
USENIX Association

July 10–12, 2023
Boston, MA, USA

Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’23)

© 2023 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-34-2

Symposium Organizers
Program Co-Chairs
Roxana Geambasu, Columbia University
Ed Nightingale, Apple
Program Committee
Atul Adya, Databricks
Rachit Agarwal, Cornell University
Nitin Agrawal, Google
Ramnatthan Alagappan, University of Illinois

at Urbana–Champaign
Jeremy Andrus, Apple
Sebastian Angel, University of Pennsylvania
Mahesh Balakrishnan, Confluent
Adam Belay, MIT CSAIL
Emery Berger, University of Massachusetts Amherst
Edouard Bugnion, EPFL
George Candea, EPFL
Kang Chen, Tsinghua University
Vijay Chidambaram, The University of Texas at Austin and

VMware Research
Mosharaf Chowdhury, University of Michigan
Byung-Gon Chun, Seoul National University and FriendliAI
Asaf Cidon, Columbia University
Manuel Costa, Microsoft Research
Landon Cox, Microsoft Research
Natacha Crooks, University of California, Berkeley
Jon Crowcroft, University of Cambridge
Heming Cui, University of Hong Kong
Dilma Da Silva, Texas A&M University
Murat Demirbas, Amazon Web Services
Ittay Eyal, Technion—Israel Institute of Technology
Jason Flinn, Meta
Bryan Ford, EPFL
Aishwarya Ganesan, University of Illinois

at Urbana-Champaign and VMware Research
Phillip Gibbons, Carnegie Mellon University
Yossi Gilad, Hebrew University of Jerusalem
Joseph Gonzalez, University of California, Berkeley
Andreas Haeberlen, University of Pennsylvania and Roblox
Steven Hand, Google
Tim Harris, Microsoft
Wenjun Hu, Yale University
Ryan Huang, Johns Hopkins University
Rüdiger Kapitza, Friedrich-Alexander-Universität

Erlangen-Nürnberg
Brad Karp, University College London
Baris Kasikci, University of Michigan
Eddie Kohler, Harvard University
Mathias Lécuyer, University of British Columbia
Philip Levis, Google and Stanford University
Amit Levy, Princeton University
Jinyang Li, New York University
Hyeontaek Lim, Google
Wyatt Lloyd, Princeton University
Jay Lorch, Microsoft Research
Shan Lu, University of Chicago
Martin Maas, Google
Jonathan Mace, Max Planck Institute for Software Systems (MPI-SWS)
Ratul Mahajan, University of Washington and Intentionet
Z. Morley Mao, University of Michigan and Google

James Mickens, Harvard University
Thomas Moscibroda, Microsoft
Deepak Narayanan, Microsoft Research
Ravi Netravali, Princeton University
Jason Nieh, Columbia University
Cristina Nita-Rotaru, Northeastern University
Shadi Noghabi, Microsoft Research
Aurojit Panda, New York University
KyoungSoo Park, Korea Advanced Institute of Science and

Technology (KAIST)
Bryan Parno, Carnegie Mellon University
Daniel Peek, Meta
Peter Pietzuch, Imperial College London
Dan Ports, Microsoft Research
Costin Raiciu, University Politehnica of Bucharest
David Richardson, Apple
Luis Rodrigues, INESC-ID and Instituto Superior Técnico,

University of Lisbon
Christopher Rossbach, The University of Texas at Austin and

Katana Graph
Malte Schwarzkopf, Brown University
Marco Serafini, University of Massachusetts Amherst
Marc Shapiro, Sorbonne-Université–LIP6 and Inria
Ji-Yong Shin, Northeastern University
Mark Silberstein, Technion—Israel Institute of Technology
Alex C. Snoeren, University of California, San Diego,

and Google
Ion Stoica, University of California, Berkeley
Ryan Stutsman, University of Utah
Steven Swanson, University of California, San Diego
Adriana Szekeres, VMware Research
Kaushik Veeraraghavan, Facebook
Geoffrey M. Voelker, University of California, San Diego
Roger Wattenhofer, ETH Zurich
Michael Wei, VMware Research
Yubin Xia, Shanghai Jiao Tong University
Tianyin Xu, University of Illinois at Urbana–Champaign
Junfeng Yang, Columbia University
Ding Yuan, University of Toronto and YScope
Lidong Zhou, Microsoft Research
Poster Session Co-Chairs
Ryan Huang, University of Michigan
Adriana Szekeres, VMware Research
Steering Committee
Marcos K. Aguilera, VMware Research
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Angela Demke Brown, University of Toronto
Jason Flinn, Meta
Casey Henderson, USENIX Association
Jon Howell, VMware Research
Kimberly Keeton, Google
Hank Levy, University of Washington
Jay Lorch, Microsoft Research
Shan Lu, University of Chicago
James Mickens, Harvard University
Timothy Roscoe, ETH Zurich
Margo Seltzer, University of British Columbia
Geoff Voelker, University of California, San Diego
Hakim Weatherspoon, Cornell University and Exotanium, Inc.

Hans-J. Boehm Michael Hicks Jon Howell David Mazières Rohan Padhye
External Reviewers

Message from the
OSDI ’23 Program Co-Chairs

Dear Colleagues,

Welcome to the 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’23).

Once again, we are co-locating OSDI and the USENIX Annual technical Conference (USENIX ATC ’23). We are excited
to be back in person in these two forums for such a large gathering of technical experts across academia and industry. We
hope you come away from OSDI and USENIX ATC inspired, refreshed and re-engaged with the wider systems research
community!

This year, OSDI received 255 submissions. We accepted 50 submissions, which is a 19.6% acceptance rate. This is inline with
the 253 submissions and 19.4% acceptance rate from last year. In addition to the 50 papers accepted this year, 5 additional
papers were accepted from the OSDI ’22 Revise and Resubmit process. This brings the total program to 55 papers presented
at OSDI across an incredibly wide breadth of areas of focus. Although this is 6 more papers than last year, we continue to be
committed to a single-track conference at OSDI and have put together a 3-day program for all 55 papers.

Given the large number of submissions, we formed a program committee of 86 members in addition to the two program co-
chairs. There were also 5 external reviews where a particular area of expertise or evaluation was needed on a single paper.
We are very grateful to the program committee for their diligence, focus, and optimism during the review process. OSDI is
known for high quality reviews that help and inform the authors to produce their very best work.

The program committee reviewed submissions in two rounds. Every paper received at least three reviews in the first round.
Roughly 40% of the papers were rejected during the first round of reviews. One paper was accepted after the first round
of reviews concluded, and the remainder advanced to the second round. Papers then received 2 or 3 additional reviews.
Subsequently, the PC had an asynchronous online discussion phase where an additional 35 papers were accepted and 77
papers were rejected. Thirty six papers were advanced to a synchronous, online two-day PC meeting. We purposefully
organized the PC meeting by topic area, which allowed experts who might not have a paper in a particular area up for
discussion, to dial in and participate in the areas most relevant to them. We finished the PC meeting on time, and had a great
discussion from PC members all over the world. Each accepted paper was assigned a shepherd to work with the authors to
revise the paper in response to reviewer feedback. The committee completed more than 1,000 reviews and posted hundreds
of comments as part of the online discussion process. Finally, we did allow one of the program co-chairs to submit a paper.
However, the paper was assigned a “paper administrator,” and neither co-chair had any involvement in the review of that
paper, and both were informed of the paper’s outcome after the PC meeting concluded.

The program committee also chose to continue the revise-and-resubmit process. A small set of papers were recommended by
the program committee to undergo this process. Those authors will have a much longer period of time (until August) to revise
their papers, add important missing details, and/or run additional experiments, as requested by the PC. The original reviewers
will review the revised submission. If accepted, the authors will be allowed to submit a “camera-ready” version of the paper
in October of 2023 and then the authors will present the paper and have that paper officially included in the OSDI 2024
program. This early camera ready deadline allows authors to discuss the work (and have others cite it) well before the OSDI
2024 program appears.

Once the program was completed and the camera-ready deadline had passed, we began the process of selecting the Jay
Lepreau Best Paper Award. We began by asking PC members for nominations and looking at the top-rated papers during the
review process. We formed a small group of non-conflicted PC members who read each paper and agreed on the best paper
of those chosen for consideration.

OSDI ’23 had an artifact-evaluation committee that organized and evaluated the artifacts submitted by authors. The
committee co-chairs this year are Jianyu Jiang, Nathan Rutherford, and Cesar A. Stuardo. Thirty-two papers submitted
artifacts supporting their research. Twenty-nine papers received the Available badge. Thirty-one papers received the
Functional badge, and 27 papers received the Reproduced badge, meaning the results in the paper were independently
reproduced by the committee.

OSDI ’23 had a poster submission process organized by co-chairs Adriana Szekeres and Ryan Huang. Thirty-three posters
were accepted for display at the OSDI poster session.

Finally, as PC chairs, we rely on so many dedicated volunteers and professional staff to make this conference a reality. We
thank the authors who submitted such high-quality work. This conference is first and foremost a forum for disseminating,
sharing, discussing, and debating world-class systems research. Thank you for your hard work and innovation! We thank the
PC members and external reviewers for their significant investment of time, energy, and insight into shaping the program. We
thank Pierre Tholoniat and Roy Rinberg, who facilitated the PC meeting and made sure we ran the technology and not the
other way around. We especially thank the USENIX staff, who have made chairing a conference like this one a well-oiled
machine! Finally, we thank you for coming to this conference to engage with each other and with the authors of the accepted
papers. This community is one we cherish, and one we are honored to have curated this year through our stewardship as co-
chairs.

We hope that you leave this conference energized and inspired.

Onwards!

Roxana Geambasu, Columbia University
Ed Nightingale, Apple
OSDI ’23 Program Co-Chairs

17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’23)

July 10–12, 2023
Boston, MA, USA

Monday, July 10
Make Your Bits Go Faster
Ship your Critical Section, Not Your Data: Enabling Transparent Delegation with TCLocks . 1
Vishal Gupta, EPFL; Kumar Kartikeya Dwivedi, SRMIST; Yugesh Kothari, Yueyang Pan, Diyu Zhou, and
Sanidhya Kashyap, EPFL

RON: One-Way Circular Shortest Routing to Achieve Efficient and Bounded-waiting Spinlocks 17
Shiwu Lo, Han-Ting Lin, Yao-Hung Hsieh, and Chao-Ting Lin, National Chung Cheng University; Yu-Hsueh Fang, National
Cheng Kung University; Ching-Shen Lin, National Chung Cheng University; Ching-Chun (Jim) Huang, National Cheng
Kung University; Kam Yiu Lam, City University of Hong Kong; Yuan-Hao Chang, Academia Sinica, Taiwan

Userspace Bypass: Accelerating Syscall-intensive Applications . 33
Zhe Zhou, Yanxiang Bi, Junpeng Wan, and Yangfan Zhou, Fudan University; Zhou Li, University of California, Irvine

Triangulating Python Performance Issues with Scalene . 51
Emery D. Berger, Sam Stern, and Juan Altmayer Pizzorno, University of Massachusetts Amherst

Relational Debugging — Pinpointing Root Causes of Performance Problems . 65
Xiang (Jenny) Ren, Sitao Wang, Zhuqi Jin, David Lion, and Adrian Chiu, University of Toronto; Tianyin Xu, University of
Illinois at Urbana-Champaign; Ding Yuan, University of Toronto

Secure Your Bits I
Accountable authentication with privacy protection: The Larch system for universal login . 81
Emma Dauterman, UC Berkeley; Danny Lin, Woodinville High School; Henry Corrigan-Gibbs, MIT; David Mazières,
Stanford University

K9db: Privacy-Compliant Storage For Web Applications By Construction . 99
Kinan Dak Albab, Ishan Sharma, Justus Adam, Benjamin Kilimnik, Aaron Jeyaraj, Raj Paul, Artem Agvanian,
Leonhard Spiegelberg, and Malte Schwarzkopf, Brown University

Encrypted Databases Made Secure Yet Maintainable .117
Mingyu Li, Shanghai Jiao Tong University; Shanghai AI Laboratory; Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China; Xuyang Zhao and Le Chen, Shanghai Jiao Tong University; Engineering
Research Center for Domain-specific Operating Systems, Ministry of Education, China; Cheng Tan, Northeastern University;
Huorong Li and Sheng Wang, Alibaba Group; Zeyu Mi, Shanghai Jiao Tong University; Engineering Research Center for
Domain-specific Operating Systems, Ministry of Education, China; Yubin Xia, Shanghai Jiao Tong University; Shanghai AI
Laboratory; Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China;
Feifei Li, Alibaba Group; Haibo Chen, Shanghai Jiao Tong University; Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China

LVMT: An Efficient Authenticated Storage for Blockchain . 135
Chenxing Li, Shanghai Tree-Graph Blockchain Research Institute; Sidi Mohamed Beillahi, University of Toronto;
Guang Yang and Ming Wu, Shanghai Tree-Graph Blockchain Research Institute; Wei Xu, Tsinghua University;
Fan Long, University of Toronto

Honeycomb: Secure and Efficient GPU Executions via Static Validation . 155
Haohui Mai, PrivacyCore Inc.; Jiacheng Zhao, SKLP, Institute of Computing Technology, CAS; Zhongguancun
Laboratory; and UCAS; Hongren Zheng, IIIS, Tsinghua University; Yiyang Zhao, SKLP, Institute of Computing
Technology, CAS; and UCAS; Zibin Liu, BUPT; Mingyu Gao, IIIS, Tsinghua University; Cong Wang, IDEA Shenzhen;
Huimin Cui, SKLP, Institute of Computing Technology, CAS; and UCAS; Xiaobing Feng, SKLP, Institute of Computing
Technology, CAS; Zhongguancun Laboratory; and UCAS; Christos Kozyrakis, PrivacyCore Inc. and Stanford

Secure Your Bits II
An Extensible Orchestration and Protection Framework for Confidential Cloud Computing 173
Adil Ahmad and Alex Schultz, Arizona State University; Byoungyoung Lee, Seoul National University; Pedro Fonseca,
Purdue University

Nimble: Rollback Protection for Confidential Cloud Services . 193
Sebastian Angel, Microsoft Research; Aditya Basu, Penn State University; Weidong Cui, Microsoft Research;
Trent Jaeger, Penn State University; Stella Lau, MIT CSAIL; Srinath Setty, Microsoft Research; Sudheesh Singanamalla,
University of Washington

Kerveros: Efficient and Scalable Cloud Admission Control . 209
Sultan Mahmud Sajal, Microsoft Research and Pennsylvania State University; Luke Marshall and Beibin Li, Microsoft
Research; Shandan Zhou and Abhisek Pan, Microsoft Azure; Konstantina Mellou and Deepak Narayanan, Microsoft
Research; Timothy Zhu, Pennsylvania State University; David Dion and Thomas Moscibroda, Microsoft Azure;
Ishai Menache, Microsoft Research

Security and Performance in the Delegated User-level Virtualization . 227
Jiahao Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering
Research Center for Domain-specific Operating Systems, Ministry of Education, China; Dingji Li, Institute of Parallel
and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China; MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao
Tong University; Zeyu Mi, Yuxuan Liu, and Binyu Zang, Institute of Parallel and Distributed Systems, SEIEE, Shanghai
Jiao Tong University; Engineering Research Center for Domain-specific Operating Systems, Ministry of Education,
China; Haibing Guan, Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University;
Haibo Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research
Center for Domain-specific Operating Systems, Ministry of Education, China

Core slicing: closing the gap between leaky confidential VMs and bare-metal cloud . 247
Ziqiao Zhou, Microsoft Research; Yizhou Shan, University of California, San Diego; Weidong Cui, Xinyang Ge,
Marcus Peinado, and Andrew Baumann, Microsoft Research

Tuesday, July 11
Expanding, Hardening, and Deploying Your Bits
ExoFlow: A Universal Workflow System for Exactly-Once DAGs . 269
Siyuan Zhuang, UC Berkeley; Stephanie Wang, UC Berkeley and Anyscale; Eric Liang and Yi Cheng, Anyscale;
Ion Stoica, UC Berkeley

Hyrax: Fail-in-Place Server Operation in Cloud Platforms . 287
Jialun Lyu, Microsoft Azure and University of Toronto; Marisa You, Celine Irvene, Mark Jung, Tyler Narmore,
Jacob Shapiro, Luke Marshall, and Savyasachi Samal, Microsoft Azure; Ioannis Manousakis and Lisa Hsu, Formerly of
Microsoft Azure; Preetha Subbarayalu, Ashish Raniwala, Brijesh Warrier, and Ricardo Bianchini, Microsoft Azure;
Bianca Schroeder, University of Toronto; Daniel S. Berger, Microsoft Azure and University of Washington

NCC: Natural Concurrency Control for Strictly Serializable Datastores by Avoiding the Timestamp-Inversion
Pitfall . 305
Haonan Lu, University at Buffalo; Shuai Mu, Stony Brook University; Siddhartha Sen, Microsoft Research;
Wyatt Lloyd, Princeton University

Conveyor: One-Tool-Fits-All Continuous Software Deployment at Meta . 325
Boris Grubic, Meta; Yang Wang, Meta and the Ohio State University; Tyler Petrochko, Ran Yaniv, Brad Jones, David Callies,
Matt Clarke-Lauer, and Dan Kelley, Meta; Soteris Demetriou, Meta and Imperial College London; Kenny Yu and
Chunqiang Tang, Meta

Query Your Bits
Chardonnay: Fast and General Datacenter Transactions for On-Disk Databases . 343
Tamer Eldeeb and Xincheng Xie, Columbia University; Philip A. Bernstein, Microsoft Research; Asaf Cidon and
Junfeng Yang, Columbia University

ScaleDB: A Scalable, Asynchronous In-Memory Database . 361
Syed Akbar Mehdi, The University of Texas at Austin; Deukyeon Hwang and Simon Peter, University of Washington;
Lorenzo Alvisi, Cornell University

VBase: Unifying Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity 377
Qianxi Zhang, Shuotao Xu, Qi Chen, and Guoxin Sui, Microsoft Research Asia; Jiadong Xie, Microsoft Research Asia
and East China Normal University; Zhizhen Cai and Yaoqi Chen, Microsoft Research Asia and University of Science and
Technology of China; Yinxuan He, Microsoft Research Asia and Renmin University of China; Yuqing Yang, Fan Yang,
Mao Yang, and Lidong Zhou, Microsoft Research Asia

Detecting Transactional Bugs in Database Engines via Graph-Based Oracle Construction . 397
Zu-Ming Jiang and Si Liu, ETH Zurich; Manuel Rigger, National University of Singapore; Zhendong Su, ETH Zurich

Take Out the TraChe: Maximizing (Tra)nsactional Ca(che) Hit Rate . 419
Audrey Cheng, David Chu, Terrance Li, Jason Chan, Natacha Crooks, Joseph M. Hellerstein, and Ion Stoica, UC Berkeley;
Xiangyao Yu, University of Wisconsin—Madison

Store Your Bits
Replicating Persistent Memory Key-Value Stores with Efficient RDMA Abstraction . 441
Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu, Tsinghua University

eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs . 461
Jaehong Min and Chenxingyu Zhao, University of Washington; Ming Liu, University of Wisconsin-Madison;
Arvind Krishnamurthy, University of Washington

SEPH: Scalable, Efficient, and Predictable Hashing on Persistent Memory . 479
Chao Wang, Junliang Hu, Tsun-Yu Yang, Yuhong Liang, and Ming-Chang Yang, The Chinese University of Hong Kong

No Provisioned Concurrency: Fast RDMA-codesigned Remote Fork for Serverless Computing 497
Xingda Wei, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University, and Shanghai AI
Laboratory; Fangming Lu, Tianxia Wang, Jinyu Gu, and Yuhan Yang, Institute of Parallel and Distributed Systems,
SEIEE, Shanghai Jiao Tong University; Rong Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai
Jiao Tong University, and Shanghai AI Laboratory; Haibo Chen, Institute of Parallel and Distributed Systems, SEIEE,
Shanghai Jiao Tong University

Manage Your Bits I
Johnny Cache: the End of DRAM Cache Conflicts (in Tiered Main Memory Systems) . 519
Baptiste Lepers, Université de Neuchâtel; Willy Zwaenepoel, University of Sydney

Tailcheck: A Lightweight Heap Overflow Detection Mechanism with Page Protection and Tagged Pointers 535
Amogha Udupa Shankaranarayana Gopal, Raveendra Soori, Michael Ferdman, and Dongyoon Lee, Stony Brook University

SMART: A High-Performance Adaptive Radix Tree for Disaggregated Memory . 553
Xuchuan Luo, School of Computer Science, Fudan University; Pengfei Zuo, Huawei Cloud; Jiacheng Shen and Jiazhen
Gu, The Chinese University of Hong Kong; Xin Wang, School of Computer Science, Fudan University; Shanghai
Key Laboratory of Intelligent Information Processing, Shanghai, China; Michael R. Lyu, The Chinese University of
Hong Kong; Yangfan Zhou, School of Computer Science, Fudan University; Shanghai Key Laboratory of Intelligent
Information Processing, Shanghai, China

ORC: Increasing Cloud Memory Density via Object Reuse with Capabilities . 573
Vasily A. Sartakov, Lluís Vilanova, and Munir Geden, Imperial College London; David Eyers, University of Otago;
Takahiro Shinagawa, The University of Tokyo; Peter Pietzuch, Imperial College London

Manage Your Bits II
Global Capacity Management With Flux . 589
Marius Eriksen, Kaushik Veeraraghavan, Yusuf Abdulghani, Andrew Birchall, Po-Yen Chou, Richard Cornew, Adela
Kabiljo, Ranjith Kumar S, Maroo Lieuw, Justin Meza, Scott Michelson, Thomas Rohloff, Hayley Russell, Jeff Qin, and
Chunqiang Tang, Meta

Defcon: Preventing Overload with Graceful Feature Degradation . 607
Justin J. Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware, Dmitry Chernyshev, Yi Yu, Md Nazim Uddin, Rohan Das,
Chad Nachiappan, Sari Tran, Shuyang Shi, Tina Luo, David Ke Hong, Sankaralingam Panneerselvam, Hans Ragas,
Svetlin Manavski, Weidong Wang, and Francois Richard, Meta Platforms, Inc.

Cilantro: Performance-Aware Resource Allocation for General Objectives via Online Feedback 623
Romil Bhardwaj, UC Berkeley; Kirthevasan Kandasamy, University of Wisconsin-Madison; Asim Biswal, Wenshuo Guo,
Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion Stoica, UC Berkeley

Karma: Resource Allocation for Dynamic Demands . 645
Midhul Vuppalapati, Giannis Fikioris, and Rachit Agarwal, Cornell University; Asaf Cidon, Columbia University;
Anurag Khandelwal, Yale University; Éva Tardos, Cornell University

Wednesday, July 12
Train Your Bits I
AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving . 663
Zhuohan Li and Lianmin Zheng, UC Berkeley; Yinmin Zhong, Peking University; Vincent Liu, University of Pennsylvania;
Ying Sheng, Stanford University; Xin Jin, Peking University; Yanping Huang and Zhifeng Chen, Google; Hao Zhang,
UC San Diego; Joseph E. Gonzalez and Ion Stoica, UC Berkeley

Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning . 681
Chen Zhang, Tsinghua University; Lingxiao Ma and Jilong Xue, Microsoft Research; Yining Shi, Peking University
& Microsoft Research; Ziming Miao and Fan Yang, Microsoft Research; Jidong Zhai, Tsinghua University; Zhi Yang,
Peking University; Mao Yang, Microsoft Research

Welder: Scheduling Deep Learning Memory Access via Tile-graph . 701
Yining Shi, Peking University & Microsoft Research; Zhi Yang, Peking University; Jilong Xue, Lingxiao Ma, Yuqing Xia,
Ziming Miao, Yuxiao Guo, Fan Yang, and Lidong Zhou, Microsoft Research

Effectively Scheduling Computational Graphs of Deep Neural Networks toward Their Domain-Specific
Accelerators . 719
Jie Zhao, Information Engineering University; Siyuan Feng, Shanghai Jiao Tong University; Xiaoqiang Dan, Fei Liu,
Chengke Wang, Sheng Yuan, Wenyuan Lv, and Qikai Xie, Stream Computing Inc.

Train Your Bits II
einneT: Optimizing Tensor Programs with Derivation-Based Transformations . 739
Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei Wang, and Shuhong Huang, Tsinghua University;
Xupeng Miao, Carnegie Mellon University; Shizhi Tang and Kezhao Huang, Tsinghua University; Zhihao Jia, Carnegie
Mellon University

Hydro: Surrogate-Based Hyperparameter Tuning Service in Datacenters . 757
Qinghao Hu, Nanyang Technological University, S-Lab, NTU, and Shanghai AI Laboratory; Zhisheng Ye, Shanghai
AI Laboratory and Peking University; Meng Zhang, Nanyang Technological University, S-Lab, NTU, and Shanghai AI
Laboratory; Qiaoling Chen, Shanghai AI Laboratory and National University of Singapore; Peng Sun, Shanghai AI
Laboratory and SenseTime Research; Yonggang Wen and Tianwei Zhang, Nanyang Technological University

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel Communication-Computation
Pipelining on Multi-GPU Platforms . 779
Yuke Wang, Boyuan Feng, and Zheng Wang, University of California Santa Barbara; Tong Geng, University of
Rochester; Kevin Barker and Ang Li, Pacific Northwest National Laboratory; Yufei Ding, University of California Santa
Barbara

Optimizing Dynamic Neural Networks with Brainstorm . 797
Weihao Cui, Shanghai Jiao Tong University; Zhenhua Han, Microsoft Research Asia; Lingji Ouyang, University of Science
and Technology of China; Yichuan Wang, Shanghai Jiao Tong University; Ningxin Zheng, Lingxiao Ma, Yuqing Yang,
Fan Yang, Jilong Xue, Lili Qiu, and Lidong Zhou, Microsoft Research Asia; Quan Chen, Shanghai Jiao Tong University;
Haisheng Tan, University of Science and Technology of China; Minyi Guo, Shanghai Jiao Tong University

AdaEmbed: Adaptive Embedding for Large-Scale Recommendation Models . .817
Fan Lai, University of Michigan; Wei Zhang, Rui Liu, William Tsai, Xiaohan Wei, Yuxi Hu, Sabin Devkota, Jianyu
Huang, Jongsoo Park, Xing Liu, Zeliang Chen, Ellie Wen, Paul Rivera, Jie You, and Chun-cheng Jason Chen, Meta;
Mosharaf Chowdhury, University of Michigan

Verify Your Bits
BWoS: Formally Verified Block-based Work Stealing for Parallel Processing . 833
Jiawei Wang, Huawei Dresden Research Center, Huawei Central Software Institute, Technische Universität Dresden;
Bohdan Trach, Ming Fu, Diogo Behrens, Jonathan Schwender, Yutao Liu, and Jitang Lei, Huawei Dresden Research
Center, Huawei Central Software Institute; Viktor Vafeiadis, MPI-SWS; Hermann Härtig, Technische Universität
Dresden; Haibo Chen, Huawei Central Software Institute, Shanghai Jiao Tong University

Spoq: Scaling Machine-Checkable Systems Verification in Coq . 851
Xupeng Li, Xuheng Li, Wei Qiang, Ronghui Gu, and Jason Nieh, Columbia University

Verifying vMVCC, a high-performance transaction library using multi-version concurrency control 871
Yun-Sheng Chang, MIT CSAIL; Ralf Jung, ETH Zurich; Upamanyu Sharma, MIT CSAIL; Joseph Tassarotti, New York
University; M. Frans Kaashoek and Nickolai Zeldovich, MIT CSAIL

Automated Verification of Idempotence for Stateful Serverless Applications . 887
Haoran Ding, Zhaoguo Wang, and Zhuohao Shen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong
University; Rong Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Shanghai AI
Laboratory; Haibo Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

Sharding the State Machine: Automated Modular Reasoning for Complex Concurrent Systems 911
Travis Hance and Yi Zhou, Carnegie Mellon University; Andrea Lattuada, VMware Research; Reto Achermann,
University of British Columbia; Alex Conway, VMware Research; Ryan Stutsman, VMware Research and University of
Utah; Gerd Zellweger, VMware Research; Chris Hawblitzel, Microsoft Research; Jon Howell, VMware Research;
Bryan Parno, Carnegie Mellon University

Transfer Your Bits
Flor: An Open High Performance RDMA Framework Over Heterogeneous RNICs . 931
Qiang Li, Alibaba Group; Yixiao Gao and Xiaoliang Wang, Nanjing University; Haonan Qiu, Alibaba Group;
Yanfang Le, AMD; Derui Liu, Alibaba Group; Qiao Xiang, Xiamen University; Fei Feng, Peng Zhang, Bo Li, Jianbo Dong,
Lingbo Tang, Hongqiang Harry Liu, Shaozong Liu, Weijie Li, Rui Miao, Yaohui Wu, Zhiwu Wu, Chao Han, Lei Yan,
Zheng Cao, and Zhongjie Wu, Alibaba Group; Chen Tian and Guihai Chen, Nanjing University; Dennis Cai, Jinbo Wu,
Jiaji Zhu and Jiesheng Wu, Alibaba Group; Jiwu Shu, Xiamen University

ShRing: Networking with Shared Receive Rings . 949
Boris Pismenny, Technion & NVIDIA; Adam Morrison, Tel Aviv University; Dan Tsafrir, Technion & VMware Research

ServiceRouter: Hyperscale and Minimal Cost Service Mesh at Meta . 969
Harshit Saokar, Meta; Soteris Demetriou, Meta and Imperial College London; Nick Magerko, Max Kontorovich,
Josh Kirstein, and Margot Leibold, Meta; Dimitrios Skarlatos, Meta and Carnegie Mellon University; Hitesh Khandelwal
and Chunqiang Tang, Meta

Characterizing Off-path SmartNIC for Accelerating Distributed Systems . 987
Xingda Wei and Rongxin Cheng, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University,
and Shanghai AI Laboratory; Yuhan Yang, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong
University; Rong Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University, and Shanghai
AI Laboratory; Haibo Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

Ensō : A Streaming Interface for NIC-Application Communication . 1005
Hugo Sadok and Nirav Atre, Carnegie Mellon University; Zhipeng Zhao, Microsoft; Daniel S. Berger, Microsoft Research
and University of Washington; James C. Hoe, Carnegie Mellon University; Aurojit Panda, New York University;
Justine Sherry, Carnegie Mellon University; Ren Wang, Intel

Ship your Critical Section, Not Your Data:

Enabling Transparent Delegation with TCLocks

Vishal Gupta Kumar Kartikeya Dwivedi ∗ Yugesh Kothari Yueyang Pan

Diyu Zhou Sanidhya Kashyap

EPFL ∗SRMIST

Abstract

Today’s high-performance applications heavily rely on
various synchronization mechanisms, such as locks. While
locks ensure mutual exclusion of shared data, their design
impacts application scalability. Locks, as used in practice,
move the lock-guarded shared data to the core holding it,
which leads to shared data transfer among cores. This design
adds unavoidable critical path latency leading to performance
scalability issues. Meanwhile, some locks avoid this shared
data movement by localizing the access to shared data on
one core, and shipping the critical section to that specific
core. However, such locks require modifying applications
to explicitly package the critical section, which makes it
virtually infeasible for complicated applications with large
code bases, such as the Linux kernel.

