
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Relational Debugging — Pinpointing Root Causes
of Performance Problems

Xiang (Jenny) Ren, Sitao Wang, Zhuqi Jin, David Lion, and Adrian Chiu,
University of Toronto; Tianyin Xu, University of Illinois at Urbana-Champaign;

Ding Yuan, University of Toronto

https://www.usenix.org/conference/osdi23/presentation/ren

Relational Debugging
— Pinpointing Root Causes of Performance Problems

Xiang (Jenny) Ren1, Sitao Wang1, Zhuqi Jin1, David Lion1, Adrian Chiu1, Tianyin Xu2, and Ding Yuan1

1University of Toronto
2University of Illinois at Urbana-Champaign

Abstract
Performance debugging is notoriously elusive—real-world
performance problems are rarely clear-cut failures, but man-
ifest through the accumulation of fine-grained symptoms.
Oftentimes, it is challenging to determine performance
anomalies—absolute measures are unreliable, as system per-
formance is inherently relative to workloads. Existing tech-
niques focus on identifying absolute predicates that deviate
between executions, which limits their application to perfor-
mance problems.

This paper introduces relational debugging, a new tech-
nique that automatically pinpoints the root causes of perfor-
mance problems. The core idea is to capture and reason about
relations between fine-grained runtime events. We show that
relations provide immense utilities to explain performance
anomalies and locate root causes. Relational debugging is
highly effective with a minimal two executions (a good and a
bad run), eliminating the pain point of producing and labeling
many different executions required by traditional techniques.

We realize relational debugging by developing a practical
tool named Perspect. Perspect directly operates on x86 bi-
naries to accommodate real-world diagnosis scenarios. We
evaluate Perspect on twelve challenging performance issues
with various symptoms in Go runtime, MongoDB, Redis, and
Coreutils. Perspect accurately located (or excluded) the root
causes of these issues. In particular, we used Perspect to di-
agnose two open bugs, where developers failed to find root
causes—the root causes reported by Perspect were confirmed
by developers. A controlled user study shows that Perspect
can speed up debugging by at least 10.87 times.

1 Introduction
Performance makes or breaks a software system: severe per-
formance problems lead to unresponsiveness and even mal-
functions; even seemingly-small performance degradations
can incur high costs—a half-second search delay reduces
Google’s revenue by 20% [33]. Therefore, it is crucial to
diagnose performance problems in a timely manner.

Performance debugging is known to be elusive and difficult.
Unlike functional failures with clear-cut symptoms, such as

crashes and runtime exceptions, performance problems are
typically observed via the cumulative effect of fine-grained
symptoms over time, such as latency increases due to regres-
sions of code efficiency and resource overuse due to leaks.
While fine-grained symptoms can potentially be identified by
profilers [9, 10, 12, 13, 19], profiling alone cannot explain a
performance anomaly—not every local symptom is related to
the anomaly. Causality analysis [34, 37, 42] captures runtime
events that are causally related to the symptoms, but it does
not pinpoint the root causes in the code; the causality graph
can be complex to navigate and analyze. In fact, it can be
even challenging to determine whether or not the observed
is performance an anomaly, because absolute measures are
unreliable—system performance is inherently relative to in-
puts and workloads.

Existing performance diagnosis techniques target specific
types of root causes and thus are limited when applied to many
challenging performance problems. For example, X-ray [15]
diagnoses performance anomalies due to unexpected inputs
or configuration values by summarizing performance impact
of each input/configuration value; however, as a tool designed
for end users, X-ray does not address problems rooted in the
source code. Statistical debugging [24, 26, 29, 32, 38] can
address certain types of performance problems which result
in differences in program predicates (e.g., branches and re-
turns) [39]. However, unlike functional failures, many perfor-
mance problems do not cause changes in predicates (e.g., due
to distribution changes in runtime events). Besides, it can be
challenging to design predicates and statistical models in the
first place [39].

This paper introduces relational debugging, a new tech-
nique that automatically pinpoints the root causes of perfor-
mance problems. The core idea is to capture relations be-
tween fine-grained runtime events. We show that relations
provide immense utilities to explain performance anomalies
and locate root causes. Relational debugging analogizes per-
formance problems to relative motion in physics—just like the
speed of an object is a relative measure depending on the ref-
erence frame, so is performance when viewed from different
runtime events during program execution. Root causes of per-
formance problems can be revealed by analyzing changes of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 65

relative measures of these events (i.e., their relations) between
a good run and a bad run (with performance anomalies).

Consider a real-world performance issue (see §2.1), where
the developer observes an abnormal increase in memory con-
sumption by a server application. Potential root causes can
be: 1) an influx of more requests (in which consuming more
memory is normal), 2) each request allocating more memory
(indicating regression of code efficiency), and 3) allocated
memory not being reclaimed (indicating memory leaks). Each
of these hypotheses can be expressed as a relation (a measure
relative to an event): 1) the number of requests relative to each
time epoch, 2) the amount of memory allocated relative to
each request, 3) the amount of memory reclaimed relative to
each request. Relational debugging verifies the hypotheses by
comparing the three relations in executions with and without
the observed performance anomaly. In this example, 1) and
2) are the same, while 3) decreases significantly, suggesting
memory leaks. Relational debugging further pinpoints the root
cause of the memory leak by analyzing fine-grained relations.
It finds that relative to all memory objects not reclaimed by the
garbage collector (GC), many more are unreachable by point-
ers in the abnormal execution than the normal execution—a
bug in the GC mistakenly treats constant values as pointers.

Relational debugging is highly effective with a minimal
two executions (a good and a bad), eliminating the pain point
of producing and labeling many different executions required
by traditional statistical techniques [24,26,29,32,38,39]. No-
tably, relational debugging utilizes the repetitiveness of perfor-
mance symptoms which accumulate during the execution—a
single execution offers a large sample of normal or abnor-
mal patterns. Relational debugging is generic to performance
problems with different types of root causes, including inef-
ficient code, misconfigurations, and workload changes, etc.
Moreover, relations can describe different types of symptoms
such as slowdowns and memory overuse.

We realize relational debugging by developing a practi-
cal tool named Perspect. Perspect is fully automatic; it does
not require manual instrumentations or annotations. Perspect
takes the symptoms (such as a program counter that indicates
excessive memory usage or a function with abnormal execu-
tion time) as inputs. It outputs the relations that are 1) causally
relevant to the symptoms and 2) have significant impacts on
the performance measures of the symptom; such relations de-
scribe the root causes of the performance problems. Perspect
directly operates on x86 binaries to accommodate real-world
diagnosis scenarios (e.g., when the binary build is nontrivial),
and can tolerate small differences in the binaries.

Perspect focuses on capturing a small set of relations that
can pinpoint the root cause. Instead of tracking all possible
relations of every runtime event, Perspect reduces the search
space by identifying runtime events that are causally related
to the symptoms through control or data flow. Perspect then
filters out relations that are not changed between the good
and bad executions. For relations that are changed between

the executions, Perspect automatically differentiates between
relation changes that reflect the effect (e.g., a decrease of re-
claimed memory relative to each request), and changes that
reflect the cause (e.g., an increase in objects not referred by
real pointers). These strategies effectively filter out most of
the irrelevant relations, with the remaining relations being
root cause candidates. Lastly, Perspect ranks root-cause rela-
tions based on their impacts on performance measures of the
observed symptom, and outputs them in descending order.

Perspect is carefully implemented so its analysis is both
precise and scalable to real complex systems. It has an effi-
cient algorithm that computes all the relations by traversing
the dependency graph only once. In addition, it distributes
the precise but expensive data-flow dependency analysis onto
different servers. Finally, Perspect is able to handle the differ-
ence between two different versions of the binary executables.

We evaluate Perspect on twelve real-world performance
issues from complex systems (Go runtime, MongoDB, Re-
dis, and Coreutils), covering different symptoms (slowdown
and memory overuse). Perspect effectively locates the root
causes of these challenging issues. Notably, we applied Per-
spect to two open issues where developers failed to find the
root causes; Perspect successfully located the root causes of
both issues which are confirmed by the developers. For an
issue where the root cause is located outside the target pro-
gram (in the OS kernel), which took developers a long time
to debug, Perspect correctly excluded the root cause from
the application code, since it detects no significant relation
changes.

In summary, this paper makes the following contributions:

• We present relational debugging, a new technique that ana-
lyzes the relations between causally related events, seizing
the essence of performance debugging.

• We build Perspect, a practical tool that realizes relational
debugging for large, complex real-world systems. Perspect
directly operates on x86 binaries and accommodates real-
world diagnosis/debugging scenarios.

• We show that Perspect can effectively locate the root causes
of real performance problems, and can help resolve two
previously unresolved issues. The source code of Perspect
and the dataset are available at https://gitlab.dsrg.
utoronto.ca/dsrg/perspect.

2 Relational Debugging by Examples
We use two real-world examples to show how relational de-
bugging locates the root causes of challenging performance
problems in complex software systems. Both problems are
among the most challenging performance issues faced by
developers, who were unable to locate the root causes with
existing tools. Specifically, the Go runtime bug (§2.1) took
a year of investigation, and the MongoDB bug (§2.2) is an
open issue that developers failed to diagnose. Perspect auto-
matically pinpoints the root causes in the form of relations.

66 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gitlab.dsrg.utoronto.ca/dsrg/perspect
https://gitlab.dsrg.utoronto.ca/dsrg/perspect

2.1 Go-909: A Memory Leak
Go-909 is among the most famous performance bugs in the
Go runtime. The developers reported that “garbage collection
is ineffective on 32-bit” systems, causing workloads to run
out of memory [2]. The same bug resulted in 9 other tickets
(which turned out to have the same root cause) and at least 2
extensive discussion threads on Golang’s email list.The bug
was also discussed in Hacker News with 147 comments [4].

