
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Detecting Transactional Bugs in Database Engines
via Graph-Based Oracle Construction

Zu-Ming Jiang and Si Liu, ETH Zurich; Manuel Rigger, National University of Singapore;
Zhendong Su, ETH Zurich

https://www.usenix.org/conference/osdi23/presentation/jiang

Detecting Transactional Bugs in Database Engines via
Graph-Based Oracle Construction

Zu-Ming Jiang
ETH Zurich

Si Liu
ETH Zurich

Manuel Rigger
National University of Singapore

Zhendong Su
ETH Zurich

Abstract
Transactions are an important feature of database manage-

ment systems (DBMSs), as they provide the ACID guaran-
tees for a sequence of database operations. Consequently,
approaches have been proposed to automatically find transac-
tional bugs in DBMSs. However, they cannot handle complex
operations and predicates common in real-world database
queries, and thus miss bugs.

This paper introduces a general, effective technique for
finding transactional bugs in DBMSs that supports complex
SQL queries and predicates. At the conceptual level, we ad-
dress the test-oracle problem by constructing semantically-
equivalent test cases based on fine-grained statement-level
dependencies in transactions. At the technical level, we intro-
duce (1) statement-dependency graphs to describe depen-
dencies among SQL statements in transactions, (2) SQL-
level instrumentation to capture possible statement-level
dependencies, and (3) transactional oracle construction to
generate semantically-equivalent test cases using statement-
dependency graphs. We also establish the correctness of our
approach in generating semantically-equivalent test cases. We
have realized our technique as a tool, TxCheck, and evaluated
it on three widely-used and well-tested DBMSs, namely TiDB,
MySQL, and MariaDB. In total, TxCheck found 56 unique
bugs, 52 of which have been confirmed and 18 already fixed.
We believe that TxCheck can help solidify DBMSs’ support
for transactions thanks to its generality and effectiveness.

1 Introduction

Database management systems (DBMSs) store and manage
data and are crucial for many applications. A key feature of
DBMSs is their support for transactions, where a sequence
of SQL statements are executed as a single unit, and various
properties (i.e., atomicity, consistency, isolation, and durabil-
ity) are guaranteed. For example, if some transactions are
concurrently executed at the Serializability isolation level,
uncommitted operations by other transactions will be invis-
ible, and the transaction execution results must be equal to

the results when these transactions are executed in a serial or-
der. Benefiting from these properties, transactions have been
applied in many critical applications. However, transaction im-
plementations usually involve complex logic (e.g., two-phase
locking [7, 45] and multiversion concurrency control [8, 32]),
and thus bugs are easily introduced. In this paper, we refer to
the bugs in the transaction support of DBMSs as transactional
bugs. Such bugs are critical because they can paralyze their
client applications or, even worse, silently trigger incorrect
behaviors in critical operations of client applications.

To improve the reliability and correctness of transaction
processing in DBMSs, several approaches [4, 9, 11, 17, 44]
have been proposed to test transaction support. These ap-
proaches use specific operation patterns to capture the viola-
tions of transactional rules. For example, ELLE [4] encodes
transaction execution histories1 by only appending to a con-
ceptual list data structure. It builds transaction-dependency
graphs based on the histories, and reports bugs if the graphs
violate the desired isolation guarantees. Limited by specific
test-case patterns, these approaches use only simple opera-
tions (e.g., ELLE appends list with constant values), while
many deep bugs may only be triggered by complex opera-
tions [21]. Moreover, existing approaches [4,9, 17,44] cannot
handle predicates (e.g., the condition expressions in WHERE
clauses) in general. For example, ELLE cannot encode predi-
cate operations in its list data structure. However, predicates
are ubiquitous in real-world transactions as they rely on com-
mon features such as WHERE clauses or JOINs. Their lack of
predicate support makes existing approaches miss many real
bugs. In addition, transactional bugs may be independent of
isolation levels (e.g., incorrect results returned by one trans-
action), while existing approaches focus on testing isolation
levels, thus missing bugs.

Figure 1(a) shows a confirmed bug in MySQL at the Re-
peatable Read isolation level. The bug-triggering test case
involves two tables and two interleaved transactions. The
statement T1.S3 is executed immediately after T1.S2. The-

1A history records transactional requests to and responses from a database.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 397

T0.S0> start transaction;
T0.S1> update t0 set vkey = 162; --- (1, 20) -> (1, 162)
T0.S2> select * from t1; --- (2, 43, 8), (3, 43, 53)
T1.S0> start transaction;
T1.S1> select * from t0; --- (1, 20)
T0.S3> commit;
T1.S2> select * from t1 --- (2, 43, 8)

where t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63

where t1.c0 <= (select min(vkey) from t0);
--- (2, 43, 8) -> (2, 63, 8)
--- (3, 43, 53) -> (3, 63, 53)

T1.S4> commit;

Transactions

pkey vkey

1 20

Table t0

pkey vkey c0

2 43 8

3 43 53

Table t1

S0> select * from t1; --- T0.S2
S1> select * from t0; --- T1.S1
S2> select * from t1; --- T1.S2

where t1.c0 <= (select min(vkey) from t0);
S3> update t1 set vkey = 63 --- T1.S3

where t1.c0 <= (select min(vkey) from t0);
--- (2, 43, 8) -> (2, 63, 8)

S4> update t0 set vkey = 162; --- T0.S1

Execution results
comparison

Not equivalent

(a) Bug-triggering test case

(b) Reordered test case

Semantically Equivalent

Figure 1: A MySQL bug found by TxCheck under the Re-
peatable Read isolation level.

oretically, T1.S3 should fetch exactly those records subse-
quently updated by T1.S2, because they use the same predi-
cate (i.e., the same expression in their WHERE clause), and no
other operations are executed between them. However, T1.S2
fetches only the row (2, 43, 8), while T1.S3 updates rows
(2, 43, 8) and (2, 43, 53) due to its incorrect predicate match-
ing. Existing approaches cannot find this bug for two reasons.
First, the test case uses an aggregate function (i.e., min())
and a subquery (i.e., the SELECT in the UPDATE statement),
which make the test case complex and not follow the test-case
patterns of existing approaches (e.g., ELLE can append only
constant values instead of min() values). Second, the test case
uses predicates, for which existing approaches lack support.

Figure 1(b) shows a test case generated by our approach,
which is equivalent to the one shown in Figure 1(a). The three
SELECT statements (i.e., S0, S1, and S2) are moved before
the two UPDATE statements (i.e., S3 and S4), because all these
SELECT statements are oblivious to the effects of the UPDATE
statements. As T1.S3 is executed immediately after T1.S2,
the database state visible for T1.S2 and T1.S3 should be
consistent. Therefore, we keep the statements of T1.S2 and
T1.S3 adjacent (i.e., S2 and S3). The reordered test case is
executed without using transactions, and its execution results

should be the same as the original one, because the reordering
does not change any expected behavior of each statement. In
this case, the bug in MySQL breaks the equivalence.

Our insight is to generate semantically-equivalent test cases
that are not wrapped as transactions, but produce the same
execution results, by properly reordering the statements. Then,
we can validate whether their equivalence indeed holds. Any
discrepancy indicates a bug in the target DBMS. While for
the aforementioned test case, it is intuitive that reordering the
statements will not affect the execution results of follow-up
test cases, we must reason, in general, about the dependen-
cies of statements. To this end, we first propose statement-
dependency graphs, a novel concept to describe the depen-
dencies among executed statements, which provide finer-
grained dependency information than transaction-dependency
graphs [1, 17, 44]. This facilitates finding more bugs (as will
be discussed in Section 5.3). To extract statement dependen-
cies, we propose SQL-level instrumentation. Specifically, we
insert additional statements to collect the execution results
of each target statement in transactions. Based on the col-
lected results, we can track the operation effects—including
the effects of predicate operations—of each statement, and
thus infer all possible statement dependencies. To generate
semantically-equivalent test cases, we propose transactional
oracle construction. Specifically, we topologically sort the
acyclic statement-dependency graphs, whose sorted statement
sequences are proved to be semantically equivalent to the
original one. To guarantee the acyclicity of graphs, we itera-
tively delete statements in cycles before sorting. We execute
the sorted statement sequences without transactions and com-
pare their results to those from the corresponding transaction
executions. Any difference reveals a bug in the tested DBMS.

We realized this approach as a practical tool called
TxCheck. We evaluate TxCheck on three popular and ex-
tensively tested DBMSs, namely TiDB [46], MySQL [30],
and MariaDB [29]. In total, TxCheck found 56 unique bugs,
including 23 in TiDB, 18 in MySQL, and 15 in MariaDB.
Among them, 52 bugs have been confirmed, 18 fixed, and 8
assigned CVE IDs; 30 are triggered in transaction executions.
These results collectively demonstrate that TxCheck can find
latent transactional bugs in mature production DBMSs.

Overall, we make the following contributions:
• At the conceptual level, we address the test-oracle problem

of DBMS transaction testing by constructing semantically-
equivalent test cases.

• At the technical level, we propose (1) statement-dependency
graphs, which describe the dependencies among statements
in executed transactions, (2) SQL-level instrumentation,
which can capture all possible statement dependencies in-
cluding the predicate-related dependencies, and (3) trans-
actional oracle construction, which refines test cases and
generates semantically-equivalent test cases for validation.
We formally prove the correctness of our approach.

398 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• At the practical level, we implement our approach into a
tool, TxCheck, and evaluate it on three widely-used DBMSs
(i.e., TiDB, MySQL, and MariaDB). In total, TxCheck
finds 56 unique bugs, most of which cannot be identi-
fied by existing approaches. TxCheck is open-sourced at
https://github.com/JZuming/TxCheck.

2 Background

Transactions in DBMSs. A database transaction refers to a
series of operations, for which DBMSs must guarantee atom-
icity, consistency, isolation, and durability (i.e., ACID) [49].
This paper focuses on relational database management sys-
tems (RDBMSs), where a transaction typically consists of
a group of SQL (i.e., Structured Query Language) state-
ments. Each statement performs read operations (e.g., SELECT
statements) or write operations (e.g., INSERT, DELETE, and
UPDATE statements). SQL statements commonly involve pred-
icates (e.g., WHERE clauses) for choosing desired rows that
satisfy the requirements.

Dependency Graphs. Adya et al. [1, 2] propose transaction
dependencies, which can be classified into two categories,
namely item dependencies and predicate dependencies. Item
dependencies describe the relationship among transactions
on specific items (i.e., rows in tables) they read from or write
to. For example, transaction T j item-read-depends on Ti if
T j reads an item version xi that is written by Ti. A predicate
dependency describes the relationship between two transac-
tions constructed from the associated predicate operations.
For example, transaction T j directly predicate-read-depends
on Ti if an item version xi that is written by Ti is used for
predicate matching of T j.

Based on these dependencies, Adya et al. propose a
transaction-dependency graph, called Direct Serialization
Graph (DSG). DSGs can be used to formalize the expected
behaviors of DBMSs under different isolation levels. For ex-
ample, Serializability (PL-3) proscribes any directed cycle in
a DSG, while Repeatable Read (PL-2.99) any directed cycles
that dismiss certain predicate dependencies. Bailis et al. [5,6]
further extend DSGs to define several other isolation levels.

Existing Approaches. Both transaction-focused testing and
verification approaches [4, 9, 11, 17, 44] have utilized depen-
dency graphs. They typically use specific operation patterns
to capture transaction dependencies. For example, to reduce
the search space of possible transaction orders, COBRA [44]
exploits the read-modify-write (RMW) patterns where a trans-
action reads from a key before writing to it. By restricting its
writes to list-specific operations like “append”, ELLE [4] can
naturally infer the transaction order from a list of values read.

While existing approaches [4, 9, 17, 44] such as ELLE have
been successful in detecting a wide range of important bugs,
they are limited in finding deep transactional bugs for two

main reasons. First, these approaches can use only simple
operations (e.g., writing key-value pairs) following their re-
stricted operation patterns. However, many deep DBMS bugs
can only be triggered by complex operations [21]. Second,
existing approaches lack support for predicate operations in
general. In contrast to read/write operations whose effects
are explicitly reflected in the final execution results, the ef-
fects of predicate operations are implicit and difficult to track,
because they are typically reflected in the intermediate pro-
cesses (e.g., choosing a set of items that satisfy the predicate
conditions for subsequent read/write operations). However,
predicates are commonly used in real-world transactions and
involved in sophisticated features of DBMSs like predicate
optimization [23]. Existing approaches do not consider pred-
icate operations in their test cases, thus missing many bugs
with respect to the transaction support of DBMSs. In addi-
tion, existing approaches focus on testing isolation guarantees
while many transactional bugs are not necessarily related to
database isolation.