We propose transparent delegation, in which a waiter auto-
matically encodes its critical section information on its stack
and notifies the combiner (lock holder). The combiner exe-
cutes the shipped critical section on the waiter’s behalf using
a lightweight context switch. Using transparent delegation,
we design a family of locking protocols, called TCLocks, that
requires zero modification to applications’ logic. The evalua-
tion shows that TCLocks provide up to 5.2× performance
improvement compared with recent locking algorithms.

1 Introduction

Synchronization mechanisms are the basic building blocks
for today’s high-performance concurrent applications. In
fact, applications heavily rely on locks as a concurrency
control mechanism, as they provide a set of simple pro-
gramming APIs for users to mediate concurrent access to
shared data. Besides ensuring program correctness, locks
also affect the scalability of applications [33, 34, 49]. For
instance, various high-performance applications, such as
the Linux kernel, have moved from coarse-grained to fine-
grained locks [52] for minimizing the length of the critical
section. However, thanks to diverse workloads and appli-
cations, the scalability problem due to lock algorithms still
remains at large [41, 55, 62, 70].

0

2

4

6

8

28 56 84 11
2

14
0

16
8

19
6

22
4

1
4
16
64
256
1024

28 56 84 11
2

14
0

16
8

19
6

22
4

M
O
ps
/s
ec

of threads

Stock ShflLock
(a) Enumerate shared directory files

Ti
m
e
(µ
s)

of threads

CNA TCLock
(b) Time spent in the critical section

Figure 1: Impact of locks on a file-system micro-benchmark [62].
We compare three traditional lock algorithms: Linux’s qspin-
lock (Stock) [41], CNA [43] and ShflLock [52] with our proposed
TCLock. (a) Enumerating files in a shared directory on an 8-socket
224-core machine. (b) Time spent in the critical section: moving the
critical section context (TCLock) compared with moving critical
section shared data (Stock, CNA, and ShflLock).

As a result, research in lock algorithms focuses on min-
imizing the contention on cache-lines containing the lock
word and shared data. The most widely used algorithms al-
ways move the shared data to the core executing the critical
section [30, 41, 43, 52, 53, 60]. Lock evolution within this de-
sign philosophy has focused on reducing contention on the
lock word. However, such a lock design still moves shared
data across cores for every lock acquisition. Figure 1 shows
that such shared data access cost increases with increasing
cores, thereby limiting the scalability of applications.

On the other end of the design spectrum, some algorithms
adopt the request-response style of communication, also
called delegation-style locking [37, 47, 51, 56, 64, 67]. Specifi-
cally, waiters delegate their critical section execution context
to a dedicated core [56, 67] or a combiner [47, 51] that exe-
cutes that function on behalf of eachwaiter in a specific order.
Figure 1 illustrates that this design outperforms traditional
locks and improves application performance. In particular,
such a lock design minimizes the shared data movement, and
ensures almost constant critical section latency regardless
of the number of threads.

Despite potential performance gains, the practical design
and implementation of delegation-style locks faces several
challenges. First, applications require major rewriting to ex-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1

plicitly encapsulate and pass the critical section as a function
pointer [51, 56, 67]. Unfortunately, this rewriting becomes
impractical for applications with large code bases, such as
the Linux kernel, which has over 180k lock API call sites [52].
Second, every delegation-based work focuses on situations
involving a single lock contention. However, today’s appli-
cations often employ fine-grained locking and may acquire
multiple locks for operations, such as memory, scheduler,
and storage management in the Linux kernel [4, 12, 13, 20].
Finally, the third challenge involves managing the per-CPU
or per-thread variables, which applications heavily depend
on for either performance or correctness.
In this paper, we take the first step towards making

delegation-based locks practical for concurrent applications
with large code bases. We introduce the idea of transparent
delegation, which enables developers to utilize delegation-
style locking without rewriting the application. Our trans-
parent delegation approach encapsulates the critical section
using two observations: First, a thread’s stack and CPU
registers contain the state of the waiter’s thread. Second,
using the lock/unlock API pushes the thread’s context on its
stack. Thus, a waiter saves its critical section context using
CPU registers and stack pointer, and calling the lock API as a
function. Finally, the combiner executes the waiter’s critical
section on its behalf by assuming the role of the waiter us-
ing a lightweight context switch mechanism [29, 59]. This
context-switch mechanism is transparent to the application.
Using transparent delegation, we design a new family of

locks called TCLocks that augment existing locks, such as
test-and-set (TAS) and MCS, by employing the combining
technique for batching waiters’ requests [47]. Our first lock
is a spinlock, wherewaiters continuously spinwhile awaiting
the lock. The combiner can execute multiple waiter’s criti-
cal section before passing its role based on a counter-based
mechanism. Similar to our prior work (ShflLocks) [52], our
algorithms can enforce hardware and software policies on
the fly. In particular, our spinlock version also incorporates
NUMA-awareness policy. We then integrate the core over-
subscription policy [52] to design a blocking lock, where
the waiter can sleep while waiting for the lock. Lastly, we
design a phase-based readers-writer lock built on top of our
blocking lock.

Applying TCLocks directly in highly concurrent systems
presents its own set of challenges. First, transparent delega-
tion violates the single-writer property of a thread’s stack,
meaning that two threads (the combiner and the waiter)
writing to the same stack can cause data races and stack
corruption. Waiters need access to a stack due to specific
events, such as interrupts in the kernel space, signals in
userspace, and scheduling of waiting threads. We address
the data-race issue using a per-thread ephemeral stack that a
waiter switches to between the acquire and release phases.

Second, most concurrent applications use multi-level lock-
ing [4, 20, 28] and out-of-order (OOO) unlocking [12, 13]

for higher concurrency and better scalability. TCLocks han-
dle the arbitrary level of nested combining by maintaining
combiner-specific state on the ephemeral stack before acquir-
ing the nested lock. Meanwhile, we handle OOO unlocking
by keeping track of the order of acquired locks. We delay
the release of OOO unlocked locks until the order is the in-
verse of acquired locks. This effectively flattens the release
of locks.

We evaluate TCLocks in both kernel space and userspace
on NUMA machines. TCLocks improve the performance
within and across sockets. Specifically, TCLocks boost appli-
cation throughput by 1.7–5.2× compared to the locks used
in the Linux kernel and state-of-the-art locks, respectively.

In summary, this paper makes the following contributions:
• Design technique. We introduce a new design tech-
nique called transparent delegation. Locks with this
technique allow developers to use the same APIs as
traditional locks while benefiting from the scalability
improvements provided by delegation-style locking.

• Delegation-based lock family. We implement
TCLocks that employ transparent delegation. We first
design a spinning lock and extend it to blocking and
readers-writer locks, utilizing per-thread ephemeral
stacks to manage the parking of waiters.

• Practical application. TCLocks incorporate various
lock use scenarios, including nested locking and out-
of-order unlocking. This approach allows us to realize
the potential of delegation-style locking for the Linux
kernel without modifying any code.

2 Background

While executing a critical section, a thread accesses three
types of memory locations (data):
1. Lock word, i.e., its structure that determines the exclu-

sive access for a thread.
2. Shared data among threads guarded by a lock word,

accessible only to the thread holding the lock.
3. Thread-local data like stack and per-thread variables.

Most lock designs minimize the contention on the lock word,
while some minimize the movement of shared data. Hence,
there are two design philosophies based on shared data move-
ment: traditional and delegation-style. We now discuss the
evolution of locks based on these design philosophies. Later,
we touch upon the systems-level challenges that are specific
to delegation-style locks.
2.1 Traditional Locks

Traditional lock design adheres to the principle of moving
data to computation. A core executes the critical section
by moving shared data into its cache. Consequently, this
design moves cache lines of both the lock word and shared
data across cores while executing the critical section. The
evolution of traditional lock algorithms [50] has focused
on minimizing cache-line movement of the lock word. For
example, queue-based locks [41, 42, 44, 58, 60, 68] minimize

2 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cache-line contention due to the lock word. Hierarchical
locks [39, 46, 57, 66] further reduce the cache-line contention
on non-uniform memory access (NUMA) machines, where
accessing a local-socket memory location is faster than a
remote one. These locks amortize the remote access cost
of the lock word by reordering the wait queue to pass the
lock within the same socket. ShflLock [52] and CNA [43]
further generalize hierarchical lock design by reordering
the wait queue based on various hardware and software
policies. Moreover, our recent work [65] has also shown that
the reordering policy can be changed dynamically without
kernel compilation.
Readers-writer locks also follow traditional lock design,

with most locks aiming to minimize contention on the lock
word [36, 54, 61]. These locks augment mutually exclusive
locks with different types of read indicators based on work-
load requirements. Some examples include centralized [61],
per-socket [38], and per-CPU [40, 63, 71] indicators. These
locks also require moving shared data across cores, even
though they offer a broader semantics of mutual exclusion.
Traditional locks do not require modifying applications

since the lock/unlock programming APIs remain consistent.
However, these locks move shared data cache lines among
cores while executing the critical section. Unfortunately, this
lock design incurs shared data movement for every critical
section execution, thereby increasing critical section execu-
tion latency. Moreover, this latency grows with increasing
core count (Figure 1 (b)), which saturates the throughput
without efficiently utilizing hardware.
2.2 Delegation-style Locks

Delegation-style locks follow the principle of moving com-
putation to data [45, 47, 51, 56, 64, 67]. These locks use
an old technique called combining that has been used in
hardware and software to mitigate memory contention by
combining requests for the same memory location. In this
approach, waiters pack their critical section as a function and
pass that function pointer to the combiner as a request. The
combiner then executes the waiter’s function and notifies it
upon completion. Executing the critical section on the same
core eliminates shared data movement, leading to improved
application throughput with increasing core count (Figure 1).
However, this lock design has a critical limitation. It

does not provide the same lock/unlock APIs as traditional
locks [47, 67]. Consequently, we need to modify applications,
which involves identifying each critical section in the code,
wrapping it as a function, and modularizing the application
logic for delegation. Modifying application logic to encapsu-
late the critical section as a function is quite challenging and
even impossible in some cases [46]. For instance, Roghanchi
et al. [67] reported modifying ∼1,500 lines of code (LoC) to
enable delegation for Memcached. This limitation, unfortu-
nately, prevents the scalability offered by delegation-style
locking from being applied to existing real-world applica-

tions, such as Linux, which comprises 28M LoC with more
than 180k static lock call sites.
2.3 The Incompatibility of Delegation in Concurrent

Applications

Real-world applications, such as the Linux kernel, employ
fine-grained locking in multiple execution contexts. Fine-
grained locking mostly involves acquiring multiple nested
locks when working with several objects. To prevent dead-
locks, the nested locks are acquired in a specific order, but
they can be released in arbitrary order to enhance concur-
rency [12, 13]. However, none of the delegation approaches
handle such common, but challenging cases. We measured
that both nested locking calls and OOO unlocking calls are
quite prevalent. For instance, booting Linux results in ∼80k
nested locking calls and ∼20k OOO unlock calls. Thus, ad-
dressing these cases is essential to make delegation-style
locks practical for every concurrent systems software.
In addition, the Linux kernel can call locks from various

contexts. These contexts comprise of task [25] and inter-
rupts (e.g., non-maskable interrupt context [11], HardIRQ
context [6, 7], or SoftIRQ context [23])). The kernel code typ-
ically executes in the task context. Depending on the kernel
configuration, a scheduler can preempt or migrate a task to
another CPU. Nevertheless, in special execution contexts,
such as interrupts, or code regions that disable CPU preemp-
tion and migration, the scheduler prohibits the migration of
such contexts. The Linux kernel code also heavily utilizes
per-CPU variables and implicitly relies on stable access to
these variables in such special execution contexts. Tradi-
tional lock design does not require any handling for special
execution contexts because the critical section executes on
the core that acquires the lock. In contrast, delegation-style
locks break this property, necessitating special handling for
these cases, i.e., special contexts and stable access to per-CPU
variables.
Goal. In accordance with the general design principle of
minimizing data movement [43, 52], our objective is to re-
duce data movement for both lock word and shared data.
Unlike existing delegation-style locks, we avoid making any
code modifications. Hence, we take the initial step towards
achieving the goal of transparently enabling delegation-style
locking for any real-world application, including the OS.

3 TCLocks

We propose transparent delegation, a practical lock-design
technique for real-world applications that allow developers
to use the same lock/unlock APIs as traditional locks with-
out modifying the application code. Transparent delegation
involves two steps: First, it automatically encapsulates a
critical section of arbitrary length in a set of registers and
the thread stack. Second, waiters pass this encapsulated in-
formation to the combiner for execution. As a result, our
approach enables applications to enjoy scalability without
any modification. We apply this technique to design a family

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 3

of lock algorithms called TCLocks, that transparently dele-
gate waiters’ requests to the combiner. TCLocks comprises
spinning (§3.2) and blocking (§3.4) locks. We extend the
blocking lock with read indicators to design a phase-based
readers-writer blocking lock (§3.5) incorporating hardware
and software-based optimizations (§3.6).
3.1 TCLock Design

We first discuss a set of insights and techniques that allows
us to design and implement TCLocks.
Transparent delegation. When executing a critical sec-
tion, a thread can access both shared data (e.g., global vari-
ables, heap) and thread-local data (e.g., registers, stack, and
per-thread variables). In delegation-style locking, although
shared data is globally available to all threads, the combiner
requires access to the waiter’s thread-local data and the set
of instructions for executing its critical section.
Our technique overcomes the challenge of thread-local

data and critical section context using three key insights.
1. A thread’s execution context is well-defined by hard-

ware, with thread-specific CPU registers and the stack
containing all information for executing the critical sec-
tion [2, 8, 10].

2. A waiter busy-waits without modifying its state once
it sends its request to the combiner. It exits only after
receiving the response from the combiner.

3. Calling the lock API as a function1 ensures that hard-
ware pushes the next instruction onto the stack, making
the critical section’s start address available to the com-
biner for executing the critical section.

Using these insights, the combiner pops the start address
of a critical section from the waiter’s stack using a return
instruction and executes it. After completing the critical
section, calling the unlock API pushes the first instruction of
the non-critical section onto the waiter’s stack. The waiter
resumes executing the non-critical section after receiving a
notification from the combiner. Thus, transparent delegation
allows waiters to seamlessly pass context and resume after
the critical section’s execution.
Avoiding concurrent stack access with an ephemeral

stack. To ensure program correctness, transparent delega-
tionmust prevent concurrent accesses to a thread’s execution
stack. Ideally, a waiter busy-waits for notification during
its critical section execution. However, certain events, such
as interrupts in kernel space, signals in user space, and the
waiter’s parking and wake-up mechanism [32] can access
the waiter’s stack during the execution of its delegated crit-
ical section. As a result, naive transparent delegation via
stack switching violates the fundamental single-writer stack
principle, leading to potential stack state corruption.

To address this issue, we introduce an initially empty, sep-
arate stack called the ephemeral stack. Each waiter switches
to its ephemeral stack during lock acquisition, and delegates

1For example, the call instruction in x86.

notify waiter

t1

E1

t2

E2

(c) t1

t1

t3

E3

t1

E1

t2

E2

(d) t1

t3

E3

t1

E1

t2

E2

(f) t1

t3

E3

t1

M2

t2

E2

(e) t1

t3

E3

t1

E1

t2

M2

(g) t1

t3

E3

t1

M1

(h) t1

t3

E3

(a)

glock
tail

lock combiner
phase

lock byte

qnode

status
next

Stack
in use

Mi

t1

M1

(b)
t1

E1

: combiner
: locked/unlocked
: ti main stackMi
: ti ephemeral stack
: waiter being processed

Ei

Figure 2: Lock and qnode structures of the TCLock. (a) Initially, the
lock is in the unlock state. t1 first switches from its main stack (M1)
to the ephemeral stack (E1), and (b) joins the waiting queue. (c) t1

being at the head of the queue, becomes the combiner. Meanwhile,
t2 and t3 join the queue. They also switch their stack to E2 and E3,
respectively. (d) t1 begins the combining process by traversing the
queue and finds t2. (e) t1 switches to t2’s main stack (E1 → M2) and
executes t2’s critical section. (f) Once finished, t1 first switches
back to E1 and then notifies t2 that t1 has finished executing its
critical section. (g) t2 then switches back to M2 and exits its unlock
phase. Meanwhile, t1 finds t3 as the last waiter. (h) t1 notifies t3

that it is now at the head of the queue, then t1 switches its stack to
M1, executes its critical section, and finally exits the unlock phase.

its critical section to the combiner. The waiter then busy-
waits using the ephemeral stack while the combiner accesses
the waiter’s main stack to execute the critical section. Impor-
tantly, the use of an ephemeral stack does not introduce any
new stack overflow bugs since it is a separate memory from
the thread’s execution stack. By incorporating the ephemeral
stack, TCLocksmaintain the single-writer principle, thereby
preventing concurrent access and the corruption of waiters’
stack.
3.2 Spinlock: TCLock

SP

TCLockSP augments the TAS and MCS lock by adopting the
combining technique from MCS-style combining works [45,
47]. It involves a waiting thread becoming a combiner and
batch waiters’ requests up to a set threshold. Specifically,
TCLock extends the DSM-Synch lock, using TAS as a top-
level lock, and an MCS-style waiting queue for waiters. The
waiter’s queue node (qnode) maintains additional states: 1)
request and wait flags for synchronizing between a waiter
and the combiner and selecting the next combiner. 2) Socket
ID for NUMA lock design (§3.6.3). 3) Batch count to limit

4 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

excessive waiters, causing starvation or long-term fairness
issues. And, 4) a pointer to the waiter’s thread context for
transparent delegation, which includes all registers and the
stack pointer.
Transparent delegation invariants. Our lock algorithm
maintains four invariants: 1) A combiner is always at the
head of the waiting queue. 2) A waiter never uses its main
stack while busy waiting. 3) All instructions in a critical
section are executed only once, either by a waiter or the
combiner executing on the waiter’s behalf. 4) A combiner
exclusively executes the waiter’s critical section instructions
defined between the lock and the unlock phase.
Workflow. Figure 2 presents a running example of
TCLockSP. Before requesting a lock, every thread executes
in its main context (a). When a thread requests a lock, it
switches to an ephemeral stack, saves its main context in
its qnode, and joins the queue (b). Now, the head of the
queue (t1) becomes the combiner, while other threads (t2
and t3) join the queue after switching to their respective
ephemeral stacks. They wait for notification from the com-
biner, while processing any interrupts and signals on their
ephemeral stacks. The combiner iterates through the queue
and finds t2’s request (d). t1 context-switches to t2’s main
context using t2’s qnode, and starts executing t2’s critical
section (e). Reaching the unlock API of t2, t1 switches back
to its ephemeral stack, notifies t2, and checks for other re-
quests (f). Once t2 receives notification, it switches back
to its main context, which now points to the end of the
critical section. It then continues executing its non-critical
section (g). Finally, the combiner iterates through the entire
queue, it passes the combining role to t3, switches to its
main context, and executes its critical section (h). Finally, t1
unlocks the lock, allowing t3 to acquire it and continue the
combining process.
Algorithm. Listing 1 presents theTCLockSP pseudocode. A
thread t first attempts to acquire the TAS lock on the fast path
(line 17). On success, t executes its critical section directly.
Otherwise, t finds its thread-local combining structure (line
21), saves its register state on the main stack, switches to the
ephemeral stack, and begins the slow path (lines 26–27). The
slow path comprises four phases: 1) t joins the queue and
busy-waits locally. 2) t then waits to acquire the TAS lock
after becoming the head of the queue. 3) After acquiring the
TAS lock, t checks the combining conditions. 4) Finally, t
combines waiters’ critical sections.
Phase 1: Busy-waiting phase. Upon entering the slow path,
t initializes its qnode (line 32). Specifically, it sets the wait
field to True, request field to UNPRCSD, and the next pointer
to None. The combiner notifies a waiter with the wait flag
and uses the request flag to specify whether it executed a
waiter’s critical section. t then adds itself to the waiting
queue by atomically swapping the tail with the qnode’s ad-
dress (line 36). After that, t checks for any preceding waiters

in the queue. If true, t joins the queue as a waiter (line
38) and waits for the combiner’s notification (lines 39–40);
otherwise, it proceeds to phase 2. While in the queue, t busy-
waits for the combiner to execute its critical section. After
reaching the end of t’s critical section, the combiner pushes
the first instruction after the unlock API (line 107) on t’s
main stack. It then marks t’s request as complete (i.e., PRCSD)
(line 28), which switches to its main context and begins the
non-critical section (line 107). If, however, t’s request is not
completed, t reaches the head of the queue and moves to
phase 2.
Phase 2: Global lock acquisition phase. t now tries to acquire
the TAS (global) lock using the CAS operation (lines 46–50).
Phase 3: Combining-role decision phase. After acquiring the
global lock, t checks whether it can be a combiner (lines 52–
56). If t is the only one in the queue, it resets the queue tail,
(lines 52–53), switches to its main stack (line 28), executes its
critical section, and releases the lock. Otherwise, t checks if
there are at least two waiters in the queue. If true, t proceeds
to phase 4 as a combiner. Otherwise, t passes the combining
role to the next waiter (lines 58–60) by setting the wait bit to
false, and releases the lock after executing its critical section.
Phase 4: Combining phase. t begins the combining phase
by disabling the fast path, thereby forcing new waiters to
join the queue (line 63). t iterates over the queue to execute
each waiter’s critical section (lines 65–75). Within the loop, t
selects the next waiter (4a line 67), and records the waiter’s
information (qnode) in its thread-local combiner struct (cst)
to later use it for resuming the combining process. Then t
switches from its ephemeral stack to the waiter’s main stack,
and executes the waiter’s critical section (4b line 70). Once
finished, t notifies the waiter by first setting the request
flag to PRCSD and resetting the wait flag (4c line 72). t con-
tinuously iterates until it reaches the combining threshold
or cannot find two subsequent waiters in the queue (4d
lines 73–75). After exiting the loop, t ends the combining
phase by changing the locking mode to the non-combining
mode (line 77). t then notifies the next waiter to be the head
of the queue (line 78), and finally executes its critical section.

