
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Immortal Threads: Multithreaded
Event-driven Intermittent Computing
on Ultra-Low-Power Microcontrollers

Eren Yıldız, Ege University; Lijun Chen and Kasim Sinan Yıldırım,
University of Trento

https://www.usenix.org/conference/osdi22/presentation/yildiz

Immortal Threads: Multithreaded Event-driven Intermittent Computing
on Ultra-Low-Power Microcontrollers

Eren Yıldız
Ege University, Turkey

Lijun Chen
University of Trento, Italy

Kasım Sinan Yıldırım
University of Trento, Italy

Abstract
We introduce Immortal Threads, a novel programming

model that brings pseudo-stackful multithreaded process-
ing to intermittent computing. Programmers using Immor-
tal Threads are oblivious to intermittent execution and write
their applications in a multithreaded fashion using common
event-driven multithreading primitives. Our compiler fronted
transforms the stackful threads into stackless threads that
waste a minimum amount of computational progress upon
power failures. Our runtime implements fair scheduling to
switch between threads efficiently. We evaluated Immortal
Threads on real hardware by comparing it against the state-
of-the-art intermittent runtimes. Our comparison showed that
the price paid for the Immortal Threads is a runtime overhead
comparable to existing intermittent computing runtimes.

1 Introduction

Advancements in low-power electronics and energy harvesters
exploiting ambient sources (e.g., solar [20], indoor light [21],
and radiofrequency [27]) paved the way for sustainable sys-
tems that can work without batteries. Recent studies have
demonstrated promising examples of these systems, such as
body implants [23] and long-lived wearables [51], where
continuous power is not available and changing batteries
is difficult. There are several microcontroller-based battery-
less computing platforms (e.g., WISP [46], Flicker [24], Ca-
maroptera [42] and Engage [16]) developed by the researchers.
Instead of a battery, these platforms comprise a capacitor
that powers all hardware components, including the ultra-
low-power microcontroller (MCU), sensors, communication
circuitry, and other peripherals. When a batteryless platform
consumes the energy stored in its capacitor, it turns off due
to a power failure. The platform charges its capacitor until
the stored energy exceeds an operating threshold, which turns
on the platform again. Therefore, the software on batteryless
platforms runs intermittently due to frequent power failures
and charge-discharge cycles.

Each power failure clears the CPU registers and the volatile
memory during an intermittent execution. Hence, the com-
putation might not progress forward since the control re-
turns to the application’s entry point [11]. Moreover, power
failures may cause data stored in non-volatile memory to
be partially updated, leading to memory inconsistency [43].
The prior art proposed mainly two approaches to overcome
these issues. The first one is to place checkpoints in program
source [6, 8, 26, 28, 30, 31, 33, 36, 44, 53], which store their
continuation (i.e., the control state including the registers,
stack and global data) in non-volatile memory. After a power
failure, control resumes from the latest successful checkpoint
location. Another approach is to employ a task-based pro-
gramming model [10,19,25,34,37,38,45,54], which requires
programmers to implement their programs as a collection of
tasks and transitions between them. This model eliminates the
cost of checkpoints, since the all-or-nothing semantic of tasks,
defined by the programming model, means that a function
pointer to the current task is enough to represent the contin-
uation of the program, which makes saving and restoring it
from non-volatile memory extremely cheap [10].

Despite efficiency, the task-based model poses significant
problems in developing event-driven applications [17, 32].
This situation prevents the widespread adoption of intermit-
tent systems since most sensing applications are event-driven.
P1-Event Handling Complexity: Event handling, in gen-
eral, is implemented in the form of state machines that require
explicit management of states and transitions [18]. Imple-
menting event-driven applications using the task-based model
requires programmers to manage (i) task partitioning, (ii) task-
based control flow, (iii) event states, and (iv) state transitions
simultaneously. This situation creates an excessive cognitive
burden concerning event-driven intermittent computing.
P2-Limited Concurrency: Existing event-driven task-based
systems (e.g., [45, 54]) cannot fully support preemptive
threads. Since tasks execute atomically, they voluntarily yield
the control, and other tasks cannot preempt them. Moreover,
tasks cannot block on events, trigger new threads of execution,
and notify the completion of event processing. Therefore, pro-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 339

grammers need to partition long-running computation (e.g.,
compression [29]) into a set of tasks to avoid missing events.
P3-Wasted Progress: Partial execution of tasks (due to
power failures) leads to loss of computational progress within
tasks since tasks have all-or-nothing semantics. This issue in-
creases event response time, which is critical for event-driven
systems. Recent work proposed loop continuation to preserve
computational progress after each loop iteration by selectively
violating the task-based model [22] (see Sections 1 and 6).
Problem Statement. Considering the mentioned problems,
we seek a programming model that:
(Req.-1) removes the cognitive load of the task-based model

while retaining its lightweight characteristics;
(Req.-2) brings the flexibility of preemptive multithreaded

programming to intermittent systems;
(Req.-3) enables progress from the point where a thread has

been interrupted due to a power failure.
Challenges. Fulfilling these requirements is not trivial. To
satisfy (Req.-1), Kortbeek et al. [31] proposed giving up the
task-based model and using lightweight and sparse check-
points that save all registers and only the memory segments
modified by the program. However, to fulfill (Req.3), check-
points need to be placed almost at each line in the code. This
situation creates an unmanageable overhead even with these
lightweight checkpoints. Finally, concerning (Req.-2), we
note that it is not enough to use a checkpoint runtime on top
of an existing multithreaded OS, since OS primitives such as
mutexes, semaphores, as well as interrupt handling, must be
implemented taking the intermittence into account, to avoid
memory consistency issues due to partial updates.
Contributions. In this paper, we introduce Immortal Threads
that brings pseudo-stackful preemptive multithreaded pro-
gramming model to event-driven intermittent computing. Pro-
grammers using Immortal Threads are oblivious to intermit-
tent execution and write their applications in a multithreaded
fashion using plain C without tasks (see Figure 1). Im-
mortal Threads compiler fronted transforms stackful threads
into stackless threads, inserts ultra-lightweight checkpointing
mechanisms under the hood to minimize wasted progress, and
maintains the memory consistency. The Immortal Threads
library implements a preemptive scheduler to switch between
threads and provides common event-driven primitives such
as semaphores and blocking event wait operations. Our real-
world experiments showed that Immortal Threads has runtime
overhead comparable to the prior art intermittent runtimes
InK [54], Alpaca [34] and TICS [31]. Moreover, during fre-
quent power failures, Immortal Threads reduced execution
time and wasted work by up to 40% and 90%, respectively.

In summary, Immortal Threads introduces the following
contributions:
(1) Preemptive Multithreading: For the first time, we en-
able preemptive multithreading for event-driven intermittent
systems, which provides programming flexibility and elimi-
nates the cognitive burden of task-based programming.

0TTVY[HS�;OYLHKZ�
&RPSLOHU¬)URQW�(QG�

7DUJHW��
&¬&RPSLOHU�

1*$��¡/$(-¡$.-¡¦
Ĕ�����¡�
���
¢ 1)/£�
§

$((*-/�'¡/#- ��¢�*)1¡/#- ����-".£¦
Ĕ¡� "$)¢�*)1¡/#- ��£�
Ĕ¡� !�$)/��¤�¥�Ĕ¡� !Ĕ$)/��¤�¥�
Ĕ¡� !Ĕ$)/�*0/¤��é}¥�Ĕ
Ĕ�2#$' �¢}£¦
Ĕ�Ĕ��
�¡���
���¢ 1)/��£�
Ĕ�Ĕ¡� !Ĕ$)/Ĕ$�Ĕ¡��¢$�|£�
Ĕ�Ĕ!*-¢�$î��é}�£¦
Ĕ�ĔĔ¡� !Ĕ$)/Ĕ%�Ĕ¡��¢%�|£�
Ĕ�Ĕ�!*-¢�%î��£¦
Ĕ�Ĕ�Ĕ¡��¡��
�¢*0/¤$¥�
Ĕ�Ĕ�Ĕ�Ĕ�Ĕ�Ĕ*0/¤$¥é�¤$é%¥¬�¤��%�}¥£�
Ĕ�Ĕ�Ĕ¡��¡��
�¢%�%é}£�
Ĕ�Ĕ�§
Ĕ�Ĕ�¡��¡��
�¢$�$é}£�
Ĕ�Ĕ§
Ĕ�§
ĔĔ¡)�¢�*)1¡/#- ��£��
§

1*$��¡/$(-¡$.-¡¦
Ĕ�����¡�
���
¢ 1)/£�
§

$((*-/�'¡/#- ��¢�*)1¡/#- ���
�-".£¦Ĕ
Ĕ$)/��¤�¥�Ĕ$)/��¤�¥�
Ĕ$)/�*0/¤��é}¥�

Ĕ2#$' �¢}£¦
Ĕ���
�¡���
���¢ 1)/��£�
Ĕ�!*-¢$)/Ĕ$í|^�$î��é}^�$éé£
Ĕ�Ĕ!*-¢$)/Ĕ%í|^�%î���%éé£
Ĕ�Ĕ�*0/¤$¥éí�¤$é%¥¬�¤��%�}¥�
Ĕ§
§

,]LU[�+YP]LU�*�:V\YJL�
PU°4\S[P�;OYLHKLK°-HZOPVU�

6RXUFH�WR�VRXUFH�
WUDQVIRUPDWLRQ

;OL�WYVNYHTTLY�PZ�VISP]PV\Z�[V�[OL°PU[LYTP[[LU[�L_LJ\[PVU�

;HYNL[°�
0THNL

0TTVY[HS�;OYLHKZ°
3PIYHY`�:V\YJL

&KHFNSRLQWV��
7KUHDG�VFKHGXOLQJ�
(YHQW�KDQGOLQJ�

Figure 1: With Immortal Threads, programmers write appli-
cations in a multithreaded fashion without concerning inter-
mittent execution, and focus only on event-driven aspects.

