satisfies the
“forepassed” condition of Feldman et al. [44]—which they
prove implies the correctness of unsynchronized traversals in
the presence of concurrent updates. We thus design synchro-
nization to satisfy a proof instead of endeavoring to find a
proof for our synchronization.

1Occualizer: one that adds OCC (optimistic concurrency control).
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Informally, the “forepassed” condition requires that if a
memory write w in the concurrent tree changes the search
path for a key k, then any node v removed from the path must
become immutable [44].2 To obtain this property, Occualizer
uses localized copy-on-write (LCOW), wherein all of an op-
eration’s writes are performed by atomically replacing the
written-to nodes with new, updated copies, and making the old
copies immutable. Crucially, LCOW does not require copying
the entire path from the root to the updated nodes and thereby
avoids synchronization bottlenecks at the top of the tree—a
fundamental difference from prior COW techniques [5, 19].

We use Occualizer to produce concurrent versions of the se-
quential tlx B+tree [8], a radix tree (trie), and a red-black tree,
and evaluate them on a dual-socket 28-core machine. Com-
pared to prior transformations, Occualizer’s search trees are
far faster and more scalable in dynamic (non-read-only) work-
loads, outperforming trees using GCC’s transactional memory
by up to 17× and the CX universal construction [26] by orders
of magnitude. On read-only workloads, Occualizer’s trees are
comparable to prior constructions’ (within 4%). Due to in-
strumentation overheads, however, Occualizer’s trees do not
match the performance of hand-crafted concurrent algorithms.
For instance, when used as an index in the STOv2 main-
memory database system [58], Occualizer’s B+tree has better
scalability but is 25%–30% slower than the default index,
Masstree [71], a hand-crafted concurrent trie/B+tree hybrid.

Overall, Occualizer significantly changes the cost/benefit
analysis of hand-crafting a concurrent search tree. By shrink-
ing the performance gap between mechanically- and hand-
crafted trees by up to 13×, Occualizer makes mechanically-
crafted trees applicable in many more contexts and perfor-
mance targets, freeing up time and costs that would other-
wise be spent on designing, implementing, and testing a hand-
crafted implementation.

Contributions. We make the following contributions:

• Transformation. We describe Occualizer, a mechanical
transformation for augmenting common sequential search
tree implementations with optimistic synchronization.

• Implementation. We implement Occualizer and use it to
produce concurrent versions of the sequential tlx B+tree,
a radix tree (trie), and a red-black tree. Occualizer’s
code is available at https://github.com/tomershanny/
Occualizer.

• Evaluation. We show that Occualizer’s trees outperform
trees using GCC’s transactional memory by up to 17× and
the CX universal construction by orders of magnitude, but
are slower than hand-crafted concurrent trees.

2Intuitively, this condition guarantees that any operation whose search
for k is currently located at v will either rejoin the new path or will end at an
immutable node from which it cannot “damage” the tree.

2 Background, motivation, and related work

Designing efficient fine-grained synchronization for data
structures is notoriously hard, because verifying synchro-
nization correctness requires reasoning about every possi-
ble thread interleaving allowed [55, 64], while scalability
requires the protocol to allow more possible interleavings.
Optimistic search tree design exemplifies this challenge. On
one hand, to maximize scalability, the synchronization pro-
tocol should not block or restart a traversal that encounters
concurrent updates of its search path [11]. On the other hand,
a traversal encountering such updates can observe inconsis-
tent tree states, which cannot occur in a sequential execution
but must be reasoned about to verify the protocol’s correct-
ness [43, 44, 61, 62, 66, 73, 81, 82].

The difficulty of designing a highly-scalable and correct
optimistic tree lead some systems to deploy search trees with
relaxed correctness guarantees. Linux’s red-black tree, for in-
stance, guarantees only that searches do not crash in the face
of concurrent updates—but not search correctness [69]. Re-
searchers have identified principles for designing optimistic
synchronization protocols [11] as well as compiler support to
simplify their implementation [84], but such research does not
address the fundamental verification difficulty of a scalable,
human-designed synchronization protocol.

Our motivation is therefore to automate the task of adding
optimistic synchronization to a custom-designed sequential
search tree. Concurrency research has proposed approaches
for automatically transforming a sequential data structure
into a concurrent one: universal constructions (§ 2.1) and
transactional memory (§ 2.2). But these approaches do not
produce scalable concurrent data structures when applied to
search trees, as we discuss next.

2.1 Universal constructions
A universal construction (UC) [51] takes a sequential im-
plementation of a data structure and outputs a linearizable
concurrent version of it, without modifying the sequential
code—i.e., by “wrapping” it in synchronization in some fash-
ion. UCs can apply nonblocking or blocking synchronization.

Nonblocking universal constructions create concurrent data
structures with nonblocking progress properties: either wait-
free, which means every operation can complete in a finite
number of its own steps, or lock-free, which means that some
operation always completes after a finite number of execution
steps [51]. Achieving these progress guarantees typically
requires operations to coordinate and help each other make
progress, which adds overhead [55].

Blocking universal constructions are based on the delega-
tion technique [10,15,39,50,70,74], which delegates the exe-
cution of the data structure operations threads to one thread.
This “server” thread executes operations on behalf of the
other, “client” threads. Delegation schemes differ in the types
of operations delegated (e.g., all operations [39, 50, 70], up-
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date operations [15], or read-only operations [10]) and/or their
inter-thread communication techniques [14, 75].

The flip side of UCs’ treatment of the input code as a black
box is that the synchronization they add is coarse-grained, pes-
simistic, and slow. Early nonblocking UCs [18, 38, 40, 51, 52]
work by having each operation execute on a local copy of
the entire data structure which it then tries to install as the
new version. This approach fully serializes all operations
and is prohibitively slow on real-world-sized data structures.
Early delegation UCs [39, 50, 70] also fully serialize all oper-
ations, as they delegate every operation to the “server” thread.
Modern nonblocking UCs [5, 26, 35] improve on the full seri-
alization aspect by optimizing read-only operations, allowing
them to execute in parallel, but non-read-only operations are
still serialized. Likewise, modern delegation UCs allow cer-
tain types of operations to execute in parallel (updates [10]
or read-only operations [15]), but all other operations remain
serialized by delegation.

Figure 1: COW:
Adding 12 as a child
of 14 in T1 yields T2.

COW UC. A nonblocking UC tech-
nique that reduces copying overhead
(and is closely related to Occualizer)
is copy-on-write (COW), used in the
transactional system of Ben-David et
al. [5]. The core idea is for a writing
operation to create its updated version
without copying the entire data struc-
ture, by having it share as much as pos-
sible with the previous version. For
trees, this technique updates a node by
creating an updated version of the node
and the path that leads to it, and atomically swapping the up-
dated root with the new one (Figure 1). The COW approach
allows read-only operations to proceed without synchroniza-
tion, since the version they observe is immutable. Writing
operations, however, remain serialized.

