
KSplit: Automating Device 
Driver Isolation

1

Yongzhe Huang1, Vikram Narayanan2, David Detweiler2, Kaiming Huang1, Gang Tan1, Trent Jaeger1, and 

Anton Burtsev2,3

1Penn State University      2University of California, Irvine     3University of Utah



Driver vulnerabilities
• 16-50 % of all Linux kernel CVEs
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Driver Isolation Architecture
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Driver isolation architecture

• Glue code 

• Marshal/unmarshal params 

• Interface definition language 
(IDL) spec 

• Generated with IDL compiler
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• Separate memory space 

• Two copies of object 
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Isolation performance

• Paging (834 cycles) 

• Recent CPU mechanisms 

• VMFUNC - 396 cycles 

• MPK 11-260 cycles 

• Save/restore general/extended regs, pick a stack, etc.
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Manually specifying the IDL for data synchronization between domains has 
become the major challenge



Challenge: Large interface boundary
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Challenge: Complex data exchange
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• Represents a network packet  

• Has 66 fields (5 pointers) 

• 3,132 fields (1,214 pointers) are recursively 

reachable 

• But only a small subset are accessed by both 

kernel and driver (shared) 

• 8 shared fields for this API

Challenge: Complex data structures
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Challenge: Low-level kernel/C idioms

• Pointers 

• Singleton, array 

• Linked list 

• Collocated data structures
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int ixgbe_xmit_frame(struct sk_buff* skb, …)

• Sized and sentinel arrays 

• Special pointers (e.g., __user, 
__iomem) 

• Tagged unions 

• Return error as ptr (e.g., 
ERR_PTR)
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• spin/mutex lock 

• driver specific lock, e.g., rtnl_lock 

• atomic operations, e.g., set_bit 

• read-copy update (RCU) 

• sequential lock

Challenge: Concurrency primitives
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KSplit goals

• Build a set of static analyses to generate the IDL automatically (mostly) to 

• Isolate the complete driver 

• Identify shared/private data on the large interface boundary 

• Ensure each domain has the updated copy of the data structure 

• Identify marshaling requirements for the low-level kernel idioms 

• Identify atomic regions that access shared data 

• Prior work 

• Microdrivers (isolated the control plane of the driver)
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KSplit design choices

• Kernel is huge 

• Identify the relevant kernel code that the driver interacts with 

• Aim to detect all shared data (sound) 

• We might classify some private data as shared 

• Aim to infer marshaling requirements for low-level idioms 

• Provide warning for the cases that we cannot infer  

• Aim to infer marshaling requirements for shared critical sections 

• Hypothesis: There are not many shared critical sections
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KSplit workflow

• Input: source code of kernel and target isolated driver 

• Output: IDL file that specifies the communication interfaces and data 
synchronization requirements
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Shared field analysis
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Shared field analysis

• Input: 

• data structure types on all the interface functions 
for the driver under analysis 

• Output: 

• the set of struct fields accessed by both the 
kernel and this driver

18



Shared field analysis
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Program Dependence Graph

• PDG: represents program dependencies 

• inter-procedural pointer alias relations 

• field-sensitive 

• data dependencies 

• control dependencies/flow
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CCS’17



Boundary data access analysis
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Boundary data access analysis

• Purpose: 

• Infer synchronization requirements for every interface call and return 

• How: 

• figure out the subset of shared fields that are read/written in an 
interface function 

• synchronize data read by callee at the function call  

• synchronize data updated by callee at the function return
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Boundary Data Access Analysis: example
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Atomic Region Analysis
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Atomic Region Analysis

• Purpose:  

• Find shared data accessed within the atomic regions 

• Infer synchronization requirements for shared atomic regions 

• When to synchronize:  
• after/before the entry/exit of each atomic region.
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Atomic Region Analysis
• Compute atomic regions using control flow graph
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Infer marshaling requirements for pointers
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Classify Pointers with Nescheck
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POPL’2002
AsiaCCS’17



Classify Pointers with Nescheck
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Evaluation
• Research questions: 

• How much data synchronization can we reduce? 

• How much manual work required? 

• How to test correctness of the isolated drivers? 

• Compare to Microdrivers 

• Run KSplit on 354 drivers from 9 subsystems 

• Fully isolate and 10 drivers and validate the correctness 

• Performance Overhead: 

• Memcached benchmark
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Case study: Ixgbe driver
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Ixgbe: data synchronization optimization
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Ixgbe: synchronization primitives
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Ixgbe: pointer classification
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singleton array string wild pointer (void) wild pointer (other)

manual 0 27 0 1 3

handled 1261 92 2 142 1



Ixgbe: Manual work

• Source code - 27,000 lines 

• Generated IDL spec - 2000 lines 

• Pointer misclassifications - 7 

• Warnings - 65 (33 anonymous unions, 16 arrays, wild pointers) 

• IDL (changes) - 53 lines 

• Driver (changes) - 19 lines
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Manual Work (average across isolated drivers)
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Performance overhead: memcached

• Memcached/memaslap 

• 64B keys, 1024B values (90% 
set, 10% get) 

• We report the bandwidth and 
transactions per second 

• For 1-4 threads, KSplit 
overhead (5-18%) 

• With 10 threads, we saturate 
the network bandwidth
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Conclusions

• We are moving closer to low-overhead isolation mechanisms 

• Complexity of isolation becomes a major challenge 

• Static analysis framework with small manual effort
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The source code is available at: https://github.com/ksplit/ksplit-artifacts

https://github.com/ksplit/ksplit-artifacts


Thank you
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