3 Approach

In this section, we present a novel approach for addressing the
challenges of testing transaction support in DBMSs, as illus-
trated in Figure 2. Our core idea is to extract the dependencies
among statements in transactions and construct semantically-
equivalent test cases according to the extracted dependency
information. The constructed test cases are used as oracles
to validate the original transaction executions by checking
whether all statements in the test cases produce the same
results. To realize this idea, we first define statement depen-
dencies and propose a new concept, statement-dependency
graphs, which describes the dependencies among statements
in transactions. To derive statement-dependency graphs, we
capture dependency information from specific transaction
executions. Then, we generate semantically-equivalent test
cases based on the captured information.

Dependency Capturing. To capture statement dependencies,
we propose SQL-level instrumentation, which inserts SQL
statements to collect execution information of each original
statement in transactions. Using SQL to achieve this makes
this approach a black-box technique that is applicable even for
DBMS where testers lack access to the source code. Specifi-
cally, we instrument in two steps, item-tracking instrumenta-
tion and version-set-tracking instrumentation, which capture
item dependencies and predicate dependencies, respectively.
Statement-dependency graphs are built based on the outputs
from the inserted and the original statements.

Oracle Construction. We propose transactional oracle con-
struction to construct semantically-equivalent test cases. We
first iteratively remove statements involved in cycles to make
the statement-dependency graph acyclic, which is the precon-
dition of the construction. Then, we perform topological sort-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 399

https://github.com/JZuming/TxCheck
https://github.com/JZuming/TxCheck

Item-tracking
instrumentation

Version-set-tracking
instrumentation

② SQL-level Instrumentation
Instrumented test case

Txn 0

Transaction Execution

Txn 1

Txn 2

Record

Statement
output

Build

Statement-dependency
graph

③ Building Statement-Dependency Graph

Refine the test case
Execute the test case again

Rebuild the graph

Graph Decycling

Output

Refined
test case

Databases SQL statements for
each transaction

Topological
Sorting

① Random Generation

Execution without transactions

Acyclic graph Semantically Equivalent
Test Case

Transaction
execution results

Execution results comparison
Equivalent

Not equivalent

④ Transactional Oracle Construction

Figure 2: Approach overview.

ing on the acyclic graph to construct semantically-equivalent
test cases. We execute these test cases without transactions
and compare their execution results to those from the cor-
responding transaction executions. We prove that, for any
correct DBMS, these results should be identical, thus any
difference indicates an actual DBMS bug.

3.1 Statement-Dependency Graph

To construct semantically-equivalent test cases by reordering
statements, we need to identify the dependencies between
statements. We define seven kinds of statement dependen-
cies, referring to transaction dependencies defined by Adya
et al. [1, 2]. Each kind of statement dependency is shown
in Figure 3. Specifically, we define three kinds of statement
dependencies, shown in Figure 3(a)–(c), to model the relation-
ship of two statements that read or write the same items. Three
other kinds of dependencies, shown in Figure 3(d)–(f), are
used to represent the dependencies established by predicate
operations. The last one, direct stmt-value-write dependency
shown in Figure 3(g), is used to model the event that the new
value of an item installed by a statement is determined by the
value of another item that is installed by another statement.
The formal definitions (Definition 2–8) for these statement
dependencies are given in Appendix A. Note that we do not
count statement orders as dependencies, because when two
statements access different data, the statements’ execution
order will not affect their results.

In contrast to the dependencies defined by Adya et al. [1,2],
which describe the relationship between transactions, our def-
initions model the relationship between statements to provide
finer-grained dependency information. Statement dependen-
cies enable us to analyze the effects of each statement, which
is needed for generating semantically-equivalent test cases
accordingly, while transaction dependencies lack sufficient

information related to statements. Next, we further propose
statement-dependency graphs, SDG, to model the executions
of test cases at the statement level.

Definition 1 (Statement-Dependency Graph)
We define the statement-dependency graph constructed based
on a statement execution history H, denoted as SDG(H), as fol-
lows. SDG(H) is a directed graph, whose nodes represent the
statements in committed transactions, and whose (directed)
edges represent the dependencies between these committed
statements. In particular, if statement S j depends on statement
Si, there is a direct edge from Si to S j.

Note that statement-dependency graphs consider only state-
ments in committed transactions. The statements in aborted
transactions are dismissed because these statements concep-
tually do not affect the manipulated databases and other com-
mitted transactions. Figure 4 shows the statement-dependency
graph for the test case in Figure 1(a). Statement-dependency
graphs contain all dependency information related to state-
ments and reflect the execution results of test cases at the
statement level, which is the basis for generating semantically-
equivalent test cases.

3.2 SQL-Level Instrumentation
To build statement-dependency graphs, we extract statement
dependencies from transaction executions. In contrast to exist-
ing work, we aim to support test cases whose statements use
predicates, without involving too many restrictions on test-
case patterns. This section presents SQL-level instrumenta-
tion, a novel technique for extracting statement dependencies
from transaction executions involving predicates.

The basic idea of SQL-level instrumentation is to insert
statements to output the handled items before and after the
operations performed by target statements. To realize this

400 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t; --- (0, 1)

(a) Direct stmt-item-read dependency

is dependent on

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> update t set value = 2; --- (0, 1) -> (0,2)

(b) Direct stmt-item-write dependency

is dependent on
Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t; --- (0, 0)

(c) Direct stmt-item-anti dependency

is dependent on

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t where value = 0; --- empty

(d) Direct stmt-predicate-read dependency

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> update t set value = 2 where value = 0; --- change nothing

(e) Direct stmt-predicate-write dependency

is dependent on

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t where value = 1; --- empty

(f) Direct stmt-predicate-anti dependency

Table t (id, value): (0,0)

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> insert into t values (1, (select min(value) from t)); --- insert (1, 1)

(g) Direct stmt-value-write dependency

is dependent on

is dependent on is dependent on

Figure 3: Examples for each kind of statement dependency.

item-anti
T1.S1

item-anti

T0.S2T1.S2

T0.S1

T1.S3

Figure 4: Statement-dependency graph for Figure 1(a).

idea, SQL-level instrumentation requires tables in manipu-
lated databases to contain at least two columns. We name
these two columns as PrimaryKey column and VersionKey
column, respectively. The column PrimaryKey is used to iden-
tify different items, and should not change after the items are
inserted. The column VersionKey is used to identify different
versions of each item, and should be assigned a new value
different from any earlier values when the item is updated
by statements. Besides these two, tables may have additional
columns whose properties are unrestricted.

The statements in test cases should also follow these restric-
tions. Specifically, the statement performing write operations
(e.g., UPDATE and INSERT) should change the VersionKey of
the handled items to a new value, and each item updated by
the same statement has the same VersionKey. The statement
performing read operations (e.g., SELECT) should at least out-
put the PrimaryKey and VersionKey of the items. Except for
the PrimaryKey and VersionKey of items, we eschew imposing
any additional restrictions for the generated statements.

SQL-level instrumentation operates in two phases: (1) item-
tracking instrumentation, and (2) version-set-tracking instru-
mentation. Figure 5 shows how each phase instruments the
test case in Figure 1. In item-tracking instrumentation, we
insert a Before-Write Read (BWR) statement before each state-
ment performing write operations (e.g., see T0.S1.BWR and
T1.S3.BWR in Figure 5). BWR statements are designed to
output the items that will be written and thus use the same
predicates as the target statements. BWR statements can work
only under isolation levels that satisfy Assumption 3, which

T0.S0> start transaction;
T0.S1.BWR> select * from t0;
T0.S1> update t0 set vkey = 162;
T0.S1.AWR> select * from t0 where vkey =162;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2> select * from t1 where

t1.c0 <= (select min(vkey) from t0);
T1.S3.BWR> select * from t1 where

t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63 where

t1.c0 <= (select min(vkey) from t0);
T1.S3.AWR> select * from t1 where vkey = 63;
T1.S4> commit;

T0.S0> start transaction;
T0.S1> update t0 set vkey = 162;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2> select * from t1 where

t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63 where

t1.c0 <= (select min(vkey) from t0);
T1.S4> commit;

Item-Tracking Instrumentation

T0.S0> start transaction;
T0.S1.VSR0> select * from t0;
T0.S1.BWR> select * from t0;
T0.S1> update t0 set vkey = 162;
T0.S1.AWR> select * from t0 where vkey =162;
T0.S2.VSR0> select * from t1;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1.VSR0> select * from t0;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2.VSR0> select * from t0;
T1.S2.VSR1> select * from t1;
T1.S2> select * from t1 where t1.c0 <= (select min(vkey) from t0);
T1.S3.VSR0> select * from t0;
T1.S3.VSR1> select * from t1;
T1.S3.BWR> select * from t1 where t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63 where t1.c0 <= (select min(vkey) from t0);
T1.S3.AWR> select * from t1 where vkey = 63;
T1.S4> commit;

Version-Set-Tracking Instrumentation

Original Test Case

Figure 5: SQL-level instrumentation for Figure 1(a).

is discussed subsequently. We insert an After-Write Read
(AWR) statement after each statement performing write opera-
tions (e.g., see T0.S1.AWR and T1.S3.AWR in Figure 5). AWR
statements are used to output the new values of the items pro-
cessed by target statements. To do so, AWR statements select
items whose VersionKeys are equal to the assigned values in
the target statements. In version-set-tracking instrumentation,
we insert some Version-Set Read (VSR) statements before
each statement (e.g., see T0.S1.VSR0 and T0.S2.VSR0 in
Figure 5). To output the item versions referenced by target
statements, VSR statements output all items in the tables ref-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 401

T0.S0> start transaction;
T0.S1.VSR0> select * from t0; --- (1, 20)
T0.S1.BWR> select * from t0; --- (1, 20)
T0.S1> update t0 set vkey = 162;
T0.S1.AWR> select * from t0 where vkey =162; --- (1, 162)
T0.S2.VSR0> select * from t1; --- (2, 43, 8), (3, 43, 58)
T0.S2> select * from t1; --- (2, 43, 8), (3, 43, 58)
T1.S0> start transaction;
T1.S1.VSR0> select * from t0; --- (1, 20)
T1.S1> select * from t0; --- (1, 20)
T0.S3> commit;
T1.S2.VSR0> select * from t0; --- (1, 20)
T1.S2.VSR1> select * from t1; --- (2, 43, 8), (3, 43, 58)
T1.S2> select * from t1 where t1.c0 <= (select min(vkey) from t0); --- (2, 43, 8)
T1.S3.VSR0> select * from t0; --- (1, 20)
T1.S3.VSR1> select * from t1; --- (2, 43, 8), (3, 43, 58)
T1.S3.BWR> select * from t1 where t1.c0 <= (select min(vkey) from t0); --- (2, 43, 8)
T1.S3> update t1 set vkey = 63 where t1.c0 <= (select min(vkey) from t0);
T1.S3.AWR> select * from t1 where vkey = 63; --- (2, 63, 8), (2, 63, 53)
T1.S4> commit;

Instrumented test case

item-anti

item-anti

T1.S1

T0.S2T1.S2

T0.S1

T1.S3
Statement-dependency graph

Figure 6: Inferring statement-dependency graphs for Figure 1.

erenced by the target statements.
Using the inserted BWR, AWR, and VSR statements, we

can collect the execution information of each statement in
transactions, and thus can infer possible statement dependen-
cies. Figure 6 shows how the inserted statements are used
to infer statement dependencies for the test case in Figure 1.
To check whether statements T1.S3 and T0.S2 have depen-
dencies between each other, we analyze the outputs of the
corresponding statements and their inserted statements. The
output of T0.S2 and the output of BWR of T1.S3 have an
overlapping part (i.e., item (2, 43, 8)), which means T0.S2
reads an item that has not been updated by T1.S3. Therefore,
T0.S2 is (stmt-item-anti) depended on T1.S3. The outputs of
BWR of T0.S1 and VSRs of T1.S3 also have an overlapping
part (i.e., item (1, 20)), which means that T0.S1 will update
an item that has been referenced by the predicates of T1.S3.
Therefore, T1.S3 is (stmt-predicate-anti) depended on T0.S1.
Other dependencies can be inferred similarly.