2.1.1 Challenges of Debugging Go-909
Debugging Go-909 was very challenging not only for appli-
cation developers but also for developers of the Go runtime.
During the course, many wrong hypotheses, some of which
were wildly off, were developed. For example, a developer
believed that the bug was caused by the Go runtime forgetting
to munmap freed memory [1]. There are at least three other
bugs, of which developers could not agree on the root cause,
that were eventually attributed to Go-909. After more than a
year of investigations, the root cause was discovered through
a trial-and-error process: the bug can be worked around by
commenting out specific packages that contain a lot of static
constants.

Existing performance debugging techniques can hardly ad-
dress Go-909. First, Go-909 does not always cause a clear-cut
out-of-memory error; in fact, many developers reported the
bug simply after noticing their programs using more memory
than expected [1, 3]. Moreover, since the root cause is not in
program inputs, isolating faulty inputs using X-ray [15] or
delta debugging [48] does not help. The root cause also can
hardly be revealed by statistical debugging [32,39], because it
does not manifest in any abnormal predicates such as branch
targets, unexpected return values, or scalar-pairs [39]. In fact,
the memory leak also occurred in the reference executions
(64-bit systems), only affecting many fewer objects.

2.1.2 Root Cause
Figure 1 shows the simplified code snippet in the
buggy version of the Go runtime. Go programs invoke
runtime.malloc to allocate memory and the Go runtime
uses a mark-and-sweep garbage collector (GC). Once an
object is allocated (L2), runtime.malloc increments the
heap_size counter (L3).

The mark function looks for objects that are reachable
through variables on the stack and in the data segments. Un-
marked objects will later be reclaimed by sweep. During the
stack scan, mark takes the pointer to the start of the stack and
data segments (b), as well as the size of the respective regions
(n). For every word on the stack and data segments, it initially
assumes it to be a pointer and checks whether it points to an
address inside the heap’s range (L15). If so, mark sets the
“marked” bit in the metadata of the object (L18–19). Then,
mark uses an iterative worklist w to further scan the memory
based on the marked pointers. Later, sweep goes through each
span, a memory region containing same-sized blocks. The

1 void* runtime.malloc(unintptr size, ...) {
2 void *p = runtime.Alloc(...);
3 heap_size += size;
4 uintptr bits = get_metadata(p);
5 ...
6 set_metadata(p, bits);
7 return p;

8 }

9 // Mark objects reached by pointers
10 static void mark(byte *b, int64 n) {
11 void **w = get_buffer_head();
12 while(b != nil) { ...
13 for(i = 0; i < n; i++) {
14 byte *p = (byte*)b[i];
15 if(p < HEAD_START || p >= HEAD_USED)
16 continue;
17 uintptr bits = get_metadata(p);
18 bits |= BIT_MARKED; /* set mark bits */
19 set_metadata(p, bits);
20 *w++ = p;
21 }
22 b = *--w;
23 n = get_size(b);
24 }
25 }

26 // Reclaim unreachable objects
27 static void sweep(void) {
28 uintptr size = getsize(span);
29 for(byte *p = span->start; ... p += size) {
30 uintptr bits = get_metadata(p);
31 if((bits & BIT_MARKED) != 0) {
32 bits &= ~BIT_MARKED; /* clear mark bit */
33 continue;
34 }
35 set_metadata(p, bits);
36 runtime.Free(p, size, ...);
37 heap_size -= size;
38 }
39 }

./Perspect run_64 run_32
run_64: R<(L7|L18) = 0.99 // 64-bit (good run)
run_32: R<(L7|L18) = 0.01 // 32-bit (bad run)

GC
log

GC
log

heap_size
is logged

heap_size
is logged

Figure 1: Code snippets showing how Perspect locates the
root causes of Go-909 by pinpointing the changed relation
between L7 and L18 by comparing the two runs.

loop at L29 goes through each block, checks if the marked bit
is set, and if so, clears the mark bit (L32) and continue on to
the next block. Otherwise, it frees the object and decrements
the heap size (L37).

The implementation of mark suffers from fake pointers—
non-pointer variables that happen to have values within the
range of HEAP_START and HEAP_USED (L15). The objects
pointed to by those variables will not be reclaimed. 1 The
defect affects both 32- and 64-bit systems; however, fake
pointers occur orders of magnitude more frequently in 32-bit
systems than 64-bit systems due to data layouts differences.

1This is a known side effect of using a conservative garbage collector.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 67

2.1.3 Relational Debugging Go-909
Perspect takes as inputs a good run (which uses the 32-bit
Go runtime) and a bad run (which uses the 64-bit Go run-
time) of the Go program provided by the bug reporter, as well
as the symptom. Since the bug manifests in abnormal heap
sizes in the GC log, we (users) feed Perspect the heap_size
variable which records the heap size value printed in the log.
Perspect identifies the instructions that modify heap_size ,
i.e., L3 and L37 in the code of Figure 1, and Perspect treats
these instructions as symptom instructions. Perspect will
not only analyze what causes these symptom instructions to
execute, but also what prevents these symptom instructions
from executing; To do this, Perspect also identifies “negation”
symptoms which are instructions that directly prevent a symp-
tom instruction from executing, for example, L18, because
each time L18 executes which marks and object, it directly
prevents an instance of L37 which reclaims the object.

Perspect carries out relational debugging starting from in-
structions that directly determine the heap_size (L3, L37,
and L18). It builds relations between symptom instructions
and their causal predecessors. In this case, Perspect efficiently
locates the root cause to a single relation (see Table 1 for
notations):

R◂(L7malloc.return ∣ L18mark)

On 64-bit systems, the relation is expected to be 1 ∶ 1, in-
dicating that for every marked object on L18, there exists
a dependency on a pointer returned by malloc. Yet, on 32-
bit systems, the relation drops to 1 ∶ 0.01, i.e., only 1% of
the marked objects have a pointer returned by malloc. The
remainings are pointed to by fake pointers (constant values).

Note that the 1 ∶ 1 relation in the reference run on 64-bit
systems is not an invariant. Precisely, Perspect observed the
relation to be 1 ∶ 0.99, i.e., 99% of the marked objects are
pointed to by a pointer returned by malloc. This is because
the defect still exists in 64-bit systems, but only affecting 1%
of the objects in the reference run.

R◂(L7|L18) is not the only relation built by Perspect. Tak-
ing L18 as an example, Perspect builds four relations w.r.t
L18’s causal predecessors L1 and L10:
• R ◂ (L1∣L18): the distribution of the number of marked

objects that depend on malloc;
• R▸(L18∣L1): the distribution of the number of times an

object (still reachable by real pointers) gets marked;
• R◂(L10∣L18): the distribution of the number of marked

objects that depend on mark;
• R▸ (L18∣L10): the distribution of the number of objects

marked per mark call;

Perspect filters out R▸(L18∣L1) because the distribution
of the lifetimes of objects reachable by real pointers do not
change significantly between the good and bad run; and Per-
spect filters out R◂(L10∣L18) because each marked object
always depend on one invocation of mark. R▸(L18∣L10) is

Ln An static instruction at line n
eLni The i-th instance of Ln in the execution
S A symptom instruction
eSi A symptom event
P A static insn. & causal predecessor of S
P+ A static insn. & direct causal successor of P
R▸(S∣P) A forward relation between P and S
R◂(P∣S) A backward relation between P and S
R◂▸(P,S) A pair of forward and backward relations
R?(P,S) A relation btw. P and S of unspecified direction

Table 1: Notations for relations.

changed across the runs, because fake pointers causes many
more objects to be marked during each mark call in the bad
run, but Perspect also excludes it because relational debug-
ging recognizes that the relation only reflects the effect of the
root cause, but is not the root cause. Finally, for R◂(L1∣L18),
Perspect refines it to the most specific variant, R◂(L7∣L18).
The other relations (e.g., those w.r.t symptom instructions
at L3 and L37) are handled in similar ways, and eventually
filtered out. We discuss Perspect’s filtering and refinement
techniques in §3.3.

2.2 MongoDB-57221: A Slowdown
“[Perspect’s result] ties all the pieces together into a nice
explanation. That explanation being, having some unnec-
essary cursors simply open on failed plans isn’t strictly the
problem. It’s that we’re paying the (also unnecessary) cost
to reposition them after every delete + restore.”
—MongoDB developer’s comment on Perspect’s result.

MongoDB-57221 is an open bug which developers were
unable to diagnose. It is triggered by executing a query that
deletes all the records in the table. The query could slow down
by 5x on the buggy version. During the deletion, MongoDB
uses a cursor, i.e., a pointer to a record in the table that indi-
cates the current position, to locate each record. It advances
the cursor to the next record after deleting the previous one;
this process is known as cursor restoration.

This bug is caused by maintaining unnecessary cursors on
multiple query plans. Before the query execution, MongoDB
generates multiple query plans, performs a sandboxed trial of
these plans, and chooses the best-performing plan. Different
query plans use different indexes, thereby deleting records in
different orders. The actual order of the deletion is determined
by the index of the winning plan. However, MongoDB still
keeps the rejected plans and their cursors. More importantly,
it restores the cursor of each rejected plan following the same
order as the winning plan. Whereas for the winning plan,
restoring the cursor means simply moving to the next position,
for the losing plan, restoring the cursor requires traversing
through many already deleted records. And if the number of
deleted records encountered exceeds a threshold, it flags the
page for eviction. The increase in unnecessary evictions leads
to the slowdown.

