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Abstract
With the merits of high density, non-volatility, and DRAM-
scale latency/bandwidth, persistent memory (PM) brings hope
to high-performance storage systems, in which hashing-based
index structures receive great attention owing to the efficient
query performance. Though lots of efforts have been made
to rethink the hashing schemes for PM in recent years, nev-
ertheless, based on our investigation, none of them can hit
performance scalability, efficiency, and predictability with one
stone, seriously limiting their practicality to time-sensitive or
latency-critical applications. To this end, this paper presents
SEPH, a Scalable, Efficient, and Predictable Hashing for PM.
SEPH paves a new direction to build the hash table by in-
troducing the novel Level Segment (LS) structure, a key to
breaking the dilemma between efficiency and predictability
standing in front of the existing hashing schemes for PM. With
the LS-based hash table structure, SEPH further enables a
low-overhead split to greatly suppress the resizing-incurred
unpredictability, and develops a semi lock-free concurrency
control that requires a nearly-minimal amount of writes to
handle an item insertion for achieving ever-higher efficiency
and scalability while ensuring the correctness and crash con-
sistency. Compared to state-of-the-art hashing schemes, SEPH
demonstrates higher efficiency (up to 15.4× higher through-
put), better scalability (performance scales up to 48 threads),
and more reliable predictability (improving the tail latency by
up to 19.3×).

1 Introduction
Persistent memory (PM) offers storages systems the potentials
of large capacity, low latency, high throughput, and instant re-
covery [8,48]. The first commercial product of PM, i.e., Intel®
Optane™ DC Persistent Memory Module (DCPMM) [3], is
currently available on the market. As shown in Table 1, com-
pared with DRAM, Intel® Optane™ DCPMM delivers similar
write latency yet has about 2× sequential read latency and 3×
sequential read latency [20,21,45]; besides, the read and write
bandwidths of Intel® Optane™ DCPMM achieve nearly 1/3

Table 1: Performance Comparison between DRAM and PM
(i.e., Intel® Optane™ DCPMM 100 Series) [45].

DRAM PM PM/DRAM
Latency of Seq. Read (ns) 81 169 208.64%
Latency of Ran. Read (ns) 101 305 301.98%
Latency of Write (ns) 57 62 108.77%
Bandwidth of Read (GB/s) 105.6 37.6 35.61%
Bandwidth of Write (GB/s) 76.8 12.5 16.28%

and 1/6 of those of DRAM [20,21,26]. When compared with
SSD, Intel® Optane™ DCPMM is even much more superior
in every of these performance metrics [45]. Together with
the maximal 512 𝐺𝐵 capacity for a single module, Intel®
Optane™ DCPMM is especially attractive to in-memory
applications [43, 45].

Index structure is a vital component for high-performance
storage systems to offer efficient queries. To rapidly deploy
the well-developed indexes on PM, RECIPE [26] presents a
principled approach to convert concurrent DRAM indexes,
including tree-based and hashing-based indexes, into crash-
consistent indexes for PM. However, to better unleash the
full potentials of PM, more researches focus on developing
carefully-tailored indexes for PM. For example, a series of
researches develops tree-based indexes for PM especially,
like NV-tree [46], FAST&FAIR [19], wB+-Tree [9], LB+-
Trees [31],WORT [25],BzTree [5], and ROART [35]. However,
the search operation of tree-based indexes usually performs
in the complexity of 𝑂 (𝑙𝑜𝑔𝑁), where 𝑁 is the size of data
structure, because of the hierarchical structure of trees.

By contrast, hashing-based indexes can provide constant-
scale query time complexity due to the flat structures, so they
are widely adopted by in-memory systems [18, 23, 29, 47].
Hashing indexes can be generally categorized into two classes:
static and dynamic. Static hashing must estimate and allocate
sufficient space in advance, but it suffers from hash collisions,
overflows or under-utilization since the size of the hash table
is hard to estimate precisely in some applications like database
systems and file systems [36–38,40]. Dynamic hashing [24],
on the other hand, features in dynamically adjusting the size
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of the hash table as needed by the resizing operation. In view
of this, many delicately-designed dynamic hashing schemes
are proposed for PM to achieve different optimizations, like
PFHT [12],Path Hashing [49],Level Hashing [50],CCEH [36],
Dash [33], and Clevel Hashing [10]. This work also focuses
on the dynamic hashing schemes for PM.

Thanks to all of these efforts, the existing dynamic hashing
schemes especially developed for PM have made remarkable
progress on improving the overall performance efficiency in
terms of mean throughput or mean latency. Nevertheless, sur-
prisingly less attention has been given to the performance pre-
dictability, a particularly important metric in situations where
the high-percentile performance would largely affect the qual-
ity of service (QoS) or the end-user experience [27,28,34]. In
view of this,we conduct intensive experiments on a 24-core/48-
thread CPU socket with six 128 GB Intel® Optane™ DCPMM
to examine the in-depth performance of PM hashing schemes
by utilizing different number of concurrent threads (ranging
from 1 to 48). Our results (presented in §2.2) disclose that the
representative hashing schemes for PM might 1) encounter
the dilemma of simultaneously maintaining high performance
efficiency and alleviating the resizing-incurred performance
unpredictability, and 2) fall short of exhibiting good perfor-
mance scalability under highly-concurrent queries due to
their excessive writes in handling insert operations. Both seri-
ously limit the practicality of existing PM hashing schemes to
time-sensitive or latency-critical applications.

Aiming at developing a more practicable dynamic hashing
scheme on PM, this paper present SEPH, a Scalable, Efficient,
and Predictable Hashing for PM, to hit “three birds” with one
stone. First of all, to break the dilemma between efficiency
and predictability, SEPH introduces a new structure called
level segment (LS) to build the hash table with a unique and
delicate indexing mechanism (i.e., level segment index and
sliding bucket index). Particularly, with the LS-based hash
table structure, SEPH mitigates the inefficiency in probing
items randomly, and embraces the incremental resizing (i.e.,
the split operation) to prevent other concurrent threads from
being blocked. Second, SEPH further enables a low-overhead
split operation to significantly suppress the resizing-incurred
performance unpredictability: It not only reduces the number
of KV items to be rehashed to one-third of an LS (i.e.,one-third
splitting) but even avoids the pointer dereference required to
rehash a KV item for most of the time (i.e., dereference-free
rehashing). Third, to achieve ever-higher efficiency and scala-
bility while ensuring the correctness and crash consistency,
SEPH devises a semi lock-free mechanism that requires a
“nearly-minimal” amount of writes to handle an insertion.
Our results show that SEPH performs better than the state-
of-the-art hashing schemes from three perspectives. First, for
efficiency, SEPH averagely achieves 2.12× higher through-
put than EH-based hashing schemes, and even deliver 15.4×
higher average throughput than level-based hashing schemes.
Second, in terms of scalability, as the number of threads in-

creases from 24 to 48, the performance of SEPH still scales up
noticeably whereas the other hashing schemes barely improve.
Third, SEPH provides more reliable predictability by achiev-
ing 11.4×∼19.3× lower tail latency. SEPH is implemented in
C++ and is available1 for public use.

The rest of this paper is organized as follows. §2 presents
the background and motivation regarding this work. Next, §3
introduces the design details ofSEPH. Finally,§4 demonstrates
the evaluations results and §5 concludes this work.

2 Background and Motivation
2.1 Hashing Schemes for Persistent Memory
Due to various structural designs, different hashing schemes
typically have their own way to perform the resizing operation,
an essential but expensive operation entailing extra reads and
writes to enlarge the hash table for accommodating more key-
value (KV) items. The existing hashing schemes, especially
developed for PM, can be generally categorized into two series:
1) Level-based hashing, a series that features a multi-level
structure to enable cost-efficient resizing, and 2) EH-based
hashing, a series that inherits the advantage of incremental
resizing from Extendible Hash (EH) [13].
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Figure 1: Two Series of Hashing Schemes for PM.

2.1.1 Level-based Hashing

LevelHashing. Since memory writes in PM typically consume
more time and energy than memory reads, the extra writes
entailed by the resizing operation might bring a negative
impact on PM in terms of both performance and endurance.
Because of this reason, Level Hashing [50] introduces a new
sharing-based two-level structure to enable a cost-efficient
resizing operation for PM.