We prove that each statement dependency proposed in Sec-
tion 3.1 can be inferred based on the outputs of statements
under certain assumptions. The detailed proof (Lemma 1–7) is
presented in Appendix B. The assumptions are shown below:

Assumption 1 No synchronization issues happen during the
execution of transactions.

Assumption 2 Statements can use item versions only in the
tables that they have referenced.

Assumption 3 For any two transactions, Ti and T j, it is pro-
hibited that Ti item-anti-depends on T j for the item x while
T j item-write-depends on Ti for the same item x.

Supported Isolation Levels

PL-1
Read Uncommitted

PL-2
Read Committed

PL-2L
Monotonic View

PL-CS
Cursor Stability

PL-2+
Consistent View

PL-MSR
Monotonic Snapshot Reads

PL-2.99
Repeatable Read

PL-FCV
Forward Consistent View

PL-SI
Snapshot Isolation

PL-SS
Strict Serializability

PL-3
Full Serializability

Figure 7: Isolation-level hierarchy defined by Adya et al. [1,2]
and isolation levels supported by our approach.

These assumptions generally hold when we test DBMSs
deployed locally (i.e., without synchronization issues) with
a proper isolation guarantee, which can be satisfied by the
isolation levels equal to or stronger than Cursor Stability (PL-
CS) or Monotonic View (PL-2L), according to Adya et al.’s
definitions [1, 2]. Figure 7 shows the supported isolation lev-
els. Specifically, Assumptions 1 and 2 are independent of
isolation levels. In a transaction dependency graph, Cursor
Stability prohibits cycles with an anti-dependency and one or
more write-dependency edges such that all edges are related
to one specific object. Assumption 3 prohibits cycles with
exactly one anti-dependency edge and one write-dependency
edge such that both edges are related to one specific object.
Therefore, Cursor Stability satisfies Assumption 3. Monotonic
View disallows cycles containing exactly one anti-dependency
edge from one transaction to another transaction. It satisfies
Assumption 3, because the phenomenon prohibited by As-
sumption 3 contains cycles with exactly one anti-dependency
edge between transactions.

SQL-level instrumentation can accurately capture item de-
pendencies without any false positives or negatives, but it may
capture spurious predicate or value dependencies, according
to Lemma 1–7. Such inaccuracies may be introduced by VSR
statements; VSR statements output all items in the tables ref-
erenced by target statements. However, target statements may
use only a part of the items in the tables to perform their pred-
icate matching and value capturing, depending on the specific
implementations of the DBMS. Therefore, VSR statements
may output items that are not referenced by target statements.
If these incorrectly outputted items match the outputs of other
statements, spurious dependencies are captured. Therefore,
the statement-dependency graph built by SQL-level instru-
mentation is a super graph of the actual statement-dependency
graph. This issue does not affect the correctness of our testing
approach (see Section 3.3 for the detailed discussion).

We further discuss the time complexity of using SQL-level
instrumentation to infer dependencies. Suppose the database
contains n items, and the test case contains m statements. In

402 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the worst case, each BWR or AWR statement can output n
items, and the VSR statements of each target statement can
output, in total, n items. If the target statement is a read state-
ment, it can output at most n items. When both two target
statements are write statements, we need to check 6n items
(i.e., outputs of BWR, AWR, and VSR statements of each target
statement), while we need only check 5n items when one of
the target statements is a read statement (i.e., outputs of BWR,
AWR, and VSR statements of the write statement and outputs
of the read statement and its VSR statements). Therefore, in
the worst case, we may check whether two target statements
have dependencies in O(6n) time using hash tables. To con-
firm the dependencies among m statements, we should check
m(m− 1) dependencies, and thus the worst-case time com-
plexity of the entire process is O(6n·m(m−1)), i.e., O(m2n).

Existing work proves that checking histories in isolation
levels is a polynomial-time (e.g., Read Committed) or even
NP-complete problem (e.g., Serializability and Snapshot Iso-
lation) [9, 33]. ELLE [4] can recover histories in O(m·p),
where m is the number of operations, and p is the number of
concurrent processes. However, ELLE restricts their test cases
whose write operations can only append and cannot handle
histories involving predicates. In contrast, SQL-level instru-
mentation can recover histories involving predicates and only
requires test cases to maintain PrimaryKey and VersionKey
for each item, within O(m2n) time.

3.3 Transactional Oracle Construction
The statement-dependency graphs enable us to construct
semantically-equivalent test cases. Our intuition is that if there
is a reordered statement sequence whose statements follow the
same dependency order in the statement dependency graph,
the reordered statement sequence should produce the same
results as the original one. To effectively test DBMSs’ trans-
action support, we execute the reordered statements without
transactions, which provides an oracle for validating the orig-
inal test cases by checking whether each statement in the test
cases produces the same results. To formalize our intuition,
we first introduce a theorem based on statement-dependency
graphs. The theorem is given below, and the details of its
proof can be found in Appendix C.

Theorem 1 SDG(H) is the statement-dependency graph
built according to execution history H, S(SDG(H)) is the
statement sequence generated by performing topological sort-
ing on SDG(H), and History(S(SDG(H)) is the history of the
sorted statement sequence executed without transactions. If
SDG(H) is acyclic, History(S(SDG(H))) and H give the same
results for each statement in S(SDG(H)).

Theorem 1 suggests a high-level method for constructing
semantically-equivalent test cases. Theorem 1 is not con-
strained to any specific isolation level and thus can apply at
various isolation levels. Moreover, Theorem 1 can tolerate the

No cycle

(1) SQL-level
Instrumentation

(3) Build SDG

(5) Have cycles
Randomly select

one node in the cycles

(6) Remove the
corresponding statement

(7) Output the refined test case,
the acyclic graph, and the execution results

Txn 0

Txn 1

Txn 2(2) Transactional
execution

Figure 8: The process of refining test cases, whose SDG even-
tually becomes acyclic.

spurious predicate dependencies that stem from SQL-level
instrumentation. Suppose G is the actual statement depen-
dency graph and G′ is G with additional spurious predicate
dependencies, i.e., G is a subgraph of G′. The semantically-
equivalent test case constructed from G′ will follow all the
dependencies in G′, thus following all the dependencies in G.
Hence, the constructed test case is also one of the topological
sorting results of G. That is, the test case constructed from G′

can also serve as an oracle.
Note that Theorem 1 has a precondition, i.e., the SDG(H)

should be acyclic. To satisfy this precondition, we perform
graph decycling to eliminate all cycles in the graph. Then, we
perform oracle checking to generate semantically-equivalent
test cases by topologically sorting acyclic graphs. We execute
these equivalent test cases without transactions and use their
results to validate transaction executions.

Graph Decycling. The overview of graph decycling is shown
in Figure 8. The idea is to break cycles in the graph by remov-
ing those statements involved in the cycles. Given a test case,
we first instrument it (Step (1) in Figure 8) and then execute
the instrumented test case using transactions (Step (2)). We
can infer the SDG using the collected information from instru-
mented statements (Step (3)). Then, we check whether there
is a cycle in the constructed SDG using depth-first search [39]
(Step (4)). If there is at least one cycle in the graph, we ran-
domly select one node in the cycles (Step (5)) and remove
the corresponding statement in the test case (Step (6)). We
re-execute the refined test case on the DBMS and start a new
round of test-case refinement. Note that the re-execution is
necessary, because a refined test case may result in the con-
struction of a significantly different SDG, which might also
contain new cycles. At the beginning of each round, the tested
DBMS is reset to its initial state. When no cycle is detected in
the SDG built from the refined test case, we output the refined

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 403

Algorithm 1: Oracle Checking
input : test_case, graph, t_results

1 Function OracleChecking(test_case, graph, t_results, DBMS):
2 oracle_test_case← OracleGen(test_case, graph);
3 DBMS← INITIAL_STATE;
4 o_results← ExecuteWithoutTxn(oracle_test_case, DBMS);
5 for each stmt in oracle_test_case do
6 t_stmt_results← GetStmtResults(stmt, t_results);
7 o_stmt_results← GetStmtResults(stmt, o_results);
8 if t_stmt_results ̸= o_stmt_results then
9 ReportBug();

10 return FALSE;
11 t_db← GetDBContent(t_results);
12 o_db← GetDBContent(o_results);
13 if t_db ̸= o_db then
14 ReportBug();
15 return FALSE;
16 return TRUE;
17 Function OracleGen(test_case, graph):
18 oracle_test_case← [];
19 tmp_graph← graph;
20 while HasNode(tmp_graph) = TRUE do
21 nodes← GetZeroIndegreeNodes(tmp_graph);
22 node← RandomlySelect(nodes);
23 stmt← GetStmtFromNode(node, test_case, graph);
24 PushToList(oracle_test_case, stmt);
25 RemoveNode(tmp_graph, node);
26 return oracle_test_case;

test case, its corresponding acyclic SDG, and its transaction
execution results (Step (7)). The graph decycling always con-
verges, because it cannot indefinitely remove statements from
the test case where the number of statements is finite.

Oracle Checking. Algorithm 1 shows the workflow of or-
acle checking. The inputs to this workflow are the refined
test case, the acyclic graph, and the transaction execution
results t_results from graph decycling. We first generate a
semantically-equivalent test case, that is, oracle_test_case,
using topological sorting (Line 2). Specifically, we initialize
oracle_test_case as an empty sequence and temp_graph as
graph (Line 18–19). In each round, we randomly select one
node whose in-degree—the number of edges directed into
the node—is zero and append the statement corresponding to
this node to the end of oracle_test_case (Line 21–24). Then,
we remove the node from temp_graph and delete the edges
incident to this node (Line 25). The loop terminates if all
nodes in temp_graph are removed (Line 20), and the process
returns the constructed oracle_test_case (Line 26). After ora-
cle_test_case is available, we initialize the target DBMS and
execute the statements in oracle_test_case in order without
transactions (Line 3–4). According to Theorem 1, for any cor-
rect DBMS implementation, test_case and oracle_test_case
should produce the same result. We first compare each state-
ment output (Line 5–10). If their outputs differ, we have found
a bug. If these comparisons succeed, we further check whether
the final database contents are the same (Line 11–15). If they
are different, a bug is also found.

Test case

Statement-dependency graph

Statement output:
T0.S2: (2, 43, 8), (3, 43, 53)
T1.S1: (1, 20)
T1.S2: (2, 43, 8)
Database:
t0: (1, 162)
t1: (2, 63, 8) (3, 63, 53)

Transaction execution results

Semantically equivalent test case

Execute without
transactions

Statement output:
S0: (2, 43, 8), (3, 43, 53)
S1: (1, 20)
S2: (2, 43, 8)
Database:
t0: (1, 162)
t1: (2, 63, 8) (3, 43, 53)

Non-transaction execution results

Difference in Database

Topological
sorting

T0.S0> start transaction;
T0.S1> update t0 set vkey = 162;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2> select * from t1

where t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63

where t1.c0 <= (select min(vkey) from t0);
T1.S4> commit;

S0> select * from t1; --- T0.S2
S1> select * from t0; --- T1.S1
S2> select * from t1 --- T1.S2

where t1.c0 <= (select min(vkey) from t0);
S3> update t1 set vkey = 63 --- T1.S3

where t1.c0 <= (select min(vkey) from t0);
S4> update t0 set vkey = 162; --- T0.S1

item-anti
T1.S1

item-anti

T0.S2T1.S2

T0.S1

T1.S3

Figure 9: Oracle checking for the bug in Figure 1.

Figure 9 shows how we perform oracle checking on the
test case in Figure 1(a). We first perform topological sort-
ing on the acyclic statement-dependency graph. In the first
round, T1.S1, T1.S2, and T0.S2 have zero in-degree, so we
randomly pick one of them, for example, T0.S2. Then, T1.S1
and T1.S2 are picked. After T0.S2 and T1.S2 are removed
from the graph, the in-degree of T1.S3 becomes zero, and
T1.S3 is picked. Finally, T0.S1 is chosen as it is the only
node in the graph. Therefore, the sorted statement sequence
is [T0.S2, T1.S1, T1.S2, T1.S3, T0.S1]. Then, we execute
the statement sequence without transactions and record the
statement outputs and final database contents. These results
are compared to the results produced by the original test case.
We first check their statement outputs, which turn out to be the
same. Then, we check their final database contents. Because
their database contents are different on the value of one of the
rows in table t1, we have found a bug.

4 Implementation

Based on our approach, we realized a tool, TxCheck, on top
of SQLsmith [43]. The overall codebase consists of 14k lines
of C++ code, where we implemented our approach with 3.5k
lines (not including the code for supporting DBMSs).