(2) Almost-Free Checkpoints: We propose a novel check-
pointing technique, inspired by Dunkels et al. [18], that saves
only the program counter rather than all registers and memory.
(3) Just-in-time Privatization: We propose a novel tech-
nique that eliminates the need for creating static versions
of non-volatile program variables to keep memory consistent.
(4) Micro Continuation: Thanks to almost free checkpoints
and just-in-time privatization, threads always progress from
their latest memory update, and they do not waste computa-
tional progress upon power failures.
(5) Open-source Release: We release Immortal Threads as a
C library with compiler support (via [55]) for the widespread
adoption of intermittent computing.

2 Background and Related Work

Batteryless computing platforms comprise ultra-low-power
MCUs with embedded non-volatile memory. For instance,
MSP430FR5969 [48], one of the mainstream MCUs used
in batteryless platforms, has 64kB of FRAM [50] and 2kB
of SRAM memory. FRAM stores data that will persist upon
power failures. The key challenges of intermittent computing
are the loss of computational progress after power failures
and memory inconsistency issues. Power failures reset the
MCU, and the control returns to the application’s entry point.
Moreover, power failures might keep persistent variables (i.e.,
variables maintained in non-volatile memory) partially up-
dated and in an inconsistent state. Code blocks with WAR

340 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(Write-After-Read) dependencies on persistent variables are
not idempotent, since they might produce different results
when the MCU re-executes them after a power failure [43].
For example, assume that x is a persistent variable and the
program executes {x++; vector[x]=v;}. A power failure
after x++ re-executes x++ and leads x to be increased twice.

2.1 Intermittent Computing Approaches
The prior art focused on the forward progress and memory
consistency aspects of intermittent execution but also con-
sidered the timeliness of data processing and event-driven
concurrency.
Checkpoints. In energy-guided checkpointing, the device
continuously monitors the capacitor to perform a checkpoint
on imminent power failure, for example, as in Hibernus [6].
However, voltage monitoring is quite expensive in terms of en-
ergy consumption [52]. In software-only checkpointing (e.g.,
DINO [33], Chinchilla [36] and TICS [31]), the program
source is instrumented with checkpoints, either by a program-
mer or a compiler. The checkpoints are double-buffered in
non-volatile memory to prevent the latest consistent check-
point from being superseded immediately by an inconsistent
(i.e., partially updated) checkpoint. Moreover, a compiler anal-
ysis is required to determine the modified persistent variables
between two checkpoints and create their versions to pre-
vent violations of idempotency upon resumption [33]. After
a power failure, the checkpointing runtime restores the ver-
sions that isolate the code from partially updated versions,
and the control resumes from the latest successful checkpoint
location. There are several other works that aim to reduce the
overhead of checkpoints [3, 4].

&KHFNSRLQWV
7DVN�LQLW^
bZULWH�L�����
bQH[W�W��ˋ
`

7DVN�W�^
bLI�L�1.���b
b�QH[W�W��ˋ
bHOVHb
b�QH[W�LQLW�ˋ
`

7DVN�W�^
bLI��M�.�
b�QH[W�FRQY�ˋ
bHOVH^
b�ZULWH�L�L����
b�ZULWH�M���ˋ
b�QH[W�W��ˋ
b`
`

7DVN�FRQY^
bZULWH�RXW>L@�
b�b�b�bRXW>L@�D>L�M@
E>.�M��@�ˋ
bZULWH�M�M����
bQH[W�W��ˋ
`

7DVN�EDVHG

�
YRLG�FRQY��^
bLQWbD>1@�bLQW�E>.@�
bLQW�RXW>1.��@�

bIRU��L ��L�1.���L���
b�IRUb�M ��L�.�M���^
b�bRXW>L@� D>L�M@
E>.�M��@�
b�bFKHFNSRLQW���b
b�`
`

Figure 2: The task-based and checkpoint-instrumented ver-
sions of a 1-D convolution code. Arrows among the tasks
denote channels that hold versions of task-shared variables.

Task-based Model. This model eliminates the overhead of
checkpoints by proposing tasks that do not have a restora-
tion cost. Tasks have read-only inputs and write-only outputs
(called channels [10]), which are maintained in non-volatile
memory separately. Tasks are inherently idempotent since

separate channels avoid WAR dependencies in the task body.
Runtimes execute tasks atomically with all-or-nothing seman-
tics. The task-based model employs static multi-versioning by
creating multiple copies of the data distributed over the inputs
and outputs of the tasks (see Figure 2). Alpaca [34] avoided
multi-versioning by proposing privatization that creates lo-
cal copies of the task-shared persistent variables. Each task
loads its local copies with the original values, manipulates
local copies, and commits them to the original locations upon
completion.
Timely Execution. Data (processing) might expire due to
charging times during intermittent execution. Mayfly [25],
InK [54] and CatNap [37] proposed extensions to the task-
based programming model to express timely data constraints
and time-critical code. TICS [31] added extensions to check-
pointing systems to enable timely data processing.
Event-driven Intermittent Computing. InK [54] proposed
task threads, which are triggered by events to execute a se-
quence of tasks. Coati [45] handles the event-driven concur-
rency issues by serializing concurrent interrupts with the tasks
to keep the shared persistent state consistent. CatNap [37]
isolated energy for reliable intermittent execution of peri-
odic events, which are time-critical tasks in a task-based
model. TICS [31] does not support event-driven constructs,
but it can checkpoint event-driven legacy code—though these
checkpoints do not guarantee the semantically correct opera-
tion [31] (see Section 5.1).

2.2 Embedded Concurrency Models
Several studies proposed different concurrency models for
embedded systems [2, 7, 29, 32, 32, 40, 41]. We classify the
main differences in these models into two spheres: whether
the concurrency is cooperative or preemptive, and whether the
concurrency units (i.e., “threads”) are stackful or stackless.
Concurrency Approaches. Stackful concurrency has pro-
gramming expressiveness, since continuations can be set any-
where in the thread’s call stack by preserving the local vari-
ables [29]. It is costly since each thread requires its own
stack, and thread preemption requires storing all registers into
the continuation. In stackless concurrency, threads share the
same stack, and local variables are not maintained when a
thread blocks. As an example, Protothreads [18] implements
a stackless cooperative concurrency model. Consequently, a
protothread can yield control only within its main body, not
within the body of a function it calls.
Concurrency and Checkpoints. The former sets continu-
ations (a.k.a. execution context) to switch context among
threads, while the latter sets them to restore the program state
after reboot. Therefore, from the perspective of concurrency,
software-only checkpointing systems are non-preemptive, in
the same way stackful threads voluntarily set a continuation
and yield control. Besides, energy-guided checkpointing sys-
tems are preemptive since they stop thread execution and set a

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 341

Intermittent Runtimes Main Features Timely, Event-Driven
Intermittent Program

Development
Task-based or
Checkpointing

Run-time
Overhead Event-driven Support Cognitive

burden Lost Work Micro Con-
tinuation

Timely
Execution

Dewdrop [9], Mementos [44],
DINO [33], HarvOS [8] Checkpointing High 7 No Support 7 Low 3

Low to High
7

No 7 No 7 N/A 7

Ratchet [53] Checkpointing Very High 7 No Support 7 Low 3 Very Low 3 No 7 No 7 N/A 7
Chinchilla [36] Checkpointing Medium 7 No Support 7 Low 3 Low 3 No 7 No 7 N/A 7

Chain [10], Coala [38],
Alpaca [34] Task-based Low 3 No Support 7 High 7 High 7 No 7 No 7 N/A 7

Mayfly [25] Task-based Low 3 No Support 7 High 7 High 7 No 7 Yes 3 N/A 7
TICS [31] Checkpointing Medium 3 No Support 7 Low 3 High 7 No 7 Yes 3 N/A 7

InK [54], Rehash [5] Task-based Low 3 Limited Support 3 High 7 High 7 No 7 Yes 3 Difficult 7
Coati [45] Task-based Low 3 Limited Support 3 High 7 High 7 No 7 No 7 Difficult 7

CatNap [37] Task-based Low 3 Limited Support 3 High 7 High 7 No 7 Yes 3 Difficult 7
Immortal Threads

(this work)
Checkpointing

(almost zero overhead) Low 3
Full Support 3
(multithreading)

Very Low 3
(almost zero)

Very Low 3
(almost zero) Yes 3 Yes 3

Easy 3(almost the same
as in continuous systems)

Table 1: A comparison of the main features of Immortal Threads with the relevant intermittent computing approaches.

continuation upon an imminent power failure. Intuitively, the
task-based model is a form of static non-preemptive stackless
checkpointing system. Static and non-preemptive because
task decomposition is done at programming time and check-
points are taken only at task boundary, and stackless because
only the active task’s function pointer is checkpointed. Sim-
ilar to stackless threads, the low-overhead of the task-based
model comes at the cost of imposing a programming model
with a high cognitive load.

2.3 Drawbacks of Prior Works
Table 1 presents a comparison of the main characteristics of
this work and the existing intermittent computing approaches.
1- Event-handling Complexity with Tasks. The task-based
implementation of a small deep neural network (DNN) in-
ference in Gobieski et al. [22] has 18 tasks and 61 control
flow declarations. Implementing an event-triggered state ma-
chine using tasks is even more complex. For example, a low-
level radio driver depicted in Dunkels et al. [18, Table 1]
has 26 explicit states and 32 state transitions. Implementing
this driver using existing task-based event-driven intermittent
runtimes [37, 45, 54] requires handling task partitioning and
control flow, states, and transitions simultaneously, which is
an unmanageable cognitive load.
2- Programming Model Violations. Power failures lead to
the waste of computational progress (and energy) when they
prevent the execution from reaching the successive checkpoint
or the end of the current task. For example, a power failure
in the middle of the convolution task while performing the
DNN inference in Gobieski et al. [22] might lead to the loss
of almost 150000 multiplications. Prior work proposed loop
continuation [22] that avoids wasted work by allowing tasks
to directly modify non-volatile memory in a loop nest, which
is a violation of the task-based model.
3- Limited Concurrency. None of the existing intermittent
systems supports the stackful preemptive concurrency model.
As Yildirim et al. [54] comments, checkpointing an existing
preemptive multi-threading operating system is not practica-

ble due to the inefficiency issues and the memory inconsis-
tencies caused by intermittence-unaware interrupt handling.
Similar concerns hold for existing works (e.g., [41]) that can
transform stackful threads into stackless continuations for
continuously powered systems. For the sake of efficiency,
many existing work on intermittent computing utilizes a
lightweight stackless cooperative concurrency approach via
tasks [37, 45, 54].