68 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Developers were unable to understand the root cause of
this bug, despite them quickly identifying evictions being the
bottleneck based on profiling and being aware of the existence
of multiple query plans. However, they could not explain why
excessive evictions occurred, because they could not establish
the causal link between evictions and the cursor restoration of
the rejected plans. This led to rounds of ping-pongs between
the Storage Engine team (responsible for the eviction) and the
Query Execution team (responsible for maintaining multiple
plans). The storage team suspected that the slowdown was
caused by maintaining multiple plans, but the query execution
developers believed that it was cheap to keep multiple plans
around. And they further suspected that the slowdown was
caused by the threshold misconfiguration that triggered the
eviction. In the end, seven different developers actively dis-
cussed this issue for over a month. The JIRA discussion has
over 3,000 words in 18 comments, with multiple rounds of
reproduction and profiling with multiple screenshots posted.
And the two teams had multiple off-line teleconference dis-
cussions. Still, they were unsure why the slowdown occurred.

Perspect pinpoints the root cause and explains the slow-
down. It captures that the costly evictions are causally depen-
dent on the restoration of multiple cursors. Figure 2 displays
a simplified version of static dependency graph for eviction.
Starting from eviction as the symptom, Perspect returns
the root cause candidate: (1) R▸(cursor_search | restore),
where restore invokes cursor_search once in the good
run to restore one cursor, but twice in the bad run to restore
two cursors. Perspect infers that restoring an additional cursor
causes a significant increase in evictions in the bad run.

Moreover, Perspect specifically infers that during cur-
sor restoration, additional traversals through dead records
increased evictions. It returns (2) R ◂ ▸(eviction |
search_forward) as a new pair of relations unique to the
bad run: search_forward is invoked by cursor_search
to search for the next cursor position by traversing forward
in the records. In the good run, search_forward almost al-
ways locates the next cursor position immediately, triggering
no evictions; whereas in the bad run, search_forward tra-
verses through many dead records and triggers additional
evictions. Perspect also returns (3) R▸(search_backward
| cursor_search) as a root cause candidate. In the good
run, cursor_search invokes search_backward only 1%
of the time, because search_forward locates the next cur-
sor position most of the time; however, in the bad run,
cursor_search invokes search_backward half of the time.
The increased searches lead to additional evictions.

3 Perspect
Generally speaking, debugging a performance problem takes
three steps: 1) observing symptom(s), 2) capturing runtime
events that are causally related to the symptom(s), and 3)
locating the root cause. Perspect automates the last two steps,
taking the symptoms as its inputs. Perspect supports different

restore cursor_search

search_backward

eviction

search_forward

Figure 2: A simplified version of the static dependency
graph for eviction. Each edge with a single arrow repre-
sents a dependency. An edge with a double arrow repre-
sents a backedge in a loop. restore loops through ev-
ery cursor and restores each by invoking cursor_search.
cursor_search then invokes search_forward which looks
for the next record by iterating forward. If search_forward
returns without locating the next record, cursor_search
will then invoke search_backward. If search_backward
or search_forward encounters too many dead records, it
will trigger eviction.

Ranked list
Relation 1
Relation 2
Relation 3

...
Relation n

./good_run

./bad_run

insn 1
insn 2
insn 3
...

insn m

Dyninst

PINRR

Static
causality
analysis

Dynamic
causality
analysis

Relational
debugger
Compute

Filter

Refine

Input Output
Perspect

Sy
m
pt
om

Figure 3: An overview of Perspect’s workflow

forms of symptoms, including: program variables that record
the symptoms (e.g., heap_size in Go-909), slow functions
(such as eviction in MongoDB-57221), and basic blocks
(captured by profilers like gprof [12]). Perspect automatically
identifies the instructions related to the input symptoms as the
starting points of its analysis (§3.1). Perspect outputs a list
of relations that explain the root cause in descending order
based on their impacts on the observed symptom.

Figure 3 shows the workflow of Perspect. Perspect uses
causality analysis to reduce the search space of relational
debugging to a small set of instructions and their runtime
instances that are causally related to the symptom (see §3.2).
Perspect then performs relational debugging to build relations
with regard to the symptom. It filters out relations that are
irrelevant to the symptom, refines relations to be specific to
the root cause, and ranks relations based on their impacts on
the observed symptom (see §3.3).

3.1 Bootstrapping with Symptoms
Perspect bootstraps itself by identifying the instructions that
reflect the observed symptoms. If the symptom is a per-
formance counter recorded in a program variable (such as
heap_size in Go-909), Perspect identifies the instructions
that use the variable as an operand. If the symptom is a func-
tion or a basic block (typically captured by profilers), Perspect
identifies the first instruction of the function or the first in-
struction in the basic block. Hence, Perspect converts different
types of symptom inputs to unified starting points in the form

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 69

of instructions, termed symptom instructions, denoted as S in
Table 1. A dynamic instance of the symptom instruction is a
symptom event.

Each symptom instruction is assigned a weight. The weight
can be the value of a variable in an instruction, such as size
in L3 or L37 in Go-909 (Figure 1), or the estimated time or
cycles taken by a code block (e.g., eviction).

Perspect also identifies instructions that prevent the occur-
rence of symptoms (i.e., the negation of a symptom) as a
special type of symptom instructions. An example is L18
in Go-909. Perspect searches every conditional branch that
dominates a symptom instruction, which could prevent the
symptom from occurring (e.g., L31 in Go-909 w.r.t L37). It
then identifies the instructions that determine the branch con-
ditions (e.g., L18 in Go-909). In practice, we find it suffices
to only include instructions of negation for the initial symp-
tom instructions. Therefore, in our current implementation,
Perspect does not recursively search for negation symptoms.

3.2 Causality Analysis
Perspect reduces the search space of relational debugging by
restricting the subsequent analysis to a small subset of instruc-
tions and their runtime instances that are causally related to
the symptoms. The high-level idea is to dynamically track
instructions that the symptoms are causally dependent on
through control- and data-flow (aka information flow) during
the execution of the good or bad reproduction runs. Specif-
ically, Perspect generates a dynamic program dependency
graph that contains instances of instructions that the symptom
is causally dependent on.

The causality tracking is done in two phases. Perspect first
generates the static program dependency graph (SDG) [25]
for all the symptom instructions from the program. In the
SDG, a node v is an instruction and an edge (u,v) represents
a causal dependence, either a data dependence (a data value
v depends on) or a control dependence (a control condition
on which v depends on). We call u a causal predecessor
of v and v a causal successor of u. To generate the SDG,
Perspect performs backward causality tracking: it starts from
each symptom instruction (including negation symptoms)
and recursively includes causal predecessor instructions by
tracking control or data flow.

Perspect then automatically instruments the instructions in
the program binary that belong to the SDG; it later generates
dynamic program dependency graphs (DDGs) by running the
program binary and monitoring the execution of each instru-
mented instruction. Different from the SDG, which consists
of static instructions, in a DDG, a node is a runtime event—an
instance of an instruction in the execution. Each instruction
in the SDG can correspond to multiple events in a DDG.
We use eLni to denote an event of the i-th occurrence of the
instruction at line n (i.e., Ln) in the execution (see Table 1).

Section 4 describes the implementation details.

3.3 Relational Debugger
Within the scope of instructions that are causally related to
the symptom(s), Perspect computes the relations between the
symptom instructions and their causal predecessors in the
SDG, based on runtime dependencies derived from the DDGs
(§3.3.1). Perspect only considers relations that are changed
between the good and the bad executions as potential root
causes by filtering out unchanged relations (§3.3.2). Perspect
further refines each relation until it finds the specific relation
that captures a root cause of the change in the number of
symptom events between the good and the bad executions
(§3.3.3). The filtering and refinement steps are iterated repeat-
edly to select a minimal set of relations as the candidates of
the root cause (Figure 3). Lastly, Perspect ranks the root-cause
candidate relations based on their impact on the symptoms
(§3.3.4).

We use Go-909 (Figure 1) as a running example when
explaining the above components.

3.3.1 Computing Relations
For each symptom (including the negative symptoms), Per-
spect computes the relation between an instruction P, which
the symptom depends on causally, and the corresponding
symptom instruction S. Both P and S are nodes in the SDG
generated in §3.2. The relation is computed based on the
DDG (§3.2) which records runtime events of P and S during
the executions. Perspect computes relations for the good run
and the bad run, respectively.

Perspect starts by only considering the relation between
S and the root nodes of the SDG as P. These root nodes are
typically the entry point of a software module and the main

function. It gradually considers other events on the causal
dependency paths between the root node and S using a refine-
ment process described in §3.3.3.

Perspect computes both forward relations and backward
relations. A forward relation is defined as R▸(S∣P) = {ni},
where each element ni in the set, which corresponds to an
instance of instruction P (denoted as ePi) in the DDG, is the
number of causally dependent S instances (eS j, eSk ... eSm)
of ePi. Therefore, a relation can be viewed as a distribution;
We use the mean of the distribution to represent a relation for
simplicity. Here, P can be thought of as serving as a reference
point, and S as the object under observation.

For example, in Go-909, for the symptom instruction
L18mark (marking one object), Perspect constructs a relation
R▸(L18mark∣L1malloc.start), which represents the number of
times each allocated object got marked. If the first allocated
object gets marked (i.e., it results in an instance of L18) but the
second one does not, then R▸(L18mark∣L1malloc.start) would
be {1,0}. In practice, R▸(L18∣L1) has a much larger sample
size, because hundreds of objects are allocated and marked.

A backward relation is defined as R◂(P∣S) = {mi}, where
each element mi, which corresponds to an instance of S in the
DDG (eSi), is the number of causally dependent P instances

70 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(ePi, Pj ... ePk) of eSi. Opposite to a forward relation, for a
backward relation, the symptom serves as the reference point,
and the predecessor as the object under observation.

Regarding the example, R◂(L1malloc.start ∣L18mark), which
contains, for each marked object (L18mark), the number of
causally connected malloc instances (L1malloc.start); each ob-
ject pointed to by real pointers is connected to 1 instance
of L1malloc.start whereas an object pointed to only by fake
pointers is connected to 0 instances.