During the unlock phase, t can be in one of the two states:
G_LOCKED: t unlocks the TAS lock by resetting its value
and returns (lines 92–94). G_LOCKED_COMBINER: t does
not release the TAS lock. It context switches from a waiter
to the combiner by switching from the waiter’s main stack
to the combiner’s ephemeral stack (lines 98) After switching,
t resumes the combining loop and notifies the waiter about
the completion of the critical section (line 72).
3.3 Proof Sketch of Correctness

Mutual exclusion. TCLock ensures mutual exclusion by
maintaining two invariants: First, only one thread can hold
the global TAS lock, which can also be a combiner; Second,
the main stack of a thread is active on only one thread at any
time. TCLock piggybacks on the mutual exclusion property

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 5

1 PRCSD = 0 # Waiter's request is processed by the combiner
2 UNPRCSD = 1 # Waiter's request is not processed until now
3 G_UNLOCK = 0, G_LOCKED = 1 # TAS known states
4 G_LOCKED_COMBINER = 2 # State to mark combining phase
5 WAITERS_TO_COMBINE = 1024 # Combining batch count
6
7 class thread_local_combiner_struct:
8 qcurr = None, qprev = None, qnext = None, node = init_node()
9 counter = 0, lock_addr = Array[None]
10 estack_rsp = init_ephemeral_stack()
11
12 class lock:
13 glock = 0, tail = None # TAS: top level lock, MCS queue
14
15 def spin_lock(lock):
16 # Fastpath: Try to acquire the TAS lock
17 if CAS(&lock.glock, G_UNLOCK, G_LOCKED) == G_UNLOCK:
18 return # Got the lock, going to execute the critical section
19
20 # Switch to the ephemeral stack and acquire the lock in slowpath
21 cst = this_thread_comb_struct() # Get the per-CPU combiner struct
22 switch_stack(lock, cst) # Switch stack and begin slowpath function
23 return
24
25 def switch_stack(lock, cst):
26 switch_to_ephemeral_stack(cst.node) # Main → ephemeral stack
27 lock_slowpath(lock, cst)
28 switch_from_ephemeral_stack(cst.node) # Ephemeral → main stack
29
30 def lock_slowpath(lock, cst):
31 qnode = cst.node # Get the pointer to qnode in the combiner struct
32 init_qnode(qnode, wait = True, request = UNPRCSD ,
33 next = None, skt_id = numa_id()) # Initialize waiter's qnode
34
35 # Phase 1: Busy waiting: Join the queue and wait until notified
36 qprev = SWAP(&lock.tail, &qnode) # Atomically add node to tail
37 if qprev is not None: # Waiters are already present in the queue
38 qprev.next = qnode # Link qprev with qnode to form a queue
39 while qnode.wait is True:
40 continue # Wait for the combiner to halt waiter's spinning
41 if qnode.request == PRCSD : # Waiter request has been processed
42 return #Combiner executed my CS; jump to non critical section
43
44 # Phase 2: Global lock acquisition: Acquire the TAS lock
45 # Waiter is at the head of the queue; get the TAS lock
46 while True: # Wait for the glock to be unlocked
47 while lock.glock != G_UNLOCK:
48 continue
49 if CAS(&lock.glock, G_UNLOCK, G_LOCKED) == G_UNLOCK:
50 break # Got the TAS lock

51 # Phase 3: Combining-role decision: Whether to combine
52 if CAS(&lock.tail, qnode, None) == qnode:
53 return # If only one in the queue, return
54 qnext = qnode.next # Someone joined the queue; get qnode ptr
55 while qnext is None:
56 qnext = qnode.next
57 # If there are at least two waiters, start combining
58 if qnext.next == None:
59 notify_next_queue_head(qnext) # next waiter is combiner
60 return
61
62 # Phase 4: Combining: Batch requests with dynamic policies
63 lock.glock = G_LOCKED_COMBINER # Declare combining phase
64 counter = 0
65 while True: # Combiner loop
66 qcurr = qnext # Get the very next waiter after combiner

67 qnext = select_next_waiter(qcurr) # 4a Get the next node
68 cst.qcurr = qcurr # For qcurr's stack switch in unlock()
69 # 4b Combiner's ephemeral stack → next waiter's stack
70 switch_stack_from_combiner_to_waiter(cst, qcurr)
71 # Waiter's critical section execution finished
72 notify_waiter(qnode) # 4c Mark as completed
73 if qnext is None or qnext.next is None or
74 counter >= WAITERS_TO_COMBINE: # 4d Check comb. cond.
75 break
76 # Combiner phase is over, now combiner runs its CS
77 lock.glock = G_LOCKED # Reset TAS lock to normal lock
78 notify_next_queue_head(qnext) # Next waiter is the combiner
79
80 # Select the next node based on the policy, eg., NUMA etc.
81 def select_next_waiter(qnode):
82 return qnode.next
83
84 def notify_next_queue_head(qnode):
85 qnode.wait = False
86
87 def notify_waiter(qnode):
88 qnode.request = PRCSD
89 qnode.wait = False
90
91 def spin_unlock(lock):
92 if lock.glock == G_LOCKED:
93 lock.glock = G_UNLOCK # Only true for no combining phase
94 return
95 # Jump back to combiner
96 cst = this_cpu_comb_struct()
97 # Waiter's stack → combiner's ephemeral stack
98 switch_stack_from_waiter_to_combiner(cst.qcurr, cst)
99 return

Phase 1: wait
for notification

CS combined
stack switch

Execute
non CS

return jumps
to non-CS

Phase 4: Start

combining

Jump to
next waiter

Execute
waiter's CS

spin_unlock:

Switch to
combiner stack

Notify
waiterW

ai
te

r

Combiner
Line 25-26

Switch to
ephemeral
stack

Line 62-66 Line 67-70 Line 92-98 Line 72-75

Line 39-40

Phase 2
Phase 3

Line 44-60

Line 28

Line 41-42

Line 104-106

Line 23

Execute
waiter's CS

Line 104-106

Line 23

Line 107Line 99
Pass combiner
role and

switch_stack

Line 28

Line 76-78

Call
spin_lock

Line 16-22

Line 103

Start
slowpath

I II III

IV

Line 30-36

Line 27

: Main stack
: Ephemeral stack

V

Listing 1: Pseudocode of TCLock along with the algorithm flow. In the bottom figure, Shade of the boxes show which stack is currently
active and the numbers I – V shows stack switching locations in the algorithm. At each of these locations, following return addresses
are present on the outgoing stack: I Outgoing: Waiters’ main stack→ line 23. II Outgoing: Combiner’s ephemeral stack→ line 71. III
Outgoing: Waiter’s main stack→ line 99. IV and V Outgoing: waiter’s and combiner’s ephemeral stack→ contents are discarded.

of the TAS lock as it uses atomic compare-and-swap (CAS)
to guarantee thread exclusivity. Hence, thanks to the TAS
lock, only one thread can hold the global lock at any given
point and only one thread can access shared data at a time.
Finally, our transparent delegation invariants ensure that a
waiter never touches its own main stack while waiting for
a combiner’s notification. Moreover, TCLock ensures that

the switch from the waiter’s main stack to the combiner’s
ephemeral stack (line 98) occurs at the end of the critical
section, i.e., at the end of the unlock function. Thus, after
the waiter restores its context from the main stack (line 28),
it never enters its critical section.
Correct thread state. TCLock preserves the correct
waiter’s state using a lightweight context switch mechanism

6 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and avoids concurrent stack modification. Specifically, a
waiter yields ownership of its main stack (line 26) before
joining the waiting queue (line 36). Thus, a combiner thread
can only obtain the ownership of a waiter thread’s main
stack after the waiter gives up the ownership. Finally, the
combiner thread concedes its ownership of the waiter’s main
stack (line 98) before notifying the waiter (line 72). There-
fore, our approach ensures that when a waiter reacquires
the ownership of its main stack (line 28), the combiner is not
using that stack.
3.4 Blocking Lock: TCLock

B

TCLockB follows a similar design philosophy of the blocking
ShflLock, where waiters use the spin-then-park strategy.
In this approach, a waiter spins locally until its time quota
expires. Upon expiration, it schedules itself out if the system
is oversubscribed; otherwise, it yields to the scheduler, which
eventually reschedules the waiter. In addition, the lock queue
maintains both active and passive waiters.
We design TCLockB by augmenting TCLockSP to sup-

port the parking/wakeup policy. We extend the combiner’s
role, which now wakes up sleeping waiters while execut-
ing their critical sections. The use of an ephemeral stack
becomes critical for TCLockB because parking of waiters
requires calling a function, which pushes the function frame
on the waiter’s stack. Hence, TCLockB uses the thread-local
ephemeral stack to prevent concurrent accesses. The stack
switching protocol remains the same as in TCLockSP. To en-
able efficient parking and wakeup, we add two new states to
the request field of the qnode: PARKED, in which a waiter
is scheduled out, and PRCSING, which indicates that the
combiner has started executing a waiter’s critical section.

In the slow-path phase, while spinning locally (i.e., phase
1), a waiter t checks if its time quota is up. If so, t attempts
to park itself out. Specifically, t tries to change its request
field from UNPRCSD to PARKED atomically. If successful,
t parks itself out; otherwise, it continues spinning as the
combiner has changed t’s state. In phase 4c , while selecting
the next head of the queue (notify_next_queue_head()), the
combiner atomically swaps t’s state to PRCSING to prevent
the waiter from going to sleep. Furthermore, after executing
the critical section, the combiner atomically swaps t’s state
to PRCSD. In both cases, the combiner checks the old state
of the request field. If it is PARKED, the combiner wakes
up t. We use atomic instructions for changing the state to
prevent the lost wakeup problem.
3.5 Readers-writer Version: TCLock

RW

TCLockRW is a combining-aware readers-writer lock that
allows readers to execute in parallel, while writers are
combined. TCLock uses a phase-based mechanism [35,
36] that alternates between readers and combined writers.
TCLockRW comprises the following: 1) A counter that in-
cludes the reader count (RCNT), writer present byte (WP) to
indicate if a writer is holding the lock, and writer waiting

1 RCNT = 1 << 16; WW = 0x100; WP = 0x1;
2 WCOMBINER = G_LOCKED_COMBINER
3 class rwlock: (32 byte lock)
4 # rwcounter → [RCNT: 17-63; WW: 8-16; WP: 0-7]
5 rwcounter = 0 # 8-byte readers-writer rwcounter
6 tail = None # Writers enqueue in this queue
7 wlock: mutex # Coordinate bw readers & first writer
8
9 def down_read(rwlock): # Acquire read lock
10 atomic_inc(&rwlock.rwcounter, RCNT) # Increment reader count
11 if !(rwlock.rwcounter & 0xffff): # Check the first two bytes
12 return # Lock acquired, if writer not present or waiting
13 atomic_dec(&rwlock.rwcounter, RCNT) # Decrement reader count
14 read_lock_slowpath(rwlock) # execute read slowpath
15
16 def read_lock_slowpath(rwlock):
17 mutex_lock(&rwlock.wlock) # Acquire mutex
18 atomic_inc(&rwlock.rwcounter, RCNT) # Increment reader count
19 while (rwlock.rwcounter & 0xffff) > 0: # Check first two bytes
20 continue # Wait for writer to finish
21 mutex_unlock(&rwlock.wlock) # Release the mutex
22
23 def up_read(rwlock): # Release read lock
24 atomic_dec(&rwlock.rwcounter, RCNT) # Decrease reader count
25
26 def down_write(rwlock): # Acquire write lock
27 # The writer tries to set the WP byte (as 1)
28 if CAS(&rwlock.rwcounter, 0, WP) == 0:
29 return # Writer fastpath
30
31 # Switch to the ephemeral stack and acquire lock in slowpath.
32 cst = this_cpu_comb_struct() # Get the per-CPU comb struct
33 switch_stack(rwlock, cst)
34 return
35 def lock_slowpath(lock, cst): # Write lock slowpath
36 ...
37 - # Waiter → queue's head; get the TAS lock
38 - while True: # Wait for the glock to be unlocked
39 - while lock.glock != G_UNLOCK:
40 - continue
41 - if CAS(&lock.glock, G_UNLOCK, G_LOCKED) == G_UNLOCK:
42 - break # Got the TAS lock
43
44 + # Replace spinning on glock with rwcounter
45 + mutex_lock(&lock.wlock) # Acquire mutex
46 + if CAS(&lock.rwcounter, 0, WP) == 0:
47 + goto unlock # Success if no readers are present.
48
49 + atomic_inc(&lock.rwcounter, WW) # Indicate writer waiting
50 + while True: # Spin until all readers finish CS
51 + if CAS(&lock.rwcounter, WW, WP) == WW:
52 + break
53 + unlock:
54 + mutex_unlock(&lock.wlock) # Release mutex
55 # MCS unlock phase
56 ...
57
58 - # Now, qnext is the combiner, indicated by glock word
59 - lock.glock = G_LOCKED_COMBINER
60 + # Now, qnext is the combiner, indicated by rwcounter word
61 + lock.rwcounter = WCOMBINER
62
63 - # Combiner phase is over, now combiner will run its CS
64 - lock.glock = G_LOCKED # Reset TAS lock to normal lock
65 + lock.rwcounter = WP
66
67 def up_writer(rwlock): # Release write lock
68 + if rwlock.rwcounter == WP:
69 rwlock.rwcounter = 0
70 ...

Listing 2: Pseudo-code for TCLockRW .

byte (WW) indicating a writer waiting to acquire the lock. 2)
A writer queue (tail) for combining and parking waiting
writers. This queue is similar to our TCLockB’s queue. 3) A

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 7

mutex, called wlock, that synchronizes the phase between
readers and the head of the writers queue. Hence, wlock
handles the parking of readers and the head of the write
queue. We use the ShflLockB algorithm [52]—a traditional
NUMA-aware queue-based mutex—for wlock than TCLockB

because maintaining a centralized count of readers (shared
data) contradicts the design of combining that tries to localize
the access to the shared data.
Algorithm. Listing 2 shows the necessary changes to
TCLockSP. A reader first atomically increments RCNT and
executes its critical section if no writer is present (lines 10–
11). Otherwise, it decreases the RCNT (line 13), and enters the
slow-path phase. The reader first acquires wlock (line 17),
it then increments the RCNT (line 18) to mark that a reader
phase should begin soon, and waits for existing writers to
exit (line 20). Finally, it unlocks wlock (line 21) and executes
its critical section. In the unlock phase, a reader releases the
lock by atomically decreasing RCNT (line 24).
A writer enters the critical section if it successfully

switches WP from 0 to 1 (line 28). Otherwise, it switches to
the ephemeral stack and begins the slow path phase (line 33).
This slow path follows the same protocol as TCLockSP ex-
cept that the head of the waiting queue (line 44) acquires
the wlock (line 45). After acquiring wlock, the writer tries
to enter the critical section by atomically setting the value
to WP (line 46). On failure, it sets the WW byte to 1 to prevent
new readers from entering the critical section (line 49) and
waits for other readers to leave. Once they leave, the writer
atomically modifies the rwcounter from WW to WP (line 50–
52), releases wlock, and starts the combining process. In the
unlock phase, a writer resets the rwcounter to 0 if the value
is WP.
3.6 Optimizations

We propose three key optimizations to minimize further the
data movement between the combiner and a waiter, and the
cache-line bouncing of the lock word.

3.6.1 Direct stack switching: waiter→ waiter

In the current TCLockSP version (§3.2), the combiner
switches stack twice before executing the next waiter’s criti-
cal section. Specifically, it first switches to its own context,
finds the next waiter to combine, and then switches to the
next waiter’s context. To avoid the switch to the combiner’s
context, we split the combining loop. In particular, after
switching the stack to a waiter’s context, the combiner tries
to select the next waiter to combine after the current waiter
(4a), and notifies the previous waiter that its critical section
execution is over (4c). The combiner then exits the lock
function call and executes the critical section of the current
waiter. After executing the critical section, i.e., in the un-
lock phase of the current waiter, the combiner checks the
combining loop conditions (4d). If the condition holds, the
combiner directly switches to the next waiter’s context (4b).

Otherwise, it marks the end of the combining phase, switches
back to its context, notifies the previous waiter, and finally
executes its own critical section.
3.6.2 Minimizing context switch overhead

Our combining approach suffers from saving, transferring,
and restoring a thread’s contexts while executing the critical
section. We leverage both compiler and hardware techniques
to minimize extra latency incurred inside the critical section.
Leveraging function’s caller-callee convention. Our
basic context-switch algorithm saves, transfers, and restores
all CPU-specific registers. We minimize this overhead by
leveraging the function calling convention. Specifically, we
explicitly make the slow-path of lock acquisition as a func-
tion to prevent compiler inlining. This has two benefits: First,
this phase is triggered only in the case of contention, as in the
uncontended case, the thread acquires the TAS lock. This ap-
proach is similar to the Linux spinlock implementation [41].
Second, we leverage the function calling convention. In par-
ticular, we save, transfer, and restore only the callee-saved
registers, while the compiler saves and restores the necessary
caller-saved registers [3]. The compiler, using its register
liveness information, knows exactly which caller-saved reg-
isters are in use when the slow-path function is called, and
spills only those registers to the stack. Moreover, the number
of callee-saved registers is small [1, 8, 10]. For example, with
x86_64, there are only six callee-saved registers compared
with 16 general-purpose registers. Thus, the combiner only
transfers at most one cache line to encapsulate any critical
section of arbitrary length.
Prefetching thread-local data. Accessing thread-local
data within the critical section requires moving the waiter’s
specific code and data residing on its CPU to the combiner’s
CPU. Unfortunately, this movement extends the length of
the critical section. We find that most of the local data resides
on the stack due to aggressive compiler optimizations that a
thread either accesses ormodifies in the critical section. Thus,
we prefetch contiguous cache lines from the top of the stack2
to minimize the critical section latency. The combiner issues
the prefetch requests before executing the current waiter’s
critical section. Traditional lock designs cannot adopt this
approach because, unlike the combining approach, the lock
holder already has access to its local data. Meanwhile, shared
data cache lines are always going tomove to the CPU holding
the lock, and their movement is only possible at the end of
the critical section.
3.6.3 NUMA awareness

Similar to ShflLock, TCLock can adopt different policies
to choose the next waiter (select_next_waiter() in §3.2).
TCLock currently employs a NUMA-aware policy that min-
imizes cache-line bouncing among NUMA nodes. In particu-
lar, the combiner only executes critical sections of waiters

2We prefetch data in the write mode using the prefetchw instruction.

8 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

belonging to the same NUMA node. Upon reaching the
combining limit, the combiner passes the role to a waiter re-
siding on another NUMA node. TCLock adopts the dynamic
queue-splitting approach from the CNA algorithm. Specif-
ically, TCLock maintains a combiner-local waiting queue
for remote NUMA node waiters and uses the primary queue
for local NUMA node waiters. Initially, all waiters join the
primary queue (same as before), and the selection of the next
waiter happens as follows: The combiner tries to find the
next waiter from the same socket. If it succeeds, it executes
that waiter’s critical section; otherwise, it adds the remote
waiter’s node to its local queue. While passing the role, the
combiner first enqueues the local queue waiters at the begin-
ning of the primary queue and then passes the combining
role to the primary queue head.

4 TCLocks with Real-World Applications

Although TCLocks offer a compelling case to minimize over-
all shared data movement, applying them to real-world ap-
plications introduces two major challenges. The first chal-
lenge involves fine-grained locking, which requires support
for multi-level locking [4, 20, 28] and out-of-order unlock-
ing [12, 13]. The second challenge stems within the OS
kernel, such as Linux, in which locks can be acquired within
special execution contexts, which guarantees stability about
per-CPU variables while executing within these contexts.
We now discuss our approaches to overcoming these chal-
lenges in the context of the Linux kernel.
4.1 Multi-level Locking

Multi-level locking leads to two notable usage patterns that
require additional effort to design and implement correctly
in the context of combining. First, a combiner thread can
be a waiter while executing a nested lock (henceforth called
waiter-combiner). Second, locks can be released in arbitrary
order leading to out-of-order unlocking. Although out-of-
order unlocking does not affect traditional locks, TCLock
requires extra care in handling such cases, as it can lead to
data corruption as well as deadlocks. We now present our
approach to supporting these usage patterns.
Nested combining. For handling nested combining,
TCLock adopts the same interrupt processing mechanism
by OSes. Interrupt handlers, before processing the interrupt,
push the current thread state on the stack. When the inter-
rupt handler finishes, it restores the thread’s state from the
stack. This allows for handling nested interrupts without
affecting the execution of the interrupted thread. There are
three cases that occur when TCLocks interplay in the con-
text of nested locking: First is the case of nested locks when
both locks are in their combining phase. The second one is
when the outer level lock is a combiner and the inner one is
the fast-path TAS lock. Finally, the third case is the opposite
of the second scenario.
Listing 3 shows the changes required to implement the

first case, which works similar to the interrupt processing

1 + G_UNLOCKED_OOO = 4
2 # Extra state to handle out-of-order unlocking
3
4 def switch_stack(lock, cst):
5 switch_to_ephemeral_stack(cst.node) # Main → ephemeral
6 - lock_slowpath(lock, cst)
7 + ret_val = lock_slowpath(lock, cst)
8 + if ret_val == G_UNLOCKED_OOO: # Only for nested combiner
9 + switch_to_combiner_previous_stack_frame()
10 + else:
11 + switch_from_ephemeral_stack(cst.node) # Ephemeral→main
12
13 def lock_slowpath(lock, cst):
14 ...
15 if qprev is not None: # Waiters are in the queue
16 ...
17 if qnode.request == PRCSD : # Waiter rqst is processed
18 + if lock.glock == G_UNLOCKED_OOO: # OOO unlock
19 + return G_UNLOCKED_OOO
20 return 0 # Combiner executed my CS
21 ...
22
23 # For handling nested combining
24 + save_on_curr_stack_frame(lock.glock, cst.qcurr, qnode.rsp)
25
26 lock.glock = G_LOCKED_COMBINER
27 + j = find_first_empty_index(cst.lock_addr)
28 + cst.lock_addr[j] = lock # Record the current lock address
29 # Combiner loop ...
30 # Combiner phase is over, now combiner will run its CS
31 + cst.lock_addr[j] = None # Remove the current lock address
32
33 # For handling nested combining
34 + restore_from_curr_stack_frame(lock.glock,
35 + cst.qcurr, qnode.rsp)
36 notify_next_queue_head(qnext) # Next waiter is the combiner
37
38 def spin_unlock(lock):
39 if lock.glock == G_LOCKED:
40 lock.glock = G_UNLOCK # Only true for no combining phase
41 return
42 + max_idx = find_last_not_empty_index(cst.lock_addr)
43 + my_idx = find_my_lock_index(cst.lock_addr, lock)
44 + if my_idx < max_idx : # Acquire order != release order
45 + lock.glock = G_UNLOCKED_OOO
46 + return
47 # Jump back to combiner
48 cst = this_cpu_komb_struct()
49 # Waiter's stack → combiner's ephemeral stack
50 switch_stack_from_waiter_to_combiner(cst.qcurr, cst)
51 return

Listing 3: Out-of-order (OOO) unlocking protocol.

approach. Specifically, a combiner may acquire a nested lock
inside the critical section. Before acquiring that lock, the
combiner pushes its state onto its ephemeral stack (line 24),
which it restores after releasing that nested lock (line 35).
This allows TCLocks to handle arbitrary levels of nesting
without violating application correctness.

TCLocks also supports the last two scenarios, in which
one of the locks is in the combining phase. We do not require
any additional support for these cases because each lock is
independent and the underlying lock mechanism doesn’t
interact with each other, which is exactly the same in the
traditional lock design. Specifically, every lock has its own
lock word and its underlying lock mechanism only interacts
with its own lock word. Thus, acquiring the lock in the fast-
path (TAS lock), does not interact with the lock which is held
by the combiner thread.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 9

Out-of-order (OOO) unlocking. The algorithms discussed
thus far for TCLocks incorrectly handle OOO unlocking,
leading to wrong program execution. We illustrate this
through an example: Suppose multiple threads acquire LA

and then LB, which leads to contention. As a result, the com-
bining phase becomes active, and CA and CB hold locks LA and
LB, respectively. CA becomes a waiter-combiner when it tries
to acquire lock LB. Now, if LA is released before LB—unlocked
OOO—the combiner CB will return to its own combining loop,
as the unlock function does not track of the order of unlocked
locks. Therefore, the combiner CB breaks application seman-
tics by starting to execute the next waiter’s critical section,
while the lock LB which it holds is not unlocked yet.

To handle OOO unlocking, we rely on a simple insight: we
can release a lock at a later point in time without affecting
the correctness of the application. Specifically, we do not
release LA; we only release it once LB has been released. This
approach is similar to the handling of nested transactions, in
which we effectively flatten the out-of-order lock hierarchy
and release all the locks at the same time.

Listing 3 shows the changes required to TCLocks for han-
dling OOO unlocking. We make three specific changes in
the lock and unlock function of TCLocks:

• To identify OOO unlocks, we maintain a per-thread
lock_addr array to record the acquisition order of locks.
Before starting the combining loop, a combiner stores
its lock’s address in the lock_addr array (line 28), and
removes it once the combiner loop finishes (line 31).

• In the unlock function, the combiner checks if the lock
that is being unlocked is the last entry in the lock_addr
array. This is because the last entry in the lock_addr
array is the lock holding which the current combiner
is executing the critical section. We have two cases
now: The first one is the non-OOO case (line 47): The
combiner follows the original algorithm and returns to
the combiner’s ephemeral stack (line 50) and contin-
ues with its combiner loop. While the second one is an
OOO case (line 44): We simply mark the lock as OOO-
unlocked (line 45) and let the current combiner continue
executing until the unlock function for its lock is called.
The waiter-combiner for the OOO-unlocked lock waits
for the notification from the current combiner which
doesn’t happen until the current combiner reaches its
combiner loop. Therefore, delayed notification effec-
tively flattens the lock hierarchy for out-of-order un-
locked locks as the waiter-combiner cannot progress
until it gets the notification.

• After receiving the notification, the waiter-combiner
checks if its lock is unlocked OOO (line 18) and if true,
it return G_UNLOCKED_OOO (line 19). The combiner
switches to its previous state (line 9) which was saved
when the nested lock was called (line 5). The combiner
returns to its combiner loop (line 29), notifies the current
waiter and continues combining the next waiter.

The waiter for the outermost lock will get the control back
once the outermost lock and all the nested locks are released.
The waiter then starts executing its non-critical section.
4.2 Special Execution Contexts and Per-CPU Vari-

ables

Delegation via transparent combining breaks assumptions
of Linux kernel code about the stability of access to per-CPU
variables under special execution contexts. This includes in-
terrupt handlers, non-preemptible contexts, non-migratable
contexts, etc. This raises a critical question for our design:
How do we enable delegation-style locking transparently in
the kernel without compromising on correctness?

A potential solution involves the combiner accessing the
per-CPU variables of the waiter’s CPU while executing the
critical section. For example, on x86, we can save and restore
the gs registers that allows access to per-CPU variables of the
waiter’s CPU [14]. Unfortunately, this approach leads to data
races when waiters are busy-waiting, as interrupts on the
waiter’s CPU may still access per-CPU variables. Moreover,
this approach further leads to additional overhead of access-
ing per-CPU data of a remote CPU. Besides that, it requires
annotating parts of the kernel code that access per-CPU
variables for functional correctness, such as scheduler [22],
RCU [18], and many more during the combining phase. As
a result, these challenges make it very difficult to enable
transparent combining in special execution contexts within
the kernel.

We adopt a more conservative approach of disabling com-
bining for such execution contexts and falling back to default
kernel locking (currently qspinlock [41]). We leverage the
property that any part of a critical section requiring stable
access to per-CPU variables ensures appropriate protection
against CPU migration for that region of code. For example,
the Linux kernel’s spinlock_t APIs do not guarantee stable
access to per-CPU variables, as they do not disable preemp-
tion for the critical section. This is because the spinlock_t
type is transparently replaced with a mutex on real time ker-
nels [19]. Hence, the scheduler is allowed to preempt threads
and migrate them to a different CPU when they are holding
such a lock. To ensure that preemption is disabled within
the critical section regardless of the kernel configuration,
developers use specific raw_spinlock_t APIs [17].
When invoking the TCLock APIs, we only enable com-

bining for threads that can migrate from one CPU to another.
Otherwise, we disable combining and fallback to the existing
traditional lock. We identify these code regions by lever-
aging well-defined APIs of the Linux kernel. In particular,
we enable combining for the following cases: 1) the kernel
thread executes in the task context [27]; 2) it does not disable
migration or preemption [9, 16], and 3) it does not execute in
a context where HardIRQs and SoftIRQs are disabled [5, 24].
It is safe to execute traditional and combining queue-based
lock because mechanism for both types of locks are inde-

10 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

pendent and only one of them will be active for a particular
instance of lock at any given point.

5 Implementation

We implement TCLocks in the Linux kernel v5.14.19 and
replace all spinlock, mutex, and rwsem. We add 1349, 955,
and 1652 LoC for spinlock, mutex, and readers-writer lock
(rwsem), respectively. For userspace applications, we use
LiTL [50] library. It uses the LD_PRELOADmechanism to inter-
pose different POSIX locks used by userspace applications.
We implement TCLock for the x86 architecture, but it is

easily extensible to other architectures as well. x86-64 has six
callee-saved registers: rbx, rbp, and r12–r15. We push these
registers on the stack along with the stack pointer on the
waiter’s qnode. When the combiner switches to the waiter’s
main stack, it uses the stored stack pointer and pops the
callee-saved registers from the stack. We mark the stack-
switch function as noinline and noipa to prevent any compiler
optimizations and function inlining. Our code is publicly
available here: https://github.com/rs3lab/TCLocks.

6 Evaluation

We evaluate TCLocks by answering the following questions:
Q1. How does the kernel-based TCLock implementation

impact micro-benchmarks (§6.1) and real applications
(§6.2)?

Q2. How does each design decision affect TCLocks’ perfor-
mance (§6.3)?

Q3. How does the userspace TCLock implementation im-
pact an application’s performance (§6.4)?

Evaluation setup. We use micro-benchmarks that mostly
stress a lock and application benchmarks that stresses var-
ious kernel subsystems. In addition, we use a hash-table
nano-benchmark [69] to show the effectiveness of TCLock
design decisions. We evaluate on an 8-socket, 224-core Intel
machine with hyper-threading disabled. We use tmpfs in all
experiments to minimize the file system overhead. We eval-
uate three traditional locks within the Linux kernel: Linux’s
stock locks, CNA, and ShflLock. CNA replaces the stock
qspinlock, while we replace all locks with ShflLock.
6.1 TCLock Performance Comparison

We evaluate TCLocks using a set of micro-benchmarks [31,
62]. Each micro-benchmark instantiates a set of threads
and pins them to cores. These threads mostly contend on a
single lock (sometimes two) while performing specific tasks
(Table 1) for 30 seconds.
Spinning TCLock. Figure 3 ((a) and (b)) show that
TCLockSP outperforms the Linux version (Stock) by 3.7×
and 4.4× on MRDM and lock1, respectively. TCLock per-
forms similarly to Stock from two to eight cores for two
reasons. First, the stack switching adds an average of 47 ns
latency. Second, the combiner is unable to perform effec-
tively at such a low core count. As a result, TCLock does
not reach its potential. On the other hand, the benefit of

Lock type Workload Lock: Usage

Spinlock MRDM [62] rename seqlock: Rename files within a directory
lock1 [31] files_struct.file_lock: fd allocation / fcntl

Blocking MWRM [62] sb->s_vfs_rename_mutex: Rename a file across directory
dentry->d_lock: Dentry lock

RW Blocking mmap1 [31] mm_struct->mmap_lock: Memory map file within a directory

Table 1: Lock usage in various micro-benchmarks [31, 62].

TCLockSP is evident after eight cores where the gains from
localizing shared data cache lines outweighs the overhead of
stack-switch. TCLockSP combiner on average batches 950
waiter’s request. Thus, even within a socket (up to 28 cores),
TCLockSP maintains consistent throughput.

