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A short time ago, in Silicon Valley...
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The file server is too
slow

"Intel Optane: Faster Access to More Data
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The file server is too
slow

Disks are the performance bottleneck!

* Low speed; e.g., 10s-100s of us
access latency

 Performance collapses with
concurrent access’
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Persistent memory (PM) can
solve the problem!
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Persistent memory (PM) can
solve the problem!

* High speed: e.g., 100s of ns
access latency

* Preserves performance with
concurrent access’

"Intel Optane: Faster Access to More Data 7
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Let’s see how PM
performs
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PM performance on a single NUMA node

Workload: FIO: each thread writes/reads 2MB data in a private file

Setup: 224-core/8-socket machine
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PM performance on a single NUMA node ¢

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on a single NUMA node ¢

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on a single NUMA node ¢

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on a single NUMA node ¢

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on a single NUMA node ¢

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance is bad
on a single NUMA node

NUMA node NUMA node
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PM performance on multiple NUMA nodes 552

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on multiple NUMA nodes 552

Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on multiple NUMA nodes 5E2
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Workload: FIO: each thread writes/reads 2MB data in a private file
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PM performance on multiple NUMA nodes 5E2
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Workload: FIO: each thread writes/reads 2MB data in a private file
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Design goal of OdinFS:

Maximize PM performance

Maintain PM performance with concurrent access

18



[HEY
N

[ERY
o

Throughput (GiB/s)

Single NUMA node: Why PM performance collapse

Write

— Expectation

-~ extd

11.6x

o N B~ O 00

— AN < 00 O 00 O < N O

168
196
224

# threads

19

M

Excessive concurrent access =2
PM performance collapse



1

Single NUMA node: Why PM performance collapse
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Caching and prefetching in PM
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Caching and prefetching in PM
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PM cache thrashing due to concurrent access

Hide performance gap
\ with caching & prefetching

Excessive concurrent access
— PM cache thrashing

21

g I Il Il Il I S - -y
N I I S S S S - -




PM cache thrashing due to concurrent access
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PM performance analysis

|
rl—l- Issue: Excessive concurrent access =2 PM performance collapse
LePv |

Insight: Control concurrent PM access for maximal performance
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PM performance analysis

|
rl—l- Issue: Excessive concurrent access =2 PM performance collapse
LePv |

Insight: Control concurrent PM access for maximal performance

.—T—. Issue: Inefficient remote PM access
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/0 operations in a PM file system CEADT]

Data transfer between DRAM and PM

write syscall read syscaII
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/0 operations in a PM file system CE2

Data transfer between DRAM and PM

=l

write syscall read syscaII

| DRAM || DRAM

g T Components: DRAM, PM, and thread
Y
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/0 operations in a PM file system CE2

Data transfer between DRAM and PM

=l

write syscall read syscaII

| DRAM || DRAM

g T Components: DRAM, PM, and thread
Y

How does the NUMA placement of

the components affect performance?
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NUMA placement setup
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NUMA placement setup

NUMA 0 NUMA 1 NUMA 0 NUMA 1
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Same Task: copying data between PM in NUMA 0 and DRAM in NUMA 1
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Local PM access outperforms remote PM access

Workload: FIO: each thread writes/reads 2MB data in a private file
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Local PM access outperforms remote PM access

Workload: FIO: each thread writes/reads 2MB data in a private file
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Directory coherence = slow remote PM access
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Directory coherence = slow remote PM access
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Directory coherence = slow remote PM access
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PM performance analysis

rl—l- Issue: Excessive concurrent access =2 PM performance collapse
| pm ] .
Insight: Control concurrent PM access for maximal performance
. Issue: Inefficient remote PM access
RAIDO

(M D Insight: Perform localized PM access to avoid PM NUMA impact
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Odink'S

File system maximizes PM performance
via opportunistic delegation
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What is OdinFS?
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What is OdinFS?

[ Application
_Llssr _____ %p ___________ In-kernel file system
Kernel g

| OdinFS
[ PM
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What is OdinFS?

