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Abstract
Far-memory techniques that enable applications to use re-
mote memory are increasingly appealing in modern data cen-
ters, supporting applications’ large memory footprint and im-
proving machines’ resource utilization. Unfortunately, most
far-memory techniques focus on OS-level optimizations and
are agnostic to managed runtimes and garbage collections
(GC) underneath applications written in high-level languages.
With different object-access patterns from applications, GC
can severely interfere with existing far-memory techniques,
breaking remote memory prefetching algorithms and causing
severe local-memory misses.

We developed MemLiner, a runtime technique that im-
proves the performance of far-memory systems by “lining up”
memory accesses from the application and the GC so that they
follow similar memory access paths, thereby (1) reducing the
local-memory working set and (2) improving remote-memory
prefetching through simplified memory access patterns. We
implemented MemLiner in two widely-used GCs in Open-
JDK: G1 and Shenandoah. Our evaluation with a range of
widely-deployed cloud systems shows MemLiner improves
applications’ end-to-end performance by up to 2.5×.

1 Introduction
Datacenters are becoming increasingly memory con-
strained [65, 45, 40] with the ubiquitous deployment of
in-memory data analytics and ML systems like Neo4j [52],
Cassandra [12], Spark [74] and TensorFlow [5], which hold
large amounts of intermediate data in memory for quick pro-
cessing. To tackle this constraint, far-memory techniques
[30, 10, 63, 58, 26] that enable applications to use remote
memory are increasingly appealing, backed by advances in
hardware and networking techniques [13, 62, 66, 23, 19, 28,
35, 49, 55, 59, 32, 8, 16, 38, 41, 33, 63, 43, 57, 37, 42, 60, 7]
that allow remote memory to offer much lower latency and
higher bandwidth than local block devices.

♣ Contributed equally.

Most of these far-memory systems [30, 10, 63, 48, 68]
build on a cache-and-swap mechanism: the application’s host
server uses local memory as a data cache. Once a page that
does not reside in the local memory is accessed, a page fault
is triggered and the page is fetched from a remote server
into the local memory. Good locality and effective remote-
memory prefetching [50, 48] are crucial to the performance
of applications running in such far-memory systems.

Unfortunately, the interference from garbage collection
(GC) severely degrades the memory-access locality and
remote-memory prefetching for applications written in high-
level languages (e.g., Java, Go, and Python), which are domi-
nant in datacenter workloads. At run time, application threads
access heap objects following their program-execution paths,
while GC threads concurrently scan the heap, performing
graph traversal from a set of “roots” (i.e., objects referenced
by stack and global variables) to mark live objects. Object
accesses by these two sets of threads are uncoordinated, cre-
ating two disjoint working sets, as illustrated by Figure 1(a),
and causing severe performance problems.

Problem 1: Resource Competition. Pages swapped in for
GC’s heap traversal are often not used (in near future) and
hence evicted by the application; conversely, pages swapped
in for the application are often not needed (in near future) and
evicted by GC. Evicting each other’s pages, the application
and GC both suffer from severe local-memory misses and
further compete for RDMA bandwidth for page swapping.
The more concurrent activities a GC runs , the more the re-
source competition between GC and the application—our
results show that running Spark with the Shenandoah con-
current GC [25] on the 25% memory configuration incurs
a 12× slowdown to the end-to-end performance, which is
5× larger than the default G1 GC that reclaims memory in
stop-the-world pauses.

Problem 2: Ineffective Prefetching. Monitoring the execu-
tion of a managed program, an OS-level prefetcher such as
[48] cannot recognize clear memory-access patterns and has
to give up prefetching. The reason is that, even if the appli-
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Figure 1: Our main idea: the working sets of GC threads, in
blue, and application threads, in red, during a time window
(a) without or (b) with the access alignment from MemLiner.

cation’s memory accesses follow a simple sequential pattern,
the combined accesses from both the application and the GC
often appear random from the OS’ perspective.
State of the Art. In the past, supporting applications that have
large memory footprints (e.g., larger than the main memory
size) is not the priority of traditional GC. Although there
exists a body of work (such as Platinum [70]) on concurrent
GC, such work focuses primarily on improving throughput
and reducing latency on memory-abundant servers. However,
remote memory is designed to enable applications to use
more memory than what their hosts can offer; as a result,
developing new GC techniques to support these applications
becomes a crucial task.

Recent work Semeru [68] supports running Java programs
on disaggregated hardware by disaggregating the traditional
JVM into two new ones, with the CPU-JVM executing the
program on the CPU server and the memory-JVM perform-
ing GC on the memory server. The idea of offloading GC
completely to a remote server works for Semeru where all
the application’s memory data is located in a remote server,
but does not suit today’s datacenters where resources are not
entirely disaggregated and applications use remote memory
only if their local memory runs out. Furthermore, this of-
floading approach imposes extra communication overhead
for CPU-JVM and memory-JVM to coordinate, and extra
computation cost on the remote memory server to run the
memory-JVM, which may impose deployment challenges.

Another recent work AIFM [58] proposes a novel runtime
to improve the prefetching and swap performance of appli-
cations running in remote-memory systems. AIFM targets
applications written in native languages (C/C++), and hence
cannot easily be applied to solve the GC interference problem
in the managed language runtime.
MemLiner. This paper presents a fully-automated runtime
technique, MemLiner, for programs written in high-level
languages (HLLs) to efficiently use remote memory.

The design of MemLiner is based on two key observations.
First, the objects accessed by the application and the GC

are not completely unrelated—they are just not temporally
aligned. The live objects traced by the GC are mostly accessed

by the application at some point during the execution; the
objects accessed by the application must be live objects at the
moment of the access and hence the target of GC.

Second, although changing object-access order in applica-
tion threads would break the application semantics, changing
that order in GC would not. Specifically, GC threads aim to
trace and mark all reachable objects in the heap, while the
order of that tracing and marking (e.g., which objects are
traced first) does not matter.

Guided by these observations, the key idea behind Mem-
Liner is working set alignment. MemLiner carefully reorders
the objects traced by the GC threads, so that they follow a
similar, although not identical, memory-access path of the
concurrent application threads (illustrated by Figure 1(b)).
Consequently, their working sets can better overlap with each
other; the resource competition can be much alleviated, with
much reduced page faults and on-demand swaps; the appli-
cation’s access patterns can be more easily recognized by
the underlying prefetcher such as Leap [48]. All of these
are achieved in a way that is compatible with existing GC
algorithms, without offloading the GC to another machine or
re-desgining the prefetcher.

MemLiner must overcome several challenges.
First, how to align GC threads with application threads.

In a conventional setting, GC traces objects using a graph
traversal starting at the root objects. To align GC’s accesses
with application threads’, MemLiner uses a priority-based
algorithm—MemLiner makes application threads inform the
GC of the objects they are accessing; these objects, which
must be live and reachable in the object graph at that moment,
are then immediately traced and marked by the GC, without
any risk of triggering page faults and expensive remote swaps.
To enable such communication, MemLiner leverages the read-
write barrier—a piece of code executed by the runtime at
each heap read/write in the application—to inform GC of
the objects on the application’s access path. Details of the
coordination are discussed in §4.1.

Second, when to break the alignment so that GC can finish
its work without unnecessary delays. Completely aligning
GC threads with application threads could severely delay GC
from reclaiming dead heap space, as application threads may
take a long time, sometimes even the whole execution, to
access every live object. In fact, a complete alignment is
unnecessary, as application threads may repeatedly access
the same object in a short time window due to application
semantics, like during a loop, while GC only needs to mark
that object live once. Consequently, MemLiner allows GC
to break from the alignment to work on another part of the
heap traversal from time to time. To minimize the inter-
ference, MemLiner prioritizes two types of objects in GC’s
unaligned accesses: (1) objects that will likely be accessed
by the application soon; (2) objects that were accessed by the
application not long ago and hence are likely still inside the
local memory. The former is predicted based on what objects
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the application just accessed; the latter is predicted based
on object-access history that MemLiner efficiently encodes
inside the per-object pointer. Details can be found in §4.2.

Results. We have integrated MemLiner into two widely used
GCs (G1 and Shenandoah) in OpenJDK 12. A thorough
evaluation with Spark, Cassandra, Neo4J, QuickCached and
DayTrade demonstrates that MemLiner improves the end-to-
end execution time by an overall of 1.48× and 1.51× under
the 25% and 13% local memory configurations for the G1
GC, and 2.16× and 1.80× for the Shenandoah GC (which
runs concurrent GC threads more frequently than G1). Fur-
thermore, MemLiner improves Leap’s prefetching coverage
and accuracy by 1.5× and 1.7×, respectively. Compared to
Semeru [68], MemLiner achieves a comparable performance
without offloading any computation on remote servers.