Compared to NUMA-aware locks, TCLockSP outperforms
ShflLock and CNA by 2-3× across sockets. The combining-
based NUMA-aware policy of TCLockSP minimizes the
cache-line bouncing of both the lock word and the shared
data. On average, 190K combiners execute during a 30-
second run where every TCLockSP combiner batches ∼980
waiter’s request before passing the lock to different NUMA
socket. In essence, every combiner is reducing extra coher-
ence traffic for accessing shared data within the waiter’s
critical section, which would be generated in a traditional
lock design.
Blocking TCLock. We compare TCLockB with Linux
mutex and ShflLock. Figure 3 (c) shows that TCLockB is
1.8× faster than both mutex and the blocking version of
ShflLock. Both Stock and ShflLock suffer from shared data
movement at a high core count. In addition, ShflLock’s
performance degrades similarly to that of Stock due to its
lock stealing, which renders its NUMA-policy ineffective.
Whereas, TCLockB retains performance because it reduces
cache-line bouncing for both the lock word and shared data.
Readers-Writer Blocking TCLock. Figure 3 (d) shows
the impact of TCLock when stressing the writer side of
rwsem. We use the mmap1 benchmark [31], which populates
and deletes VMAs within an address space. TCLock main-
tains the best throughput irrespective of contention after
eight cores. Within a socket, TCLockRW outperforms Stock
by 1.7×, as a combiner combines ∼1000 waiter’s request,
thereby minimizing cache-line movement of shared data
cache lines. Moreover, across the socket, TCLockRW com-
biner batches similar number of waiter’s request resulting in
3.1× and 1.5× better throughput than Stock and ShflLock.
6.2 Application-level Benchmarks

We evaluate two applications that extensively stress various
subsystems of the Linux kernel. Figure 4 reports applications’
throughput. The kernel subsystem uses a mix of blocking
locks and spinlocks, which are present in several data struc-
tures such as inodes, task structures, and memory mappings.
Psearchy is a parallel version of searchy that does text index-
ing. It is mmap intensive, which stresses the memory subsys-
tem with multiple userspace threads. It does around 96,000

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 11

https://github.com/rs3lab/TCLocks

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

0

5

10

15

20

1 2 4 8 16 32 64 12
8

25
6

0.0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64 12
8

25
6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 4 8 16 32 64 12
8

25
6

M
O
ps
/s
ec

of threads

Stock
(a) FxMark - MRDM (Spinlock)

of threads

CNA
(b) will-it-scale: lock1 (Spinlock)

of threads

ShflLock
(c) FxMark - MWRM (Spinlock/Mutex)

of threads

TCLock
(d) will-it-scale: mmap1 (RWSem)

Figure 3: Impact of spinlock, blocking locks and read-write semaphore on the scalability of micro-benchmarks [31, 62].

0
150
300
450
600
750
900

28 56 84 11
2

14
0

16
8

19
6

22
4

0

150

300

450

600

750

28 56 84 11
2

14
0

16
8

19
6

22
4

Jo
bs
/h
ou

r

of threads

Stock ShflLock
(a) Psearchy

of threads

CNA TCLocks
(b) Metis

Figure 4: Impact of kernel locks on application scalability.

small and large mmap/munmap operations from 96,000 files
with multiple threads. It stresses the writer side of the rwsem
in the memory subsystem and inode allocation in the file
system layer. Figure 4 (a) shows that TCLock outperforms
existing locks up to 2.2×. Because of its effective combining
strategy, TCLockRW is able to localize access to shared data.
We find that ShflLock and Stock have similar performance
as they inefficiently use up hardware bandwidth. Moreover,
we observe that psearchy’s performance drops with increas-
ing core count, which happens due to the contention in the
file stream glibc library.
Metis is an in-memory map-reduce framework, represent-
ing a page-fault-intensive workload that stresses the readers’
side of the mmap_sem (rwsem) in the Linux kernel. Figure 4 (b)
shows that TCLock outperforms both ShflLock and Stock
by 1.3×. The reason is due to the phase-based design of
TCLockRW , which improves the performance by batching
the writers in one phase, meanwhile executing readers in
parallel in the next phase. Across sockets, it improves perfor-
mance compared to ShflLock and Stock by 1.7× and 1.4×
at 140 cores, respectively.
6.3 Nano benchmark: RCUHT

We now do an in-depth analysis of TCLocks using a hash-
table benchmark in the kernel [69]. A global lock guards
the hash table. For TCLockSP and TCLockB, we generate
100% writes, whereas for TCLockRW (readers-writer block-
ing lock), we generate 1% and 20% writes on the hash ta-
ble. Figure 5 presents the results and the factor analysis of
TCLocks.
Spinning TCLock. Figure 5 (a) and (b) shows the through-
put and 99.99% latency of spinlocks, respectively. (a) We
find that TCLockSP maintains similar performance within
and across sockets because of the effective combining pol-

icy. In particular, the combining batches up to 50,000 waiter
requests, thereby localizing the requests for that many invo-
cations. In addition, the average and 99%ile latency of the
critical section is 188 ns and 474 ns at 28 cores, respectively,
whereas both stock and ShflLock have up to 2.5× and 2.1×
higher average and 99%ile latency, respectively.
In the case of NUMA, TCLockSP outperforms ShflLock

and Stock by up to 9.4×. The improvement occurs because of
minimizing cache-line bouncing and Localizing shared data,
which reduces the time spent in critical section. For example,
at 168 cores, the average latency of TCLock is 213ns, which
is similar to average latency at 28 cores. Whereas ShflLock
and Stock have 10.5× and 11× higher latency, respectively.
The 99%ile latency increases to 1516 ns for TCLock. This
happens because of NUMA-aware moving of the shared data,
which increases the 99.9% latency of TCLock. However, this
latency is still 3× lower than that of ShflLock.

Figure 5 (b) shows the combined latency for the lock func-
tion, critical section execution, and the unlock function.
TCLockSP, even with batching 50,000 waiters, has up to 5.6×
and 4.4× lower latency compared to ShflLock and Stock,
respectively. This is because of lower critical section latency,
which reduces the overall latency of the whole system as the
critical sections are executed sequentially.
Nested Locking and OOO unlocking. We evaluate
the impact of our OOO unlocking with a hash-table nano-
benchmark that acquires nested lock and can release locks
in an OOO manner. Specifically, every bucket has a lock
and nested locks are acquired when moving an entry from
one bucket to another. Figure 5 (c) shows that, within a
socket, TCLockSP performs similar to other locks. At 28
cores, TCLockSP is 5% slower than Stock. This is because the
overhead of saving/restoring the combiner state with nested
lock along with delaying the unlock degrades TCLockSP

performance within a socket. Across socket, TCLockSP out-
performs Stock by up to 3.7×. The performance gains with
localization of shared cache lines outweighs the overhead of
TCLockSP implementation of nested locking.
Blocking TCLock. Figure 5 (d) shows the throughput with
blocking locks. TCLockB outperforms stock in both under-
subscribed and over-subscribed scenarios. With the help of
its efficient spin-then-park strategy, TCLockB outperforms
Stock by up to 9.5× in under-subscribed scenarios. More-

12 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

28 56 84 11
2

14
0

16
8

19
6

22
4

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32 64 12
8

25
6

0
2
4
6
8
10
12
14

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

0
2
4
6
8
10
12

1 2 4 8 16 32 64 12
8

25
6

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64 12
8

25
6

4

5

6

7

8

8 16 32 64 12
8

25
6

1
2
3
4
5
6
7

8 16 32 64 12
8

25
6

M
O
ps
/s
ec

(a) Spinlock

Ti
m
e
(m

s)

Stock ShflLock TCLock CNA

(b) 99.99% latency of lock+CS+unlock

M
O
ps
/s
ec

(c) OOO unlocking

M
O
ps
/s
ec

(d) Mutex

M
O
ps
/s
ec

(e) RWSem (1% writes)

M
O
ps
/s
ec

(f) RWSem (20% writes)

M
O
ps
/s
ec

of threads
Stock
Base

+NUMA
+Pref

+WWJump

(g) Effect of Optimization

M
O
ps
/s
ec

of threads
2 Cache Lines
4 Cache Lines

6 Cache Lines
8 Cache Lines

(h) Prefetching (X) stack cache lines (CL)

M
O
ps
/s
ec

of threads
210

212
214

216

(i) Batch Size (pow(2,X))

Figure 5: (a – f) Impact of spinning, blocking and read-write lock on the hash-table nano benchmark with an eight-socket Intel machine.
(b) Latency of executing lock function+CS+unlock function with different spinlocks. (c) Performance with nested locking and OOO
unlocking. (g) Impact of different optimization introduced in TCLockSP. On top of baseline, we add NUMA-awareness, stack prefetching,
and waiter-to-waiter jump. (h – i) Impact of prefetching and batch size on TCLockSP’s performance.

0
0.5

1
1.5

2
2.5

3
3.5

1 2 4 8 16 32 64 12
8

25
6

0
0.5

1
1.5

2
2.5

3

1 2 4 8 16 32 64

O
ps
/u
se
c

of threads

Stock CNA
(a) LevelDB (8-socket machine)

of threads

ShflLock TCLock
(b) LevelDB (2-socket machine)

Figure 6: Impact of locks on userspace applications.

over, TCLockB maintains the same performance even after
crossing the socket boundary. Although latency to wake up
a waiter on a remote socket costs more than that of the local
socket, TCLockB’s usage of NUMA-aware design amortizes
the overhead of waking up waiters from other socket.
Reader-writerTCLock. Figure 5 ((e) and (f)) show that the
TCLockRW has higher throughput than the stock version by
6.8× and 2.2× for 1% and 20% writes, respectively. ShflLock
and TCLockRW use similar design for readers. Because of
using the phase-based design, TCLockRW is able to improve
performance by up to 1.28× and 1.37× at 1% and 20% writes,
respectively. We further observe that combining is not effec-
tive with centralized readers counting, as the readers counter
cache line is always moving across cores.
TCLocks optimizations. Figure 5 (g) shows the effect of

different optimizations used by TCLock. TCLockSP without
any optimizations outperforms Stock by 2.2× because it
localizes the shared data access. The overhead of stack switch
is apparent at lower core count because jumping to a waiter’s
critical section requires access to the stack which needs to be
fetched from a waiter’s core. On adding NUMA-awareness to
the current design, we improve the performance by 2.6×, as
we now prevent moving the waiter’s stack cache line across
sockets. It also helps within a socket because checking the
socket ID of the next waiter’s node fetches the next waiter’s
node in the combiner’s cache. As a result, this simple check
reduces the time spent in the combiner loop.
In addition, our stack prefetching approach, on top of

NUMA-awareness policy, further improves performance by
1.3×, as it reduces the time spent in starting the execu-
tion of critical section. Finally, our waiter → waiter jump
(WWJump) further improves the throughput by 1.2× as it
reduces the overhead of stack switch (∼50 ns) from two
switches to one. Overall, our optimizations reduce the over-
head of stack switching and improve performance compared
to the baseline by 4×.
TCLocks sensitivity. Figure 5 ((h)–(i)) shows the impact of
changing the number of prefetched cache lines and the num-
ber of waiter’s combined. Figure 5 (h) shows that prefetching
up to six cache lines provides the best performance for this

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 13

benchmark. It depends entirely on what is accessed inside
the critical section. We can write a compiler pass to tune
this parameter, as the compiler has the information on what
is accessed within the critical section. Figure 5 (i) shows the
impact of batching. Higher batch count improves throughput
at the expense of short-term fairness, but TCLocks main-
tain long-term fairness. Batching is also able to reduce the
latency for all requests, if it can reduce the time spent per
request as shown in Figure 5(e).
6.4 Performance With Userspace TCLock

We evaluate TCLocks on the LevelDB benchmark [49]. We
integrate both TCLock, CNA and ShflLock into LiTL [50]
for evaluation. LevelDB is an open-source key-value
store [48]. We use the readrandom benchmark with 1M
key-value pairs, that contends on the global database lock.
Figure 6 (a) shows the performance with spinlocks on an
8-socket machine. Within a socket, TCLockSP improves
throughput compared to other locks by 1.9×–2.6×. Local-
izing shared data movement helps to achieve better per-
formance than traditional locks. Across sockets, NUMA-
awareness coupled with minimal shared data movement
helps TCLockSP outperform other locks by up to 5.2×. Fig-
ure 6 (b) shows the performance on a 2-socket machine.
TCLockSP performs similar to the 8-socket machine and im-
proves throughput compared to other locks by 2.1×–3.6×.

7 Discussion and Limitations

TCLocks implement transparent delegation, which enables
developers to use delegation-style locking without rewriting
the application. However, TCLocks have limitations both in
terms of algorithm design and kernel implementation. We
discuss them below.
Overhead at two–four cores. We observe overhead with
TCLocks when very few threads (two–four) contend for
a lock. Contending threads execute slowpath after stack-
switching, but combining is only enabled when more than
two waiters are present in the queue. Waiters pay the cost of
two stack-switching but their critical section is not executed
by the combiner. This can be solved by disabling combining
when we have less than four threads in the queue. The
challenge lies in efficiently identifying the size of the queue
without using extra memory or traversing the queue.
Resource accounting. The kernel requires accurate ac-
counting of resources like CPU usage, allocated memory,
etc. Kernel subsystems, such as the scheduler or cgroup,
are guided by the accounting of resources used by a par-
ticular thread. Delegation-based techniques can break this
accurate accounting for resources used within the critical
section. Thus, TCLocks complicate resource accounting.
Even though a combiner thread executes the critical section
on behalf of other waiter threads, resources like CPU time
or allocated memory in the critical section need to be ac-
counted to the waiter thread, for maintaining broader kernel

semantics. We leave this extension as future work.
TCLock vs ‘current’. Apart from per-CPU variables, Linux
also uses a macro named current, which resolves to a per-
CPU pointer variable to the currently executing thread’s task
structure. This pointer is used to access the task structure
for multiple purposes, including but not limited to resource
accounting with cgroups [21], permission checks using cre-
dentials [15], thread scheduling [26], etc. While executing
a waiter’s critical section on the combiner’s CPU, if this
pointer is not switched to the waiter’s task structure, then it
could lead to subtle bugs. For example, if a combiner thread
has higher privileges than the waiter thread, and the per-
mission checks are done within the critical section, it may
lead to privilege escalation bugs, since the combiner thread’s
credentials will be inspected.
One possible solution is to modify current macro’s im-

plementation to resolve to the waiter’s task structure while
executing waiter’s critical section on combiner CPU. Unfor-
tunately, this will also lead to bugs. For example, if a thread
sleeps within its critical section, the scheduler code uses
the current macro to put the running task to sleep. When
combining a waiter’s critical section, we want the combiner
thread to sleep. However, if we switch the current macro
to use the waiter’s task structure, it will lead to confusion
within the scheduler as the waiter task is already seen to be
running on another CPU.
We currently keep the current macro unchanged, and

suggest judicious use of the TCLock APIs in cases where a
different thread identity within the critical section may lead
to unexpected behavior.

8 Conclusion

Delegation based techniques are known to offer better scala-
bility and provide better performance for highly contended
scenarios, but prior work requires application changes to
enable delegation. In this paper, we propose a new tech-
nique called transparent delegation that makes delegation-
style locking practical. We design the first-ever transparent
delegation based locks, called TCLocks, for both userspace
applications and the Linux kernel. This is achieved by light-
weight context switching and using ephemeral stacks to
maintain consistency. Using transparent delegation, we de-
sign spinning, blocking and phase-based readers-writer locks.
We replace all the locks in the Linux kernel with TCLocks,
and discuss the technical challenges involved. Our evalua-
tion shows that TCLocks provide better performance and
scalability compared to traditional lock design.

9 Acknowledgment

We thank Changwoo Min for his comments on the initial
draft. We also thank Dave Dice, Alex Kogan, the anonymous
reviewers, and our shepherd, Geoffrey M. Voelker, for their
helpful feedback. This work is supported by the SNSF project
grant 212884.

14 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] List of callee-saved registers. https://developer.arm.com/
documentation/102374/0100/Procedure-Call-Standard, .
[Accessed on 22/04/2023].

[2] List of arm registers. https://
developer.arm.com/documentation/dui0473/m/
overview-of-the-arm-architecture/arm-registers, .
[Accessed on 22/04/2023].

[3] Gcc calling convention. https://gcc.gnu.org/onlinedocs/gcc/
x86-Function-Attributes.html. [Accessed on 22/04/2023].

[4] Lock ordering for file mmap. https://elixir.bootlin.
com/linux/v6.1/source/mm/filemap.c#L72. [Accessed on
22/04/2023].

[5] Locking Between Hard IRQ and Softirqs/Tasklets: Unreliable
Guide To Locking — The Linux Kernel documentation. https://
www.kernel.org/doc/html/v4.13/kernel-hacking/locking.
html#locking-between-hard-irq-and-softirqs-tasklets, .
[Accessed on 30/04/2023].

[6] Hardirq. https://www.kernel.org/doc/htmldocs/
kernel-locking/hardirq-context.html, . [Accessed on
22/04/2023].

[7] Hardware interrupts (hard irqs). https://www.kernel.org/
doc/htmldocs/kernel-hacking/basics-hardirqs.html, . [Ac-
cessed on 22/04/2023].

[8] List of x86-64 registers. https://wiki.cdot.senecacollege.ca/
wiki/X86_64_Register_and_Instruction_Quick_Start. [Ac-
cessed on 22/04/2023].

[9] [PATCH 7/9] sched: Add migrate_disable(). https://lwn.net/ml/
linux-kernel/20200921163845.769861942@infradead.org/.
[Accessed on 30/04/2023].

[10] List of mips registers. https://en.wikibooks.org/wiki/MIPS_
Assembly/Register_File. [Accessed on 22/04/2023].

[11] Non-maskable interrupt. https://en.wikipedia.org/wiki/
Non-maskable_interrupt. [Accessed on 22/04/2023].

[12] Dentry cache spinlock unlocked out-of-order, . https://elixir.
bootlin.com/linux/v6.0/source/fs/dcache.c#L3022.

[13] Pipe mutex unlocked out-of-order, . https://elixir.bootlin.
com/linux/v6.0/source/fs/splice.c#L1552.

[14] Per-cpu variables. https://docs.kernel.org/core-api/this_
cpu_ops.html#inner-working-of-this-cpu-operations, .
[Accessed on 22/04/2023].

[15] Credentials in Linux. https://www.kernel.org/doc/
Documentation/security/credentials.txt, . [Accessed
on 30/04/2023].

[16] Proper Locking Under a Preemptible Kernel: Keeping Kernel Code
Preempt-Safe. https://www.kernel.org/doc/Documentation/
preempt-locking.txt. [Accessed on 30/04/2023].

[17] raw_spinlock_t: Lock types and their rules — The Linux Kernel doc-
umentation. https://docs.kernel.org/locking/locktypes.
html#raw-spinlock-t. [Accessed on 30/04/2023].

[18] What is RCU? – “Read, Copy, Update” — The Linux Kernel docu-
mentation. https://www.kernel.org/doc/html/latest/RCU/
whatisRCU.html. [Accessed on 30/04/2023].

[19] spinlock_t and PREEMPT-RT: Lock types and their rules — The Linux
Kernel documentation. https://docs.kernel.org/locking/
locktypes.html#spinlock-t-and-preempt-rt. [Accessed on
30/04/2023].

[20] Lock ordering for directory rename. https://docs.kernel.
org/filesystems/directory-locking.html. [Accessed on
22/04/2023].

[21] Control group v2. https://www.kernel.org/doc/

Documentation/cgroup-v2.txt. [Accessed on 30/04/2023].
[22] CFS Scheduler — The Linux Kernel documentation.

https://www.kernel.org/doc/html/next/scheduler/
sched-design-CFS.html#few-implementation-details.
[Accessed on 30/04/2023].

[23] Softirq. https://www.kernel.org/doc/htmldocs/
kernel-hacking/basics-softirqs.html, . [Accessed on
22/04/2023].

[24] Locking Between User Context and Softirqs: Unreliable Guide
To Locking — The Linux Kernel documentation. https://
www.kernel.org/doc/html/v4.13/kernel-hacking/locking.
html#locking-between-user-context-and-softirqs, .
[Accessed on 30/04/2023].

[25] Task context. https://www.kernel.org/doc/htmldocs/
kernel-hacking/basic-players.html#basics-usercontext.
[Accessed on 22/04/2023].

[26] CFS Scheduler — The Linux Kernel documentation.
https://www.kernel.org/doc/html/next/scheduler/
sched-design-CFS.html. [Accessed on 30/04/2023].

[27] User Context: Unreliable Guide To Hacking The Linux Kernel — The
Linux Kernel documentation. https://www.kernel.org/doc/
html/v4.16/kernel-hacking/hacking.html#user-context.
[Accessed on 30/04/2023].

[28] Lock ordering in memorymanagement subsystem. https://elixir.
bootlin.com/linux/v6.1/source/mm/rmap.c#L20. [Accessed
on 22/04/2023].

[29] Windows fibers. https://learn.microsoft.com/en-us/
windows/win32/procthread/fibers.

[30] T. E. Anderson. The performance of spin lock alternatives for shared-
memorymultiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 1(1):6–16, 1990.

[31] A. Blanchard. will-it-scale. https://github.com/
antonblanchard/will-it-scale. [Accessed on 22/04/2023].

[32] D. P. Bovet and M. Cesati. Understanding the Linux Kernel: from I/O
ports to process management. " O’Reilly Media, Inc.", 2005.

[33] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich. An Analysis of Linux Scalability to Many
Cores. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 1–16, Vancouver,
Canada, Oct. 2010.

[34] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-
scalable locks are dangerous. In Proceedings of the Linux Symposium,
Ottawa, Canada, July 2012.

[35] B. B. Brandenburg and J. H. Anderson. Reader-writer synchroniza-
tion for shared-memory multiprocessor real-time systems. In 2009
21st Euromicro Conference on Real-Time Systems, pages 184–193. IEEE,
2009.

[36] B. B. Brandenburg and J. H. Anderson. Spin-based reader-writer
synchronization for multiprocessor real-time systems. In Real Time
Systems, pages 184–193, 2011. doi: 10.1109/ECRTS.2009.14.

[37] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. Marathe, and
M. Moir. Message passing or shared memory: Evaluating the del-
egation abstraction for multicores. In International Conference on
Principles of Distributed Systems, pages 83–97. Springer, 2013.

[38] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit.
NUMA-aware Reader-writer Locks. In Proceedings of the 18th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
pages 157–166, Shenzhen, China, Feb. 2013.

[39] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance
Locks for Multi-level NUMA Systems. In Proceedings of the 20th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP),
San Francisco, CA, Feb. 2015.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 15

https://developer.arm.com/documentation/102374/0100/Procedure-Call-Standard
https://developer.arm.com/documentation/102374/0100/Procedure-Call-Standard
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm-registers
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm-registers
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm-registers
https://gcc.gnu.org/onlinedocs/gcc/x86-Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Function-Attributes.html
https://elixir.bootlin.com/linux/v6.1/source/mm/filemap.c#L72
https://elixir.bootlin.com/linux/v6.1/source/mm/filemap.c#L72
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-hard-irq-and-softirqs-tasklets
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-hard-irq-and-softirqs-tasklets
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-hard-irq-and-softirqs-tasklets
https://www.kernel.org/doc/htmldocs/kernel-locking/hardirq-context.html
https://www.kernel.org/doc/htmldocs/kernel-locking/hardirq-context.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-hardirqs.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-hardirqs.html
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://lwn.net/ml/linux-kernel/20200921163845.769861942@infradead.org/
https://lwn.net/ml/linux-kernel/20200921163845.769861942@infradead.org/
https://en.wikibooks.org/wiki/MIPS_Assembly/Register_File
https://en.wikibooks.org/wiki/MIPS_Assembly/Register_File
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://elixir.bootlin.com/linux/v6.0/source/fs/dcache.c#L3022
https://elixir.bootlin.com/linux/v6.0/source/fs/dcache.c#L3022
https://elixir.bootlin.com/linux/v6.0/source/fs/splice.c#L1552
https://elixir.bootlin.com/linux/v6.0/source/fs/splice.c#L1552
https://docs.kernel.org/core-api/this_cpu_ops.html#inner-working-of-this-cpu-operations
https://docs.kernel.org/core-api/this_cpu_ops.html#inner-working-of-this-cpu-operations
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://www.kernel.org/doc/Documentation/preempt-locking.txt
https://docs.kernel.org/locking/locktypes.html#raw-spinlock-t
https://docs.kernel.org/locking/locktypes.html#raw-spinlock-t
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://docs.kernel.org/locking/locktypes.html#spinlock-t-and-preempt-rt
https://docs.kernel.org/locking/locktypes.html#spinlock-t-and-preempt-rt
https://docs.kernel.org/filesystems/directory-locking.html
https://docs.kernel.org/filesystems/directory-locking.html
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html#few-implementation-details
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html#few-implementation-details
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/basics-softirqs.html
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-user-context-and-softirqs
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-user-context-and-softirqs
https://www.kernel.org/doc/html/v4.13/kernel-hacking/locking.html#locking-between-user-context-and-softirqs
https://www.kernel.org/doc/htmldocs/kernel-hacking/basic-players.html#basics-usercontext
https://www.kernel.org/doc/htmldocs/kernel-hacking/basic-players.html#basics-usercontext
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/next/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/v4.16/kernel-hacking/hacking.html#user-context
https://www.kernel.org/doc/html/v4.16/kernel-hacking/hacking.html#user-context
https://elixir.bootlin.com/linux/v6.1/source/mm/rmap.c#L20
https://elixir.bootlin.com/linux/v6.1/source/mm/rmap.c#L20
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers
https://learn.microsoft.com/en-us/windows/win32/procthread/fibers
https://github.com/antonblanchard/will-it-scale
https://github.com/antonblanchard/will-it-scale

[40] J. Corbet. Big reader locks, 2010. https://lwn.net/Articles/
378911/, [Accessed on 30/04/2023].

[41] J. Corbet. MCS locks and qspinlocks, 2014. https://lwn.net/
Articles/590243/, [Accessed on 30/04/2023].

[42] T. Craig. Building FIFO and priorityqueuing spin locks from atomic
swap. Technical report, Technical Report TR 93-02-02, Department of
Computer Science, University of Washington, 1993.

[43] D. Dice and A. Kogan. Compact NUMA-aware Locks. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 12:1–12:15,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6281-8.

[44] D. Dice and A. Kogan. Hemlock: Compact and scalable mutual ex-
clusion. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’21, page 173–183, 2021.

[45] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA Locks. In
Proceedings of the Twenty-third Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’11, pages 65–74, 2011.

[46] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General
Technique for Designing NUMA Locks. In Proceedings of the 17th
ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 247–256, New Orleans, LA, Feb. 2012.

[47] P. Fatourou and N. D. Kallimanis. Revisiting the Combining Synchro-
nization Technique. In Proceedings of the 17th ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages 257–266,
New Orleans, LA, Feb. 2012.

[48] S. Ghemawat and J. Dean. LevelDB, 2019. URL https://github.
com/google/leveldb. [Accessed on 30/04/2023].

[49] R. Guerraoui, H. Guiroux, R. Lachaize, V. Quéma, and V. Trigonakis.
Lock—Unlock: Is That All? A Pragmatic Analysis of Locking in Soft-
ware Systems. ACM Trans. Comput. Syst., 36(1):1:1–1:149, Mar.
2019. doi: 10.1145/3301501. URL http://doi.acm.org/10.1145/
3301501.

[50] H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The Case is
Not Closed Yet. In Proceedings of the 2016 USENIX Annual Technical
Conference (ATC), pages 649–662, Denver, CO, June 2016.

[51] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms and archi-
tectures, pages 355–364, 2010.

[52] S. Kashyap, I. Calciu, X. Cheng, C. Min, and T. Kim. Scalable and
Practical Locking With Shuffling. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP), Ontario, Canada,
Oct. 2019.

[53] X. Leroy. The open group base specifications issue 7, 2016. http://
pubs.opengroup.org/onlinepubs/9699919799/, [Accessed on
30/04/2023].

[54] Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks.
In Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, pages 101–110, 2009.

[55] Linux. Lock ordering, 2013. URL https://elixir.bootlin.
com/linux/latest/source/mm/filemap.c#L66. [Accessed on
30/04/2023].

[56] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast and

Portable Locking for Multicore Architectures. ACM Trans. Comput.
Syst., 33(4):13:1–13:62, Jan. 2016.

