
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

K9db: Privacy-Compliant Storage For Web
Applications By Construction

Kinan Dak Albab, Ishan Sharma, Justus Adam, Benjamin Kilimnik, Aaron Jeyaraj,
Raj Paul, Artem Agvanian, Leonhard Spiegelberg, and Malte Schwarzkopf,

Brown University

https://www.usenix.org/conference/osdi23/presentation/albab

K9db: Privacy-Compliant Storage For Web Applications By Construction

Kinan Dak Albab Ishan Sharma Justus Adam Benjamin Kilimnik Aaron Jeyaraj
Raj Paul Artem Agvanian Leonhard Spiegelberg Malte Schwarzkopf

Brown University

Abstract
Data privacy laws like the EU’s GDPR grant users new rights,
such as the right to request access to and deletion of their data.
Manual compliance with these requests is error-prone and
imposes costly burdens especially on smaller organizations,
as non-compliance risks steep fines.

K9db is a new, MySQL-compatible database that complies
with privacy laws by construction. The key idea is to make the
data ownership and sharing semantics explicit in the storage
system. This requires K9db to capture and enforce applica-
tions’ complex data ownership and sharing semantics, but in
exchange simplifies privacy compliance. Using a small set of
schema annotations, K9db infers storage organization, gen-
erates procedures for data retrieval and deletion, and reports
compliance errors if an application risks violating the GDPR.

Our K9db prototype successfully expresses the data sharing
semantics of real web applications, and guides developers
to getting privacy compliance right. K9db also matches or
exceeds the performance of existing storage systems, at the
cost of a modest increase in state size.

1 Introduction
New privacy laws including the European Union’s General
Data Protection Regulation (GDPR) [44], the California Con-
sumer Privacy Act (CCPA) [10], and others [7, 17, 20, 56] seek
to protect users’ rights to their data in web services. Many of
these laws provide users with rights to issue subject access
requests (SARs), including a right to access, which lets users
request a copy of their data, and a right to erasure, which
requires its deletion on request [51, 52]. Many also impose a
mandate to store data securely. Compliance with these laws
is important, as violations risk severe fines [9, 39–41].

Achieving compliance can be onerous and expensive, how-
ever, particularly for small and medium-size organizations.
These organizations must write custom queries and track meta-
data to identify and extract data related to a user, and contin-
uously maintain this infrastructure as services evolve. Even
well-intentioned developers sometimes get it wrong: for ex-
ample, the ownCloud collaboration platform [43], though it

claims GDPR compliance [42], retains a user’s activity log
after account deletion. Retrofitting compliance onto existing
systems is tricky, as it still requires manual work [2, 28] and
may harm performance [51].

This paper explores an alternative system design that
achieves privacy compliance by construction. Our key idea
is to make data ownership a first-class citizen in the database
system itself. K9db, our new database system, tracks suffi-
cient information to know, for each row in the database, what
user (or users) have rights to it. This allows K9db to infer
correct procedures for data retrieval and deletion, so that the
database itself can handle requests under the rights to access
or erasure, freeing the application developer from having to
write or maintain custom scripts to handle these requests. The
ownership information also allows K9db to encrypt data with
per-user keys, which helps meet, e.g., the GDPR’s “Protection
by Design and Default” requirement, which can be satisfied
by encrypting at-rest data [36, 44]. Finally, K9db uses owner-
ship information to generate errors if the database schema or
operations on database contents risk violating the GDPR.

To realize K9db, we had to address three challenges. First,
K9db must understand and model the complex data ownership
and sharing semantics of real applications. A user’s data may
span many tables with transitive relationships, may be shared
in complex and data-dependent ways, and may require partial
redaction when returned or removed. Second, K9db must
maintain and enforce compliance invariants matching these
ownership semantics throughout application execution, and
correctly respond to user access and deletion requests. Third,
K9db should match the performance of today’s databases
that lack infrastructure for data ownership tracking, and must
be both compatible with existing applications and easy for
application developers to adopt.

K9db’s design addresses these challenges as follows. First,
K9db derives a data ownership graph (DOG) from a set
of coarse-grained, declarative annotations on the database
schema. Using a small number of primitives, the DOG mod-
els a wide range of complex data sharing relationships found
in real-world applications. The DOG is central to K9db’s

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 99

storage organization, to its handling of users’ access and era-
sure requests, and to K9db’s ability to enforce privacy com-
pliance. Second, K9db organizes data storage around data
ownership to ensure that applications remain in compliance
and handle access and deletion requests correctly by con-
struction, without disrupting regular application operations.
Third, K9db is a MySQL-compatible drop-in-replacement for
existing databases, and requires few application changes be-
yond declarative schema annotations for normalized schemas.
To accelerate complex queries, K9db provides an integrated,
privacy-compliant in-memory cache based on materialized
views. By integrating and managing materialized views, K9db
provides the benefits of caching to applications, while reliev-
ing developers from ensuring compliance of cached data.

K9db structures the actual data storage as a set of user-
specific logical “micro-databases” (µDBs), realized over a
single physical RocksDB [33] store. Each user’s µDB con-
tains the data they own, and is encrypted with a user-specific
key. K9db also helps developers use the system correctly
by providing compliance-specific functionality not found in
other databases. A new EXPLAIN COMPLIANCE SQL com-
mand gives the developer insight into the DOG and highlights
possible schema annotation errors; and K9db supports com-
pliance transactions that guard against dynamic compliance
problems, such as data without an owner being left behind
in the database. K9db provides ACID guarantees similar to
those in default MySQL.

K9db provides out-of-the-box compliance for well-
intentioned developers who want to comply with privacy laws,
and helps developers avoid mistakes. We expect that fines for
privacy violations (e.g., the greater than 4% of annual turnover
or C25M for GDPR violations) discourage intentional mis-
use.

In summary, this paper makes the following contributions:
1. The data ownership graph (DOG) for modeling owner-

ship in a database, specified with schema annotations.
2. K9db, a new database that enforces compliance-by-

construction based on the DOG and a compliant,
ownership-aware storage organization.

3. Mechanisms that, based on the DOG, warn developers
if schema annotations are insufficient or if the database
becomes non-compliant at runtime.

4. An evaluation of K9db, demonstrating that a database
centered around first-class data ownership and
compliance-by-construction is practical.

We evaluate K9db with scenarios based on the Lobsters
web application [27], the ownCloud document sharing plat-
form [43], and the Shuup e-commerce platform [53]. Our
experiments show that K9db can express a wide variety of
nuanced data sharing and ownership patterns found in these
applications, and that K9db performs on-par with or better
than MariaDB and the widely-used MariaDB/memcached
stack when serving typical web application workloads.

K9db is open-source at https://github.com/brownsys/K9db.

2 Background and Related Work

2.1 Privacy Laws

Web services must comply with new privacy and data protec-
tion laws [7, 10, 17, 20, 44, 56]. Many of these laws have a
comprehensive scope: e.g., the EU’s GDPR applies to any-
one who offers services to users physically in the EU and
touches many aspects of web services [52]. In particular,
most laws grant users rights over their data that require ser-
vices to identify all data related to a user. The GDPR, for
example, provides Subject Access Requests (SARs) that al-
low a “data subject” (i.e., an end user) to request a copy of
their data (Right to Access, Art. 15), to request the deletion
of their data (Right to Erasure, Art. 17), and to receive the
data in a portable and machine-readable format (Right to Data
Portability, Art. 20). Complying with SARs requires the ser-
vice provider (“data controller” in GDPR terms) to identify
the information related to a data subject. As the GDPR has
become a model for other privacy laws, many have adopted
similar SAR-like requirements. The California Consumer Pri-
vacy Act (CCPA), for example, gives consumers a right to
request the “specific pieces of personal information [a busi-
ness] has collected about the consumer” [10, §1789.110] and
its deletion [10, §1789.105].

The GDPR and other laws also impose mandates for secure
data handling, particularly encryption at rest [44, Arts. 25,
32, 10, §1798.150(a)(1)]. These mandates avoid prescribing
particular technologies: e.g., the GDPR only requires that
organizations take “appropriate technical measures” to secure
personal data [44, Art. 32], giving freedom to meet the require-
ment in different ways. In practice, encrypting data at rest and
deleting encryption keys (referred to as “crypto-shredding”),
e.g., to make backups inaccessible, is widely considered a
compliant approach [45].

This paper primarily focuses on technical infrastructure to
ease compliance with SARs and the requirement for secure
storage. Privacy laws also include other provisions that e.g.,
mandate user consent for processing and regulate data shar-
ing with third parties. Our design is compatible with these
requirements, but they are not the focus of this paper.

2.2 Complexity of Data Ownership

Compliance with SARs is difficult, both manually and in au-
tomated systems, because web services often have complex
ownership and data sharing semantics. Identifying data asso-
ciated with a particular user (“data subject”) is challenging.
In relational databases, these associations are expressed as
foreign keys; but data in many tables link to data subjects
transitively via one or more intermediate tables, rather than di-
rectly. Multiple data subjects can be associated with the same
data (e.g., private messages), and sometimes this association
is asymmetric and implies different rights for different data
subjects (e.g., a teacher and a student). Finally, many-to-many
relationships introduce dynamically changing associations

100 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brownsys/K9db

between data and a variable number of data subjects.
GDPR-like laws afford companies with some flexibility in

handling SARs. Applications may keep data associated with
the data subject (possibly in some anonymized form) after a
deletion request due to legal or contractual obligations (e.g.,
tax laws) or public interest [44, Art. 17.3]. Data may also be
retained depending on the purpose of its processing, including
the interests of other users [44, Art 6.1, Art. 17.1(b)]. For
example, Facebook’s privacy policy specifies that Facebook
deletes the comments that a withdrawing data subject made,
but not the private messages they sent to a friend, unless that
friend also deletes them [16]. Thus, the compliance policy and
exact handling of SARs are application and data dependent.

2.3 Existing Approaches to Privacy Compliance

Privacy compliance today requires application developers
to write custom queries and maintain metadata to identify
and track information related to each data subject [51]. The
queries are tricky to get right and maintain as the application
evolves. To address part of this burden, some large companies
built bespoke GDPR metadata stores [13, §1] and dedicated
frameworks for data deletion [14]. However, these frame-
works only solve part of the problem, and most organizations
lack the resources to build such systems themselves. Our work
provides compliance within an off-the-shelf database.