As illustrated in Figure 1(a), Level Hashing organizes KV
items into two levels (i.e., top level and bottom level) of
Bucketized Cuckoo Hashing (BCH) [14] with every bottom-
level bucket shared by two consecutive top-level buckets, and
thus the total number of buckets in the bottom level is just a
half of that in the top level. Just like the design of BCH, Level
Hashing employs a pair of hash functions (denoted as H1 and
H2 in Figure 1(a)) so that any KV item can be associated with
two buckets (aka candidate buckets [50]) in each level and
can be placed in any slot of the candidate buckets. But in

1https://github.com/cuhk-mass/SEPH
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Level Hashing, only the top-level buckets are addressable by
hash functions while a bottom-level bucket is mainly served
as standby slots to keep conflicting KV items. That is, if a
hash collision occurs in a top-level bucket and all slots in that
bucket are used, the conflicting KV item can be stored in its
corresponding standby bucket in the bottom level.

When all possible candidate buckets are full, Level Hashing
cost-efficiently resizes the hash table as follows. As illustrated
in Figure 1(b), the hash table is firstly “expanded” by allocating
a new top level that is twice the size of the original top level
and is with all the contents cleared with zeroes (denoted as
1 ); then, all the KV items in the original bottom level are

“rehashed” into the newly allocated top level (denoted as 2 );
finally, the newly allocated top level and the original top level
form a new sharing-based two-level structure. That is, with
the cost-efficient resizing operation, Level Hashing doubles
the total size of hash table but only rehashes and migrates KV
items in one-third of buckets of the original hash table.

Clevel Hashing. Although Level Hashing enables a cost-
efficient resizing operation, it must lock the entire hash table
structure and inevitably blocks the normal hash operations
(e.g., insert and search operations) from concurrent threads.
To address this issue, Clevel Hashing [10], a crash-consistent
and lock-free concurrent hash table is developed based on
Level Hashing. Specifically, to avoid blocking the concurrent
accesses during the resizing operation, in Clevel Hashing, the
thread that triggers the resizing operation only expands the
hash table for completing the insertion of KV item in the newly
allocated top level, while the remaining work of rehashing is
postponed and offloaded to dedicated background thread(s).
As a result, in Clevel Hashing, the hash table may consist of
more than two levels when it is under resizing.

2.1.2 EH-based Hashing

Another series of PM hashing schemes is evolved from Ex-
tendible Hashing (EH) [13], a widely-adopted hashing scheme
that features the incremental resizing operation, called split
operation, to avoid the full-table rehashing. Particularly, EH
organizes KV items in buckets of a fixed number of slots,
where a directory is maintained to index buckets based on
the hashed value of a key (hereafter called the hashed key for
simplicity). When a bucket overflows, EH performs the split
operation to resize the hash table in the granularity of bucket
rather than the entire hash table.

Cacheline-Conscious Extendible Hashing (CCEH). On the
basis of EH, CCEH [36] is developed to make effective use of
cachelines for better performance while guaranteeing failure-
atomicity for dynamic resizing. Specifically, CCEH proposes
to set the bucket size to the size of a cacheline (e.g., 64-byte)
for minimizing the number of cacheline accesses for visiting
a bucket. Besides, as shown in Figure 1(b), CCEH introduces
an intermediate granularity named segment, which consists
of a fixed number of buckets indexed by the same directory

entry, so that the directory can be greatly shrunk to have a
higher probability of being in the CPU cache. CCEH also
introduces a new way to associate KV items with segments
and buckets: The most significant bits of the hashed key are
used to locate a segment (denoted as segment index) while
the least significant bits are used to index a bucket within a
segment (denoted as bucket index). To further increase the
load factor, CCEH adopts linear probing [15] so that a KV
item can also be placed in the next few (e.g., four) buckets
following the indexed one (by the bucket index).

When all candidate buckets (i.e., the indexed bucket and
the following few that can be linearly probed) are all full
for a newly-inserted KV item, CCEH resizes its hash table
via the split operation (i.e., an incremental resizing operation
introduced by EH) as follows: First, as illustrated in Figure 1(b),
a new empty segment is dynamically allocated. Second, KV
items in the collided segment are either stayed or rehashed into
the newly allocated segment according to their segment and
bucket indexes. Finally, after all KV items are rehashed, the
directory is updated to ensure that the newly allocated segment
will be indexed properly by the corresponding directory entry.

Dynamic and Scalable Hashing (Dash). Dash [33] further
introduces several advancements to two classical hashing
schemes (i.e., Extendible Hashing (EH) [13] and Linear Hash-
ing (LH) [30])) and showcases its effectiveness on real PM
product (i.e., Intel Optane DCPMM [3]).

Dash for EH (Dash-EH) inherits most of designs from
CCEH [36] but aligns the bucket size with the XPLine size (i.e.,
256-byte) of Intel® Optane DCPMM for better locality [33].
Moreover, Dash-EH divides every bucket into a record region
(224-byte) and a metadata region (32-byte), where the former
maintains pointers to KV items for supporting variable-length
keys and values while the latter is dedicated to optimizing the
probing and load factor. On the one hand, for every KV item,
Dash-EH keeps the second least significant byte of the hashed
key as a fingerprint in the metadata region, so that the number
of pointer dereferences, required by probing or checking the
uniqueness of a KV item, can be thereby reduced; besides,
Dash-EH adopts an optimistic concurrency control to avoid
locking the entire segment when searching a KV item. On
the other hand, Dash-EH combines a variety of techniques
to increase the load factor, such as probing one more bucket,
balancing the load factor of candidate buckets, allowing one
movement among the indexed and linearly-probed buckets,
and adding a few (e.g., two or four) stash buckets into each
segment to accommodate conflicting KV items.

2.2 Motivation
Though the existing studies have made remarkable progress
on advancing the hashing schemes for PM, this section will
disclose that the existing two series of hashing schemes might
1) encounter the dilemma of achieving both high performance
efficiency and high performance predictability simultaneously
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Figure 2: Real-time Throughput and Resizing Overhead under Mixed Workload (i.e., 50% Insertion and 50% Search).

(see §2.2.1) and 2) fall short of exhibiting good performance
scalability under highly-concurrent queries (see §2.2.2). Both
seriously limit the practicality of existing PM hashing schemes
to time-sensitive or latency-critical applications.

2.2.1 Dilemma between Efficiency and Predictability

When examining the performance of PM hashing schemes,
most of the existing studies mainly focus on the overall per-
formance efficiency (i.e., the average performance) yet over-
look the performance predictability (i.e., the high-percentile
performance [27, 28, 34]), which is particularly crucial to
time-sensitive or latency-critical applications in practice.

To investigate both performance efficiency and performance
predictability of the existing two series of PM hashing schemes,
we conduct intensive experiments on a 24-core/48-thread CPU
socket with six 128 GB Intel® Optane™ DCPMM config-
ured as the App Direct mode. More detailed experimental
setups and implementation notes can be found in §4.1. Par-
ticularly, we preload each hashing scheme with 10 millions
of KV items, and then measure the real-time performance
of executing 200 millions of realistic mixed workloads with
48 concurrent threads, where the workloads consist of 50%
search and 50% insert operations generated by YCSB [11]
under the Zipf distribution with both key and value sizes set
to 16B. Figure 2 shows the real-time throughput (in terms of
operations per second) and the real-time resizing overhead
(in terms of the number of rehashed KV items) of the four
representative PM hashing schemes presented in §2.1. The
results reveal that the existing PM hashing schemes might
encounter the dilemma of achieving both high efficiency and
high predictability simultaneously based on the following two
key observations.
Observation 1: Compared with Level-based hashing schemes,
EH-based hashing schemes demonstrate the strength in perfor-
mance efficiency yet entail heavier resizing-incurred overhead
to degrade its performance predictability.

It can be firstly observed from Figure 2 that EH-based
hashing schemes demonstrate superior performance efficiency
(i.e., at least 57.48% faster in terms of average throughput)
than Level-based hashing schemes. The rationale behind
this can be attributed to how these hash schemes probe the
candidate buckets for a query. Specifically, EH-based hashing
schemes probe the candidates buckets by sequential accesses,
while Level-based hashing schemes entail one random access

for each of the candidate bucket (which is inherited from
BCH [14]). Given that the latency of random read is about
1.8× longer than that of sequential read on PM (according to
Table 1), it turns out that EH-based hashing schemes hold the
advantage in performance efficiency.