[57] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLHQueue
Lock. In Proceedings of the 12th International Conference on Parallel
Processing, Euro-Par’06, pages 801–810, 2006.

[58] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache
coherent multiprocessors. In Proceedings of 8th International Parallel
Processing Symposium, pages 165–171. IEEE, 1994.

[59] C. D. Marlin. Coroutines: a programming methodology, a language de-
sign and an implementation. Number 95. Springer Science & Business
Media, 1980.

[60] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. pages 21–65,
Feb. 1991.

[61] J. M. Mellor-Crummey and M. L. Scott. Scalable Reader-writer Syn-
chronization for Shared-memory Multiprocessors. In Proceedings
of the Third ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP ’91, pages 106–113, 1991.

[62] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understand-
ing Manycore Scalability of File Systems. In Proceedings of the 2016
USENIX Annual Technical Conference (ATC), Denver, CO, June 2016.

[63] O. Nesterov. Linux percpu-rwsem, 2012. http://lxr.
free-electrons.com/source/include/linux/percpu-rwsem.
h, [Accessed on 30/04/2023].

[64] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs
with synchronization bottlenecks efficiently. In Proceedings of Inter-
national Workshop on Parallel and Distributed Computing for Symbolic
and Irregular Applications (PDSIA), pages 182–204, jul 1999.

[65] S. Park, D. Zhou, Y. Qian, I. Calciu, T. Kim, and S. Kashyap. Application-
Informed Kernel Synchronization Primitives. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Carlsbad, CA, July 2022.

[66] Z. Radovic and E. Hagersten. Hierarchical Backoff Locks for Nonuni-
form Communication Architectures. In Proceedings of the 9th Interna-
tional Symposium on High-Performance Computer Architecture, HPCA
’03, pages 241–252, Washington, DC, USA, 2003. IEEE Computer
Society. ISBN 0-7695-1871-0.

[67] S. Roghanchi, J. Eriksson, and N. Basu. Ffwd: Delegation is (much)
faster than you think. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles, pages 342–358, 2017.

[68] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks with
Timeout. In Proceedings of the 6th ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP), pages 44–52, Salt Lake City,
UT, Feb. 2001.

[69] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, Scalable, Con-
current Hash Tables via Relativistic Programming. In Proceedings
of the 2011 USENIX Annual Technical Conference (ATC), pages 11–11,
Portland, OR, June 2011.

[70] A. Viro. parallel lookups, 2016. https://lwn.net/Articles/
684089/, [Accessed on 30/04/2023].

[71] P. Zijlstra. percpu rwsem -v2, 2010. https://lwn.net/Articles/
648914/, [Accessed on 30/04/2023].

16 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lwn.net/Articles/378911/
https://lwn.net/Articles/378911/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
https://github.com/google/leveldb
https://github.com/google/leveldb
http://doi.acm.org/10.1145/3301501
http://doi.acm.org/10.1145/3301501
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://elixir.bootlin.com/linux/latest/source/mm/filemap.c#L66
https://elixir.bootlin.com/linux/latest/source/mm/filemap.c#L66
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
https://lwn.net/Articles/684089/
https://lwn.net/Articles/684089/
https://lwn.net/Articles/648914/
https://lwn.net/Articles/648914/

RON: One-Way Circular Shortest Routing to Achieve Efficient and
Bounded-waiting Spinlocks

Shiwu Lo♡, Han-Ting Lin♡, Yao-Hung Hsieh♡, Chao-Ting Lin♡, Yu-Hsueh Fang△, Ching-Shen Lin♡,

Ching-Chun (Jim) Huang△, Kam Yiu Lam♢, Yuan-Hao Chang◦

National Chung Cheng University♡, National Cheng Kung University△, City University of Hong Kong♢,
Academia Sinica, Taiwan◦

Abstract
As the number of processor cores increases, the efficiency of
accessing shared variables through the lock-unlock method
decreases. A NUMA-aware algorithm, which only considers
the transmission delay between processors, may not fully
utilize the connection network of a multi-core processor. This
limits the scalability of a multi-core processor due to the large
amount of low- and variable-cost data sharing between cores.
The problem is that the reduction in communication cost
cannot compensate for the increase in the time complexity of
the spinlocks, and the farthest transmission distance becomes
longer with more cores.

We propose a method called Routing on Network-on-chip
(RON)1 to minimize the communication cost between cores
by using a routing table and pre-calculating an optimized
locking-unlocking order. RON delivers locks and data in a
one-way circular manner among cores to (1) minimize global
data movement cost and (2) achieve bounded waiting time.
Microbenchmarks provide quantitative analysis, while multi-
core benchmarks show performance under various workloads.

In terms of user space performance, RON improves the
performance of Google LevelDB by 22.1% and 24.2% com-
pared to ShflLock and C-BO-MCS, respectively. In the kernel
space, RON is 1.8 times faster than using ShflLock for Google
LevelDB. RON-plock solves the problem of oversubscription
with constant space complexity and achieves 3.7 times and
18.9 times better performance than ShflLock-B and C-BO-
MCS-B, respectively.

1 Introduction

This paper primarily focuses on addressing the lock-unlock
problem under high contention. Despite the significant in-
crease in the number of cores in a central processing unit
(CPU), a fully shared cache memory system can limit the
bandwidth of the cache memory, creating a performance

1The source codes of RON can be found at https://github.com/shiwulo/ron-
osdi2023.

bottleneck. To overcome this issue, CPUs can maintain pri-
vate caches, and processors sharing these private caches are
referred to as Cache Coherent Non-uniform Memory Ac-
cess(NUMA) processors (abbreviated as ccNUMA).

Spinlocks and atomic operations are provided to ensure
the coherency of shared data in the cache, and programs ac-
cess shared data in critical sections (CS) [5, 6]. However,
minimizing data access latency is a crucial issue that can sig-
nificantly impact CPU performance in accessing shared data
in ccNUMA [12, 13]. This depends on the topology of the
Network on Chip (NoC) and the movement of data between
caches, which is triggered by tasks executing in the CPU.

When multiple tasks compete to enter a CS, granting the
closest task to the one that just released the lock access can
reduce data access latency. However, this can still be costly
as core-to-core transmission latencies vary in a CPU [14].
Additionally, allowing the core with the shortest transmission
latency to enter the CS may lead to adjacent cores having
exclusive access, leading to poor throughput [41].

Inter-core communication limits multicore processor scala-
bility [19, 20]. Transmission latency can be fixed or distance-
dependent. While monolithic die processors such as Intel
Xeon [2] exhibit similar inter-core communication latency,
Multi-Chip-Module (MCM) processors like AMD EPYC [2]
and Apple M1 Pro [2] use MCM technology to increase the
number of cores on a processor affordably and at scale. Next-
generation Intel Xeons also use MCM [3], but MCM pro-
cessors may have varying transmission latency between and
within chips.

NUMA-aware spinlocks [25–31] enable cores from the
same “NUMA node” to enter the CS in batches. This approach
is suitable for multi-core processors, such as AMD EPYC,
that have different transmission latencies. We can minimize
handover costs by dividing the cores in a multi-core processor
into mini-nodes, such as the east and west parts shown in Fig-
ure 1, and using a NUMA-aware approach to schedule them.
However, transferring locks between cores in a mini-node
is not considered in these algorithms. A layered approach
(e.g., cohort [25]) can address this, but using too many layers

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 17

https://github.com/shiwulo/ron-osdi2023
https://github.com/shiwulo/ron-osdi2023

(e.g., C-TKT-TKT-TKT) can make spinlocks complex and
expensive. Modern processors have non-uniform computing
power [47], where higher computing power implies a greater
ability to acquire locks. Batch-based algorithms often set a
“maximal batch size” periodically to prevent starvation and
maintain fairness. However, reducing the batch size for fair-
ness can decrease performance. Unfair lock allocation causes
unbalanced resource distribution and reduces throughput, as
discussed in Section 2.3.

The optimization principle for low-cost communication is
similar to that of data routing in computer networks. Although
computer networks can use complex algorithms to produce
the best route, such methods are often too expensive for small
CS in multi-core processors. Therefore, we pre-calculate the
shortest circular route including all cores, and the spinlock al-
gorithm generates a path of threads to enter the CS according
to the pre-calculated route. The “one-way circular shortest
routing” shortens the distance between cores, while the “short-
est routing” produces a local optimal solution for handover
cost. The “one-way” optimizes handover costs by transferring
locks in the direction where more threads are waiting, and
the “circular” approach limits the number of times a thread
waits to enter the CS. Thus, we schedule tasks on the cores to
enter CS in a “one-way circular shortest routing” manner to
improve the performance and fairness.

This paper makes three main contributions. Firstly, we
propose the simple yet effective concept of “one-way circular
shortest routing” to solve the fairness and efficiency issues
in spinlocks. Secondly, we identify that long-term fairness
alone is insufficient for modern processors, which have cores
with varying capabilities to grab locks due to differences in
computing frequency. Finally, we provide insights on how
single-core spinlocks can work alongside multi-core spinlocks
without compromising efficiency and fairness.

In Section 2, we discuss the limitations of NUMA-aware
spinlocks in minimizing transmission latency in multi-core
processors and the negative impact of unfair spinlocks on
throughput. Section 3 presents related work in the field. In
Section 4, we propose our fair and efficient spinlock algo-
rithm for ccNUMA. Section 5 addresses performance under
oversubscription, while Section 6 compares RON with two
well-known algorithms. Section 7 discusses the advantages
and disadvantages of RON compared to ShflLock and Linux’s
qspinlock, and Section 8 concludes the paper.

2 Preliminary and Motivation

2.1 Data Coherence in ccNUMA
Figure 1 shows an example of the multi-core architecture, in
which the connection network of each core group is similar
to the CPU CompleX (CCX) of Advanced Micro Devices,
Inc. (AMD). In a multi-core architecture, data stored in the
cache memory can be shared among the cores. Cache coher-

ence non-uniform access (ccNUMA) uses snoop-based and/or
directory-based cache coherence algorithms to maintain con-
sistency of shared data in each cache memory [42]. The snoop
method broadcasts messages such as “some shared data has
been updated”, whereas the directory-based method allows
point-to-point communication between nodes. A node can be
a core or a group of adjacent cores.

system
 bus

C-to-C bus

core core

core
E

core
F

C-to-C bus

core
B

core
A

core
C

core
D

Figure 1: An example NoC architecture of ccNUMA.

2.2 Cost of Spinlocks on Multi-core CPUs

We define the serializing cost as the cost of allowing multiple
threads to have mutually exclusive access to shared data. Se-
rializing costs are divided into “contention” and “handover”.
The contention cost is the cost for determining the next task
that can enter the CS. It depends on the data structure and data
access method used by a spinlock. For example, the ticket
lock [43] is centralized, while MCS spinlock (or called “MCS”
for short) [44] is decentralized. In the ticket lock, all threads
continuously monitor a variable of the ticket lock, and this
can generate a lot of traffics in the NoC. The contention cost
also depends on how the threads are granted to enter the CS.
The raw spinlock (e.g., GNU’s pthread_spin_lock [46], ab-
breviated as “Plock”) relies on the NoC to determine when
the first thread can enter the CS. The MCS spinlock [44]
allows each thread to wait on a different variable. Therefore,
MCS spinlocks prevent atomic operations from triggering
excessive bus traffic.

The handover cost depends on the speed of transferring
shared data between the lock-holding thread and the succes-
sive thread. Because spinlock is a shared data structure, a
smaller handover cost can also slightly reduce the contention
cost. As the example in Figure 1 shows, the processor is di-
vided by two parts, i.e., the west and east parts. The two parts
are connected through a system bus. The handover cost of
using the C-to-C bus only is 1. The handover cost between
the core and the system bus is related to the distance between
the core and the system bus. B, C, and F are far away from
the system bus, so the handover cost is 3, and the handover
cost of A, D, and E is 2.

In conventional NUMA-aware spinlocks, the order
of entering the CS can be arbitrary, for example,
A→D→B→C→F→E. Since A, B, C, and D have the same
communication cost, they belong to the same group (i.e., mini-
node). The same goes for E and F. The handover cost of this
order is (A, 1, D, 1, B, 1, C, 3, 3, F, 1, E)=10. This paper pro-
poses to use one-way circular shortest routing to minimize

18 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

handover costs. By scheduling the order of entering the CS
as A→B→C→D→E→F, the handover cost is reduced to (A,
1, B, 1, C, 1, D, 2, 2, E, 1, F)=8. In this example, the one-way
circular shortest routing improves the performance by 20%
(i.e., 10−8

10).

2.3 Throughput or Fairness? Take Both !
Various locking techniques have been proposed [39] to im-
prove system throughput in varying levels of contention. Lock
algorithms such as Test-And-Set (TAS) [46] and Test-and-
Test-and-Set (TTAS) [46] can be used in low-contention
systems. Algorithms like C-BO-MCS [25] and Shuffling
(ShflLock) [26] were designed to reduce the handover cost
under high contention with hierarchical design or local spin-
ning.

Moreover, the fairness is an issue that needs to be consid-
ered to better utilize the protected resources. According to the
level of fairness, we define fairness as follows:

1. Probabilistic fairness: The chance of each task entering
the critical section is the same in probability.

2. Bounded waiting: The number of waiting tasks does not
exceed a certain multiple of the number of tasks.

Take Test-Test-And-Set (TTAS) [46] as an example. The
probability of each thread obtaining a lock on a single core
processor system is related to the proportion of the CPU
time that the thread can acquire. In such a situation, the
TTAS spinlock satisfies probabilistic fairness. Currently,
GNU’s Pthread library use TTAS spinlock to implement
pthread_spin_lock().

A spinlock algorithm is conformed to bounded waiting
when it can limit the number of times that other tasks are
inserted before a specific task. Ticket lock and MCS [44] are
bounded waiting spinlocks. Both of them are based on first-in-
first-out (FIFO) mechanism. Although FIFO allows all tasks
to enter CS in a fair manner, FIFO also limits the performance
of spinlocks on multi-core/NUMA machines. This is because
FIFO cannot shorten the data transmission latency.

Most NUMA-aware spinlocks algorithms balance perfor-
mance and fairness by preventing threads from waiting too
long, but some cores may have higher computing power than
others due to differences in manufacturing processes [47].
The slight difference in speed will result in the core with
the advantage always being able to acquire the lock success-
fully. Just like in a 100-meter race, the one who gets first
place is always Jamaica’s Usain Bolt, even though he is only
0.1 seconds faster than the second-place runner. In modern
multi-core processors like the AMD 2990WX, some cores
have significantly higher lock acquisition capabilities than
others. For instance, the lock acquisition capability of cores
0-7 is 20.6 times greater than that of cores 8-31 (refer to
Section 6.2.2). As a result, conventional NUMA-aware algo-
rithms may not be able to ensure equal access to the critical
section for all threads/cores within a reasonable period.

With joint consideration of both throughput and fairness,
we propose a spinlock method that creates one-way circular
shortest path and uses this path to minimize the handover cost
and ensure bounded waiting time.

3 Related Work

While TTAS spinlock [46] is a simple method to implement
POSIX spinlocks in GNU (abbreviated as “Plock”) and en-
sures the consistency of shared data, it is unfair because it
tends to provide locks to neighboring cores [21]. Unfairness
doubles the execution time of a multi-thread program and
causes starvation as shown in [41]. It also increases the vari-
ability of latency, making it difficult to guarantee the service
quality. The non-scalability of Plock is another serious prob-
lem. As shown in [22, 23], although most critical sections are
short, increasing the number of cores can cause a system to
collapse due to non-scalable locks.

Cohort [25] is a software framework that can combine two
NUMA-oblivious locks into a scalable NUMA-aware lock.
NUMA nodes compete for the global lock, and unless all
threads on the NUMA node leave the CS, the NUMA node
will not release the lock. Therefore, threads belonging to the
same NUMA node are grouped to enter the critical section,
reducing handover costs. Shuffle lock [26] and CNA [27] also
use grouping to improve performance. Both are suitable for
use with a Linux kernel. However, they cannot effectively re-
duce the latency of data transmission nor avoid unfairness in
a multi-core processor. To obtain good performance under the
more complex NUMA architecture, HMCS [28] is based on
the concept of Cohort [25] and changes the number of lock lev-
els from 2 to 4. The AHMCS [29] and CLoF [48] algorithms
include a mechanism for managing contention and multiple
locking methods, allowing different locking methods to be
used in different situations. CST-semaphore and CST-mutex
locks are applicable to NUMA that support parking [31].

Only dedicated threads or the threads currently holding the
lock can execute the code of the CSs of each thread in [32].
In [33], the researchers further proposed turning CSs into an
asynchronous execution. Although these methods can opti-
mize data access latency to global data, they take longer to
access local data because the code of a CS executes on a
specific core.

Programmers can optimize software to better utilize the
NoC of ccNUMA when the software uses data-level paral-
lelization and pipe-lining [7, 34, 37, 38]. Stefan Kaestle et al
proposed broadcast trees [4] to reduce the communication
cost of NUMA machines. However, for multi-threaded pro-
grams that use locking mechanisms to protect shared data,
these methods may not be suitable.

4 Routing On Network-on-Chip (RON)

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 19

In Section 4, we introduced RON, a NUMA-aware algo-
rithm that is specifically designed for highly competitive and
multi-core environments. In Section 5, we combined RON
with simple spin locks, such as plock or ticket lock, to achieve
scalability when the number of threads exceeds the number of
cores. As most applications typically have more threads than
cores, we utilized the RON-plock combination algorithm in
our application-level benchmarks.

4.1 The Idea

In this section, we propose a design called Routing On
Network-on-Chip (RON) that aims to minimize the handover
cost between cores with low contention cost while ensur-
ing fairness in scheduling the threads waiting to enter a
CS. Minimizing handover costs can also improve the effi-
ciency of atomic operations, which are based on atomic op-
erations, which rely on cache coherence protocols (such as
snoop+dictionary) on multi-core systems. This, in turn, can
improve the performance of locks that suffer from contention.

We propose a concept of reducing the total handover cost
by scheduling threads waiting to enter the CS in a specific or-
der. This order can be compared to a train passing through all
stations. The ownership of the lock is like the train, and each
core is like a station. All waiting threads acquire the lock own-
ership in order, reducing the total handover cost. Engineers
optimize train tracks to pass through all stations in the most
efficient way possible, even though the route from station A
to station B may not be the shortest. Please note that the train
track is a one-way circular route. Similarly, we define a global
schedule for all cores with waiting threads in the system based
on the minimum total handover costs, instead of determining
the scheduling order using handover costs alone. One-Way
Circular Routing can often achieve global optimization. By
minimizing total handover costs, we can also improve the
efficiency of atomic operations, thereby improving the perfor-
mance of locks that suffer from contention.

Since the code of spinlocks cannot be too complicated, it
is impractical to dynamically calculate the priority of threads
waiting to enter the CS. We assume that there is a thread on
each core waiting to enter the CS, and then pre-calculate an
optimal lock transfer path. The pre-calculate lock transfer path
called the Traveling Salesman Problem Order (TSP ORDER)
of the cores with an efficient TSP algorithm [40]. For the
same processor model, the TSP ORDER is the same. RON
follows the TSP ORDER to let threads that want to access
shared data enter the CS one by one.

To find the TSP ORDER for a multi-core processor, we
created a benchmark program to calculate the transmission
latency between cores (see Section 6.2.1). Using this informa-
tion, we built a fully connected weighted graph of cores and
solved the TSP problem with a widely-used algorithm [40].
This allowed us to obtain the TSP ORDER that passes through
all cores in the graph, which we use for lock ownership trans-

fer to reduce the handover cost with low contention cost.

4.2 The Algorithm
Algorithm 1 presents the RON procedure for one spinlock. We
use an array-based method and assume that each core has at
most one thread. This method can achieve higher performance
under high load compared to using a linked list (similar to
MCS [44]). For each spinlock, the array-based RON not only
has a “wait flag” for each core, but also places wait flags of
adjacent cores, so as to increase the cache efficiency. The data
structure of RON is similar to queue spinlock [24] and Linux’s
qspinlock with constant space complexity. However, queue
spinlock [24] cannot handle the situation in which there are
more threads than cores (i.e., oversubscription). In the case
of oversubscription, Linux’s qspinlock does not support all
tasks to enter CS in the FIFO order to guarantee bounded
waiting. Note that we will introduce how to support oversub-
scription based on an array-based RON in Section 5. It should
be noted that RON is a heuristic algorithm and can provide
decent solutions but cannot guarantee optimal solutions. The
worst case of RON occurs in low contention scenarios where
multiple cores access the same memory locations. To mitigate
this issue, cache prefetching can be used to predict and fetch
the data, reducing the number of cache misses and improving
performance.

The first four lines of Algorithm 1 define the variables:

• NUM_core: This variable indicates the total number of
cores on the system. It is a system-scope variable.

• TSP_ID_ARRAY[]: This array stores the mapping of
each core ID to its corresponding “TSP ORDER ID”
(i.e., TSP_ID), where TSP_ID is the lock transfer order
of a core. When a lock is transferred to a core, the thread
on this core can be checked to see whether it can enter
the CS. This is a per-process variable, and each process
can have its own routing path (TSP ORDER) because
each process owns a different number of cores and can
have a different TSP ORDER

• TSP_ID: This is the “TSP ORDER ID” of a core, and
each thread has its “local version” of TSP_ID. Thus, each
thread on a different core will get a different value when
it accesses the TSP_ID. This is a per-thread variable. We
used “thread_local”, a C11 keyword of C language, to
declare per-thread variable in Algorithm 1 (Line 2).

• InUse: If this is “false”, there is no thread in the CS.
This is a per-lock variable.

• WaitArray[]: This array is to indicate which cores’
threads are waiting to enter the CS protected by this
lock. When a thread wants to enter a CS, its correspond-
ing WaitArray[TSP_ID] is set to 1. When the other
threads set their corresponding flag in WaitArray[] to

20 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0, the thread can enter the CS. This is a per-lock array.
In Section 7, we will provide an algorithm for sharing
WaitArray[] between different locks.

In Algorithm 1, Lines 3 and 5–8 initialize the variables. Line
5 uses getcpu() to get the core ID of the running thread, and
uses the core ID to get the TSP ID of the core by looking up
the TSP_ID_Array[]. The spin_lock() in Line 10 informs
other threads that the caller thread wants to enter the CS.
When no other thread is in the CS, the caller thread can enter
the CS (Lines 14-16). Otherwise, it waits for the previous
thread in the TSP ORDER to leave the CS (Lines 12-13).
Because “checking whether there is no thread in CS (lines
19-21)” and “setting InUse (line 22)” cannot be executed
atomically, it is necessary to simultaneously check InUse
and waitArray[TSP_ID] in a while loop. Additionally, Line
14’s cmp_xchg() uses TTAS, a technique commonly used in
spinlock implementation to reduce coherence traffic on the
cache line.

Algorithm 1 The RON Algorithm

1 int TSP_ID_ARRAY [NUM_core] ; /*per-process*/
2 thread_local TSP_ID ; /*thread-local-storage*/
3 atomic_bool InUse=false ; /*per-lock*/
4 atomic_int WaitArray [NUM_core] ; /*per-lock*/
5 TSP_ID = TSP_ID_ARRAY [getcpu ()]
6 void spin_init ()
7 for (each element in WaitArray)
8 element = 0 ;
9 void spin_lock ()

10 WaitArray [TSP_ID]= 1 ;
11 while (1)
12 if (WaitArray [TSP_ID]== 0)
13 return ;
14 if (cmp_xchg(&InUse , false , true)) :
15 WaitArray [TSP_ID] = 0
16 return ;
17 void spin_unlock ()
18 for (int i=1 ; i<NUM_core ; i++)
19 if (WaitArray [(i+TSP_ID)%NUM_core]== 1)
20 WaitArray [(i+TSP_ID)%NUM_core]= 0 ;
21 return ;
22 InUse=false ;

The spin_unlock() in Lines 18-21 finds the next thread
that wants to enter the CS. Lines 18-20 treat WaitArray[]
as a circular queue. From the next position of the caller thread
(where i is between 1 and NUM_core.), it searches for the
first thread wanting to enter the CS. Because the thread that
wants to enter the CS will set WaitArray[] based on its
TSP_ID (Line 10), the first thread found in the loop of Lines
18-20 is the next thread in the TSP ORDER. In Line 20,
WaitArray[] of the next thread is set to 0, and the next thread
leaves spin_lock() (Lines 12-13) to enter the CS. If no
thread is waiting, InUse is set to false (Line 22).

4.3 Correctness

A method must satisfy the following three conditions to
ensure the correctness of a CS: (1) mutual exclusion, (2)
progress, and (3) bounded waiting. At a minimum, the algo-
rithm used in a software system must satisfy conditions 1
and 2. For instance, GNU’s pthread_spin_lock satisfies only
conditions 1 and 2, while RON satisfies all three. However,
we provide proof of bounded waiting only due to space limi-
tations.

Bounded Waiting: We will prove that the maximum number
of waits is the number of threads when each core has at most 1
thread. Each core has a unique TSP_ID, and these TSP_IDs of
cores form a circular queue. RON allows all threads to enter
a CS in the order of the TSP ORDER. In the worst case when
thread X is ready to enter a CS, all threads on the cores whose
TSP ORDERs are before the core of thread X want to enter
the CS. Assuming that the total number of threads is “num,”
thread X needs to wait for (num - 1) threads to leave the CS.
In Section 5, RON can support multiple threads on a core. In
this case, the maximum number of waits is also the number
of threads minus one.

4.4 An Example

RON does not prioritize threads for entering the CS based
on arrival order, but instead uses the TSP ORDER of each
core. While this approach may not generate the optimal solu-
tion in all cases, it provides a heuristic algorithm that works
efficiently. Let us use the CPU architecture of AMD as an
example to illustrate the mechanism of RON. As Figure 2
shows, two CPU CompleXes (CCXs) are connected by two
point-to-point buses. Each CCX contains four cores that are
fully connected by a high-speed network. First, we assume
that the TSP ORDER of the cores is 3 → 0 → 1 → 2 → 5
→ 6 → 7 → 4. The TSP ORDER of a core can be obtained
by TSP_ID_ARRAY[]. Taking core 3 as an example, we can
find that its TSP ORDER is 0 in TSP_ID_ARRAY[3]. We
also assume that at time t0, the thread on core 3 is ready to
enter the CS. Therefore, InUse is set to true (Line 14 in Al-
gorithm 1) and this thread on core 3 enters the CS. Then,
all entries of WaitArray[] in the graph are null (value 0)
at time t0. At time t1, the threads on cores 1, 5, 2, and 6 ar-
rive and are in the Lock Session (LS). Taking the thread on
core 1 as an example, its TSP ORDER is TSP_ID_ARRAY[1]
= 2. Therefore, WaitArray[2] is set to 1 (Line 10), and
the thread waits for either WaitArray[2] (Line 12) or
InUse (Line 14) to become 0. The TSP_IDs of cores 1, 5,
2, and 6 are 2 (TSP_ID_ARRAY[1]), 4 (TSP_ID_ARRAY[5]),
3 (TSP_ID_ARRAY[2]), and 5 (TSP_ID_ARRAY[6]), respec-
tively, and their WaitArray[] values are set to 1 accordingly.

At time t2, the thread on core 3 leaves the CS. Because
the TSP ORDER of core 3 is 0, the search will start from
next TSP ORDER (i.e., TSP_ID 1 in this case). Thus, the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 21

CCX 0

0

1

3

2
CCX 1

4

5

7

6

t0
1 1 1 1t1
1 1 1t2
1 1t3
1t4

t5

WaitArray changes
according to time.

t6

index 0 1 2 3 4 5 6 7

value 1 2 3 0 7 4 5 6

TSP_ID_ARRAY

Figure 2: An example of RON.

value of WaitArray[1] is examined (Lines 18-21), and the
first “1” appears in WaitArray[2]. Therefore, the thread in
core 3 sets WaitArray[2] to 0. Since the thread in core 1 has
been waiting for WaitArray[2] to become 0 (Line 12), it can
now enter the CS. Similarly, at times t3 and t4, the threads
in cores 2 and 5 enter the CS, respectively. At time t6, the
thread in core 6 wants to leave the CS, so it finds all entries
of WaitArray[] equal to 0. Therefore, it sets InUse to false
(Line 22).

In this example, we assume that the handover cost within
the same CCX is 1 and that across CCXs is 3. If the CS is
entered in the FIFO order (3, 1, 5, 2, 6) as in MCS and Ticket,
the total handover cost will be 1 + 3 + 3 + 3 = 10. However,
according to RON, it will be entered in the order 3, 1, 2, 5, 6,
so the total handover cost is only 1 + 1 + 3 + 1 = 6.