2.2 Transactional memory
Transactional memory (TM) [54,77] executes sequential code
segments as isolated atomic transactions. With hardware TM
(HTM), serializability of the transactions is enforced by the
hardware [54]. HTM can thus be viewed as a UC. Real-world
HTM extensions, however, have several limitations [33,33,34]
and are currently disabled on many processors due to hard-
ware errata [63]. We therefore focus on software TM (STM).
STMs differ from UCs in that they require code instrumen-
tation, so that the STM runtime can mediate reads/write to
memory and (in some cases) memory allocation/deallocation.

Modern STMs have converged on designs using optimistic-
style lock-based synchronization [36, 48]. In these designs,
the STM algorithm performs transactional reads without writ-
ing to memory (e.g., to acquire a lock); writes either acquire
locks (“eager” locking) or are buffered in a write set (“lazy”
locking). When the transaction ends, the STM checks whether

there is a point in time in which all of the transaction’s reads
and writes can appear to take place atomically. If so, the trans-
action commits and its writes are made visible to other trans-
actions (e.g., locks are released). Otherwise, the transaction
aborts and must restart.

Unfortunately, since the STM does not understand the se-
mantics of the underlying code, its validation conservatively
depends on every value read by the transaction [31,41]. There-
fore, if any memory location read by a transaction is written
to before the transaction commits, the transaction will abort.
This effect severely limits scalability of STM-based trees,
because any concurrent write to an operation’s search path
causes the operation to abort—even if the operation would
have reached the same location in the tree had it executed on
the new path (a fact the STM cannot know). In our experi-
ments, TM performance can flatline at low core counts even
if as few as 3% of the tree operations are updates (§ 7).

TM research has proposed several approaches to address
the above problem. First, an STM can determine the serial
order of transactions (conflict detection) more intelligently
[76,85]. But this typically requires transactional reads to write
to memory, which can lead to undesirable serialization of read-
ers. Second, transactions can be built over higher level objects
instead of low-level memory reads/writes [49,53,57]. But this
requires designing the underlying thread-safe objects, which
was our original problem. Finally, transactional semantics can
be relaxed [42] to avoid aborting a transaction in cases such as
search path changes. But then one has to prove the resulting
relaxed transactions correct, which requires the concurrent
reasoning about thread interleaving that we wish to avoid.

2.3 Summary and goals
In summary, there is still no mechanic way to transform the
source code of a sequential tree implementation into an opti-
mistic, fast, and scalable concurrent tree—without needing to
perform concurrent reasoning to verify the correctness of the
produced concurrent code. This is our goal.

Occualizer sits in the middle between UCs and TM. Com-
pared to universal constructions, Occualizer takes a pragmatic
approach. Instead of accepting arbitrary sequential code as
input, Occualizer requires the input to have certain natural
prerequisites, and also transforms/instruments the sequen-
tial code. Compared to transactional memory, Occualizer is
specialized to search trees, which enables us to design an op-
timistic synchronization protocol that does not restart opera-
tions whose search path is modified by concurrent operations.

3 Occualizer Overview
Occualizer receives source code of a sequential (single-
threaded) search tree and transforms it into an optimistic
concurrent implementation by adding calls to Occualizer’s
synchronization library into the input source code. This sec-
tion gives an overview of the Occualizer transformation.
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We first define the family of sequential tree implementa-
tions to which Occualizer is applicable (§ 3.1). (We discuss
verifying that a sequential tree meets Occualizer’s require-
ments in § 3.5.) We then give an overview of Occualizer’s
source code changes (§ 3.2) and the run-time synchronization
protocol they inject, called localized copy-on-write (§ 3.3).
The details are described in §§ 4–5. Finally, we outline the cor-
rectness proof of the produced concurrent tree (§ 3.4), which
appears in § 6.

3.1 Scope
We consider correct sequential implementations of a dictio-
nary datatype, namely, that provide lookup, insert, and delete
operations on key-value pairs. The implementation may also
(optionally) support ordered iteration over the stored keys, pro-
vided via key predecessor/successor operations. We assume a
programming language with manual memory management.
(Our prototype targets C++.)

Occualizer requires the sequential input algorithm to meet
certain prerequisites (PRs), detailed below. At a high level,
the prerequisites are that (1) tree operations are composed
of a read-only traversal followed by reads and writes which
are determined only by what the operation observes after the
traversal; (2) each step in the traversal depends only on the
target key and the current node; and (3) any operation that
moves a node v off some search path(s) must also access v.

The user is responsible for verifying that the input meets
Occualizer’s prerequisites, and the concurrent tree produced
by Occualizer is not guaranteed to be correct if they are not
met. The human effort required for this verification (and the
possibility of errors there) are limitations of Occualizer com-
pared to general universal constructions that accept arbitrary
code. While our experience has been that the prerequisites are
met by many algorithms and that verifying them requires rea-
sonable effort (see § 3.5), our vision is to develop automated
verification of the prerequisites to fully automate Occualizer.

Prerequisites. We define the prerequisites in terms of an
algorithm maintaining a directed graph G of nodes, whose
edges represent pointers between nodes.

PR1 Maintain a rooted tree: At the end of any sequence of
operations, the graph G is a rooted tree.

Crucially, PR1 does not care about intermediate states that
occur while a tree operation executes, only about the graph’s
structure upon its completion. PR1 is conservative, as Occual-
izer can support structures with auxiliary edges linking nodes
to their successor/predecessor, which create multiple paths
from the root to nodes and so are not formally trees. We defer
these details to § 4.

PR2 Read-only traversals: Every operation op(k) consists
of a read-only traversal traverse(k) that searches for k
followed by read/write steps.

PR2 is not met by self-balancing trees that perform balancing
during traversals, such as splay trees [78]. But PR2 is met by
self-balancing trees such as red-black, AVL, or B-trees, which
perform self-balancing after updating the tree (post-traversal).

PR3 Traversals are single-step: The next node visited by
traverse(k) depends only on k and on the current node.

PR3 is met by trees with comparison-based traversals, such
as B+trees [22], Bw-Trees [67, 83], red-black and AVL trees,
etc., where how traverse(k) proceeds depends only on how
k compares to the key(s) of the current visited node. PR3
can also be met by tries, provided that nodes encode the key
offset they represent; otherwise, the next node visited becomes
dependent on all the nodes visited so far, which violates PR3.

Our next prerequisite states that the reads and writes an
operation performs after its traversal are not a function of
observations made during the traversal:

PR4 Post-traversal actions depend only on subgraph ac-
cessed post-traversal: Consider an operation op(k)
that executes on tree T , whose traverse(k) finishes at
node v. Let RW op(k) be the set of nodes read/written to
by op(k) after finishing its traversal. Let TRW op(k) ⊆ T
be the smallest subgraph of T containing RW op(k). Then
for any sequence of operations that execute on T result-
ing in tree T ’, if TRW op(k) ⊆ T ′ and traverse(k) executed
on T ′ finishes at the same node v as in T , it holds that
running op(k) over T ′ results in exactly the same reads
and writes as in op’s execution over T .

