Detecting Durable Linearizability Bugs

| Durinn: Adversarial Memory and Thread Interleaving for I

Xinwei Fu®, Dongyoon Lee*, Changwoo Min"

VIRGINIA Q\\w Stony Brook
k + L0
TECH. \ University

Summary

* Crash-consistent software without paying storage overhead
* Writing crash-consistent programs is error-prone

* NVM Correctness Condition: Durable Linearizability

Durinn

* The first Durable Linearizability checker

 Three Durable Linearizability bug patterns

* Adversarial crash state and thread interleaving construction

* Likely-Linearization Point inference
 Detected 27 (15 new) bugs

Outline

 Introduction

e Durinn
 Evaluation

e Conclusion

NVM Correctness Condition: Durable Linearizability

Durable Linearizability requires:
e (C1) without a crash, all operations are Linearizable

Linearizability requires that all operations:
* take effect instantaneously at a program point (Linearization Poin®)
* and that point is between the operation begin and end

insert (k, v1) insert (k, v2)
» > ¢ %

.
]

get (k)

T2: | , .
! ireturn vl or v2

time

NVM Correctness Condition: Durable Linearizability

Durable Linearizability requires:

e (C1) without a crash, all operations are linearizable

* (C2) completed operations before a crash > All semantic

* (C3) incomplete operations upon a crash = All or nothing semantic

~ insert (k,vl) insert(k, v2) crash
o etk | get (K)
:) " | recovery | ‘ > _ ,
return vl : ; return vl or v2 (All or nothing semantic)
return v2 ; return v2 (All semantic)

time

NVM Correctness Condition: Durable Linearizability

Durable Linearizability describes correct operation behaviors:

* Crash state
* Thread interleaving

Any incorrect operation behavior leads to a Durable Linearizability bug.

~insert (k,v1) insert (k, v2) crash
T2: _get(k) get(k)
return v2 S | resthumm w2 (All semantic)
i Durable Linearizability Bug
time

Our Contributions

Existing Solutions
* Linearizability testing tools
* NVM-specific crash-consistency bug detectors

Durinn

 Three Durable Linearizability bug patterns

* Adversarial NVM State and Thread Interleaving Construction
* Likely-Linearization Point Inference

Outline

* |ntroduction

e Durinn

 Evaluation

e Conclusion

Durinn Overview

* Linearization Point = understand operation behaviors

Linearization Durability
operation Point (LP) Point (DP)

) O \ o \ >

 Keyidea 1: three durable linearizability bug patterns
* Keyidea 2: adversarial test for both crash state and thread interleaving

: |
Program i R Trace| Likely-LP Likely LPs NVM States i
| Tracing Inference Adversarial Test: oL -
, | Memory NVM States Thread validation [&
Test | | Access Trace | Thread Interleave | Interleave | '9'C9HOM |1 BUES
Case _T ’ > i
! :

Outline

Introduction

Durinn

 Durable Linearizability Bugs and Adversarial Testing

e Likely-Linearization Point Inference

Evaluation

Conclusion

The gap between LP and DP

Linearization Point @
a program point where an operation takes effect and its effects become visible

Durability Point @
a program point where the effect becomes persisted

Linearization Durability
Point (LP) Point (DP)

operation < @ @ >
CA)S\(T) Pessklst(T)

Y Y Y
R1 R2 R3

visible but both visible
not durable and durable

\

not visible

DL3 Bug: A Visible-But-Not-Durable Bug

Linearization " Durability
| Point (LP) “&>" Point (DP)
operation < 1 }Q\ >
Y Y

visible but not durable

- >
time

Correctness condition:
A crash between LP and DP, if the effect has been observed before crash,

the operation should preserve All Semantic.

crash

T1:insert (K, V) «—® ®
W(K) W(Vv) W(})

Some or all of the writes 5. get (K) recovery
are not persisted *—0—

T3: get (K)

o
»

Incorrectly returns NULL
returns V (All Sematic)

i (RT)) { R(K) R(V) }
returns V

Adversarial test for DL3 (Visible-But-Not-Durable) Bug

Correctness condition:

A crash between LP and DP, if the effect has been observed before crash,

the operation should preservelA// Semantic.l

@® Linearization Point

© Durability Point

crash

T1:insert (K, V) «—® ®
W(K) W(V) W?\)
T2: get (K) < ®

e

turns 'V

ol
if (R(T)} { R(K) R(V) }

e A pair of racy operations

time

All legal crash states

kv

Persisted Persisted

Persisted Unpersisted

Unpersisted Persisted

|Unpersisted Unpersisted Worst case

* A specific thread interleaving

Adversarial test for DL3 Bug

Single-threaded trace

insert (...)
insert (...)
delete (...)
insert. (...)

insert (K, V):
W (K)
W (V)
W (T)

Thread 1

Race <

insert (K, V):

W (K)
W (V)
W (T)

Main Thread
insert (...)
insert (...)
delete (...)
insert. (...)
Thread 2
get (K):
1 @if(R(T))
; R (K)
crash R (V)

Outline

Introduction

Durinn
* Durable Linearizability Bugs and Adversarial Testing

* Likely-Linearization Point Inference

Evaluation

Conclusion

Likely-Linearization Point Inference

(1) Atomic Instruction

Lock-free Insert

Atomic Inst
@® CAS (T)

Linearization
Point

(2) Guarded-Protection Pattern

(3) Publish-after-Initialization

Insert (K, V) Get (K)

W(K)

W(V)

Persist(KV)

Set guardian Read guardian
® W(T) @®if (R(T)){

Persist(T) R(K)

R(V)
}

Insert

node = malloc

Initialization
node.key = k

No LPs.

node.val =v

Publish
@ prev.next = node

Outline

* |ntroduction

e Durinn

 Evaluation

e Conclusion

Evaluation

Tested Applications:
* 13 concurrent NVM data structures
* Array, queue, linked list, skip list, hashtable, radix tree, B+tree and trie
* Low-level persistence primitives and high-level persistence transactions
* Lock-based and lock-free
* 1000 operations generated by AFL++ fuzzer

Evaluation Questions:

* Can Durinn detect new bugs?

* How effective and sound is Durinn’s likely-LP technique?
* Does Durinn outperform the state-of-the-art?

Detected DL bugs

Detected 10 DL1 bugs, 7 DL2 bugs, and 10 DL3 bugs.