3 Immortal Threads: Overview

Immortal Threads consists of a programming interface, a
compiler frontend, and a small run-time library, which bring
pseudo-stackful preemptive multithreading model into inter-
mittent computing. Programmers using Immortal Threads are
oblivious to intermittent execution, and they develop their
programs in a multithreaded fashion as they are programming
a continuously powered system. The compiler frontend trans-
forms the source code into stackless continuations that handle
intermittency without programmer intervention.

As depicted in Figure 1, the main building block of an in-
termittent event-driven application is the thread of execution
that continues running from where it left upon power fail-
ures, which we call immortal thread. Unlike the task-based
model (which requires explicit idempotent code generation
via task splitting), the unnecessary details of the intermittent
execution are not visible to the programmers. The duties of
the programmers are to (i) identify the events in their sys-
tem, (ii) design their systems as a set of threads that are the
handlers of these events, (iii) manage the necessary state man-
agement and state transitions, and (iv) consider timing aspects
during event-driven intermittent execution. It is worth men-
tioning that duties (i)–(iii) are identical to the steps followed
to develop event-driven applications in continuously powered
systems [17, 32]. Differently, in (iv), programmers embed (if
required) the necessary program logic to check event expira-
tion due to the delays stemming from the charge/discharge
cycles during the intermittent execution.

342 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Language Construct Explanation

_SEM_WAIT(sem)/_SEM_POST(sem) wait on/post semaphore sem
_SEM_POST_ISR(sem) post semaphore sem in an ISR
_EVENT_SET_TIMESTAMP(e, t) sets the timestamp of e as t.
_EVENT_GET_BUFFER(e) returns a pointer to the data buffer of e
_EVENT_GET_TIMESTAMP(e) returns the timestamp of e

_EVENT_WAIT(e,buf) blocking wait on e w/o expiration time, re-
turns the event data via buf

_EVENT_WAIT_EXP(e, buf, t) blocking wait on e w/ expiration time t, re-
turns the event data via buf

_EVENT_SIGNAL(e) signals the event and unlocks the thread wait-
ing on the event

Table 2: Immortal Threads core language constructs.

3.1 Programming Model

Immortal Threads supports the common multithreaded event-
driven language constructs, as presented in Table 2.
Timely Events and Blocking Wait. Immortal Threads pro-
vides an event primitive that builds a bridge between threads
and ISRs (interrupt service routines). Threads can block (i.e.,
wait) on events using _EVENT_WAIT and _EVENT_WAIT_EXP

interfaces, which suspend threads until the relevant event oc-
curs. Signaling an event via the _EVENT_SIGNAL interface
unblocks the waiting thread to continue its execution. Immor-
tal Threads cannot guarantee event handling deadlines, but
programmers can provide an expiration time to catch outdated
events and prevent unnecessary event processing. To detect
event expiration, programmers can use _EVENT_WAIT_EXP,
which subtracts the current time from the timestamp of the
event. This interface unblocks the corresponding thread if
the result of the subtraction is less than the expiration time
provided by the programmer. Blocking wait interfaces also
pass a pointer to the event data to let the waiting thread copy
these data into its thread-local buffer.
Wait and Post Semaphores. Immortal Threads provides a bi-
nary semaphore implementation for inter-thread signaling. A
thread can block (wait) on a semaphore using the _SEM_WAIT
interface. Another thread can post this semaphore using
_SEM_POST interface to unblock that thread. ISRs can also
post semaphores using a separate interface _SEM_POST_ISR.
ISRs and Event Signaling. In Immortal Threads model, in-
terrupts have all-or-nothing semantics. ISRs interface with
the hardware, obtain the data, and deliver it to threads. Each
ISR has an associated event structure. When an interrupt
(i.e., an event) occurs, the ISR obtains a pointer to the event
data buffer via the _EVENT_GET_BUFFER interface. ISRs store
the event data (e.g., the sensor reading) into this buffer and set
the event timestamp via _EVENT_SET_TIMESTAMP. ISR com-
mits these changes atomically and notifies the waiting thread
via the _EVENT_SIGNAL interface. A power failure up to this
point might lead to an event loss. Otherwise, the notified
thread will obtain the event data and perform the necessary
processing.

Language Construct Explanation

_begin(name)/_end(name) immortal body start/end

_def/_gdef
pseudo local variables and persistent global vari-
ables

_WR(arg,val) arg = val (variable assignment operations w/o W-
A-R, e.g., x=5)

_WR_SELF(type,arg,val) arg = (type) val (variable assignment operations
w/ W-A-R, e.g., x++)

_call(name,...) call immortal function name with appropriate ar-
guments

Table 3: Main interfaces used by the compiler frontend.

BLPPRUWDOBWKUHDG�WKUHDG��^
b�
�WKH�PDLQ�WKUHDG�ERG\�
��
bBEHJLQ
b�
�YDULDEOH�GHFOHUDWLRQV�
�
bBGHIbXLQW�BWbFQW�
b����
b�ZKLOH���^
b�bB(9(17B:$,7�HYHQW��
b�b�
�QHFHVVDU\�DFWLRQV�
�
b�bB:5B6(/)�XLQW�BW�FQW�FQW����
b�b���
b�b�
�QRWLI\�WKUHDG���
�
b�bB6(0B3267�VHP��
b�b���
b�`
bBHQG
`

YRLG�BWLPHUBLVUB^
b�
�QRWLI\�HYHQW�
�
bB(9(17B6,*1$/�HYHQW��
`

BLPPRUWDOBWKUHDG�WKUHDG��^
b�
�WKH�PDLQ�WKUHDG�ERG\�
�
bBEHJLQ
b����
b�ZKLOH���^
b�B6(0B:$,7�VHP��
b��
�QHFHVVDU\�DFWLRQV�
�
b�BFDOO�RWKHUBIXQFWLRQ��
b����
b`
bBHQG
`

Figure 3: Output of the compiler frontend. Initially thread1

and thread2 are blocked. The timer ISR signals the event
and unblocks thread1 that unblocks thread2.

3.2 Execution Model and Multi-threading
Immortal Threads employs a multithreaded preemptive exe-
cution model by implementing a simple but efficient Round-
Robin scheduling mechanism. Threads are initially blocked
on events, waiting for ISRs to signal them. When an inter-
rupt is triggered, the corresponding ISR signals an event, and
the event handler thread wakes up and performs the com-
putation. Therefore, there might be several threads running
simultaneously during the execution of programs. Thanks to
the compiler frontend, Immortal Threads manages the for-
ward progress and memory consistency without programmer
intervention.

3.3 Pseudo-Stackful Threads
The Immortal Threads compiler frontend performs a source-
to-source transformation to convert the stackful threads into
stackless continuations by employing almost-free checkpoints
and just-in-time privatization. To do so, it uses the interfaces
in Immortal Threads library (see Table 3). After the compiler
pass, the transformed source code is linked with the Immortal
Threads library. Figure 3 presents the output of the compiler
frontend for a multithreaded event-handling example.

The compiler frontend instruments all programmer-defined
functions, including thread entry points, to create immortal

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 343

functions. More specifically, an immortal thread is a concur-
rency unit whose entry point is an immortal function.
Instrumentation of an Immortal Function. The compiler
frontend instruments all local variables by using _def fol-
lowed by the data type and name (i.e., the ordinary way
of variable declaration in C language). This operation con-
verts programmer-defined local variables to persistent static
variables with local scope. Compiler frontend instruments
variable manipulations using _WR and _WR_SELF interfaces
to ensure memory consistency. These interfaces manage
WAR dependencies, perform checkpoints, and keep func-
tions idempotent. _WR manipulates variables when the up-
date operation does not include any WAR dependency.
_WR_SELF manipulates variables when there is a WAR de-
pendency during the update operation. For example, the Im-
mortal Threads library implements the assignment {x=0} us-
ing _WR(x,0) since there is no WAR dependency during
this update. For {x=x+5}, the necessary operation becomes
_WR_SELF(uint32_t,x,x+5) since the variable x is read
first and then written. Immortal Threads provides different
interfaces for variable manipulations with WAR dependen-
cies to implement just-in-time privatization, which we will
explain in Section 4. Additionally, calls to other immortal
functions in an immortal function body are instrumented with
the _call interface, which makes setting micro-continuations
inside called immortal functions possible. Finally, the com-
piler frontend also instruments the function body by wrapping
it using _begin/_end block. When a thread starts running for
the first time, the first instruction in its entry immortal func-
tion is executed. If a power failure interrupts thread execution,
the thread continues from the last checkpoint performed by
the underlying Immortal Threads runtime, which can also be
deep down in the call stack.
Thread Preemption. Unlike common preemptive models,
where the continuation is saved on preemption, Immortal
Threads saves the continuation (i.e., checkpoint) on each mem-
ory update. This guarantees the idempotence of the execution
until the next checkpoint. Therefore, the scheduler can simply
interrupt the execution of a thread and switch to the other one.