PR4 does not preclude an algorithm from reading or writing
parts of its search path after completing the traversal—as in,
e.g., rebalancing of red-black, AVL, and B-trees—because any
node on the path that an operation op(k) reads or writes post-
traversal becomes part of RW op(k). PR4 is thus met by classic
tree algorithms that perform post-traversal rebalancing.

PR5 Moving off a search path implies a post-traversal
access: For any operation op and any key k, consider
the paths P and P′ that would be taken by traverse(k)
before and after op executes. Then if v ∈ P but v 6∈ P′,
op must read, write, or destroy v after its traversal.

For an implementation that does not expose nodes to its client,
PR5 is met by every tree algorithm we are aware of. In these
algorithms, a node moves off a search path due to either (1) a
structural modification that changes the node’s position in the
tree, in which case the node is written and/or read; or (2) being
removed from the tree, in which case the implementation
destroys and frees the node, as it has no other references.

Occualizer for managed languages. Occualizer’s design
and its prerequisites are programming language agnostic.
Most tree implementations, however, fail to meet PR5 when
implemented in a managed language. The reason is that
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Figure 2: Illustration of LCOW on an operation that makes B and C the parents of X and Y , respectively.

node destruction in managed languages is performed asyn-
chronously by the garbage collector and not explicitly by the
program, so a managed tree implementation meets PR5 only
if it writes to a node when removing it from the tree—which
most algorithms do not do. This problem can be fixed (cur-
rently, manually) by adding no-op writes to removed nodes.

3.2 Code transformations
Occualizer transforms the sequential input code by adding
calls to Occualizer’s synchronization library. These calls
are similar to object-level transactional memory instrumenta-
tion. They include calls to demarcate each operation’s start
and completion, and to access (read/write) node fields only
through the library’s interface. Field accesses are captured
straightforwardly by requiring the sequential input code to
access fields using only getter/setter methods, which the trans-
formation then replaces. The transformation also adds locks
and metadata fields to the node structure.

The code transformation is mechanic and our design is for
it to be done automatically, with minimal user involvement.
In our current prototype, however, we implement only the
synchronization library and perform the code transformations
of the evaluated trees manually (following the mechanical
recipe given in § 4). Implementing the automatic code trans-
formation is an ongoing effort.

3.3 LCOW synchronization library
Occualizer’s code transformation leaves the logic of traver-
sals unchanged. In particular, traversals do not block or retry
mid-operation. The synchronization added to writing opera-
tions guarantees the correctness of both traversals and writing
operations. To this end, the library uses a technique we call

localized copy-on-write (LCOW). LCOW exposes all of an
operation’s writes atomically, using one atomic write. Unlike
other COW techniques [5, 19], this write does not typically
target the tree’s root and thereby avoids creating a synchro-
nization bottleneck.

LCOW works as follows. Once an operation op finishes
its traversal, the library uses a combination of locking and
validation checks to maintain an invariant that op’s further
observations of the tree are consistent with some sequential
execution. This invariant is needed to guarantee that op’s code
behaves correctly. In particular, whenever op first writes to
some node v, the library locks v and creates a copy of v, v′.
(If a lock acquisition fails, op is restarted, releasing any locks
it holds and freeing node copies it had made.) Subsequently,
all of op’s accesses to v are redirected to v′, ensuring op “sees
its own writes.” When op completes, the library identifies
a minimal subgraph containing all written nodes, called the
copied region. This subgraph is itself a tree rooted at some
node n, but it may not be n’s subtree (i.e., it may not include all
of n’s descendants). Next, the library locks and creates a copy
of the copied region, updated to contain the nodes written to
by op. Finally, the library exposes op’s writes atomically by
linking u′, the root of the copied region, instead of its original
version u with one atomic write. Crucially, the old versions
of the nodes remain locked, making them immutable.

The library reclaims the memory of the old copied region
only once it is guaranteed that no concurrent operation may
be accessing the old region, using a read-copy update (RCU)
epoch-based memory reclamation scheme [45, 72].

Figure 2 illustrates LCOW on some abstract operation op.
1 shows the initial tree state. Assume that executing op’s

sequential code from start to finish in this state would make
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B and C the parents of X and Y , respectively. 2 shows the
copied region: LCOW locks the orange and red nodes, thereby
blocking concurrent modifications to every node in the pink
circle. 3 LCOW copies the red nodes, creating a new ver-
sion of the copied region in which op’s writes are made to
the nodes A′, B′, and C′. Finally, 4 shows the memory state
after atomically replacing the copied region with its new ver-
sion, and 5 shows the memory state after the original copied
region is reclaimed.

The upshot is that Occualizer guarantees that (1) execut-
ing operations run correctly, as they would in a sequential
execution, and (2) the state of the tree in memory is always
a state that can be produced by a sequential execution. Cru-
cially, however, this is all achieved while still allowing the
traversal part of an operation to observe an inconsistent state.
E.g., a traversal can start in tree T1 and then cross into tree T2,
walking a path that never actually existed in memory.

3.4 Linearizability argument
Trees produced by Occualizer are linearizable [56], i.e., oper-
ations appear to execute atomically. The main challenge of
proving linearizability is that because traversals are unsyn-
chronized and can observe inconsistent tree states, it is not
clear that a traversal ultimately reaches the correct node.

The key idea of Occualizer is to design its synchroniza-
tion to satisfy the precondition of an existing proof (from the
concurrency literature) that an unsynchronized traversal is
correct. Occualizer’s trees satisfy the “forepassed” condition,
which Feldman et al. [44] prove implies that if an unsynchro-
nized traversal searching for key k reaches node v, then at
some point during its execution, v was on the search path for
k. (That is, the state of the tree was such that had the traversal
executed from start to finish then, it would have reached v.)

The above immediately proves the linearizability of read-
only lookups that consist only of traversals. To prove lineariz-
ability of writing operations, we show that when a writing
operation atomically performs its writes using LCOW, then
the state of the tree is such that had the operation’s sequential
code executed atomically now, it would have behaved exactly
the same. In other words, the state of the tree in memory
remains consistent with some sequential execution of the orig-
inal sequential code. We show this by first proving an invariant
that an operation locking node v implies that v is on the rele-
vant search path at lock acquisition time (“now”). The proof
then follows from PR4, since the copied region locked by an
operation contains the subgraph it accessed post-traversal.

3.5 Discussion: Prerequisite verification
For our evaluation (§ 7), we use Occualizer on sequential im-
plementations of classic tree algorithms, such as the B+tree.
We draw on this experience to discuss the effort and reason-
ing needed to manually verify that an implementation meets
Occualizer’s prerequisites. In a nutshell, we find that the pre-

requisites are met by many algorithms (e.g., red-black and
B-trees) and tree design techniques. We also find that check-
ing the prerequisites requires reasonable effort, given basic
understanding of the input tree’s algorithmic properties. In
particular, there is no need for concurrent reasoning, as the
prerequisites are properties of sequential code.

Verifying PR1–PR3 involves straightforward code inspec-
tion. In particular, verifying that every tree operation begins
with a read-only traversal (PR2) is easy for implementations
with an explicit traversal method and for recursive implemen-
tations, where one only needs to check the recursive function.