Nevertheless, since EH-based hashing schemes naturally
entail heavier resizing overhead (i.e., the number of rehashed
KV items) than Level-based hashing schemes, their perfor-
mance predictability can be affected more considerably. It can
be clearly observed that the real-time throughput of EH-based
hashing schemes gets degraded severely while KV items are
being rehashed at that time; additionally, the more KV items
are being rehashed, the lower throughput would suffer. More-
over, it is worth noting that, though Dash-EH utilizes a variety
of techniques to postpone split operations for higher load
factor, it may concentrate the occurrence of split operations
as an adverse effect, leaving the performance predictability
of Dash-EH unimproved or even degraded. As shown in Fig-
ures 2(c) and 2(d), when compared with CCEH, Dash-EH
achieves 2.16𝑋 higher average throughput but suffers 5.78%
lower worst throughput (i.e., the 100th percentile throughput).

Observation 2: Compared with EH-based hashing schemes,
Level-based hashing schemes entail lower resizing-incurred
overhead yet still fail to deliver good performance predictabil-
ity due to its low performance efficiency.

As revealed by Figure 2, thanks to the cost-efficient resizing,
Level-based hashing schemes greatly alleviate the total resiz-
ing overhead than EH-based hashing schemes. Cumulatively,
Level-based hashing schemes incur at least 55.45% less num-
ber of rehashed KV items than EH-based hashing schemes
after handling the same amount of insert operations. It is also
worthy to note that, to avoid locking the entire hash table and
blocking all the other concurrent requests during the resizing
(as Level Hashing does), Clevel Hashing advocates a lock-free
scheme and further postpones and offloads the rehashing of
KV items to dedicated background thread(s), which explains
why Clevel Hashing could incur even less number of rehashed
KV items than Level Hashing in the evaluation.

However, unfortunately, the effective reduction in the resiz-
ing overhead is insufficient in helping Level-based hashing
schemes with delivering good performance predictability. This
is because Level-based hashing schemes suffer much worse
performance efficiency, not only the average but also the
worst ones, when compared with EH-based hashing schemes.
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Specifically, even though the worst throughput (i.e., the 100th
percentile throughput) of Clevel Hashing seems to drop less
from its average throughput, it is still worse than that of CCEH
and Dash-EH by 47.95% and 44.87% respectively.

2.2.2 Limited Scalability
Apart from the efficiency and predictability, the performance
scalability is also an important indicator that reflects how
efficient a hashing scheme is in processing concurrent requests.
To this end, we repeat the experiments presented in Figure 2
with a different number of concurrent threads, ranging from 1
to 48, and show the measured average throughput of different
hashing schemes in Figure 3.
Observation 3: The existing PM hashing schemes fall short
of exhibiting good performance scalability under highly-
concurrent requests due to the excessive writes in handling
insert operations.

From Figure 3(a), it can be clearly observed that none of
the evaluated hashing schemes could scale up the average
throughput well from 24 concurrent threads. To find out the
potential bottleneck to achieve good performance scalability,
we further measure the total writes of PM media introduced by
different hashing schemes (by reading the hardware counters
of DCPMM [45]), since the write bandwidth is one of the
major weaknesses of PM (according to Table 1). The results
in Figure 3(b) identify that all the evaluated hashing schemes
introduce more than twice amount of writes than expected
(which was estimated by multiplying the number of insert
operations by the XPLine size (i.e., 256-byte)), except the
lock-free Clevel Hashing.
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Based on our further investigation, such excessive amount
of writes can be attributed to different root causes about how
the PM hashing scheme handles an insertion. Specifically, for
every insert operation, lock-based hashing schemes (such as
Level Hashing, CCEH and Dash-EH) require one PM write to
lock and insert the KV item, and another PM write for unlock-
ing. As for a lock-free hashing scheme (like Clevel Hashing),
it always requires one additional flush to persist its metadata,
before every insertion, for the sake of crash consistency. In
addition, it allows multiple threads to concurrently expand
the hash table for the same level, but only one expansion
would succeed eventually. This results in that the other failed
expansions must waste PM writes to clear the memory space.

3 Design of SEPH
This section presents SEPH, a hashing on PM which can hit
the scalability, efficiency and predictability with one stone.
In this section, we first present a new structure called level
segment (LS), a key enabler to achieve both high efficiency and
predictability, and elaborate on how SEPH builds a hash table
based on LS (§3.1). Then, we show how LS can further enable
a low-overhead split to greatly suppress the performance
unpredictability caused by resizing (§3.2). Finally, we put
forward a semi lock-free concurrency control that requires a
nearly-minimal amount of writes to handle an insertion for
achieving ever-higher efficiency and scalability while ensuring
the correctness and crash consistency (§3.3).

3.1 Level Segment based Hash Table
To resolve the dilemma between efficiency and predictability
disclosed by §2.2.1, SEPH introduces a new structure called
level segment (LS) to build the hash table by combining the
respective strengths of the existing two series of PM hashing.
Specifically, as we are going to see in this section, LS learns
from EH-basedhashing to achieve better efficiency in two ways:
1) LS limits the number of buckets that need to be randomly
read for a query; and 2) LS enables the incremental resizing
(i.e., the split operation) to avoid the full-table rehashing.
Moreover, as we will elaborate in §3.2, LS further enables a
low-overhead split operation, which is inspired by the two-
level structure of Level-based hashing, to greatly harness the
performance unpredictability caused by resizing.

3.1.1 Structure

Physical Segment. To ease the dynamic memory allocation
of PM space, SEPH manages the PM space as fixed-sized
units called physical segment (PS), which can be regarded as
a “segment” in the EH-based hashing. To be more specific,
a PS in SEPH also comprises a fixed number (e.g., 2𝐵) of
buckets, each bucket also consists of a fixed number of slots,
and each slot can also accommodate one KV item. Besides, as
suggested by Dash [33], SEPH also aligns the bucket size with
the XPLine size (i.e., 256-byte) of Intel® Optane™ DCPMM
for achieving better locality.
Level Segment. To combine the respective strengths of the
existing two series of PM hashing, SEPH further organizes
PSs into a two-level structure called level segment (LS), which
is also the granularity for splitting. As depicted in Figure 4,
given one PS at lower level (e.g., PS 0) and two PSs at higher
level (e.g., PS 1 and PS 2), SEPH organizes the “left half”
of lower-level PS and one higher-level PS into a LS (e.g.,
LS 0 which is denoted by blue-shaded region) and organizes
the “right half” of the lower-level PS and another higher-
level PS into the second LS (e.g., LS 1 which is denoted
by green-shaded region). Moreover, within an LS, every two
physically-consecutive higher-level buckets share a lower-
level bucket, but SEPH gives higher priority to the lower-level
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buckets for accommodating newly inserted KV items than the
higher-level buckets for the sake of concurrency control (see
§3.3). That is, only if all slots in a lower-level bucket of an LS
are fully occupied, will a new KV item be inserted into the
higher-level bucket of that LS. In view of this, when querying
a KV item in an LS, SEPH also searches the lower-level
candidate bucket before searching the higher-level candidate
bucket for better search efficiency.
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Figure 4: Level Segment based Hash Table of SEPH.

Upward Splitting. When the lower-level and higher-level
candidate buckets are both full to a new KV item, SEPH splits
that LS into two to enlarge the hash table in a copy-on-write
(CoW) fashion (i.e., by rehashing existing KV items into
newly allocated PSs). However, unlike the EH-based hashing
splits horizontally, SEPH splits an LS in an “upward” and
“low-overhead” fashion (see §3.2 for details). Consequently,
as SEPH keeps splitting LSs to accommodate more KV items,
the overall hash table will grow upwardly, since some LSs
are evolved from more times of upward splitting and thereby
reach higher levels than other LSs.
Residing Level. To precisely maintain which level a PS cur-
rently resides, SEPH associates every PS with an attribute
called residing level (RL). Taking the blue-shaded LS 0 de-
picted in Figure 4 as an example, the 𝑅𝐿s of its higher-level
PS and lower-level PS are 1 and 0, respectively.