Note that a backward and forward relation, R◂(P∣S) and
R▸(S∣P), complement each other. A forward relation tells:
“given the same unit of input, is the same number of symptom
events produced?”, whereas a backward relation tells: “given
the same symptom event, is it still produced by the same
units of input?” In Go-909, fake pointers introduce additional
causal paths through which the symptom at L18 (marking one
object) may occur. This is reflected in a change of the back-
ward relation R◂(L1malloc.start ∣L18mark), from 100% to 1%
on average; the forward relation R▸(L18mark∣L1malloc.start),
reflecting the number of times each object (reachable from
real pointers) gets marked, does not change significantly.

3.3.2 Filtering Unchanged Relations

Perspect filters out a relation R?(P,S) if it has not changed
between the executions of the good and bad runs. Perspect
determines if a relation has changed based on its distribution
using the two-sample Kolmogorov-Smirnov test [27], with a
confidence interval of 95%. For example, in Go-909, the rela-
tion R▸(L18mark∣L1malloc.start) does not change, because, for
the objects still reachable from real pointers, the distribution
of object life-spans (the number of times they get marked)
does not change significantly; therefore, Perspect filters out
this relation.

Furthermore, if a relation R?(P,S) is unchanged across two
executions, it implies that the relations between any of P’s
causal successors—Q—and S have not changed. Perspect
skips the computation of these relations. In other words, if
there exists a causal successor Q where R?(Q,S) is changed,
then R?(P,S) would be changed. Intuitively, it means that
the same set of runtime events produces the same symptom
events (forward relation) or the same set of symptom events
is still produced by the same events (backward relation). This
optimization allows us to skip many unnecessary relation
computations.

In Go-909, Perspect filters out most of the relations at this
step, and only keeps three relations (which will be further
refined and filtered in §3.3.3):
• R◂(L1malloc.start ∣L18mark): the number of marked objects

reachable from real pointers decreased;
• R▸(L18mark∣L10mark.start): the number of objects marked

per mark call increased;
• R▸(L37sweep∣L27sweep.start): the number of objects re-

claimed at L37 per sweep call (L27) decreased.

3.3.3 Relation Refinement

Perspect further refines the relations to replace a more “gen-
eral” relation with a more “specific” one. Refinement is anal-
ogous to moving the reference point closer to the object
under observation in relative motion. If a relation R?(P,S)
is deemed refinable, Perspect replaces the relation with its
child relations: R?(P+0 ,S), R?(P+1 ,S) ... R?(P+n ,S), where
{P+0 ,P

+

1 ...P
+

n } are the direct causal successors of P (i.e., chil-
dren of P). Perspect iteratively refines a relation until it is no
longer refinable or can be filtered out by §3.3.2.

Refinement aims to pinpoint the root cause(s). Without
refinement, Perspect only outputs relations between S and
root nodes R in the SDG, where R can be the entry point
of a module or the main function. But the root cause(s) are
often located at events on the causal paths connecting R and
S. Intuitively, the root cause are events which, if executed,
will inevitably cause the performance bug to manifest [50].
The refinement process aims to locate such events.2

We design the following two refinement rules:

Rule 1: A relation R?(P,S) is refinable, if there is no change in
any of the relations between P and its children {P+0 ,P

+

1 ...P
+

n }:
R?(P,P+0), R?(P,P+1), and R?(P,P+n).

Intuitively, this rule says P is not a root cause; the root
cause(s) is located further down the causal paths. Recall that
the root cause(s) are events which, once executed, the perfor-
mance bug will inevitably manifest. But now we have P+ that
occurred after P in both the good and bad run, and R?(P,P+)
does not change. This means that after P executes, the per-
formance bug may still be avoided when P+ executes. So we
should move one step forward on the causal chain to consider
whether P+ is the root cause.

With this rule, Perspect refines R◂(L1malloc.start ∣L18mark)
to R◂(L7malloc.return∣L18mark) in Go-909, because R◂(L1∣L7)
is an invariant that does not change across executions. In the
actual code, the program logic between L1 and L7 is complex;
ruling out L1 and narrowing it down to L7 significantly helps
the developer to understand the root cause.

Figure 4 further shows the sequence of refinements per-
formed on R▸(L37sweep∣L27sweep.start). Based on rule 1
we can refine it twice to R▸(L37∣L31), because neither
R▸(L29∣L27) nor R▸(L31∣L29) changes.

Even if a relation is not deemed refinable by rule 1, we do
not give up—it can still be refined based on rule 2:

Rule 2: Even if there is a change in R?(P,P+i), R?(P,S) is still
refinable if the change in R?(P,P+i) is caused by the change
of R?(P′,P), where P′ is a predecessor of P+ and P′ ≠ P.

Rule 2 differentiates whether a changed relation is a true
root cause, or merely the effect (i.e., manifestation) of the root

2Zhang et al. defines the root cause as the inflection point: if we model
the execution as a sequence of instructions, the inflection point in a failure
execution F is the point of divergence with a non-failure execution N where
N is the non-failure execution that has the longest common prefix with F [50].
Perspect’s refinement essentially locates such inflection points.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 71

L1:malloc()

L5:clear marked

L18:set marked

L31:if (marked)

L32:clear marked

L37:heap_size-=size

L10:mark()

L27:sweep()

L29:for(byte *p=span-> ...)

L37:heap_size-=size

next invocation

R>(L37|L27)

R>(L37|L29)

R>(L37|L31)

R>(L37|L37)

�������

�������

������

�������

Figure 4: An example to illustrate the refinement rules on Go-
909. On the right is (part of) the SDG; a solid edge indicates
a control-flow dependency, whereas dotted edges represent
dataflow dependencies.

cause. In the former case, we should not be able to find such
a P′, whereas in the latter case, we can.

Specifically, we consider two cases in our implementation.
The first is when P is a branch instruction, P+ is an instruction
in the branch target, and P′ is the dataflow direct predecessor
of P that defines the branch condition variable. In this case, the
change in R▸(P+∣P) is the effect of the change of R◂(P′∣P),
which affects the branch direction.

Consider R▸(L37sweep∣L31sweep.test). Here, P and P+ are
L31 and L37, respectively. This relation decreased in the bad
run since fewer objects are deemed reclaimable by L31, and
is therefore no longer refinable according to Rule 1, as illus-
trated by Figure 4. However, L31’s direct dataflow predeces-
sors include L18, which sets the mark bit (L18 is the P′ in
this case). The decrease in R▸(L37∣L31) is merely caused
by the increase in R◂(L18∣L31), i.e., more objects are being
marked at L18 before L31 checks the marked bit. Therefore,
according to Rule 2, R▸(L37∣L31) is still refinable, and we
refine it to R▸(L37∣L37) (because L37 is L31’s direct succes-
sor). It can be subsequently filtered based on §3.3.2 since a
relation between two identical events doesn’t change between
runs.This is shown in Figure 4.

Note that we do not need to compute relations on this newly
discovered P′ separately, because our algorithm guarantees
that this relation is computed through other causal paths from
the root. For example, after Perspect found L18 is the P′ in
the above example, it does not go on to compute relations
between L18 and its predecessors, because these relations are
already computed through the causal path starting from mark.

The second case involves loops, when P+ is a loop head and
P′ is the loop tail. Consider R▸(L12mark.loop∣L10mark.start). In
this case, P is L10 and P+ is L12 (which is a loop head). This
relation increased in the bad run because more objects are
getting marked. However, this is caused by L12’s backedge
from L24 (loop tail, which is P′) executing more often, i.e.,
R▸(L24∣L10) also increased by the same amount.

As a result, even though R▸(L12mark.loop∣L10mark.start)
has changed, R▸(L18mark∣L10) can be further refined to
R▸(L18∣L12). Eventually, R▸(L18∣L12) will be filtered out
because by further analyzing the dataflow predecessor of L12
under Rule 2, Perspect finds that the number of times L12 ex-
ecutes is controlled by the size of w, which in turn is dataflow-
dependent on L18 itself (i.e., each time an object is marked,
it is pushed onto the queue w and popped from the queue
later into b so mark can further scan the content of the object
for more pointers). So the relation is refined to R▸(L18∣L18)
eventually.

By applying the two refinement rules iteratively,
Perspect filters both R▸(L37sweep∣L27sweep.start) and R ▸
(L18mark∣L10mark.start). Therefore, Perspect only reports
one relation at the end of the filter-refine iterations:
R◂(L7malloc.return∣L18mark).

3.3.4 Ranking Root-Cause Candidates

After the iterative compute-filter-refine process, the remaining
relations are the ones that have not been filtered and are not
refinable anymore. We call them root cause candidates.

Perspect ranks the root-cause candidates based on their
estimated contributions to performance, in terms of the dif-
ference in performance relative to the predecessor P. Specif-
ically, for a forward relation R▸(S∣P) = {ni}, where each ni
is the number of symptom instances that causally depend on
ePi (the i-th instance of P), Perspect computes a weighted
sum: ∑wi × ni, where wi is the average weight of the ni
symptom events; ∑w′i ×n′i is the weighted sum for the good
run. Then the contribution to performance is estimated by
∑wi×ni−(∑w′i ×n′i)×

cP
c′P

, where cP and c′P are the number
of times P occurred in the bad and good run, respectively.
Note that Perspect normalizes ∑w′i ×n′i with cP/c′P to obtain
the performance relative to P in scenarios where the number
of times P occurred has changed between the executions. (Say
the change in P’s occurrences is caused by relation R▸(S∣P′),
where P′ is a predecessor of P, the normalization helps cor-
rectly attribute performance impact between R▸(S∣P) and
R▸(S∣P′).)