Verifying PR4–PR5 requires reasoning about the principles
driving the sequential input algorithm. To verify that post-
traversal actions depend only on the subgraph accessed post-
traversal (PR4), we need to check that the nodes and fields an
operation chooses to access and the values it writes depend
only on what it reads after its traversal. PR4 would be violated,
for example, by an operation writing a node’s depth (distance
from the root) that was computed while searching for the
node. On the other hand, PR4 is satisfied by an operation
maintaining the height of a node (or the balance factor in an
AVL tree) using a bottom-up computation after the traversal.
PR4 holds trivially if traversals are performed as a subroutine
call that returns only the target node, thereby making the
search path opaque to the operation.

To verify that if a node stops being on the search path for
some key k, then the node must be accessed or destroyed
(PR5), we need to verify that a node removal destroys it, and
to reason about how tree structure modifications affect the
behavior of searches. We find that common tree algorithmic
techniques meet PR5. For instance, consider a binary tree
rotation [25] moving node y above its parent y (Figure 3).
The only node that moves off a search path as a result of
the rotation is y (which moves off the paths leading to sub-
tree A) and y is indeed written by the rotation (its left child
changes).3 As another example, in a binary tree that deletes
an internal node by replacing it with its successor [25] (the
leftmost node of its right subtree), the nodes on the path to the

y

A B

y

C
x

B C

y
A

x

Figure 3: Rotation moving x above y.

successor move off the
search path to the succes-
sor. These nodes are read
by the removing opera-
tion as it searches for the
successor, so PR5 is met.

4 Design
This section describes Occualizer’s design. We first describe
Occualizer’s synchronization library interface and the me-
chanical rules for calling its methods from a sequential tree
implementation (§ 4.1). We next describe how the library

3Crucially, PR5 depends only on the effect that a complete rotation has
on future searches—not on the exact order of writes performing the rotation
in the sequential code.
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implements the LCOW synchronization protocol (§ 4.2) and
then extend the design to support algorithms with auxiliary
edges between nodes, which are typically used to optimize
iteration over nodes (§ 4.3).

4.1 Library interface & code transformations
Interface. Occualizer augments the input with calls to its li-
brary. Table 1 describe the library’s transactional memory-like
interface, which consists of “macro” and “micro” methods.

The “macro” methods demarcate the points in which the
operation starts/finishes and where its traversal ends. In partic-
ular, occ_start checkpoints the calling thread’s register state
(e.g., with setjmp()) and restores it if the library decides to
abort the operation. When an abort happens, occ_start re-
turns a failure indication.

The “micro” methods read and write node fields (or the root
pointer) and notify the library of allocated or destroyed nodes.
For simplicity, we show the read/write methods as taking
the field name as an argument. An implementation either
generates specific methods for each field or has a general
method that takes the field’s offset and size in the node.

Transformation. Transforming a sequential tree to an
optimistically-synchronized one using Occualizer requires
two types of transformations. Macro transformations add
macro calls to demarcate each operation with occ_start,
occ_traverse_done, and occ_finish calls, and restart it
after an abort (Listing 1). Occualizer does not require mod-
ifying the input code to separate the traversal into its own
method, only to call occ_traverse_done when it is done.
This property allows the operation’s subsequent code to reuse
information learned during the traversal, e.g., to climb back
up the path for tree maintenance.

Micro transformations replace calls to node setter/getter
methods with the appropriate occ_set/occ_get calls, and

Method Called when (and why)

occ_start
Operation starts (to initialize bookkeep-
ing data)

occ_traverse_done
Traversal finishes (to start consistency
checks)

occ_finish
Operation finishes (to atomically perform
operation’s writes)

occ_restart
Restarting an aborted operation (to free
resources acquired during the failed exe-
cution)

occ_set(n, f ,v) Writing n. f ← v (to lock and copy n)

occ_get(n, f )
Reading n. f (to read from n’s copy, if it
exists)

occ_node_born(n) Node is allocated
occ_node_dies(n) Node is destroyed

Table 1: Occualizer synchronization library interface.

Function transformed<op>(args):
while True do

if occ_start() then
result←− op(args) ; . occ_traverse_done was

added inside op’s code
if occ_finish() then

return result
end

end
occ_restart() ; . Op aborted

end
Listing 1: Code of macro-transformed operation op.

add occ_node_born/occ_node_dies calls to the node con-
structor/destructor.

Mechanizing the transformation. The transformation can
be performed automatically by a source-to-source transformer
tool, which we are in the process of implementing. The trans-
former requires the user to supply the tree’s sequential source
code, the names of methods to be macro-transformed and
structure(s) implementing nodes, and to manually add the
occ_traverse_done call. The transformer performs the fol-
lowing steps: 1 Ensure that all node fields are accessed via
setter/getter methods, by replacing every direct field access
with an appropriate setter/getter call and generating getter/set-
ter methods if they do not exist in the input code. 2 Perform
the micro-transformations by modifying methods in the node
structure. 3 Generate the macro-transformed operations.

4.2 LCOW synchronization library
Occualizer’s synchronization library has two high level tasks.
First, it tracks the tree as observed by the operation, so that
once the operation’s traversal finishes, Occualizer can guaran-
tee that the tree is in a consistent state from the operation’s
perspective. Second, the library buffers the operation’s writes
and exposes them atomically when the operation completes.
We now walk through the library’s flow.

Initialization (occ_start). This method checkpoints the
thread’s local state, so that execution can restart if the op-
eration subsequently aborts. It then initializes the library’s
thread-local bookkeeping variables (Table 2), which track
edges observed by the operation, nodes allocated, destroyed,
locked, and copied, and other flags, such as whether the opera-
tion is in the midst of its traversal. We treat these variables as
abstract datatypes for now (in particular, without considering
implementation efficiency); § 5 describes our implementation.

Node reads (occ_get). We first focus on the case of reading
a node pointer (child), i.e., reading an edge. As long as an
operation is traversing the tree, its reads are handled with
minimal overhead. The library only stores traversed edges in
the edgeSet, to verify their consistency in case the operation
rereads them in its post-traversal steps. Once the traversal
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Name Type Content

edgeSet Set of edges
Edges observed during opera-
tion

lockedSet Set of nodes Nodes locked by operation

copySet
Set of node
pairs

Copied nodes and their copies

bornSet Set of nodes Nodes allocated by operation
destroyedSet Set of nodes Nodes destroyed by operation

traversing Boolean
Initially True; False after
occ_traverse_done called

Table 2: Thread-local bookkeeping structures. The term “node”
refers to a pointer to the relevant object in memory.

completes, the library switches to a mode that guarantees
consistency of the observed tree. This is accomplished by
locking any node accessed post-traversal, while verifying that
the locked node belongs to the most updated tree in memory.
If this verification fails, the operation is aborted (releasing
any locks it acquired and nodes it allocated) and restarted.