5 More Threads than Cores

In real applications, there may be a situation where the num-
ber of running threads is more than the number of cores. We
call this oversubscription. RON approach proposed in Sec-
tion 4.2 cannot handle oversubscription. In this section we
propose two methods to solve this problem: RON-ticket and
RON-plock. The former provides better fairness (i.e., bounded
waiting), while the latter provides better performance and
probabilistic fairness. In the following, we first point out that
it is not necessary to run all threads with NUMA-aware spin-
lock algorithms in Section 5.1. By utilizing this observation
without violating fairness, we present our solution on support-
ing oversubscription in Section 5.2.

5.1 Lock Contention Problems on a Core

In oversubscription, multiple threads can run on a single core,
which differs from the situation where competing threads
are spread across multiple cores. In Figure 3-(a), T hr1 to
T hr4 correspond to core1 to core4. core1 and core2 belong to
NUMA node1, and the other cores belong to node2. If Plock is
used and T hr4 releases the lock, T hr3 has more probability of
entering the CS because T hr3 and T hr4 are in the same node.

When T hr3 and T hr4 continue to request entering the CS,
then T hr1 and T hr2 may not have the opportunity to enter the
CS. In ticket lock, these threads enter the CS in FIFO order.

node1

core1 core2

Thr1 Thr2

core
node2

core3 core4

Thr3 Thr4

(a)

Thr1 Thr2 Thr3 Thr4

(b)

Figure 3: Threads on NUMA nodes vs. threads on a core.

Figure 3-(b) is the same as Figure 3-(a), but all threads
belong to the same core. Taking Linux as an example, the
execution order of threads on the same core depends on the
scheduler. If Plock is used, when T hr4 (abbreviation for thread
4) releases the lock, the next task that enters the CS is the task
executed after T hr4. Therefore, the chance of T hr1 to T hr3
entering the CS is proportional to their chance of getting CPU
time. Because RON guarantees that each core has an equal
chance of obtaining the lock, the fairness of threads obtaining
the lock on different cores depends on whether the scheduler
is fair. The fairness of the ticket lock is the same as in the
example shown in Figure 3-(a).

5.2 RON with Oversubscription Support
In RON, the element in WaitArray indicates whether a thread
on that core is waiting to enter the CS. In this section, each
element of WaitArray indicates how many threads are waiting
for the lock on that core (for RON-ticket and RON-plock) and
the order in which they enter the CS (for RON-ticket).

The RON-ticket is given in Algorithm 2. Each lock has an
array consisting of the elements corresponding to each core
and the elements consist of two variables: grant and ticket.

Each core has its own nWait variable, which behaves more
like thread-local storage. When a thread is waiting to enter
the CS from the LS, it uses the atomic_fetch_add(nWait, 1)
operation to check whether there is a thread in the CS or not.
This operation is performed on the nWait variable of the core
that the thread is running on. If no thread is in the CS, then
the waiting thread can enter. To enter the CS, the thread uses
the atomic_fetch_add(ticket, 1) operation to set the l_ticket
variable (Line 6). The thread then waits on the while loop
(Lines 7-10) until it is its turn to enter the CS. If the thread is
not the next thread that should enter the CS of the core (that
is, grant − l_ticket ̸= 1), the thread releases the CPU (Lines
8-9) and tries again later. When a thread leaves the CS, it first
checks to see if there is any waiting thread (Line 13). If there
is a waiting thread, it searches for a core with a waiting thread
(Lines 14-19). Once a core with a waiting thread is found, it
increases the grant of that core by 1 (Line 17), allowing the
waiting thread to enter the CS.

The RON-plock is shown in Algorithm 3. Each lock has an
array consisting of the elements corresponding to each core
and the elements consist of two variables: numWait and lock.

22 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 The RON-ticket Algorithm

1 struct TicketLock {grant=0 , ticket=1 ; }
2 atomic_int nWait=0 ; //per-lock variable
3 TicketLock WaitArray [NUM_CORE] ; //per-lock

variable
4 TSP_ID = TSP_ID_ARRAY [getcpu ()]
5 void spin_lock ()
6 if (atomic_fetch_add(&nWait , 1) == 0) return ;
7 l_ticket = atomic_fetch_add(&WaitArray [TSP_ID

] . ticket , 1) ;
8 while (1)
9 if (WaitArray [TSP_ID] . grant−l_ticket ̸=1)

10 sched_yield () ;
11 if (l_ticket==WaitArray [TSP_ID] . grant) return ;
12 void spin_unlock ()
13 if (atomic_fetch_sub(&nWait , 1) == 1) return ;
14 next = (TSP_ID+1)%NUM_core ;
15 while (1)
16 if (WaitArray [next] . grant − WaitArray [next] .

ticket ≤ −2)
17 atomic_inc(&WaitArray [next] . grant , 1) ;
18 return ;
19 next = (next+1)%NUM_core ;

Each thread that wants to enter the CS must use atomic_inc()
to set the numWait to which it belongs. When the lock of a
core is HAS_LOCK, the thread currently executing on the
core can enter the CS (Lines 7-8). To increase cooperation be-
tween the lock-unlock algorithm and the scheduler, yield()
can be used when multiple threads are executing on a single
core. Although yield() is a system call and can have over-
head equivalent to futex(), for user-mode threads, it can be
a user-mode function that transfers control to other threads
on the same core. When the thread leaves the CS, it searches
for the next core whose numWait is not equal to 0 and sets
the lock of that core to HAS_LOCK. If necessary, yield()
can be used again to allow other waiting threads on the same
core to proceed. The proof of correctness is shown in the
supplementary material.

6 Performance Evaluations

6.1 Evaluation Platform and Settings

In the performance evaluation experiments, we used a AMD
Threadripper 2990WX with 64 cores (/32 physical cores) with
a GNU/Linux operating system. The kernel version was 5.4.
The compiler used gcc-9.3 with the optimization parameter
-march=znver1 -O3, which enabled gcc-9.3 to perform the
optimization for the Threadripper microarchitecture. All ex-
periments were conducted 100 times, and their results were
averaged. The source codes of RON in this section can be
found at https://github.com/shiwulo/ron-osdi2023.

For a more complete comparison with other methods, we
used the LiTL framework [39]. We compiled RON as a shared
library. We wrote Algorithm 3 into a program that is compiled

Algorithm 3 The RON-plock Algorithm

1 struct PLock {numWait=0 , lock=MUST_WAIT ; }
2 atomic_bool InUse=false ;//per-lock variable
3 PLock WaitArray [NUM_core] ; //per-lock variable
4 void lock ()
5 atomic_inc(&WaitArray [TSP_ID] . numWait) ;
6 while (1)
7 if (cmpxchg(&WaitArray [TSP_ID] . lock ,HAS_LOCK ,

MUST_WAIT))
8 return ;
9 if (cmpxchg(&InUse , false , true))

10 return ;
11 void unlock ()
12 atomic_dec(&WaitArray [TSP_ID] . numWait) ;
13 for (int i = 1 ;i < NUM_core+1 ;i++)
14 if (WaitArray [(TSP_ID+i)%NUM_core] . numWait>0)
15 WaitArray [(TSP_ID+i)%NUM_core]=HAS_LOCK ;
16 return ;
17 InUse=false ;

with LiTL. By using LD_PRELOAD, RON can be compared
with other methods on different benchmarks. AMD Thread-
ripper is a chip-NUMA. There are four dies in the chip. Each
die has two CCXs, each of which has four cores. Moreover,
the Linux numastat command shows that 2990WX has 4
NUMA nodes.

The cache coherence protocol operates at the cache line
granularity, which means that low latency also implies high
bandwidth. Therefore, the transmission latency obtained from
the experiments shown in Figure 4 not only informs the design
of inter-core locking algorithms but also provides insights into
the underlying hardware’s performance characteristics. By
profiling the inter-core latency, an operating system can op-
timize the lock-unlock algorithms accordingly. Furthermore,
detailed microarchitecture information about the NoC from
CPU vendors can lead to even better performance. In calcu-
lating the transmission latency from core X to core Y, we
make core X read 100 integers (2 cache lines in this case)
from DRAM, and then we calculate the time for core Y to
read the 100 integers from core X’s cache. As 2990WX is
a ccNUMA architecture, Y will read 100 integers from X’s
cache. It should be noted that not all dies on a 2990WX are the
same due to differences in the manufacturing process. AMD
puts the best cores on die 0, which means that the transmis-
sion latency of die 0 is lower. AMD and Intel support “AMD
Turbo Core” and “Turbo Boost Max 3.0”, respectively. The
operating system can learn how to make better use of the CPU
by being aware of the best die. However, traditional NUMA-
aware spinlocks cannot achieve the fairness they claim in such
processors, which will be discussed in Section 6.2.2.

After obtaining the handover time (i.e., transmission speed)
for each pair of cores, we used Google OR-Tools [40] (A
solver for NP-complete problems, providing a usable solu-
tion.) to determine the TSP ORDER for the cores as shown in
Figure 4. We see that the TSP-ORDER first visits all the cores

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 23

https://github.com/shiwulo/ron-osdi2023

in the same CCX and then the CCXs on the same die. Finally,
the TSP-ORDER visits each die in the clockwise direction.
Then, we generate TSP_ID_ARRAY[] according to the TSP
ORDER for Algorithm 1.

core-to-core
communications

TSP ORDER

CCX2
294ns

CCX3
288ns

CCX6
294ns

CCX7
289ns

565ns
556ns

CCX0
283ns

CCX1
277ns

CCX4
291ns

CCX5
284ns

563ns
554ns

435ns
428ns

571ns
563ns569ns

559ns

569ns
636ns

564ns
577ns

627ns
636ns

die 0

die 2 die 3

die 1

Figure 4: The core-to-core communication latencies and TSP
ORDER of AMD 2990WX

We used microbenchmarks in Section 6.2 to analyze the
characteristics of the algorithm, and used general benchmarks
in Section 6.3 to understand the performance under various
usage scenarios. We compared RON with the following al-
gorithms. Please note that what we describe below are the
performance characteristics of each algorithm, not the imple-
mentation details.

1. Plock: The GNU Pthread’s spinlock. A thread that in-
tends to enter a CS will test the lock until its value equals
to 0. When a thread leaves a CS, it sets the lock to 0. The
first core that observes that the lock is 0 can enter the
CS. The closer to the core the lock is released, the more
likely it is for the core to enter the CS.

2. Ticket: This method allows each task waiting to enter the
CS to have a “ticket” number. The thread waits until the
“grant” is equal to its ticket number. The wait loops of
all waiting threads use atomic instructions to continually
query the value of the “grant”, which consumes limited
NoC bandwidth.

3. MCS: Because all tasks waiting to enter the CS are
queued in a linked list, when a thread leaves the CS,
it only needs to set the “wait flag” of the next task to
false. Setting the wait flag of next thread is more efficient
than multicasting when the CPU supports a directory
cache coherence algorithm. MCS does not optimize the
interconnect latency in multi-core architectures.

4. C-BO-MCS: The thread should first acquire the MCS
lock of the NUMA node to which the thread belongs.
Then, it must compete with threads on other NUMA
nodes to obtain a back-off lock. If a core neighbors
to the core that obtains the C-BO-MCS lock, it has a
higher priority to enter the CS. With this method, threads
belonging to the same node can be grouped together to
reduce handover costs.

5. ShflLock (also known as Shuffle Lock): This also uses
grouping to improve performance. Shuffle can specify

that a thread in the queue is responsible for shuffling.
However, when the task that is allowed to enter the CS
is shuffling the queue, the thread cannot enter the CS
immediately and system performance may decrease.

6.2 Microbenchmarks for Quantitative Analy-
sis

6.2.1 Evaluation Platform and Settings

Here, we analyzed each spinlock method in a quantitative
manner through a controllable microbenchmark. In each set
of experiments in this section, each thread is bound (i.e.,
sched_setaffinity()) to a hardware thread and executes
Algorithm 4. Because we have SMT (Simultaneous multi-
threading) enabled, there are 2 hardware threads per core.
The total number of software threads is 64. In the while loop
(Lines 2–9), a thread in the lock section (LS) (Line 3) re-
quests entry into the critical section (CS) (Lines 4-5). Af-
ter the thread enters the CS, each entry in SharedData is
read and written, and the lock is released into the unlock
section (US) (Line 6) when the thread leaves the CS. The
clock_gettime(), defined in the POSIX.1-2001 standard,
is called in the non-critical section (nCS) (Lines 7-9) until the
elapsed time of the nCS exceeds the value of nCS_size±15%
in Line 9. We first evaluate the throughput (Figure 5) and
fairness (Figure 6) of each algorithm, and then analyze their
efficiency in terms of handover (Figure 7) and contention
(Figure 8). Please note that in these 4 experiments, except for
adding the code for measuring time (i.e., clock_gettime())
and the code for statistics, the experimental parameters are
the same.

Algorithm 4 Testing Program and Measurements

1 void thread () :
2 while (1) :
3 spin_lock () ; //LS
4 for (each element in SharedData) : //CS
5 element = element + 1 ; //CS
6 spin_unlock () ; //US
7 t = clock_gettime () ; //nCS
8 //syscall overhead, rdtscp implement in

userspace
9 while (clock_gettime () −t > nCS_size*rand

(0 . 85~1 . 15)) ;

6.2.2 Results of Microbenchmarks

As shown in Algorithm 4, a shorter nCS implies a heavier
workload because the lock request rate is higher. The upper
and lower parts of Figure 5 are the performance when the
contention is low and high, respectively. RON can provide
the best locking efficiency in both cases. Under low load
conditions (nCS = 400K∼120K), the performance of Plock

24 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is second only to RON. When nCS is lower than 40K, the
performance of Plock drops rapidly when the load is heavy.
The performance curves of MCS and ShflLock are similar,
which may be because they queue tasks waiting for CS in a
linked list.

ShflLock and C-BO-MCS perform worse than MCS in
some cases (i.e., nCS > 10K). This is because these two
algorithms implicitly treat the handover costs between cores
belonging to the same die as equal. Therefore, they cannot
optimize the handover costs of different cores in different dies
(Please see the example in Section 2.2). Further, since the
difference in communication cost between 2990WX cores
is only 3.13 times at most, an algorithm with too-high time
complexity reduces the benefits that can be obtained. Because
RON uses a pre-calculated TSP ORDER that is optimized for
all cores, it can achieve higher performance at a lower cost.
According to our simulation results (in the supplementary
material), ShflLock and C-BO-MCS performs better when
the transmission latency between cores on the same chip/die
is almost the same. In other situations, RON performed best.

0

1

2

3

160K 120K 80K 40K 20K 10K 5K 2.5K 1K

RON ShflLock C-BO-MCS MCS Plock Ticket

(b) Locks per Second (millions/sec, high cont.)

0.99

1.01

1.03

1.05

400K 360K 320K 280K 240K 200K 160K 120K

(a) Locks per Second (normalized, low cont.)

Non-critical Section Size (nanoseconds)

m
ill
io
ns
/s
ec

no
rm

al
iz

ed
 s

ca
le

Figure 5: Locks per second under different loads

Figure 6 shows the number of locks acquired by each core
in the case of short-term (1 second) and long-term (10 sec-
onds). The lower the coefficient of variation (CV), the better
the fairness. In Figure 6, we see that RON, MCS, and Ticket
perform equally well, in terms of CV. That is almost equal
to 1%. In long-term fairness, when non-critical section (nCS)
< 80K ns, the CV of Plock starts to rise. When nCS < 20K
ns, the CV of ShflLock and C-BO-MCS both starts to rise.
In order to better understand the performance of spinlock
algorithms in long-term fairness, we let the ShflLock, C-BO-
MCS, and Plock execute for 1,000 seconds with nCS = 10K
and their CVs are 35%, 71% and 96%, respectively. Fairness
factor is described by Dice et al. [25]. It is the most common
metric to measure fairness. The value of fairness factor is be-
tween 0.5 and 1. A complete fair spinlock’s factor is 0.5 and
a complete unfair spinlock’s factor is 1. The fairness factor
of the ShflLock, C-BO-MCS andPlock are 0.68, 0.85 and 0.8,
respectively.

In terms of software design, each thread in Plock competes
fairly for locks. C-BO-MCS is based on two fair spinlocks,
namely backoff [44] and MCS. ShflLock allows threads on

the same node (i.e., die) of the lock holder to elevate their
positions in the queue for a limited number of times. Note that
it is difficult to analyze in detail why these algorithms do not
meet long-term fairness perfectly, so only Plocks is analyzed
to provide insights into the interaction between multicore
processors and spinlocks.

In the past, the multi-core processor had to execute at a
frequency that all cores could run correctly. The worst core
determines the maximum clock frequency that a multi-core
processor can run. Now each core can run on its highest fre-
quency [47]. According to the experimental results of the
Plock with nCS=10k, the ability of cores 0-7 and 32-39 to
obtain locks is 20.6 times that of cores 8-31 and 40-63. There-
fore, we roughly conclude that when the load becomes heavier,
algorithms that meet long-term fairness may not achieve the
expected fairness on modern multi-core processors. [47].

0%
40%
80%

120%

160K 120K 80K 40K 20K 10K 5K 2.5K 1K

RON ShflLock C-BO-MCS MCS Plock Ticket

(b) Long-term Fairness (CV, 10 secs)
0%

40%

80%

120% (a) Short-term fairness (CV, 1 sec)

Non-critical Section Size (nanoseconds)

C
V

C
V

Figure 6: Long-/short- fairness of different algorithms.

The experimental parameters of Figure 7 are the same as
Figures 5 and 6, but we changed the X coordinate from nCS
(Line 8 in Algo. 4) to the number of threads waiting to enter
CS (i.e., the number of threads in LS, Line 3 in Algo. 4). The
more the number of threads waiting, the better the perfor-
mance of a algorithm that can optimize the handover cost. In
Figure 7, the Y axis is the time required to access the shared
data. For example, in the case of RON under load nCS = 10K,
the number of threads in LS is 45, and the handover time
is 100 ns. Under the same load, the number of threads of
C-BO-MCS in LS is 52, and handover time is 190 ns. RON
is almost the best spinlock in terms of handover time. With
more tasks in the LS, the path formed by each task selected
by RON is closer to TSP ORDER, because each core has a
higher probability to have a thread waiting for entering the
CS. When the number of tasks in LS increases from 0 to 15,
the efficiency of accessing shared data doubles (from 210ns
to 100ns). When the LS changes from 60 to 62, the efficiency
is reduced by 7%. This is the reason for the reduced efficiency
when the nCS is 1K in Figure 5.

Plock is slightly better (0.07%) than RON when the
lock contention is very low (nCS=120K). Although Plock’s
handover cost is low, its performance is not good. Since
Plock uses cmp_xchg (compare_exchange) to solve the lock
contention problem, The hardware may need to execute
cmp_xchg continuously until the return value of only one
task is equal to true. This wastes the limited bandwidth of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 25

NoC and is time consuming. The handover time of C-BO-
MCS and ShflLock is better than MCS. However, these two
methods are too complicated, resulting in the performance
lower than expected. Both Ticket and MCS arrange tasks to
enter the CS in the order of their arrival. Since Ticket does
not give each thread a wait flag, all threads will constantly
monitor the wait flag, thus consuming a lot of NoC bandwidth.
Ticket has the worst handover cost.

50

100

150

200

250

300

0 10 20 30 40 50 60 70

Average Number of Threads in LS

Handover Time per CS (nanoseconds)

RON ShflLock C-BO-MCS MCS Plock Ticket

na
no

se
co

nd
s

Figure 7: Handover cost and the number of thread in LS.

In Figure 8, we set the size of the shared data accessed
in the critical section to 0 (Line 4 in Algorithm 4). The X
axis is the number of tasks waiting to enter the CS, and the
Y axis is the time of each thread executing one round (in-
cluding LS, US, CS and nCS, i.e., Lines 2-8). The size of
the non-critical section (Lines 7 and 8) ranges from 160K to
1K. Therefore, the main factor in performance is the locking
and unlocking efficiency of an algorithm. RON is almost the
best algorithm. Its performance is slightly worse than that of
Plock (0.2%) when the loading is extremely light. RON has
a better performance for two reasons. First, TSP ORDER is
pre-calculated. Second, the lower handover cost makes atomic
operations more efficient. We use experiments to analyze the
efficiency of atomic operations of RON. When we schedule
threads to perform atomic operations through TSP ORDER,
the efficiency of atomic operations is 1.6 times that of random
order.

0

40000

80000

120000

160000

200000

0 10 20 30 40 50 60 70
Average Number of Threads in LS

RON ShflLock C-BO-MCS MCS Plock Ticket

Lock-Unlock Time (Contention Overhead)

n
a
n
o
s
e
c
o
n
d
s

Figure 8: Contention cost.

6.2.3 Oversubscribe

In each set of experiments of this section, each thread binds
(i.e., sched_setaffinity()) to a core and executes Algo-
rithm 4. Each core has at most ⌈num_thread ÷num_core⌉
threads. Because RON-ticket shares a key property with RON,
that is, bounded waiting, RON-ticket was used for perfor-
mance evaluation in the previous section. In this section,

microbenchmarks are used to evaluate the performance of
RON-ticket and RON-plock. In the case of oversubscription,
two factors affect performance. The first one is whether the
thread holding the lock is scheduled out. Second, if the algo-
rithm specifies the next thread entering the CS, and whether
it is scheduled out.

In Figure 9, RON-plock and RON-ticket perform better in
the case of overbooking, where the y-axis denotes “millions
locks” per second. Although C-BO-MCS(-B) and ShflLock(-
B) also support oversubscription, the number of lock-unlock
operations per second is dropped quickly.

0.227
0.190

0.002

0.062

0.003
0.012

0.002
0.017

0.164

0.002

0.0

0.2

0.4

0.6

0.8

1.0

Oversubscribe

64 96 128 256 384 512 768 1024 geomean
m

ill
io

n
lo

ck
s

pe
r s

ec
on

d

RO
N-p

loc
k

RO
N-t
ick
et

Sh
flL
oc
k

Sh
flL
oc
k-B

C-B
O-M

CS

C-B
O-M

CS
-B

MC
S

MC
S-B Plo

ck
Tic
ket

Figure 9: Performance of algorithms under oversubscribe.

RON-plock and Plock use intuitive methods (e.g., test-test-
and-set) to solve the problem of oversubscribe. As long as the
lock-holder is not scheduled out, Plock will allow a thread to
enter CS (it is because that all threads wait on the same vari-
able.). RON-plock is similar to Plock, except that all threads
on the next core are scheduled out. Because RON-plock is
based on RON, the performance of RON-plock is better than
Plock. RON-ticket, ShflLock-B, and C-BO-MCS-B use sys-
tem calls (i.e., futex() and yield()) to prevent the thread from
spinning meaninglessly. ShflLock-B’s unlock() directly wakes
up the next thread. However, C-BO-MCS-B’s unlock() may
wake up all threads that can enter CS. RON-ticket makes
the next thread that can enter the CS busy waiting, and other
threads on that core enter the sleep state. For the same reason
as RON-plock, RON-ticket has better performance.

6.2.4 Scalability

In this section, we investigate how algorithm performance
changes with an increase in the number of threads used. Our
experiment was conducted on the 2990WX, which has SMT
technology. During the experiment, each thread accesses 100
integers in the critical section, while the non-critical section
takes 10,000 ±15% nanoseconds.

As shown in Figure 10, it indicate that the performance of
the RON-plock improves with an increase in the number of
threads when the thread count is less than 64. This experiment
yields results similar to those in Figure 5 because “executing
more threads simultaneously” and “having shorter non-critical
sections” both lead to greater competition for entering the

26 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

critical section. However, when the number of threads exceeds
64, the performance of these algorithms is determined by their
ability to handle the oversubscribe problem.

Figure 10: Locks per second under different number of threads

6.3 Application-level Benchmarks
We pick five different application-level benchmarks represent-
ing different performance bottlenecks. For the consistency
of the experiment, the RON implementation here uses RON-
ticket, which has identical features to RON (bounded waiting).

6.3.1 LevelDB (Key-value Database)

Here, we used Google’s LevelDB to test the performance of
the spinlock. The Horizontal axis of Figure 11 is the algorithm
tested, and the vertical axis is the time cost for every operation
reported by LevelDB. Because of the difference data scales,
“fillsync” is normalized to MCS and others normalized to
Ticket.

64
78 79 78 74

99

0

20

40

60

80

100

RON-ticket ShflLock C-BO-MCS MCS Plock TicketR
el

at
iv

e
O

pe
ra

tin
g

T
im

e
pe

r
O

P
 (

%
)

LevelDB Benchmark

fillseq fillsync fillrandom overwrite readrandom geonmean

Figure 11: Google’s LevelDB.

We use the db_bench in LevelDB to evaluate performance
with 1 million entries and 64 threads. For each spinlock,
fillseq, fillsync, fillrandom, overwrite, and readrandom have
been tested. The last one is the geometric average of Lev-
elDB’s 5 tests. RON-ticket, ShflLock and C-BO-MCS are
spin locks optimized for ccNUMA or NUMA. Please note
that RON-ticket is RON with oversubscribe support and it
also satisfies bounded waiting. Compared with ShflLock and
C-BO-MCS, the performance of RON is better by 22.1% and
24.2%, respectively.

MCS is slightly better than ShflLock and C-BO-MCS for
LevelDB, although the latter two are optimized for NUMA.

This may be because these two algorithms are designed to
overcome the huge transmission overhead between two CPUs.
However, there is not much difference in the communication
cost between the cores on AMD 2990WX. When the load
is high, ShflLock and C-BO-MCS may only perform local
optimization.

Consider the situation with four NUMA nodes, where
ShflLock and C-BO-MCS serve node X, and the load on
node X always has a thread waiting to enter the CS. At this
time, although there are many threads waiting for the CS on
other NUMA nodes to enter, ShflLock and C-BO-MCS tend
to let tasks on node X enter the CS. Since RON uses TSP
ORDER to arrange the cores to enter the CS, RON does not
suffer from the problem of local optimization.

6.3.2 Benchmarks in Different Contention Levels

We applied an additional four different application bench-
marks to evaluate the performance of different algorithms.
These algorithms are selected from LiTL [39] and cover both
high and low contention scenarios. Volrend and Raytrace are
from the SPLASH2x benchmark set representing extreme
and high levels of contention, respectively. For the extreme
level, more than 40 threads are waiting to acquire the same
lock instance. For the high level, there are about 10 to 40
threads waiting to acquire a lock. Dedup and Ferret are from
the PARSEC3.0 benchmark set and respectively represent
pressure on the memory and relatively low levels of con-
tention [39]. In Figure 12, the vertical axis is the elapsed time
of the benchmark task (including geomean of LevelDB Fig-
ure 11). Because of the different data scales, the numbers are
the percentage to where the algorithm performs the worst for
each task.

19

58
70 69

27

71

0
20
40
60
80

100

RON-ticket ShflLock C-BO-MCS MCS Plock TicketR
el

at
iv

e
R

un
tim

e

Benchmarks

raytrace volrend ferret dedup geomean

Figure 12: Applications with different contention level.

The bottleneck of Raytrace is a lock contention, protecting
a single counter with about a million acquisitions every sec-
ond. RON-ticket, MCS, and Plock accomplished the task with
around 70% of elapsed time. MCS is optimized for multi-core
systems with dedicated caches for each core to reduce the
overhead of lock contention and well fitted in high level of
contention. The code of Plock is not optimized for multi-core.
However, the core adjacent to the core that released the lock
is more likely to successfully perform the atomic operation
compare_exchange() to acquire the lock. Thus, Plock is
implicitly optimized for multi-core platforms.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 27

In the case of extreme levels of contention, the performance
of Plock and MCS starts to drop while the ShflLock and RON-
ticket can handle the stress. Under extreme level of contention
(Volrend), RON-ticket achieved its best performance, taking
only 24.3% of the elapsed time of the ticket to accomplish
task. The bottleneck of Volrend is the lock contention for pro-
tecting different task queues with around 40 threads waiting.
This benchmark verified that the RON algorithm generally
performs best under higher contention. With more cores pos-
sessed by threads spinning for the lock instance, the routing
path can massively reduce the handover cost.