Key Takeway. Although there are several directions of work
on remote memory (e.g., clean-slate approaches such as
AIFM [58] and Kona [17], swap optimizations such as Infin-
iSwap [30] and FastSwap [10], as well as distributed runtimes
such as Semeru [68]), MemLiner takes an easy-to-adopt, non-
intrusive approach that enables performance improvements
for a wide variety of new and legacy applications. Mem-
Liner is orthogonal to (and complements) these existing tech-
niques—aligning the memory accesses between application
and GC threads reduces thread-level interference and the
application’s local-memory working set regardless of the un-
derlying remote-access mechanisms and optimizations.

2 Background

GC. A major benefit of high-level languages over native
languages is their support for automated memory manage-
ment—developers are released from the burden of deallo-
cating objects, leading to improved reliability and security.
Automated memory management is enabled by garbage col-
lection (GC), which runs when the heap has little free space.
The key idea of GC is simple [36]: perform a reachability
analysis to identify a transitive closure of live objects and
reclaim objects outside the closure. Consequently, a modern
GC algorithm has two main components: (1) tracing the heap
graph to compute that closure and identify live objects, and
(2) reclamation of dead objects, while evacuating live objects
to contiguous space and updating pointers.

Concurrent Tracing. To ensure the correctness of pointer
updating, a conservative way of running GC is to pause all
application threads (i.e., a stop-the-world phase) for full-heap
tracing and reclamation, which incurs significant delays [53,
47]. To address this performance limitation, starting from
the G1 GC [22], which is the default GC in Oracle’s JVM,
all modern garbage collectors, including Shenandoah [25]
from Red Hat and ZGC [2] from Oracle, run the tracing phase
concurrently with application threads to (1) leverage the many
available cores and (2) minimize GC pauses. For example, in
G1, the number of tracing threads is configured, by default, to

be 1/4 of the number of cores. Concurrent tracing often uses
a snapshot-at-the-beginning (SATB) algorithm [73]—tracing
traverses the heap graph from a logical snapshot of the heap;
it will not miss any live object as long as object allocation and
pointer updates made by the application since the snapshot
are recorded and considered conservatively. G1 runs stop-the-
world phases to reclaim memory by evacuating live objects
into new regions while Shenandoah and ZGC run evacuation
also concurrently to minimize the pause time.

Tracing Algorithm. Logically, tracing divides objects into
three colors: white, black, and gray. The white set is the set
of objects that are candidates for reclamation. The black set
is the set of objects that can be shown to have no references
going to objects in the white set, and to be reachable from
the roots. Objects in the black set are not candidates for
reclamation. The gray set contains all objects reachable from
the roots but yet to be scanned.

Initially, all objects are white. Tracing implements a graph
traversal algorithm that gradually changes the color of ob-
jects reachable from the roots from white to black. For each
reachable object o, tracing marks it black, retrieves all ob-
jects referenced directly by o, and adds them into the gray set.
Each iteration retrieves an object from the gray set, marks it
black, and adds more objects into the gray set. The algorithm
repeats until the gray set becomes empty; objects that remain
white can be safely reclaimed. In practice, a modern runtime
uses a bitmap to mark live objects efficiently.

3 Motivation
In this section, we use an experiment to quantitatively demon-
strate (1) how tracing and application threads interfere with
each other, and (2) why simply disabling concurrent tracing
cannot solve the problem.

Setup. We ran Spark Logistic Regression (LR) with the
Wikipedia dataset on OpenJDK 12 and its default G1 GC.
We used two machines, each with 2 Xeon(R) CPU E5-2640
v3 processors, 128GB memory, 1024GB SSD, and CentOS
7.5, connected by RDMA over a 40Gbps InfiniBand network.
One machine runs Spark, using local memory and remote
memory on the other machine. We configured the first ma-
chine to have just enough memory to host 25% of Spark’s
working set. We name the first server providing compute re-
source as host server and the second server providing remote
memory as remote server.

We compare the execution of Spark LR in two modes:
(1) The G1 GC’s concurrent tracing is disabled;
(2) The G1 GC’s concurrent tracing is enabled—the default

option in G1 GC. The number of tracing threads is set to be a
quarter of the number of available cores, as suggested by G1.

In both cases, the heap size of Spark LR is set to 32GB and
the host server can hold up to 8GB of its heap. The execution
goes through application-execution phases and stop-the-world
GC phases alternatively.
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(a) Page fault trace of Spark LR. (b) Page fault trace of Spark LR with CT. (c) Prefetching effectiveness.

Figure 2: Prefetching effectiveness for Spark LR executed atop OpenJDK 12 (with its default G1 GC): (a) trace of faulty page
index for application threads only; (b) trace of faulty page index when concurrent tracing (CT) is enabled; (c) disabling CT
significantly improves the effectiveness of Linux’ default swap prefetcher.

How much interference from concurrent tracing? To have
an intuitive look at how well prefetching may or may not work,
we randomly sampled 512 consecutive page faults in the
middle of Spark LR’s execution under both execution modes.
Note that, since we collected page-fault information from
inside the kernel and the execution under the two GC modes
proceeds at vastly different paces, we cannot guarantee that
the two samples come from the same window of application
instructions, but we do make sure that the stop-the-world GCs
did not occur during our samples.

Figure 2 (a) and (b) illustrate the virtual page index of the
faulty addresses (Y-axis) ordered by when each fault occurs,
with the sequence number shown in the X-axis. Without con-
current tracing, each of the application threads has a clear
streaming access pattern, as shown in Figure 2(a), which
should be detected by an advanced prefetcher. This clear
pattern is messed up by concurrent tracing, as shown in Fig-
ure 2(b), making prefetching much harder.

To quantitatively measure the impact of concurrent tracing
on prefetching, we checked 500 application-execution phases
(i.e., the period between two stop-the-world GCs) to under-
stand, among all the page faults, how many were resolved
through on-demand swaps from remote memory and how
many were resolved using data already brought in through
prefetching. Clearly, this ratio of on-demand swapping versus
prefetching directly affects the application performance.

As shown in Figure 2(c), without concurrent tracing,
prefetching is effective, addressing 65% of the page faults.
Unfortunately, with concurrent tracing, this ratio greatly
dropped to only 39%, with the remaining 61% of page faults
leading to costly remote-memory accesses. Note that our ex-
periments use Linux’s default swap prefetcher. If an advanced
prefetcher such as Leap [48] is used, the prefetch-ratio would
be even higher without concurrent tracing and hence suffer
even more from the interference (see §7).

Finally, to understand how much the interference has af-
fected the working set of the execution, we also measured

the average number of page faults encountered by application
threads. The page-fault rate jumps from 3.5K per second
per thread to 9.6K per second per thread, when concurrent
tracing is enabled, indicating a huge interference.
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Figure 3: Concurrent tracing improves overall performance.
(Data is from 10 runs of each program; dots are outliers.)

Why not just disable concurrent tracing? Having seen sig-
nificant interference from concurrent tracing, a strawman so-
lution is to simply disable concurrent tracing for applications
running in far-memory systems.

Unfortunately, this strawman solution does not work.
First, modern concurrent GCs such as Shenandoah [25] and
ZGC [2], which are designed for low-pause and used widely
by latency-sensitive cloud applications, rely on concurrent
tracing to reclaim memory (also concurrently). Disabling
concurrent tracing would destroy the functionality of such
collectors. Second, even for GCs such as G1 that could
perform tracing in a stop-the-world phase, the end-to-end
execution time suffers significantly without concurrent trac-
ing. As shown in Figure 3(a), the execution time increases
by 18% on average in 10 runs. The main reason is that the
aggregated stop-the-world GC periods now take 2.7× longer
without concurrent tracing, as shown in Figure 3(b). Without
concurrent tracing, each (fast young-generation) GC cannot
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reclaim as many dead objects in the same amount of time and
has to resort to slow, full-heap GC that scans and compacts
the whole heap space in a stop-the-world period, which is
extremely time consuming. For example, the longest full-
heap GC (i.e., a single pause) in Spark LR takes 76.9 seconds,
clearly an intolerable delay.