Listing 2 shows the pseudo code of occ_get. Suppose
operation op is trying to read the c-th child of node n. (For
generality, we assume child pointers are stored in a children
vector in the node.) If op previously created a copy of n,
the read is satisfied from the copy n′ without further checks.
Otherwise, n’s c-th child, u, is read from n. If op is traversing,
the method trackEdge only remembers the edge (n,c,u) in
edgeSet. Otherwise, trackEdge locks n by calling lockNode.

The lockNode method locks n while checking its consis-
tency with op’s observations of the tree. If n is not present in
op’s lockedSet, op tries to acquire n’s lock. If n is locked,
op aborts, to avoid deadlocks. Then op checks that any edge
into or out of n that op previously observed still exists. If so,
n is added to op’s set of locked nodes. Otherwise, op aborts.

Reads of non-pointer fields are handled identically (locking
the node, etc.) except that the read values are not tracked.

Node writes (occ_set). On any write to a node n, the library
locks n and creates a copy of it, n′. If the operation completes
successfully, n′ will take the place of n in the tree and n
will remain locked and hence immutable until its memory
is reclaimed. Listing 3 shows the pseudo code of occ_set,
again focusing on the case of writing a child pointer. If op
has made a copy, v′, of the pointed-to node v, the value to
be written is changed to v′. Next, op checks if the written
node n is part of the tree, i.e., it was not allocated by op itself
and is not a copy. If so, op creates a copy of n by calling
occ_create_copy. Finally, the write is performed.

To copy n, the occ_create_copy methods locks n using
the lockNode method described above. It then copies the
(now locked) n into a new node, n′, records that n has a
copy n′ in op’s copySet, and finally adjusts the links between
the existing copied nodes to reflect the new copy. For ev-
ery (x,x′) ∈ copySet, the fixLinks method changes any edge

Function occ_get_child(n, c):
if (n,n’) ∈ copySet then

return n’.children[c]
else

u← n.children[c]
trackEdge(n, c, u)
return u

end

Function lockNode(n):
if n ∈ lockedSet then

return
if tryLock(n.lock) fails then

abort operation
. Validate
foreach (x,c,y) ∈ edgeSet, s.t. x = n or y = n do

if x.children[c] 6= y then
abort operation

end
lockedSet.add(n)

Listing 2: Code of reading a node child..

Function occ_set_child(n, c, v):
if (v,v′) ∈ copySet then

v← v′

end
if n 6∈ bornSet and (n,_) 6∈ copySet then

n← occ_create_copy(n)
end
n.children[c]← v

Function occ_create_copy(n):
lockNode(n)
n’← copy of n
copySet.add(n,n’)
fixLinks(n,n′,copySet,bornSet)
return copy

Listing 3: Code of writing a node child.

pointing from x′ to n to point to n′ instead, and changes any
edge from n′ pointing to x to point to x′ instead. It similarly
fixes any edge pointing to n from nodes allocated by op.

Writes of non-pointer fields are handled identically, except
that value written is not “translated” as it is not a node pointer.

Traversal completion (occ_traverse_done). On traversal
completion, the library switches to its post-traversal mode, in
which any accessed nodes is locked. In addition, the last node
read by the traversal is locked using the lockNode method.
This locking is needed to guarantee that concurrent tree mod-
ifications do not “invalidate” the node’s traversal (see § 6).

Node allocation/deallocation. On node allocation, the new
node n is added to bornSet. On node destruction, the de-
stroyed node n is locked (using lockNode) and added to
destroyedSet. This is done so that n can be left immutable
when the operation completes.
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Operation commit (occ_finish). This method commits an
operation by atomically applying its writes to the tree. Con-
sider first the simple case in which the operation op finishes
its traversal at node n and subsequently accesses nodes only
down the tree. In this case, the paths to nodes written by op
form a tree Tn rooted at n, and all nodes in Tn are locked by op.
Occualizer can thus atomically apply op’s writes by creating
a copy of Tn, T ′n , which contains the updated versions of the
nodes op wrote to and then swinging the pointer to n from
its parent, p, to point to n′, the root of T ′n . (Figure 2, with p
being the orange node.) We thus call Tn the copied region.

To ensure atomicity, op must verify that p is still in the
tree and that the edge (p,c,n) that it swings has not changed
since op originally crossed p during the traversal. If n is
a non-root node, this is done by locking p and validating
that p.children[c] = n before overwriting it. If n is the root,
this is done by locking a global root lock and validating the
root’s value (which also gets saved in edgeSet). Although
we describe this parent validation step last, it chronologically
occurs before copying any yet uncopied nodes from Tn, to
avoid wasting CPU cycles in case op is doomed to abort.

Finally, nodes locked by op that are not in Tn are released.
The nodes of Tn are retired, which means that their memory
is freed/reclaimed once no concurrent operation can observe
them. (Occualizer relies on an RCU-like epoch-based safe
memory reclamation (SMR) management library [45, 72] to
provide this functionality.) Until reclamation, these nodes
remain locked and thus immutable.

In the general case, op may have proceeded up the tree,
by accessing nodes it observed while traversing. The above
discussion still holds, except that instead of taking n as the
copied region’s root, occ_finish needs to find the lowest com-
mon ancestor (LCA) of all written nodes and lock every path
from that LCA to each written node. This is straightforward
to do, because the LCA and all relevant edges have been read
during op’s run (possibly only in the traversal step).

4.3 Optimizing range scans
An important feature of search trees is that they support range
scans, the ability to iterate over the stored keys in order by
using successor/predecessor calls. Specifically, we assume the
tree implements a C++ standard library (STL)-like iterator
object. The iterator maintains a key k′, which is initially the
predecessor or successor of its constructor argument. The it-
erator provides next/prev calls, each of which updates k′ to its
successor/predecessor, respectively. As with other concurrent
search trees [9, 71], our goal is for the individual next/prev
calls to be atomic (linearizable)—not for an entire range it-
eration performed by a sequence of such calls to be atomic
with respect to insertions/deletions.

In sequential trees, a common method of implementing an
iterator is to add auxiliary next/prev pointers to node fields,
so that advancing an iterator does not require walking paths in
the tree. Occualizer supports trees with such auxiliary edges,

provided that they are symmetric (i.e., v points to u via an
auxiliary link if and only if u points to v), as is the case of
next/prev pointers. In addition, the user is required to specify
the field names of auxiliary links in the node structure. Oc-
cualizer then leaves iterator movement over auxiliary edges
as a read-only operation.

Extended commit protocol. We extend Occualizer’s com-
mit protocol to support auxiliary edges as follows. When an
operation op is ready to commit, after having locked and vali-
dated p, the parent of r, the copied region’s root, op checks
each auxiliary edge (v,u) pointing to the copied region (i.e.,
such that u is in the copied region and v is not) and attempts
to lock v (aborting if it fails).4 Once all these “border” nodes
are locked, op updates p to point from r to its new version
r′ with one atomic write, and then iterates over each locked
border node v, updating its relevant auxiliary edges to point
to the new version of the neighbor u (from (v,u) to (v,u′)),
and releasing v’s lock afterwards. This protocol may seem
heavyweight, but in practice copied regions tend to be small,
so the extra cost of handling auxiliary edges is not substantial.