In a backward relation R◂(P∣S) = {mi}, Perspect computes
weighted sums: ∑wi, ∑w j where wi is the weight of the i-th
instance of the symptom, and w j is the weight of the j-th in-
stance of P that can reach a symptom event; And ∑w′i , ∑w′j
are the weighted sums for the good run. Then the contribu-
tion to performance is estimated by∑wi−∑w j/(∑w′i/∑w′j),
where∑w j/(∑w′i/∑w′j) estimates the total number of symp-
tom events, had the same number of symptom events been
reachable from P instances in the good run; This formula also
handles when the total number of reachable P instances from
the symptom differs in the two executions. If the symptom has
a negative polarity, as in the case of L37sweep, which reduces
the heap size as opposed to increasing it, Perspect multiplies
its performance impact with −1.

72 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Implementation
Perspect is implemented in 10,199 lines of C++ and 14,006
lines of Python. It is built on top of three tools, Dyninst [8]
(a binary-level static analysis tool), RR [7] (a deterministic
record-and-replay tool), and PIN [11] (a binary instrumenta-
tion tool). Perspect operates on application binaries directly.

A key challenge in our implementation is to scale Perspect
to the real, complex systems software. This section describes
a number of techniques we use for scalability.

4.1 Building Static Dependency Graph (SDG)
Perspect generates the SDG by recursively identifying instruc-
tions that are causal predecessors of the symptom instructions
via control and data flow. (Figure 4 shows a snippet of the
SDG on Go-909.) This is done by three components: 1) a
static analysis (SA) process running Dyninst, 2) 64 dynamic
dataflow analysis (DDA) processes running RR (across 4
servers), and 3) a controller. These components form a dis-
tributed system that parallelizes computation to scale to real-
world systems.

The SA process iteratively infers the instructions on which
the symptom instruction S is control-flow dependent. It ana-
lyzes the control-flow graph provided by Dyninst, and only
keeps those instructions that S actually depends on. This anal-
ysis is first performed in the function (f) that contains S; it is
then repeated iteratively in the caller functions by tracing the
call-sites starting from f.

To obtain dataflow dependencies, Perspect uses a combi-
nation of static and dynamic analysis. Perspect only uses
Dyninst to obtain the dataflow dependencies of local vari-
ables stored in registers or on the stack with static offsets.
On the other hand, when a variable is read from other mem-
ory locations, i.e. the heap or stack locations with non-static
offsets, Perspect does not analyze them statically through
pointer analysis, because precise pointer analysis can be hard
to scale [31]. Instead, Perspect uses the DDA processes to
dynamically identify such data dependencies in parallel.

For example, say S is dominated by an if statement: if
(*p || *q); at this point, Perspect needs to infer the dataflow
of both *p and *p, and Dyninst cannot infer the source of
the dataflow precisely. Therefore, the SA process sends this
request to the controller, which forwards it to a (pre-forked)
DDA process to run the RR-guided reproduction. The DDA
process first sets breakpoints at the if statement to deter-
mine the addresses of *p and *q. It then sets watchpoints at
these two addresses and re-run the RR-guided reproduction.
3 (Since execution through RR is deterministic, addresses
stay the same across multiple runs.) And via the watchpoints,
Perspect locates the store instructions that defined *p and *q.
The DDA process then sends these newly located store in-

3 If a breakpoint or watchpoint is not hit in the RR-guided reproduction,
Perspect will deem them causally irrelevant to the symptom events and ignore
them.

eL15
0

eL18
0

eL15
1

eL18
1

eL10
0

eL12
0

eL1
0

eL7
0

{eL18
0
} {eL18

1
}

{eL18
0
}

{eL18
0
,eL18

1
}

{eL18
1
}

{eL18
0
,eL18

1
}

{eL18
0
}

{eL18
0
}

Figure 5: A simplified version of the Dynamic Dependency
Graph (DDG) for the symptom instruction at L18 from Go-
909. The red colour represents the malloc function, and the
grey colour represents the mark function. Solid and dotted
edges represent control and data flow. The set next to each
event is the S-set.

structions back to the SA process (via the controller). This
causes the SA process to restart the analysis with these two
instructions as the new starting points.

In practice, the SA is orders of magnitude faster than the
DDA. Yet, the DDA can be parallelized: for example, the
analysis of the dataflow source of *p and *q can be done in
parallel. We create 64 DDA processes, each of which can set
at most 4 watchpoints in each run (limited by the number of
hardware watchpoints).

4.2 Building Relations
Once the SDG is obtained, Perspect instruments the program
at each instruction in the SDG using PIN, and runs the in-
strumented program to obtain a trace of the good and the bad
run, respectively. Perspect builds one DDG for each unique
symptom instruction. Each vertex in the DDG is an event,
and an edge is a control- or data-flow dependency. Figure 5
shows a simplified version of the DDG for the symptom in-
struction at L18 from Go-909. There are two objects in the
DDG: The first one is reachable from a real-pointer, which
means it’s dependent on malloc (eL10,eL70), and the object
gets marked (eL100,eL120,eL150,eL180). The second object
is from a fake pointer; it also gets marked once in the same
loop iteration as the first object (eL100,eL120,eL151,eL181),
but has no dependencies on malloc.

Instead of traversing the DDG each time it needs to com-
pute a relation, Perspect only carries out a one-pass traversal
of the DDG to compute all the forward and backward rela-
tions. To compute forward relations, each node in the DDG
keeps an S-set, which is the set of all unique reachable symp-
tom events. We initialize the S-set of the symptom nodes
to the symptom event itself. In Figure 5, eL180 and eL181’s
S-sets are initialized with themselves. Perspect then traverses
the DDG in post-order to iteratively compute the S-sets. For
each node N, its S-set is the union of the S-sets of all its chil-
dren nodes. (Post-order traversal guarantees that N’s children
are visited before N.) But keeping the S-set of each node
consumes too much memory. As an optimization, we replace

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 73

node N’s S-set with its cardinality (i.e., number of elements
or ∣S − set ∣) as soon as its S-set is propagated to all of N’s
parent nodes. For a forward relation R▸(S∣P) = {ni}, each ni
is simply the ∣S − set ∣ of each event of P. For example, in Fig-
ure 5, R▸(L18∣L10) = {2}, where 2 is the ∣S − set ∣ of eL100;
and R▸(L18∣L15) = {1,1}, where the two 1s come from the
∣S − set ∣ of eL180 and eL181.

To compute backward relations, Perspect keeps a hashmap
H for each symptom event. Each H keeps the number of reach-
able predecessor events for every corresponding predecessor
instruction. For example, in Figure 5, Perspect keeps two Hs,
one for eL180 and one for eL181. The H for eL180 contains
5 entries: {L15,L12,L10,L7,L1}, and the count for each key
is 1. H for eL181 only contains 3 entries: {L15,L12,L10},
where the count for each key is also 1. A backward relation
R◂(L1∣L18) is simply the set containing the count kept for
L1 in each H, which is {1,0}.
Optimization: two-phase analysis. As an optimization, we
perform our analysis in two phases. The first phase, or the
“sketch” phase, only performs the analysis on the call graph.
Specifically, each node in the SDG in this phase is a function,
and each edge is a function invocation. The exceptions are
functions that contain the symptom instructions: we directly
connect the symptom instructions to the entry of these func-
tions. We do not perform the expensive data-flow analysis in
the sketch phase. Given this SDG, we build relations using the
same algorithm: first obtain the DDG from the sketch SDG,
and perform the relation analysis on this DDG. So, the P in
the relations R?(P,S) we obtained is a function. For P whose
relation changes, we zoom into P and perform the full data-
and control-flow analysis described in §4.1. This optimization
allows us to avoid the expensive dependency computations
on functions that are not relevant to the root cause; it is par-
ticularly effective in large code bases like MongoDB where
the symptom often has a deep call stack. In practice, this
optimization reduces Perspect’s static analysis time by 10
times.

4.3 Handling Binary Difference
Perspect is able to compare relations generated from different
binaries by matching each binary instruction to its correspond-
ing one in the other binary, or between different binaries gen-
erated from the same source code (i.e., compiled for the 64-
and 32-bit machines). Perspect first performs the source-level
diff to establish the file and line number mapping between
two versions. However, a line in the source code often com-
piles to multiple binary instructions, sometimes even multiple
basic blocks of binary instructions. So we cannot only rely on
source-level line number mapping to map binary instructions.
Instead, for two binary instructions to be considered as the
same between two version, they have to have 1) the mapping
source-level line number, and 2) the same binary basic block
number, assigned according to the postorder traversal of all
the basic blocks of the same source code line, and 3) the same

offset within the basic block. If the instruction is not found at
the same offset, Perspect also searches for nearby instructions.

5 Experimental Evaluation
Perspect’s premise is that relational debugging can automat-
ically and effectively locate the root causes of real-world
performance problems that are hard to diagnose by existing
tools. We validate these hypotheses with three evaluation
questions: 1) Can Perspect effectively locate the root cause of
challenging performance problems? 2) Can Perspect’s output,
in the form of relations, help users understand root causes? 3)
What is the analysis time of Perspect?
• §5.1: Perspect effectively locates root causes of evaluated

performance problems in Go runtime, MongoDB, Redis,
and Coreutils. Perspect also correctly excludes a root cause
from application code when it is in the OS kernel.

• §5.2: The output of Perspect, in the form of relations, can
speed up debugging time by at least 10.87 times.

• §5.3: Perspect diagnoses 10/12 of the issues in 8 minutes
on average, and diagnoses the other two in a few hours.

Target applications and performance problems. We eval-
uate Perspect on twelve real-world performance issues of four
applications: the Go runtime, MongoDB, Redis, and Core-
utils. All three are complex software systems, consisting of
more than 220K, 6,955K, 37K, and 456K lines of code, re-
spectively. The performance problems are collected from the
issue trackers of the target applications, based on keywords
like “performance”, “slow”, “degrade”, etc. Where possible,
we focus on high-priority issues that cannot be simply an-
swered by using a profiler but take significant human time
and effort, as those are the problems that need advanced tools
like Perspect.