Figure 10 shows the architecture of TxCheck. To test a
DBMS, TxCheck first randomly generates a test case, which
will be instrumented by SQL-level instrumentation. The in-
strumented test case is then refined by graph decycling to
eliminate cycles in its statement-dependency graph, and by
blocking scheduling to make sure that the instrumented state-
ments will not be reordered by the blocking mechanism of
the tested DBMS. TxCheck uses the refined test case and its
transaction execution results to construct an oracle, which is a
test case that is not wrapped as transactions (e.g., the test case
shown in Figure 1(b)), but should produce the same results

404 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Transactional
Oracle Construction

SQL-Level
Instrumentation

Test case

Non-transaction
execution results

Instrumented
Test case

Result
Comparison

Non-transaction
execution

Differ

Bug Report

Target DBMS

Transaction
execution

Blocking
Scheduling

Graph
Decycling

Test-Case
Generation

Refined test case

Transaction
execution results

Figure 10: Architecture of TxCheck.

as the refined test case, according to Theorem 1. TxCheck
then checks whether their results are indeed the same. If their
results differ, TxCheck reports a bug. The following describes
the implementation of TxCheck in detail.

Test-case Generation. TxCheck randomly generates a test
case consisting of multiple transactions, and randomly de-
termines the order in which the statements in these transac-
tions are executed. For example, in Figure 1(a), T0 and T1 are
the generated transactions, and [T0.S0, T0.S1, T0.S2, T1.S0,
T1.S1, T0.S3, T1.S2, T1.S3, T1.S4] is the execution order
for the statements in these transactions. The generated state-
ments follow the constraints described in Section 3.2. As
we do not restrict the statement format, TxCheck can apply
other approaches to implementing statement generation. In
this paper, we use SQLsmith [43] as the statement generator.

Transaction Execution. For each transaction in a test case,
TxCheck sets up a client session that is responsible for issu-
ing the statements of a transaction to which it is assigned. To
avoid introducing non-determinism from concurrent execu-
tions, TxCheck sends statements to the DBMS following the
order determined in the test-case generation. The order might
be updated by block scheduling. After sending a statement,
TxCheck sends the next statement only after the DBMS indi-
cates that its execution is completed or blocked. While some
concurrency bugs may be missed, sequential execution makes
it significantly easier to reproduce bugs, which is generally
appreciated by developers.

Non-transaction Execution. For each test case that is not
wrapped as transactions (e.g., the test case in Figure 1(b)),
TxCheck sets up only one client session for sequentially issu-
ing the statements in the test case.

Blocking Scheduling. When statements in different transac-
tions try to access the same data, a DBMS may block some of
these statements to schedule transaction execution, which can
disrupt the inserted statements of SQL-level instrumentation.
Figure 11(a) shows an example in MySQL using Repeatable
Read isolation level. T1.S1.BWR is the BWR statement of

T0.S0> start transaction;
T0.S1> update t0 set vkey = 1; --- (0, 0) -> (0, 1)
T1.S0> start transaction;
T1.S1.BWR> select * from t0 where vkey = 0; --- (0, 0)
T1.S1> update t0 set vkey = 2 where vkey = 0; --- blocked
T0.S2> commit;
--- T1.S1 is executed after T0.S2, it updates nothing
T1.S2> commit;

Inconsistent!

T0.S0> start transaction;
T0.S1> update t0 set vkey = 1; --- (0, 0) -> (0, 1)
T1.S0> start transaction;
T1.S1.BWR> select * from t0 where vkey = 0; --- (0, 0)
T0.S2> commit;
T1.S1> update t0 set vkey = 2 where vkey = 0; --- updates nothing
T1.S2> commit;

(a) Determined execution order

(b) Actual execution order

Table t0 (pkey, vkey): (0, 0)

T0.S0> start transaction;
T0.S1> update t0 set vkey = 1; --- (0, 0) -> (0, 1)
T1.S0> start transaction;
T0.S2> commit;
T1.S2> commit;

(c) The example after blocking scheduling

Figure 11: Example of MySQL blocking mechanism (in Re-
peatable Read) and blocking scheduling.

T1.S1. The DBMS executes T1.S1.BWR and outputs 1 row,
and then tries to execute T1.S1. T1.S1 is blocked, because it
tries to update the items that are being updated by T0.S1. The
DBMS continues to execute T0.S2. After T0.S2 is executed,
transaction T0 is finished, and then T1.S1 is executed automat-
ically by the DBMS. T1.S1 updates nothing because there
is no row whose vkey is 0. By design, T1.S1.BWR should
output the items that will be updated by T1.S1. However,
their results are inconsistent because T1.S1.BWR is executed
before T0 commits but T1.S1 is executed after T0 commits.
Figure 11(b) shows the actual execution order of the example.
T1.S1.BWR and T1.S1 are separated by the COMMIT of T0.

To address the issues caused by the blocking mechanism of
DBMSs, TxCheck adapts blocking scheduling, which makes
sure that the inserted statements and the target statements will
not be separated. TxCheck first executes statements accord-
ing to the determined execution order. It records the actual
statement execution order, which may be different from the
determined order because some statements may be blocked.
It checks whether there are situations where the inserted state-
ments and their corresponding target statements are executed
apart. It deletes the inserted statements and target statements
in such situations. For example in Figure 11, T1.S1.BWR and
T1.S1 are deleted. The refined test case is executed again
following the recorded execution order in the last round. In
the new execution, if all the target statements and correspond-
ing inserted statements are executed adjacently, the blocking
scheduling ends. Otherwise, it deletes statements according
to the newly recorded real execution order and executes the re-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 405

fined test case again. This process always converges, because
it cannot delete statements indefinitely. Figure 11(c) shows
the example refined by blocking scheduling.

DBMS Support. TxCheck can be easily adapted to test spe-
cific DBMSs. On average, we use 650 lines of code to support
one DBMS. Each tested DBMS should provide interfaces
to set up the DBMS, connect to the DBMS, shut down the
DBMS, send statements in transaction sessions, and obtain ex-
ecution results. In addition, if a DBMS can block statements
in transaction execution, TxCheck needs to be provided with
an interface for determining whether a statement is blocked.
Setting a timeout for statements is an alternative way to check
for blocking situations. However, it is inaccurate, because the
DBMS may just be executing a long-running statement.

Isolation Bug Detection. TxCheck can also find isolation
bugs, because statement dependencies can be easily con-
verted to transaction dependencies according to their defini-
tions. For example, if a statement Si in transaction Ti depends
on statement S j in transaction T j, Ti depends on T j. There-
fore, TxCheck can convert statement-dependency graphs to
transaction-dependency graphs. Then, TxCheck detects bugs
that violate their isolation levels according to graph restric-
tions [1, 2, 5, 6]. However, because TxCheck may infer spu-
rious predicate dependencies (Section 3.2), which introduce
false alarms of isolation bugs, we only consider item depen-
dency, which is accurate, in isolation bug detection.

Memory Bug Detection. As TxCheck involves both transac-
tion and non-transaction executions, memory bugs triggered
with or without transactions can be detected by TxCheck. We
use ASan [40] as its memory bug checker.

5 Evaluation

We have evaluated TxCheck on three DBMSs, namely
TiDB [46], MySQL [30], and MariaDB [29]. These DBMSs
are widely used by industry and extensively tested by DBMS
fuzzers [21, 22, 25, 35–37, 43, 53]. According to DB-Engines
Ranking [13], MySQL is the second most popular rela-
tional DBMS, MariaDB the 8th, and TiDB the 49th. The
GitHub repositories of TiDB, MySQL, and MariaDB have
been starred more than 32K, 8K, and 4K times, respectively,
demonstrating their popularity and maturity. We perform our
evaluation on Ubuntu 20.04 with a 64-core AMD Epyc 7742
CPU at 2.25G Hz and 256GB RAM.

We evaluated TxCheck on the latest available releases of
the targeted DBMSs. Specifically, for TiDB, we tested ver-
sions 5.4.0, 6.1.0, and 6.3.0, for MySQL, versions 8.0.28 and
8.0.30, and for MariaDB, versions 10.8.3 and 10.10.1. We
tested MySQL and MariaDB under Read Committed, Repeat-
able Read, and Serializability, respectively. We did not test
Read Uncommitted because it does not satisfy Assumption 3
(see Figure 7). TxCheck can be used to test Read Committed

Table 1: Numbers of bugs found by TxCheck and their status

DBMS Found Confirmed Known Fixed

TiDB 23 19 1 9
MySQL 18 18 1 3
MariaDB 15 15 4 1
Total 56 52 6 13

in MySQL (as also in MariaDB) because it supports consis-
tent nonlocking reads [31] (e.g., read operations of SELECT),
thus satisfying Assumption 3. We tested TiDB with its opti-
mistic transaction mode and Snapshot Isolation, which is the
only isolation level compatible with this mode [48]. We did
not test the pessimistic transaction mode of TiDB [47], which
does not satisfy Assumption 3.

We used TxCheck to continuously test the targeted DBMSs
for three months; we stopped and restarted TxCheck only
when we improved TxCheck with new SQL features. In gen-
eral, TxCheck was able to find new bugs within several days
after we implemented new features; however, certain bugs
took more time to trigger (e.g., one or two weeks).

5.1 Bug Detection
As shown in Table 1, TxCheck found 56 unique bugs, includ-
ing 23 in TiDB, 18 in MySQL, and 15 in MariaDB. Among
them, 52 bugs were confirmed, 18 fixed, and 6 known.

Bug Severity. Regarding the 23 bugs found in TiDB, two
were classified as Critical bugs, while 7 as Major bugs. The
other bugs found in TiDB were assigned low severity (e.g.,
Minor). In MariaDB, all the found bugs were classified as
Critical (9) or Major (6). Most of the bugs reported to the
MySQL developers are confidential due to security concerns,
so their severity is unavailable. 8 CVEs have been assigned
to these security-related bugs. Additionally, 4 bugs posted
publicly were classified as Severe. These results demonstrate
that TxCheck is practical and effective in detecting critical
bugs in production DBMSs.

Bug Classification. We classify the 56 bugs according to their
root causes. Table 2 shows the results. The class "Transaction"
includes the bugs found in transaction executions, and "Non-
transaction" the bugs triggered in non-transaction executions,
i.e., when the semantically-equivalent test cases are executed
(see Section 3.3). The column "Crash" shows the number of
bugs that crash DBMS servers, and "Oracle" refers to the bugs
that are identified by oracle checking.

In total, TxCheck found 30 bugs triggered in transaction
executions, which demonstrates TxCheck’s capability for find-
ing real transactional bugs in DBMSs. Among these bugs, 19
were identified by our oracle, and 11 crashed DBMS servers.
In addition, 26 bugs were identified in the non-transaction
executions, among which 23 crashed DBMS servers and 3

406 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: Classifying the detected bugs

DBMS
Transaction Non-transaction

Oracle Crash Oracle Crash

TiDB 11 4 1 7
MySQL 4 2 0 12
MariaDB 4 5 2 4
Total 19 11 3 23

Repeatable Read

Read Committed &
Serializability

5

1

MySQL

Read Committed

Repeatable Read
1

2

Serializability

6

MariaDB

Snapshot Isolation

15

TiDB

Figure 12: Venn diagrams showing the number of bugs found
at different isolation levels. Bugs associated with a smaller
circle of isolation level can also be found at larger circles of
isolation levels.

were identified by oracle checking. Note that several bugs
triggered in non-transaction executions make the execution
results incorrect and different from the ones in transaction
executions. This demonstrates that TxCheck can also detect
incorrect behaviors triggered in non-transaction executions.

Bugs at Different Isolation Levels. For the 30 transactional
bugs, Figure 12 shows the isolation levels where they are trig-
gered. All 15 TiDB bugs are identified at Snapshot Isolation,
which is the only tested isolation level in TiDB. In MySQL,
5 bugs can be found at all three tested isolation levels, while
1 only at Repeatable Read. In MariaDB, 6 bugs can be de-
tected at all three tested isolation levels, while 1 at both Read
Committed and Repeatable Read, and 2 only at Read Com-
mitted. Note that several transactional bugs are independent
of isolation guarantees, which can be effectively detected by
TxCheck at various levels.

5.2 Comparison with State of the Art
We demonstrate the advantages of our approach by (1) check-
ing whether TxCheck can find new transactional bugs that
cannot be found by the state of the art, and (2) discussing se-
lected interesting bugs to show the effectiveness of TxCheck.