4 Implementation of Immortal Threads

We implemented Immortal Threads library mainly using stan-
dard C macros and preprocessor directives. The library also
includes functions for system initialization and scheduling
operations. We implemented the source-to-source transforma-
tion using the LLVM & Clang LibTooling library [1].
Target Hardware. The current implementation of Immortal
Threads library targets MSP430FR5994 [48] microcontroller
from Texas Instruments that is equipped with 256KB FRAM
and 8KB SRAM memory. Immortal Threads library uses a
persistent time circuitry (which keeps track of time across
power failures [14, 15]) to handle events and data expiration.
It is worth mentioning that a persistent timekeeper is not a

VWDWLF�BIUDP�SULYBEXIBW�BSULYBEXI�
YRLG�
WK�YRLG�
DUJV�^�

bVWDWLF�BIUDP�LPPBIXQFBW�WKLV�
bVZLWFK��WKLV�SF�^
b�FDVH���
b�bVWDWLF�BIUDP�LQW�D>1@ˋ�
b�bWKLV�SF� �BB&2817(5BB�����
b�FDVH�BB&2817(5BB�
b�bL� ���
b�bIRU�ˋL���1��ˋ�^
b�b����
b�b`
b`
`�

BLPPRUWDOBWKUHDG�WK�^
b
bBEHJLQ�
bbBGHIbLQW�D>1@ˋ�
b�B:5�L����
b�IRU�ˋL���1��ˋ�^
b�b���
b�`
bBHQG
`

$IWHU�&RPSLOHU�3DVV
$IWHU�&�3UHSURFHVVRU

Figure 4: The structure of a source file after C preprocessor.

mandatory requirement for Immortal Threads runtime since
it will work even without checking event time constraints. On
the other hand, de facto intermittent computing platforms, e.g.,
Flicker [24], already include a persistent timekeeper circuit.

4.1 Immortal Function and Threads
Each immortal function (which can also be the entry point of
a thread) maintains imm_fn_t structure that comprises a pro-
gram counter (pc) to enable micro continuations, and a pointer
to the same structure (callee) for calling other functions (via
_call). For the just-in-time privatization operations, a privati-
zation buffer (represented by priv_buf_t) is also maintained.
All local variables are allocated in non-volatile memory as
variables with static storage duration, which makes immor-
tal threads (based on immortal functions) stackless. Figure 4
presents a sample output of the C preprocessor, which depicts
how the privatization buffer (__priv_buf) and the function
structure (this) are allocated in non-volatile memory.

4.2 Enabling Micro Continuations
Threads can be interrupted at any time by power failures, and
their execution continues from the latest checkpoints. Immor-
tal Threads library performs an almost-free checkpoint at each
memory update via the _WR and _WR_SELF interfaces. Mem-
ory updates that lead to WAR dependencies (i.e., _WR_SELF)
require just-in-time privatization to keep memory consistent.
Almost Free Checkpoints. Figure 4 presents how
_begin/_end blocks (which are just C macros) are trans-
formed into _switch/_case structures in C. Since the
imm_fn_t structure for each immortal function is statically
allocated, the pc field of is initialized with zero. Therefore, a
function initially starts by executing its first case block case

0:. The almost-free checkpoint is just adding a new case
statement at compile-time and modifying pc of the function.
We implemented almost-free checkpoints using the standard
GNU C preprocessor macro __COUNTER__, whose value in-
crements each time the preprocessor encounters it. We imple-
mented the core checkpoint code as follows:

344 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

#define _CP() \

this.pc = __COUNTER__ + 1; case __COUNTER__:

If the thread (in which the function is running) restarts, the
execution will continue from the case statement of the last
checkpoint. However, only checkpoints are not sufficient to
keep memory consistent. As indicated previously, _WR per-
forms single-memory updates that do not lead to WAR de-
pendencies. However, a sequence of operations _WR(x,y);
_WR(y,z); form a WAR dependency. Therefore, we need to
take a checkpoint before each memory update operation using
_WR. We implemented this macro as follows:
#define _WR(arg,val) _CP(); arg=val;

Just-in-Time Privatization. Single memory updates that in-
clude WAR dependencies, e.g., x++, require a two-phase com-
mit operation to keep memory consistent. In the first phase,
Immortal Threads library creates a private version of the vari-
able in the privatization buffer (__priv_buf) and updates the
private version. Then a checkpoint is taken. In the second
phase, Immortal Threads library commits the private version
to the original variable. We present the implementation of the
_WR_SELF macro that captures these steps below:
#define _WR_SELF(type,arg,val) \

_CP(); *((type*)&__priv_buf.buffer)=val;\

_CP(); arg=*((type*)&__priv_buf.buffer);

Thanks to just-in-time privatization, Immortal Threads does
not require a compiler analysis to detect idempotent code
blocks, as in Woude et al. [53]. Furthermore, there is no
need for static versioning, as in Colin et al. [10]. Immortal
Threads library forms a continuous sequence of idempotent
code blocks by connecting them using almost-free check-
points on the fly.

Calling other functions. When there is a power failure while
a callee executes, the control should resume from the last
memory update in the callee body. To call an immortal func-
tion, Immortal Threads library first checkpoints, saves the
pointer to the callee in the caller’s _imm_fn_t structure, and
then makes the call as shown in the following pseudo-code:
#define _call(name,args) \

_CP(); this.callee=name(args); \

_CP(); this.callee->pc = 0; _CP();

If the callee successfully returns, the caller sets the program
counter (pc) of the callee to zero and checkpoints. Conse-
quently, the function will be able to be called again. If there
is a power failure before the callee returns, the thread execu-
tion will restart from the entry immortal function, which will
perform a set of nested function calls to reach the callee that
has not finished yet. Therefore, the execution resumes from
the last memory update in the leaf callee’s body.

BBDVPBB�YRODWLOH��
b�029$�63�������
�VDYH�63�RQ�BBVS�YDULDEOH�
�
b��� P���BBVS���
�RXWSXW�
���

ZKLOH�����^
bIXQFWLRQV>BBWK@������
�FDOO�WKUHDG�
�
bBBDVPBB�YRODWLOH��
b��,65BUHWXUQ��?Q���
�BVFKHG,65�ZLOO�MXPS�KHUH�
�
b��029$�����63�?Q���
�UHVWRUH�ROG�VWDFN�
�
b��,1&�%����?Q�b�bb�
�BBWK���
�
b��&03�%�������?Q���
�LI��BBWK� �VL]H��
�
b��-1=�FRQW�?Q�
b��&/5�%����?Q�b�bb�
�BBWK� ���
�
b��FRQW��?Q�
b���� P���BBWK�b�bb�
�RXWSXW�
�
b����P���BBVS����P���BBWK����P���VL]H��
�LQSXW�
���
`

YRLG�BBLQWHUUXSW�7,0(5�B$�B9(&725��BVFKHG,65�YRLG�^
b�
�ZULWH�UHWXUQ�DGGUHVV�,65BUHWXUQ�
�
bBBDVPBB�YRODWLOH���029�:��,65BUHWXUQ����63����
`

Figure 5: The Round-Robin scheduler, which is the only
platform-specific code in Immortal Threads library.

4.3 Thread Scheduling Implementation

The Immortal Threads scheduler includes platform-specific
assembly code that switches the execution from the current
thread to the next one. Figure 5 presents a part of our sched-
uler implementation. When the system restarts, the value of
the stack pointer is saved in the variable __sp. The array
functions contains pointers to the thread entries that are
ready to run. The while loop indexes the threads with the
persistent variable __th and calls them in order.

When the periodic timer of the scheduler fires, it interrupts
the current thread, and the execution jumps to the _schedISR
ISR routine. This ISR modifies the stack to replace the inter-
rupt return address with the address of the label ISR_return
in the scheduler loop. Upon interrupt return instruction (ISR
routines execute iret upon return), the execution jumps to
ISR_return label. At this point, the stack pointer is restored
(using the old stack pointer in __sp) to continue the execution
of the scheduler loop using its stack frame. Then, the value of
the index __th is incremented, and the corresponding thread
function is called. It is worth mentioning that thanks to micro
continuation, the interrupted thread will not be in an incon-
sistent state. When the scheduler loop starts running again, it
will continue execution from its latest checkpoint. Indeed, the
ISR interruption acts as an artificial power failure.
Semaphores, Events and Data Races. Power failures might
break the atomicity of operations on semaphores and events
(e.g., post and wait) and might lead to data races. For example,
if a thread modifies the semaphore but does not checkpoint
due to a power failure, it will post the semaphore again after
recovery. This situation leads to incrementing the semaphore
twice. To prevent such issues, Immortal Threads library im-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 345

plements event and semaphore operations by employing two-
phase commit and double buffering, which are the main tech-
niques proposed in the prior art to keep memory consistent
despite power failures [31,34,54]. These operations firstly up-
date the temporary values dedicated to events and semaphores.
Then, the temporary values are atomically committed to their
original locations. Upon system reboot, the scheduler checks
if there is an uncommitted semaphore or event operation. If
this is the case, it commits this operation. Then, it enables the
interrupts and starts executing the threads. Immortal Threads
library manages the data races between ISRs and threads
by employing the same approach. Each event has a double-
buffered event data buffer. An ISR does not modify the origi-
nal buffer and immediately overwrites the event data. It uses
the temporary buffer and then atomically commits it using a
two-phase commit operation. These operations prevent the
data races and inconsistency issues.

4.4 Compiler Frontend Implementation
We implemented Immortal Threads compiler frontend us-
ing the LLVM & Clang LibTooling framework. The AST
produced by Clang is generally immutable, and source code
rewriting cannot be directly reflected on the AST and its as-
sociated metadata. Therefore, it is necessary to keep track
and manage the position offsets introduced by the transforma-
tions and solve conflicts when these transformations overlap.
This limitation of Clang libraries, combined with the relative
complexity of the entire source transformation for Immortal
Threads, led us to adopt a multi-pass architecture inspired
by the LLVM IR Pass framework. Each pass matches some
parts of the AST and performs the appropriate source code
rewriting. The rewritten source code is used to generate a new
AST, on which the next pass operates.
Syntax Decomposition. One of the main challenges for
source-to-source transformation is the switch constructs
used in Immortal Threads lightweight checkpoints, which al-
low checkpoints only with a statement granularity. However,
C programs might include expressions with WAR dependen-
cies inside them, so it must be possible to perform checkpoints
inside expressions. To this end, we decomposed these syntax
constructs into separate statements so that it is possible to
perform Immortal Threads lightweight checkpoints. In do-
ing so, we paid special attention to aspects such as operator
precedence and short-circuit evaluation.
Pessimistic Privatization due to Aliasing. The _WR_SELF

interface, which performs JIT privatization, must be used for
assignments where the left-hand side operand aliases with
the right-hand side operand. In general, it is not possible to
deduce all such aliases at compile time, e.g., when pointers
are involved. Our current implementation pessimistically uses
_WR_SELF instead of _WR when at least one operand contains
a pointer dereference. We left integrating more advanced
aliasing analysis as future work.