Key Takeway. Memory accesses from application and GC
threads exhibit diverse patterns, significantly increasing the
application’s working set and making prefetching harder. Sim-
ply disabling concurrent tracing in GC would not work, as it
reduces the number of local-memory misses at a cost of sig-
nificantly increased GC pause and end-to-end execution time.
MemLiner offers a solution that can greatly reduce the num-
ber of local-memory misses and increase the effectiveness of
existing prefetchers without introducing extra GC-pause time,
and hence effectively reduce the end-to-end execution time.

4 MemLiner Design and Implementation

This section presents the design and implementation of Mem-
Liner, particularly how we realize the two key ideas: (1)
making GC concurrently trace objects immediately after their
access by application threads (§4.1) and (2) making GC trace
other live objects through a novel priority-based algorithm
(§4.2) to reduce interference.

MemLiner modifies the garbage collector inside the run-
time and the swapping system inside the kernel, while requir-
ing no changes to applications. In terms of runtime changes,
MemLiner is a general mechanism that can be integrated into
any modern runtime that performs concurrent tracing. This pa-
per focuses on a design for Oracle’s OpenJDK, a commercial
JVM that supports a variety of high-level languages such as
Java, Scala, Python, Ruby, etc. In terms of kernel changes, we
build MemLiner atop paging/swap mechanisms that already
exist in the OS kernel, with minimal invasion. Any swap
optimizations such as InfiniSwap [30] and FastSwap [10]
can be readily used to improve the swap performance for a
MemLiner-equipped runtime. MemLiner’s runtime design is
independent of how remote memory is accessed; for example,
MemLiner could also run on a clean-slate platform such as
Kona [17] that access remote memory based on cache coher-
ence, not page faults, if coherence is provided by hardware.

When a MemLiner-equipped JVM is launched, the maxi-
mum heap sizeM is specified by the user via a command-line
option. A small amount of physical memory on the local ma-
chine is initially used to back up the heap (which is much
smaller than M ). The heap stays entirely in local memory
until its usage exceeds the size of local memory, in which
case, the OS kernel allocates remote memory by registering
it as an RDMA buffer. The kernel uses an approximate LRU
algorithm to evict pages. MemLiner does not require any
software/hardware support on remote servers, providing a
practical solution that can be readily used in today’s cloud.

4.1 Application and GC Coordination

To align memory accesses, application threads inform GC’s
tracing threads of the objects they are accessing so that tracing
threads can trace these objects immediately.

To facilitate such communication, we need to instrument
every heap read/write instruction so that the application can
send an object pointer to GC when it dereferences the pointer:
(1) At a statement that reads an object field or an array element
of the form a = b.f or a = b[i], our instrumentation pushes
the corresponding address in b into a thread-local producer-
consumer queue (PQ), which will be read by GC during
tracing. (2) At a statement that writes an object field or an
array element of the form b.f = a or b[i] = a, we similarly
push the object reference in b into the PQ.

MemLiner implements this instrumentation through exist-
ing read/write barriers—a piece of code that is executed by
modern runtimes at each heap read/write operation to record
heap information for GC purposes. MemLiner piggybacks on
the existing implementation of read/write barrier in OpenJDK
12 that intercepts both interpreted and compiled code. A PQ is
created for each application (producer) thread so that no syn-
chronization is needed for enqueuing pointers. A GC tracing
(consumer) thread constantly checks PQs to retrieve pointers
for tracing. Consumer threads use atomic instructions when
dequeuing object pointers. In practice, the number of applica-
tion threads is often larger than the number of tracing threads;
hence, there is little contention when PQs are accessed by
multiple threads.

To minimize the maintenance overhead, we represent each
PQ as a non-blocking ring buffer. Producers and consumers
do not synchronize at all—an application thread keeps writing
into the queue even if it is full. As such, the application
thread may overwrite entries that have not yet been picked
up by GC. Note that this would not cause any correctness
issues because those entries only indicate tracing priority:
overwriting an entry will delay the corresponding object’s
tracing, but the tracing of these objects will eventually happen
in GC’s regular graph traversal, which will be discussed in
the next sub-section.

Note that our instrumentation code at different program
points is unlikely to enqueue the same object reference multi-
ple times (e.g., neighboring reads to the same data structure).
This is because marking an object live sets a bit in a global
live bitmap. Before pushing each object reference into the
queue, an application thread checks its bit from the bitmap
and filters it out if the bit is already set.

4.2 MemLiner Tracing Algorithm

4.2.1 Design Overview

A major challenge in aligning tracing and application threads
is that GC has to compute a full closure of live objects to
reclaim memory. Hence, it is unproductive to trace a live
object only right after it is accessed by the application, which
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will delay the closure computing, leading to inefficiencies in
memory reclamation.

The key question here is: how can GC make quick progress
in closure computation without producing a working set that
significantly departs from that of the application? On the
one hand, after processing all objects in the PQ, we want GC
to trace as many other live objects as possible, even if not
in the PQ, to complete the closure. On the other hand, GC
should better not trace many objects that do not reside in local
memory because tracing those objects triggers page faults and
swaps. How to reconcile these seemingly conflicting goals is
a problem MemLiner must solve.

Reachable Object Classification. To better explain our trac-
ing algorithm, we first classify all live objects at any moment
of the execution into three categories based on their location
and when they are accessed by the application, as illustrated
in Figure 41:

(1) Objects in local memory (i.e., data cache): These ob-
jects have recently been accessed by the application and have
not been evicted yet. Clearly, tracing them at this moment
(or in the near future) would not generate any page faults or
interfere with the application. Many of these object (i.e., the
red ones in the figure) are made known to the GC through the
PQ discussed in §4.1. However, since the PQ is designed to
be a ring buffer, some of these objects (i.e., the striped ones
in the figure) may be missed by GC due to being overwritten
in the ring buffer. How to trace them sooner rather than later
requires extra handling that we will discuss later.

(2) Objects in remote memory and to be used soon: Since
these objects (i.e., the wavy nodes in Figure 4) will soon be
accessed by the application, they are typically just a few refer-
ences away from the objects being accessed by the application.
Tracing them is also desirable—although they are currently
not local, they will soon be needed by the application. If
GC triggers page faults when accessing them, the costs of
handling these faults and swapping would be necessary as
they are “prepaid” by GC for the application.

(3) Objects in remote memory and not used soon: These
are illustrated as clear-circle objects in the figure. They were
used by the application a while ago and got evicted to remote
memory. Tracing them is needed eventually but is undesirable
now or in the near future, as tracing them pays the high cost of
fault handling and swapping (which is entirely wasted if they
are not used by the application before their next eviction).

Handling Different Categories in GC. MemLiner’s central
design goal is to let GC trace objects in Category (1) and
(2) right away to maximize progress and delay tracing ob-
jects in Category (3) to avoid unnecessary page faults and
interference. Among the different categories of objects, our
starting point is the set of red objects, which are captured by

1For ease of discussion, here we do not consider cold objects staying in
cache due to hot objects on the same page. We will discuss it in Section 4.3.

(3) In remote memory
not used by applications soon

(GC should wait)

(2) In remote memory
used by applications soon

(GC should touch)

…

…

Roots
(1) In local memory
(GC should touch)

Live 
Objects

In PC queue Not in PC queue

Figure 4: Classification of reachable objects in the heap: red
objects are being accessed by the application and shaded
objects are what MemLiner intends to trace.

the read/write barrier, sent to GC via the PQ, and traced by
GC immediately.

With the red objects in hand, the wavy objects in Category
(2) are just a few references away. To mark these objects, we
let GC trace a small number of references forward from the
red objects, which were retrieved from the PQs. As discussed
above, tracing such an object will likely trigger swapping,
prepaying the cost for the application to access the object
soon later. Note that tracing too many references forward
will not be useful, as that may bring in objects not used by
the application in the near future. In our implementation, we
limit the number of hops to 3, which is often large enough to
cover objects in the same logical data structure [72].

After red objects and wavy objects, the remaining live
objects to trace are those in Category (3) and the striped
objects in Category (1). There are two challenges here. First,
there are no easy ways to reach them from the red objects.
Second, to reduce memory interference, it is better to trace the
striped Category (1) objects before the Category (3) objects,
as discussed above.

To tackle these challenges, MemLiner makes every concur-
rent tracing thread alternate between two modes:

(1) When the PQ is not empty, trace objects in the PQ (i.e.,
red) and objects a few references forward (i.e., wavy);

(2) When the PQ is empty, perform normal object-graph
traversal that starts from root objects like traditional GC.