3.1.2 Indexing

Level Segment Index. Like the EH-based hashing, SEPH also
maintains a directory and utilizes the most significant bits to
index an LS. Specifically, if the current highest residing level
among all PSs is 𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 , there must be 2𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 entries
in the directory, and SEPH utilizes the first 𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 most
significant bits of the hashed key as the level segment index.
Consider the example illustrated in Figure 4 where the current
highest residing level 𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 is 1. SEPH will associate the
given KV item, whose hashed key starts with “01010”, with
the LS indexed by the first directory entry (since the most
significant bit in the hashed key is “0”).
Sliding Bucket Index. However, to facilitate the low-overhead
split (introduced in §3.2), unlike the EH-based hashing that
utilizes the least significant bits to index a bucket, SEPH
introduces a unique sliding bucket indexing to index the
candidate bucket in a PS for a KV item. Specifically, suppose
𝑅𝐿 denotes the residing level of a PS comprising 2𝐵 buckets,

SEPH uses the 𝑅𝐿𝑡ℎ to (𝑅𝐿 +𝐵−1)𝑡ℎ of the most significant
bits in the hashed key (denoted as 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[𝑅𝐿 : 𝑅𝐿+𝐵−
1]) to locate the candidate bucket according to the residing
level 𝑅𝐿 of the PS.

Following the rule, SEPH can easily locate two candi-
date buckets (one in the lower-level PS and the other in the
higher-level PS) in an LS for any KV item. As the example
shown in Figure 4 where B is 3, given a hashed key starting
with “01010”, the candidate bucket at lower level PS (e.g.,
PS 0 at Level 0) is the third one (e.g., Buckets (010)2) since
𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[0 : 2] is “010”, and the candidate bucket at
higher level PS (i.e., PS 1 at Level 1) is the sixth one (i.e.,
Buckets (101)2) since 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[1 : 3] is “101”.

3.2 Low-Overhead Split
To suppress the resizing-incurred performance unpredictabil-
ity, SEPH proposes a low-overhead split operation, which
not only reduces the number of KV items to be rehashed to
one-third of an LS (i.e., one-third splitting in §3.2.1) but even
avoids the pointer dereference required to rehash a KV item for
most of the time (i.e., dereference-free rehashing in §3.2.2).

3.2.1 One-Third Splitting

With the novel Level Segment (LS) based hash table structure
and the unique indexing mechanism (presented in §3.1), SEPH
enables the one-third splitting, which only needs to rehash
“one-third” of the KV items upon splitting an LS (i.e., the
victim LS) into two new LSs as follows: 1 Two new PSs
are allocated at one level higher than the higher-level PS
of the victim LS to address the hash collision; 2 Only the
KV items in the lower-level buckets (i.e., one-third) of the
victim LS are rehashed into the two newly allocated PSs but
the two newly allocated PSs and the KV items stayed in the
original higher-level PS of the victim LS amazingly form
two new LSs at one level higher, thanks to the unique level
segment and sliding bucket indexes presented in §3.1; 3 The
corresponding directory entries are updated accordingly to
point to the two newly formed LSs; 4 The PM space occupied
by the lower-level buckets of the victim LS is safely released.

Figure 5 depicts an example that walks through the whole
process of the one-third splitting, where each PS is of 8 buckets
(i.e., 𝐵 equals 3). Suppose we are going to insert a new KV
item with the hashed key starting with “00011” into LS 0,
but the two candidate buckets (i.e., Bucket (000)2 of PS 0 and
Bucket (001)2 of PS 1) are both full. To address such hash
collision, SEPH splits LS 0 by rehashing only its lower-level
buckets into the two newly allocated PSs (i.e., PS 3 and PS 4)
at Level 2. That is, with the unique level segment index and
sliding bucket index, the KV items in Buckets (000)2 and
(001)2 of PS 0 are rehashed into the newly allocated PS 3
while the KV items in Buckets (010)2 and (011)2 of PS 0 are
rehashed into the newly allocated PS 4; however, there is no
need to rehash any KV items in PS 1 since the two newly
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allocated PSs (i.e., PS 3 and PS 4), along with the existing
PS 1, amazingly form two new LSs (i.e., LS 2 and LS 3). At
last, the directory entries are accordingly modified to index
two newly formed LSs, and the “to-be-inserted KV item” can
be eventually inserted into Bucket (011)2 of PS 3 of the newly
formed LS 2.

LS 0

LS 2 (New) LS 3 (New)

LS 1

PS 0

PS 1 PS 2

PS 3 (New) PS 4 (New)

00 01 10 11

000 001 010 011100101101111

000 001 010 011100101101111000 001 010 011100101101111

L2

L1

L0

�Allocate two new PSs

� Rehash lower-level buckets

� Rehash 
lower-level 
buckets

� Modify directory entries

� Deallocate the lower-level buckets

LS 0 LS 1

Hash(key) = 00011...

Directory

000 001 010 011100101101111000 001 010 011100101101111

2022/9/23

Figure 5: An Illustrative Example of One-Third Splitting.

3.2.2 Dereference-Free Rehashing

To support variable-length keys and values, like many rep-
resentative PM hashing schemes (e.g., Clevel Hashing and
Dash), SEPH keeps the pointers to KV items in slots of buck-
ets. Consequently, to rehash a KV item (during the resize/split
operation), typically, the pointer needs to be first dereferenced
and a subsequent memory read is needed to get the content
of a KV item, resulting in a considerable amount of random
reads to degrade the performance on PM. In view of this,
SEPH further enables the dereference-free rehashing that
circumvents the pointer dereferences required to rehash KV
items for minimizing the overhead of one-third splitting.
Key Insight. The main purpose of dereferencing a pointer
during resizing is to locate the new candidate bucket a KV item
based on the re-calculated hashed key. It means that if the new
candidate bucket can be known by some means, a KV item
can be directly moved into the new candidate bucket without
dereferencing the pointer. Thanks to its unique sliding bucket
indexing, SEPH can simply infer the new candidate bucket if
the two subsequent bits, following the current sliding bucket
index of the hashed key, can be known. This is because, during
the one-third splitting, the KV items are always rehashed
from the lower-level buckets of the victim LS into a newly
allocated PS, which locates at two-level higher. To be more
specific, for any KV items stored in the lower-level buckets
of the victim LS residing at Level 𝑅𝐿, its current sliding
bucket index equals 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[𝑅𝐿 : 𝑅𝐿+𝐵−1]; since this
KV item will be rehashed into a new PS located at two-lever
higher (i.e., Level 𝑅𝐿 +2), its new sliding bucket index will
become 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[𝑅𝐿 + 2 : 𝑅𝐿 + 𝐵 + 1]. In other words,
SEPH can infer the new candidate bucket for this KV item by
only requiring two extra bits, i.e., the (𝑅𝐿 + 𝐵)𝑡ℎ and (𝑅𝐿 +
𝐵 + 1)𝑡ℎ bits in its hashed key.
Bucket Index Foreseer. Based on this key insight, SEPH
proposes to maintain a small chunk of the hashed key, called

bucket index foreseer (or foreseer for simplicity), which con-
tains the required “two bits” for dereference-free rehashing,
along with the pointer to that KV item in the slot. In our
implementation, the size of the foreseer is set to 16 bits since
the modern 64-bit operating systems typically use 48 or fewer
bits of pointers. As shown in Figure 6, when inserting a new
KV item into a PS of 25 buckets residing at Level 0, SEPH
keeps not only the pointer to this KV item but also the first
two bytes of the hashed key (i.e., “00101010 10101101”) as
the foreseer in the 64-bit slot. Later, when this KV item needs
to be rehashed into a newly allocated PS at Level 2, since the
6𝑡ℎ and 7𝑡ℎ bits of the hashed key (i.e., “01”) are maintained
in the foreseer, SEPH can directly move this KV item into
Bucket (10101)2) in the new PS without dereferencing the
pointer (denoted by 1 in Figure 6).
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Figure 6: An Running Example of Bucket Index Foreseer.

Nevertheless, with the growth of the hash table, the foreseer
might contain fewer and fewer “unused” bits and eventually
“fail to foresee” the new sliding bucket index during the
subsequent split operations. Thus, SEPH proposes to keep the
number of unused bits in the foreseer more than half (i.e., 8
bits) at most times by updating the foreseer in the background
(denoted by 2 in Figure 6). To this end, SEPH maintains
another bit called stale flag in the slot to indicate the staleness
of the foreseer. If the unused bits of the foreseer will be less
than half of its size after a dereferencte-free rehashing, SEPH
sets the stale flag to 1 and submits a job to a dedicated thread,
which can update the foreseer and reset the stale flag, via an
atomic operation without consistency issue, in the background.
Notably, if all the unused bits in a foreseer have really been used
up without being timely updated, SEPH alternatively updates
the foreseer right away in the foreground before rehashing the
KV item.