Shim API replacement. While a significant portion of the
Immortal Threads operations is hidden from the programmer
by the compiler frontend, primitives such as semaphores, mu-
texes, etc. (see Table 2) are visible to the programmer. These
primitives have C macro-based implementations that generate
_case statements for _switch blocks, which are inserted by
the compiler frontend via _begin and _end statements later.
Therefore, Clang fails to generate the initial AST that sets off
the transformation pipeline. We solved this issue by providing
these primitives as shim functions, and the compiler frontend
replaces them with their actual macro-based implementations.
Pass Grouping Optimization. While the compilation time
of the C language by modern compilers such as Clang is
generally fast enough, having to re-parse the translation unit
after each transformation is still a noticeable overhead when
long source files are involved. Some of the presented passes
depend on others. For example, instrumenting assignments
with _WR and _WR_SELF is easily performed once syntax de-
composition is done. On the other hand, some passes operate
on orthogonal elements of the AST, for which we don’t need
to worry about source rewriting conflicts. We grouped these
passes and executed them using the same AST.
Compiler Directives and Code Optimization. In excep-
tional cases, the programmer can modify the behavior of the
Immortal Threads compiler using custom attribute directives
(__attribute__). For example, we allow the programmer to
mark idempotent functions so that they are not instrumented
for the sake of some manual optimizations. This feature re-
duces the overhead of frequent checkpoints but creates a risk
of wasted work. In Section 6 we discuss ways to improve this
aspect. Furthermore, we also implemented a specific com-
piler optimization to coalesce successive WR and WR_SELF

macros in the code to eliminate frequent checkpoints that
might degrade the execution time of time-sensitive computa-
tional loads. The programmer can enable this optimization by
passing a flag to the compiler frontend. In this case, the com-
piler puts the best effort to reduce the number of checkpoints
in basic blocks. In summary, Immortal Threads compiler fron-
tend enables the developers to select the trade-off between
the checkpointing overhead and wasted work based on the
specific requirements of their applications.
Switch Statements. We allow programmers to use a subset
of the switch statement in their code (unlike Protothreads,
which does not permit programmers to use switch statements).
Specifically, we support switch statements in which all the
statements associated with case labels either finish with a
break statement or are empty, i.e., the case directly falls
through to the next case. Given the constraint we put, it is
straightforward to transform such use of the switch into an
equivalent if/else based code. The compiler frontend termi-
nates with an error message if it encounters an unsupported
usage of the switch statement.
Function Reuse. Immortal Threads needs to create different
instances of thread-shared immortal functions to prevent data

346 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

BLPPRUWDOBIXQFWLRQ�P\IXQF�BLG��^�
bbBEHJLQBPXOWL�BLG���
b�b����
b�bBGHIbLQW�D>�@�
b�bB:5��D>BLG@�������
b�bB:5B6(/)�LQW���D>BLG@����D>BLG@�������
b�BHQGBPXOWL�

BIQBPD[BLQVWDQFHV�����
����
YRLGbP\IXQF�YRLG��^�
b����
b�LQW�D� ���
b����
b�D���
b����
`� &�6RXUFH�)LOH $IWHU�&RPSLOHU�,QVWUXPHQWDWLRQ

Figure 6: The compiler instrumented version of a sample func-
tion myfunc that is shared among multiple immortal threads.

races and memory inconsistencies. We implemented func-
tion reuse through a combination of compiler and Immortal
Threads library support. Figure 6 presents a sample function
that is shared among several immortal threads, and its instru-
mented version. The programmer uses a compiler directive
(_fn_max_instances as indicated in the figure) to declare
the maximum number of concurrent callers for the shared
functions in the application. If the number of instances is
not provided, the compiler can also use a default number to
avoid programmer intervention. Our compiler modifies the
signature of each shared immortal function by prepending
an id parameter. Moreover, the compiler also transforms all
local variables into arrays whose lengths correspond to the
number of instances. Thus, each access to any local variables
becomes an array access, where the index is the id. Alter-
natively, to avoid the overhead of accessing the array, the
Immortal Threads compiler can also create copies of the same
immortal function at the source code level. Therefore, it can
replace the original immortal function’s body with a call table
that calls the appropriate function copy depending on the id
parameter. This support lets the developer trade executable
size for runtime efficiency. Besides, for each shared immortal
function, the compiler allocates an associated metadata data
structure containing a bitmap to represent unused instances,
where each bit that is one represents a free instance. We
present the pseudo-code of the macro that is used for calling
shared functions as follows:
#define _call_multi(name,args) \

_CP(); get_instance_id(&this->callee_id); \

this.callee=name(this->callee_id, args); \

_CP(); release_instance_id(&this->callee_id); \

this.callee->pc = 0; _CP();

The caller of an immortal function must first get a free in-
stance, that is, access the bitmap and clear a bit that is set (us-
ing get_instance_id). It is worth mentioning that not get-
ting a free instance should not happen by design. The program-
mer must ensure to provide the correct _fn_max_instances
number configuration. If no free instance is available at run-
time, it’s an assertion failure. Once the immortal function
returns, the caller must release the called immortal func-
tion instance by setting the previously cleared bit (using
release_instance_id). As a side note, recursive functions

are not supported in the current implementation of Immortal
Threads. We argue that this is not a significant limitation, as
recursion is generally avoided in embedded systems.

5 Evaluation

We proceed with the evaluation of Immortal Threads by pre-
senting a performance comparison against three state-of-the-
art runtimes Alpaca [34], InK [54], and TICS [31].
Benchmarks. We selected Bitcount (BC), Cuckoo Filter (CF),
and Activity Recognition (AR) as the main benchmarks since
they are widely used in previous works [31, 34, 54]. We
also considered the DNN inference presented in Gobieski et
al. [22] as a benchmark since the inference operations are com-
putationally intense (e.g., the first convolution layer requires
150080 multiplications) and access non-volatile memory ex-
cessively (FRAM is more expensive compared to SRAM
access). We used the BC, CF, and AR implementations in
publicly available code repositories of Alpaca, InK, and TICS
during our evaluations. We also considered the publicly avail-
able plain C versions of these benchmarks, which we call
Plain-Ram, where all variables are in SRAM (no FRAM ac-
cess). Therefore, they do not have overheads regarding non-
volatile memory access, checkpoints, privatization, etc. More-
over, we created the Plain-Fram versions of these benchmarks
where all variables are maintained in FRAM. Therefore, they
have an additional FRAM access overhead compared to Plain-
Ram versions. Note that the Plain-Ram and Plain-Fram imple-
mentations do not guarantee forward progress and memory
consistency.
Compiler Directives. In the task-based implementations of
the benchmarks (in Alpaca and InK), we observed that some
functions are not declared as tasks to reduce task transition
overheads and employ a manual compile-time optimization
for these task-based systems. These functions are idempo-
tent since they do not modify their inputs or global variables.
Moreover, they are mostly small in size and frequently called
at runtime. Similarly, in Immortal Threads implementations
of these benchmarks, we annotated these idempotent func-
tions (using the compiler directives mentioned in Section 4.4)
to bypass unnecessary compiler instrumentation and reduce
the number of checkpoints and the execution time overhead
of Immortal Threads. Using annotations, we marked eight
functions in BC, six functions in CF, three functions in AR,
and seven functions in DNN, respectively. Furthermore, for
the DNN benchmark, we enabled the checkpoint coalesc-
ing feature of our compiler frontend to reduce the memory
access overhead of the data-intensive computations. These
features of Immortal Threads compiler frontend allowed us
compile-time optimizations without programmer involvement
(excluding the annotation of idempotent functions).
Target Platform and Tools. We used the MSP-EXPFR5994
evaluation board [48], which includes 256kB FRAM and
4kB SRAM memory and can operate at up to 16MHz. We

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 347

Bitcount (BC) Cuckoo (CF) Activity (AR) DNN
Time (ms) Energy (µj) Time (ms) Energy (µj) Time (ms) Energy (µj) Time (ms) Energy (µj)

Plain-Ram 24.73 41.54 36.81 63.30 822.78 1415.53 7 7
Plain-Fram 213.23 344.57 48.03 87.71 1053.75 2073.65 33624.60 59710

Alpaca 285.29 690.46 79.25 210.25 1897.90 5175.50 41787.88 77537
InK 497.19 1287.05 376.12 1016.49 3100.97 8707.40 46994.33 91961

TICS 482.38 1205.20 1229.30 2025.70 2667.16 7106.80 7 7
Immortal Threads (IT) 274.43 456.31 53.91 108.15 2503.45 4917.10 69215.54 147595

Table 4: Execution time and energy consumption of the benchmarks on continuous power.

Immortal Threads Alpaca InK TICS
Avg. Task
Size (µs)

Avg. Checkpoint
Overhead (µs)

Tot. Invoked
Checkpoint

Avg. Task
Size (µs)

Avg. Task Trans.
Overhead (µs)

Tot. Task
Transition

Avg. Task
Size (µs)

Avg. Task Trans.
Overhead (µs)

Tot. Task
Transition

Avg. Task
Size (µs)

Avg. Checkpoint
Overhead (µs)

Tot. Invoked
Checkpoint

BC ⇠50.33 ⇠14.44 4236 280.97 127.56 709 169.69 537.78 709 2028.38 475.31 709
CF ⇠31.97 ⇠9.52 1299 61.92 121.08 451 129.23 776.50 419 1110.58 454.72 518
AR ⇠23.22 ⇠17.00 30223 829.87 124.55 2001 880.36 670.06 2007 245.14 411.14 1130

DNN ⇠20.57 ⇠14.45 1865103 16742.40 570.05 2412 31765.28 1130.26 1486 7 7 7

Table 5: Average execution time of a task, and task transition/checkpoint overhead.

used the 1 MHz frequency during the experiments on per-
formance comparison (to be compatible with existing stud-
ies [31, 34, 54]. We used the GNU GCC v9.2.0.50 to compile
our applications. To measure the time overhead and energy
consumption, we used a logic analyzer and TI EnergyTrace
software [49], respectively. We used the Powercast TX91501-
3W [12] RF transmitter operating at 915 MHz center fre-
quency to power wirelessly our evaluation board connected to
the P2110-EVB [13] RF receiver. We used the 1mF and 50mF
capacitors on P2110-EVB as energy storage to observe differ-
ent power failure patterns. We also emulated power failures
for the repeatability and replicability of comparative mea-
surements. We generated a random soft reset triggered by an
MCU timer with a uniformly distributed firing period in the
interval of [5ms, 20ms] (as in Yildirim et al. [54]).
Evaluation Metrics. We considered execution time and en-
ergy consumption as the main metrics to evaluate the bench-
marks. We also measured wasted work (which denotes compu-
tational progress lost due to power failures), runtime overhead
introduced to progress the computation and keep memory con-
sistent, and the memory requirements and code sizes of the
benchmark implementations.