Unfortunately, the extended commit protocol breaks Oc-
cualizer’s LCOW technique of replacing a copied region with
one atomic memory write. The problem is that a sequential
tree with auxiliary edges does not meet our PR1, because the
auxiliary edges create more than one path to a node, and the
commit protocol needs to update these paths when replacing a
copied region. For example, in an external binary tree whose
leaves are connected with next/prev links, Occualizer needs
three writes to replace a copied region—to the parent of the
region’s root and to the predecessor and successor nodes of
the region’s leftmost and rightmost leaves, respectively.

Because Occualizer cannot physically atomically update
all edges crossing the border between a copied region and the
rest of the tree, our solution is to make the update logically
atomic, as detailed below.

Logically atomic updates. To make iterators observe up-
dates atomically, we ensure that an iterator only moves across
auxiliary edges that exist in the latest version of the tree—
i.e., edges that are not part of, or cross into, a copied region
which is being replaced. To achieve this, Occualizer prevents
iterators from moving to a locked node, relying on the fact
that every node in a copied region is locked. When an iterator
positioned at node v attempts to move to v’s neighbor u and
finds either v or u locked, the iterator instead “resynchronizes”
its position using the latest version of the tree. Specifically,
the iterator searches from the root for v’s predecssor or suc-
cessor x (as during iterator construction), according to where
the iterator was trying to move. The iterator then positions
itself at x and returns x’s key.

This protocol guarantees that after an updating operation
op exposes its writes (by updating some child pointer to link

4Our requirement that auxiliary edges are symmetric guarantees that op
finds every node with an auxiliary edge to the copied region.
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the new version of op’s copied region into the tree), no itera-
tor can move into the copied region (whether the iterator is
positioned inside or outside the copied region). Attempting
such a move causes the iterator to “resynchronize” itself in
the updated tree, which no longer contains the copied region.
The protocol is conservative, however, in that while op holds
the copied region locked but has not yet exposed its writes,
an iterator moving across an auxiliary edge (v,u) to such a
locked node u will “resynchronize” superfluously, ending up
at u again, as it remains reachable from the root. Such a su-
perfluous “resynchronization” does not violate the iteration’s
correctness; it can be thought of as reaffirming the iterator’s
position in the tree, with the iterator’s move being linearized
before op’s updates.

5 Implementation

In our Occualizer prototype, we perform the input code trans-
formations manually (following the recipe of § 4.1) and im-
plement the synchronization library in C++ using pthread
spinlocks. This section describes the library’s implementa-
tion.

Thread-local structures. We implement the various sets
using thread-local dictionary (unordered map) objects, for
efficient access. The copySet is implemented as a pair of
maps, from nodes to their copies and vice versa. The edgeSet
is implemented as a pair of maps, an incoming map that maps
a node to its parent and child index there, and an outgoing
map that maps a node to a list of its children indices read. The
lockedSet is implemented as a map from locked nodes to a
boolean indicating if the lock should be released on commit.
The other sets are implemented as C++ STL vectors.

Efficient copySet searches. We further optimize
copySet searches by adding a flag into the node structure
which is set when a node is copied. The occ_get method
uses this flag to avoid superfluous copySet searches. When
an operation aborts, it clears this flag from all the nodes it
copied.

Optimized dictionaries. Our initial implementation used
C++ STL hash tables (unordered_map), but we observed
that they impose considerable overhead. We therefore replace
them with an optimized design, which initially inserts items
into a small STL vector, and if the vector becomes full, stores
overflowing items in an unordered_map. The observation
underlying this optimization is that in most tree algorithms,
the thread-local data structures Occualizer maintains will be
small. But for correctness, we must support worst-case behav-
ior in which these structures may contain every node in the
tree. Overall, this optimization improved the throughput of an
Occualizer B+tree by a factor of two.

Correctness testing. We use a couple of testing techniques
to gain confidence in the correctness of the Occualizer pro-

totype. First, we use the linearizability checking option of
the SetBench [13] benchmarking harness (§ 7.1). With this
option, SetBench verifies that every successful insert/delete
operation during the execution is correctly reflected in the
final state of the tree—so that, for example, inserted items
were not lost or inserted more than once. We test different tree
sizes, to test executions with varying contention levels and
thread interleavings. Second, we check that tree-structural
invariants of the sequential implementations we transform
(e.g., the red-black property of a red-black tree) hold, both at
random times during the execution and after it completes.

6 Correctness
This section sketches the proof that trees produced by Occual-
izer are linearizable [56], i.e., tree operations appear to execute
atomically. We consider the shared-memory system running
the tree. A state of the system consists of the memory state
(contents of each address) and the local states of each thread.
In each step of the execution, some thread accesses memory,
and as a result, its internal state and/or memory change.

Our proof works as follows. We first show that traversals
are correct. That is, if traverse(k) stops at node v in the concur-
rent execution, then at some point during its run, the memory
state σ was such that had traverse(k) executed atomically
(from start to finish) on σ, it would also reach v. We denote
this property of a state σ by σ : k

 v. We then use traversal cor-
rectness and Occualizer’s synchronization protocol to show
that if an operation op commits in memory state σ, then had
op run from start to finish on σ, it would have executed exactly
the same. Hence, op appears to execute atomically at σ.

Showing traversal correctness is hard, because traversals
are unsynchronized and can observe inconsistent tree states.
We solve this problem by applying the theorem of Feldman
et al. [44], which says that in a concurrent tree satisfying a
“forepassed” condition, unsynchronized traversals are correct.
The “forepassed” condition requires (1) traversals to be single-
step, which we satisfy by PR3; and (2) that if the concurrent
algorithm performs a write w moving the system from state σ

to σ′, such that σ : k
 v but σ′ : 6 k v for some k and v, then v is

never modified later.
Requirement (2) above follows from PR5 and the fact

that Occualizer leaves written/destroyed nodes immutable
(locked). There is a subtle issue, however, which is that the
prerequisites are met by the sequential code, so unless we
know operations in the Occualizer tree behave correctly, we
cannot rely on the prerequisites. But we need traversal correct-
ness to prove this fact, creating a “chicken and egg” problem.

We address this problem using a proof technique suggested
by Feldman et al. for proving “forepassed” is satisfied [44, §7].
The technique is to prove both that “forepassed” is satisfied
and that the concurrent tree is correct in tandem, inductively
(on steps of the execution), so that each proof can rely on the
other property holding on the execution thus far.
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Accordingly, we prove correctness of an Occualizer tree
assuming traversal correctness. The proof is inductive: we
need to show that in every state σ, if op(k) runs sequentially
on σ, its post-traversal memory accesses are identical to its
post-traversal memory accesses so far.

In the base case, σ is when op’s traversal’s stops at node
v. Traversal correctness implies that for some σ′ during op’s
execution, σ′ : k

 v. Now, Occualizer locks v. Based on the
induction hypothesis, a lock acquisition implies that σ : k

 v—
i.e., v is on the search path for k “now”—as otherwise, v would
have been locked and copied between σ′ and σ and op’s lock
acquisition would have failed. Thus, if op runs sequentially
at σ, its traversal would reach v. But the lock acquisition then
implies that the traversal would also stop at v, since only
pointer fields in v could have changed, but op verifies that any
pointer it read did not change after locking v.