Name (Total #Bugs) | Bug ID | New [Confirm] Code Type | Description Impact Fix strategy
P-LF-BST (1) 1 v v BSTAravindTraverse.h:331| DL1 J Missing persistence primitives Points to garbage | add persistence primitives
P-LF-Hash (1) 2 v v ListTraverse.h:212 DL1 J Missing persistence primitives Points to garbage | add persistence primitives
P-LF-List (1) 3 v v ListTraverse.h:212 DL1 J Missing persistence primitives Points to garbage | add persistence primitives
P-LF-Skiplist(1) 4 v v Skiplist Traverse.h:218 DL1 J Missing persistence primitives Points to garbage | add persistence primitives
P-LF-Queue(1) 5 v v DurableQueue.h:1.74 DL1 J Missing persistence primitives Points to garbage | add persistence primitives
CCEH (2) 6 v CCEH__MSB.cpp:280 DL3 J Incorrect concurrency control Lost key-value fix concurrency control/help persist
7 v CCEH__MSB.cpp:103 DL2 J Atomicity in rehashing Unable to recover | inconsistency-recoverable design
FAST-FAIR (5) 8 v v btree.h:955,979 DL3 JIncorrect concurrency control Lost key-value fix concurrency control/help persist
9 v v btree.h:955,1007 DL3 § Incorrect concurrency control Lost key-value fix concurrency control/help persist
10 v btree.h:224 DL1 § Missing persistence primitives Lost key-value add persistence primitives
11 v btree.h:213 DL2 § Partial inconsistency is never recovered unable to recover [inconsistency-recoverable design
12 v btree.h:576 DL2 § Atomicity in node splitting unable to recover [logging/transaction
P-ART (4) 13 v Tree.cpp:35,258 DL3 J Incorrect concurrency control Lost key-value fix concurrency control/help persist
14 v Tree.cpp:35,384 DL3 JIncorrect concurrency control Lost key-value fix concurrency control/help persist
15 v N16.cpp:15 DL2 | Atomicity between metadata and key-value l§ Unable to recover { inconsistency-tolerable design [15]
16 v N4.cpp:17 DL2 | Atomicity between metadata and key-value l§ Unable to recover { inconsistency-tolerable design [15]
P-CLHT (3) 17 v clht_1b_ res.c:315,370 DL3 JIncorrect concurrency control Lost key-value fix concurrency control/help persist
18 v clht_1lb_ res.c:315,468 DL3 § Incorrect concurrency control Lost key-value fix concurrency control/help persist
19 v clht_1b_ res.c:166 DL1 J Missing persistence primitives Lost key-value add persistence primitives [14]
P-HOT (4) 20 v HOTRowex.hpp:61,84 DL3 J Incorrect concurrency control Lost key-value fix concurrency control/help persist
21 v TwoEntriesNode.hpp:30 DL1 J Missing persistence primitives Points to garbage f| add persistence primitives [14]
22 v HOTRowexNode.hpp:315 DL1 § Missing persistence primitives Points to garbage f| add persistence primitives [14]
23 v HOTRowex.hpp:270 DL1 J Missing persistence primitives Points to garbage f| add persistence primitives [14]
P-Masstree (3) 24 v masstree.h:1837,744 DL3 § Incorrect concurrency control Lost key-value fix concurrency control/help persist
25 v masstree.h:1837,941 DL3 § Incorrect concurrency control Lost key-value fix concurrency control/help persist
26 v masstree.h:1378 DL2 § Atomicity in node splitting Unable to recover § logging/transaction
pmdk-array (1) 27 v array.c:486 DL2 |} Atomicity between metadata and data Unable to recover J logging/transaxtion

19

Effectiveness and soundness of Likely-Linearization Point Inference

12989
HEl Total Stores | 12047
I only Guarded-Protection 11112
1 only Publish-after-Initialization 10599
s | [—1 Durinn
% = Manual
©
T
o]
£ 5000
= 4
3631
1923 1927 ///
1280
. 637
/] /|

Hashtable: CCEH [USENIX FAST'19] B+tree: FastFair [USENIX FAST'18]
* Durinn only tests 35% and 82% of Total Stores
* Durinn did not miss true Linearization points

Comparison against Witcher

Bug Detection:

10000 CCEH 10000 Fast-Fair
* Durinn reports 10 DL3 bugs that Witcher missed — Durinn /'/
7500 == Witcher 7500 I!
* Durinn reduces the test space of thread interleaving 2 5000 — % 7% se00 ;/
,,/ * ;
2500 ,,’ 2500
0 250 500 750 1000 0 250 500 750 1000
ops # ops
. P-ART P-CLHT
Test Space Reduction: 10000 y 10000
I
: : : 7500 f 7500 ot
* Witcher performs several times more tests than Durinn)4 9 e
$ 5000 ’.' $ 5000 p—
. . . |
 Durinn only adversarially tests worst-case scenarios ¥ 00 e ¥ 00 !
J // 4__-6;'—;""'——"'
0 250 500 750 1000 0 250 500 750 1000
ops # ops

Outline

* |ntroduction

e Durinn

 Evaluation

e Conclusion

Conclusion

Durinn

* The first Durable Linearizability checker
 Three Durable Linearizability bug patterns
* Adversarial Crash State and Thread Interleaving Construction

* Likely-Linearization Point inference
 Detected 27 (15 new) bugs

Detecting Durable Linearizability Bugs

| Durinn: Adversarial Memory and Thread Interleaving for I

Xinwei Fu®, Dongyoon Lee*, Changwoo Min"

VIRGINIA Q\\w Stony Brook
k + L0
TECH. \ University

