
KSplit: Automating Device
Driver Isolation

1

Yongzhe Huang1, Vikram Narayanan2, David Detweiler2, Kaiming Huang1, Gang Tan1, Trent Jaeger1, and

Anton Burtsev2,3

1Penn State University 2University of California, Irvine 3University of Utah

Driver vulnerabilities
• 16-50 % of all Linux kernel CVEs

2

0

40

80

120

160

2017 2018 2019 2020 2021 2022*

23
3235

141

36

71

Driver CVEs

3

Driver Isolation Architecture

4

• Separate memory space

Driver isolation architecture

5

• Separate memory space

• Two copies of object
hierarchies

Driver isolation architecture

6

• Separate memory space

• Two copies of object
hierarchies

• Keep them synchronized

Driver isolation architecture

• Glue code

• Marshal/unmarshal params

• Interface definition language
(IDL) spec

• Generated with IDL compiler
7

• Separate memory space

• Two copies of object
hierarchies

• Keep them synchronized

Isolation performance

• Paging (834 cycles)

• Recent CPU mechanisms

• VMFUNC - 396 cycles

• MPK 11-260 cycles

• Save/restore general/extended regs, pick a stack, etc.

8

Manually specifying the IDL for data synchronization between domains has
become the major challenge

Challenge: Large interface boundary

9

Challenge: Complex data exchange

10

• Represents a network packet

• Has 66 fields (5 pointers)

• 3,132 fields (1,214 pointers) are recursively

reachable

• But only a small subset are accessed by both

kernel and driver (shared)

• 8 shared fields for this API

Challenge: Complex data structures

11

sk_buff

*head header

payload

data

*data

len
end

tail

skb_shared_info

nr_frags
*frag_list
frags[]

pointer
offset

ixgbe_xmit_frame(struct sk_buff *skb, …)

Challenge: Low-level kernel/C idioms

• Pointers

• Singleton, array

• Linked list

• Collocated data structures

12

int ixgbe_xmit_frame(struct sk_buff* skb, …)

• Sized and sentinel arrays

• Special pointers (e.g., __user,
__iomem)

• Tagged unions

• Return error as ptr (e.g.,
ERR_PTR)

sk_buff

�head header

payload

data

�data

len

end

tail

skb_shared_info

pointer

offset

�prev

�next
nr_frags
�frag_list
frags[]

• spin/mutex lock

• driver specific lock, e.g., rtnl_lock

• atomic operations, e.g., set_bit

• read-copy update (RCU)

• sequential lock

Challenge: Concurrency primitives

13

KSplit goals

• Build a set of static analyses to generate the IDL automatically (mostly) to

• Isolate the complete driver

• Identify shared/private data on the large interface boundary

• Ensure each domain has the updated copy of the data structure

• Identify marshaling requirements for the low-level kernel idioms

• Identify atomic regions that access shared data

• Prior work

• Microdrivers (isolated the control plane of the driver)

14

KSplit design choices

• Kernel is huge

• Identify the relevant kernel code that the driver interacts with

• Aim to detect all shared data (sound)

• We might classify some private data as shared

• Aim to infer marshaling requirements for low-level idioms

• Provide warning for the cases that we cannot infer

• Aim to infer marshaling requirements for shared critical sections

• Hypothesis: There are not many shared critical sections

15

KSplit workflow

• Input: source code of kernel and target isolated driver

• Output: IDL file that specifies the communication interfaces and data
synchronization requirements

16

Shared field analysis

17

Shared field analysis

• Input:

• data structure types on all the interface functions
for the driver under analysis

• Output:

• the set of struct fields accessed by both the
kernel and this driver

18

Shared field analysis

19

Program Dependence Graph

• PDG: represents program dependencies

• inter-procedural pointer alias relations

• field-sensitive

• data dependencies

• control dependencies/flow

20

CCS’17

Boundary data access analysis

21

Boundary data access analysis

• Purpose:

• Infer synchronization requirements for every interface call and return

• How:

• figure out the subset of shared fields that are read/written in an
interface function

• synchronize data read by callee at the function call

• synchronize data updated by callee at the function return

22

Boundary Data Access Analysis: example

23

Atomic Region Analysis

24

Atomic Region Analysis

• Purpose:

• Find shared data accessed within the atomic regions

• Infer synchronization requirements for shared atomic regions

• When to synchronize:
• after/before the entry/exit of each atomic region.

25

Atomic Region Analysis
• Compute atomic regions using control flow graph

26

Infer marshaling requirements for pointers

27

Classify Pointers with Nescheck

28

POPL’2002
AsiaCCS’17

Classify Pointers with Nescheck

29

Evaluation
• Research questions:

• How much data synchronization can we reduce?

• How much manual work required?

• How to test correctness of the isolated drivers?

• Compare to Microdrivers

• Run KSplit on 354 drivers from 9 subsystems

• Fully isolate and 10 drivers and validate the correctness

• Performance Overhead:

• Memcached benchmark

30

Case study: Ixgbe driver

31

Ixgbe: data synchronization optimization

ixgbe data access analysis

Deep copy fields

Microdrivers shared fields

KSplit shared fields

0 2500 5000 7500 10000

3,146

4,238

999,000

32

Ixgbe: synchronization primitives

Critical Sections

RCU

Seqlock

Atomic Operations

0 75 150 225

35173

70

private shared

private and shared kernel patterns

33

Ixgbe: pointer classification

34

singleton array string wild pointer (void) wild pointer (other)

manual 0 27 0 1 3

handled 1261 92 2 142 1

Ixgbe: Manual work

• Source code - 27,000 lines

• Generated IDL spec - 2000 lines

• Pointer misclassifications - 7

• Warnings - 65 (33 anonymous unions, 16 arrays, wild pointers)

• IDL (changes) - 53 lines

• Driver (changes) - 19 lines

35

Manual Work (average across isolated drivers)

12

16

Warnings Ptr. Misclassfication IDL changes (line) Driver code changes (line)

6

14

2

16

36

Performance overhead: memcached

• Memcached/memaslap

• 64B keys, 1024B values (90%
set, 10% get)

• We report the bandwidth and
transactions per second

• For 1-4 threads, KSplit
overhead (5-18%)

• With 10 threads, we saturate
the network bandwidth

37

200

400

600

800

1000

1200

1 2 4 10

2

4

6

8

10

12

T
ra

n
sa

ct
io

n
s

p
e
r

 s
e
co

n
d

B
a
n
d
w

id
th

 (
G

b
p
s)

Number of server processes

TPS (Native)
TPS (Isolated)

Bw (Native)
Bw (Isolated)

VEE’20

Conclusions

• We are moving closer to low-overhead isolation mechanisms

• Complexity of isolation becomes a major challenge

• Static analysis framework with small manual effort

38

The source code is available at: https://github.com/ksplit/ksplit-artifacts

https://github.com/ksplit/ksplit-artifacts

Thank you

39