Adaptations of existing database systems can go some way
towards providing privacy compliance, but can come at a
steep performance cost. For example, Shastri et al. found that
secondary indexes and strict metadata tracking impose over-
heads up to 5× [51], leading to proposals to accelerate these
operations in hardware [21]. SchengenDB [23] outlines a de-
sign that provides GDPR compliance, but relies on extensive
metadata and conservative, coarse-grained enforcement, e.g.,
destroying entire VM clusters when a data subject deletes
their account. Our work redesigns the database to make cor-
rect privacy compliance a first-class property [49], without
sacrificing performance and with moderate overheads.

Other proposals have advocated restructuring web services
to enforce users’ privacy rights, but face barriers to adoption.
W5 [24], Oort [11], Blockstack [3], and Solid [29] decouple
data storage from the web application and put data storage un-
der user control. This approach allows for strong guarantees,
but requires rewriting web applications, comes with restric-
tions (e.g., all application logic must run in JavaScript in
the browser), and is incompatible with today’s advertising-
based business model for web services. Data Capsules [58],
Riverbed [57], and Zeph [8] let users specify individual pri-
vacy policies for their data in web services. Though powerful,
custom policies do not solve the problem of identifying all in-
formation related to a user; and may limit possible operations
(e.g., to those expressible as homomorphic additions). Our
work provides by-construction compliance with subject ac-
cess requests, but with a storage model and database interface
that works for existing web applications.

K9db

Compliant Storage
Organization

EXPLAIN
 COMPLIANCE

Schema +
Annotations

Data Ownership
Graph

Compliance
Transaction

MySQL API

Queries

determines

Specification

Feedback

μDBsViews

maintains

Secondary
Indexes

Figure 1: K9db provides privacy-compliant storage based
on its data ownership graph, micro-databases (µDBs), and
compliance helper mechanisms behind a MySQL interface.

3 K9db Overview
K9db is a relational database that makes data ownership an ex-
plicit first-class citizen. K9db targets typical web application
workloads, which are dominated by reads and point lookup
queries [18]. Its design goals are (i) to require few changes to
application code, (ii) to capture and enforce the complex data
ownership and sharing semantics of real-world applications,
and (iii) to provide feedback that helps developers get privacy
compliance right.

Figure 1 shows an overview of K9db’s components. K9db
requires developers to extend their relational schema (i.e.,
CREATE TABLE statements) with a small set of annotations
that encode data ownership and sharing semantics. The an-
notated schema acts as an application-specific compliance
policy that specifies how K9db handles SARs. From these
annotations, K9db builds its key abstraction, the data owner-
ship graph (DOG) (§4). The DOG lets K9db determine, for
every row in the database, who owns it and who has rights
to it. K9db uses the DOG to satisfy data subjects’ SARs,
to check that the database remains compliant after the ap-
plication makes changes, and to warn the developer if their
annotated schema and the compliance policy it encodes seem
incomplete or contradictory.

Using information from the DOG, K9db organizes its stor-
age in a user-centric way, storing each data subject’s data
in their own logical “micro-database” (µDB), a shard of the
actual database. This design ensures that K9db enforces the
developer-provided compliance policy by construction, lets
K9db encrypt each data subject’s data with a separate crypto-
graphic key, and speeds up compliance-related enforcement
and operations (§5). K9db maintains some additional sec-
ondary indices compared to a traditional SQL database, which
help K9db efficiently resolve which µDBs store particular data.
It also maintains materialized views that help simplify and
accelerate execution of complex queries, while also providing
an integrated, privacy-compliant in-memory cache (§6).

For normalized schemas, K9db requires little to no applica-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 101

OWNED_BY

FK

(a) Ownership With FK.

OWNS

FK

(b) Ownership Against FK.

Figure 2: K9db’s annotations on foreign keys (FKs; orange)
indicate the direction of data ownership (black edge) between
two tables. Circles are tables.

Annotation Example
DATA_SUBJECT CREATE DATA_SUBJECT TABLE

users (...)

TA(x) OWNED_BY TB(y) stories(author_id)
OWNED_BY users(id)

TA(x) OWNS TB(y) member(gid) OWNS
group(id)

TA(x) ACCESSED_BY TB(y) share(share_with)
ACCESSED_BY user(id)

TA(x) ACCESSES TB(y) taggings(tag_id) ACCESSES
tags(id)

ON DEL TA(x) ON DEL chat(receiver)
{ANON (...) | DELETE_ROW} ANON (receiver)

ON GET TA(x) ON GET review(paper_id)
{ANON (...) | DELETE_ROW} ANON (reviewer_id)

Figure 3: K9db’s table and column-level annotations. All
annotations except DATA_SUBJECT and ANON imply a foreign
key from column x in table TA to column y in TB.

tion code changes, except that developers may need to wrap
certain operations in a compliance transaction (§5.5). Devel-
opers can use K9db as a drop-in replacement for MySQL.

4 Modeling Data Ownership and Sharing
K9db aims to provide correct-by construction compliance
with privacy laws, which requires K9db to respond to SARs
correctly and enforce several invariants over the data and its
storage. Correct compliance has two prongs: (i) a compliance
policy that is consistent with the privacy law in question, and
(ii) correct enforcement of this policy when handling both
regular application operations and SARs.

The compliance policy is application-specific and depends
on the relationships in the underlying data. For a single appli-
cation, multiple policies may achieve compliance, and laws
afford developers some flexibility in choosing a policy that
matches their application’s semantics (§2.2).

In K9db, developers express their compliance policy us-
ing schema annotations, which K9db represents using the
data ownership graph (DOG): a directed, acyclic multigraph
whose vertices represent database tables, and whose edges
represent ownership relationships between rows in the tables.

4.1 K9db’s Annotations

Developers use schema annotations on foreign keys to com-
municate their application’s data ownership and sharing se-

mantics to K9db. To communicate how the database repre-
sents human persons who have rights over data (“data subjects”
in GDPR terms), the developer annotates one or more tables
with the table-granularity DATA_SUBJECT annotation.

Foreign keys (FKs) relate rows in tables to each other, and
often imply ownership—consider e.g., a story pointing to its
author. This is the simplest case: a story is owned by the
row its FK value points to. K9db provides the OWNED_BY
keyword for developers to annotate such FKs (Figure 2a; §4.3
discusses transitive cases). But foreign keys may also point
in the opposite direction of ownership, as is the case e.g., if a
user table has a foreign key to their primary address. For such
cases, K9db provides the OWNS annotation (Figure 2b).

In addition to ownership, an application may also have data
that is owned by one data subject (who has the right to delete
it when removing their account), but share it with others. For
example, in the file sharing platform ownCloud [43], users
want to share files with others, but when they remove their
account have the file be removed for everyone. K9db lets
developers express this with the ACCESSED_BY annotation,
and its dual for opposite-direction FKs, ACCESSES.

These annotations extend the semantics of foreign keys
with compliance semantics, and while every annotation is
applied to a foreign key, not every foreign key impacts owner-
ship or needs to be annotated. For example, the foreign key
connecting students in a university database with their de-
clared majors carries no ownership information—the students
do not own the majors—and should not be annotated.

K9db also provides table-level annotations that allow de-
velopers to specify that columns in a table need anonymizing
in the context of SARs. This is important because a row may
need redacting before returning the row as part of a right-to-
access request (ON GET), or because a row may need to be
retained in anonymized form (e.g., for tax compliance) after
a data subject requests deletion of their data (ON DEL). Each
anonymization annotation is associated with an ownership or
access foreign key (i.e., an outgoing edge from the table in
the DOG). This allows for different anonymization behavior
depending on how the data subject who issued a SAR is con-
nected to the data. For example, in the HotCRP conference
review system [22], if a data subject who is both a reviewer
and an author makes an access request, they should receive
an unredacted copy of the reviews they wrote, but redacted,
anonymized reviews for the papers they authored.

Figure 3 shows K9db’s complete set of schema annotations.

4.2 Expressing Developers’ Compliance Policies

We demonstrate how developers annotate their schema to
express their desired compliance policy using two examples
extracted from real applications: stories and messages in Lob-
sters (Figure 4), and file sharing in ownCloud (Figure 5).

In Lobsters, developers begin by annotating the users
table, which records the application’s end-users, with
DATA_SUBJECT. A user may post several stories, and retains

102 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 CREATE DATA_SUBJECT TABLE users (id INT PRIMARY KEY, ...);
2 CREATE TABLE stories (
3 id INT PRIMARY KEY, title TEXT, ...
4 author INT NOT NULL OWNED_BY user(id)
5);
6 CREATE TABLE tags (id INT PRIMARY KEY, tag TEXT, ...);
7 CREATE TABLE taggings (
8 id INT PRIMARY KEY,
9 story_id INT NOT NULL OWNED_BY stories(id),

10 tag_id INT NOT NULL ACCESSES tag(id)
11);
12 CREATE TABLE messages (
13 id INT PRIMARY KEY, body text, ...
14 sender INT NOT NULL OWNED_BY user(id),
15 receiver INT NOT NULL OWNED_BY user(id),
16 ON DEL sender ANON (sender),
17 ON DEL receiver ANON (receiver)
18);

Figure 4: Partial schema for Lobsters. Users own the stories
they authored and their associations with tags. Messages are
jointly owned by both sender and receiver.

1 CREATE DATA_SUBJECT TABLE user (id INT PRIMARY KEY, ...);
2 CREATE TABLE group (id INT PRIMARY KEY, title TEXT, ...);
3 CREATE TABLE member (
4 id INT PRIMARY KEY,
5 uid INT NOT NULL OWNED_BY user(id),
6 gid INT NOT NULL OWNS group(id)
7);
8 CREATE TABLE share (
9 id INT PRIMARY KEY, ...

10 uid_owner INT NOT NULL OWNED_BY user(id),
11 share_with INT ACCESSED_BY user(id),
12 share_with_group INT ACCESSED_BY group(id)
13);

Figure 5: Partial schema for ownCloud file sharing: users own
their group membership, which owns the group; files have an
owner and are shared with users who have access to them.

sole ownership of them: these stories must be retrieved or
deleted when the user issues an SAR. Developers express this
by annotating the author FK in stories with OWNED_BY.
Lobsters also has a set of tags that represent discussion topics,
e.g., games and programming. Users can assign tags to sto-
ries they posted, and have complete ownership of these associ-
ations. Developers express this by annotating the story_id
column in taggings with OWNED_BY. This makes the story
the owner of its taggings, transitively making the data subject
who owns the story (i.e., its author) the owner of the associated
taggings. But the tags themselves are not related to any data
subject. Thus, developers annotate tag_id with ACCESSES
(and not OWNS). As a result, a data subject receives a copy
of their stories and associated tags when they request access,
while disassociating tags from their stories and removing the
stories themselves when requesting deletion.