5.1 Evaluation Using BC, CF and AR
The InK and Alpaca implementations of the benchmarks
have identical task boundaries. We placed TICS checkpoints
aligned with task boundaries in the InK and Alpaca imple-
mentations for the sake of a fair comparison.
Continuous Power. Table 4 presents the continuously-
powered execution time and energy consumption of the bench-
marks. These benchmarks have different characteristics; for
example, BC accesses memory more frequently to manipu-
late variables, and CF is more computationally dense. The
differences in the time and energy overheads of the plain-Ram
and plain-Fram versions show that intermittent computing,

which requires frequent FRAM access, comes with signifi-
cant overheads. Immortal Threads, InK, Alpaca, and TICS
introduce additional overhead to Plain-Fram versions of the
benchmarks to ensure forward progress and memory consis-
tent. We observed that the performance of Immortal Threads
is quite comparable to that of InK, TICS, and Alpaca during
the continuous execution of the benchmarks. The reason is
that InK and Alpaca need to perform bulk copy operations to
commit the temporary buffers atomically during task transi-
tions. Similarly, TICS needs to copy the stack and registers
upon each checkpoint. Even though Immortal Threads main-
tains all variables in FRAM (which increases the time and
energy overhead), almost-free checkpoints reduce the check-
pointing cost, and just-in-time privatization eliminates block
FRAM copy operations. Table 5 summarizes the average exe-
cution time of a task and the overhead of task transitions and
checkpoints.
Intermittent Power. Figure 7 presents the wasted computa-
tional progress due to power failures and runtime overheads
during intermittent execution with randomly generated power
failures. The runtime overhead in InK and Alpaca is mainly
due to the undo and redo logging operations performed by the
tasks to recover computation upon power failures. Alpaca has
a lower task transition overhead since it only double-buffers
the task-shared variables with WAR dependencies and com-
mits them upon task completion. Similarly, the overhead of
TICS is due to the checkpoints and their restoration. TICS
has more commit overhead since it checkpoints at the end of
each task boundary, which requires a large bulk memory copy
operation compared to task transitions in InK and Alpaca (see
Table 5). During our experiments, Alpaca implementations
of the benchmarks led to shorter task execution times and re-
duced wasted work since Alpaca introduced a lower runtime
overhead compared to InK and TICS. In Immortal Threads,
the runtime overhead is the total overhead of almost-free
checkpoints, just-in-time privatization, and restoring compu-

348 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time(s)

IT

Alpaca

InK

TICS

Application
Overhead
Wasted Work

(a) Bitcount

0 0.5 1 1.5 2

Time(s)

IT

Alpaca

InK

TICS

Application
Overhead
Wasted Work

(b) Cuckoo Filter

0 1 2 3 4 5 6

Time(s)

IT

Alpaca

InK

TICS

Application
Overhead
Wasted Work

(c) Activity Recognition

Figure 7: Total execution time, runtime overhead and wasted work with controlled power failures.

Continuous Random PF
0

10
20
30
40
50
60
70
80
90

100

E
x

ec
u

ti
o

n
 T

im
e(

s)

Plain-Fram
IT
Alpaca
InK

(a) Cont. power and controlled power failures.
80 cm 100 cm 120 cm

0

100

200

300

400

500

600

700

E
x

ec
u

ti
o

n
 T

im
e(

s)

IT
Alpaca
InK

(b) RF-powered, 1mF capacitor.
70 cm 75 cm 80 cm

0

100

200

300

400

500

E
x

ec
u

ti
o

n
 T

im
e(

s)

IT
Alpaca
InK

(c) RF-powered, 50mF capacitor.

Figure 8: DNN benchmark with continuous power (Cont.), controlled power failures and RF power (at different distances).

tation. Conceptually, idempotent code blocks between two
successive memory updates in Immortal Threads can be con-
sidered as a tiny task. These micro-continuations reduced
wasted work and the total execution time significantly com-
pared to existing runtimes.

5.2 Evaluation Using DNN Inference
Immortal Threads showed promising performance with rela-
tively small benchmarks. To evaluate it under excessive mem-
ory access and computational load, we used the deep neu-
ral network (DNN) inference presented in [22]. This DNN
model requires approximately 180kB FRAM to maintain the
DNN weights and input matrix. The Alpaca DNN implemen-
tation in [22] employs loop continuation and has 18 tasks
(2 tasks are for specific initialization operations). It is again
worth mentioning that loop continuation relies on manually
eliminated WAR dependencies and violates the task-based
model. The implementation of TICS (from its public reposi-
tory) could not support DNN inference, since its checkpoints
lead to memory inconsistencies when the application accesses
the higher regions of FRAM.InK requires DNN weights and
the input matrix to be allocated in task-shared memory re-
gions. However, InK double buffers all task-shared variables
and commits them non-selectively at each task completion.
Therefore, the implementation of DNN in InK is not feasi-
ble since it needs to commit a large amount of task-shared
data at each task transition. However, by violating the InK
model, we provided loop continuation support, allowed tasks
to manipulate FRAM directly, and managed to implement
DNN, which has 16 tasks (2 tasks specific to Alpaca are not
required). Since our platform has only 4kB SRAM, we could
not implement the Plain-RAM version of DNN.

Continuous Power. Due to the increased number of memory
write operations, the overhead of Immortal Threads is more
visible in this case (see Figure 8a). Immortal Threads intro-
duced almost twice more overhead compared to Plain-Fram
DNN (see Table 4). The main reason for performance degra-
dation is committing each memory update atomically via the
JIT privatization. INK and Alpaca performed better since they
eliminated memory commit overheads by violating the task-
based model via loop continuation. This violation allowed for
larger tasks, which reduced the number of task transitions.
RF Powered. We used 1mF and 50mF capacitors as energy
storage and three different distances from the RF power trans-
mitter to observe different power failure patterns. The charg-
ing time of the capacitor increases with the distance between
the receiver and the power transmitter. The charging time of
the 50mF capacitor is longer than that of the 1mF capaci-
tor. On the other hand, the 50mF capacitor provides a longer
operation time. We observed significantly higher power fail-
ure rates with the 1mF capacitor. We conclude from Fig-
ure 8b and Figure 8c that Immortal Threads’s performance
becomes superior to the other runtimes as the power failure
rate increases—it wastes less computational progress thanks
to the micro-continuations.
Unviolated Task Model. We implemented DNN in Alpaca
without the loop continuation to answer the question of what
the DNN performance is without violating the task-based
model. Our implementation, which we call the original Alpaca
(Alpaca (Org.)), introduced an additional 11 tasks to the DNN
implementation with loop continuation. Figure 9 presents
execution time, runtime overhead, and wasted work during
controlled power failures. We observed that Immortal Threads
outperformed the original Alpaca significantly, i.e., led to
a twice shorter execution time. Furthermore, even though

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 349

0 20 40 60 80 100 120 140 160

Time(s)

IT

Alpaca

InK

Alpaca (Org)

APP

Overhead

Wasted Work

Figure 9: DNN execution time, runtime overhead and wasted
work with controlled power failures.

Immortal Threads has more overhead compared to the InK
and Alpaca implementations, it wasted significantly less work.

16MHz

 Cont

 16MHz

 Rand PF

 8MHz

 Cont

 8MHz

 Rand PF

 4MHz

 Cont

 4MHz

 Rand PF

0

10

20

30

40

E
x

ec
u

ti
o

n
 T

im
e(

s)

Alpaca (Org)
IT

Figure 10: Performance of DNN at different frequencies.

Fram-CPU Bottleneck. As CPU speed increases, the FRAM
access latency becomes more dominant in system perfor-
mance. The FRAM in our platform can operate at a max-
imum speed of 8 MHz. We evaluated the original Alpaca
and Immortal Threads DNN inference performances using
clock frequencies of 4MHz, 8MHz and 16MHz with con-
trolled power failures, as presented in Figure 10. We observed
that as the clock frequency increases, the performances of
both systems come closer to each other due to the latency of
FRAM access, but Immortal Threads still performs better.

Alpaca InK TICS Immortal Th.
Tasks Trans. Lines Tasks Trans. Lines Chkpts. Lines Chkpts. Lines

BC 11 24 251 10 26 326 10 238 82 188
CF 16 23 279 15 27 326 14 353 68 149
AR 12 20 330 11 20 449 8 411 123 309

DNN 18 48 2412 16 39 2214 7 7 276 1486

Table 6: Num. lines of code, num. of tasks and transitions
(Alpaca and InK), num. of checkpoints (TICS and InK).

5.3 Cognitive Load, Code Size, and Memory
Requirements

We define the cognitive burden of intermittent computing as
the effort put to split code into idempotent sections, i.e., im-
plementing tasks and task-based control flow in task-based
systems and inserting checkpoints for checkpointing systems.