However, under low levels of contention, RON-ticket only
performs second best in all six algorithms. Ferret is a paral-
lelized software with about 2000 times of acquisition for every
second. While RON-ticket uses around 20% of the elapsed
time, Plock takes only around 15.6% of the elapsed time of
C-BO-MCS, outperforming RON in this specific benchmark.
The lower contention of the lock leads to the sparseness of the
WaitArray, which results in leaping on the routing path and
lowers the benefit. Ticket guarantees fairness as threads keep-
ing querying the global variable to know whether they can
enter the CS. Ticket fits the task with low level of contention.
However, under higher pressure, the bandwidth consumed
by lock contention limits the bandwidth that can be used by
handover.

Moreover, according to the results of Dedup, RON-ticket
and Plock gave low memory pressure. Dedup allocates numer-
ous locks (266k) [39], which puts pressure on the memory if
the components of the lock are not reusable. The reusability
of components like WaitArray and Get_TSP_ID gives RON-
ticket the ability to handle numerous lock allocations.

In summary, RON algorithms can handle different levels of
contention, especially higher levels. With higher contention
RON algorithms achieve better performance relatively, but
Plock remains a better algorithm for low levels of contention.
With reusable components, Both Plock and RON put low pres-
sure on the memory while allocating numerous lock instance.

7 RON in GNU/Linux Kernel

7.1 Implementation
As shown in the performance evaluation section, RON is
more suitable for multi-core computers than methods that
support NUMA in user space applications. In this section,
we shows whether RON is suitable for Linux kernel. In our
implementation, the line of code (LoC) is 47.

In the Linux kernel, the lock-acquire and lock-release are
implemented by queued_spin_lock(struct qspinlock
*lock) and queued_spin_unlock(struct qspinlock
*lock), respectively. Both functions have only one parameter,
lock. By rewriting these two functions, we implement RON
in the Linux kernel. We use *lock as InUse in the RON
algorithm (Line 3 in Algorithm 1).

In order to achieve the same space efficiency as qspinlock,
only one WaitArray (Line 4 in Algorithm 1) is in kernel.
In user space, a task sets WaitArray[TSP_ID] (Line 10 in
Algorithm 1) to wait for entering the CS. In the Linux kernel,
the task writes the address of lock (that is the parameter
of queued_spin_lock) to WaitArray[TSP_ID] for entering
the CS. When the thread leaves CS, the thread will check one
by one whether there is an element with a value equal to
lock in WaitArray . Therefore, a busy-waiting task is only
awakened by the task holding the same lock.

If the space of the WaitArray has been used up, the other
tasks wait on InUse (that is *lock in kernel space). Tasks
waiting for InUse do not enter CS in TSP ORDER. This
design method is the same as Linux’s qspinlock, though it
is not perfect but good enough (compromise to O(1) space
complexity). In terms of memory usage, RON requires 4
bytes for each lock (that is the size of struct qspinlcok)
and 28 bytes for each core (28×64 = 1792 bytes for AMD
2990WX).

7.2 Evaluations

In this section, the Linux kernel version is 5.12.1. We ap-
ply the patch of ShflLock into the qspinlock.c of Linux.
Therefore, in this section, we will compare the performance
of the Linux kernel using qspinlock, ShuflLock and RON. We
use a microbenchmark and db_bench of Google LevelDB to
measure the performance of RON in Linux kernel. In the ex-
periment, we do not use LD_PRELOAD to change the behavior
of LevelDB. The purpose of microbenchmark is to measure
performance under high load conditions. The microbench-
mark is implemented by forking 64 child processes, and every
child process creates 2048 threads to execute 64 mmap() and
munmap() function calls. We use strace to evaluate the time
taken for each system call.

As shown in Figure 13, ShflLock doesn’t perform well on
both microbenchmark and LevelDB. ShflLock is suitable for
multi-socket NUMA machines but ours is a single-socket ma-
chine. RON performs better than qspinlock under high load
conditions. In terms of geometric average of microbenchmark,
the performance of Linux kernel with RON is 1.35 times that
of Linux kernel with qspinlock. In terms of LevelDB, RON
and qspinlock are about the same in terms of geometric aver-
age. In these five experiments, the performance of these three
algorithms on readseq are almost the same. RON performs
better than qspinlock in fillsync bacause the contention is
high. RON and qspinlock both have their own strengths.

Intuitively we can combine qspinlock and RON to achieve
better performance. qspinlocks can encode the first two tasks
that want to enter CS into the lock variable (the parameter
of queued_spin_lock()). In this way, the performance of
qspinlock is very good under low contention. The purpose
of this experiment is to explore the effectiveness of RON,
so we did not use Linux optimization techniques to improve

28 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

performance under low contention conditions.

system call mmap clone mprotect munmap geomean
qspinlock 923 183 252 43 207
ShflLock 2029 206 456 39 294
RON 592 185 264 19 153

microbenchmark (microseconds)

(a)

fillseq fillsync fillrandom overwrite readseq geomean
MB/sec op/sec MB/sec MB/sec MB/sec

qspinlock 20.2 511.4 17.8 17.2 487.3 68.8
ShflLock 7.9 390.5 7.5 7.1 485.3 38.1
RON 18.3 687.1 16.3 15.7 482.7 68.9

LevelDB

(b)

Figure 13: Performance comparisons on Linux kernel.

8 Conclusion

We propose a RON spinlock algorithm that delivers locks
and data in a one-way circular manner among cores with the
awareness of the performance differences of cores, so as to
minimize the system-level handover cost and achieve bounded
waiting for threads among cores. In particular, “one-way” is
for minimized system-level handover cost and “circular” is for
bounded waiting of threads to enter CS. In addition, the pro-
posed RON algorithm can also resolve the oversubscription is-
sue without losing its scalability. A series of experiments were
conducted to evaluate the efficacy of the proposed algorithm.
Compared with ShflLock and C-BO-MCS, the performance
of RON in google leveldb has increased by 22.1% and 24.2%
respectively. In terms of kernel space performance, compared
with using ShflLock, RON can improve the performance of
Google LevelDB by 1.8 times.

9 Future work

This paper addresses the issue of unfairness caused by differ-
ent execution frequencies on multi-core processors, as well as
the efficiency of inter-core data transfer. The proposed method
is particularly suitable for highly competitive scenarios. Al-
though high competition can be a bottleneck for performance,
low competition is a more common scenario where simple
algorithms often have good performance. Therefore, in future
research, we will investigate how to dynamically switch al-
gorithms (such as plock and RON) at runtime. We will also
evaluate the performance of RON by implementing it using
linked-list methods to offload the runtime of unlocking to the
locking process.

Acknowledgement

We thank our shepherd, Aurojit Panda, and the anonymous
reviewers for their valuable feedback and suggestions. This

work was supported in part by Ministry of Science and Tech-
nology (MOST) of Taiwan under grant nos. 111-2221-E-194
-017 -MY3, 111-2223-E-001-001, 111-2923-E-002-014-MY3,
111-2221-E-001-013-MY3, and 112-2927-I-001-508.

References

[1] L. T. Su, S. Naffziger and M. Papermaster, "Multi-chip
technologies to unleash computing performance gains
over the next decade," 2017 IEEE International Elec-
tron Devices Meeting (IEDM), 2017, pp. 1.1.1-1.1.8, doi:
10.1109/IEDM.2017.8268306.

[2] Nicolas Viennot (Sep 19, 2022). Measuring CPU core-
to-core latency. https://github.com/nviennot/core-to-core-
latency

[3] Sally Ward-Foxton (08.19.2021). Intel Brings
Chiplets to Data Center CPUs. EETimes.
https://www.eetimes.com/intel-brings-chiplets-to-
data-center-cpus/

[4] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz
Hoffmann, Sabela Ramos, Timothy Roscoe: Machine-
Aware Atomic Broadcast Trees for Multicores. OSDI
2016: 33-48

[5] https://www.freebsd.org/cgi/man.cgi?query=atomic&sektion=9&
format=html

[6] Daniel Sorin; Mark Hill; David Wood, “A Primer on
Memory Consistency and Cache Coherence,” Morgan
& Claypool, 2011.

[7] Pradip Kumar Sahu and Santanu Chattopadhyay. 2013. A
survey on application mapping strategies for Network-on-
Chip design. J. Syst. Archit. 59, 1 (January, 2013), 60–76.
DOI:https://doi.org/10.1016/j.sysarc.2012.10.004

[8] Rajesh Chopra, Yang-Trung, LinSailesh Kumar, “Gen-
erating physically aware network-on-chip design from
a physical system-on-chip specification, ” US Patents
US10218580B2, Application granted in 2019.

[9] C. Wu et al., “A Multi-Objective Model Oriented Map-
ping Approach for NoC-based Computing Systems,” in
IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 3, pp. 662-676, 1 March 2017.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta and
J. Hennessy, “The directory-based cache coherence proto-
col for the DASH multiprocessor,” In Proceedings of the
17th Annual International Symposium on Computer Ar-
chitecture (ISoA), Seattle, WA, USA, pp. 148-159, 1990.

[11] Chinya Ravishankar, James Goodman, “Cache Imple-
mentation for Multiple Microprocessors,”in Proceedings
of IEEE Computer Conference, pp. 346–350, Feb 1983.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 29

[12] Ruibo Wang, Kai Lu, and Xicheng Lu. 2009. In-
vestigating transactional memory performance on cc-
NUMA machines. In Proceedings of the 18th ACM
international symposium on High performance dis-
tributed computing (HPDC ’09). Association for
Computing Machinery, New York, NY, USA, 67–68.
DOI:https://doi.org/10.1145/1551609.1551625

[13] R. R. Iyer and L. N. Bhuyan, "Design and evaluation of
a switch cache architecture for CC-NUMA multiproces-
sors," in IEEE Transactions on Computers, vol. 49, no. 8,
pp. 779-797, Aug. 2000, doi: 10.1109/12.868025.

[14] K. A. Bowman, A. R. Alameldeen, S. T. Srini-
vasan and C. B. Wilkerson, "Impact of die-to-die and
within-die parameter variations on the throughput dis-
tribution of multi-core processors," Proceedings of the
2007 international symposium on Low power electron-
ics and design (ISLPED ’07), 2007, pp. 50-55, doi:
10.1145/1283780.1283792.

[15] "Ampere® Altra® offers up to 80 cores at up to 3.0
GHz", 80 cores, https://amperecomputing.com/altra/

[16] " AMD EPYC™ 7003 Series Proces-
sors scale from 8 to 64 cores", 64 cores,
https://www.amd.com/en/processors/epyc-7003-series

[17] "Intel® Xeon® Platinum 8380 Pro-
cessor (60M Cache, 2.30 GHz)", 40
cores,https://www.intel.com/content/www/us/en/products/details/
processors/xeon/scalable/platinum.html

[18] "Arm-based AWS Graviton2 processors", 64 vCPU,
https://aws.amazon.com/tw/ec2/instance-types/x2/

[19] Abdul Naeem, Xiaowen Chen, Zhonghai Lu, Axel
Jantsch. "Scalability of relaxed consistency models in
NoC based multicore architectures". ACM SIGARCH
Computer Architecture News. April 2010.

[20] B. K. Daya et al., "SCORPIO: A 36-core research chip
demonstrating snoopy coherence on a scalable mesh NoC
with in-network ordering," 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA),
2014, pp. 25-36, doi: 10.1109/ISCA.2014.6853232.

[21] scientiaesthete. 2012 “pthreads: thread starvation
causedby quick re-locking”, Retrieved June 20, 2019
fromhttps://stackoverflow.com/questions/12685112/pthreads-
thread-starvation-caused-by-quick-re-locking

[22] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Mor-
ris and Nickolai Zeldovich, “Non-scalable locks are
dangerous”, in Proceedings of the Linux Symposium
(OLS2012), Ottawa, Canada, July 2012.

[23] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. 2010. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, Vancou-
ver, Canada, 1–16.

[24] J. M. Mellor-Crummey and M. L. Scott. “Algo-
rithms for scalable synchronization on shared-memory
multi-processors,” ACM Transactions on Computer Sys-
tems,9(1):21–65, 1991.

[25] David Dice, Virendra J. Marathe, and Nir Shavit.
2015. Lock Cohorting: A General Technique for De-
signing NUMA Locks. ACM Trans. Parallel Com-
put. 1, 2, Article 13 (January 2015), 42 pages.
DOI:https://doi.org/10.1145/2686884

[26] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng,
Changwoo Min, and Taesoo Kim. 2019. Scalable
and practical locking with shuffling. In Proceedings
of the 27th ACM Symposium on Operating Sys-
tems Principles (SOSP ’19). Association for Com-
puting Machinery, New York, NY, USA, 586–599.
DOI:https://doi.org/10.1145/3341301.3359629

[27] Dave Dice and Alex Kogan. 2019. Compact NUMA-
aware Locks. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). Association for Com-
puting Machinery, New York, NY, USA, Article 12, 1–15.
DOI:https://doi.org/10.1145/3302424.3303984

[28] Milind Chabbi, Michael Fagan, and John Mellor-
Crummey. 2015. High performance locks for multi-level
NUMA systems. SIGPLAN Not. 50, 8 (August 2015),
215–226. DOI:https://doi.org/10.1145/2858788.2688503

[29] Milind Chabbi and John Mellor-Crummey. 2016.
Contention-conscious, locality-preserving locks. SIG-
PLAN Not. 51, 8, Article 22 (August 2016), 14 pages.
DOI:https://doi.org/10.1145/3016078.2851166

[30] Dave Dice, Virendra J. Marathe, and Nir Shavit. 2011.
Flat-combining NUMA locks. In Proceedings of the
twenty-third annual ACM symposium on Parallelism in
algorithms and architectures (SPAA ’11). Association
for Computing Machinery, New York, NY, USA, 65–74.
DOI:https://doi.org/10.1145/1989493.1989502

[31] S Kashyap, C Min, T Kim, Scalable numa-aware block-
ing synchronization primitives, USENIX Annual Techni-
cal Conference, 2017

[32] LOZI, J., DAVID, F., THOMAS, G., LAWALL, J., and
MULLER, G. “Remote Core Locking: Migrating Critical-
Section Execution to Improve the Performance of Multi-

30 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

threaded Applications.” USENIX Annual Technical Con-
ference ’12.

[33] David Klaftengger, Konstantinos Sagonas and Kjell Win-
blad, “Queue Delegation Locking”, IEEE Transaction
Parallel and Distributed Systems, vol. 29, no. 3, pp.687-
704, March 2018.

[34] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande,
D. Marculescu and R. Marculescu, "Learning-Based
Application-Agnostic 3D NoC Design for Heterogeneous
Manycore Systems," in IEEE Transactions on Com-
puters, vol. 68, no. 6, pp. 852-866, 1 June 2019, doi:
10.1109/TC.2018.2889053.

[35] W. Amin et al., "Performance Evaluation of Application
Mapping Approaches for Network-on-Chip Designs,"
in IEEE Access, vol. 8, pp. 63607-63631, 2020, doi:
10.1109/ACCESS.2020.2982675.

[36] S. Das, J. R. Doppa, P. P. Pande and K. Chakrabarty,
"Monolithic 3D-Enabled High Performance and Energy
Efficient Network-on-Chip," 2017 IEEE International
Conference on Computer Design (ICCD), 2017, pp. 233-
240, doi: 10.1109/ICCD.2017.43.

[37] C. Wu et al., “A Multi-Objective Model Oriented Map-
ping Approach for NoC-based Computing Systems,”
in IEEE Transactions on Parallel and Distributed Sys-
tems,vol. 28, no. 3, pp. 662-676, 1 March 2017.

[38] Aryan Deshwal, Nitthilan Kanappan Jayakodi, Biresh
Kumar Joardar, Janardhan Rao Doppa, and Partha Pratim
Pande. 2019. MOOS: A Multi-Objective Design Space
Exploration and Optimization Framework for NoC En-
abled Manycore Systems. ACM Trans. Embed. Com-
put. Syst. 18, 5s, Article 77 (October 2019), 23 pages.
DOI:https://doi.org/10.1145/3358206

[39] Rachid Guerraoui, Hugo Guiroux, Renaud
Lachaize,Vivien Quéma, and Vasileios Trigonakis.
“Lock–Unlock:Is That All? A Pragmatic Analysis of
Locking in Soft-ware Systems,” ACM Transactions on
Computer Systems,Volume 36 Issue 1, March 2019.

[40] “OR-Tools | Google Developers”. Retrieved June, 28,
2019 from https://developers.google.com/optimization/

[41] Jonathan Corbet, “Ticket spinlocks,” Retrieved from
https://lwn.net/Articles/267968/

[42] J. Hennessey and D. Patterson, Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2017.

[43] David P. Reed and Rajendra K. Kanodia. 1979. Syn-
chronization with event counts and sequences. Com-
munications of the ACM 22, 2 (1979), 115–123.
DOI:https://doi.org/10.1145/359060.359076

[44] John M. Mellor-Crummey and Michael L. Scott.
1991. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transac-
tions on Computer Systems 9, 1 (1991), 21–65.
DOI:https://doi.org/10.1145/103727.103729

[45] D. M. Tullsen, S. J. Eggers and H. M. Levy, "Simulta-
neous multithreading: Maximizing on-chip parallelism,"
Proceedings 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 392-403.

[46] Thomas E. Anderson. 1990. The performance of spin
lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed Systems 1,
1 (1990), 6–16. DOI:https://doi.org/10.1109/71.80120

[47] Btarunr. Windows 10 2H19 Update to Have "Favored
Core" Awareness, Increase Single-threaded Performance.
online https://www.techpowerup.com/259688/windows-
10-2h19-update-to-have-favored-core-awareness-
increase-single-threaded-performance

[48] Rafael Lourenco de Lima Chehab, Antonio Pao-
lillo, Diogo Behrens, Ming Fu, Hermann Härtig, Haibo
Chen. CLoF: A Compositional Lock Framework
for Multi-level NUMA Systems. Proceedings of the
ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, October 2021, Pages 851–865. DOI:
https://doi.org/10.1145/3477132.3483557

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 31

Userspace Bypass: Accelerating Syscall-intensive Applications

Zhe Zhou, Yanxiang Bi, Junpeng Wan, Yangfan Zhou
Fudan University

{zhouzhe, 19210240167, 19210240003, zyf}@fudan.edu.cn}

Zhou Li
University of California, Irvine

zhou.li@uci.edu

Abstract
Context switching between kernel mode and user mode often
causes prominent overhead, which slows down applications
with frequent system calls (or syscalls), e.g., those with high
I/O demand. The overhead is further amplified by security
mechanisms like Linux kernel page-table isolation (KPTI).
To accelerate such applications, many efforts have been put in
removing syscalls from the I/O paths, mainly by combining
drivers and applications in the same space or batching syscalls.
Nonetheless, such solutions require developers to refactor
their applications or even update hardware, which impedes
their broad adoption.

In this paper, we propose another approach, userspace
bypass (UB), to accelerate syscall-intensive applications,
by transparently moving userspace instructions into kernel.
Userspace bypass requires no modification to userspace bina-
ries or code and achieves full binary compatibility. Specifi-
cally, to avoid overhead caused by frequent syscalls, kernel
identifies the short userspace execution path between consec-
utive system calls, and converts the instructions in the path
into code blocks with Software-Based Fault Isolation (SFI)
guarantee. According to our evaluation, I/O micro-benchmark
can be accelerated by 30.3 – 88.3%, Redis GET Requests Per
Second (RPS) can be improved by 4.4 –10.8% for 1B – 4KiB
data sizes, when the application is executed in a virtualized
setting with KPTI turned on. The performance boost will be
reduced when KPTI is turned off.

1 Introduction

System call (syscall) is widely used by a userspace applica-
tion to access the resources provided by the hosting oper-
ating system (OS) and extensively used for I/O operations.
However, syscall could incur prominent performance over-
head [43] when mechanisms like Linux kernel page-table iso-
lation (KPTI) [47] are turned on. Arguably, syscall is one of
the major performance bottlenecks for applications pursuing
high I/O requests Per Second (IOPS), e.g., those requesting
over a million IOPS [7].

Syscall-refactoring approaches. In the recent literature,
there are mainly two streams of work in achieving higher
IOPS by changing how syscalls are processed from the I/O
path, which we call syscall-refactoring approaches: 1) The
first stream of approaches integrate drivers and data process-
ing logic in the same address space by moving data processing
logic into kernel [26, 36, 53] or moving drivers responsible
for I/O into userspace (kernel bypass) [21, 51]. In this way,
the processing logic can directly talk to I/O devices and avoid
the overhead caused by the switching between user mode
and kernel mode [51]. 2) The second stream of approaches
batch syscalls and allow userspace processes to queue multi-
ple I/O requests and issue them together with only one single
syscall [43]. However, these solutions require developers to
change their code, which is usually a non-trivial task.
Our approach. In this paper, we propose userspace bypass
(or UB for short), which reduces the overhead introduced by
syscall-related I/O and achieves binary compatibility (i.e., no
application code needs to be changed or rebuilt) at the same
time. UB is motivated by the observation that applications
with high IOPS do not execute many instructions between
two consecutive syscalls (see Section 3.1). As a result, we
can transparently instrument the instructions between syscalls
under pre-defined security requirements (i.e., translating the
instructions into sanitized code blocks), and let kernel exe-
cute the blocks without returning to userspace. In this way,
the overhead caused by consecutive syscalls can be avoided.
Figure 1 illustrates this idea.

Yet, a few challenges should be addressed. First, only those
instructions that will potentially be executed between fre-
quently invoked consecutive syscalls deserve userspace by-
pass. However, without explicit information provided by the
developer, it is difficult to find such syscall sequence. As
elevating the instructions to kernel also introduces overhead,
the syscalls to be optimized need to be carefully chosen to
offset such overhead. Second, malicious applications may
exploit UB to steal kernel data and even execute privileged
instructions. In addition, buggy applications may pollute ker-
nel memory. Hence, it is critical for UB to guarantee kernel

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 33

user
space

do_syscall

syscall_
exit

user
space

syscall_
entry

user
space

syscall_
entry

do_syscall

user
space

user
space

do_syscall

User mode Kernel modeUser mode Kernel mode

……

do_syscall

user
space
……

syscall_
exit

syscall_
entry

……

Figure 1: Invoking system calls without and with UB.

safety by performing comprehensive sanitization on userspace
code and data. Finally, to achieve binary compatibility, the
elevated application code should be oblivious about whether
they are executed in kernel mode or user mode. The identical
execution outcomes with and without UB should be guaran-
teed, including memory order and atomicity for multi-thread
applications.

We address these challenges by adapting Dynamic Binary
Translation (DBT) [52] and Software-Based Fault Isolation
(SFI) [44] techniques. First, we profile syscalls by hooking
their entries, to learn which syscall invocations are frequent
(i.e., “hot” syscalls). Inspired by Just-In-Time (JIT) compi-
lation [17, 22, 48], we can obtain the userspace instructions
following the hot syscalls in the runtime. The instructions, if
within the same function, will be translated into Binary Trans-
lation Cache (BTC). Next, we iteratively execute the BTC and
extend the BTC from the exit instruction until we meet the
next syscall invocation. We perform instruction and address
sanitization to restrict the behaviors of BTC, and achieve ker-
nel control-flow integrity (CFI) and data integrity on the BTC.
UB does not re-order instructions or split memory access. As
a result, other threads can execute concurrently and safely
with the thread optimized by UB.

We implement a prototype of UB and evaluate its perfor-
mance gain in I/O micro-benchmark and real-world applica-
tions including Redis and Nginx. Under our default setting
(the tested application runs in a virtual machine (VM) and the
Linux KPTI is turned on), I/O micro-benchmark threads can
be accelerated by 30.3% to 88.3%. For Redis GET, the accel-
eration ratio ranges from 4.4% to 10.8% for 1B – 4KiB data
sizes. Nginx can be accelerated by 0.4% – 10.9%. UB can
accelerate raw socket-based packet filters by 31.5% – 34.3%.
We also evaluate the impacts of KPTI and virtualization on
UB’s performance gain. Since turning off KPTI reduces the
syscall overhead, UB is less effective. For example, the ac-
celeration ratio for I/O micro-benchmark drops from 88.3%

to 41.6% for the smallest I/O size. Hence, future processors,
which are expected to eliminate Meltdown and Spectre vulner-
ability in hardware, will benefit much less from UB. When the
applications run in the physical machine, UB achieves higher
upper-bound acceleration ratios in most settings compared
to VM, because IOPS is usually higher in this case, which
results in more syscalls that can be optimized.

We also compare UB with other systems that optimize
syscalls, including io_uring [23], F-Stack DPDK [45] and
eBPF [34] in our experimental study. The results show that
UB is less advantageous, comparing with io_uring in the
micro-benchmark, F-Stack for the Redis macro-benchmark,
and eBPF for raw sockets. However, UB has a unique ad-
vantage that no code change is required for the application
developers.

Finally, we acknowledge UB might introduce new security
risks under side-channels, undocumented x86 instructions,
and kernel races. We accordingly suggest a few defense ideas.

The code of our UB prototype is published at [15]. We
summarize the contributions of this paper as follows.

• We propose userspace bypass (UB), which directly exe-
cutes the instructions between syscalls in kernel mode,
to accelerate syscalls.

• We provide a concrete design that transparently trans-
lates userspace instructions to kernel-safe, sanitized BTC.
With this method, existing applications can be executed
without modification and enjoy the performance gain.

• We implement a prototype and evaluate it against several
high IOPS apps. The results prove the effectiveness of
UB.

2 Background

In this section, we first overview the syscall mechanisms and
their introduced overhead. Then, we describe the prior efforts
in reducing such overhead.

2.1 Syscalls and Their Costs

Syscall presents the default interface between userspace ap-
plications and kernel services. Software interrupt (e.g., int
0x80, which has been deprecated) and special instructions
(e.g., syscall/sysret created by AMD and sysenter/sysexit
created by Intel) can be leveraged to transfer the control from
user space to kernel space and vice versa after syscall.

Previous studies have shown that syscall invocation can
introduce prominent overhead on various applications and
scenarios [16, 35, 43], including direct costs and indirect
costs [43]. For the first case, because of switching between
user mode and kernel mode, extra procedures have to be exe-
cuted to save registers, change protection domains, and han-
dle the registered exceptions. For the latter case, the state of
processor structure, including L1 cache data and instruction

34 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

2

3

0 1K 2K 3K 4K 5K 6K 7K 10K 15K 20K

IP
C

TIMES (IN INSTRUCTIONS)

no-op pwrite

Figure 2: IPC after no-op syscall and pwrite syscall, mea-
sured on our platform (Intel Skylake and Linux).

caches, translation look-aside buffers (TLB), etc., can be pol-
luted by syscalls, and the Out of Order Execution (OOE) of
CPU has to be stalled for the order guarantee. As a result, the
user-mode instructions per cycle (IPC) would be decreased
after syscall.

A widely-used technique called kernel page-table isolation
(KPTI) [47] makes syscalls even slower. To defeat transient
execution attacks, e.g., Meltdown [29] and Spectre v3a [49],
OS kernel uses two sets of page tables for user space and
kernel space. As a consequence, CPU should switch to ker-
nel page table upon entering syscall, and switch back when
returning to userspace. Besides KPTI, virtualization may also
increase the context-switching overhead. For example, the
overhead of TLB miss (part of indirect overhead) inside VM
can be larger, as more page table entries have to be examined
than inside physical machines.

Below we summarize the observations from previous stud-
ies and our measurement about the concrete syscall overhead.

• A no-op system call with KPTI enabled can cost 431
CPU cycles, as measured by Mi et al. on Intel Skylake
and seL4 [35].

• As measured in our experiment platform (Intel Skylake
and Linux), the kernel prologue and epilogue (direct
costs) take 197 instructions (992 CPU cycles) for a no-op
syscall, suggesting the issue of syscall overhead persists
a decade after the study of Soares et al. [43].

• Also on our platform, a pwrite syscall can degrade the
IPC of the following userspace instructions from 2.9 to
0.2 (indirect costs). The IPC slowly goes back to 2.1
after executing 20,000 instructions. Figure 2 shows the
trend of IPC by time elapsed.