It is also worth mentioning that the foreseer can also be
utilized as the “tag” in Clevel Hashing [10] or “fingerprint”
in Dash [33] to avoid unnecessary dereferences of pointers
during bucket probing. This is because the foreseer will get
updated timely to contain bits, which are neither LS nor sliding
bucket indexes, so that it is particularly effective in telling
whether a KV item exists in a bucket.

3.3 Semi Lock-Free Concurrency Control
As discussed in §2.2.2, the existing PM hashing schemes
introduce an excessive amount of writes to handle an in-
sertion. This not only brings considerable degradation to
efficiency, but even largely limits the scalability especially
under highly-concurrent and insert-intensive scenarios. To
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achieve ever-higher efficiency and scalability, SEPH proposes
a semi lock-free concurrency control that requires a nearly-
minimal amount of writes to handle an insertion. §3.3.1 and
§3.3.2 shall first introduce the design concept and the cor-
rectness challenges of the semi lock-free concurrency control,
respectively. Then, §3.3.3 elaborates on how to conduct dif-
ferent hash operations while guaranteeing the correctness and
crash consistency in depth.

3.3.1 Design Concept
Thanks to its atomicity, the compare-and-swap (CAS) primi-
tive [4] has been widely adopted by many existing lock-free
data structure and algorithm designs to allow concurrent oper-
ations without explicitly managing locks [22, 32, 39, 41]. The
CAS primitive “compares” the stored content of a word in
memory with a given value and, only if they match, “swaps”
the content of that word with the given value; meanwhile, a
Boolean value is returned to indicate whether the swap takes
place or not. Notably, the execution of the CAS primitive is
guaranteed to be atomic in the sense that the content of the
memory word is either completely swapped or stays unchanged
in an “all-or-nothing” fashion. Since SEPH sets the slot size
to the word size (e.g., 8 bytes) (see §3.2.2), we can also lever-
age the CAS primitive to realize lock-free operations for the
avoidance of excessive amounts of writes to PM due to the
lock manipulation. However, in view of the fact that the split
operation occurs relatively infrequent but could complicate
the correctness guarantee of other frequent hash operations
(i.e., insert/update/delete/search operations) [10], we propose
to prudently apply the lock only to the split operation. That is,
SEPH puts forward a semi lock-free concurrency control in
which only the (infrequent) split operation needs to acquire the
lock for splitting an LS, while other (frequent) hash operations
(i.e., insert/update/delete/search operations) are all lock-free
even when the involved LSs are under splitting.

3.3.2 Correctness Challenges
Guaranteeing the correctness of concurrent executions is
one of the most critical challenges when designing lock-
free data structures or algorithms. However, even though the
CAS primitive can guarantee the atomicity of manipulating
a slot, according to [10], performing hash operations in a
lock-free manner may still lead to two correctness problems,
i.e., duplicate items and loss of items.
1) Duplicate Items. The correctness problem of duplicate
items is that concurrent lock-free insertions may place mul-
tiple KV items with the same key into different slots of the
hash table. This may violate the correctness of subsequent
update/delete/search operations, since the update or delete
operation may only take place in one slot while the search
operation may access other duplicate slots that are unmodified.

2) Loss of Items. The correctness problem of loss of items
is that the modifications to the hash table (made by in-
sert/update/delete operations) may be lost when the hash

table is under resizing concurrently. This is possible since
the concurrent modifications may be left behind (i.e., not
rehashed) by the resizing, making those non-rehashed modifi-
cations “invisible” to the subsequent operations incorrectly.
3.3.3 Operation Details
Lock-Free Insert. In SEPH, the insertion operation is de-
signed to be lock-free for the avoidance of the concurrency
control overhead in manipulating locks. In order to address
the correctness problem of duplicate items (see §3.3.2) caused
by concurrent insertions, SEPH regulates the order of empty
slot allocation in the two candidate buckets to accommodate
newly inserted KV items based on the following two rules
of thumb: 1) The slots in the lower-level candidate bucket
must be first used up before using the slots in the high-level
candidate bucket. 2) In a candidate bucket, the slots must
always be allocated from the first one to the last one, where no
empty slots can exist before any allocated slots and no deleted
slots can be re-allocated. In summary, together with the two
rules and the atomicity of CAS primitive, SEPH guarantees
that concurrent insertions to the same LS will always compete
for not only the same candidate bucket (rule 1) but also for the
same empty slot in that bucket (rule 2) so that the correctness
problem of duplicate items can be nicely avoided.

Algorithm 1 elaborates the lock-free insert operation in
detail. First, it looks up the directory to find out the corre-
sponding LS for the to-be-inserted KV item (Line 2) and
performs a uniqueness check to ensure that in the two can-
didate buckets of that LS, there are no existing KV items
holding the same key as the to-be-inserted KV item (Lines 3–
9). Specifically, the uniqueness check employs the atomic
load instruction [2,10,17] to atomically fetch every allocated
slot one after the other for examination (Line 5) and rejects an
insertion request if its key matches the key of any allocated
slots in the LS (Lines 8–9). Please note that the atomic in-
structions will not always lead to direct accesses to PM, since
these requests can also be served in the cache [2].

Then, it starts to compete for the empty slot in the two can-
didate buckets based on our rules for the empty slot allocation
(Lines 10–21). That is, the lower-level bucket is used before
using the high-level bucket (rule 1) and the slots in a bucket
are allocated from the first one to the last one (rule 2), so that
all the concurrent insertions to the same LS will be regulated
to always compete for the same empty slot. Especially, the
CAS primitive is utilized to atomically check a slot is empty
(by comparing the content of slot with an “empty” value)
and fill in the slot (by swapping the content of slot with the
pointer to the to-be-inserted KV item) (Line 12). Thanks to
the atomicity of CAS primitive, even if there are concurrent
insertions competing for the same empty slot, only one thread
can successfully fill in it; then, the only “CAS-succeeded”
thread utilizes the clwb [2] and mfence instructions [2] to
persist the filled slot into PM [7, 10, 33, 36] (Lines 13–15).
Meanwhile, all the other “CAS-failed” concurrent threads
must check every slot they failed to fill in, since those slot(s)
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Algorithm 1: Lock-Free Insert
Input: 𝑘𝑣: the pointer to the to-be-inserted KV item
Output: the result of insertion (SUCCESS or FAIL)

1 retry:
2 Look up the directory to find out the 𝐿𝑆 for 𝑘𝑣;
// uniqueness check

3 for bucket in [𝐿𝑆− > 𝑃𝑆𝑙𝑜𝑤𝑒𝑟 , 𝐿𝑆− > 𝑃𝑆ℎ𝑖𝑔ℎ𝑒𝑟 ] do
4 foreach 𝑠𝑙𝑜𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡 do
5 𝑠𝑙𝑜𝑡′ ← Atomic Load(𝑠𝑙𝑜𝑡);
6 if 𝑠𝑙𝑜𝑡′ has a set split mark then
7 goto retry;
8 if 𝑘𝑣 and 𝑠𝑙𝑜𝑡′ have the same key then
9 return FAIL;
// CAS insert

10 for bucket in [𝐿𝑆− > 𝑃𝑆𝑙𝑜𝑤𝑒𝑟 , 𝐿𝑆− > 𝑃𝑆ℎ𝑖𝑔ℎ𝑒𝑟 ] do
11 foreach 𝑠𝑙𝑜𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡 do
12 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 ← CAS(&𝑠𝑙𝑜𝑡, 𝑒𝑚𝑝𝑡𝑦, 𝑘𝑣);
13 if 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 is successful then
14 Persist 𝑠𝑙𝑜𝑡 into PM;
15 return SUCCESS;
16 else
17 𝑠𝑙𝑜𝑡′ ← Atomic Load(𝑠𝑙𝑜𝑡);
18 if 𝑠𝑙𝑜𝑡′ has a set split mark then
19 goto retry;
20 if 𝑘𝑣 and 𝑠𝑙𝑜𝑡′ have the same key then
21 return FAIL;
// split (both cand. buckets are full)

22 Perform Lock-based One-Third Split() to split 𝐿𝑆;
23 goto retry;

may be inserted with KV items with the same key (Lines 16–
21). If so, the insertion must be rejected to avoid duplicate
items (Lines 20–21); otherwise, the CAS-failed thread(s) will
continue to compete for the next empty slot iteratively.

Finally, if all the slots in the two candidate buckets are used
up, the thread needs to trigger the one-third split operation (see
Algorithm 2) to split the LS (Line 22), followed by retrying
the insertion in a lock-free way (Line 23).