Different from a traditional GC, MemLiner modifies the
traversal algorithm to consider whether an object o to be
traced is likely in local memory (i.e., whether o is a striped
Category (1) object or a Category (3) object)—if o is esti-
mated to reside in local memory (i.e., a striped Category (1)
object), it is traced right away in GC; if not (i.e., Category
(3)), MemLiner postpones processing o in its graph traversal
until a later time, optimistically hoping that o will be used
by the application before it is encountered again in GC. Af-
ter postponing a number of times (referred to as MAX _DL
below) , GC processes o even if it is still estimated to be
remote, so that the closure computation will not be signifi-
cantly delayed. MemLiner dynamically adjusts the value of
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Figure 5: A 64-bit object pointer in MemLiner.

MAX_DL, in response to the size of available heap space.
For example, when the available heap size is in the red zone
(i.e., <15% available space), MAX _DL will be set to 0, let-
ting GC quickly finish tracing and collect memory. Details of
this adaptive algorithm can be found in this section.

4.2.2 Object Location Estimation

Now, the only missing piece of MemLiner’s tracing algorithm
is a way to estimate whether an object is local or not. A naïve
solution is to create a system call that allows GC to query the
page table. However, this can be prohibitively expensive as it
requires a system call per object visited during tracing.

To solve this problem, we conceptually divide the execu-
tion into epochs and encode the current epoch ID into each
object pointer whenever an object is accessed. Later on, dur-
ing concurrent tracing, this epoch ID will allow the GC to
estimate how recently an object was accessed and hence how
likely it is still in local memory.

Epoch. Given our goal of estimating whether an object is in
local memory, we define an epoch to be an execution period
in which the set of pages in local memory that belongs to the
JVM process are relatively stable (i.e., they do not change
much). This set changes as new pages of this JVM process
are swapped in and old pages are swapped out. When the
change becomes significant (e.g., larger than N% of the total
number of JVM pages), a new epoch starts. We modify the
kernel swap system to keep track of the pages in the cache and
determine the start of a new epoch. A global epoch counter is
maintained in the JVM and its address is passed into the swap
system. This epoch counter starts from zero and is increased
by one whenever a new epoch starts.

Timestamp. In the JVM, virtual addresses of objects are rep-
resented as references, which are essentially pointers with a
strong type. In a 64-bit JVM, the format of an object refer-
ence is shown in Figure 5. Recall that our need is to estimate
whether an object is in local memory from a reference/pointer
of the object (e.g., recorded in a field of another object) during
GC’s graph traversal. Our idea here is to modify the pointer
format by reserving 4 unused bits as a timestamp (ts in Fig-
ure 5) that indicates the epoch in which the pointer was last
dereferenced—once the epoch ID reaches 15, the next epoch
ID goes back to 0. Dereferencing the pointer accesses the
target object (i.e., bringing the object to local memory if it
is remote). As such, if the timestamp is close to the current
epoch, the object is likely in local memory (i.e., Category
(1)) and GC should follow the pointer to trace the object;
otherwise, the object may not be local (i.e., Category (3)),
and GC should postpone tracing it.

Algorithm 1: Allocation semantics.
Input: Allocation site o = new C.
Output: Object reference o.

1 addr ←ALLOCATE(SIZEOF(C))
2 o←UPDATEPOINTER(addr , CURRENTEPOCH())
3 return o

Algorithm 2: Object read and write semantics in ap-
plication threads.

Input: Object read/write access a = b.f or b.f = a.
1 ENQUEUE(PQ , b)
2 b ← UPDATEPOINTER(b, CURRENTEPOCH())
3 if ISREFERENCE(a) then
4 b.f ← a← UPDATEPOINTER(a , CURRENTEPOCH())

Upon the allocation of a new object o, MemLiner sets the
timestamp bits in o’s pointer to be the current epoch number
(with function UPDATEPOINTER in Algorithm 1).

Whenever an object is read/written in an application thread
like b.f = a or a = b.f (Algorithm 2), MemLiner updates the
timestamp ts in the dereferenced pointer b to be the current
epoch ID. Furthermore, if a and b.f are also object references,
we write an updated pointer of a into b.f , indicating that
soon the object referenced by b.f will be accessed through
a. Again, this instrumentation is implemented through read-
/write barriers.

Note that we use Algorithm 1 and Algorithm 2 to illus-
trate the high-level logic. Our implementation actually inserts
assembly code for efficiency. Changing object pointers in
the JVM would not cause problems for actual memory ac-
cesses—although each pointer represents a virtual address,
the barriers we use mask pointers so that only the last 42 bits
are used to access memory.

4.2.3 MemLiner Tracing Algorithm

Algorithm 3 shows GC’s tracing logic, which was summa-
rized in §4.2.1. The algorithm takes two queue data structures
as input: TQ is a standard tracing queue (already used by the
JVM) that contains references yet to be explored in object
graph traversal; it is initialized with a set of object references
in the stack and global variables (i.e., roots). PQ, as dis-
cussed earlier, is the producer-consumer queue that contains
references of red objects sent to GC by application threads.

As discussed in §4.2.1, every tracing thread of MemLiner
alternates between two modes. In the default mode, tracing
loops over the tracing queue TQ, shown in Line 2-13 in Algo-
rithm 3, to perform normal graph traversal. Whenever PQ is
not empty (Line 3), the tracing thread interrupts the normal
traversal and switches to the other mode to handle the (red)
objects in PQ (Line 4); this logic is listed in Algorithm 4 and
will be discussed shortly.
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Algorithm 3: Main tracing logic in MemLiner’s GC.
Input: (1) Producer-consumer queue PQ ; (2) tracing queue

TQ .
Output: Fully marked live bitmap for all live objects.

1 Function TRACING(TQ ,PQ):
2 while TQ 6= ∅ do
3 if PQ 6= ∅ then
4 TRACEREDANDCATEGORY2(TQ , PQ)

5 Tuple 〈o, dl〉 ← DEQUEUE(TQ)
6 if DIFF(TS(o), CURRENTEPOCH()) > δ ∧dl <

MAX_DL then
7 ENQUEUE(TQ , 〈o, dl + 1〉)
8 Continue

9 if CHECKLIVEBITMAP(o) = 0 then
10 MARKLIVEBITMAP(o)
11 foreach Non-null reference-type field f ∈ o do
12 Object reference p← o.f
13 ENQUEUE(TQ , 〈p, 0〉)

In the default mode, each iteration of the tracing loop re-
trieves a 2-tuple 〈o, dl〉 from TQ, representing an object ref-
erence o and a delay limit dl . MemLiner compares TS(o)
with the current epoch ID (Line 6). If these two IDs are close
to each other (DIFF(TS(o), CURRENTEPOCH()) ≤ δ), Mem-
Liner goes ahead to mark this object in the global live bitmap
(Line 10) and pushes all the non-null object references stored
in this object into the tracing queue TQ (Line 13). Otherwise,
MemLiner estimates that the object is not in the cache and
hence pushes this tuple back into TQ (Line 7), hoping that the
application will use this object and bring it to the cache before
the next time it is dequeued in tracing. To avoid pushing back
an object too many times, which would delay the comple-
tion of closure computation, MemLiner uses a delay limit dl ,
which is initialized to 0. Every time a tuple is pushed back,
its dl is incremented (Line 7). Once it becomes MAX_DL
(i.e., the additional check at Line 6), GC is forced to mark
the object. MAX_DL is auto-tuned based on the amount of
available heap space (discussed shortly).

The other mode of tracing red objects is triggered when
PQ is not empty, as illustrated in Algorithm 4. Similar to
the default tracing loop, each iteration of the loop (Line 2) in
Algorithm 4 retrieves an object reference from PQ, calling
a recursive function EXPLORE to not only mark red objects
themselves, but also trace a few references forward to mark
objects in Category (2), which may be soon used by the appli-
cation. We use a recursive function here to control the number
of references (i.e., data structure depth) to be explored—once
depth exceeds a constant MAX_Depth (Line 9, 3 by default),
the function does not further explore the object graph, but
instead, pushes these unexplored references into the regular
tracing queue TQ (Line 12) so that they can be traced later
in a normal graph traversal without priority. This is because,

Algorithm 4: Tracing logic for red and Category-(2)
objects.