* OWNED_BY

FK

(a) Transitive Ownership.

n 1* OWNS

FK

(b) Variable Ownership.

Figure 6: Tables can have transitive ownership relationships
(*: zero or more steps of indirection); if an edge follows a one-
to-many or many-to-many relationship, it expresses variable
ownership. Double circles indicate data subject tables.

users stories taggings tagsmessages
4

n 1

5
n 1 2

1 n

1

1 n

3

n 1

Figure 7: The DOG for stories and messages in Lobsters. Red
indicates access-typed edges; 1 and n are cardinalities.

Similar to private messages in Facebook [16], messages
in Lobsters are only deleted when both sender and receiver
request deletion. Thus, developers annotate both sender and
receiver with OWNED_BY (i.e., joint-ownership), along with
anonymization annotations that instruct K9db to hide the iden-
tity of the associated withdrawing user in surviving messages.
An alternative policy could require deleting a message as
soon as one of the associated users is deleted. Developers can
express this via an ON DEL . . . DELETE_ROW annotation.

ownCloud’s data subjects are users in the user table, who
can be members of a group (in the group table), as defined by
the member association table. Users own their group member-
ships, so the developer annotates the uid column of member
with OWNED_BY. The group and its associated resources are
jointly owned by its members (ownCloud has no notion of
group admins). Hence, the developer applies the OWNS anno-
tation to the gid foreign key from member to group.

ownCloud’s share table contains records of users shar-
ing files with others. This table specifies the file’s owner
(i.e., its original creator) via the uid_owner column, which
is a direct FK to the user table. The developer thus an-
notates this column with OWNED_BY. The share_with and
share_with_group columns are also FKs that eventually
lead to the user table, but indicate that the file is shared with
(rather than owned by) these users. The developer therefore
annotates them with ACCESSED_BY.

4.3 Data Ownership Graph

K9db builds the DOG from developers’ annotations by insert-
ing DOG edges in the underlying FK direction for OWNED_BY
and ACCESSED_BY, and against the FK direction for OWNS
and ACCESSES. Thus, DOG edges always point towards a
data subject table, unlike foreign keys.

When tables have a chain of annotated foreign keys, K9db

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 103

user member

groupshare

9
1 n

8n

1

10
1

n

61
n 7

1n

Figure 8: The DOG for ownCloud file sharing. Red edges are
access-typed. Note the variable ownership (Fig. 6b) between
member and group, as member rows are the group’s owners.

adds an edge to the DOG that establishes a transitive owner-
ship relationship (Figure 6a). For example, in Lobsters (Fig-
ure 7), a story’s taggings have no direct references to the
story’s author. Instead, they refer to their story 2 , which in
turn refers to the author 1 . Therefore, edges in the DOG
always represent a single step towards a data subject.

The DOG is a multi-graph because two tables can have
multiple foreign keys between them. For example, in Lobsters
the messages table has two foreign keys, one to the sender
4 and one to the receiver of a message 5 . Since sender

and receiver jointly own a private message—i.e., the message
only disappears if both users delete their account—there are
two annotated edges between messages and users.

Access annotations on foreign keys also add edges to the
DOG, but these edges are access-typed and distinct from
owner-typed edges. For example, in ownCloud (Figure 8)
a file is accessible but not owned by users it is shared with, ei-
ther directly 6 or via a group 7 . Differentiating ownership
and access edges is important for K9db to correctly handle
access and deletion requests.

If the destination of a DOG edge can contain multiple rows
corresponding to a single row in the source table, then that
row can have multiple owners or accessors. The DOG edge
8 from ownCloud’s group to member is a one-to-many re-

lationship, so a group may have many owners. This is an
example of variable ownership (Figure 6b), as the number
of owners varies depending on the data (i.e., depending on
the rows in member). Similarly, DOG edges may also express
variable access, e.g., a single tag in Lobsters may be accessed
through many stories 3 . This contrasts with the typical situ-
ation where the destination of a DOG edge is a primary key
or unique column, making it a one-to-one or many-to-one re-
lationship, both specifying a single owner (e.g., 9 and 10).
K9db’s DOG metadata stores arity of relationships and K9db
handles variable ownership and access appropriately.

4.4 Helping Developers Get Annotations Right

EXPLAIN COMPLIANCE gives the developer information
about the DOG, including heuristic warnings and suggestions
about how it may be improved. K9db runs a simple heuristic
over the schema to discover column names which indicate
user data such as variations on “name”, “email” and “pass-

word”. If a table with such column names is not connected to
a data subject in the DOG, K9db suggests to make it owned.
This heuristic is most useful to discover missing data subjects,
as their tables often contain columns with such names.
EXPLAIN COMPLIANCE also reports information that K9db

derives from the DOG. For every table, it reports which data
subject tables own it, and the paths through the DOG by
which they own the table. This essentially shows the developer
the closure over the DOG that K9db uses to handle SARs.
EXPLAIN COMPLIANCE warns developers if a table is owned
by many data subjects, e.g., if a DOG path contains multiple
variable ownership edges, which can result in multiplicatively
many owners. Such liberal sharing is rare in practice and
likely the result of a schema or annotation mistake.

4.5 Data Ownership Graph Properties

The DOG is well-formed if any path through it terminates at
a data subject table. K9db rejects any schema that results in a
DOG that is not well-formed.

Although the DOG is a graph of tables, its edges represent
relations between rows in the source and destination tables
based on the values of the underlying FK columns. Each
DOG edge maps to a relation between rows in the two tables,
where matching rows in the destination table own (or access)
the rows in the source table. Intuitively, this relation can
be evaluated as a query over the destination table, which
yields exactly the owning row (or rows, in the case of variable
ownership). Well-formedness guarantees that the transitive
closure of these relations terminates at data subject tables.

Several key properties follow from this. First, if no match-
ing rows exist in any destination table when evaluating the
relations along all of the table’s outgoing ownership edges,
data is orphaned (i.e., has no owner). This gives rise to the
necessary (but insufficient1) no orphaned data compliance
condition: any row in a database table connected to the DOG
must resolve to ≥1 owning data subjects. Second, the tran-
sitive closure of relations corresponding to ownership edges
in the DOG, starting from any row, identifies the set of data
subjects that own this row. Third, the DOG’s reverse transitive
closure starting from a row in a data subject table yields:

1. the rows shared with and owned by that data subject, if
considering accessor-typed and owner-typed edges; or

2. the rows owned by that data subject, if considering only
owner-typed edges.

The former set corresponds to the data that needs returning
from a right-to-access request, and the latter identifies the data
that needs deleting for a right-to-erasure request, provided no
other owners exist.

5 Compliant by Construction Storage
In principle, the DOG and its relations are sufficient to identify
a data subject’s data, and one could imagine adding it as a
metadata layer over an existing database. But in practice,

1Sufficiency would require the correct owners, not just any owner.

104 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

compliance is more complex. Although the DOG identifies
all data owned by a data subject, K9db needs to take the
correct actions on this data. For example, K9db must avoid
prematurely deleting jointly-owned data, and deletion must
cover backups outside the live database. K9db must also have
efficient ways to decide if a given database operation will
break compliance, e.g., by violating the no orphaned data
invariant, something that the DOG alone fails to provide.

K9db therefore introduces ownership as a first-class notion
into the storage layer. This makes it simple for K9db to handle
SARs, and to enforce invariants that must hold for compliance.
Specifically, K9db’s storage layer is organized around per-
data subject logical “micro-databases” (µDBs), such that each
µDB contains all of its data subject’s owned data. For jointly-
owned data, K9db stores copies of that data in the µDB of
every data subject that owns it.

This design has several advantages. First, it ensures data
deletion is correct relative to the DOG. When a data subject
requests to delete their data, it is sufficient to delete their µDB.
Data shared with other data subjects survives as copies in
the other µDBs. Second, this design provides an easy way to
check whether data is orphaned, as such data can only exist
outside of all data subjects’ µDBs. Third, this design lets K9db
use a per-data subject key to encrypt data in each µDB. This
simplifies deletion alongside external and replicated backups
of the data, as deleting the owner’s key makes all backups and
copies inaccessible (i.e., “crypto-shredding”).

5.1 Storage Layout and Logical µDBs

K9db determines the µDBs to store each row in using the
DOG. In a well-formed DOG, every table reaches at least one
data subject table via its outgoing ownership edges. K9db
splits the contents of such a table into different µDBs, each of
which contains the rows owned by a particular data subject,
and encrypts them with a key specific to that data subject.
A table also includes an orphaned data section that may be
used temporarily within sequences of operations (§5.5). A
data subject’s µDB therefore includes rows from every table
that stores data owned by them. Note that even though µDBs
store physical copies of rows that have multiple owners, they
are a logical abstraction and realized over a single underlying
physical datastore (e.g., RocksDB in our prototype).

Viewing the datastore as a whole, a previously single row in
a table may now be multiple rows due to copies being stored
in each owner’s µDB. The value of the primary key of that
row refers to all these copies. Internally, K9db identifies the
different copies using a pairing of the data subject identifier
(the value of its primary key in the data subject table) and the
value of the primary key in the row.

K9db maintains on-disk secondary indexes separate from
tables and µDBs, which K9db uses to execute queries effi-
ciently. K9db creates an on-disk index for each unique and
foreign key column and for the primary key. K9db on-disk
indexes differ from traditional database indexes in two key

aspects: they map keys to (µDB identifier, primary key), and
they point to all copies of any jointly-owned row that match
the indexed key. K9db creates a special index for the primary
key column(s) of owned tables, which maps the PK value to
data subject identifiers that own the corresponding row.

K9db stores tables unconnected to the DOG in the same
way as other databases. Such tables contain data that is not
owned by any data subject, e.g., all available tags in Lobsters
or all majors in a university database, and thus are outside any
µDB. Note that this is distinct from orphaned data, which are
rows without owners in tables that are connected to the DOG.

5.2 µDB Integrity

The storage layer maintains an important invariant for com-
pliance, µDB completeness: data owned by a data subject is
exactly identical to the data stored in their µDB.

To maintain µDB completeness, K9db must identify the
µDBs to insert new data into, and correctly apply application
updates that change who owns rows. Changes to the data
in a table may have cascading effects on who owns data in
dependent tables connected to this table via some ownership
path in the DOG. For example, changes to the member table in
ownCloud affect who owns records in the group table. K9db
utilizes the DOG to handle these situations correctly.

