
Durinn: Adversarial Memory and Thread Interleaving for
Detecting Durable Linearizability Bugs

Xinwei Fu*, Dongyoon Lee+, Changwoo Min*

* +

Summary

2

• Crash-consistent software without paying storage overhead
• Writing crash-consistent programs is error-prone

• NVM Correctness Condition: Durable Linearizability

Durinn
• The first Durable Linearizability checker
• Three Durable Linearizability bug patterns
• Adversarial crash state and thread interleaving construction
• Likely-Linearization Point inference
• Detected 27 (15 new) bugs

Outline

3

• Introduction

• Durinn

• Evaluation

• Conclusion

NVM Correctness Condition: Durable Linearizability

4

Durable Linearizability requires:
• (C1) without a crash, all operations are Linearizable

Linearizability requires that all operations:
• take effect instantaneously at a program point (Linearization Point)
• and that point is between the operation begin and end

time

insert (k, v1)
T1:

get (k)
T2:

return v1

insert (k, v2)

or v2

NVM Correctness Condition: Durable Linearizability

5

Durable Linearizability requires:
• (C1) without a crash, all operations are linearizable
• (C2) completed operations before a crashà All semantic
• (C3) incomplete operations upon a crash à All or nothing semantic

time

insert (k, v1)
T1:

get (k)
T2:

return v1

insert (k, v2) crash

recovery
get (k)

return v1 or v2 (All or nothing semantic)
return v2 return v2 (All semantic)

NVM Correctness Condition: Durable Linearizability

6

Durable Linearizability describes correct operation behaviors:
• Crash state
• Thread interleaving

time

insert (k, v1)
T1:

get (k)
T2:

insert (k, v2) crash

recovery
get (k)

return v2 return v2 (All semantic)

Any incorrect operation behavior leads to a Durable Linearizability bug.

return v1
Durable Linearizability Bug

Our Contributions

7

Existing Solutions
• Linearizability testing tools
• NVM-specific crash-consistency bug detectors

Durinn
• Three Durable Linearizability bug patterns
• Adversarial NVM State and Thread Interleaving Construction
• Likely-Linearization Point Inference

Outline

8

• Introduction

• Durinn

• Evaluation

• Conclusion

Durinn Overview

9

operation
Linearization

Point (LP)
Durability
Point (DP)

• Linearization Point à understand operation behaviors

• Key idea 1: three durable linearizability bug patterns
• Key idea 2: adversarial test for both crash state and thread interleaving

Program

Test
Case

Trace Likely LPs

Trace

NVM States

Thread
Interleave

Tracing
Memory
Access

Adversarial Test:
NVM States

Thread Interleave

Likely-LP
Inference DL

Validation
DL

Bugs

Outline

10

• Introduction

• Durinn

• Durable Linearizability Bugs and Adversarial Testing

• Likely-Linearization Point Inference

• Evaluation

• Conclusion

The gap between LP and DP

11

Linearization Point
a program point where an operation takes effect and its effects become visible

Durability Point
a program point where the effect becomes persisted

time

operation

not visible visible but
not durable

both visible
and durable

R1 R2 R3

Linearization
Point (LP)

Durability
Point (DP)

CAS(T) Persist(T)

DL3 Bug: A Visible-But-Not-Durable Bug

12

Correctness condition:
A crash between LP and DP, if the effect has been observed before crash,
the operation should preserve All Semantic.

time

operation

visible but not durable
R2

Linearization
Point (LP)

Durability
Point (DP)crash

time

T1: insert (K, V)
crash

recovery
T3: get (K)W(K) W(V)

returns V

Incorrectly returns NULL{ R(K)

T2: get (K)

R(V) }if (R(T))

W(T)
Some or all of the writes

are not persisted
returns V (All Sematic)

Adversarial test for DL3 (Visible-But-Not-Durable) Bug

13

Linearization Point Durability Point

Correctness condition:
A crash between LP and DP, if the effect has been observed before crash,
the operation should preserve All Semantic.

time

T1: insert (K, V)
crash

W(K) W(V)

returns V
{ R(K)

T2: get (K)
R(V) }if (R(T))

W(T)
K V

Persisted Persisted
Persisted Unpersisted

Unpersisted Persisted
Unpersisted Unpersisted

All legal crash states

Worst case

• A pair of racy operations
• A specific thread interleaving

insert (…)
insert (…)
delete (…)
insert. (…)

Adversarial test for DL3 Bug

14

insert (…)
insert (…)
delete (…)
insert. (…)

insert (K, V):
W (K)
W (V)
W (T)
……

get (K):
if (R (T))

R (K)
R (V)

Main Thread

Thread 1 Thread 2
insert (K, V):

W (K)
W (V)
W (T) get (K):

if (R (T))
R (K)
R (V)crash

Race

Single-threaded trace

Outline

15

• Introduction

• Durinn

• Durable Linearizability Bugs and Adversarial Testing

• Likely-Linearization Point Inference

• Evaluation

• Conclusion

Likely-Linearization Point Inference

16

(1) Atomic Instruction (2) Guarded-Protection Pattern (3) Publish-after-Initialization

Lock-free Insert
......

CAS (T)

......

Insert (K, V)
W(K)
W(V)
Persist(KV)

W(T)
Persist(T)

Get (K)

if (R(T)) {
R(K)
R(V)

}

Set guardian Read guardian

Insert
node = malloc()

node.key = k
node.val = v
......

prev.next = node
Linearization
Point

Publish

Atomic Inst Initialization

No LPs.

Outline

17

• Introduction

• Durinn

• Evaluation

• Conclusion

Evaluation

18

Evaluation Questions:
• Can Durinn detect new bugs?
• How effective and sound is Durinn’s likely-LP technique?
• Does Durinn outperform the state-of-the-art?

Tested Applications:
• 13 concurrent NVM data structures
• Array, queue, linked list, skip list, hashtable, radix tree, B+tree and trie

• Low-level persistence primitives and high-level persistence transactions
• Lock-based and lock-free
• 1000 operations generated by AFL++ fuzzer

Detected DL bugs

19

Detected 10 DL1 bugs, 7 DL2 bugs, and 10 DL3 bugs.

Effectiveness and soundness of Likely-Linearization Point Inference

20

• Durinn only tests 35% and 82% of Total Stores
• Durinn did not miss true Linearization points

Comparison against Witcher

21

Bug Detection:

• Durinn reports 10 DL3 bugs that Witcher missed

• Durinn reduces the test space of thread interleaving

Test Space Reduction:

• Witcher performs several times more tests than Durinn

• Durinn only adversarially tests worst-case scenarios

Outline

22

• Introduction

• Durinn

• Evaluation

• Conclusion

Conclusion

23

Durinn
• The first Durable Linearizability checker
• Three Durable Linearizability bug patterns
• Adversarial Crash State and Thread Interleaving Construction
• Likely-Linearization Point inference
• Detected 27 (15 new) bugs

Durinn: Adversarial Memory and Thread Interleaving for
Detecting Durable Linearizability Bugs

Xinwei Fu*, Dongyoon Lee+, Changwoo Min*

* +