We then try to reproduce these issues based on the steps
described in the issue reports. Reproducing performance prob-
lems is nontrivial and time-consuming—many of the issues
are imprecisely described (e.g., no version information or
reproduction steps) and are hard to reproduce. In total, it
took several person-months for us to prepare the dataset. We
realize that our dataset has several “famous” bugs (e.g., Go-
909 in §2) because they have more detailed information for
reproduction.

As shown in Table 2, the twelve issues cover different
symptoms and use cases. In terms of symptoms, nine caused
slowdown; three caused memory overuse, including bloated
heap size and resident set size (the amount of memory used by
the process). There are three different types of performance
baselines: five are from a different version, one from different
hardware architecture, and the other five are from different
inputs. Notably, we evaluated two open issues where devel-
opers were unable to diagnose them (MongoDB-56274 and
-57221).
Inputs. Perspect takes as inputs of the reproduction of the per-
formance problems. We directly used reproduction programs

74 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Issue Description Metric
Succ?

Rank
Abs.
pred.?

Cand.
relns.

SDG
size

DDG
size

G
o

ru
nt

im
e

909 Fake pointers stops GC from freeing dead objects heap Yes 1st No 1 16054 516k
7330 Performance of operator += is worse than single + time Yes 1st Yes 1 26 200k
8832 Hugepage promotion causes memory bloat RSS Partial - - - 3140 6851
11068 Printing is very slow for large Floats time Yes 1st Yes 1 10650 1409k
12228 More aggressive GC degrades performance time Partial - Yes - 9886 39745
13552 Not recycling large stack spans leaks memory RSS Yes 1st No 1 18060 55580

M
on

go 44991 Erroneous cache clear for common prefixed keys time Yes 1st Yes 1 2109 461k
56274 Slow when deleting opposite to search order time Yes 1st No 3 56 6132
57221 Slow due to moving cursor of obsolete query plan time Yes 1st No 3 5100 268k

Redis 7595 performance downgrade after enabling TLS time Yes 1st Yes 1 35 801

C
or

e 930965 seq 84x slower with –equal-width time Yes 1st Yes 1 668 20002
1014738 du –exclude 4x slower when given a trivial string time Yes 1st Yes 1 7563 20784

Table 2: Perspect’s result on 12 real-world performance issues across 4 systems: Go runtime, MongoDB (“Mongo”),
Redis, and Coreutils (“Core”). Mongo-56274 and -57221 are two open bugs. “Metric” shows the type of performance metric
that describes the symptoms. “Succ?” shows whether Perspect successfully locates the root cause. “Rank” shows the ranking of
root-cause relations. “Abs. pred?” tells whether the root-cause relations break any absolute predicates. “Cand. relns.” shows the
number of root-cause candidate relations. Where Perspect returns a pair of forward and backward relations, it is counted as one
root cause candidate. “SDG size” and “DDG size” show the average SDG and DDG size from the good and bad runs, in terms of
the number of instructions and their runtime instances, respectively.

attached in the reports, or created reproductions by closely
following the descriptions in the reports. We find that except
for Go-909, which provided three similar reproductions, all
issues describe at most one good and one bad execution. Per-
spect is able to exploit high repetitiveness of runtime events
within one execution, and works with two executions as is.

5.1 Effectiveness
Table 2 shows the effectiveness of Perspect in diagnosing
the twelve performance bugs. The overall results are very
positive. Perspect successfully locates the root causes for ten
performance problems, and ranks the root-cause relation as
the highest (or the only) suspect. Eight of them are closed
issues and we use the criteria that the reported root cause
has to be captured by the output relations of Perspect. For
the two open bugs, the relations output by Perspect provided
explanations of the root causes that were confirmed by the
developers.

Perspect partially locates the root causes of the other two
issues (Go-8832 and Go-12228). For Go-8832, Perspect cor-
rectly excludes the root cause (which lies in Linux) from
the Go runtime. For Go-12228, the source codes changed
significantly; Perspect is unable to map the relations across
the executions. In this case, Perspect outputs the relations be-
tween the symptoms and causal predecessors so that a human
developer can complete the rest of the debugging process.

As shown in Table 2, Perspect is able to effectively nail
down a very small set of root-cause candidate relations. This
is attributed to its iterative filtering (§3.3.2) and refinement
(§3.3.3); Our experiments confirm that the relations between
most events and their direct successors do not change across

executions. Perspect also filters out most causally related
events with low contributions to the symptoms.

Note that 10/12 of the evaluated issues have no clear-cut
failures—they are reported because the programs ran slower
or consumed more memory than their respective baselines;
the remaining two only occasionally result in out-of-memory
errors (Go-909 and Go-13552). Hence, those issues can hardly
be diagnosed by tools for functional failures. In at least four
issues, the root causes do not manifest in any absolute predi-
cate changes—the relations captured by Perspect show that
the root causes exist in both executions, only their distribu-
tions differ. Lastly, as shown by the sizes of SDGs and DDGs,
there are too many causally related instructions and runtime
events—causality analysis alone can hardly pinpoint the root
cause in code.

We discussed how Perspect locates the root causes of Go-
909 and MongoDB-57221 in §2. We briefly present a few
more.
Mongodb-44991. Mongodb-44991 is major performance
regression introduced in v4.2.1 and took developers several
days to diagnose. Figure 6 shows the simplified code con-
taining the root cause. As a memory optimization, Mongodb
stores key prefixes only once per page [5]; hence, it needs
to decompress a key before evicting it back to disk. If the
same key has been decompressed before, Mongodb copies
the cached data directly (L4) to avoid building the key from
scratch (L6). In v4.2.1, L11 was erroneously added, which
clears the size variable, effectively invalidating cached data
(L4).

Perspect takes the inputs of two executions from the good
version (v4.0.13) and the buggy version (v4.2.1) as reported

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 75

1 void convert(void *key) {...
2 get_key_info(key, &data, &size);
3 if (... && size > 0)
4 memcopy(key, data, size); // fast path
5 else
6 build_key(entry, key); // slow path
7 }

8 void get_key_info(void *key, void *data, int *size) {
9 data = get_data(key);
10 ...
11 size = 0;
12 }

Invalidated the condition of using cached data (fast path);
Erroneously introduced in v4.2.1.

Figure 6: The root cause of MongoDB-44991 (used in §5.2).

in the issue. Perspect locates a pair of relations in the bad run:
R◂▸(L6,L11) and reports it as the highest-ranked root cause.

Go-13552. Developers noticed that the RSS slowly creeped
over to 1GB, even though the actual heap usage stayed below
4MB [6]. Diagnosing this bug took 5 days, and the developers
eliminated several wrong guesses before nailing down the
root cause. First, they had a hard time deciding whether the
problem came from the heap or the stack. Once they focused
on the stack, they further thought that the memory bloat was
due to normal stack spans not being recycled fast enough.
Finally, they found the root cause to be a special type of large
stack spans which were not recycled at all.

Perspect ranks a relation R▸(sysMmap∣allocLarge) the
highest, indicating that the increased mmap allocations are
for large-sized stack spans. This connects the two essential
pieces of information together to pinpoint the bug.

MongoDB-56274 (open issue). MongoDB-56274 is another
open issue we diagnosed using Perspect, and the root cause
has been confirmed by developers. The developers noticed
that deleting records in descending order was twice as slow
as in ascending order. MongoDB deletes records iteratively:
after it deletes the record, it searches for the next record
to delete. The search function has a hard-coded order: it
always looks for the next record in ascending order first
(search_forward); if no record is found, it searches back-
wards in descending order (search_backward). Hence, when
the deletion order is the same as the search order, the next
record is always found immediately; but, when the deletion or-
der is the opposite, MongoDB traverses through many deleted
records, then searches in the opposite direction, causing the
slowdown.

Perspect locates the root cause to the hard-coded
search order logic; In particular, it identifies three
relations that increased significantly in the bad run:
1) R▸(search_backward∣search): in the good run,
search_backward is rarely invoked, as the next record
is always immediately located by search_forward;
2) R▸(prev_record∣search_backward) and 3)
R▸(next_record∣search_forward) indicates increased
number of records traversed in both directions of search.

Go-8832. Developers observed unexpected memory bloat
and mistakenly thought it was caused by bugs from Go’s
GC code. In fact, the root cause was Linux’s promotion of
huge pages in the background, which bloated the resident set
size (RSS) since the distribution of the base 4KB pages was
sparse. The developers spent a lot of time examining incorrect
hypotheses about bugs in the GC logic, making it one of the
most discussed Go performance issues.

While the current implementation of Perspect cannot an-
alyze the OS kernel, it can help rule out wrongly suspected
buggy behaviors of the Go runtime. Specifically, after compar-
ing relations associated with the symptoms mmap and munmap,
Perspect outputs no root cause candidate relations.

5.2 Usability
We evaluated the usability of Perspect with a controlled user
study. We tested on 20 programmers (who are not co-author of
this paper) who indicated extensive experience in debugging
and GDB.

We used Go-909 and MongoDB-44991 in the study to
represent resource issues and slowdowns. Each participant
was asked to debug one case without any help and a different
case with Perspect; so each bug has two controlled groups for
comparison. For each participant, we first described the bugs
and helped reproduce them. We chose one of the two cases
randomly and asked the participant to diagnose it without
Perspect; then for the second case, we introduced relational
debugging and allowed them to use Perspect. We limited the
debugging session to two hours for each bug (not including
setup or reproduction time). If the time was exceeded, we
considered the bug unsolved.