Inserting Data. When K9db receives an INSERT state-
ment, it uses the DOG to identify the owners of this data. In
particular, K9db analyzes the outgoing edges from the DOG
vertex for the affected table. For a direct ownership edge, the
data subject identifier is already present in the new row in the
form of a foreign key. K9db determines this by introspection
on the new row and without querying other tables. If an edge
indirectly leads to the data subject table, identifying the owner
becomes more complex. K9db can find the owner(s) by query-
ing the database along the transitive edges between the table
and the data subject. But such a query may be expensive—for
example, the DOG for the Shuup e-commerce application [53]
contains a chain of five edges from the payments table to
the owning data subject. Instead, K9db memoizes the query
by building and maintaining in-memory ownership indexes,
which essentially provide “shortcut” relations over the DOG
that point directly to the owning data subjects. In practice,
K9db can often avoid or reuse ownership indexes (§6.1).

Cascading Updates. INSERT, UPDATE, or DELETE state-
ments may have cascading effects on the ownership of records
in dependent tables. After applying such statements to their
target table, K9db identifies dependent tables from the DOG.
It then queries the rows in each dependent table that match
the updated row. K9db moves or copies the matched rows
between µDBs appropriately, and cascades again into any fur-
ther dependent tables. K9db requires no additional indexes to
perform this matching efficiently, as it can rely on standard
on-disk indexes over foreign keys’ source and destination
columns. In many cases, K9db avoids cascades via optimiza-
tions based on foreign key integrity (§6.1).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 105

5.3 Handling Subject Access Requests

K9db needs to handle two types of SARs: the right to access
and the right to erasure. K9db handles both with a similar
high level procedure: (i) K9db traverses the DOG to identify
all tables and edges connected to the data subject; (ii) K9db
finds the data owned by the data subject in their µDB; (iii)
K9db locates data accessed, but not owned, by the data subject
in other µDBs; and (iv) K9db performs anonymization as
specified by the developers in the schema.

For either type of request, K9db identifies the data subject’s
data by following paths in the DOG, starting from the data
subject table, and moving against incoming edges. A path that
consists solely of ownership edges signifies data owned by
the data subject, while paths that contain one or more access
edges reflect accessed data. K9db locates the relevant rows in
a table before moving on to any dependent tables. For every
incoming edge, K9db uses the rows it located in the parent
table to identify dependent rows in the dependent table. K9db
finds these either in the same µDB for ownership paths, or in
other µDBs using on-disk indexes for access paths.

After traversing an edge and retrieving data in its source
table, K9db selects the anonymization annotations in the
schema that apply to that edge. The anonymization anno-
tations specify the columns to anonymize (e.g., the sender
of a chat message). For access requests, K9db anonymizes
retrieved rows before sending them back to the client. On
deletion requests, K9db removes the data subject’s µDB from
the database, and anonymizes any remaining copies of the
data, which it locates in other µDBs using on-disk indexes.

5.4 Atomicity, Consistency, Isolation, and Durability

A single SQL statement may result in several underlying
operations over K9db’s storage, as it may update rows in
several µDBs or cascade over dependent tables. It is critical for
compliance that we ensure that these updates are all ACID, to
avoid data races that could lead to a non compliant state (e.g.,
by creating orphaned data, or breaking the µDB completeness
invariant). Therefore, K9db executes every SQL statement
as a single statement ACID transaction (similar to MySQL).
This includes all underlying operations over any µDBs and
all updates to on-disk secondary indices or the integrated in-
memory cache (§6.2). Our prototype does not support general
multi-statement SQL transactions yet (see §7).

K9db guarantees that concurrent SQL statements have re-
peatable reads isolation, which is the default in MySQL. Any
weaker isolation level is insufficient for compliance, as it can-
not guarantee that K9db’s compliance invariants hold in the
presence of concurrent updates.

5.5 Compliance Transactions

An application may itself perform operations that risk vio-
lating compliance. Consider the example from ownCloud
shown in Figure 9: 1 the application deletes user “A”’s
membership in group 1, of which “A” is the last remaining

uid gid
A 1
B 2
A 2

member

1
D

el
et

e

gid ...
1
2
2
1

group

A’s µDB
B’s µDB

Orphaned region

2
M

ov
e

3 Delete
START COMPLIANCE TX

1 DELETE FROM member WHERE uid=A AND gid=1;

2 K9db applies cascading effect;

gid=1 is orphaned

3 DELETE FROM group WHERE gid=1;

COMMIT COMPLIANCE TX

COMPLIANCE RESTORED

COMPLIANCE BROKEN

Figure 9: K9db’s compliance transactions help developers
check that the database is in a compliant state after multiple
operations (here, (1) deleting the last owner of a group, and
(3) then deleting the group). Without a compliance TX, K9db
would report an error instead of applying step (2).

member. This deletion from member has a cascading effect
on the dependent group table. Since the group with gid 1
no longer has any owners, K9db 2 moves it into the table’s
orphaned data region. This breaks compliance, as it violates
the DOG’s no orphaned data invariant. A correct application
must now perform some operation that restores compliance,
e.g., by deleting group 1 in a separate SQL operation, which
3 removes the orphaned row, restoring the invariant.

K9db supports this pattern with the idea of a compliance
transaction (CTX). A CTX wraps a set of operations that
may temporarily violate compliance, but commits only if the
database is back to a compliant state at the commit point.
Within a CTX, K9db stores orphaned data in orphaned re-
gions attached to each table. On subsequent operations that
reintroduce owners for this data, K9db migrates the rows from
the orphaned regions to the corresponding µDBs; if deleted,
K9db removes the data. At the end of a CTX, K9db ensures
that every record moved to the orphaned region during the
CTX has an owner again (or was deleted), and produces an
error to the developer otherwise.

Finally, K9db forbids statements that write to the orphaned
region unless they are part of a CTX. In particular, step 1
in Figure 9 will error unless contained in a CTX. This means
that developers need to modify applications that contain such
patterns to use CTXs when necessary. Requiring such limited
modification is desirable, as disallowing compliance-breaking
changes outside of CTX helps developers identify issues and
forces them to fix buggy and incompliant applications. For
example, K9db would reject a buggy version of ownCloud
that does not clean up groups with no members 3 . Introduc-
ing a CTX allows an application to have benign temporary
incompliance; if K9db instead required applications to only

106 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

perform operations that move the database between compliant
states (e.g., deleting groups before deleting their last member),
it would likely require more substantial rewrites.

CTX are different from regular SQL transactions, which
serve to ensure consistency under concurrent execution. CTX
are lightweight and required for compliance, while SQL trans-
actions are expensive and web applications often (but not
always) avoid them. In a privacy-compliant database with
SQL transactions, each such transaction must also be a CTX.

6 Query Execution
When K9db executes a query, it must identify the µDBs af-
fected to locate the relevant rows. Depending on the operation,
this may involve finding one or all copies of shared rows.

Queries that refer to a single table, such as DELETE and
UPDATE statements, and most SELECT queries issued by web
applications (e.g., point lookups), run directly against K9db’s
µDBs with the aid of on-disk indexes. K9db analyzes the
columns that appear in the WHERE condition of the query, and
selects the index that matches the most columns. Like other
databases, K9db finds all the rows that may match the query
using the selected index, and then filters these rows with any
remaining columns. If no index matches, K9db runs a scan
over the table. Developers may create additional indexes using
CREATE INDEX, similar to traditional databases.

When data has multiple owners, an index may refer to
multiple copies of the same row. For DELETE and UPDATE,
K9db atomically operates over all these copies, ensuring that
all copies are consistent. K9db may need to remove or add
some of the affected rows from/to µDBs, and may need to cas-
cade into dependent tables as described in §5.2. For SELECT
queries, K9db identifies a single copy of each matching row
and skips any remaining index entries for other copies. This
avoids overheads for deduplicating copies of the row.

K9db serves some complex SELECT queries from material-
ized view, described in §6.2.

6.1 Optimizations

K9db speeds up query execution and reduces its memory
footprint with a set of optimizations designed to avoid deep
cascades and to reduce the number of in-memory ownership
indexes (§5.2) required. Some of these optimizations rely
on foreign key integrity, which K9db enforces (like many
other databases) to prevent application operations that result
in dangling foreign keys. With FK integrity, rows cannot be
inserted into a table if they contain references to non-existent
rows in a destination table, and rows in the destination table
cannot be deleted as long as source table rows refer to them.

Avoiding Cascades. K9db needs to cascade into depen-
dent tables along incoming DOG edges to update dependent
rows affected by a write (i.e., those owned by a modified row).
But FK integrity guarantees that no such rows exist when
K9db handles INSERT and DELETE queries to a table T that
is the destination of a FK from a dependent table. This lets

K9db skip cascades along T ’s incoming DOG edges if the
edge is in FK direction; otherwise, K9db must cascade.

Ownership Indexes. K9db relies on two techniques to
reduce the number of ownership indexes. First, multiple in-
coming DOG edges that require an ownership index and point
to the same column of a table (usually the primary key) may
reuse the same index. Second, K9db omits ownership indexes
for edges in the DOG that correspond to OWNS annotations,
such as the edge from group to member in ownCloud. These
edges point in opposite direction to the underlying foreign
key. FK integrity ensures that a row must exist at the source
of such an edge (e.g., group) before any rows referring to it
can be inserted to the destination table (e.g., member). Hence,
K9db always inserts new rows from the source table into the
orphaned region, and defers moving them to the correct µDB
to future inserts into destination tables in the DOG (which
must cascade), as discussed in §5.5. These optimizations, for
example, help K9db create only one ownership index for Lob-
sters (which gets re-used three times), and avoid the need for
any ownership indexes in ownCloud.

Queries With Inlined Owners. SQL Statements some-
times directly refer to the owner of their target rows, e.g., by
constraining a foreign key that corresponds to an ownership
edge in the DOG. Queries that fit this pattern are common
in the web applications: e.g., in Lobsters, SELECT * FROM
stories WHERE author = ? selects stories by their author,
which is an annotated foreign key to users. K9db detects
this situation by statically analyzing the WHERE condition and
determines the relevant µDB without an on-disk index lookup.

6.2 Materialized Views

K9db serves complex SELECT queries, such as joins, aggre-
gations, and those that reorder data, from materialized views.
This design makes sense for two reasons. First, it is simple
and avoids the need to engineer a sophisticated query plan-
ner that understands the nuances of ownership and indexes
to efficiently execute these queries over K9db’s µDBs. Sec-
ond, developers often cache the results of complex SELECT
queries in external systems (e.g., memcached). Privacy com-
pliance while using an external cache requires setting appro-
priate expiration policies for the cache [59, §4.5] or explicit
invalidation of cache entries related to a data subject if they
request deletion of their data. This can be painful for develop-
ers and may require manually tracking metadata, e.g., when
caching aggregates over many data subjects’ data. Instead,
K9db provides an integrated privacy-compliant cache using
materialized views.