For comparison, we analyze the bug-triggering test cases
of the 19 transactional bugs found by our oracle checking.
We reduce each test case to a minimal bug-inducing version
before analysis. Given that there exists no approach for finding
general transactional bugs, we select ELLE [4] as competing
tool (part of the prevalent testing framework Jepsen [18]). Elle
is the state-of-the-art black-box checker for finding isolation

Table 3: Feature analysis of the 19 bug-triggering test cases

ID DBMS
Features

ELLE
Complex Predicate

1 TiDB ✓ ✓ -
2 TiDB ✓ ✓ -
3 TiDB ✓ ✓ -
4 TiDB - - ✓
5 TiDB - - -
6 TiDB ✓ ✓ -
7 TiDB ✓ ✓ -
8 TiDB ✓ ✓ -
9 TiDB ✓ ✓ -

10 TiDB ✓ ✓ -
11 TiDB ✓ ✓ -
12 MySQL ✓ ✓ -
13 MySQL ✓ ✓ -
14 MySQL ✓ ✓ -
15 MySQL ✓ ✓ -
16 MariaDB ✓ ✓ -
17 MariaDB ✓ ✓ -
18 MariaDB ✓ ✓ -
19 MariaDB ✓ ✓ -

bugs, which are a specific kind of transactional bugs.
As shown in Table 3, among the 19 test cases, 17 use both

complex statements and predicates. ELLE cannot generate
such test cases, because (1) the complex statements do not
follow the test-case patterns of ELLE whose write operations
can only append; and (2) ELLE does not support predicates.
Figure 1 depicts one of such bugs triggered by complex state-
ments and predicates. Regarding the two bugs that do not
involve complex operations and predicates, ELLE can find
only one of them. We also analyze 11 transactional bugs that
crash DBMS servers and find that all of them involve com-
plex statements and predicates, for which ELLE lacks support.
In the following, we first illustrate the only bug that can be
found by both TxCheck and ELLE. Then, we discuss three
representative bugs that are missed by ELLE.

TiDB Bug: Isolation Violation. Figure 13 shows a bug-
triggering test case. ELLE can only detect this bug from the
56 bugs found by TxCheck as the corresponding test case
does not contain predicates or complex operations. This bug
triggers a prohibited phenomenon, G-SIb, in Snapshot Iso-
lation [1, 2] used by TiDB. G-SIb is an anomaly where the
transaction-dependency graph contains a cycle with exactly
one anti-dependency edge. To find this bug, TxCheck converts
the constructed statement-dependency graph to a transaction-
dependency graph (see Section 4) and checks whether there
is any prohibited phenomenon. This bug-finding process il-
lustrates that TxCheck can also find isolation bugs.

MySQL Bug: Aborted Transactions Have Effects. Fig-
ure 14 shows a test case with two interleaving transactions.
Transaction T1 inserts four items into table t0 and then roll-
backs. Transaction T0 updates the items that satisfy a complex

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 407

item-anti

T0.S0> start transaction;
T1.S0> start transaction;
T1.S1> select ref0.c0 from t0 as ref0

order by c0 desc; --- output 1 row
T0.S1> delete from t0; --- delete 1 row
T0.S2> commit;
T1.S2> select ref0.c0 from t0 as ref0

order by c0 desc; --- output 0 row
T1.S3> commit;

Test case

item-anti

item-read

Statement-dependency graph

Transaction-dependency
graph

G-SIb

T1.S1

T1.S2

T0.S1

T0 T1

Figure 13: A test case violates Snapshot Isolation in TiDB.

T0> start transaction;
T1> start transaction;
T1> insert into t0 values (141, 210000, …, 74),

…, (141, 213000, …, null);
T1> rollback;
T0> update t0 set vkey = 116

where t0.c5 not in (
select subq0.c0 as c0
from (select …) as subq0
where subq0.c0 < (select …)
order by c0 asc); --- update 39 rows

T0> commit;

update t0 set vkey = 116
where t0.c5 not in (

select subq0.c0 as c0
from (select …) as subq0
where subq0.c0 < (select …)
order by c0 asc); --- update 0 row

Test case Oracle

Figure 14: An aborted transaction affects the results of a
committed transaction in MySQL.

predicate (i.e., the WHERE clause of the UPDATE statement)
from table t0 and then commits. This test case is semantically-
equivalent to executing the UPDATE statement on the same
databases as the aborted transaction must not cause any visi-
ble side effects [1, 41]. However, MySQL produces different
results: one test case updates 39 rows while the other zero
rows. ELLE cannot find this bug as it involves predicates and
complex operations, for which ELLE lacks support.

TiDB Bug: Incorrect Transactional Calculation. As shown
in Figure 15, the test case contains only one transaction and
uses only simple operations without predicates. ELLE can gen-
erate such a test case, at least conceptually. However, ELLE
cannot find this bug, because it does not violate any isolation
specification rather than makes the DBMS return incorrect
results. TxCheck finds this bug by constructing semantically-
equivalent test cases.

MariaDB Bug: Crash Caused by Transactions. As shown
in Figure 16, the test case contains two interleaved trans-
actions. Transaction T1 first inserts a couple of items into
table t0. Then, transaction T0 executes a DELETE statement
with a complex WHERE clause as its predicate. The deletion
is blocked because its predicate matching references certain
items of table t0, which have just been updated by the INSERT
statement of T1. Only after T1 commits or aborts, can the
DELETE statement be unblocked. While the deletion of T0 is
blocked, transaction T1 executes a simple UPDATE statement,
which eventually crashes the MariaDB server. This bug is

T0> start transaction;
T0> update t_0 set c_0 = t_2.c_1;
T0> select count(c_2) from t_0;

--- output 39
T0> commit;

Test case

update t_0 set c_0 = t_2.c_1;
select count(c_2) from t_0;

--- output 36

Oracle

Figure 15: A test case makes TiDB return incorrect results.

T0> start transaction;
T1> start transaction;
T1> insert into t0 (vkey, pkey, c0) values

(89,188000,40), …, (97, 230000, 9);
T0> delete from t1 where exists (

select ref0.c0 from t2 as ref0
where t1.c0 not in (

select ref3.vkey as c0
from (t0 as ref2 left outer join t2 as ref3

on (ref2.vkey = ref3.vkey))
where ref3.pkey >= ref2.vkey)); --- blocked

T1> update t2 set vkey = 99; --- crash

Test case

Figure 16: Two transactions crash the MariaDB server.

due to a concurrency issue where one of the threads performs
complex operations that make the DBMS enter erroneous
states. ELLE cannot find this bug as it does not support such
complex operations involving predicates.

5.3 Design Choice Analysis

We had two considerations while designing our approach.
First, can we use existing transaction-dependency graphs,
e.g., Directed Serialization Graph (DSG) [1, 2], instead of
the proposed statement-dependency graphs? Second, when
performing topological sorting, TxCheck randomly selects
one node if there are multiple nodes with zero in-degree. Does
the random strategy affect the results?

Using Transaction-dependency Graphs. We argue that
using transaction-dependency graphs may miss bugs. A
transaction-dependency graph in some isolation levels may
have cycles as some transactions reference the items that
other transactions have referenced. To construct transactional
oracles, we must refine a test case to ensure the acyclicity
of the associated graph. However, a test case may have an
acyclic statement-dependency graph, but a cyclic transaction-
dependency graph. Such test cases are unable to be topologi-
cally sorted at the transaction level, and thus interesting test
cases may be discarded.

To demonstrate that using transaction-dependency graphs
may miss bugs, we check the transaction-dependency graphs
of the 19 transactional bugs found by our oracle checking.
We first check the graphs built on minimized test cases and
find that all the constructed transaction-dependency graphs
miss cycles. It is unsurprising as, when minimizing the test
cases, we delete all the unnecessary clauses and statements,

408 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: Analysis of transaction-dependency graphs

DBMS Test cases Txn-cycle

TiDB 11 3
MySQL 4 1
MariaDB 4 2
Total 19 6

item-anti

item-anti
item-anti

Statement-dependency graph Transaction-dependency graph

T1.S1
T0

T1
item-anti

T0.S2T1.S2

T0.S1

T1.S3

Figure 17: The statement-dependency and transaction-
dependency graphs of the test case in Figure 1.

which makes the test cases reference much fewer items than
the non-minimized ones. However, randomly generated test
cases inevitably contain many redundant parts [28, 34]. To
understand whether the test cases generated by TxCheck con-
tain cycles in transaction-dependency graphs, we check the
non-minimized test cases accordingly. Table 4 shows the re-
sults. The column Txn-cycle refers to the number of test cases
that have cycles in transaction-dependency graphs.

The results show that 6 bug-triggering test cases have cy-
cles in transaction-dependency graphs. If we use transaction-
dependency graphs instead of statement-dependency graphs,
these test cases are not suitable for constructing oracles as
topological sorting cannot be performed for cyclic graphs.
Hence, around one-third (6 out of 19) of the bugs would be
missed. The test case in Figure 1 exemplifies such a bug. Fig-
ure 17 presents its corresponding statement-dependency and
transaction-dependency graphs, respectively. The statement-
dependency graph does not have cycles, so topological sorting
can be performed at the statement level, which reveals the
bug. Topological sorting is infeasible at the transaction level
as the transaction-dependency graph is cyclic.

Random Topological Sorting. TxCheck topologically sorts
statement-dependency graphs to construct oracles. If
TxCheck encounters multiple nodes whose in-degrees are
zero during sorting, it randomly selects one of them. In this
way, TxCheck chooses only one of the topological sorting
results to construct the oracle. For any correct DBMS, all
the topological sorting results must be the same as the trans-
action execution results according to Theorem 1. However,
when bugs are triggered, the test cases executed with transac-
tions and some of the sorted test cases may produce the same,
yet incorrect results. If TxCheck, unfortunately, chooses such
sorted test cases, bugs may be overlooked.

Table 5: Analysis of topological sorting: ⋆ labels the test cases
that generate millions of topological sorting results, where we
randomly select 10k to check whether they can trigger bugs

ID DBMS Sort Trigger ID DBMS Sort Trigger

1 TiDB 1 1 (100%) 11 TiDB 1260 1224 (97%)
2 TiDB 32 32 (100%) 12 MySQL 6 6 (100%)
3 TiDB 12 12 (100%) 13 MySQL 1 1 (100%)
4 TiDB - - 14 MySQL 1 1 (100%)
5 TiDB 1 1 (100%) 15 MySQL 10k⋆ 10k (100%)
6 TiDB 6 6 (100%) 16 MariaDB 2 2 (100%)
7 TiDB 6 6 (100%) 17 MariaDB 1 1 (100%)
8 TiDB 30 30 (100%) 18 MariaDB 1 1 (100%)
9 TiDB 96 96 (100%) 19 MariaDB 10k⋆ 10k (100%)

10 TiDB 36 36 (100%)

We show that such missed bugs are rare in practice. Typi-
cally, transactional bugs affect the results of transaction exe-
cutions, while non-transaction executions of the topologically
sorted test cases would not be affected. Therefore, most sorted
test cases should execute correctly and can be used as oracles
to reveal bugs. To demonstrate this, we analyze the 19 trans-
actional bugs found by our oracle checking. The analyzed test
cases are not minimized as we intend to obtain results that
are close to those from the generated test cases in practice.
Table 5 shows the results. The column Sort shows the number
of all possible topological sorting results for the statement-
dependency graphs. The column Trigger refers to the number
of sorting results that successfully trigger the bugs.

Among the 19 test cases, the sorting results of 17 can stably
trigger the bugs with 100% success rates. Bug 4 is found
by checking transaction-dependency graphs, which do not
involve topological sorting, as discussed in Section 5.2. The
test case for bug 11 produces 1260 possible sorting results,
among which 1224 can trigger the bug. It indicates that missed
bugs can indeed happen with, however, a low probability (less
than 3%). Two bug-triggering test cases (bugs 15 and 19)
generate millions of sorting results. Both of them contain
dozens of statements and involve few dependencies. When
the dependency constraint is weak, the number of possible
topological sorting will explode (e.g., without any dependency,
12 statements can already amount to 12!, i.e., over 480 million,
sorting results). We randomly select 10K sorting results for
each test case and find that all of them can trigger the bugs.
These results show that randomly selecting one topological
sorting result for oracle checking is practical and effective.