Lock-Based One-Third Split. In SEPH, the one-third split
operation is lock-based. That is, an LS could only be split by
one of the concurrent threads successfully. Even so, SEPH
may still be threatened by the correctness problem of loss
of items introduced in §3.3.2. Particularly, as the one-third
split operation is rehashing the KV items from the lower-level
PS of an LS into newly allocated PSs, some other concurrent
lock-free /deletion operations may be making changes to that
lower-level PS (since their lower-level candidate buckets are
still not full), leaving some of these modifications not rehashed
correctly. To resolve this correctness problem, SEPH devises a
lightweight mechanism that allows a split operation to timely
notify other concurrent lock-free operations of the rehashing
status of every slot. Specifically, SEPH reserves a one-bit
“split mark” in every slot, and the split mark will only be set
atomically once the split operation has started to process it. It
ensures that other concurrent lock-free operations can avoid

Algorithm 2: Lock-Based One-Third Split
Input: 𝐿𝑆: the LS that needs to be split

1 if Try Acquire Lock(𝐿𝑆) == SUCCESS then
2 Allocate two new PSs for one-third splitting;
3 foreach 𝑏𝑢𝑐𝑘𝑒𝑡 in 𝐿𝑆− > 𝑃𝑆𝑙𝑜𝑤𝑒𝑟 do
4 foreach 𝑠𝑙𝑜𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡 do
5 do // CAS Loop
6 𝑠𝑙𝑜𝑡′ ← Atomic Load(𝑠𝑙𝑜𝑡);
7 𝑠𝑙𝑜𝑡′𝑚← 𝑠𝑙𝑜𝑡′ | 𝑠𝑝𝑙𝑖𝑡 𝑚𝑎𝑟𝑘;
8 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 ← CAS(&𝑠𝑙𝑜𝑡, 𝑠𝑙𝑜𝑡′, 𝑠𝑙𝑜𝑡′𝑚);
9 while 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 is not successful ;

10 if 𝑠𝑙𝑜𝑡 is not an empty or deleted slot then
11 Perform Dereference-Free Rehash() to

rehash 𝑠𝑙𝑜𝑡 into the two new PSs;
12 Persist the two new PSs into PM;
13 Form two new LSs and update the directory;

making changes to slots with a set split mark for the avoidance
of loss of items, since the “compare” of CAS primitive will
fail due to the set split mark bit.

As shown in Algorithm 2, the one-third split operation
in SEPH needs to first acquire the lock for splitting any LS
(Line 1), and only the thread successfully acquired the lock
can rehash KV items from the lower-level PS of the to-be-split
LS to the two newly allocated PSs (Lines 2–13). Especially,
for every slot (including empty slots), the split operation shall
first exploit the CAS loop [17] to ensure the split mark can
be successfully set even in the presence of the concurrent
operations (Lines 5–9). Then, the dereference-free rehashing
(see §3.2.2) is employed to rehash the KV item if it exists
(Lines 10–11). Finally, only after all the slots have been set
with the split mark and all the KV items have been successfully
rehashed and persisted into PM (Lines 12), should the directory
entry be updated to index the two newly formed LSs (Line 13).
It is the key step to ensure that no other concurrent operations
can access the slots in the two newly allocated PSs when
the splitting is still taking place. Notably, there is no need to
release the split lock after splitting, because the split LS would
become stale and any other concurrent threads should not split
it again. Besides, we adapt the epoch-based reclamation [16]
to recycle the stale PS only after no other concurrent lock-free
readers are using it [33].

With the split marks, the problem of loss of items can be
avoided as follows. Particularly, if the insertion ends with a
CAS success, it implies that the concurrent split operation
has not yet set the split mark for that slot and will rehash
the inserted KV item later. Otherwise, if the insertion ends
with a CAS failure because of a set split mark, it means that
a concurrent split operation has already started to process
this slot by first setting the split mark with the atomic CAS
primitive (i.e., Line 8 in Algorithm 2). Thus, SEPH shall retry
the entire insert operation to avoid leaving an insertion of KV
item behind the concurrent split operation (i.e., Lines 18–19
in Algorithm 1). It is also worthy to note that during the
uniqueness check, if a slot with a set split mark is found,
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SEPH shall also retry the entire insert operation to avoid
accessing stale KV items (i.e., Lines 6–7 in Algorithm 1);
in addition, both two candidate buckets shall be examined,
since the higher-level candidate bucket may have become the
lower-level candidate bucket due to concurrent splits.

Notably, the problem of duplicate items can also be avoided
even if an insertion ends with a CAS success but has time
overlap with a split operation to the same LS. Let’s first discuss
the situation that the insertion can successfully fill in a slot in
the “lower-level” candidate bucket of the LS. In this scenario,
the split operation must be not over yet (since the split mark
of this slot has not been set) and all the other concurrent
insertions with the same key must fail to compete for the
same slot in the same lower-level candidate bucket (thanks
to the atomicity of CAS primitive). Next, let’s discuss the
other situation where the insertion can successfully fill in a
slot in the “higher-level” candidate bucket (denoted as b) of
the LS (i.e., the corresponding lower-level candidate bucket
is already full). In this scenario, the split operation may still
be in the process or may have been completed by the time
that slot is filled in. Specifically, if the split operation is not
over yet, all the other concurrent insertions with the same key
must compete in the same higher-level candidate bucket b
but fail eventually. If the split operation is complete already,
all the other concurrent same-key insertions launched before
the split completion must compete in the same high-level
candidate bucket b but fail eventually; meanwhile, since the
higher-level candidate bucket b has become the lower-level
candidate bucket in the new LS after the split completion
(see §3.2.1), all the other concurrent same-key insertions with
the same key launched after the split completion shall first
compete in the same candidate bucket 𝑏 (based on the rule 1
of empty slot allocation) but fail eventually.
Lock-Free Update/Delete. With the help of CAS primitive,
in SEPH, the update and delete operations are also designed
to be lock-free. To locate the KV item for update or deletion
in the candidate buckets, the atomic load instruction is
utilized (similar to how the uniqueness check is performed
in the lock-free insertion). Then, if the slot with the desired
key can be found, SEPH takes advantage of the atomicity of
the CAS primitive to update the slot so that only one current
thread can successfully modify it at a time. However, if the
CAS primitive fails due to a set split mark in the slot, SEPH
shall retry the entire update/delete operation to avoid leaving
modifications to slots that have been processed by a concurrent
split operation for the avoidance of loss of items.

On the other hand, based on the rules of thumb for empty
slot allocation, no empty slots can exist before any allocated
slots and no deleted slots can be re-allocated. Thus, in SEPH,
the delete operation is realized in a way very similar to the
update operation. The only difference is that the deletion
replaces the desired slot with a “tombstone” instead of the
updated KV item. In our implementation, we consider a slot
that has all 1s for its pointer to KV item as a tombstone slot.

By doing so, a tombstone slot can be easily identified and
more importantly, we can still exploit the split mark and the
CAS primitive to avoid losing deletions in slots that have been
processed by a concurrent split operation (as how we avoid
losing updates).
Lock-Free Search. Since SEPH takes advantage of the atom-
icity of CAS primitive to modify a slot and utilizes the atomic
load instruction to atomically read a slot, the search oper-
ation can be easily realized as lock-free. However, to avoid
reading stale KV items, SEPH shall retry the search operation
if any slot with split mark is accessed (as what we do in the
uniqueness check of insertion).

3.3.4 Persistence for CAS
The compare-and-swap (CAS) atomic instruction [4] achieves
the synchronization in multithreading; however, since the
processor cache is typically volatile, a thread might access data
that have not been persisted yet, resulting in data inconsistency
in the presence of crashes. In our current implementation
of SEPH, we utilize the persistent single-word compare-and-
swap (PSwCAS) [42] primitive that can address this problem
by adding a dirty bit on each 8-byte word operated by the
CAS instruction. Specifically, the PSwCAS primitive requires
that 1) the CAS instruction always stores a word of data with
the dirty bit set; and 2) a thread must first persist the required
word into PM if the word is set with the dirty bit, followed by
clearing the dirty bit to mark the word as persistent.

Notably, the extended asynchronous DRAM refresh
(eADR),a new feature supported by Intel® Optane™ DCPMM
200 series and 3rd Xeon® Scalable processors, ensures that
CPU caches are also included in the power fail protected
domain [44]. That is, with the eADR technique, the CAS
primitive can be used directly with the data consistency guar-
antee even in the presence of crashes [1]. Thus, we envision
that SEPH shall be greatly benefited by the eADR feature to
deliver even superior performance.