When K9db receives a complex SELECT query for the first
time, it creates a materialized view and serves further in-
stances of the query from it, until the view is removed or
times out. K9db keeps the materialized views up to date via
an incremental, streaming dataflow computation triggered by
writes to µDBs, as well as µDB deletion. This makes inserts,
updates, and deletes more expensive, but speeds up reads.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 107

K9db updates the materialized views atomically prior to ac-
knowledging the corresponding operation to the client. This,
along with our storage layer, ensures repeatable reads isola-
tion for concurrent operations whether cached or not.

K9db’s ownership indexes are special-case materialized
views, maintained with the same dataflow infrastructure.

7 Implementation
Our K9db prototype consists of 35k lines of C++, 500 lines
of Rust, and 2k lines of Java. It relies on RocksDB for µDB
storage, on Apache Calcite [6] for query planning, and on
libsodium [15] for encryption. Our implementation is similar
to the MyRocks MariaDB storage engine [30], but extends it
with compliance and µDB capabilities.

MySQL Compatibility Layer. K9db exposes a MySQL
binary protocol interface, so unmodified applications can treat
K9db as a MySQL server. The interface to K9db’s materi-
alized views is primarily through prepared SQL statements:
when an application registers a prepared statement, K9db
creates a view if necessary and serves future executions of
the prepared statement from it. Developers can also create
additional views manually.

Storage. K9db relies on RocksDB for persistent data
storage. Each table in the schema is a RocksDB column fam-
ily. Rows in K9db are keyed by a combination of their owner
and primary key, to uniquely identify each owner’s copy of a
row. Our prototype stores rows ordered by their owner identi-
fier, and uses that identifier as a RocksDB prefix. This allows
it to extract and delete µDBs using RocksDB prefix itera-
tors. Our prototype creates and maintains on-disk indexes as
RocksDB column families, and formats their content to allow
writes to retrieve all the copies of a row, and reads to retrieve
a single arbitrary copy, skipping the rest. Like MySQL, K9db
creates indexes for primary, unique, and foreign keys.

Encryption at Rest. K9db uses hardware-accelerated
AES256-GCM to encrypt all data in a µDB with the key of its
owner. The key (µDB identifier, primary key) associated with
every row is encrypted deterministically with a global key to
allow consistent lookup. This has leakage, but is sufficient to
satisfy the GDPR’s “security of processing” requirement (Art.
32), which is often interpreted to require encryption of data
at rest [4]. It is possible to use blind indexes [5] which also
allow consistent lookup but reduce leakage. K9db’s design
is independent of the particular encryption scheme used, and
can benefit from future advances in searchable encryption.
Information in materialized views and secondary indexes re-
mains unencrypted, but K9db deletes it when deleting a user’s
data. K9db destroys the decryption key when a user removes
their account, making any remaining backups inaccessible.

ACID. K9db executes each application SQL statement
in a RocksDB transaction, which is based on row-level lock-
ing. This includes all updates to secondary indices (similar
to MyRocks) and all µDBs and cascade operations. As in
MyRocks, K9db serves reads from a consistent RocksDB

snapshot. K9db also updates all relevant materialized views
prior to committing. Unlike MyRocks, K9db enforces foreign
key integrity and appropriately locks FK targets during execu-
tion. Overall, this ensures that concurrent SQL statements are
atomic and consistent with repeatable reads isolation, which
is the default in MySQL and MyRocks.

View Updates. K9db’s materialized view updates fol-
low a standard design akin to differential dataflow [32, 35]
and Noria [18]. Each table in the schema is associated with
an input vertex in the dataflow graph, and when K9db per-
forms updates to a table, it injects the updates into its dataflow
input vertex. The dataflow processes the updates through a
sequence of operators to derive an incremental update to the
materialized view (or secondary index), and applies this up-
date. Dataflow operators are stateless (e.g., projections, filters,
unions) or stateful (e.g., joins, aggregations). K9db’s materi-
alized views are indexed for ordered and unordered lookups.

Limitations. Our prototype lacks support for general,
multi-statement SQL transactions. These are rare in web ap-
plications, and can be supported using existing RocksDB
primitives and techniques for versioned dataflow process-
ing [31, 35]. While our prototype does not yet support schema
changes, RocksDB is schema-oblivious, and our prototype’s
storage layer could be extended to support schema changes
with some engineering effort, using similar techniques to My-
Rocks. Finally, K9db’s dataflow graph operators sometimes
store copies of a record; by using a record pool, our proto-
type’s memory footprint could be reduced.

8 Evaluation
We evaluate K9db with three applications, Lobsters [27], own-
Cloud [43], and Shuup [53]. We ask three questions:

1. What is K9db’s impact on end-to-end application perfor-
mance? (§8.1)

2. What is the impact of K9db’s design features on perfor-
mance? (§8.2)

3. What effort by application developers does using K9db
require? (§8.3)

We run experiments on a Google Cloud n2-standard-16
VM, storing databases on a local SSD. Our baselines use
MariaDB v10.6.5 (a MySQL fork) with the RocksDB-based
MyRocks storage engine, and memcached v1.6.10.

8.1 Application Performance

We start by analyzing K9db’s performance with two applica-
tions: Lobsters and ownCloud.

8.1.1 Lobsters

Lobsters (lobste.rs) is an open-source discussion board, simi-
lar to Reddit. Lobsters currently lacks GDPR compliance [26],
and has a schema that consists of 19 tables, which store posts,
comments, nested replies, upvotes, invitations and other in-
formation. We annotated this schema for K9db with three
DATA_SUBJECT tables, 14 OWNED_BY, one ACCESSES, and

108 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lobste.rs

Read story
Frontpage

User profile

Comments

Recent stories

Vote on comment

Vote on story

Post comment

Post story

Lobsters endpoint

0

10

20

30

L
at

en
cy

[m
s]

MariaDB
K9db
K9db (unencrypted)

Figure 10: K9db matches or beats MariaDB’s median (solid)
and 95th percentile (shaded) latency on the Lobsters workload,
and encryption has low overheads except on the “Comments”
endpoint, which reads thousands of rows in the tail.

two anonymization annotations (details in §8.3). We use an ex-
isting open-source, open-loop benchmark for Lobsters based
on public workload statistics [19]. The benchmark models ten
endpoints in the Lobsters webapp that correspond to different
pages and each issue between six and fifteen SQL queries,
most of which are reads. We load the database with data
that models the current production Lobsters deployment (15k
users, 100k stories, 313k comments, and 416k votes) [19].
K9db therefore maintains 15k logical µDBs in this experi-
ment. We compare MariaDB, and K9db with and without
data encryption. (Encryption with per-user keys isn’t possible
in the MariaDB baseline.) Lobsters on most requests runs an
expensive query to determine the user’s recently read stories.
This query joins four tables, including the (large) stories and
comments tables. This query is slow in MariaDB (≈30ms)
and dominates its latency for all endpoints, while K9db serves
this query from a materialized view. To make the comparison
fair, we remove the expensive query in the MariaDB baseline.
A good result for K9db would show latencies comparable to
MariaDB for all endpoints, and a low overhead for encryption.

Figure 10 shows the results. Endpoints that mostly read
(on the left) benefit from K9db’s materialized views and are
up to 2.1× faster than in MariaDB, but endpoints with many
writes (on the right) are comparable in both systems. This
makes sense, as K9db performs similar work to MariaDB,
except that some read queries are served from materialized
views, and writes need to be encrypted and must update any
corresponding views. K9db without encryption is on-par with
K9db in most endpoints. For the “Comments” endpoint, K9db
is 2.1× slower than MariaDB and 1.5× slower than K9db
without encryption in the 95th percentile. This happens when
the endpoint retrieves comments and votes on a popular story
from the database, which requires K9db to decrypt thousands
of records. Developers could manually add materialized views
in K9db to speed up this endpoint, at the cost of additional
memory. Other endpoints read fewer rows or rely on (unen-

10k 20k 30k 50k 60k 75k 100k
Number of users

10

20

L
at

en
cy

[m
s]

K9db

Figure 11: K9db’s 95th%ile latency on the Lobsters work-
load remains stable as the number of users (and thus, µDBs)
increases. Each bar shows a distribution of endpoint latencies.

crypted) materialized views. This shows that K9db achieves
good performance for a practical web application, and that
encryption has acceptable cost. All further experiments show
results for K9db with encryption enabled.

We chose the load in this experiment to saturate the hard-
ware for the MariaDB baseline (≈ 760 pages/second, which
results in 10k queries/second) and used the same load for
K9db. K9db supports a up to a 4.8× higher load with-
out latency degradation, thanks to its caching for complex
queries via materialized views; we compare to a caching
MariaDB+memcached baseline below.

Subject Access Requests. We now measure the time
required by K9db to satisfy SARs. We issue an access and a
deletion request for each of the top 1000 users with most data
in the database, and run these requests sequentially through
K9db SARs API. Performance of SARs is secondary as they
are rare operations and can be executed asynchronously. A
good result shows that K9db handles SARs correctly (which
it does by construction) and within reasonable time. In our
experiment, K9db on average takes 1 ms to retrieve and 45
ms to delete the correct data for a user.

Scalability. We designed K9db to have performance in-
dependent of the number of µDBs. We confirm this using the
Lobsters benchmark with different numbers of users. Adding
users increases the number of µDBs and the amount of data
in the database, but keeps the average amount of data per
user constant. A good result for K9db would show latencies
remaining constant as the number of users grows.

Figure 11 shows the results as box-and-whisker plots over
the nine endpoints (i.e., the bottom and top whiskers are the
fastest and slowest endpoints, respectively). K9db’s latency
remains constant as the number of users—and, consequently,
µDBs—grows, because K9db satisfies queries either from
µDBs directly, via indexes, or from materialized views. These
results confirm that K9db’s logical µDB partitioning is practi-
cal for applications with large numbers of users.

Comparison to Caching Baseline. In the previous
experiment, K9db had an unfair advantage over MariaDB:
it serves some data from materialized views, while Mari-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 109

Reads Writes
0.0

0.5

1.0

L
at

en
cy

[m
s]

MariaDB
MariaDB+Memcached
K9db

Figure 12: K9db matches MariaDB+memcached on a com-
mon Lobsters query (solid: median; shaded: 95th%-ile).

aDB recomputes queries every time. We now use one
common query from Lobsters to compare three setups:
(i) standalone MariaDB; (ii) MariaDB with an in-memory
cache (“MariaDB+Memcached”); and (iii) K9db. The Mari-
aDB+Memcached setup is a demand-filled cache [37]: writes
invalidate the cached query result in memcached, and the next
read re-runs the query against the database when it misses in
memcached. In K9db, writes update views via its dataflow
graph. We generate a skewed workload with a Zipfian dis-
tribution (s = 0.6) where 95% of requests in the benchmark
read the details of a random story and its vote count, and 5%
of requests insert new votes. A good result for K9db would
show competitive read performance with memcached and low
overheads on write processing (since K9db does more work
on writes); and MariaDB+Memcached and K9db would show
lower latencies than MariaDB alone.