6 Discussion

Test-case Generation. TxCheck generates databases and
transactions randomly for testing. Such random generation
may be inefficient to explore corner test cases and thus may
miss bugs. Fuzzing is a promising technique for generating
infrequently executed test cases [3, 10, 16, 19, 27], and has
been adopted in DBMS testing [21, 50, 53]. However, tradi-
tional fuzzing techniques cannot be directly utilized in DBMS

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 409

transaction testing. First, code coverage, which is commonly
used as the fuzzing feedback, is not well suited because it
cannot measure transaction interleavings. Second, random
mutations used by most fuzzers are ineffective for generating
transactions with complex data dependencies. One promis-
ing approach to addressing these challenges is to design new
coverage feedback and mutation strategies following work on
concurrency fuzzing [12, 20, 51].

Predicate Handling. It is challenging to recover transaction
histories involving predicates [4, 44], for which we provide
a possible solution. We instrument Version-Set Read (VSR)
statements to capture items referenced by predicates by count-
ing all items in the referenced tables. However, as discussed in
Section 3.2, this method may overcount the referenced items
because it is unnecessary that all items in the referenced tables
would be referenced. Therefore, TxCheck may build spurious
dependencies between statements. To mitigate this issue, one
may utilize domain-specific knowledge. For example, we can
customize VSR statements for each specific kind of statement
used in transactions by referring to the corresponding SQL
grammars and features.

Data-intensive Transaction. Existing work [21, 22, 35–37,
53] demonstrates that many DBMS bugs can be triggered
without using much data. We follow this insight; each
database generated by TxCheck generally contains 50-80
rows of data. However, some transactional bugs may hide in
code only reached when intensive data is processed. To find
such bugs, we plan to enable TxCheck to generate databases
with large amounts of data. However, as TxCheck needs
to reset database states after each test, its performance will
be significantly degraded when TxCheck resets complicated
databases. We plan to experiment with snapshot techniques to
help improve testing performance by following and adapting
existing work [24, 38].

7 Related Work

Transaction Testing. Transaction-testing approaches vali-
date the correct uses of transactions in applications [14, 15]
or the correct implementations of transaction support of
DBMSs [4, 9, 11, 17, 44]. AGENDA [14, 15] tests DB-based
applications that utilize transactions to perform certain tasks.
It generates test cases according to user-provided specifica-
tions. A bug is reported if the application incorrectly con-
structs transactions that violate the provided specifications.
The black-box isolation checkers ELLE [4], COBRA [44],
and POLYSI [17] examine whether the transaction support of
DBMSs functions correctly. ELLE generates transactions that
use “append” operations as writes and can naturally recover
their version order according to the list of values. COBRA
and POLYSI focus respectively on validating the Serializ-
ability and Snapshot Isolation guarantees of transactions in
DBMSs and develop several techniques (e.g., read-modify-

write transaction-based version order inferring, compact con-
straint encoding for SMT solving, and parallel hardware) to
enable fast dependency inference. Unlike existing checkers,
TxCheck focuses on testing the transaction support of DBMSs
while relaxing the constraints on test-case patterns and en-
abling complex transaction generation. Moreover, TxCheck
provides a practical solution to inferring predicate dependen-
cies, a challenging problem in DBMS transaction testing.

DBMS Testing. Automated testing approaches have been
proposed to find other types of bugs in DBMSs, such as logic
bugs [35–37, 52], security bugs [21, 43, 50, 53], and perfor-
mance bugs [22, 26]. SQLancer [42] is a well-known DBMS
testing tool for detecting logic bugs, which integrates several
approaches [35–37]. PQS [37] constructs queries that require
DBMSs to return target items from manipulated databases: a
logic bug is reported if the tested DBMS fails to return such
items. TLP [36] designs some patterns to partition an origi-
nal query into three separate queries, so that the union of the
separated queries’ results must be the same as the original
query’s result; otherwise, TLP reports a bug. Focusing on
memory bugs, both SQUIRREL [53] and DynSQL [21] can
generate more diverse test cases. SQUIRREL utilizes interme-
diate representations to model the structures of queries and
the dependencies between statements. This enables SQUIR-
REL to generate queries containing multiple statements. By
merging the query generation and query processing, DynSQL
incrementally generates complex and valid queries using the
state information of DBMSs. We also design TxCheck for
tackling the oracle problem. However, TxCheck focuses on
bugs triggered in transactional scenarios. In addition, with
moderate test-case pattern constraints, TxCheck can handle
complex test cases and expose deep transactional bugs.

8 Conclusion

We have presented a novel DBMS transaction testing ap-
proach, along with the practical tool TxCheck. Our approach
is based on statement-level dependency graphs and can gener-
ate semantically-equivalent test cases to validate the transac-
tion executions. TxCheck has found 56 unique bugs in three
widely-used DBMSs, among which 52 have been confirmed
and 18 fixed. Thanks to its generality and effectiveness, we
expect TxCheck to help developers design and implement
correct and reliable DBMS transaction support. Moreover,
our approach could be utilized to infer predicate-related de-
pendencies in recovering transaction histories.

Acknowledgments

We thank the anonymous OSDI reviewers and our shepherd,
Tianyin Xu, for their valuable feedback on earlier versions of
this paper. We also thank the DBMS developers for triaging
and fixing our reported bugs.

410 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Atul Adya. Weak consistency: a generalized theory
and optimistic implementations for distributed transac-
tions. PhD thesis, Massachusetts Institute of Technology,
1999.

[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Gen-
eralized isolation level definitions. In Proceedings of
the 16th International Conference on Data Engineering
(ICDE), pages 67–78, 2000.

[3] American fuzzy lop. https://github.com/google/
AFL.

[4] Peter Alvaro and Kyle Kingsbury. Elle: Inferring iso-
lation anomalies from experimental observations. In
Proceedings of the 46th International Conference on
Very Large Databases (VLDB), pages 268–280, 2020.

[5] Peter Bailis, Aaron Davidson, Alan D. Fekete, Ali Gh-
odsi, Joseph M. Hellerstein, and Ion Stoica. Highly
available transactions: Virtues and limitations. In Pro-
ceedings of the 39th International Conference on Very
Large Databases (VLDB), pages 181–192, 2013.

[6] Peter Bailis, Alan D. Fekete, Joseph M. Hellerstein, Ali
Ghodsi, and Ion Stoica. Scalable atomic visibility with
RAMP transactions. In Proceedings of the 2014 Interna-
tional Conference on Management of Data (SIGMOD),
pages 27–38, 2014.

[7] Claude Barthels, Ingo Müller, Konstantin Taranov, Gus-
tavo Alonso, and Torsten Hoefler. Strong consistency
is not hard to get: Two-phase locking and two-phase
commit on thousands of cores. In Proceedings of the
45th International Conference on Very Large Databases
(VLDB), pages 2325–2338, 2019.

[8] Philip A. Bernstein and Nathan Goodman. Multiver-
sion concurrency control - theory and algorithms. ACM
Transactions on Database Systems, 8(4):465–483, 1983.

[9] Ranadeep Biswas and Constantin Enea. On the complex-
ity of checking transactional consistency. In Proceed-
ings of the 2019 International Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pages 165:1–165:28, 2019.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 23rd International Conference on
Computer and Communications Security (CCS), pages
1032–1043, 2016.

[11] Andrea Cerone, Giovanni Bernardi, and Alexey Gots-
man. A framework for transactional consistency models

with atomic visibility. In Proceedings of the 26th In-
ternational Conference on Concurrency Theory, pages
58–71, 2015.

[12] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui,
Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu.
MUZZ: thread-aware grey-box fuzzing for effective bug
hunting in multithreaded programs. In Proceedings
of the 29th USENIX Security Symposium, pages 2325–
2342, 2020.

[13] DB-Engines Ranking, Accessed in May, 2023. https:
//db-engines.com/en/ranking.

[14] Yuetang Deng, Phyllis G. Frankl, and David Chays. Test-
ing database transactions with AGENDA. In Proceed-
ings of the 27th International Conference on Software
Engineering (ICSE), pages 78–87, 2005.

[15] Yuetang Deng, Phyllis G. Frankl, and Zhongqiang Chen.
Testing database transaction concurrency. In Proceed-
ings of the 18th International Conference on Automated
Software Engineering (ASE), pages 184–195, 2003.

[16] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
data flow sensitive fuzzing. In Proceedings of the 29th
USENIX Security Symposium, pages 2577–2594, 2020.

[17] Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei,
David A. Basin, Haixiang Li, and Anqun Pan. Efficient
black-box checking of snapshot isolation in databases.
Proc. VLDB Endow., 16(6):1264–1276, 2023.

[18] Jepsen. https://jepsen.io/.

[19] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min
Hu. Fuzzing error handling code using context-sensitive
software fault injection. In Proceedings of the 29th
USENIX Security Symposium, pages 2595–2612, 2020.

[20] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In Proceedings of the 29th
Network and Distributed System Security Symposium
(NDSS), 2022.

[21] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. DynSQL:
Stateful fuzzing for database management systems with
complex and valid sql query generation. In Proceedings
of the 32nd USENIX Security Symposium.

[22] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and
Woonhak Kang. APOLLO: automatic detection and di-
agnosis of performance regressions in database systems.
In Proceedings of the 46th International Conference on
Very Large Data Bases (VLDB), pages 57–70, 2019.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 411

https://github.com/google/AFL
https://github.com/google/AFL
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://jepsen.io/

[23] Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua
Sagiv. Query optimization by predicate move-around.
In Proceedings of the 20th International Conference on
Very Large DataBases (VLDB), pages 96–107, 1994.

[24] Junqiang Li, Senyi Li, Gang Sun, Ting Chen, and Hong-
fang Yu. Snpsfuzzer: A fast greybox fuzzer for stateful
network protocols using snapshots. IEEE Transactions
on Information Forensics and Security, 17:2673–2687,
2022.

[25] libFuzzer - a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html.

[26] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso.
Testing dbms performance with mutations. arXiv
preprint arXiv:2105.10016, 2021.

[27] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: opti-
mized mutation scheduling for fuzzers. In Proceedings
of the 28th USENIX Security Symposium, pages 1949–
1966, 2019.

[28] David Maciver and Alastair F. Donaldson. Test-case
reduction via test-case generation: Insights from the hy-
pothesis reducer. In Robert Hirschfeld and Tobias Pape,
editors, Proceedings of the 34th European Conference
on Object-Oriented Programming (ECOOP), volume
166, pages 13:1–13:27, 2020.

[29] MariaDB. https://www.mariadb.org/.

[30] MySQL. https://www.mysql.com/.

[31] MySQL Transaction Isolation Levels.
https://dev.mysql.com/doc/refman/8.0/en
/innodb-transaction-isolation-levels.html.

[32] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast serializable multi-version concurrency control
for main-memory database systems. In Proceedings of
the 2015 International Conference on Management of
Data (SIGMOD), pages 677–689, 2015.

[33] Christos H Papadimitriou. The serializability of concur-
rent database updates. Journal of the Association for
Computing Machinery (JACM), 26(4):631–653, 1979.

[34] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case reduction
for C compiler bugs. In Proceedings of the 2012 Inter-
national Conference on Programming Language Design
and Implementation (PLDI), pages 335–346, 2012.

[35] Manuel Rigger and Zhendong Su. Detecting optimiza-
tion bugs in database engines via non-optimizing refer-
ence engine construction. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Soft-
ware Engineering (ESE/FSE), pages 1140–1152, 2020.

[36] Manuel Rigger and Zhendong Su. Finding bugs in
database systems via query partitioning. In Proceed-
ings of the 2020 International Conference on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA), pages 1–30, 2020.

[37] Manuel Rigger and Zhendong Su. Testing database
engines via pivoted query synthesis. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 667–682,
2020.

[38] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Nyx: Greybox hy-
pervisor fuzzing using fast snapshots and affine types. In
Proceedings of the 30th USENIX Security Symposium,
pages 2597–2614, 2021.

[39] Robert Sedgewick and Kevin Wayne. Algorithms, 4th
Edition. Addison-Wesley, 2011.

[40] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC), pages
309–318, 2012.

[41] Avi Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts, Seventh Edition. McGraw-
Hill Book Company, 2020.

[42] SQLancer. https://github.com/sqlancer/sqla
ncer.

[43] SQLsmith: a random sql query generator. https://
github.com/anse1/sqlsmith.

[44] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael
Walfish. Cobra: Making transactional key-value stores
verifiably serializable. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 63–80, 2020.

[45] Alexander Thomasian. Two-phase locking performance
and its thrashing behavior. ACM Transactions on
Database Systems, 18(4):579–625, 1993.