Alpaca InK TICS Immortal Th.
.text Ram Fram .text Ram Fram .text Ram Fram .text Ram Fram

BC 2254 2 856 3356 0 4712 7160 4446 5572 10175 345 478
CF 3148 348 1070 4242 318 3000 11160 4655 6322 9831 370 498
AR 2258 0 784 3576 0 4474 11416 759 5430 11885 346 542

DNN 13898 224 192K 843 0 168K 7 7 7 19394 356 149.5K

Table 7: Memory and Code Size requirements (in B).

We used the number of tasks (and checkpoints) and task-based
control-flow declarations (in addition to the number of lines
of code) shown in Table 6 as a metric to measure the burden.
Thanks to the Immortal Threads compiler frontend, program-
mers write their programs without focusing on the details of
the intermittent execution. The compiler frontend automati-
cally wraps variable manipulations using the macros shown
in 3, inserts checkpoints and creates idempotent code sections
on the fly. Programmers use only the interfaces in Table 2,
which are almost identical to the interfaces found in contin-
uously powered event-driven systems [17, 32]. It is worth
mentioning that Table 6 presents the number of lines after the
Immortal Threads compiler pass (which has additional code
inserted by the compiler). Even in this case, the number of
lines in the implementations with Immortal Threads is almost
half of that in the implementations with task-based models.
As shown in Table 7, the code size of the application imple-
mented in Immortal Threads library is larger than others. The
main reason is that Immortal Threads library is implemented
using C macros. It is worth mentioning that just-in-time priva-
tization eliminates data versioning, reflected as considerably
reduced data section requirements.

5.4 Summary of Evaluation Results
Our results showed that Immortal Threads has comparable
runtime overhead to the existing runtimes. The runtime over-
head and benefits of Immortal Threads depend on the applica-
tion’s memory access patterns and the frequency of the power
failures. Compared to Immortal Threads, InK (violated task-
based model) had approximately ten times more wasted com-
putation and 1.5 times more execution time DNN inference
under power failures. Besides, the original Alpaca (the unvi-
olated task-based model) had approximately 17 times more
wasted computational progress and 2.4 times more execution
time. Therefore, we observed that during frequent power fail-
ures Immortal Threads reduced execution time and wasted
work by up to 40% and 90%, respectively. We conclude that
Immortal Threads brings pseudo-stackful multithreaded pro-
gramming with acceptable overhead and no cognitive burden.

5.5 Greenhouse Monitoring Application
We proceed with greenhouse monitoring, which is a com-
mon application shown in intermittent computing studies
(e.g., [31]), to demonstrate a time-constrained event-driven

350 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

scenario. To this end, we used a temperature sensor on the
MSP430FR5994 MCU, a solar panel for energy harvesting,
and an eZ430-RF2500 [47] board equipped with a CC2500
transceiver to transmit and receive data. MCU used a UART
connection to send commands to eZ430-RF2500 for data
transmission. We used the DS1302 [39] Real-Time Clock for
time tracking despite power failures. As energy storage, we
used the 50 mF supercapacitor of the P2110-EVB since it has
a voltage regulator.Figure 11 shows our experimental setup.

Figure 11: Greenhouse monitoring experimental setup.

GHM Implementation. A timer thread checks the RTC to
signal timer events every 6 seconds. The sense thread blocks
on the timer event to sense the temperature and store it in a
buffer with a timestamp. When the number of samples reaches
10, the sense thread calculates the average and signals the send
event. The send thread unblocks, checks the event timestamp
(via _EVENT_WAIT_EXP), and sends data to eZ430-RF2500 if
the event has not expired. Otherwise, it ignores the event.

0

100

200

300

E
v
en

ts
 N

u
m

b
er

Night

0000-0600
Morning

0600-1200
Afternoon

 1200-1800
Evening

1800-2400

0

20

40

60

80

100

S
ta

te
 o

f
th

e
d

ev
ic

e
(%

)

Power On

Power Off

Events

Expired Events

Figure 12: The number of expired events and the on/off time
percentage of the device during different parts of the day.

Results. We placed our setup in an outdoor location on our
campus for 24 hours. Figure 12 shows the results accord-
ing to the parts of the day. To expose the effects of energy
availability, we split the results into 6-hour timeframes. Since
there was not enough energy at night, no events occurred. Due
to power failures and charging times, 16 out of 177 events
expired in the morning. The available environmental energy
was high during the afternoon, and none of the 276 events
expired since there were no power failures. Similarly, 9 out

of 42 events have expired in the evening. We conclude that
Immortal Threads successfully caught these expirations and
stopped data processing to save precious harvested energy.

6 Discussion and Future Work

Programming models. Protothreads [18] is an abstraction
designed for continuously-powered sensors. Its local contin-
uation concept enables blocking threads, but such continua-
tions can be saved only in the thread’s entry function. InK
task-threads provide a solution for intermittent event-driven
applications, but they have mentioned drawbacks in this paper,
e.g., the cognitive load of the task-based systems. Immortal
Threads is an abstraction that provides micro continuation
in intermittently powered systems, which is as lightweight
as Protothreads’s local continuation. In addition, they can be
saved anywhere in the call stack of a thread, not only in the
entry function. However, the current implementation of mi-
cro continuations achieves pseudo-stackfulness by employing
switch-based constructs. An essential question for our future
work is whether it is possible to control the compiler’s usage
of registers so that continuations can be composed of only
the program counter and stack pointer while maintaining the
remaining state in the (non-volatile) memory. Checkpointing
at the statement boundary, combined with declaring variables
as volatile or compiler fences, may provide a possible di-
rection.
Peripheral operations support As previous works
(e.g., [35]) point out, peripheral interaction should be
atomic,which means no power failure can be allowed in
between. In order to enable atomic execution of I/O handling
operations, Immortal Threads compiler frontend can be
extended to support a new compiler directive to mark
atomic I/O functions, i.e., functions that should not contain
checkpoints. The compiler frontend can add the necessary
code that performs privatization of the parameters passed by
address to such functions.
Checkpoint Optimization. Immortal Threads performs fre-
quent checkpoints. Compiler analysis can be performed to
merge and reduce unnecessary checkpoints. However, this
may lead to more wasted work. In general, there is always a
trade-off between checkpoint frequency (and the associated
overhead) and the amount of waste work. Maeng et al. [36]
proposes an adaptive approach: checkpoints are disabled at
runtime when the system has still enough energy. However,
this approach is effective only when determining whether
to checkpoint has much less cost than taking the checkpoint,
which does not apply to Immortal Threads, where checkpoint-
ing is merely an atomic write. One possible way to introduce
adaptive checkpointing is to have multiple versions for each
immortal function with a different checkpoint density. The
runtime can then determine which version to call based on
the energy availability. We leave this issue for future work.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 351

7 Conclusions

Immortal Threads is the first intermittent computing runtime
that enables pseudo-stackful multithreaded programming. Us-
ing Immortal Threads, programmers focus only on their multi-
threaded program logic that handles events instead of focusing
on managing intermittent execution. Immortal Threads brings
the missing event-driven primitives to intermittent computing,
e.g., semaphores and event expiration handling. All these fea-
tures come with an overhead comparable to the overhead of
existing intermittent computing runtimes. We observed that,
depending on the application and power failure frequency,
Immortal Threads can even reduce execution time and wasted
work by up to 40% and 90%, respectively.

Acknowledgments

We thank the anonymous reviewers of OSDI 2021, SOSP
2021, ASPLOS 2021 and OSDI 2022 for their valuable com-
ments and feedback. We would like to thank Przemysław
Pawełczak (TU Delft, The Netherlands) for encouraging us to
send this work to OSDI 2022. We are also grateful to Rodrigo
Bruno for shepherding our final draft.

Availability

We release Immortal Threads as an open source project
for the community, whose artifacts can be downloaded
from https://tinysystems.github.io/ImmortalThreads.

References

[1] Clang 7 libtooling. https://github.com/

llvm-mirror/clang/blob/master/docs/

LibTooling.rst, March 2019. Last accessed:
May. 7, 2021.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J
Bolosky, and John R Douceur. Cooperative task man-
agement without manual stack management. In USENIX
Annual Technical Conference, General Track, pages 289–
302, 2002.

[3] Saad Ahmed, Muhammad Hamad Alizai, Junaid Ha-
roon Siddiqui, Naveed Anwar Bhatti, and Luca Mottola.
Towards smaller checkpoints for better intermittent com-
puting. In 17th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN),
pages 132–133. IEEE, 2018.

[4] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad
Alizai, Junaid Haroon Siddiqui, and Luca Mottola. Ef-
ficient intermittent computing with differential check-
pointing. In Proceedings of the 20th ACM SIG-
PLAN/SIGBED International Conference on Languages,

Compilers, and Tools for Embedded Systems, pages 70–
81, 2019.

[5] Abu Bakar, Alexander G Ross, Kasim Sinan Yildirim,
and Josiah Hester. Rehash: A flexible, developer fo-
cused, heuristic adaptation platform for intermittently
powered computing. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,
5(3):1–42, 2021.

[6] Domenico Balsamo, Alex S Weddell, Anup Das, Al-
berto Rodriguez Arreola, Davide Brunelli, Bashir M
Al-Hashimi, Geoff V Merrett, and Luca Benini. Hi-
bernus++: a self-calibrating and adaptive system for
transiently-powered embedded devices. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 35(12):1968–1980, 2016.

[7] Richard Barry. Freertos, a free open source rtos for small
embedded real time systems. Available at: "https:
//www.freertos.org/", 2003.

[8] Naveed Anwar Bhatti and Luca Mottola. Harvos: Effi-
cient code instrumentation for transiently-powered em-
bedded sensing. In 16th ACM/IEEE International Con-
ference on Information Processing in Sensor Networks
(IPSN), pages 209–220. IEEE, 2017.

[9] Michael Buettner, Benjamin Greenstein, and David
Wetherall. Dewdrop: An Energy-Aware runtime for
computational RFID. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
11), Boston, MA, March 2011. USENIX Association.

[10] Alexei Colin and Brandon Lucia. Chain: tasks and chan-
nels for reliable intermittent programs. In Proceedings
of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, pages 514–530, 2016.

[11] Alexei Colin and Brandon Lucia. Termination check-
ing and task decomposition for task-based intermittent
programs. In Proceedings of the 27th International
Conference on Compiler Construction, pages 116–127,
2018.