3.3.5 Crash Consistency
No inconsistency will occur in SEPH against crashes for the
following reasons: 1) The insertion/update/deletion can be
done atomically and their crash consistency can be guaranteed
by the PSwCAS. 2) The split operation is protected by the
lock and is conducted in a copy-on-write (CoW) manner, so
the split operation is an all-or-nothing process; moreover, an
unfinished split operation (which is broke off by the occurrence
of crash) can also be identified (by examining the split locks
of LS) and correctly redone. 3) The crash consistency for the
directory can be secured by the directory recovery algorithm
proposed in CCEH [36].

4 Performance Evaluation
4.1 Experimental setup
Environment. All experiments are conducted on a 24-core/48-
thread Intel Xeon Platinum 8260 2.40 GHz CPU socket with
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Figure 7: Real-time Throughput and Resizing Overhead of Insertion.

six 32 GB DRAM and six 128 GB Intel® Optane™ DCPMM
100 series configured as the App Direct mode. The operating
system is 64-bit Ubuntu Server 22.04 with Linux kernel ver-
sion 5.15, and Persistent Memory Development Kit (PMDK)
version is 1.11. All the codes are implemented in C++ and
compiled using GCC 11.2 with all optimizations enabled.
Evaluated Hashing Schemes. We evaluate the following hash-
ing schemes especially developed for PM, and adopt parameter
settings suggested by their original papers for achieving the
best performance on Intel® Optane™ DCPMM 100 series.
• PCLHT: PCLHT is a search-optimized hashing scheme
adopting a linked list based cache-efficient hash table converted
by RECIPE [26].
• Level: Level Hashing [50] is the origin of Level-based
hashing schemes (see §2.1.1). It uses 128-byte buckets (i.e.,
two cachelines).
• Clevel: Clevel Hashing [10] is an extension of Level
Hashing with lock-free concurrency control (see §2.1.1). It
uses 64-byte buckets (i.e., one cacheline) and employs one
dedicated background thread to perform the resizing.
• CCEH/CCEH-C: CCEH [36] is developed based on Ex-
tendible Hashing (EH) [13] with effective use of cachelines
for better performance (see §2.1.2). It uses 16 KB segments
and 64-byte buckets (i.e., one cacheline) with a probing dis-
tance of 4. CCEH-C is a variant of CCEH that conducts the
split operation in a CoW way to support lock-free search [36].
• Dash: Dash-EH [33] is an enhanced version of CCEH [36]
with several technique advancements (see §2.1.2). It uses
16 KB segments and 256-byte buckets (i.e., an XPLine) with
two additional stash buckets.
• SEPH: This is our proposed hashing scheme. To compress
two PS pointers into one 8-byte word, we implement a segment
allocator that supports atomic aligned segment allocation and
crash consistency for SEPH. Besides, we set the size of a PS
to 16 KB (which is also the segment size of CCEH and Dash
used in the evaluation), and thus, the total size of an LS is
24 KB. Moreover, SEPH employs one dedicated background
thread to update the bucket index foreseer.

For the sake of fairness, since the more recent PM hashing
schemes (e.g.,Clevel Hashing,Dash, and our proposal) support
variable-length keys and values, all the evaluated hashing
schemes are unified to only keep the pointers to KV items
in slots. Besides, the length of a persistent pointer in PMDK
is 16 bytes (i.e., 8 bytes for the base address of a PM pool
and 8 bytes for the offset in pool), which cannot be operated
by the CAS atomic instruction. To resolve this issue, Clevel
Hashing [10] proposes to only maintain the offset in the PM
pool as an 8-byte persistent pointer, since the base address of a
PM pool will be fixed once the pool is mapped. We also apply
this offset-only pointer to all the evaluated hashing schemes.
Benchmark. For the micro-benchmarks used in §4.2, we first
warm up the hash table with 10 millions of KV items, followed
by executing a total number of 200 millions of operations
unless otherwise stated. Particularly, workloads composed of
a single type of operations are evaluated in §4.2.1∼§4.2.3
and workloads mixed with multiple types of operations are
used in §4.2.4, where all these workloads are generated by
YCSB [11] in Zipf distribution with 0.99 skewness. As for
the macro-benchmarks presented in §4.3, we use the real-
world workloads from YCSB [11]. Particularly, in the load
phase, we populate 64 millions of KV items, following Clevel
Hashing [10]; then, the standard YCSB workloads A, B, C, D,
and F are conducted with 48 threads. Notably, the standard
YCSB workload E is not evaluated since none of the hashing
schemes optimizes the range query performance. Besides, the
lengths of key and value are both set to 16 bytes since it is
widely used [6], and the KV items are pre-generated before
the testing as [33].

4.2 Micro Benchmark
4.2.1 Performance Efficiency and Predictability

To analyze the advantages of SEPH, we first focus on the
insertion performance. Figure 7 plots the real-time insertion
throughput of different hash tables under 48 threads. It can be
clearly observed that SEPH outperforms all the other schemes
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in terms of performance efficiency. Specifically, SEPH outper-
forms Dash, CCEH, and CCEH-C by 2.12×, 4.31×, and 4.46×
for average insertion throughput respectively, and achieves at
least 8.27× higher average throughput compared with Level-
based hashing schemes and PCLHT.

As for the performance predictability, SEPH demonstrates
the most superior worst-case real-time throughput (i.e., the
minimal real-time throughput) than all the other evaluated
hashing schemes, as revealed by Figure 7. Specifically, the
minimal real-time throughput of SEPH is higher than that of
Clevel, CCEH, CCEH-C, and Dash by 9.34×,4.40×,4.74×
and 5.23× respectively, while PCLHT and Level Hashing
even suffer zero real-time throughput because their full-table
resizing are conducted in a blocking manner. Moreover, it is
also worth noting that the minimal real-time throughput of
SEPH is even higher than the maximal real-time throughput
of all the other evaluated hashing schemes by from 1.06× to
5.76×. This reveals that SEPH achieves remarkable perfor-
mance predictability by delivering an excellent worst-case
real-time throughput under the insertion-intensive workload.

The tail latency of different percentiles is another perspec-
tive to show the performance by reflecting the response time.
A design with good performance predictability requires a
low bound of the latency on high percentiles (i.e., tail la-
tency). Figure 8 shows the evaluation of the insertion latency
at different percentiles. In general, SEPH significantly cuts
down the 100th-percentile insertion latency compared with
PCLHT/Level-based hashing schemes (by 3∼ 4 orders of mag-
nitude) and is superior to all the EH-based hashing schemes
on every percentile of insertion latency. Especially, it can be
noticed that in contrast to EH-based hashing schemes (i.e.,
CCEH, CCEH-C and Dash) that have a sharp raising of in-
sertion latency at the 99.9th percentile, the insertion latency
of SEPH rises at the 99.99th percentile. The rationale behind
this is that SEPH triggers a less number of split operations
than EH-based hashing schemes, since the size of LS in SEPH
(i.e., 24 KB) is larger than the segment size (i.e., 16 KB) of
EH-based hashing schemes. Despite this, SEPH still achieves
9.75× ∼ 11.36× lower latency at both 99.99th and 99.999th
percentiles than EH-based hashing schemes; Also, the 100th-
percentile latency of SEPH is lower than that of EH-based
hashing schemes by from 3.62× to 5.86× because SEPH
offloads the directory doubling to the background thread.
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Figure 8: Latency at Different Percentiles.

Figures 9(a) and 9(b) further disclose the key reasons behind
the improvements in performance efficiency and predictability

achieved by SEPH. On the one hand, thanks to the one-third
splitting and the dereference-free rehashing, SEPH introduces
8.11∼ 43.78× less time for resizing than all the other evaluated
hashing schemes as shown in Figure 9(a). On the other
hand, Figure 9(b) validates the efficacy of the semi-lock-free
concurrency control in minimizing the PM writes. Specifically,
SEPH significantly reduces the PM writes by 2 ∼ 3.33× and
nearly approaches the expected, optimal amount of PM writes.
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Load Factor. Figure 9(c) further depicts the result of average
load factors. Considering that Dash leverages non-trivial
memory PM (i.e., 12.5%) to store the metadata to improve
the performance, the calculation of the load factor of Dash
excludes this amount of memory. The average load factor of
Level Hashing and Dash are both up to 59% because they
adopt multiple optimizations such as one movement, balancing
load, stash buckets, etc. The average load factor of SEPH is
50%, which is because SEPH does not adopt the optimization
that improves the load factor at the expense of introducing
more operational overhead. On the other hand, our design
shows higher load factor compared to CCEH and CCEH-C
(both 39%) since SEPH can accommodate more KV items in
a bucket (i.e., 32 for SEPH).