Our results are in Figure 12. For reads, Mari-
aDB+Memcached and K9db are on par in the median,
but K9db has a lower 95th percentile latency as K9db
updates the cache via streaming dataflow, while Mari-
aDB+Memcached queries the database on a read miss. All
systems perform similarly on writes, as this query requires
little dataflow update work in K9db and the caching baseline
must make an extra RPC to invalidate memcached.

Memory Overhead. K9db’s materialized views and
ownership indexes add memory overhead compared to a tra-
ditional database. We measure this cost and compare it to
a caching setup with memcached. We consider a setup that
caches query results that developers would typically store in
memcached, such as the output of expensive joins and aggre-
gates. These queries are identical to the ones that K9db caches
using materialized views. The experiment caches query re-
sults with the query parameters (? in prepared statements) as
the key, and the concatenated records as the value. K9db stores
additional in-memory data for internal dataflow state and own-
ership indexes. A good result for K9db would therefore show
moderate overheads compared to MariaDB+Memcached.

The Lobsters database is 61 MB on disk, and a typical
memcached caching approach stores an additional 97 MB of
in-memory state. K9db’s memory footprint is 197 MB (3.3×
DB size, and 2× memcached’s footprint), which includes

5

7

9

View files
Share w/ user

Share w/ group Get Update

0.3

1.0

1.7

L
at

en
cy

[m
s]

MariaDB
MariaDB+Memcached
K9db

Figure 13: K9db matches the baseline setups’ performance on
the ownCloud workload (solid: median; shaded 95th%-ile).

6.5MB for the stories ownership index, and 56 MB for caching
the expensive query we removed from MariaDB (without this
query, K9db’s overhead is 2.4× DB size/1.5× memcached).
The overhead comes from K9db’s dataflow state, which allows
K9db to incrementally update materialized views.

8.1.2 ownCloud

ownCloud is a popular open-source application that allows
users to upload files and share them with other users [43].
Recall ownCloud’s schema (Figure 5): each file has a single
owner—the original uploader—but users can share files with
other users and with groups. Files shared with a group are
accessible to all members of the group—i.e., a many-to-many
relationship between users and files (a pattern absent in Lob-
sters). We measure five common queries: (i) listing the files
a user can access (“view files”); (ii) sharing a file with an-
other user (“share with user”); (iii) sharing a file with a group
(“share with group”); (iv) retrieving a file using its primary
key (“Get“); and (v) updating the retrieved file (“Update“).
Our setup uses 100k users who each own three documents;
each document is shared uniformly at random with three users
and two groups; and each group has five members. Our work-
load is 95% read and 5% writes, equally split among the two
types of sharing and file updates. Reads and writes target
users drawn from a Zipf distribution (s = 0.6). We batch ten
reads and measure the per-request latency for the same setups
as in the previous experiment. A good result for K9db would
show comparable read latency to MariaDB+Memcached and
low overheads on writes.

Figure 13 shows the results. “View files”, which returns all
files shared with a user (directly or via a group), involves five
tables and three joins, which MariaDB executes on every read.
MariaDB+Memcached and K9db serve precomputed results
from memory instead, which is fast. The 95th percentile for
MariaDB+Memcached suffers because it queries MariaDB
on a cache miss, which occurs when a query retrieves files
of user(s) invalidated by a previous write. K9db is fast and
stable because it updates the views via dataflow on writes. All
systems perform similarly for the two share queries—a good
result for K9db, as it also updates views.

110 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

100

250

400

View files
Share w/ user

Share w/ group Get Update

2
4
6

L
at

en
cy

[m
s]

Physical separation (1k users)
+ Logical µDBs

+ Accessors
+ Views

Figure 14: K9db matches the baseline setups’ performance on
the ownCloud workload (solid: median; shaded 95th%-ile).

8.2 K9db Design Drill-Down

To evaluate the impact of design decisions central to K9db,
we run ownCloud workload from the previous experiment
against versions of K9db that disable key components. We
start with K9db set up to naïvely store every µDB in its own
database (without cross-µDB indexes); without support for
accessor edges in the DOG; and without materialized views
(i.e., queries always run over data in RocksDB). This guar-
antees strict separation of user’s data, a solution sometimes
adopted for GDPR compliance in practice [46, 47], although
this lacks support for shared data (accessors) or anonymiza-
tion. We then add separation into logical µDBs (“+ Logical
µDBs”), accessor support (“+ Accessors”), and materialized
views (“+ Views”). A good result would show that these fea-
tures improve K9db’s performance.

Figure 14 shows the results. The naïve µDB design is very
slow because every query that K9db cannot statically resolve
to the affected µDBs requires scanning all µDBs; we only
ran this setup with 1k users (vs. 100k for the others). Mak-
ing µDBs a logical abstraction much improves performance,
justifying our design choice. Accessor-typed DOG edges are
important for expressivity: without them, ownCloud would
be restricted to a policy where users jointly own shared files.
In addition, accessor support reduces the number of copies
stored and the fan-out of writes, which slightly reduces query
latency. Finally, materialized views improve latency of the
“View files” query by 5×, as the results are cached in memory.
Since the view update is cheap, writes do not suffer much
overhead. The runtime of “View files” without no views is
comparable to the runtime of the same query in MariaDB
(Figure 13). This illustrates that views are beneficial, but not
essential to good performance in K9db.

8.3 Schema Annotation Effort

To understand the developer effort K9db’s schema annotations
require, we now consider annotations for three applications
(Lobsters, ownCloud, and Shuup [53]) in detail,

Lobsters. The Lobsters schema contains 19 ta-
bles. To use K9db, we had to annotate the schemas
for eight tables. Three tables (users, invitations, and

invitation_requests) contain data subjects. We anno-
tated two FKs in each of hats, messages, and moderations
with OWNED_BY to model joint ownership. We annotated 8
other tables with a single OWNED_BY. For example, votes
has multiple foreign keys that lead to the users table (one
direct, two indirect), and thus requires a single OWNED_BY an-
notation to disambiguate and ensure votes are stored with the
voter, rather than the author of the story or comment voted
on. Finally, we used one ACCESSES in taggings, and two
anonymization rules in messages, as shown in Figure 4.

ownCloud. ownCloud’s schema has 51 tables. We fo-
cused on the file sharing core, which consists of six tables
and has the most complex relationships. In addition to the
annotations in Figure 5, we added an OWNS annotation to the
FK in the share table that points to the corresponding file in
the file table (omitted from Figure 5 for brevity).

ownCloud’s original schema “overloads” the share_with
column to either hold a user or a group ID, and includes a
share_type column to distinguish these cases. K9db could
support such de-normalized schema with more advanced con-
ditional annotations; for our benchmarks, we modified the
schema to track users and groups in separate columns.

Shuup. Shuup [53] is an open source e-commerce plat-
form and supports customers with accounts, guests who do
not have accounts, and shop owners, all of whom have GDPR
rights. The Shuup code lets users request their account to be
anonymized, but retains information for tax compliance, e.g.,
payment data, customers’ countries of residence, and tax ID
numbers, a form of data retention provided for in the GDPR.

Shuup provides GDPR compliance via a manually-
implemented module with 4k lines of Python code (2.7k lines
of implementation and 1.3k lines of tests), developed in 137
commits over three years. At the time of writing, Shuup’s
anonymization behavior is inconsistent; it only anonymizes
default shipping and billing addresses, but retains previous
addresses in cleartext in the mutable_address table [55].
Moreover, downloading data for a user is not supported [54].

We implemented Shuup’s anonymization policy in K9db
using all annotations (Figure 3) over 17 of Shuup’s 278 tables.
We annotate personcontact with DATA_SUBJECT. This ta-
ble stores natural persons, and has FKs to their contact in-
formation (in contact) and their logins (in auth_user) if
they have accounts. Thus, personcontact contains users
with and without accounts, i.e., guests. Using K9db, Shuup
correctly anonymizes data, lets users download the data and
fixes the bug of not anonymizing previous default addresses.

Shuup’s schema has several tables that might correspond
to data subjects. K9db’s EXPLAIN COMPLIANCE helps devel-
opers understand that they need to annotate personcontact.
An incompliant (but plausible) alternative would be to an-
notate auth_user, the login details table. This results in
contact being unconnected to the DOG, as there are no
foreign keys to auth_user. The personcontact table has
such a foreign key, but it is nullable (e.g., for guests who lack

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 111

Application Tables
Data

Subject
Owner Access Anon

Commento [12] 12 3 8 1 3
ghChat [1] 6 1 7 2 4

HotCRP [22] 26 2 15 10 7
Instagram
clone [50]

19 1 18 1 0

Mouthful [25] 3 1 1 0 0
Schnack [48] 5 1 1 0 0
Socify [34] 19 1 10 0 0

Figure 15: K9db requires few DATA_SUBJECT, ownership
(OWNED_BY and OWNS), access (ACCESSED_BY, ACCESSES),
and ANON annotations to support real web applications.

accounts), and thus some of its rows will be stored in µDBs
and others in the orphaned region. EXPLAIN COMPLIANCE
helps developers identify and rectify these issues:

1 Table "contact": GLOBAL
2 [Compliance Warning] Column "email" suggests personal

data, but the table is not connected to any owners.
3 Table "personcontact": in µDB for auth_user.id
4 [Compliance Warning] Table has owners, but nullable

foreign key may prevent correct deletion of data.

A developer might also annotate contact with
DATA_SUBJECT, but that table includes entries for cus-
tomers and companies. Annotating it makes companies into
data subjects, which duplicates company-related tables across
µDBs. EXPLAIN COMPLIANCE also alerts developers to this.

Other Applications. Our schema annotations were suf-
ficient to express reasonable compliance policies for seven
additional applications (Figure 15). We briefly highlight sev-
eral interesting patterns in these applications.

In ghChat [1], a chat application for GitHub, and the Insta-
gram clone [50], a group is owned exclusively by its admin
and accessed by its members. This is unlike ownCloud, which
lacks group admins and has members jointly own the group.