For Go-909, we considered a participant to have caught
the root cause if they concluded that unreachable objects got
marked and prevented reclamations. For MongoDB-44991,
we used the criteria that the participant had to locate the
instruction that clears the size variable eroneously (L11 in
Figure 6).

Our results show that when using Perspect, participants
concluded the root cause at least 10.87 times faster than when
not using Perspect. With the help of Perspect, all participants
successfully located the root causes of both issues, with an
average of 10 minutes; much of the time was spent on navi-
gating code and understanding instructions pointed to by the
relations. Without Perspect, only 5/10 of the participants con-
cluded the root causes within two hours, with an average of
one hour and 47 minutes.

Interestingly, we observed that without Perspect many par-
ticipants had manual practices like relational debugging: they
printed out counters to compare occurrences of functions or
instructions in the good and bad runs, and ruled out ones that
did not change. However, we observed that such manual effort
was neither rigorous nor systematic. For example, for Go-909,
many participants examined if GC happened less often, but
did not realize objects reclaimed per GC cycle changed.

76 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We interviewed participants after the debugging session.
The most overwhelming feedback is that the relation seman-
tic is intuitive and easy to understand. One suggestion is to
visualize SDGs and DDGs alongside the changed relations,
which we consider implementing via GUI support.

5.3 Analysis Time
For the twelve performance issues, Perspect takes an average
of under one hour to output the results. For 10/12 issues, Per-
spect finishes under 20 minutes, with an average of 8 minutes.
The other two take an average of 5.3 hours. Most of the anal-
ysis time was spent on static and dynamic causality analysis
(§3.2); the relational debugger (§3.3) takes a small fraction of
the total analysis time.

Static causality analysis takes 24 minutes on average. It is
bottlenecked by repeatedly invoking RR to build non-local
dataflow dependencies (§4). The worst-case complexity of
static causality analysis is O(n∗m), where n is the number of
dynamic instructions executed during each RR run, and m is
the number of static instructions that are causally related to the
symptom instructions. The two-phase optimization described
in §4.2 reduces m significantly. We can further speed up static
analysis by adding more servers to parallelize the invocation
of RR runs (§4.1).

Dynamic causality analysis is bottlenecked by running the
instrumented program in PIN. It takes on average 35 minutes
across the 12 issues (<20 minutes for 10/12 issues). Perspect
effectively reduces the DDGs’s sizes by sampling one symp-
tom event out of N, while keeping a large number of symptom
events to maintain statistical significance.

In comparison, the relational debugger only takes a small
fraction of the total dynamic analysis time, typically a few
minutes. Reducing the size of the DDG also effectively re-
duces the average complexity of the relational debugger,
which has a worst-case complexity of O(p2), where p is the
number of instructions executed that are causally relevant to
the symptom events.

6 Discussion and Limitations
Relational debugging provides a new way of understanding
performance problems. We find it generally applicable to
many challenging performance problems that do no manifest
via clear-cut predicates. Relational debugging assumes that
the relations in the executions are statistically significant.
It is possible that an execution is too short. On the other
hand, our evaluation shows that the executions based on the
reproduction steps documented in real-world issue reports
are mostly sufficient—there are enough repetitive patterns for
Perspect to be effective. It is straightforward to apply Perspect
to multiple runs if one is too short.

Our current implementation of Perspect shares some lim-
itations of its building blocks. Specifically, Perspect cannot
debug performance problems that are non-deterministic (e.g.,
they depend on the scheduling and timing of events), because

Perspect uses deterministic replay (RR [7]) and its dynamic
instrumentation could change the timing. Please note: this
does not mean that Perspect cannot debug multi-threaded
systems—all the evaluated systems (except Coreutils) are
multi-threaded. In fact, it is reported that the vast majority
(>90%) of real-world performance problems are determinis-
tic [28].

Perspect currently only supports native code. We plan to
implement relational debugging for applications in managed
languages like Java. We believe the implementation can be
built on the JVM Tool Interface. Perspect can be easily ex-
tended to handle additional language constructs like exception
handling etc. 4 We will also explore how to apply relational
debugging to performance problems of distributed systems
by analyzing relations of distributed events. Perspect can be
extended to support metrics such as P95 latency etc. 5

7 Related Work
Performance debugging with Perspect takes three steps: 1)
identifying symptoms, 2) causality analysis, and 3) relational
debugging for automatically pinpointing root causes. We dis-
cuss related work based on the three components.

Automatic performance debugging/diagnosis. The closest
related work (in terms of locating root causes in code) is [39],
which applies statistical debugging [32] to performance prob-
lems. The essential idea of statistical debugging is to identify
predicates that have strong correlations with the failure. How-
ever, as we have shown in this paper, it is fundamentally
limited to performance problems that manifest via absolute
predicates. Moreover, since statistical debugging in [39] does
not take causality into consideration, many of the observed
predicates could be irrelevant to the symptom; To compensate,
it requires a large number of highly variable good and bad
executions. Another related work is X-ray [15] which sum-
marizes performance costs of runtime events and attributes
them to input and configuration values w.r.t the symptom.
Different from Perspect, X-ray is designed for end users (e.g.,
sysadmins) and does not target root causes in the code. X-ray
uses differential performance summarization which identifies
branches where execution paths diverge and reasons about the
performance difference between the two branch outcomes. In
this sense, it also focuses on divergence of predicates between
executions.

There are tools for debugging special types of performance
problems with predefined patterns, such as loops [35, 40, 44],

4 When Perspect detects a symptom instruction is causally related to
an exception handler, it can perform the analysis at instructions that can
potentially throw an exception that is caught by this handler, treating these
instructions as symptom instructions.

5 Instead of calculating weighted sums, Perspect can perform the z-test on
the weight of each symptom event against the distribution of weights of all
symptom events (symptom events with a z-test score of 1.645 corresponds to
the 95th percentile). The rank of each relation can be the number of causally
related outlier symptom events.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 77

memory leaks [41], and data locality [30]. Differently, Per-
spect is designed to be a general debugging/diagnosis tool.

Automatic functional failure debugging/diagnosis. Prior
studies developed techniques to pinpoint the root causes of
functional failures in code, based on invariant analysis [24,26,
38], log analysis [50] and statistical debugging [32]. Perspect
focuses primarily on performance problems which have very
different characteristics from function failures.

Causality analysis. Perspect applies relational debugging to
instructions and their runtime events that are causally related
to the symptoms. Many advanced techniques have been devel-
oped for causality analysis [16,22,29,34,37,42,45–47,49,53].
Perspect can potentially use them to enhance its causality anal-
ysis (§3.2). For example, we can further accelerate the causal-
ity analysis, learning from failure sketching [29], REPT [22]
and ER [53] that use Intel PT to efficiently trace causally
dependent instructions and augment the trace with symbolic
execution [18, 21]. Argus [42] developed a way to annotate
causality graphs with strong and weak edges, which can prior-
itize relational analysis of Perspect. SherLog [45], lprof [52],
and Pensieve [49] show that runtime logs can be used with
static analysis to guide the reconstruction of causal paths.

Our work is complementary to causality analysis for dis-
tributed systems (many targeting performance problems [14,
17, 20, 34, 43, 51]). Relational debugging for distributed sys-
tems based on distributed causality is our future work (§6).

Profilers. Profilers [9, 10, 12, 13, 19, 23, 36] are impor-
tant utilities for performance debugging. Advanced profilers
like [23, 36] can effectively identify true bottlenecks. They
provide effective inputs for Perspect to locate root causes.

8 Conclusion
Debugging performance problems is (still) among the most
challenging, time-consuming tasks. We presented relational
debugging as a new way of understanding performance prob-
lems and locating their root causes in the code. Our key insight
is that the root causes of performance bugs can be generalized
to changes in relations between fine-grained runtime events,
and by using relations, we capture root causes of performance
bug existing semantics (such as invariants or predicates etc.)
fail to capture. We developed Perspect to automate relational
debugging. Perspect takes a minimal of just two executions (a
good and bad run), and pinpoints the root causes of complex
real-world bugs to a small number of root cause relations
using an effective “filter-and-refine” algorithm. We further
demonstrate Perspect’s effectiveness by diagnosing two open
issues which developers were unable to diagnose using exist-
ing tools. Finally, we deploy a number of carefully designed
optimizations to scale Perspect to large-scale code-bases. We
open-sourced Perspect and will continue improving it towards
a common toolkit for performance debugging.

Acknowledgement
We thank our shepherd, Jason Flinn, and the anonymous re-
viewers for their feedback and comments on our work. We
also thank Serguei Makarov for the suggestion to output bi-
nary instead of plain-text PIN logs for optimized performance.
This work was supported by the Canada Research Chair fund,
an NSERC Discovery grant, an NSERC Alliance Mission
grant, and an NSF grant CNS-2130560.

References
[1] Go-1091: runtime: gob leaks memory for larger objects (above

MMAP_THRESHHOLD?). https://github.com/golang/
go/issues/1091, Sept. 2010.

[2] Go-909: runtime: garbage collection ineffective on 32-bit.
https://github.com/golang/go/issues/909, July 2010.

[3] memory leak on 8g. https://github.com/golang/go/
issues/1210, Oct. 2010.

[4] Go: Severe memory problems on 32bit Linux. https://news.
ycombinator.com/item?id=3805302, 2012.

[5] File formats and compression . http://source.wiredtiger.
com/2.3.0/file_formats.html, 2014.

[6] Go-13552: runtime: RSS creeps over 1GB even though heap
is 4MB. https://github.com/golang/go/issues/13552,
2015.

[7] rr: lightweight recording and deterministic debugging. https:
//rr-project.org/, 2017.

[8] Paradyn/Dyninst - Welcome | Putting the Performance in High
Performance Computing. https://www.dyninst.org/,
2021.