Input: (1) Producer-consumer queue PQ ; (2) regular
tracing queue TQ .

1 Function TRACEREDANDCATEGORY2(TQ ,PQ):
2 while PQ 6= ∅ do
3 o← DEQUEUE(PQ)
4 EXPLORE(o, TQ , 0)

Input: (1) Object reference o; (2) tracing queue TQ ; (3)
current exploration depth depth .

5 Function EXPLORE(o,TQ , depth):
6 MARKLIVEBITMAP(o)
7 foreach Non-null reference-type field f ∈ o do
8 Object reference p← o.f
9 if depth < MAX_Depth then

10 EXPLORE(p, TQ , depth + 1)

11 else
12 ENQUEUE(TQ , 〈p, 0〉)

as discussed in §4.2.1, following long reference chains can
swap in objects that may not be needed by the application in
the near future, leading to wasted efforts.

Marking an object live flips its corresponding bit in a global
live bitmap (Line 6); as a result, the regular graph traversal
(Algorithm 3) would not mark it again if it is encountered
there. Once the tracing of the red and Category-(2) objects is
done, GC resumes the normal graph traversal in Algorithm 3.

In modern GC with concurrent tracing, each tracing thread
works on its own tracing queue TQ. MemLiner modifies each
tracing thread to run Algorithm 3 so that the work on TQ
is interrupted if there are outstanding red objects in a PQ.
Each application thread independently pushes red objects into
its thread-local PQ while each tracing thread can consume
objects from all PQs. This design makes it possible to en-
able work stealing between threads to balance the number
of red and Category-(2) objects processed by these threads.
The read/write barrier is already used in existing GC algo-
rithms, such as G1, Shenandoah and ZGC, as well as other
far-memory techniques such as AIFM [58]. To further reduce
MemLiner’s overhead at each read/write barrier, we only need
to push the object reference o (64 bit) onto the queue with a
very small number of instructions.
Autotuning of MAX_DL. How much delay should be intro-
duced to tracing depends on how urgently GC must be com-
pleted. As a result, we develop an autotuner that dynamically
adjusts the value of MAX_DL in response to the available
heap size. The rationale is straightforward: if the heap is
almost full, there is an urgent need to complete GC and hence
we should use a small value for MAX_DL; on the contrary,
if the heap is mostly available, delaying GC will not have a
large impact on memory and hence we use a large value for
MAX_DL to minimize interference.
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MemLiner uses two thresholds for heap availability: 15%
and 50%. When the percentage of available memory is lower
than 15%, the JVM is in a red zone. If the percentage is
between 15% and 50%, it is in a yellow zone. The JVM is
in a green zone if the amount of available memory is higher
than 50% of the heap size. MemLiner monitors heap usage
upon allocations and uses three values for MAX_DL: 0, 2, and
4 respectively if the heap falls in the red, yellow, and green
zone. These thresholds were empirically chosen and worked
well for all our applications.

4.3 Discussion

MemLiner performs adaptation in two dimensions: (1) adapt-
ing timestamps based on the swap behavior and (2) adapting
MAX_DL based on heap availability. The swap behavior
correlates with interference and heap availability correlates
with GC urgency. We elaborate on how (1) and (2) work in
harmony to make MemLiner achieve superior performance.

For (1), MemLiner uses the timestamp mechanism to re-
duce the interference between GC and application threads.
For example, if the cached pages rarely change (i.e., the ap-
plication has excellent locality or the local memory size is
large enough), the interference is minimal and hence it would
not create performance issues if MemLiner does not deviate
much from an existing GC. Indeed, our algorithm makes the
global epoch change slowly and timestamps in most pointers
are the same as the current epoch ID. Algorithm 3 would
trace most objects in TQ without delays. This is a desired
property—when resources are not constrained, MemLiner
would not incur overhead because GC can trace objects and
reclaim memory in a timely fashion.

Conversely, if the set of cached pages frequently changes
(i.e., the application has poor locality or the cache size is
small), the interference is significant and MemLiner should
perform differently from an existing GC. Indeed, the global
epoch moves at a fast speed. As such, the timestamps in most
pointers are different from the current epoch ID. In other
words, most objects in the heap are Category-(3) objects
that are not in local memory. Consequently, Algorithm 3
would delay the marking of most objects and thus make slow
progress. This is also a desired property—tracing should
“yield” to the application when local memory resource is
tight and application threads are constantly accessing remote
memory. In this case, MemLiner imposes a delay to GC, and
the delay is bounded by MAX_DL.

For (2), we use heap availability to dynamically adjust
MAX_DL, enabling MemLiner to “override” the policy made
under (1) in urgent situations. For example, if the application
is experiencing frequent changes in cached pages (indicating
interference) while the heap is almost full, the policy under (1)
would delay tracing, which can, in turn, delay the completion
of GC and subsequently trigger an undesired full-heap collec-
tion. In this case, our adaptation under (2) would determine
that the heap is in the red zone and thus change MAX_DL

to 0—even if tracing is delayed, the delay length is set to 0,
effectively allowing GC to move in a normal pace.

5 GC-Specific Optimizations
We have implemented MemLiner in both the JVM’s default
G1 GC [22] and Red Hat’s Shenandoah GC [25], which are
two representative GCs widely used in cloud settings. G1 is
a generational GC that optimizes for throughput with stop-
the-world pauses while Shenandoah is a concurrent GC that
minimizes the time of each pause by concurrently tracing and
compacting objects. Shenandoah optimizes for latency at the
cost of reduced throughput. Our goal is to demonstrate that
MemLiner can be easily integrated into both GC algorithms,
providing performance benefits for different kinds of (e.g.,
latency-sensitive or batching) workloads.

One challenge in MemLiner is its reliance on read and
write barriers, which, if used naïvely, can incur a significant
runtime overhead. This section discusses our optimizations to
mitigate the overhead. With these optimizations, MemLiner’s
barrier introduces an average of 2% and 5% overheads,
respectively, to Shenandoah and G1, when the application
runs entirely with local memory. Such low overheads are due
to the following reasons:

First, Shenandoah already utilizes both read and write bar-
riers for concurrent tracing and concurrent evacuation. Mem-
Liner only inserts few instructions into the existing barriers,
incurring negligible overheads.

Second, the original G1 only uses the write barrier. Naïvely
adding the read barrier into G1 can cause a much higher
overhead. We develop the following three optimizations that
successfully filter out a significant fraction of object accesses:
Optimization #1: The enqueue operation of MemLiner’s bar-
riers is enabled only when concurrent tracing is in progress.
When concurrent tracing is not running, it is unnecessary to
add any objects into the PQ.
Optimization #2: G1 is a generational GC that splits the
heap into a young and an old generation. Concurrent tracing
scans only old-to-old references (to compute garbage ratio
for each region in the old-gen), meaning that references in the
young generation are not traced in concurrent tracing at all.
Based on this insight, our read barrier filters out all references
in the young generation—there is no need to update their
timestamps or add them in PQ because these references are
not traced in G1’s concurrent tracing anyways.
Optimization #3: Our read barrier does not need to update
timestamps for objects whose pointer timestamp is the same
as the epoch ID. Essentially, we use a check that first com-
pares the pointer timestamp with the epoch ID and updates
the timestamp only if they do not have the same value. The
larger the local memory percentage is, the less frequently the
epoch changes and hence more objects can benefit from this
optimization. This explains why when the percentage of local
memory increases, MemLiner’s overhead does not increase
proportionally (as shown in Figure 7).
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6 Limitations
MemLiner is designed for managed applications running on
a managed runtime and thus not applicable to native applica-
tions such as those written in C/C++. Furthermore, MemLiner
is designed to optimize throughput (by reducing interference
and improving prefetching), not latency. However, it does not
increase the application latency (i.e., making remote access
longer) or the GC pause time. For the Shenandoah GC, its
pauses are already very short because operations requiring
a pause do not involve many remote accesses and their time
is not changed much by MemLiner. For G1, by lining up
the tracing and application’s memory accesses, MemLiner
makes concurrent tracing more efficient, thereby significantly
reducing the frequency of triggering full-heap collections.
However, it does not reduce the per-collection pause time.

As shown in our evaluation, the more remote memory an
application uses, the more effective MemLiner’s optimization.
However, when a large percentage of the working set fits into
local memory, MemLiner’s effectiveness reduces. In fact, if
this percentage exceeds 50%, MemLiner’s performance is on
par with that of the original JVM.