Mouthful [25] is a commenting service that embeds in a
host application (e.g., a blog) to allow users to comment on
the host content (e.g., a blog post). Mouthful has no notion of
users; instead, the host application provides a string that rep-
resents the user identity alongside the comment they posted.
We added a DATA_SUBJECT table to store user identifiers, and
created a FK constraint from the Comment table’s author
column to it.

Finally, the HotCRP [22] review system associates data
subjects to papers via a many-to-many PaperConflict table.
The table has a conflictType column that specifies the
relationship, such as “co-author” or “institutional conflict”.
While this schema is normalized in the traditional SQL sense,
it is not normalized for ownership: rows with the co-author
type signify ownership, while other conflict types do not imply
any ownership or access rights over the paper. We resolved

this by adding a new PaperAuthors table that only stores
authorship associations, and refer to papers from it using
OWNS. We reserve the existing PaperConflict to record
other conflict types with an un-annotated reference to papers.

Migrating Applications to K9db. We identify some
common challenges when migrating applications to K9db.
First, annotating an application schema requires knowledge
of the application functionality and its compliance policy, but
also summarizes the policy in an easy-to-maintain way along-
side the schema. Many web applications also lack explicit
FK constraints in their schema; developers must identify the
columns that act as implicit FKs and annotate them if needed.

Second, applications often have schemas that are not
normalized in the traditional SQL sense (e.g., ownCloud’s
share_with) or with regards to ownership (e.g., HotCRP’s
PaperConflict). Developers must normalize these schemas
by introducing new columns or tables, and apply the corre-
sponding changes to the application code. K9db could support
such schemas via new annotations that condition on other
columns, but this would complicate the annotation language
and DOG model. Instead, K9db guides developers to good,
normalized schema designs.

Finally, applications with variable ownership (e.g., own-
Cloud, Shuup, HotCRP) often have endpoints that temporarily
orphan data. Developers must wrap such endpoints in com-
pliance transactions in order to use K9db. This modification
is relatively unobtrusive, and K9db can be configured to au-
tomatically wrap sessions in a CTX. This alleviates the need
to manually introduce CTX to applications that open new
sessions for each endpoint or sequence of operations, but is
not suitable for applications with long-lived sessions.

9 Conclusion
K9db is a new database system that achieves compliance with
the requirements of privacy laws by construction.

K9db models data ownership to capture the ownership
patterns of real world applications, and handles requests
for access and deletion correctly. K9db matches or exceeds
the performance of a widely-used database and manual
caching setup, and supports the privacy requirements of real-
world applications. K9db is open-source and available at
https://github.com/brownsys/K9db.

Acknowledgements
We are grateful to Deniz Altınbüken, Hannah Gross, Frans
Kaashoek, Franco Solleza, Lillian Tsai, and the ETOS group
at Brown for helpful feedback on drafts of this paper. Feed-
back from the anonymous reviewers and our shepherd, Nat-
acha Crooks, greatly improved the paper. We also thank
Vedant Gupta, Mithi Jethwa, and Colton Rusch for contri-
butions to K9db’s implementation.

This research was supported by NSF awards CNS-2045170
and DGE-2039354, by a Google Research Scholar Award,
and by a gift from VMware.

112 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brownsys/K9db

References
[1] aermin. ghChat (react version). URL: https :

/ / github . com / aermin / ghChat (visited on
05/02/2021).

[2] Archita Agarwal, Marilyn George, Aaron Jeyaraj, and
Malte Schwarzkopf. “Retrofitting GDPR Compliance
onto Legacy Databases”. In: Proceedings of the VLDB
Endowment 15 (Dec. 2021).

[3] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J.
Freedman. “Blockstack: A Global Naming and Storage
System Secured by Blockchains”. In: Proceedings of
the 2016 USENIX Annual Technical Conference (ATC).
Denver, Colorado, USA, June 2016, pages 181–194.

[4] Amazon Web Services. Navigating GDPR Compli-
ance on AWS: Encrypt Data at Rest. URL: https:
//docs.aws.amazon.com/whitepapers/latest/
navigating-gdpr-compliance/encrypt-data-
at-rest.html (visited on 05/05/2021).

[5] Scott Arciszewski. Building Searchable Encrypted
Databases with PHP and SQL. May 2017. URL:
https : / / paragonie . com / blog / 2017 / 05 /
building-searchable-encrypted-databases-
with-php-and-sql.

[6] Edmon Begoli, Jesús Camacho-Rodríguez, Julian
Hyde, Michael J. Mior, and Daniel Lemire. “Apache
Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources”.
In: Proceedings of the 2018 International Conference
on Management of Data. Houston, Texas, USA, 2018,
221–230.

[7] National Congress of Brazil. Lei Geral de Proteção
de Dados [Brazilian General Data Protection Law].
English translation by Ronaldo Lemos, Daniel Douek,
Sofia Lima Franco, Ramon Alberto dos Santos and
Natalia Langenegger. URL: https://iapp.org/
media / pdf / resource _ center / Brazilian _
General_Data_Protection_Law.pdf (visited on
06/11/2020).

[8] Lukas Burkhalter, Nicolas Küchler, Alexander Viand,
Hossein Shafagh, and Anwar Hithnawi. “Zeph: Cryp-
tographic Enforcement of End-to-End Data Privacy”.
In: Proceedings of the 15th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).
Virtual Event, July 2021, pages 387–404.

[9] California Attorney General. Privacy Enforcement Ac-
tions. URL: https : / / oag . ca . gov / privacy /
privacy - enforcement - actions (visited on
05/06/2021).

[10] California Legislature. The California Consumer Pri-
vacy Act of 2018. June 2018. URL: https://leginfo.
legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180AB375.

[11] Tej Chajed, Jon Gjengset, M. Frans Kaashoek, James
Mickens, Robert Morris, and Nickolai Zeldovich. Oort:
User-Centric Cloud Storage with Global Queries.
Technical report MIT-CSAIL-TR-2016-015. MIT
Computer Science and Artificial Intelligence Labora-
tory, Dec. 2016.

[12] Adhityaa Chandrasekar. Commento. URL: https :
/ / github . com / adtac / commento (visited on
05/02/2021).

[13] Andrew Chung, Subru Krishnan, Konstantinos Karana-
sos, Carlo Curino, and Gregory R. Ganger. “Un-
earthing inter-job dependencies for better cluster
scheduling”. In: Proceedings of the 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). Banff, Canada, Nov. 2020, pages 1205–
1223.

[14] Katriel Cohn-Gordon, Georgios Damaskinos, Divino
Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs,
Daniel Obenshain, Paul Pearce, and Ioannis Papa-
giannis. “DELF: Safeguarding deletion correctness
in Online Social Networks”. In: Proceedings of the
29th USENIX Security Symposium (USENIX Security).
Banff, Canada, Aug. 2020.

[15] Frank Denis. The Sodium cryptography library. 2013.
URL: https://download.libsodium.org/doc/.

[16] Facebook. Permanently Delete Your Facebook Ac-
count. URL: https://www.facebook.com/help/
224562897555674 ? helpref = faq _ content (vis-
ited on 05/21/2023).

[17] Thailand Government Gazette. Personal Data Pro-
tection Act. Unofficial English translation. URL:
https : / / thainetizen . org / wp - content /
uploads/2019/11/thailand-personal-data-
protection - act - 2019 - en . pdf (visited on
06/11/2020).

[18] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M.
Frans Kaashoek, and Robert Morris. “Noria: dynamic,
partially-stateful data-flow for high-performance web
applications”. In: Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI). Carlsbad, California, USA, Oct.
2018, pages 213–231.

[19] Peter Bhat Harkins. Lobste.rs access pattern statis-
tics for research purposes. Mar. 2018. URL: https:
//lobste.rs/s/cqnzl5/lobste_rs_access_
pattern_statistics_for#c_hj0r1b (visited on
03/12/2018).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 113

https://github.com/aermin/ghChat
https://github.com/aermin/ghChat
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://github.com/adtac/commento
https://github.com/adtac/commento
https://download.libsodium.org/doc/
https://www.facebook.com/help/224562897555674?helpref=faq_content
https://www.facebook.com/help/224562897555674?helpref=faq_content
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b

[20] PRS Legislative Research India. The Personal Data
Protection Bill, 2019. URL: https://www.prsindia.
org/billtrack/personal- data- protection-
bill-2019 (visited on 06/11/2020).

[21] Zsolt István, Soujanya Ponnapalli, and Vijay Chi-
dambaram. “Software-Defined Data Protection: Low
Overhead Policy Compliance at the Storage Layer is
within Reach!” In: Proceedings of the VLDB Endow-
ment 14.7 (Mar. 2021), pages 1167–1174.

[22] Eddie Kohler. HotCRP conference review software.
URL: https://github.com/kohler/hotcrp (vis-
ited on 07/22/2020).

[23] Tim Kraska, Michael Stonebraker, Michael Brodie,
Sacha Servan-Schreiber, and Daniel Weitzner. “Schen-
genDB: A Data Protection Database Proposal”. In: Pro-
ceedings of the 2019 VLDB Workshop Towards Poly-
stores that manage multiple Databases, Privacy, Secu-
rity and/or Policy Issues for Heterogenous Data (Poly).
Los Angeles, California, USA, Aug. 2019, pages 24–
38.

[24] Maxwell Krohn, Alex Yip, Micah Brodsky, Robert
Morris, and Michael Walfish. “A World Wide Web
Without Walls”. In: Proceedings of the 6th Workshop
on Hot Topics in Networks (HotNets). Atlanta, Georgia,
USA, Nov. 2007.

[25] Viktoras Kuznecovas. Mouthful. URL: https : / /
github.com/vkuznecovas/mouthful (visited on
05/02/2021).

[26] Lobste.rs. Privacy: Lobsters. URL: https://lobste.
rs/privacy (visited on 05/01/2021).

[27] Lobsters Developers. Lobsters News Aggregator. Mar.
2018. URL: https : / / lobste . rs (visited on
03/02/2018).

[28] Connor Luckett, Andrew Crotty, Alex Galakatos, and
Ugur Cetintemel. “Odlaw: A Tool for Retroactive
GDPR Compliance”. In: Proceedings of the 37th IEEE
International Conference on Data Engineering (ICDE).
Chania, Greece, Apr. 2021.

[29] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke,
Maged Zereba, Sarven Capadisli, Abdurrahman
Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. “A
Demonstration of the Solid Platform for Social Web
Applications”. In: Proceedings of the 25th Interna-
tional Conference Companion on World Wide Web
(WWW). Montréal, Québec, Canada, 2016, pages 223–
226.

[30] MariaDB. MyRocks – MariaDB Knowledge Base. URL:
https://mariadb.com/kb/en/myrocks/ (visited
on 12/06/2022).