The inductive step is similar. We are in state σ with op
successfully locking some node u. Inductively, we know that
(1) in some σ′ in the past, the state of the tree was such that
op’s execution on it would have lead it to its current local
state, and (2) any modifications made to the tree since σ′ have
only moved it through consistent states. Moreover, due to op’s
locking, these changes in tree state do not change the nodes
and edges op has observed post-traversal. It follows from PR4
that if we run op in state σ, it will behave exactly the same.
This concludes the overall proof, when σ is the state in which
op commits its writes.

7 Evaluation
We compare Occualizer trees to mechanically-crafted trees
(§ 2) and to hand-crafted trees, with respect to scalability,
throughput, and memory use. We first evaluate the trees on
workloads with different amounts of writing operations (§ 7.1).
We then focus on an Occualizer B+tree: we compare it as an
index in the STOv2 main-memory database to the default
Masstree index (§ 7.2), and analyze its overhead (§ 7.3).

Transformed trees. We use Occualizer to create concurrent
versions of the following sequential trees:

• B+tree: An improved version of the optimized STX in-
memory B+tree [7] taken from the tlx library [8].

• Radix: An implementation of a radix tree (trie) [79]. The
code follows the description of Linux’s radix tree [24].

• RB: A red-black tree [32]. The code is the sequential im-
plementation used in Synchrobench [47].

We refer to a transformed tree implementation T as occ[T].

Experimental platform. We use a dual-node NUMA server.
Each node has a 14-core Intel Xeon Gold 6132 (Skylake) pro-
cessor and 96 GB of DDR4-2666 DRAM. Hyper-Threading
and Turbo-Boost are disabled. Threads are split between
the nodes and memory allocation is interleaved across the

nodes. Code is compiled using GCC 8.3.0 and linked with the
jemalloc [37] multi-threaded memory allocator. Reported
numbers are averages of 10 runs; all measurements are within
±5% of the average.

7.1 Contention benchmarks
We compare Occualizer’s trees to mechanically- and hand-
crafted trees on workloads with increasing amounts of writing
operations.

Trees. We compare to the following trees, which unless
noted otherwise are mechanically-crafted from the same se-
quential code used for Occualizer:

• Global-Lock: Created by serializing operations with a
global lock.

• GCC-TM [1]: Created by wrapping operations in trans-
actions using GCC’s transactional memory (TM) support.
The underlying TM algorithm uses optimistic concurrency
control with eager locking and tracks conflicts at word gran-
ularity.

• CX [26]: Created with the CX universal construction, which
produces wait-free operations and does not serialize read-
only operations. It is the fastest wait-free universal construc-
tion we are aware of, although it still copies the entire data
structure. We use the original authors’ implementation [27].

• COW [5]: Created with a COW-based approach inspired by
Ben-David et al., which produces lock-free writing opera-
tions and wait-free read-only operations, without serializing
read-only operations. We implement COW ourselves.

• Hand-Crafted: We use hand-crafted designs of compara-
ble algorithms, as we are not aware of concurrent imple-
mentations of exactly the same trees. We compare occ[RB]
to SnapTree, a concurrent AVL tree with optimistic (lock-
based) synchronization [11]. We compare occ[Radix] to a
lock-free version from the same repository [79]. We com-
pare occ[B+tree] to Brown’s lock-free B-slack tree [12] (a
B-tree variant). We use the original authors’ implementa-
tions.

Our tree selection covers a spectrum of mechanically- and
hand-crafted synchronization techniques. While some of these
techniques do not form an “apples to apples” comparison with
Occualizer’s optimistic lock-based synchronization (e.g., due
to being lock- or wait-free), the point is that they represent
the space of currently available mechanical techniques.

Workloads. We populate the tree with 64 M uniformly ran-
dom 8-byte keys and then run a workload for 3 seconds. Each
workload has a different mix of operation types (Table 3). Our
workloads are inspired by the standard Yahoo! Cloud Serving
Benchmark (YCSB) [23] workloads, which are designed to
simulate real-world application workloads, but differ in that
(1) we replace updates with insertions and do not test range
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Workload Description

R-100 100% lookups (YCSB-C)
R-97 97% lookups, 3% insertions (≈ YCSB-B)
R-75 75% lookups, 25% insertions
R-50 50% lookups, 50% insertions (≈ YCSB-A)

Table 3: Contention workloads.

queries, as not all implementations support these operations;
and (2) we use more levels of writing operations, for more
fine-grained insight. Experiments run under SetBench [13], a
benchmarking harness for concurrent C++ dictionaries that
provides epoch-based memory reclamation.

Throughput. Figures 4–6 show the aggregate throughput
for each workload with varying numbers of threads for the
B+tree, radix, and red-black tree variants, respectively. All
variants except Global-Lock scale on the read-only workload
(R-100), although GCC-TM’s throughput drops for RB at
24–28 cores. But for workloads with any level of writing
operations, only Occualizer and the hand-crafted trees scale,
with throughput of mechanically-crafted trees typically flatlin-
ing at low core counts.5

The mechanically-crafted trees do not scale due to subopti-
mal synchronization. In CX and COW, all writing operations
are serialized, although serialization in COW, which is done
with a CAS to the tree root, is significantly faster than in CX,
where writing operation participate in a helping scheme and
may copy the entire data structure. In GCC-TM, the prob-
lem is its conservative version of optimistic synchronization,
which retries any transaction if any node it reads is updated
before the transaction commits. Thus, for example, GCC-TM
breaks down on RB—where tree rebalancing writes to the top
of the tree—much earlier than on Radix.

Compared to the hand-crafted trees, Occualizer achieves
comparable or better throughput when the level of mutation
is low (R100-R97). The cases in which Occualizer is faster
are due to differences in the underlying algorithms, which
manifest when synchronization overhead is low. This effect
demonstrates the power of Occualizer’s approach, which re-
moves the difficulty of adding synchronization to a tree from
consideration, and thereby allows focusing on the (sequential)
“quality” of the tree, i.e., how fast it is to search.

As mutations increase (R75-R50), however, synchroniza-
tion becomes the dominating factor and Occualizer signif-
icantly underperforms the hand-crafted trees. The reason
is that Occualizer writing operations are slower than in the
hand-crafted trees, due to bookkeeping and copying overhead
(see § 7.3), and so as the proportion of mutations grows, over-
all throughput degrades.

5The only exception is GCC-TM on Radix. In Radix, the tree only grows
downwards, so any non-null pointer read during a traversal is immutable.
GCC-TM thus rarely aborts transactions even with moderate mutation levels,
and so achieves high throughput.