The other limitation is that MemLiner focuses on reducing
interference between the application and concurrent tracing
threads. Application threads may also interfere with mem-
ory reclamation threads if the GC performs concurrent recla-
mation (such as Shenandoah and ZGC). MemLiner cannot
reduce this type of interference.

7 Evaluation
7.1 Experiment Setup

We implemented MemLiner on top of OpenJDK 12 (v 12.0.2)
and Linux (v 5.4.0). Our swap system is based upon our
re-implementation of FastSwap [10]2, which provides good
swap performance. We implemented it on top of G1 and
Shenandoah. Implementing MemLiner in other GCs would
be straightforward in the future.
Environment. We ran our experiments with two ma-
chines, each with two Xeon(R) CPU E5-2640 v3 processors,
128GB memory, one 1TB SSD, and one 40 Gbps Mellanox
ConnectX-3 InfiniBand network adapter. They are connected
by one Mellanox 100 Gbps InfiniBand switch. One machine
runs the JVM process while the other provides remote mem-
ory via RDMA. All our experiments used a 32GB heap and
4K pages.

Although our application heap size is relatively small (com-
pared to the size of main memory on our machines), the per-
formance of a remote-memory application depends on how
much of its working set can fit into local memory and how
many (application and GC) threads are used, not on how large
local memory is. In particular, MemLiner’s key data structure
is a per-thread PQ (i.e., TQ is not key to MemLiner as it is
GC’s original data structure). PQ’s size depends on the ratio

2Its original implementation was incompatible with OpenJDK12.

Spark [74] Dataset Size
MLlib KMeans

Wikipedia France [4] 1.1GB
(SKM)

Spark Linear
Wikipedia English [4] 3GB

Regression (SLR)
Spark Transitive

Synthetic graph
1.5M edges

Closure (STC) 384K vertices

Cassandra [12] Workload Operation
Update Intensive Update 50%

10M ops
(CUI) Insert 50%

Read Intensive Read 50%
10M ops

(CRI) Insert 50%

Insert Intensive
Insert 50%

10M ops
(CII)

Update 25%
Read 25%

Neo4j [52] Dataset Size
PageRank

Wikipedia Turkish [4]
14M edges

(NPR) 544K vertices
Triangle Counting

Wikipedia Turkish [4]
14M edges

(NTR) 544K vertices
Degree Centrality

Dogster Friends [4]
8.5M edges

(NDC) 451K vertices

QuickCached [3] Workload Operation
Write Dominant Insert 60%

9M ops
(QWD) Read 40%

Read Dominant Insert 20%
9M ops

(QRD) Read 80%

DayTrader [34] Workload Size
Tradesoap Synthetic set 12288 users

(DTS) of stocks 8192 sessions

Table 1: Applications and datesets used for G1.

between the number of applications and the number of tracing
threads. For instance, for G1, we follow Oracle’s recommen-
dation [56] by setting the number of parallel GC threads to be
5 × (core number)/8, and the number of concurrent tracing
threads to be 1/4 of the parallel GC threads. With this ratio
and a per-thread PQ of 1024 entries, we rarely saw overwrites
in our experiments (with our filtering optimizations stated
above). However large the heap is, as long as this ratio re-
mains the same, the size of PQ does not need to change; so
does the work done by MemLiner.

Applications. To evaluate MemLiner, we used a range of
cloud applications including Apache Spark [74] (3.0.0), the
de-facto data analytics system, Apache Cassandra [12] (3.11),
a widely used distributed database, Neo4j [52] (4.3.2), a graph
database, QuickCached [3], a Java implementation of Mem-
cached, as well as DayTrader [34], IBM’s open-source ap-
plication emulating an online stock trading system. These
applications cover a wide spectrum of text and graph analyt-
ics, web services, machine learning tasks, and database query
tasks. For each application, their workloads and datasets are
reported in Table 1.
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Figure 6: Performance comparisons between G1 GC (yellow bars) and MemLiner (green bars) under two local memory ratios:
25% and 13%; each bar is split into application (bottom with light colors) and GC (top with dark colors) time in seconds. The
two dashed lines show application time and total time with unmodified JVM and 100% local memory (no swaps).

The memory access patterns of our applications can be
categorized into three types:

• Mostly sequential access patterns: Spark applications op-
erate over RDDs. An RDD is an object array or serialized
primitive array. Each application thread exhibits clear mem-
ory access patterns, e.g., streaming or stride.

• Random access patterns: QuickCached (a key-value store)
and DayTrader (stock trading simulation) exhibit quite
random memory access patterns.

• Mixed access patterns: Take Cassandra as an example.
Each read/update operation goes through several micro-
operations. Different micro-operations have different mem-
ory access patterns, i.e., the MemTable loading exhibits
a good streaming memory access pattern and some other
calculations access memory randomly. Both Cassandra and
Neo4j belong to this category.

Our experiments considered two local memory ratios: 25%,
and 13% of the total Java heap size (32GB), which are con-
sistent with local memory ratios used in prior work [58, 68].
We enforced these ratios with cgroup.

7.2 Performance with G1 GC

Overall. Figure 6 compares the performance of the baseline
(the default G1 GC) and MemLiner under two different local
memory ratios: 25%, and 13%. As shown, MemLiner offers
better performance over the baseline JVM for all workloads,
1.48× speedup on average under 25% local memory and
1.51× speedup on average under 13% local memory. A sum-

Local Memory G1 GC Shenandoah GC
Configuration App GC All App GC All

25% Local 1.45× 1.65× 1.48× 1.88× 15.33× 2.16×
13% Local 1.46× 1.79× 1.51× 1.60× 6.20× 1.80×

Table 2: Speedups provided by MemLiner for G1 and Shenan-
doah. (speedup: the average time under each configuration
using the unmodified JVM divided by that using MemLiner)

mary of these performance improvements (for the application,
GC, and end-to-end performance) is reported in Table 2.

We also compared the number of swap-in pages between
MemLiner and the unmodified JVM: MemLiner reduces an
average of 81% of on-demand swap-ins and 56% of total
swap-ins (including both on-demand and prefetching swaps).

Compared with running the whole application in local
memory with no swapping (illustrated by dashed lines in
Figure 6), the unmodified JVM incurs 2.17× and 3.73× slow-
downs under the 25% and 13% local memory configurations,
respectively. MemLiner brings them down to 1.47× and
2.48×.

Details. For several workloads (e.g., SLR, STC, CUI, NDC,
QWD and DTS), the default JVM’s GC time increases dra-
matically when the local memory ratio drops from 25% to
13%. This is because when memory resources are tight, con-
current tracing becomes slow with many local-memory cache
misses. It sometimes cannot finish a complete closure before
the heap is full, causing the JVM to pause all application
threads and run a time-consuming full-heap GC. Fortunately,
MemLiner brings down that GC cost, enabling concurrent
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tracing to quickly compute the closure by following the appli-
cations’ accesses and reducing full-heap GCs.

Cassandra’s performance degrades drastically under 13%
local memory. In addition to more frequent full-heap GCs,
this also stems from data spilling. When the memory usage
exceeds a certain ratio (e.g., 2/3) of the heap size, Cassandra
automatically spills data from memory to disk. Since con-
current tracing under a tighter local-memory budget becomes
much slower, the memory consumption frequently exceeds
that ratio, triggering spilling and slowing down the applica-
tion. In these large-scale systems, GC can actually impact the
performance of applications in many unexpected ways.
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Figure 7: Performance comparisons for SKM and STC be-
tween the unmodified JVM and MemLiner under different
local memory configurations.

Different Local Memory Configurations. We ran SKM and
STC with various local-memory ratio configurations and re-
port the performance in Figure 7. As shown, the lower the
ratio, the higher the benefit MemLiner provides. For both
applications, the turning point is around 50%—MemLiner
and the baseline have about the same performance when the
local memory ratio reaches 50% or above.

7.3 Performance with Shenandoah GC

To demonstrate the generality of MemLiner, we implemented
MemLiner in a second garbage collector: Shenandoah[25],
a widely-used highly-concurrent low-pause GC developed
by Red Hat. It performs not only concurrent tracing but also
concurrent object evaluation to minimize pauses.