[46] TiDB. https://www.pingcap.com/tidb/.

[47] Tidb pessimistic transaction mode. https:
//docs.pingcap.com/tidb/stable/pessimist
ic-transaction.

[48] Tidb transaction isolation levels. https:
//docs.pingcap.com/tidb/stable/transacti
on-isolation-levels.

412 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.mariadb.org/
https://www.mysql.com/
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://www.pingcap.com/tidb/
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/transaction-isolation-levels
https://docs.pingcap.com/tidb/stable/transaction-isolation-levels
https://docs.pingcap.com/tidb/stable/transaction-isolation-levels

[49] What is a Transaction? http://msdn.microsoft.c
om/en-us/library/aa366402(VS.85).aspx.

[50] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chi-
jin Zhou, Huafeng Zhang, and Yu Jiang. Industry prac-
tice of coverage-guided enterprise-level DBMS fuzzing.
In Proceedings of the 43rd International Conference on
Software Engineering: Software Engineering in Prac-
tice (ICSE SEIP), pages 328–337, 2021.

[51] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. KRACE: data race fuzzing for kernel file
systems. In Proceedings of the 2020 IEEE Symposium
on Security and Privacy, pages 1643–1660, 2020.

[52] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng
Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and
Jun Wei. Finding bugs in gremlin-based graph database
systems via randomized differential testing. In ISSTA’22,
pages 302–313. ACM, 2022.

[53] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang,
Wenke Lee, and Dinghao Wu. SQUIRREL: testing
database management systems with language validity
and coverage feedback. In Proceedings of the 2020
International Conference on Computer and Communi-
cations Security (CCS), pages 955–970, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 413

http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx

A Definition for statement dependencies

We define statement dependencies in the same fashion as for
the transaction dependencies defined by Adya et al. [1, 2].

Definition 2 (Directly stmt-item-read-depends)
Statement S j directly stmt-item-read-depends on statement
Si if Si installs an item version xi while S j reads xi.

Definition 3 (Directly stmt-item-write-depends)
Statement S j directly stmt-item-write-depends on statement
Si if Si installs an item version xi while S j installs x’s next
version (after xi) in the version order.

Definition 4 (Directly stmt-item-anti-depends)
Statement S j directly stmt-item-anti-depends on statement Si
if Si reads an item version xk while S j installs x’s next version
(after xk) in the version order.

Definition 5 (Directly stmt-predicate-read-depends)
Statement S j directly stmt-predicate-read-depends on state-
ment Si if S j performs an operation r j(P: Vset(P)) while Si
installs an item version xi that is included in Vset(P).

Definition 6 (Directly stmt-predicate-write-depends)
Statement S j directly stmt-predicate-write-depends on state-
ment Si if either (1) S j overwrites an operation wi(P: Vset(P))
performed by Si, or (2) S j executes an operation w j(Q:
Vset(Q)) while Si installs an item version xi that is included
in Vset(Q).

Definition 7 (Directly stmt-predicate-anti-depends)
Statement S j directly stmt-predicate-anti-depends on state-
ment Si if S j overwrites an operation ri(P: Vset(P)) performed
by Si.

Definition 8 (Directly stmt-value-write-depends)
Statement S j directly stmt-value-write-depends on statement
Si if either (1) Si executes an operation wvalue

i (E: Vset(E))
where xk is included while S j install x’s next version (after
xk) in version order, or (2) S j executes an operation wvalue

j (F:
Vset(F)) while Si installs xi that is included in Vset(F). Here,
statement Si performs wvalue

i (E: Vset(E)) if Si installs an item
version whose values are based on expression E and the sys-
tem (conceptually) reads all needed versions in Vset(E).

B Proof related to SQL-level instrumentation

Assumption 1 prohibits statements use old item versions while
the newer ones are conceptually available. This can happen
in distributed DBMSs when a new item version is produced
but not well-synchronized, and thus the old version is still
used in some machines. However, this work focuses on bugs
in database engines deployed in local machines. Therefore,
it is reasonable to assume that every item version is well-
synchronized. Assumption 2 ensures that the inserted VSR

statements can correctly work. Assumption 3 ensures that the
inserted BWR statements read the same item version used in
the target statements.

Lemma 1 Statement S j directly stmt-item-read-depends on
statement Si ⇔ outputs of the AWR statement of Si and out-
puts of S j have intersections.

Proof: (1) Statement S j directly stmt-item-read-depends on
statement Si ⇒ outputs of the AWR statement of Si and out-
puts of S j have intersections. Because Si directly write-read
depends on S j, there is an item x such that Si installs version
xi and S j reads xi. Si installs version xi, so xi must be included
in the output of AWR of S j. S j reads xi, so xi must be in the
output of S j. So the output of AWR of Si and the output of S j
have intersections.

(2) Statement S j directly stmt-item-read-depends on state-
ment Si ⇐ outputs of the AWR statement of Si and outputs
of S j have intersections. Suppose xk is one of the intersected
item versions. xk is in the output of AWR of Si, so xk must be
installed by Si because Si is the only one statement that can
assign the corresponding VersionKey value to xk that matches
the predicates of AWR of Si. xk is also in the output of S j, so
xk is read by S j. So Si installs an item version xk and S j reads
xk. Therefore, Si write-read depends on S j.

Combining (1) and (2), we prove Lemma 1.

Lemma 2 Statement S j directly stmt-item-write-depends
on statement Si ⇔ outputs of the AWR statement of Si and
outputs of the BWR statement of S j have intersections.

Proof: (1) Statement S j directly stmt-item-write-depends on
statement Si ⇒ outputs of the AWR statement of Si and out-
puts of the BWR statement of S j have intersections. Because
S j directly write-write depends on Si, Si installs a version xi
and S j installs x’s next version (after xi) in the version order.
Si installs a version xi, so xi must be in the output of AWR
of Si. Suppose xk is the version of item x that is used in the
predicate matching of S j. xk must satisfy the predicate of S j
because S j is going to install a new version for item x. As
BWR of S j uses the same predicate as S j, xk must be in the
output set of BWR of S j. Suppose S j is going to install x j,
there must be xk « x j. And x j is xi’s next version, so xk is xi,
or xk « xi.

We assume that xk « xi. (a) If Si and S j are in the same
transaction. xi must be installed before x j, which is installed
by S j, and xk « xi. Therefore, the BWR of S j must read version
xi instead of xk. Conflict. (b) If Si and S j are in different
transactions, Ti and T j. Because T j reads xk, and Ti installs
xi, which is after xk, Ti item-anti-depends on T j. Because Ti
installs xi, and T j installs x j that are after xi, T j item-write-
depends on Ti. Conflict with Assumption 3.

Combining (a) (b), we get xk « xi in conflict. So xk is xi.
So xi is in the output of BWR of S j. And xi is in the output of

414 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AWR of Si. The output of AWR of Si and the output of BWR
of S j have intersections.

(2) Statement S j directly stmt-item-write-depends on state-
ment Si ⇐ outputs of the AWR statement of Si and outputs
of the BWR statement of S j have intersections. Suppose xk
is one of the intersected item versions. xk is in the output of
AWR of Si, so xk must be installed by Si because Si is the only
one statement that can assign the corresponding VersionKey
value to xk that matches the predicates of AWR of Si. xk is in
the output of BWR of S j, so xk satisfies the predicate of BWR
of S j, and it satisfies the predicate of S j. Therefore, S j will
install a new version of x. So Si installs a version xk and S j
installs x’s next version (after xk) in the version order, which
means that S j directly write-write depends on Si.

Combining (1) and (2), we prove Lemma 2.

Lemma 3 Statement S j directly stmt-item-anti-depends on
statement Si ⇔ outputs of Si and outputs of the BWR state-
ment of S j have intersections.

Proof: (1) Statement S j directly stmt-item-anti-depends on
statement Si ⇒ outputs of Si and outputs of the BWR state-
ment of S j have intersections. Because Si directly stmt-item-
anti depends on S j, Si reads an item version xk and S j installs
x’s next version (after xk) in the version order. Suppose xh is
the version of item x that is used in the predicate matching
of S j. xh must satisfy the predicate of S j because S j is going
to install a new version for item x. As BWR of S j uses the
same predicate as S j, xh must be in the output of BWR of S j.
Suppose S j is going to install x j, there must be xh « x j. While
x j is xk’s next version, so xk is xh, or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si reads version xk, and
thus S j must use a version of x that is after xk or equal to xk
(Assumption 1). However, S j uses version xh, and xh « xk.
Conflict. (b) Si and S j are in different transactions, Ti and
T j. Suppose statement Sk of transaction Tk installs version
xk. If Tk is T j, Sk must before S j because S j installs xk’s next
version. So xk is visible to S j, and S j must use xk instead of xh
(xh « xk). Conflict. So Tk is not T j. Because T j reads xh, and
Tk installs xk that are after xh, so Tk item-anti-depends on T j.
And T j installs x j that are after xk, so T j item-write-depends
on Tk. Conflict with Assumption 3.

Combining (a) (b), we get xh « xk in conflict. So xk is xh.
So xk is in the output of BWR of S j. And xk is in the output
of Si, The output of Si and the output of BWR of S j have
intersections.

(2) Statement S j directly stmt-item-anti-depends on state-
ment Si ⇐ outputs of Si and outputs of the BWR statement
of S j have intersections. Suppose xk is one of the intersected
items. xk is in the output of BWR of S j, so xk satisfies the
predicate of BWR of S j, and thus it satisfies the predicate of
S j (S j and BWR of S j use same version of x). Therefore, S j
will install a version after xk. xk is in the output of Si, so xk is
read by Si. So Si reads a item version xk and S j installs x with

a version after xk in the version order. Therefore, Si directly
stmt-item-anti-depends on S j.

Combining (1) and (2), we prove Lemma 3.

Lemma 4 Statement S j directly stmt-predicate-read-
depends on statement Si ⇒ outputs of the AWR statement
of Si and outputs of one of the VSR statements of S j have
intersections.

Proof: Statement S j directly stmt-predicate-read-depends on
statement Si, which means that S j performs an operation r j(P:
Vset(P)), and there is an item version xi that is installed by
Si and xi ∈ Vset(P). Because xi is installed by Si, the xi must
be included in the output of AWR of Si. Because VSRs of S j
outputs all item versions in the referenced tables, according
to Assumption 2, all referenced item versions should be out-
putted by VSRs of S j. Because xi ∈ Vset(P), at least one of
the VSRs of S j outputs xi. So outputs of the AWR statement
of Si and outputs of one of the VSR statements of S j have
intersections. Proved.

Lemma 5 Statement S j directly stmt-predicate-write-
depends on statement Si ⇒ (1) outputs of one of the VSR
statements of Si and outputs of the BWR statement of S j have
intersections, or (2) outputs of the AWR statement of Si and
outputs of one of the VSR statements of S j have intersections.

Proof: If statement S j directly stmt-predicate-write-depends
on statement Si, according to Definition 6, it can be (1) S j
overwrites an operation wi(P: Vset(P)) performed by Si, or
(2) S j executes an operation w j(Q: Vset(Q)) while Si installs
an item version xi that is included in Vset(Q).

For case (1), S j overwrites operation wi(P: Vset(P)), which
means that Si performs an operation wi(P: Vset(P)), and there
exists xk ∈ Vset(P) that S j installs x’s next version (after xk).
Because xk ∈ Vset(P), xk must be in the output of one of the
VSRs of Si. Suppose xh is the version of x that is used in S j
for predicate matching. Because S j installs x’s next version
(after xk), xh must satisfy the predicate of S j because S j is
going to install a new version for item x. As BWR of S j uses
the same predicate as S j, xh must be in the output of BWR
of S j too. Suppose S j is going to install x j, there must be xh «
x j. And x j is xk’s next version, so xk is xh, or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si uses version xk, and thus
S j must use a version of x that is later than or equal to xk.
However, S j uses xh and xh « xk. Conflict. (b) Si and S j are
in different transactions, Ti and T j. Suppose statement Sk
of transaction Tk installs version xk. If Tk is T j, Sk must be
before S j because S j install xk’s next version. So xk is visible
to S j, so S j must use xk instead of xh as xh « xk. Conflict.
So Tk is not T j. Because T j reads xh (BWR of S j) while
Tk installs xk that are after xh, Tk item-anti-depends on T j.
Because T j installs x j that are after xk, T j item-write-depends
on Conflict with Assumption 3.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 415

Combining (a) (b), we get xh « xk in conflict. So xk is xh. So
xk is in the output of BWR of S j. And xk is in the output of one
of the VSRs of Si, the outputs of one of the VSR statements
of Si and the output of BWR of S j have intersections.