_l{sgr _________________ In-kernel file system
Kernel

[ OdinFS

[ PM Fully POSIX compliant
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OdinFS design overview

Limit concurrent access

— Preserves maximal PM performance within a NUMA node

Always localized PM access

— Minimizes PM NUMA impact and efficient use of remote PM
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OdinFS design overview

Limit concurrent access

— Preserves maximal PM performance within a NUMA node

Always localized PM access

— Minimizes PM NUMA impact and efficient use of remote PM

Efficient use of the aggregated PM bandwidth

— Applications on a single NUMA node can benefit

Key insight: Decouple PM access from application threads to

achieve the above goals simultaneously

30



Decouple PM access from application threads
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3 application threads
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Decouple PM access from application threads
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Decouple PM access from application threads
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Delegation enables controlled and localized access
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Delegation enables controlled and localized access
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Delegation enables controlled and localized access
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Delegation enables controlled and localized access
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Efficiently utilize aggregated PM bandwidth
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Efficiently utilize aggregated PM bandwidth
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Efficiently utilize aggregated PM bandwidth
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Efficiently utilize aggregated PM bandwidth
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Efficiently utilize aggregated PM bandwidth
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OdinFS: Other design aspects

— Maximize concurrent accesses with range locks
— Minimize synchronization overhead with scalable data structures
— Ensure crash consistency despite concurrent access
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OdinFS: Other design aspects

— Maximize concurrent accesses with range locks
— Minimize synchronization overhead with scalable data structures
— Ensure crash consistency despite concurrent access

Minimize delegation overhead

— Opportunistic delegation e.g., do not delegate small PM access
— Adaptive spinning and parking - Avoid wasting CPU cycles
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Performance Evaluation

Does OdinFS improve 1/O performance

— Setup: 224-core eight-socket machine
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Performance Evaluation

Does OdinFS improve 1/O performance

— Setup: 224-core eight-socket machine
— Microbenchmark (FIO)
— Marcobenchmark (Filebench)

36



Microbenchmark: FIO

Workload: FIO: each thread writes/reads 2MB data in a private file
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Microbenchmark: FIO

Workload: FIO: each thread writes/reads 2MB data in a private file
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Microbenchmark: FIO

Workload: FIO: each thread writes/reads 2MB data in a private file
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Microbenchmark: FIO

Workload: FIO: each thread writes/reads 2MB data in a private file
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Microbenchmark: FIO

Workload: FIO: each thread writes/reads 2MB data in a private file
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Controlled concurrent access

= Maximize PM performance within
one NUMA node

Localized PM access

= Minimize PM NUMA impact across
NUMA nodes

Parallel PM access

— Efficiently utilize aggregated PM
bandwidth
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Microbenchmark: FIO

Workload: FIO: each thread writes/reads 2MB data in a private file
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— Efficiently utilize aggregated PM
bandwidth
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Macrobenchmark: Filebench

Fileserver (write-intensive)
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Conclusion

Existing file systems cannot utilize PM efficiently

—Uncontrolled concurrent access
—Inefficient remote PM access
—Cannot efficiently leverage the aggregated PM bandwidth
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Conclusion

Existing file systems cannot utilize PM efficiently

—Uncontrolled concurrent access
—Inefficient remote PM access
—Cannot efficiently leverage the aggregated PM bandwidth

OdinFS: decouple PM access to maximize and scale performance

— Controlled, localized, and parallel PM access

40



Conclusion

Existing file systems cannot utilize PM efficiently

—Uncontrolled concurrent access
—Inefficient remote PM access
—Cannot efficiently leverage the aggregated PM bandwidth

— Controlled, localized, and parallel PM access
— Publicly available: https://github.com/rs3lab/Odinfs

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED
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https://github.com/rs3lab/Odinfs

Conclusion

Existing file systems cannot utilize PM efficiently

—Uncontrolled concurrent access
—Inefficient remote PM access
—Cannot efficiently leverage the aggregated PM bandwidth

— Controlled, localized, and parallel PM access
— Publicly available: https://github.com/rs3lab/Odinfs

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

Thank youl!
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https://github.com/rs3lab/Odinfs
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FIO: 4K access size
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FIO: Latency, 4K access size

Write Read
—&— 0OdinFS Ext4-RAIDO —h— oxt4 - NOVA

1500 50

1200 40
y m

2 900 = 30
> >
o (&
c c

Y 600 920
L& 8

300 10

o
o

1 AN < 600 O 0 O <

= AN < 00 O 0 O <
— — &N 0 o0

AN N 0

112
140
168
196
224
112
140
168
196
224

# threads # threads



OdinFS with different number of NUMA nodes
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PM NUMA Impact: Explanation
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