Shenandoah provides great latency benefits under sufficient
local memory. However, it has extremely poor performance
with remote memory involved. For example, the slowdowns
under 25% memory for our Spark and Neo4j applications are
constantly above 10× and 4×, respectively. Compared to
Neo4j, Spark applications usually have much larger working
sets, leading to more remote accesses. Such a large over-
head highlights the problem of running many concurrent GC
threads that do not align with the application’s memory access.
In particular, Shenandoah is not a generational GC (while G1
is). In G1, when the young generation, which contains short-
lived objects, is full, the JVM suspends application threads
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Figure 8: Performance comparison with Shenandoah GC [25].

Spark Programs Dataset Size
MLlib KMeans (SKM) Wikipedia Polish [4] 1GB
Spark Linear Regression

Wikipedia Polish [4] 1GB
(SLR)

Spark Transitive Closure
Synthetic Graph

1.5M edges
(STC) 384K vertices

Neo4J Programs Dataset Size
PageRank

Wikipedia Slovak [4]
7.6M edges

(NPR) 291K vertices
Triangle Counting

Wikipedia Slovak [4]
7.6M edges

(NTR) 291K vertices

Degree Centrality
Wikipedia min-nan [4]

4.4M edges
(NDC) 429K vertices

Table 3: Benchmarks and datasets for Shenandoah.

and evacuates objects in the young generation. This leads
to excellent data locality after evacuation. However, under
Shenandoah GC, the JVM runs concurrent tracing much more
frequently to scan the full heap to identify and collect garbage.
Those tracing threads exhibit particularly poor locality. To
evaluate Shenandoah, we had to use smaller datasets (Table
3) for a tolerable running time.

As illustrated in Figure 8 and summarized in Table 2, Mem-
Liner achieves an overall 2.16× and 1.80× speedup com-
pared to the unmodified JVM under 25% and 13% local
memory, respectively. MemLiner reduces an average of 82%
on-demand swap-ins and 56% of total swap-ins under 25% lo-
cal memory, while it reduces 79% of on-demand swap-ins and
22% of total swap-ins under 13% local memory. As shown in
Table 2, MemLiner provides tremendous improvements for
Shenandoah’s GC performance, because the unmodified JVM
frequently triggers full-heap stop-the-world GC.

7.4 Comparisons with Other Systems

Leap [48] is an advanced OS-level prefetcher. It uses a major-
vote algorithm to determine how to do prefetches. In cases
where no clear access patterns are seen, Leap aggressively
prefetches consecutive pages. Although this strategy may
improve performance for native applications whose memory
accesses often fall into large arrays, it often hurts managed
applications such as Spark, as GC’s pointer-chasing behavior
often makes prefetched consecutive pages useless.
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Figure 9: Performance comparisons with Leap and Semeru; Semeru crashed on NPR, NTR, and NDC (i.e., Neo4j applications).

Our hypothesis is that even aggressive prefetchers like Leap
cannot handle the interference of GC, and that by aligning the
memory accesses of GC with application threads, MemLiner
can improve application performance under Leap just like
under less aggressive prefetchers. To test our hypothesis, we
compared MemLiner with the unmodified JVM (default G1
GC) both using Leap as the prefetcher. This experiment was
conducted on three Spark applications: SLR, SKM, STC,
and three Neo4j applications: NPR, NTR, NDC, under 25%
local memory.

As shown in Figure 9(a), compared with the unmodified
JVM on Leap, MemLiner improves the overall performance
by an average of 1.6× and reduces 58% of on-demand swap-
ins, as well as 53% of total swap-ins on average. To un-
derstand whether MemLiner improves Leap’s prefetching
effectiveness, we additionally measured Leap’s prefetching
accuracy (i.e., the percentage of page faults hitting on the
swap cache among prefetched pages) and coverage (i.e., the
percentage of swap cache hits among all page faults) with
and without MemLiner. As shown in Figure 9(b), MemLiner
helps Leap deliver higher accuracy and coverage. We still ob-
served that MemLiner is not as useful for STC and NTR as it
is for the two applications. This is because the number of live
objects in STC during concurrent tracing is relatively small,
leading to shorter tracing time and better access patterns. For
NTR, its application threads exhibit random memory accesses
themselves. Hence, Leap cannot detect clear patterns even if
MemLiner has already eliminated much of the interference.

Semeru [68] is a memory-disaggregated runtime, where the
entire Java heap is backed by physical memory on memory
servers and the CPU server’s local memory is used as an in-
clusive cache. Semeru completely redesigned the JVM so that
all the garbage collection is offloaded from the CPU server
to the memory servers, through special lightweight JVMs
running there. Applications execute on the CPU server with
absolutely no GC interference, at the cost of extra computa-
tion on memory servers (i.e., two extra cores for each memory
server to run the offloaded lightweight JVM).

Here, to evaluate whether MemLiner can achieve similar
performance as Semeru, without Semeru’s intrusive changes

to JVM and Semeru’s extra computation load on memory
servers, we ran the same three Spark applications under 25%
local memory on top of (1) Semeru, (2) MemLiner on Se-
meru’s swap system (i.e., a modified version of NVMe-over-
fabrics [1]), and (3) MemLiner on FastSwap [10], which is
the default swap system MemLiner builds on. We ran Semeru
with one CPU server and two memory servers—the Java heap
is partitioned between the memory servers.

As shown in Figure 9(c) , MemLiner’s performance is com-
parable with Semeru when using Semeru’s swap system, and
is much better than Semeru when using MemLiner’s default
swap system. The reason is that, even though Semeru com-
pletely eliminates GC tracing threads from the local machine,
it has to perform a great deal of coordination between servers
to handle cross-server references, incurring communication
overheads. We would have also liked to run Semeru directly
over FastSwap, but this was not feasible due to Semeru’s
runtime-kernel co-design that prevents Semeru from easily
adapting to different swap systems.

We could not directly compare Memliner with AIFM [58]
as AIFM targets native languages (C/C++) applications and
requires rewriting programs. However, the major idea behind
AIFM—swapping at the object granularity—is orthogonal to
MemLiner. MemLiner can also benefit from a redesigned
swap system that performs object-level swapping.

7.5 More Detailed Results
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Figure 10: Memory footprints for SKM, STC, and SLR,
between unmodified JVM and MemLiner under 25% rate.
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Memory Reclamation Impact. Since MemLiner postpones
tracing objects estimated to be remote, it may delay memory
reclamation. To understand the impact of such a delay, we
collected post-GC memory footprints for STC, SKM, and
SLR executed atop the unmodified JVM and MemLiner under
25% local memory configuration. Figure 10 reports, for each
program, both its pre-GC and post-GC memory footprints. As
shown, for all three workloads, MemLiner incurs insignificant
delays in memory reclamation and only a slight increase
in the peak memory consumption. This is because tracing
of each remote object can only be postponed a few times
(i.e., MAX_DL); when the available heap runs low, MAX_DL
becomes 0 and we do not postpone GC at all.
Epoch Estimation Effectiveness. We collected the number
of objects that are scanned from PQ and TQ for three Spark
applications under 25% local memory. The ratio of objects
scanned from PQ over total objects scanned during the con-
current tracing phase is 45%, 42%, and 11% respectively
for SLR, SKM and STC. We also evaluated MemLiner after
disabling epoch estimation: we saw an overall performance
degradation of 8.6%, 8.8% and 11.3% respectively, for SLR,
SKM and STC under 25% local memory.

8 Related Work
Far Memory. Due to rapid technological advances in network
controllers, it has become practical to reorganize resources
into disaggregated clusters [32, 18, 27, 15]. A disaggregated
cluster can increase the hardware resource utilization and has
the potential to overcome fundamental hardware limits, such
as the critical “memory capacity wall” [14, 44, 43, 67, 20, 38,
7, 11]. A body of techniques [10, 30, 6, 58, 68, 61, 63, 68, 31,
69] have been developed to enable applications to use remote
memory and efficiently access remote data.

Among these techniques, a mainstream approach [10, 30,
6] is to provide transparent remote memory access with swap
mechanisms where the running application is not aware of
remote memory, which is mapped into the application host
server as a swap partition. The host server reserves a certain
amount of local memory as a software-managed data cache.
Once the program accesses a page that does not reside in
the data cache, it triggers a page fault, and the swap system
fetches the page from a remote memory server via RDMA.