For case (2), S j executes an operation w j(Q: Vset(Q)) while
Si installs an item version xi that is included in Vset(Q). Be-
cause xi is installed by Si, the xi must be included in the output
of AWR of Si. Because xi ∈ Vset(Q), xi must be in the output
of one of the VSRs of S j. So the output of AWR of Si and the
output of one of the VSRs of S j have intersections.

Combining (1) and (2), we prove Lemma 5.

Lemma 6 Statement S j directly stmt-predicate-anti-depends
on statement Si⇒ outputs of one of the VSR statements of Si
and outputs of the BWR statement of S j have intersections.

Proof: Statement S j directly stmt-predicate-anti-depends on
statement Si, which means that Si performs an operation ri(P:
Vset(P)), and there exists xk ∈ Vset(P) that S j installs x’s next
version (after xk). Because xk ∈ Vset(P), xk must be in the
output of one of the VSRs of Si. Suppose xh is the version of
x that is used in S j for predicate matching. Because S j installs
x’s next version (after xk), xh must satisfy the predicate of S j
because S j is going to install a new version for item x. As
BWR of S j uses the same predicate as S j, xh must be in the
output of BWR of S j too. Suppose S j is going to install x j,
there must be xh « x j. And x j is xk’s next version, so xk is xh,
or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si uses version xk, and thus
S j must use a version of x that is later than or equal to xk.
However, S j uses xh and xh « xk. Conflict. (b) Si and S j are
in different transactions, Ti and T j. Suppose statement Sk
of transaction Tk installs version xk. If Tk is T j, Sk must be
before S j because S j install xk’s next version. So xk is visible
to S j, so S j must use xk instead of xh as xh « xk. Conflict.
So Tk is not T j. Because T j reads xh (BWR of S j) while
Tk installs xk that are after xh, Tk item-anti-depends on T j.
Because T j installs x j that are after xk, T j item-write-depends
on Conflict with Assumption 3.

Combining (a) (b), we get xh « xk in conflict. So xk is xh. So
xk is in the output of BWR of S j. And xk is in the output of one
of the VSRs of Si, the outputs of one of the VSR statements of
Si and the output of BWR of S j have intersections. Lemma 6
is proved.

Lemma 7 Statement S j directly stmt-value-write-depends
on statement Si⇒ (1) outputs of one of the VSR statements of
Si and outputs of the BWR statement of S j have overlapping
parts, or (2) outputs of the AWR statement of Si and outputs
of one of the VSR statements of S j have intersections.

Proof: If statement S j directly stmt-value-write-depends on
statement Si, according to Definition 8, it can be (1) Si exe-
cutes an operation wvalue

i (E: Vset(E)) where xk is included

while S j installs x’s next version (after xk) in version order,
or (2) S j executes an operation wvalue

j (F: Vset(F)) while Si
installs xi that is included in Vset(F).

For case (1), because xk ∈ Vset(E), xk must be in the output
of one of the VSRs of Si. Suppose xh is the version of x that is
used in S j for predicate matching. Because S j installs x’s next
version (after xk), xh must satisfy the predicate of S j because
S j is going to install a new version for item x. As BWR of
S j uses the same predicate as S j, xh must be in the output of
BWR of S j too. Suppose S j is going to install x j, there must
be xh « x j. And x j is xk’s next version, so xk is xh, or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si uses version xk, and thus
S j must use a version of x that is later than or equal to xk.
However, S j uses xh and xh « xk. Conflict. (b) Si and S j are
in different transactions, Ti and T j. Suppose statement Sk
of transaction Tk installs version xk. If Tk is T j, Sk must be
before S j because S j install xk’s next version. So xk is visible
to S j, so S j must use xk instead of xh as xh « xk. Conflict.
So Tk is not T j. Because T j reads xh (BWR of S j) while
Tk installs xk that are after xh, Tk item-anti-depends on T j.
Because T j installs x j that are after xk, T j item-write-depends
on Conflict with Assumption 3.

Combining (a) (b), we get xh « xk in conflict. So xk is xh. So
xk is in the output of BWR of S j. And xk is in the output of one
of the VSRs of Si, the outputs of one of the VSR statements
of Si and the output of BWR of S j have intersections.

For case (2), because xi is installed by Si, the xi must be
included in the output of AWR of Si. Because xi ∈ Vset(F), xi
must be in the output of one of the VSRs of S j. So the output
of AWR of Si and the output of one of the VSRs of S j have
intersections.

Combining (1) and (2), we prove Lemma 7.

C Proof for Theorem 1

Inductive proof: n is the number of statements in the
statement-dependency graph (SDG). [Tx1Sy1, Tx2Sy2, . . . ,
TxnSyn] is the statement sequence executed within transac-
tions. [Sz1, Sz2, . . . , Szn] is the statement sequence generated
by performing topological sorting on SDG.

when n = 1, obviously T1S1 and S1 give the same results.
Suppose n = k, its SDG Gk is acyclic, and [Tx1Sy1, Tx2Sy2,

. . . , TxkSyk] and [Sz1, Sz2, . . . , Szk] produce the same results.
When n = k + 1, we add a new statement at the end of the
transactional statement sequence. Therefore, the sequence
becomes [Tx1Sy1, Tx2Sy2, . . . , TxkSyk, Tx(k+1)Sy(k+1)]. We
need to prove that Theorem 1 holds for k+1 if the SDG is
acyclic.

Because Tx1Sy1, Tx2Sy2, . . . , and TxkSyk are executed be-
fore Tx(k+1)Sy(k+1), they are not affected by Tx(k+1)Sy(k+1),
and thus their execution results are the same as [Tx1Sy1,
Tx2Sy2, . . . , TxkSyk] in the k-length case. So Tx1Sy1, Tx2Sy2, . . .
, and TxkSyk still generate graph Gk. And then Tx(k+1)Sy(k+1)

416 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is executed and produces some dependencies to some of the
executed statements. Therefore, Gk+1 is a super graph of Gk.
By performing topological sort, it generates several normal
execution sequences. Suppose [Sw1, Sw2, . . . , Swk, Sw(k+1)] is
one of the sequences. Taking out the new statement Sy(k+1)
from this sequence, we can get [Sz1, Sz2, . . . , Szk]. Because
we use topological sort, and Gk+1 is a super graph of Gk, [Sz1,
Sz2, . . . , Szk] follows the edges in Gk+1 and thus follows the
edges in Gk. Therefore, [Sz1, Sz2, . . . , Szk] must be one of the
topologically sorting results of k-length cases.

Now we consider the new statement Sy(k+1). Suppose [Sz1,
Sz2, . . . , Szp, Sy(k+1), Sz(p+1), ..., Szk] is one of the topologi-
cally sorting results of k+1-length cases. [Sz1, Sz2, . . . , Szk] is
the topologically sorting results of k-length cases.

Sy(k+1) will not affect the statements that are executed be-
fore it. Therefore, the Sz1, Sz2, . . . , Szp produce the same
results as they are in transaction execution (according to the
k-length case). — (Conclusion 1)

Now, we need to prove: (1) Sy(k+1) produce the same results
as Tx(k+1)Sy(k+1); and (2) Sz(p+1), ..., Szk are not affected by
Sy(k+1), that is, they will produce the same results as they
produce in transaction execution.
(1) Sy(k+1) produce the same results as Tx(k+1)Sy(k+1).
Proof: If Sy(k+1) and Tx(k+1)Sy(k+1) produce different results,
there must be at least one item x whose version xi is referenced
by Sy(k+1) and x j is referenced by Tx(k+1)Sy(k+1), and xi is
different from x j. There are only two possible cases:

(a) xi « x j. Suppose Tx jSy j installs item version x j, so
Tx(k+1)Sy(k+1) depends on Tx jSy j because Tx(k+1)Sy(k+1) ref-
erences the item version installed by Tx jSy j. Therefore, topo-
logical sorting will put Tx jSy j before Tx(k+1)Sy(k+1). Sup-
pose Sz j is the statement in sorted sequence corresponding
to Tx jSy j. Sz j is before Sy(k+1), so Sz j should produce the
same results as Tx jSy j according to Conclusion 1. So Sz j also
installs version x j. So Sy(k+1) must reference the version of
item x later than or equal to x j. However, Sy(k+1) reference
xi, and xi « x j. Conflict.

(b) xi » x j. Suppose xi is installed by Szi. Because Sy(k+1)
reference xi, Szi must be before Sy(k+1). According to Con-
clusion 1, Szi produces the same results as it is in transaction
execution. Suppose TxiSyi is the corresponding statement in
the transaction execution. TxiSyi installs item version xi while
Tx(k+1)Sy(k+1) reference x j that is older than xi, so TxiSyi de-
pends on Tx(k+1)Sy(k+1). Therefore, topological sorting will
put TxiSyi after Tx(k+1)Sy(k+1), i.e., Szi is after Sy(k+1), which
is in conflict with that Szi must be before Sy(k+1).

Combining (a) and (b), we can get that there is no item
that Sy(k+1) and Tx(k+1)Sy(k+1) reference its different ver-
sion. Therefore, Sy(k+1) can produce only the same results as
Tx(k+1)Sy(k+1).
(2) Sz(p+1), ..., Szk are not affected by Sy(k+1).
Proof: We assume at least one of the statements in Sz(p+1), ...,
Szk is affected by Sy(k+1). Suppose Szh is the closest statement
to Sy(k+1) among the statements that is affected by Sy(k+1).

That is, there is not any statement between Szh and Sy(k+1), or
statements between Szh and Sy(k+1) should not be affected by
Sy(k+1). Because Szh is affected, it must reference at least one
item version that is installed by Sy(k+1).

Suppose xi is one of the item versions that are installed
by Sy(k+1) and referenced by Szh. Sy(k+1) and Tx(k+1)Sy(k+1)
produce the same results, so Tx(k+1)Sy(k+1) also installs xi.
Suppose TxhSyh is the corresponding statement of Szh in the
transaction execution sequence. Because TxhSyh and Szh are
the same statement and thus use the same predicate, TxhSyh
must reference one of the versions of item x. Suppose the
item version is x j. x j must be different from xi as TxhSyh is
executed before Tx(k+1)Sy(k+1), which is the last statement in
transaction execution, and TxhSyh cannot reference an item
version that has not been installed yet. There are only two
possible cases:

(a) xi » x j. TxhSyh reference x j while Tx(k+1)Sy(k+1) in-
stalls xi, and xi » x j, so Tx(k+1)Sy(k+1) depends on TxhSyh.
According to the topological sort, Szh must be before Sy(k+1).
However, Szh is after Sy(k+1). Conflicts.

(b) xi « x j. Suppose x j is installed by Tx jSy j. Because
Tx jSy j installs x j and TxhSyh reference x j, TxhSyh depends
on Tx jSy j. Tx jSy j installs x j while Tx(k+1)Sy(k+1) installs
xi, and xi « x j, so Tx jSy j depends on Tx(k+1)Sy(k+1). So
Tx(k+1)Sy(k+1) « Tx jSy j « TxhSyh. According to topological
sorting, Sy(k+1) must be before Sz j, and Sz j must be before
Szh. Because Szh is the closest statement that is affected by
Sy(k+1), and Sz j is before Szh, Sz j is not affected by Sy(k+1).
So Sz j will also install x j. Therefore, Szh should use a version
later than or equal to x j. However, Szh references version xi
that is older than x j. Conflicts.

Combining (a) and (b), we can get that there is no state-
ment in [Sz(p+1), ..., Szk] that is affected by Sy(k+1). Therefore,
Sz(p+1), ..., Szk should produce the same results as they pro-
duce in transaction execution.

Combining (1) and (2), we can get that [Tx1Sy1, Tx2Sy2, . . .
, TxkSyk, Tx(k+1)Sy(k+1)] and its topological sorting produce
the same results. So for n = k + 1, the theorem still holds.
Therefore, Theorem 1 is proved.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 417

	Introduction
	Background
	Approach
	Statement-Dependency Graph
	SQL-Level Instrumentation
	Transactional Oracle Construction

	Implementation
	Evaluation
	Bug Detection
	Comparison with State of the Art
	Design Choice Analysis

	Discussion
	Related Work
	Conclusion
	Definition for statement dependencies
	Proof related to SQL-level instrumentation
	Proof for Theorem 1