4.2.2 Performance Breakdown
To investigate how the key techniques of SEPH introduced in
§3.2 and §3.3 contribute to the overall performance improve-
ment, Figure 10 shows the experiment results of inserting 200
millions of KV items using 48 threads on different variants of
SEPH (see Table 2 for their detailed configurations).

Table 2: Configuration of Different SEPH Variants.
SEPH

Variants
Semi

Lock-Free
One-Third
Splitting

Dereference-Free
Rehashing

SEPH-Base × × ×
SEPH-S ✓ × ×
SEPH-SO ✓ ✓ ×
SEPH-SOD ✓ ✓ ✓

First of all, SEPH-Base is considered as a baseline design
of SEPH which only keeps the level segment based hash
table of SEPH (presented in §3.1) but does not equip with
any low-overhead split techniques (proposed in §3.2) and
even adopts the lock-based scheme of Dash [33]. It can be
clearly observed from Figure 10(a) that compared with SEPH-
Base, SEPH-S (which adopts only the proposed semi lock-
free concurrency control) significantly lifts up the average
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and highest throughputs by 56.72% and 70.20% respectively.
The rationale behind this is that the proposed semi lock-free
concurrency control effectively avoids the PM writes required
to manipulate locks (as validated by Figure 10(b)), resulting
in better performance efficiency and scalability. Secondly,
compared with SEPH-S, SEPH-SO further demonstrates the
efficacy of the proposed one-third splitting in raising the worst-
case throughput by 71.46% and reducing the total resizing
time by 51.04% (as shown in Figure 10(c)). Finally, compared
with SEPH-SO, SEPH-SOD (i.e., the complete design of
SEPH) ultimately shows how the proposed dereference-free
rehashing can amazingly minimize the total resizing overhead
by 92.50%, resulting in a further improvement in the worst-
case throughput (i.e., performance predictability) by 55.85%.
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Figure 10: Breakdown of Different SEPH Variants.

4.2.3 Performance Scalability
Insertion. Figure 11(a) shows the insertion throughput under
different number of threads. SEPH speeds up the insertion
performance by 2.2× under 48 threads and by 2× under the
other thread numbers compared with Dash. The main reason
is that the write bandwidth of PM is considered a common
bottleneck, and SEPH completes the insertions with less
consumption of write bandwidth. By contrast, PCLHT and
Level Hashing show poor scalability owing to the blocking
resizing, while the low scalability of Clevel Hashing is due
to the high consumption of read/write bandwidth for the full
lock-free design.
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Figure 11: Scalability.

Update and Deletion. Figures 11(b) and 11(c) present the
update and deletion performance of various hashing schemes
under different numbers of thread. Although SEPH shows
similar performance on update operations with Dash when the
number of the threads is less than 16, SEPH outperforms Dash

by 30% at 24 threads and 39% at 48 threads, demonstrating
higher performance scalability. This is because the lock-free
design of SEPH provides a more scalable update performance
by reducing a write for the lock to avoid hitting the limit of
the write bandwidth at lower concurrent scenarios. To test
the scalability of delete operations, we run 10 millions of
delete operations to delete all the pre-loaded 10 millions of
KV items. As shown in Figure 11(c), SEPH also surpasses all
the other designs at 48 threads in delivering high performance
scalability of deletion, thanks to the reduction in PM write
achieved by the semi lock-free concurrency control.
Search. As shown in Figure 11(d), Dash, SEPH and PCLHT
show good scalability on search performance, thanks to the
low-overhead search operations of these designs and the high
bandwidth of PM read (compared with write bandwidth). The
search throughput of SEPH is 9.1% lower than that of Dash
with 48 threads because SEPH needs to access two candidate
buckets by two random reads, yet Dash accesses two candidate
buckets by two sequential reads.

4.2.4 Mixed Workload
In order to evaluate the performance behavior of the differ-
ent hashing schemes under the realistic mixed workload, we
conduct the experiments with the mixed requests of differ-
ent search/insertion ratio generated by YCSB in the zipfian
distribution (0.99 skewness).

Figure 12 shows the real-time throughput of different hash-
ing schemes with different mixed workloads under 48 threads.
SEPH performs the mostly-highest and the least-fluctuated per-
formance in these workloads, which demonstrates SEPH can
achieve good performance efficiency and good performance
predictability at the same time under the evaluated workloads
mixed with different percentages of search operations (denoted
as “S”) and insert operations (denoted as “I”).
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Figure 12: Real-Time Performance under YCSB Workloads
with Different Search/Insert Ratio (%).

Figure 13 shows the results of the scalability of the hash
tables under different mixed workloads. It can be observed
that SEPH delivers better performance scalability than any
other evaluated hashing schemes, even under the workload
mixed with a high percentage of insertions (i.e., 70% of
insert operations and 30% of search operations shown in
Figure 13(a)). This is because the proposed semi lock-free
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concurrency control entails a nearly-minimal amount of PM
writes to handle an insertion operation.
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Figure 13: Performance Scalability under YCSB Workloads
with Different Search/Insert Ratio (%).

4.3 Macro Benchmark
Figure 14 shows the performance results of executing the
standard YCSB workloads in terms of the minimal, average,
and maximal throughputs. First of all, under the workload
Load (100% insertion) shown in Figure 14(a), SEPH performs
2.63× ∼ 19.59× higher average throughput and at least 4.52×
higher minimal throughput than any other evaluated hashing
schemes. This demonstrates SEPH can deliver the most su-
perior performance efficiency and predictability under the
insertion-intensive workload, with the help of the proposed
low-overhead splitting and semi lock-free concurrency control.

However, under the workload C (100% search) shown in
Figure 14(d), the average throughput of SEPH is 12.83% lower
than that of Dash, since SEPH is not optimized for search
operations (as discussed in §4.2.3). But it is encouraging to see
that with the increasing of update operations, the performance
gap between the average throughputs of SEPH and Dash
reduces and even reverses, because the proposed semi lock-
free concurrency control avoids the PM writes to manipulate
locks for update operations. Particularly, under the workload
B (95% search & 5% update) and the workload F (95% search
& 5% read-modify-write (RMW)), the average throughput
of SEPH only falls behind that of Dash by 10.9% and 5.6%,
as shown in Figures 14(c) and 14(f), respectively. On the
contrary, under the workload A (50% search & 50% update),
the average throughput of SEPH overtakes that of Dash by
6.9% as in Figure 14(f).

More importantly, under the workload D (95% search & 5%
insertion) shown in Figure 14(e), even though SEPH does not
achieve the best average throughput (due to the high portion of
search operations) among all the evaluated hashing schemes,
SEPH demonstrates the best performance predictability (i.e.,
improving the minimal throughput by at least 39.50%). This
reveals the value of the proposed low-overhead splitting in
reducing the resizing overhead, even if there are only 5% of
insertions. Figure 15 further shows the operation latency of
the evaluated hashing schemes at different percentiles under
the workload D. It can be observed that SEPH outperforms
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Figure 14: The Minimal, Average, and Maximal Throughputs
under Standard YCSB Workloads.

EH-based designs by at least 11× and 1.82× for the 99.999th
and 100th percentile latency respectively; additionally, SEPH
greatly surpasses Level-based designs and PCLHT by at least
2792× for the 100th percentile latency.
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Figure 15: Latency at Different Percentiles (Workload D).

5 Conclusion
This paper presents SEPH, a Scalable, Efficient, and
Predictable Hashing for PM. To break the dilemma between
efficiency and predictability, SEPH introduces a new struc-
ture called level segment (LS) to build the hash table with
a unique indexing mechanism. SEPH further enables a low-
overhead split operation to significantly suppress the resizing-
incurred performance unpredictability, and puts forward a
semi lock-free concurrency control that requires a nearly-
minimal amount of writes to handle an insertion operation for
achieving ever-higher efficiency and scalability while ensuring
the correctness and crash consistency. Our results reveal that
SEPH achieves higher efficiency, better scalability, and more
reliable predictability when compared with state-of-the-art
hashing schemes for PM.
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