A traditional swap system was designed for slow and rare
accesses to disks, not for fast and frequent accesses to remote
memory via RDMA. Having realized this speed discrepancy,
existing techniques have performed a variety of optimizations,
e.g., removing redundant block layers [30], leveraging multi-
queues [10], or performing per-application prefetching [48],
all to maximize the paging/swap efficiency. Despite these
commendable efforts, these techniques need to pay a “trans-
parency tax”—since all remote accesses go through the OS
kernel, which incurs a non-trivial overhead. To mitigate such
a software-introduced overhead, work such as AIFM [58]
provides primitives for developers to perform efficient remote

access in the user space. AIFM outperforms swap-based tech-
niques by bypassing the kernel data plane. However, to use
AIFM, applications have to be rewritten (with new primitives),
which can significantly hinder its practical use.

Modern Garbage Collectors. Modern GCs, including Ora-
cle’s Garbage-First (G1) GC [22], Red Hat’s Shenandoah
GC [25], Azul’s pauseless GC [21], and C4 [64], all use
concurrent tracing. Some also perform concurrent memory
compaction [39, 2]. As big data systems gain popularity,
there is a line of work that develops systems for applications
running on the cloud [24, 53, 54, 51, 67], on NUMA ma-
chines [29], as well as using non-volatile memory [67, 71, 9].
Yak [53] is a region-based big-data-friendly GC. Taurus [47]
coordinates GC efforts among workers in a distributed sys-
tem. Facade [54] uses region-based memory management
to reduce GC costs for Big Data applications. Gerenuk [51]
develops a compiler analysis and runtime system that enable
native representation of data for managed analytics systems
such as Spark and Hadoop. Espresso [71] and Panthera [67]
are designed for systems with non-volatile memory. Plat-
inum [70] aims to reduce tail latency for interactive applica-
tions. NUMAGiC [29] is a GC that provides efficiency by
considering NUMA features.

Semeru [68] and Mako [46] are both GCs developed for
memory disaggregation. While they both achieve superior
performance via compute offloading (e.g., running concur-
rent tracing and evacuation on memory servers), offloading
introduces numerous challenges in resource utilization and
cluster scheduling. AIFM [58] performs GC-like memory
compaction to eliminate dead objects to reduce read/write am-
plification. This approach is orthogonal to MemLiner, which
leverages tracing for prefetching.

9 Conclusion

This paper presents MemLiner, a runtime technique that re-
duces the GC-application interference by aligning the mem-
ory accesses of application and tracing threads. We classify
reachable objects into three categories and treat objects in
each category in a different way to achieve the two seemingly
conflicting goals. Our promising results with two produc-
tion GCs demonstrate that MemLiner can be readily used in
today’s datacenters.
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A Artifact Appendix
A.1 Artifact Summary

MemLiner is a managed runtime built for a memory-
disaggregated cluster where each managed application runs
on one server and uses both local memory and remote mem-
ory located on another server. When launched on MemLiner,
the process fetches data from the remote server via the paging
system. MemLiner reduces the local-memory working set
and improves the remote-memory prefetching by lining up
the memory accesses from application and GC threads. Mem-
Liner is transparent to applications and can be integrated in
any existing GC algorithms, such as G1 and Shenandoah.

A.2 Artifact Check-list
• Hardware: Intel servers with InfiniBand
• Run-time environment: OpenJDK 12.02, Linux-5.4, Ubuntu

18.04 with MLNX-OFED 4.9-2.2.4.0
• Public link: https://github.com/uclasystem/
MemLiner

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 MemLiner’s Codebase

MemLiner contains the following three components:

• the Linux kernel, which includes a modified swap system,
• the Java Virtual Machine (JVM) with MemLiner,
• necessary shell scripts and configuration files.

A.3.2 Deploying MemLiner

To build MemLiner, the first step is to download its source
code:

git clone

git@github.com:uclasystem/MemLiner.git

When deploying MemLiner, install the components in the
following order: (1) install the kernel and the RDMA module
on all participating servers; (2) install the JVM with Mem-
Liner on the server that runs the process; (3) connect the
participating servers before running applications.
Kernel Installation. We first discuss how to build and install
the kernel.

• Modify grub and set transparent_hugepage to
madvise:

sudo vim /etc/default/grub

+ transparent_hugepage=madvise

• Install the kernel and restart the machine:

cd MemLiner/Kernel

sudo ./build_kernel.sh build

sudo ./build_kernel.sh install

• Install the MLNX OFED driver:
MemLiner has only been tested on Ubuntu 18.04 with
MLNX-OFED-4.9-2.2.4.0. The driver should be installed
all participating servers.

# @all participating servers
# Remove the incompatible libraries
sudo apt remove ibverbs-providers:amd64

librdmacm1:amd64 librdmacm-dev:amd64

libibverbs-dev:amd64 libopensm5a

libosmvendor4 libosmcomp3 -y

# Download and install the MLNX OFED driver
curl https://content.mellanox.com/ofed/

MLNX_OFED-4.9-2.2.4.0/MLNX_OFED_LINUX

-4.9-2.2.4.0-ubuntu18.04-x86_64.tgz

--output MLNX_OFED.tgz

tar -xzf MLNX_OFED.tgz

sudo MLNX_OFED/mlnxofedinstall

--add-kernel-support

# Enable the openidb and opensmd services
sudo systemctl enable openibd

sudo systemctl start openibd

sudo systemctl enable opensmd

sudo systemctl start opensmd

• Configure and install the MemLiner RDMA module:

# Assign the IP of a memory server into:
# @CPU server
# MemLiner/rswap/client/rswap_rdma.c

char ip[] = "10.0.0.4"; # IP of memory server
# @memory server
# MemLiner/rswap/server/rswap_server.cpp

const char *ip_str = "10.0.0.4";

# Build the MemLiner RDMA module
# @CPU server
cd MemLiner/rswap/client

make clean && make

# @memory server
cd MemLiner/rswap/server

make clean && make

Install the MemLiner (JVM). We next discuss the steps to
build and install the MemLiner JVM on the CPU server.

• Download Oracle JDK 12 to build the MemLiner
JVM:
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# @CPU server
# Assume jdk 12.02 is under path:
# ${HOME}/jdk-12.0.2

cd MemLiner/JDK

./configure -with-boot-jdk=${HOME}/jdk-

12.0.2 --with-debug-level=release

make JOBS=32

# Run the applications with the built JVM.
# The built JVM (MemLiner) is under:
MemLiner/JDK/build/

linux-x86_64-server-release/jdk

A.3.3 Running Applications

To run applications, we first need to connect the CPU and
memory servers. Next, we mount the remote memory pool
as a swap partition on the CPU server. When the applica-
tion uses more memory than the limit set by cgroup, its
data will be swapped out to remote memory via RDMA.

• Launch memory servers:

# @memory server
cd MemLiner/rswap/server

./rswap-server

• Connect the CPU server with memory
servers:

# @CPU server
cd MemLiner/rswap/client

./manage_rswap_client.sh install

• Set a cache size limit for an application:

# For example, create a cgroup with a 9GB
memory limit.
# @CPU server
# Create the cgroup with the name memctl
# $USER is the username of the account
sudo cgcreate -t $USER -a $USER -g

memory:/memctl

# Set the memory limit to 9GB
echo 9g > /sys/fs/cgroup/memory/

memctl/memory.limit_in_bytes

• Add a Spark executor into cgroup:

# Add a Spark worker into cgroup, memctl.
# Its sub-process, executor, falls into the same
cgroup.
# @CPU server
# Modify the function start_instance under:
# Spark/sbin/start-slave.sh

cgexec -sticky -g memory:memctl

"${SPARK_HOME}/sbin" /sparkdaemon.sh

start $CLASS $WORKER_NUM -webui-port

"$WEBUI_PORT" $PORT_FLAG $PORT_NUM

$MASTER "$@"

• Launch the Spark cluster:
Certain JVM options need to be added to run the Mem-
Liner. We use the Spark as an example here. Please
refer to the MemLiner’s code repository for more details
about how to run other applications.

# @CPU server
# Replace the Spark default configuration
cd ${spark-home-dir}/conf

cp MemLiner/config-files/spark-confs/

spark-defaults-memliner.conf

spark-defaults.conf

# Launch the Spark master and worker services
${spark-home-dir}/sbin/start-all.sh

• Run Spark applications:
Specify the Spark application name and local memory
ratio, e.g., 25% or 13%, and then execute the applica-
tions:

# @CPU server
# Para#1 application: lr, km, tc
# Para#2 mem_local_ratio: 25, 13
MemLiner/app-scripts/memliner.sh

${application} ${mem_local_ratio}

More details of MemLiner’s installation and deployment
can be found in MemLiner’s code repository.
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