Tree Throughput relative
R-100 R-97 R-75 R-50to hand-crafted

B+tree
Occualizer 0.79 0.77 0.64 0.72
Best mech-crafted 0.82 0.38 0.05 0.05
Gap shrink — 2.01 12.28 13.54

Radix
Occualizer 1.08 0.84 0.73 0.50
Best mech-crafted 1.15 0.90 0.74 0.36
Gap shrink — 0.93 0.99 1.38

RB
Occualizer 1.01 0.90 0.31 0.19
Best mech-crafted 1.02 0.24 0.04 0.03
Gap shrink — 3.78 8.64 6.08

Table 4: Throughput difference between Occualizer and the best re-
sult of the mechanically-crafted trees at 28 cores, for each workload.

Tree B+tree Radix RB

occ[·] 2.14 GB 2.10 GB 3.12 GB
Global-Lock 0.91× 0.93× 0.93×
GCC-TM 0.91× 0.96× 0.95×
CX 13.5× 13.18× 13.03×
COW 1.02× 1.18× 1.04×
Hand-Crafted 1.12× 0.97× 1.01×

Table 5: Memory use at 28 cores (R-50), normalized to Occualizer’s.

The takeaway is that Occualizer significantly shrinks the
performance gap between mechanically- and hand-crafted
trees in workloads with mutations. Table 4 reports this gap,
and by how much Occualizer shrinks it. Overall, Occual-
izer shrinks the gap by up to 13.54×, 1.38×, and 8.64× for
B+tree, Radix, and RB, respectively.

Memory use. Node copies made by an Occualizer tree may
increase memory use compared to its sequential version, as
a function of how quickly old nodes are reclaimed. To quan-
tify this effect, Table 5 shows peak memory use for each
tree in the R-50 workload (results for other workloads are
similar). Both Occualizer and COW indeed use more mem-
ory than the sequential baseline (captured by Global-Lock),
but Occualizer’s LCOW increases memory use by 7%–9%
whereas COW, which copies entire paths, adds an overhead
of 11%–26%. In contrast, CX uses about 14× the memory
of Global-Lock. The reason is that CX maintains multiple
replicas of the data structure, so that read-only operations can
read from a replica and avoid being serialized. Results of the
hand-crafted algorithms are shown only for completeness, as
they are not implementations of the same algorithm.

7.2 Full-system benchmark

We add occ[B+tree] as the index data structure in the STOv2
main-memory database system [58], and compare the result
to the default index, Masstree [71], a hand-crafted concurrent
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Figure 4: Throughput of B+tree variants for workloads with increasing amounts of mutation.
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Figure 5: Throughput of radix tree variants for workloads with increasing amounts of mutation.
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Figure 6: Throughput of RB (red-black tree) variants for workloads with increasing amounts of mutation.

tree combining aspects of B+trees and tries.6

STO provides serializable transactions. Transactions are
specified via C++ programs accessing STO’s transactional
interface. STO’s transaction concurrency control is tightly
coupled with Masstree, as it relies on Masstree node version
numbers to detect and block certain anomalies. To integrate
occ[B+tree] into STO, we therefore implement an equivalent
versioning scheme in the tlx B+tree.

Workloads. We evaluate two transactional workloads, TPC-
C and Voter. TPC-C is the industry standard benchmark for
evaluating the performance of online transaction processing
(OLTP) systems [28], by simulating an order processing ap-
plication. We use a database with one warehouse, 100,000
items, and run the full mix of all TPC-C transactions. This
workload performs index range queries. Voter is a benchmark

6We use a B+tree here because it is closest algorithmically to Masstree,
which is a B+tree variant. Comparing to, say, a red-black tree would not
be meaningful, because Masstree outperforms a red-black tree for reasons
unrelated to concurrency control (e.g., its much “shallower” tree structure).

that simulates a phone-based voting application. It consists of
many short transactions and does not perform range queries.

Results. Figure 7 shows the throughput (committed transac-
tions per second) and scalability of the system for both work-
loads, measured over a 10-second run. Scalability is measured
by normalizing the throughput obtained with each index to the
single-threaded throughput obtained with that index. On both
workloads, occ[B+tree] is slower than Masstree, but has better
scalability. As a result, the performance gaps between them
shrinks as more threads are added: from a single-threaded
difference of 22% and 29% for TPC-C and Voter, respectively,
to a difference of 12% and 26% at 28 threads.

The reason behind occ[B+tree]’s better scalability is that
Occualizer’s optimistic synchronization protocol causes fewer
operations to abort and retry than Masstree’s protocol (which
is also optimistic). Masstree uses per-node version counters
to guarantee that searches observe only consistent node states.
In Masstree’s protocol, any operation—including a lookup—
might abort and retry if its version checking indicates it may
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Figure 7: Throughput and speedup (throughput normalized to single-threaded throughput) of occ[B+tree] vs. Masstree in STOv2. Speedup
plots also show the average number of attempts required to complete an operation (right Y axis).

Enabled methods Relative throughput

None (call overhead) 93%
occ_start 87%
+ occ_finish 81%
+ occ_get 53%
+ occ_set = occ[B+tree] 40%

Table 6: Single-threaded throughput of occ[B+tree] relative to se-
quential B+tree (R-50 workload) as Occualizer’s synchronization
functionality is gradually enabled.

have observed an inconsistent node state. In contrast, Occual-
izer relies on LCOW to guarantee that observed nodes are
consistent, and on the “forepassed” condition [44] to guar-
antee correctness of searches that traverse inconsistent tree
states. In Occualizer’s protocol, read-only lookups never abort
and retry—only update operations do. As a result, as Fig-
ures 7b and 7d show (on the right Y axis), the average number
of attempts required to complete an operation is larger in
Masstree than in occ[B+tree]—and the difference grows with
the number of threads.

7.3 Overhead analysis

To break down the sources of Occualizer’s performance over-
head, we evaluate the throughput impact of making the trans-
formation but using a no-op implementation of each library
method, then gradually adding in each method’s actual imple-
mentation. We use single-threaded execution for this evalua-
tion, because an Occualizer tree does not run correctly when
any of the methods are disabled.

Table 6 shows the results, comparing occ[B+tree] to the
original sequential B+tree, on the R-50 workload. The lion’s
share of overhead is due to occ_get and occ_set, which
interpose on node field accesses. The impact of occ_get is
≈ 2× that of occ_get, as reading fields is more frequent.
Invoking the methods, occ_start, and occ_finish each de-
grade throughput by 6–7% points.

8 Conclusion

This paper presented Occualizer, a mechanical transformation
for adding scalable optimistic synchronization to a sequential
search tree implementation. Occualizer’s specialization to
trees enables designing a synchronization protocol that does
not suffer from the limitations of transactional memory and
universal constructions. Overall, Occualizer trees shrink the
performance gap between these automatic transformations
and hand-crafted trees by up to 13×.

Occualizer is limited, however, in that it applies only to
sequential search trees that satisfy its prerequisites. Relaxing
the prerequisites and automating the verification that an input
tree satisfies them are interesting future directions, as is re-
ducing the overhead of Occualizer’s synchronization library.
Our current Occualizer prototype also requires some manual
steps to transform the input tree; automating these steps is an
ongoing effort.

Occualizer’s code is available at https://github.com/
tomershanny/Occualizer.
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