[9] perf: Linux profiling with performance counters. https://
perf.wiki.kernel.org/index.php/Main_Page, 2021.

[10] SystemTap. https://sourceware.org/systemtap/, 2021.

[11] Pin: A Dynamic Binary Instrumentation
Tool. https://software.intel.com/
content/www/us/en/develop/articles/
pin-a-dynamic-binary-instrumentation-tool.html,
2022.

[12] The GNU Profiler. https://ftp.gnu.org/old-gnu/
Manuals/gprof-2.9.1/html_mono/gprof.html, 2022.

[13] Valgrind: a memory profiling and debugging tool. https:
//valgrind.org/, 2022.

[14] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance
Debugging for Distributed Systems of Black Boxes. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03) (Oct. 2003).

[15] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-
tomating Root-Cause Diagnosis of Performance Anomalies
in Production Software. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’12) (Oct. 2012).

78 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/golang/go/issues/1091
https://github.com/golang/go/issues/1091
https://github.com/golang/go/issues/909
https://github.com/golang/go/issues/1210
https://github.com/golang/go/issues/1210
https://news.ycombinator.com/item?id=3805302
https://news.ycombinator.com/item?id=3805302
http://source.wiredtiger.com/2.3.0/file_formats.html
http://source.wiredtiger.com/2.3.0/file_formats.html
https://github.com/golang/go/issues/13552
https://rr-project.org/
https://rr-project.org/
https://www.dyninst.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://sourceware.org/systemtap/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org/
https://valgrind.org/

[16] ATTARIYAN, M., AND FLINN, J. Automating Configuration
Troubleshooting with Dynamic Information Flow Analysis.
In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI’10) (Oct. 2010).

[17] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER,
R. Using Magpie for Request Extraction and Workload Mod-
elling. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design and Implementation (OSDI’04)
(Dec. 2004).

[18] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’08) (Dec. 2008).

[19] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL,
A. H. Dynamic Instrumentation of Production Systems. In
Proceedings of the 2004 USENIX Annual Technical Conference
(USENIX ATC’04) (June 2004).

[20] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. The Good, the Bad, and the Differences: Better Network
Diagnostics with Differential Provenance. In Proceedings of
the 2016 ACM SIGCOMM Conference (SIGCOMM’16) (Aug.
2016).

[21] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
Platform for in-Vivo Multi-Path Analysis of Software Systems.
In Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS-XVI) (Mar. 2011).

[22] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,
WANG, R., AND YUN, I. REPT: Reverse Debugging of Fail-
ures in Deployed Software. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’18) (Oct. 2018).

[23] CURTSINGER, C., AND BERGER, E. D. COZ: Finding Code
that Counts with Causal Profiling. In Proceedings of the 25th
ACM Symposium on Operating Systems Principles (SOSP’15)
(Oct. 2015).

[24] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND

NOTKIN, D. Dynamically Discovering Likely Program In-
variants to Support Program Evolution. In Proceedings of
the 21st International Conference on Software Engineering
(ICSE’99) (May 1999).

[25] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D.
The Program Dependence Graph and Its Use in Optimization.
ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319–349.

[26] HANGAL, S., AND LAM, M. S. Tracking Down Software
Bugs Using Automatic Anomaly Detection. In Proceedings
of the 22rd International Conference on Software Engineering
(ICSE’02) (May 2002).

[27] HODGES, J. J. The significance probability of the smirnov
two-sample test. Arkiv fiur Matematik, 3 (1958), 469–486.

[28] JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-
derstanding and Detecting Real-World Performance Bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’12)
(June 2012).

[29] KASIKCI, B., SCHUBERT, B., PEREIRA, C., POKAM, G., AND

CANDEA, G. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-production Failures. In Proceed-
ings of the 25th Symposium on Operating Systems Principles
(SOSP’15) (Oct. 2015).

[30] KHAN, T. A., NEAL, I., POKAM, G., MOZAFARI, B., AND

KASIKCI, B. DMon: Efficient Detection and Correction of
Data Locality Problems Using Selective Profiling. In Proceed-
ings of the 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’21) (July 2021).

[31] LI, Y., TAN, T., MØLLER, A., AND SMARAGDAKIS, Y.
Scalability-First Pointer Analysis with Self-Tuning Context-
Sensitivity. In Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’18)
(Nov. 2018).

[32] LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JOR-
DAN, M. I. Scalable Statistical Bug Isolation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’05) (June 2005).

[33] LINDEN, G. Marissa Mayer at Web 2.0. http://glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.
html, Nov. 2017.

[34] MACE, J., ROELKE, R., AND FONSECA, R. Pivot Tracing: Dy-
namic Causal Monitoring for Distributed Systems. In Proceed-
ings of the 25th Symposium on Operating Systems Principles
(SOSP’15) (Oct. 2015).

[35] NISTOR, A., SONG, L., MARINOV, D., AND LU, S. Toddler:
Detecting Performance Problems via Similar Memory-Access
Patterns. In Proceedings of the 35th International Conference
on Software Engineering (ICSE’13) (May 2013).

[36] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER,
S., AND CHUN, B.-G. Making Sense of Performance in Data
Analytics Frameworks. In Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’15) (May 2015).

[37] RAVINDRANATH, L., PADHYE, J., AGARWAL, S., MAHAJAN,
R., OBERMILLER, I., AND SHAYANDEH, S. AppInsight: Mo-
bile App Performance Monitoring in the Wild. In Proceedings
of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’12) (Oct. 2012).

[38] SAHOO, S. K., CRISWELL, J., GEIGLE, C., AND ADVE, V.
Using Likely Invariants for Automated Software Fault Local-
ization. In Proceedings of the 18th Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’13) (Mar. 2013).

[39] SONG, L., AND LU, S. Statistical Debugging for Real-World
Performance Problems. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA’14) (Oct. 2014).

[40] SONG, L., AND LU, S. Performance Diagnosis for Inefficient
Loops. In Proceedings of the 39th IEEE/ACM International
Conference on Software Engineering (ICSE’17) (May 2017).

[41] VILK, J., AND BERGER, E. D. BLeak: Automatically Debug-
ging Memory Leaks in Web Applications. In Proceedings of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 79

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

the 39th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’18) (June 2018).

[42] WENG, L., HUANG, P., NIEH, J., AND YANG, J. Argus: De-
bugging Performance Issues in Modern Desktop Applications
with Annotated Causal Tracing. In Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC’21) (July
2021).

[43] WU, Y., ZHAO, M., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. Diagnosing Missing Events in Distributed Systems
with Negative Provenance. In Proceedings of the 2014 ACM
SIGCOMM Conference (SIGCOMM’14) (Oct. 2014).

[44] XIAO, X., HAN, S., ZHANG, D., AND XIE, T. Context-
Sensitive Delta Inference for Identifying Workload-Dependent
Performance Bottlenecks. In Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’13)
(July 2013).

[45] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. SherLog: Error Diagnosis by Connecting
Clues from Run-time Logs. In Proceedings of the 15th In-
ternational Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS-XV) (March
2010).

[46] ZAMFIR, C., AND CANDEA, G. Execution Synthesis: A Tech-
nique for Automated Software Debugging. In Proceedings
of the 5th ACM European Conference on Computer Systems
(EuroSys’10) (Apr. 2012).

[47] ZAMFIR, C., KASIKCI, B., KINDER, J., BUGNION, E., AND

CANDEA, G. Automated Debugging for Arbitrarily Long
Executions. In Proceedings of the 14th Workshop on Operating
Systems (HotOS-XIV) (May 2013).

[48] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolat-
ing failure-inducing input. IEEE Trans. Softw. Eng. 28, 2 (Feb.
2002), 183–200.

[49] ZHANG, Y., MAKAROV, S., REN, X., LION, D., AND YUAN,
D. Pensieve: Non-Intrusive Failure Reproduction for Dis-
tributed Systems Using the Event Chaining Approach. In
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP’17) (Oct. 2017).

[50] ZHANG, Y., RODRIGUES, K., LUO, Y., STUMM, M., AND

YUAN, D. The Inflection Point Hypothesis: A Principled
Debugging Approach for Locating the Root Cause of a Failure.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP’19) (Oct. 2019).

[51] ZHAO, X., RODRIGUES, K., LUO, Y., YUAN, D., AND

STUMM, M. Non-intrusive Performance Profiling for Entire
Software Stacks Based on the Flow Reconstruction Principle.
In Proceedings of the 12th Conference on Operating Systems
Design and Implementation (OSDI’16) (Nov. 2016).

[52] ZHAO, X., ZHANG, Y., LION, D., ULLAH, M. F., LUO, Y.,
YUAN, D., AND STUMM, M. Lprof: A Non-intrusive Request
Flow Profiler for Distributed Systems. In Proceedings of the
11th Conference on Operating Systems Design and Implemen-
tation (OSDI’14) (Oct. 2014).

[53] ZUO, G., MA, J., QUINN, A., BHATOTIA, P., FONSECA, P.,
AND KASIKCI, B. Execution Reconstruction: Harnessing Fail-
ure Reoccurrences for Failure Reproduction. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI’21)
(June 2021).

80 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Relational Debugging by Examples
	Go-909: A Memory Leak
	Challenges of Debugging Go-909
	Root Cause
	Relational Debugging Go-909

	MongoDB-57221: A Slowdown

	Perspect
	Bootstrapping with Symptoms
	Causality Analysis
	Relational Debugger
	Computing Relations
	Filtering Unchanged Relations
	Relation Refinement
	Ranking Root-Cause Candidates

	Implementation
	Building Static Dependency Graph (SDG)
	Building Relations
	Handling Binary Difference

	Experimental Evaluation
	Effectiveness
	Usability
	Analysis Time

	Discussion and Limitations
	Related Work
	Conclusion