[12] Powercast Corp. Powercast hardware. http://www.

powercastco.com, 2014. Last accessed: Dec. 10, 2020.

[13] Powercast Corp. Powercast hardware. https:

//www.powercastco.com/wp-content/uploads/

2016/11/p2110-evb1.pdf, 2015. Last accessed: Dec.
10, 2020.

[14] Eren Çürük, Kasim Sinan Yıldırım, Przemyslaw Pawel-
czak, and Josiah Hester. On the accuracy of network
synchronization using persistent hourglass clocks. In

352 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Proceedings of the 7th International Workshop on En-
ergy Harvesting & Energy-Neutral Sensing Systems,
pages 35–41, 2019.

[15] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan
Yildirim, Przemysław Pawełczak, and Josiah Hester. Re-
liable timekeeping for intermittent computing. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 53–67, 2020.

[16] Jasper De Winkel, Vito Kortbeek, Josiah Hester, and
Przemysław Pawełczak. Battery-free game boy. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 4(3):1–34, 2020.

[17] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt.
Contiki-a lightweight and flexible operating system for
tiny networked sensors. In 29th annual IEEE interna-
tional conference on local computer networks, pages
455–462. IEEE, 2004.

[18] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and
Muneeb Ali. Protothreads: Simplifying event-driven
programming of memory-constrained embedded sys-
tems. In Proceedings of the 4th international conference
on Embedded networked sensor systems, pages 29–42,
2006.

[19] Caglar Durmaz, Kasim Sinan Yildirim, and Geylani Kar-
das. Puremem: a structured programming model for
transiently powered computers. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing,
pages 1544–1551, 2019.

[20] Kai Geissdoerfer, Raja Jurdak, and Brano Kusy. Long-
term energy-neutral operation of solar energy-harvesting
sensor nodes under time-varying utility. In 17th
ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), pages 156–157.
IEEE, 2018.

[21] Kai Geissdoerfer and Marco Zimmerling. Bootstrapping
battery-free wireless networks: Efficient neighbor dis-
covery and synchronization in the face of intermittency.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 439–455.
USENIX Association, April 2021.

[22] Graham Gobieski, Brandon Lucia, and Nathan Beck-
mann. Intelligence beyond the edge: Inference on in-
termittent embedded systems. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 199–213, 2019.

[23] Philipp Gutruf, Vaishnavi Krishnamurthi, Abraham
Vázquez-Guardado, Zhaoqian Xie, Anthony Banks,
Chun-Ju Su, Yeshou Xu, Chad R Haney, Emily A Waters,
Irawati Kandela, et al. Fully implantable optoelectronic
systems for battery-free, multimodal operation in neu-
roscience research. Nature Electronics, 1(12):652–660,
2018.

[24] Josiah Hester and Jacob Sorber. Flicker: Rapid prototyp-
ing for the batteryless internet-of-things. In Proceedings
of the 15th ACM Conference on Embedded Network Sen-
sor Systems, pages 1–13, 2017.

[25] Josiah Hester, Kevin Storer, and Jacob Sorber. Timely
execution on intermittently powered batteryless sensors.
In Proceedings of the 15th ACM Conference on Embed-
ded Network Sensor Systems, pages 1–13, 2017.

[26] Matthew Hicks. Clank: Architectural support for inter-
mittent computation. ACM SIGARCH Computer Archi-
tecture News, 45(2):228–240, 2017.

[27] Neal Jackson, Joshua Adkins, and Prabal Dutta. Ca-
pacity over capacitance for reliable energy harvesting
sensors. In Proceedings of the 18th International Con-
ference on Information Processing in Sensor Networks,
pages 193–204, 2019.

[28] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghu-
nathan. Quickrecall: A low overhead hw/sw approach
for enabling computations across power cycles in tran-
siently powered computers. In 2014 27th International
Conference on VLSI Design and 2014 13th Interna-
tional Conference on Embedded Systems, pages 330–
335. IEEE, 2014.

[29] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek,
Razvan Musaloiu-E., Philip Levis, Andreas Terzis, and
Ramesh Govindan. TOSThreads: Thread-Safe and Non-
Invasive Preemption in TinyOS. In Proceedings of the
7th ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2009.

[30] Vito Kortbeek, Abu Bakar, Stefany Cruz, Kasim Sinan
Yildirim, Przemysław Pawełczak, and Josiah Hester.
Bfree: Enabling battery-free sensor prototyping with
python. Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies, 4(4):1–39,
2020.

[31] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Ja-
cob Sorber, Josiah Hester, and Przemysław Pawełczak.
Time-sensitive intermittent computing meets legacy soft-
ware. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 85–99, 2020.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 353

[32] Philip Levis, Samuel Madden, Joseph Polastre, Robert
Szewczyk, Kamin Whitehouse, Alec Woo, David Gay,
Jason Hill, Matt Welsh, Eric Brewer, et al. Tinyos: An
operating system for sensor networks. In Ambient intel-
ligence, pages 115–148. Springer, 2005.

[33] Brandon Lucia and Benjamin Ransford. A simpler,
safer programming and execution model for intermittent
systems. ACM SIGPLAN Notices, 50(6):575–585, 2015.

[34] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Al-
paca: Intermittent execution without checkpoints. Pro-
ceedings of the ACM on Programming Languages,
1(OOPSLA):1–30, 2017.

[35] Kiwan Maeng and Brandon Lucia. Supporting peripher-
als in intermittent systems with just-in-time checkpoints.
In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2019, pages 1101–1116. Association for Comput-
ing Machinery.

[36] Kiwan Maeng and Brandon Lucia. Adaptive dynamic
checkpointing for safe efficient intermittent computing.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 129–144,
Carlsbad, CA, October 2018. USENIX Association.

[37] Kiwan Maeng and Brandon Lucia. Adaptive low-
overhead scheduling for periodic and reactive intermit-
tent execution. In Proceedings of the 41st ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 1005–1021, 2020.

[38] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng,
Alexei Colin, Kasim Sinan Yildirim, Brandon Lucia,
and Przemysław Pawełczak. Dynamic task-based inter-
mittent execution for energy-harvesting devices. ACM
Transactions on Sensor Networks (TOSN), 16(1):1–24,
2020.

[39] Maxim Interated. Ds1302 trickle-charge timekeep-
ing chip. https://datasheets.maximintegrated.

com/en/ds/DS1302.pdf, 2019. Last accessed: Septem-
ber 2019.

[40] William P McCartney and Nigamanth Sridhar. Abstrac-
tions for safe concurrent programming in networked
embedded systems. In Proceedings of the 4th inter-
national conference on Embedded networked sensor
systems, pages 167–180, 2006.

[41] William P. McCartney and Nigamanth Sridhar. Stack-
less Multi-Threading for Embedded Systems. IEEE
Transactions on Computers, 64(10):2940–2952, Octo-
ber 2015. Conference Name: IEEE Transactions on
Computers.

[42] Matteo Nardello, Harsh Desai, Davide Brunelli, and
Brandon Lucia. Camaroptera: A batteryless long-range
remote visual sensing system. In Proceedings of the
7th International Workshop on Energy Harvesting &
Energy-Neutral Sensing Systems, pages 8–14, 2019.

[43] Benjamin Ransford and Brandon Lucia. Nonvolatile
memory is a broken time machine. In Proceedings
of the workshop on Memory Systems Performance and
Correctness, pages 1–3, 2014.

[44] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Me-
mentos: System support for long-running computation
on rfid-scale devices. In Proceedings of the sixteenth
international conference on Architectural support for
programming languages and operating systems, pages
159–170, 2011.

[45] Emily Ruppel and Brandon Lucia. Transactional concur-
rency control for intermittent, energy-harvesting com-
puting systems. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 1085–1100, 2019.

[46] Alanson P Sample, Daniel J Yeager, Pauline S Powledge,
Alexander V Mamishev, and Joshua R Smith. Design
of an rfid-based battery-free programmable sensing plat-
form. IEEE transactions on instrumentation and mea-
surement, 57(11):2608–2615, 2008.

[47] Texas Instruments. ez430-rf2500 development
tool user’s guide. https://www.ti.com/lit/ug/

slau227f/slau227f.pdf, 2015. Last accessed:
September 2015.

[48] Texas Instruments. Msp430fr58xx, msp430fr59xx,
msp430fr68xx, and msp430fr69xx family user’s guide.
http://www.ti.com/lit/ug/slau367o/slau367o.

pdf, 2019. Last accessed: September 2019.

[49] Texas Instruments. EnergyTrace Technology. https:
//www.ti.com/tool/energytrace, 2021.

[50] Texas Instruments, Inc. FRAM faqs. http://www.

ti.com/lit/ml/slat151/slat151.pdf, 2014. Last
accessed: 2018.

[51] Hoang Truong, Shuo Zhang, Ufuk Muncuk, Phuc
Nguyen, Nam Bui, Anh Nguyen, Qin Lv, Kaushik
Chowdhury, Thang Dinh, and Tam Vu. Capband:
Battery-free successive capacitance sensing wristband
for hand gesture recognition. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor
Systems, pages 54–67, 2018.

[52] Harrison Williams, Michael Moukarzel, and Matthew
Hicks. Failure sentinels: ubiquitous just-in-time in-
termittent computation via low-cost hardware support

354 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

for voltage monitoring. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 665–678. IEEE, 2021.

[53] Joel Van Der Woude and Matthew Hicks. Intermittent
computation without hardware support or programmer
intervention. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16),
pages 17–32, Savannah, GA, November 2016. USENIX
Association.

[54] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris
Patoukas, Koen Schaper, Przemyslaw Pawelczak, and
Josiah Hester. Ink: Reactive kernel for tiny batteryless
sensors. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, pages 41–53,
2018.

[55] Eren Yildiz, Lijun Chen, and Kasim Sinan Yildirim.
Immortal Threads GitHub Repository. https://

tinysystems.github.io/ImmortalThreads/, 2022.
Last accessed: June. 1, 2022.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 355