[31] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf,
and Mothy Roscoe. “Shared Arrangements: practical
inter-query sharing for streaming dataflows”. In: Pro-
ceedings of the VLDB Endowment 13.10 (June 2020),
pages 1793–1806.

[32] Frank McSherry, Derek G. Murray, Rebecca Isaacs,
and Michael Isard. “Differential dataflow”. In: Pro-
ceedings of the 6th Biennial Conference on Innovative
Data Systems Research (CIDR). Asilomar, California,
USA, Jan. 2013.

[33] Meta Platforms, Inc. RocksDB: A persistent key-value
store for fast storage environments. URL: http://
rocksdb.org/ (visited on 12/10/2022).

[34] Sudharsanan Muralidharan. Socify: open source social
network using Ruby on Rails. URL: https://github.
com/scaffeinate/socify (visited on 05/02/2021).

[35] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. “Na-
iad: a timely dataflow system”. In: Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP). Farmington, Pennsylvania, USA, Nov. 2013,
pages 439–455.

[36] European Network and Information Security Agency.
Privacy and data protection by design: from policy to
engineering. 2015. URL: https://data.europa.
eu/doi/10.2824/38623.

[37] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McEl-
roy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkatara-
mani. “Scaling Memcache at Facebook”. In: Proceed-
ings of the 10th USENIX Conference on Networked
Systems Design and Implementation (NSDI). Lombard,
Illinois, USA, Apr. 2013, pages 385–398.

[38] Noria Contributors. Noria Lobsters bench-
mark. 2020. URL: https : / / github .
com / mit - pdos / noria / tree /
3edd3ad55d2564493f7456d27abb41abf0169def/
applications/lobsters.

[39] NOYB: European Center for Digital Rights.
GDPRHub: CNIL SAN-2020-008. URL: https :
//gdprhub.eu/index.php?title=CNIL_-_SAN-
2020-008 (visited on 05/06/2021).

[40] NOYB: European Center for Digital Rights.
GDPRHub: CNIL SAN-2020-018, Nestor SAS. URL:
https://gdprhub.eu/index.php?title=CNIL_-
_SAN-2020-018 (visited on 05/06/2021).

114 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://github.com/kohler/hotcrp
https://github.com/vkuznecovas/mouthful
https://github.com/vkuznecovas/mouthful
https://lobste.rs/privacy
https://lobste.rs/privacy
https://lobste.rs
https://mariadb.com/kb/en/myrocks/
http://rocksdb.org/
http://rocksdb.org/
https://github.com/scaffeinate/socify
https://github.com/scaffeinate/socify
https://data.europa.eu/doi/10.2824/38623
https://data.europa.eu/doi/10.2824/38623
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018

[41] NOYB: European Center for Digital Rights.
GDPRHub: GPDDP 9485681, Vodafone Italia.
URL: https://gdprhub.eu/index.php?title=
Garante _ per _ la _ protezione _ dei _ dati _
personali_-_9485681 (visited on 05/06/2021).

[42] ownCloud GmbH. GDPR compliant cloud storage.
URL: https://owncloud.com/gdpr (visited on
12/01/2021).

[43] ownCloud GmbH. owncloud – share files and fold-
ers, easy and secure. URL: https://owncloud.com
(visited on 12/01/2021).

[44] “Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the pro-
tection of natural persons with regard to the processing
of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data
Protection Regulation)”. In: Official Journal of the Eu-
ropean Union L119 (May 2016), pages 1–88.

[45] Brent Robinson. Crypto shredding: How it can solve
modern data retention challenges. 2019. URL: https:
/ / medium . com / @brentrobinson5 / crypto -
shredding-how-it-can-solve-modern-data-
retention-challenges-da874b01745b.

[46] Alexander Rubin. 40 million tables in MySQL 8.0 with
ZFS. URL: https://www.percona.com/blog/
2018/09/03/40-million-tables-in-mysql-8-
0-with-zfs/ (visited on 05/03/2021).

[47] Alexander Rubin. One Million Tables in MySQL 8.0.
URL: https://www.percona.com/blog/2017/
10/01/one-million-tables-mysql-8-0/ (vis-
ited on 05/03/2021).

[48] schnack! schnack.js. URL: https://github.com/
schn4ck/schnack (visited on 05/02/2021).

[49] Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek,
and Robert Morris. “GDPR Compliance by Construc-
tion”. In: Proceedings of the 2019 VLDB Workshop
Towards Polystores that manage multiple Databases,
Privacy, Security and/or Policy Issues for Heteroge-
nous Data (Poly). Los Angeles, California, USA, Aug.
2019.

[50] Faiyaz Shaikh. React-Instagram-Clone-2.0. URL:
https : / / github . com / yTakkar / React -
Instagram-Clone-2.0 (visited on 05/02/2021).

[51] Supreeth Shastri, Vinay Banakar, Melissa Wasserman,
Arun Kumar, and Vijay Chidambaram. “Understanding
and Benchmarking the Impact of GDPR on Database
Systems”. In: Proceedings of the VLDB Endowment
13.7 (Mar. 2020), pages 1064–1077.

[52] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. “How Design, Architecture, and Operation
of Modern Systems Conflict with GDPR”. In: Proceed-
ings of the 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud). July 2019.

[53] Shuup Commerce, Inc. Shuup Open-Source E-
Commerce Platform. URL: https://github.com/
shuup/shuup (visited on 12/05/2021).

[54] Shuup Contributors. GDPR - Download Data button
doesn’t return any data. URL: https : / / github .
com / shuup / shuup / issues / 2614 (visited on
12/13/2021).

[55] Shuup Contributors. GDPR - shuup_mutaddress
rows not anonymized. URL: https : / / github .
com / shuup / shuup / issues / 2612 (visited on
12/13/2021).

[56] Griffin Thorne. GDPR Meets its Match ... in China.
July 2019. URL: https : / / www . chinalawblog .
com / 2019 / 07 / gdpr - meets - its - match - in -
china.html (visited on 06/04/2020).

[57] Frank Wang, Ronny Ko, and James Mickens.
“Riverbed: Enforcing User-defined Privacy Constraints
in Distributed Web Services”. In: Proceedings of
the 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI). Boston,
Massachusetts, USA, Feb. 2019, pages 615–630.

[58] Lun Wang, Joseph P. Near, Neel Somani, Peng Gao,
Andrew Low, David Dao, and Dawn Song. “Data Cap-
sule: A New Paradigm for Automatic Compliance with
Data Privacy Regulations”. In: Proceedings of the 2019
VLDB Workshop Towards Polystores that manage mul-
tiple Databases, Privacy, Security and/or Policy Issues
for Heterogenous Data (Poly). Los Angeles, California,
USA, Aug. 2019, pages 3–23.

[59] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A Large-
Scale Analysis of Hundreds of In-Memory Key-Value
Cache Clusters at Twitter”. In: ACM Transactions on
Storage 17.3 (2021).

A Artifact Appendix
Abstract

Our open source artifact contains our prototype implementa-
tion of K9db. It also includes the harnesses and scripts for
running and plotting the experiments described in this paper.

Our prototype provides a MySQL-compatible interface
layer, which applications and developers can use to issue
SQL statements and queries to and retrieve their results. Our
prototype is compatible with the standard MySQL connectors
and drivers for several languages, including C++, Rust, and
Java. It is also compatible with the command line MySQL
and MariaDB clients.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 115

https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://owncloud.com/gdpr
https://owncloud.com
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://github.com/schn4ck/schnack
https://github.com/schn4ck/schnack
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/shuup/shuup
https://github.com/shuup/shuup
https://github.com/shuup/shuup/issues/2614
https://github.com/shuup/shuup/issues/2614
https://github.com/shuup/shuup/issues/2612
https://github.com/shuup/shuup/issues/2612
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html

Scope

Our prototype serves as a demonstration of the following:
1. The application scenarios described in the paper work

with K9db and its schema annotations.
2. K9db’s system design and guarantees can be realized

with a familiar MySQL-compatible interface suitable for
web applications.

3. The performance of compliant-by-construction
databases is comparable to traditional databases, such as
MariaDB.

Contents

K9db. The artifact includes our prototype implementa-
tion and its MySQL-compatiblity layer. The artifact contains
instructions for building, running, and using this K9db.

Application Harnesses. The artifact includes harnesses
for Lobsters, a Reddit-like discussion board (§8.1.1), and own-
Cloud (§8.1.2), a file sharing application. The harnesses create
the database schema and load the database with data; they
also execute loads with representative queries, and measure
the time required to process them. We used these harnesses
to evaluate our prototype and the baselines shown in our ex-
periments. The Lobsters harness is a pre-existing open source
harness that we adapted to work with our prototype [38].

Documentation. The artifact wiki on GitHub contains
a tutorial on using K9db and its schema annotations. The arti-
fact also includes unit and end-to-end tests that validate that
our prototype handles application SQL operations correctly
and provides correct compliance with SARs.

Hosting

Our artifact is hosted on GitHub at https://github.com/
brownsys/K9db. The version of the repository correspond-
ing to this paper is available at https://github.com/
brownsys/K9db/releases/tag/osdi2023, with com-
mit hash df2bcdffa05f70f508fad95a11e2a6de8a7efe14.
The corresponding wiki commit hash is
c720b085ca34edc16246f296991e623a29933f9b.

Requirements

We developed our prototype on x86-64 machines running
Ubuntu 20.04 and 22.04. We provide a Docker container
that includes the necessary software dependencies. We ran
our experiments on Google Cloud using n2-standard-16
machines with a local SSD.

116 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brownsys/K9db
https://github.com/brownsys/K9db
https://github.com/brownsys/K9db/releases/tag/osdi2023
https://github.com/brownsys/K9db/releases/tag/osdi2023

	Introduction
	Background and Related Work
	Privacy Laws
	Complexity of Data Ownership
	Existing Approaches to Privacy Compliance

	K9db Overview
	Modeling Data Ownership and Sharing
	K9db's Annotations
	Expressing Developers' Compliance Policies
	Data Ownership Graph
	Helping Developers Get Annotations Right
	Data Ownership Graph Properties

	Compliant by Construction Storage
	Storage Layout and Logical µDBs
	µDB Integrity
	Handling Subject Access Requests
	Atomicity, Consistency, Isolation, and Durability
	Compliance Transactions

	Query Execution
	Optimizations
	Materialized Views

	Implementation
	Evaluation
	Application Performance
	Lobsters
	ownCloud

	K9db Design Drill-Down
	Schema Annotation Effort

	Conclusion
	Artifact Appendix