2.2 Performance Optimization on Syscalls
The research community is actively working on mitigating
the overhead resulting from syscalls. Below we describe the
related work with a comparison to our approach (also summa-
rized in Table 1).
Asynchronous syscalls. Syscall introduces a synchronous
execution model, as the user-mode execution is resumed after
a syscall is finished. Brown proposed non-blocking Linux
syscalls [5] that can be completed asynchronously parallel

Scheme Develop
Cost

Async
Needed

Accele-
ration

Popula-
rity

eBPF ++ X ++ ++
DPDK ++ X + ++

io_uring ++ X + +
UniKernel +++ - +++ -

FlexSC + - + -
UB - - +

Table 1: Comparison of schemes for optimizing syscalls.

to the userspace execution flow. But, this approach does not
completely decouple the syscall invocation from its execution.
So far, most of the syscall implementations on Linux are still
synchronized.
Syscall batching. As locality is a major performance factor,
executing syscalls in a batch has also been investigated. Ra-
jagopalan et al. proposed to group consecutive syscalls into
one (the result of a syscall is directly fed to the next) [38].
This approach is effective under the assumption that no com-
putation happens between two syscalls. Soares et al. proposed
to batch syscalls of multiple co-routines and asked the de-
velopers to change the thread model to M-on-N (“M user-
mode threads executing on N kernel-visible threads, with M
» N”) [38]. Thus, it only works when the task can be split
into many threads. Modern kernel provides native queues,
i.e., io_uring [23], to batch I/O requests from userspace pro-
cesses and reduce the occurrences of syscalls. In particular,
userspace code can issue multiple requests to the queue and
invoke one syscall to let kernel process the queue1.
Unikernel. To mitigate the overhead of context switching,
the Unikernel solutions run application code in kernel space
instead of user space. Examples include Loadable Kernel
Module (LKM) [42] and library OS [31, 40].
In-kernel sandbox. To reduce the occurrences of context
switching caused by syscalls, in-kernel sandbox allows appli-
cation code to run in privileged mode. For instance, eBPF [34]
allows developers to attach code into kernel trace points.
When kernel reaches these points, it will use a VM to execute
the attached code. However, eBPF places many restrictions
on the code, and kernel verifies if all the requirements are met
before execution, during which legal codes may be rejected
because of false positives in verification. Recently, Dmitry et
al. propose to use in-kernel sandbox to execute applications
entirely in kernel [27], in which context switching overhead
can also be mitigated.
Kernel bypass. Observing that kernel does not always have
to be involved in I/O tasks like packet handling, some
researchers proposed the kernel bypass approaches. One
prominent example is the Data Plane Development Kit

1io_uring also supports a kernel polling mode if the application has root
privilege, where no syscall is required.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 35

(DPDK) [11], which takes over I/O devices in userspace.
Specifically, I/O requests are submitted to devices via a shared
ring buffer, instead of syscalls. The buffer is maintained in
userspace, involving no kernel activity for I/O.

We find that existing approaches all require noticeable de-
velopment efforts. Different coding paradigms have to be fol-
lowed in order to use the syscall-refactoring primitives. Most
kernel bypass and syscall batching solutions (e.g., DPDK,
RDMA, io_uring) require application code to interact with
a queue pair asynchronously. Nonetheless, developers still
prefer to write program logic in the synchronous style. Refac-
toring the legacy code is also labor-intensive. As an example,
we compare the unofficial Redis with DPDK support [2] to
its official version (version 3.0.5). We find that the former
includes 9,984 extra lines of code (LoC) to support DPDK,
which accounts for 10% of the LoC of the official version.
Another example is Unikernel: It requires developers to write
kernel-mode code, which is unfortunately difficult to debug
and prone to errors like memory corruption (there is no mem-
ory isolation). In addition to changing the application code,
special userspace drivers may be required for kernel-bypass
solutions [24].

3 Design Overview

To address the aforementioned issues, we propose userspace
bypass (UB), a new primitive for syscall optimization. UB
aims to fulfill the following three design goals (DG).
DG1: Minimizing the manual efforts of developers. Dif-
ferent from syscall-refactoring approaches, which require de-
velopers to change their legacy code or adjust to asynchronous
programming, UB optimizes the syscalls at the execution time,
which meanwhile does not impact application’s functionality.
DG2: Minimizing changes to system architecture. Syscall-
refactoring approaches may change the current system archi-
tecture, e.g., mapping and binding devices to userspace. In
contrast, UB keeps the current system architecture unchanged,
including device driver and I/O harvesting models.
DG3: Comparable performance to syscall-refactoring ap-
proaches. UB aims to reduce the direct and indirect costs of
syscalls, and achieve similar performance boost compared to
syscall-refactoring approaches.

3.1 Syscall-intensive Applications
We focus on optimizing applications of high IOPS, e.g., Redis
and Nginx, which are also syscall-intensive. By analyzing
their code and runtime behaviors, we identify the following
two insights that guide the design of UB.
Lightweight userspace instructions in I/O threads. We
find that the computation workloads between I/O events are
usually lightweight for the examined applications. Moreover,
the number of instructions between two consecutive syscalls

is usually small. One explanation is that such applications
follow a popular I/O model that separates I/O-intensive work-
load from CPU-intensive workload in different threads. For
example, Redis server has a main thread that dispatches ac-
cepted sockets to I/O threads [10], which conduct I/O from/to
kernel and let the main thread complete the CPU intensive
computation. With such a design, the instructions between
I/O events simply handle buffer movement. We also profiled
syscalls invoked by Redis (in total 3M), and found half of
them are followed by less than 400 userspace instructions
(around 200 cycles when IPC is 2) before the next syscall,
which is faster than executing a syscall itself (e.g., 431 cy-
cles [35] as described in Section 2.1).
Amplified direct and indirect costs. Section 2.1 overviews
the direct and indirect costs of syscall in general, and those
costs can be amplified in syscall-intensive applications. As
shown in Figure 1, the frequency of entry and exit rises lin-
early following the frequency of syscall invocation. The indi-
rect costs due to TLB misses, OOE stalls and cache misses
are also non-negligible, especially when the syscall handles
lighter tasks (IPC drops to 0.74 for no-op syscall, and 0.21
for pwrite, as shown in Figure 2).

3.2 UB Modules
Based on the above considerations, we are motivated to design
UB in a way that it can detect the occurrences of syscalls,
and elevate the userspace instructions between consecutive
syscalls to kernel through binary transformation. Figure 1
illustrates our idea. Although the idea seems simple at the
high level, a few challenges should be addressed to enable
UB for real-world, full-fledged applications.

• The application code is less trustworthy compared to
the kernel code. Hence, necessary isolation should be
performed to confine its capability after being moved to
kernel. However, identifying the untrusted regions and
governing them with the right policies are non-trivial.

• Given that isolation would incur extra costs, it is not
always beneficial to transform every chunk of userspace
instructions. But, when to perform transformation and
how to reduce its overhead are unknown.

UB addresses these challenges with three key components.
1) A “hot” syscall identifier that monitors the execution of
the target application, profiles the invoked syscalls, and de-
termines when userspace instructions need to be elevated;
2) a Just-in-Time (JIT) translator that converts the userspace
instructions into Binary Translation Cache (BTC) that is in-
strumented with isolation policies; 3) a kernel BTC runtime
that executes the translated code. Figure 3 overviews the de-
sign of UB.

Note that the components in UB are not fundamentally
new concepts. BTC is a standard component for Dynamic
Binary Translation (DBT) [3, 22]. The JIT translator follows
the guideline of Software-Based Fault Isolation (SFI) [44] in

36 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

code instrumentation and isolation policies. Yet, we find that
the existing systems cannot be directly used in our problem
setting. Below we briefly discuss the main modules in UB.

Kernel space

Fast path

Syscall

Daemon

Target Process

Syscall
entry Do

syscall

BTC

Code gen

Translator

Runtime

Control flowRuntime info

Syscall
profiler

Syscall
exit

w/ UB
w/o UB

SFI infoinfo

S1

S2 S3
S4

S4

S5

S6

Figure 3: Overview of the UB framework. Every time a thread
calls syscall (S1), hot syscall identifier hooks it (S2) and dis-
patches it to do_syscall (S3), after which kernel may return
to user mode if the syscall is not hot (S6), or send it to BTC
runtime for UB (S5).

Hot syscall identifier. This module runs in kernel mode and
hooks each syscall. By analyzing the runtime statistics, it
can identify which syscall instructions are hot, i.e., ones with
high chances to be followed by another syscall shortly. The
userspace instructions between two consecutive hot syscalls
will be elevated to kernel and accelerated next time when the
application runs. To avoid introducing large overhead due to
runtime monitoring, this module runs intermittently.
BTC translator. The BTC translator converts the userspace
instructions marked by the previous modules to BTC and
has it executed by the kernel BTC runtime. Under the SFI
guidelines, it converts dangerous instructions (e.g., indirect
control-flow transfer) to the safe ones (e.g., direct jumps), and
instrument checks to constrain memory access and control-
transfer behaviors. The translator runs in a separate, indepen-
dent userspace process to avoid introducing its code to kernel.
The translation does not block the application execution, and
the translated code is executed next time when the same code
path is visited.

In addition to optimizing userspace instructions between
a pair of hot syscalls, we also consider the acceleration on a
sequence of hot syscalls. We call the enclosed userspace code
fast path. UB aims to chain such userspace code and acceler-
ate them altogether. The fast path is discovered incrementally
by watching the jump targets. The details will be discussed in
Section 5.

4 Hot Syscall Identifier

Criteria of userspace bypassing. A region of userspace in-
structions should be elevated when its performance gain out-

weighs the translation and instrumentation overhead by BTC
translator. We measure the performance gain against different
userspace path length (i.e., the number of instructions), and
consider the regions with short path. The major reason is that
the instrumentation costs increase rapidly for longer paths,
because more instructions have to be monitored. We consider
1,000 instructions (termed Tpath) as the threshold for the short
path length2. Through an empirical study, we observe obvi-
ous performance gain (over 20%) with this path length (see
Section 6.2).
Module design. This module aims to discover hot syscalls
that enclose a short userspace path. We resort to online anal-
ysis to achieve seamless profiling. Specifically, this module
hooks syscall entry and counts the number of instructions
between two consecutive syscalls. The two syscalls are classi-
fied as candidates of hot syscalls when the instruction number
is less than Tpath. Below we describe the detailed steps.

• Syscall sampling. Monitoring every syscall invocation
will introduce high performance penalty to the applica-
tion execution. Hence, we sample syscalls and conduct
the follow-up analysis only when a thread is issuing
syscalls frequently (e.g., I/O threads). According to our
measurement on syscall-intensive applications (e.g., Re-
dis and Nginx), at least 100K syscalls (termed Tsys) are
issued per second (6M per minute), and we choose to
profile less than 10% of Tsys syscalls (up to 500K syscalls
every minute). Therefore, most syscalls are not sampled
and not interfered.

• Coarse-grained profiling. To further reduce the pro-
filing overhead, we check whether a monitored thread
invokes syscalls at high frequency. If the thread invokes
less than 50K syscalls per second (half of Tsys), the mod-
ule will not conduct the next fine-grained syscall profil-
ing. In this, the threads with low IOPS will be skipped.

• Fine-grained profiling. For a thread invoking syscalls
frequently, this module further analyzes which syscall
instructions are invoked frequently. The frequent ones
deserve userspace bypassing as more performance boost
can be gained. We monitor 15K syscalls (15% of Tsys)
of each round, and maintain a table recording, for each
invoked syscall instruction, its location register (RIP)
and a counter of how many times the next syscall is
invoked within 4 microseconds (approximately the time
of executing Tpath instructions). We consider a syscall
frequent when the counter is larger than 900 (6% of the
profiled 15K syscalls). These syscalls and their enclosed
userspace instructions will be handled by BTC translator
in the next stage.

One might wonder if the performance of this module is
sensitive to the parameter selection. To test the sensitivity, we

2Soares et al. consider the invocation of a syscall frequent if it is invoked
once every 2,000 or less instructions [43]. We use a more conservative
number to accommodate different platforms.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 37

check if hot syscalls of Redis and Nginx, two applications
used by our experiments, can be correctly discovered on three
different machines: a PC with Core i5 10500 (year 2021), two
servers with Xeon 8175 and 8260 (year 2017 and 2019). All
hot syscalls can be correctly identified, suggesting parameter
tuning could be skipped in most cases.

5 BTC Runtime and Translator

In this section, we describe how the BTC translator converts
userspace instructions into kernel BTC and meets the security
requirements. Our BTC translator follows the procedure of
Dynamic Binary Translation (DBT) [19, 22, 48]. In general,
given a path consisting of basic blocks in binary and triggering
an event (e.g., hot syscall in our case), DBT dissembles it,
translates it with a SFI rulebook, and compiles it to BTC for
the future execution. Due to SFI, the malicious or unwanted
behaviors of the translated code can be contained, and safely
run by the BTC runtime.

5.1 BTC Runtime
The translated code block is executed by a BTC runtime in
kernel. The BTC runtime holds local variables in kernel stack,
which can be accessed by the instrumentation instructions
within the BTC for policy enforcement and context switching.
The local variables include: 1) the saved kernel context, i.e.,
callee-saved registers, 2) the values of reserved registers, and
3) the indirect jump destination information which is used to
build the fast path.

Before executing the BTC, the runtime prepares the re-
turn status for userspace, i.e., through restoring the userspace
context saved on syscall entry (e.g., pt_regs for x86_64).
After a block is finished, the runtime processes the return
status of the BTC and takes further actions. The execution of
a BTC might exit the runtime in the middle when the jump
target is missing, e.g., when a new path is encountered. In
this case, the runtime records the information about this jump
and immediately returns to userspace, i.e., the jump target.
We make the userspace memory accessible to the BTC run-
time, so all changes on memory are kept. Changes made to
registers are updated to userspace context (i.e., pt_regs for
x86_64), which will be written to registers when kernel re-
turns to userspace. Therefore, userspace state changes made
by the BTC are also preserved and visible to other threads,
which ensures the application logic is not changed under UB.

The execution of the BTC might also exit when a syscall
instruction is encountered. In this case, a fast path between
two consecutive syscalls has been completely executed in ker-
nel, which indicates a successful userspace bypass. The BTC
runtime emulates the syscall trap, by looking up the syscall
number against the syscall table and dispatching syscall pa-
rameters to the corresponding do_syscall function (i.e., ex-
ecuting the syscall). After do_syscall returns, the BTC run-

time checks if the next syscall instruction is again hot. If the
answer is yes, the runtime tries to conduct another userspace
bypass. In this way, do_syscalls and userspace bypass can
be chained, which is similar to direct branch chaining of DBT.
In an ideal case, a whole thread can be executed in kernel.

Fast path discovery. The performance of UB highly depends
on the identification accuracy of fast path, and we leverage
an incremental, JIT-style approach to achieve high accuracy.
Given an entry address, i.e., the instruction next to a hot
syscall, the BTC translator first discovers a part of the fast
path, by dissembling the code segment of the target thread
from the entry address iteratively. The potentially unreachable
paths are skipped by the translator in each iteration. Specifi-
cally, the translator only follows direct jumps and stops at the
call instructions, which forces the translator to handle code
only within a function at one iteration and consider it fast
path. When an indirect jump or call is indeed made later, the
target information will be collected by the BTC runtime and
sent to the translator to extend the fast path after replacing
the jump instructions (see Section 5.2.1). Such an approach
is similar to the one adopted by QEMU [9], but we do not lift
the binary to its intermediate representation.

5.2 BTC Translator

Below we describe how the security policies are instrumented
into the userspace code. We follow the SFI principles to pro-
vide data-access policies and control-flow policies [44] on
kernel, and the implementations are inherited and extended
from Nacl [52], which sandboxes the untrusted x86 native
code in browser. Noticeably, Nacl assumes source code is
available so SFI rules can be enforced under static compila-
tion. In contrast, UB performs DBT on the binaries. As such,
the SFI rules have to be adjusted and extended.

Threat model. We assume the userspace code is untrusted,
which could contain arbitrary code and data, and the side-
effects include unmediated access to kernel memory, privi-
leged functions, etc. The goal of UB is to ensure the userspace
code cannot gain more privilege (and do more harm) after
it is elevated to kernel, i.e., protecting kernel’s control-flow
integrity. Noticeably, this goal is different from guarantee-
ing control-flow integrity [1] on the userspace application
(elaborated in Section 5.3). We take a conservative approach
in designing UB and avoid elevating a fast path when the
consequences can not be immediately determined (e.g., the
jump targets are unknown during translation). We focus on
x86_64 platform but the proposed techniques could be easily
generalized to other platforms. Below we describe the imple-
mentations related to jump, register, instruction, and memory
access that ensure security under this threat model.

38 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2.1 Jump Sanitation

The inner sandbox of Nacl checks the explicit control flow
expressed with calls and jumps, and disallows memory deref-
erencing on indirect jump and call instructions. The targets
of jumps are confined within the sandbox. In contrast, the
entire kernel memory space is open to elevated userspace
code under UB. Therefore, we take different approaches to
sanitize jumps.
Direct jump. To prevent the code in BTC from jumping to
an arbitrary address, the translation only happens when the
jump target is known. In other words, only direct jumps whose
targets are known are processed. The address sanitization is
described in Section 5.2.3.
Indirect jump. Yet, userspace fast path may contain indirect
jumps, and we deter BTC from processing such path till the
targets are known. In particular, the translator inserts checks
that compare the targets against a target address table (similar
to jumptable [22]) when encountering the associated code at
first. If the target address is not in the table, the control flow
will exit BTC runtime. When such an exit is triggered during
executing a BTC block, the BTC runtime sends the jump
instruction address (i.e., RIP of the address) and the target
address to the BTC translator, and extends the fast path, as
described in Section 5.1.

We show an example in Figure 4. The indirect jump (jump
to RAX, located at 0x123) is initially translated to writing
down the jump target (saving RAX to stack) and exiting to
BTC runtime (jump to exit_indirect_jmp). When the path
P1 is firstly executed, the BTC runtime learns a target 0x456,
and the information is sent to the translator, which updates the
BTC by adding a target table entry. After that, the path P1 is
added to the BTC, and it will not trigger exit_indirect_jmp
for the next time. If P2 is reached later, another destination
0x789 can be learnt and the BTC will be updated, so the fast
path is further extended.

CMP RAX, 0x456
JZ loc_0x456
CMP RAX, 0x789
JZ loc_0x789

MOV [RBP-0x18], 0x123
MOV [RBP-0x10], RAX
JMP exit_indirect_jmp

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP-0x18], 0x123
MOV [RBP-0x10], RAX
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123 → 0x456
P2 add info: 0x123 → 0x789

……

P2 execute

CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18], 0x123
MOV [RBP-0x10], RAX
JMP exit_indirect_jmp

……

0x789: XX 0x456: XX

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P2

P1: Path 1
P2: Path 2

Start status

Figure 4: An example of translation under jump sanitation.

As the application runs longer, more indirect jump tar-
gets can be learned. The resulting BTC can eventually cover

the entire fast path. The checks inserted into the BTC can
perform efficiently because: 1) indirect control-flow transfer
instructions do not appear frequently, based on our empirical
analysis on the syscall-intensive applications and previous
studies [18]; and 2) CPU is allowed to speculatively jump to
the destination under out-of-order execution without waiting
for the destination check.

5.2.2 Register Remapping

To protect kernel registers and stack, the BTC translator dis-
allows the BTC code to access stack registers (i.e., RSP, RBP,
and RIP). Besides, some registers are reserved for BTC run-
time and cannot be accessed by the BTC code as well. Hence
we develop this module to manage the registers.

Specifically, the BTC translator uses the M reserved reg-
isters in BTC to serve the potential access to N registers
(N = M+3, 3 are for stack registers). As M < N, the trans-
lator needs to schedule registers. The N registers have their
values stored in local variables, and the translator chooses one
from the M reserved registers to temporally act as a special
register with renaming. The translator also inserts code to
synchronize the N registers to local variables on stack. As a
result, the behaviour of the BTC code is the same as the fast
path in the user space.
Register reservation. The translator reserves R12- R15 (M =
4) for BTC runtime use, as they are the least frequently used
in common userspace applications (less than 1% usage fre-
quency [18]). When they appear in the fast path, renaming
will occur. We also optimize our renaming mechanism for
frequently-used special registers (i.e., RSP), by letting the
translator fix the reserved registers to hold their values. Doing
so reduces the occurrences of the costly register synchroniza-
tion.

5.2.3 Instruction Sanitization

Privileged instructions (e.g., sysret) are not allowed to ap-
pear in the BTC, to avoid privilege escalation by the malicious
code that exploits UB. During translation, the translator avoids
elevating a fast path to the kernel if it contains any privileged
instruction.

Due to register remapping, some instructions have to be
rewritten. For stack operation instructions like PUSH/POP, the
translator substitutes them with multiple instructions. Take
POP as an example. The translator first adds an instruction to
MOV the operand to the popped target from the memory ad-
dressed by the reserved register (i.e., the acting stack pointer),
and then updates the reserved register with the new stack
pointer value, i.e., plus 8.

5.2.4 Memory Access Sanitization

To prevent unauthorized access to the kernel memory, the
translator sanitizes all memory access instructions. For ev-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 39

ery such instruction, the translator inserts address checking
instructions before the instruction, such that only userspace
addresses are allowed to be accessed, i.e., the addresses start
with 0. Similar to address masking of SFI [44], the translator
shifts left the address by one bit and then shifts it right by one
bit, to fulfill the address requirement. Two extra instructions
(i.e., SHL and SHR) are introduced to this end, but our evalua-
tion suggested the extra overhead is negligible (0.4%). Note
that the added checks do not prevent BTC from accessing
unmapped memory region and triggering page fault, and we
handle it with the procedure described below.
Page fault handling. We modify the page fault handler to
monitor the page fault events. For minor fault and major page
fault, the page fault handler behaves the same for kernel mode
and userspace mode. Therefore, faults caused by the userspace
applications are resolved in the same way as without UB.
When invalid page fault (i.e., illegally accessing some memory
regions) happens, the execution of BTC code is aborted.

Nacl also isolates the memory space between the exten-
sions and the host browser, with the help of the segmentation
provided by x86 CPUs. As such, extensions’ instructions can
only access memory within a segment and instructions to
modify segment states are not allowed. However, although
x86_64 still provides segmentation, it only adds a segment
offset to the address but does not check segment boundary,
which cannot be directly used for memory isolation.

5.3 Security Guarantees

The translated BTC has the following security properties
(termed SP), and they jointly make UB fulfill SFI policies [44]
on kernel.
SP1: Kernel control-flow integrity (CFI) for BTC. This
property is guaranteed because when the BTC runtime hands
control flow over to the userspace, the execution will only
terminate through the exit point. More importantly, when the
runtime executes the BTC, the thread cannot jump to a loca-
tion unknown to the translator. For direct control-flow transfer,
the destination can only be a label of a known basic block
that has been translated. Indirect control-flow transfers are
all translated to direct transfers by replacing the destinations.
Therefore, the BTC prevents malicious code from hijacking
the kernel control-flow after it is elevated.

We want to point out that UB does not claim to add ex-
tra protection against control-flow hijacking, e.g., ROP, JOP,
COOP [4, 6, 8, 37, 41], and they can still occur in userspace.
Though the attacker can construct gadgets when the destina-
tion checks are passed, jumping to the kernel code segment
from BTC is never allowed, as it can be detected and aborted
by the translator.
SP2: Kernel data (memory and register) integrity. For ker-
nel context (or registers), we design BTC runtime to be com-
patible with the calling conventions, and the caller (kernel)

context is saved on the stack before jumping to the BTC,
which is recovered before returning to kernel instructions.
The context switching is lightweight, as it does not cause
privilege transfer.

For kernel memory, access sanitization ensures that no ker-
nel memory can be accessed by the sanitized instructions,
hence the kernel stack will not be tainted. Though runtime
local variables must be accessible by the instructions in BTC,
they cannot be exploited by malicious programs to touch
the kernel stack. Only intentionally inserted instructions can
touch the local variables referred by the stack base pointer,
which stores runtime information like swapped-out registers
(see Section 5.2.2). Because kernel CFI is guaranteed, execu-
tion would never jump to these instructions.
SP3: No privileged instructions in BTC. It is explained in
Section 5.2.3.
SP4: Dead loop break. We also consider the attacks and
bugs against the availability of the system resources. For
instance, userspace applications may fall into a dead loop
because of bugs or intentionally. As a countermeasure, the
translator maintains a counter in BTC runtime to keep track of
the number of instructions already executed. Once the counter
exceeds a threshold, the execution flow can exit to runtime
and in turn return to userspace, which avoids the kernel being
blocked by the BTC code.

5.4 Thread Safety

Special attention should be paid to multi-thread userspace
applications, because UB has no control over other threads
except the one elevated to kernel. Memory order and atomicity
have to be preserved to avoid data race. Fortunately, thread
safety is automatically guaranteed by the translator and we
explain it below.
Memory order. To preserve memory order, the translator
regards all userspace memory as volatile, and only inserts in-
structions between userspace instructions without optimizing
the block (e.g., reordering instructions or caching memory
modification in registers). Yet CPUs can still reorder memory
loads and stores according to their memory model. The origi-
nal memory fences placed by the userspace applications are
all inherited, and the translator does not insert extra fences.
Atomicity. The translator takes special measures to guarantee
atomicity when using multiple instructions to emulate one
userspace instruction. When translating an instruction, the
translator prefers to use one instruction that has the same op-
code as the original one. Hence, the atomicity of the original
instruction is automatically preserved. For example, instruc-
tions with a lock prefix are translated to ones still with lock
(e.g., LOCK MOV). If more than one instruction is needed for
emulation, memory load or store must be completed in a sin-
gle instruction. For example, when translating PUSH RIP, the
offset address of the next instruction must be moved to the

40 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

userspace stack top. From the view of the translator, when
BTC runtime reaches the instruction, the value of RIP is stat-
ically known and becomes an immediate number. However,
x86_64 does not have an instruction to directly move a 64-bit
intermediate value to memory. As a result, the translator gen-
erates instructions that first move the immediate value to a
64-bit reserved register and then move the 64-bit register to
the top of the userspace stack.

6 Evaluation

We implement the prototype of UB for Linux kernel 5.4.44.
The BTC runtime is implemented as a kernel module with
416 lines of C code, which hooks syscall epilogue to conduct
syscall identification and manage BTC runtime. The translator
is implemented with 786 lines of Python code at userspace
(except the dependant Python disassembler miasm and gcc
assembler as), which communicates with the BTC runtime
kernel module via sys file. The kernel is modified by adding
only 6 lines of codes to the syscall entry to allow the module
to hook syscalls.

We evaluated our prototype in an I/O micro-benchmark
and two real-world applications (Redis and Nginx) for macro-
benchmarks. It is also compared to related technologies in-
cluding DPDK, io_uring, and eBPF. To evaluate these appli-
cations, we set up a virtualized environment and a bare-metal
environment. The bare-metal environment consists of a client
machine and a server machine3, which are connected within
the 40G Ethernet LAN. The virtualized environment runs
on the server, with NIC pass-through being enabled. For the
micro-benchmark I/O experiment, we run the tests directly on
server, as it does not require network. For other scenarios, we
run the client application in the client machine and the server
application in the server machine, so the traffic goes through
the physical network. To show the effects of virtualization
and KPTI, which impact the syscall performance as explained
in Section 2.1, we run each server application in four set-
tings: KPTI on/off × VM/physical machine. When KPTI is
on, Linux turns on PCID to mitigate performance degradation.
All the following tests are conducted 10 rounds, and the aver-
age IOPS or Requests Per Second (RPS) values are shown.
For the results demonstrated in Section 6.1 to Section 6.4, we
focus on the setting of VM with KPTI on and briefly describe
how the results are changed under other settings. In Table 2,
we list the acceleration ratios among different settings.

3The server machine has an Intel Xeon 8175 CPU (24 cores), 192GB
memory, Samsung 980 pro NVME SSD, and Mellanox Connectx-3 NIC. It
runs Ubuntu 20.04 with 5.4.44 kernel. When set up for VM, it uses QEMU-
KVM 1:4.2-3, and assigns 24 cores to the VM. The client machine has an
Intel Xeon 8260 CPU, 128GB memory and Mellanox Connectx-5 NIC.

Test VM Physical

w/
PTI

In-mem 30.3% – 88.3% 38.4% – 112.9%
Redis GET -3.7% – 10.8% -5.4% – 6.4%
Redis SET -0.4% – 12.4% -3.2% – 16.1%

Nginx 0.4% – 10.9% -1.4% – 13.4%
Socket 31.5% – 34.3% 30.9% – 38.6%

w/o
PTI

In-mem 14.3% – 41.6% 16.4% – 52.0%
Redis GET -2.0% – 4.6% -6.4% – 3.9%
Redis SET -5.5% – 4.9% -0.9% – 2.8%

Nginx -1.2% – -0.3% -0.2% – 3.0%
Socket 14.5% – 17.8% 9.2% – 19.8%

Table 2: Ranges of acceleration ratios for different settings.
“In-mem” means the in-memory file access benchmark.

6.1 I/O Micro-benchmark

We first consider accelerating a thread that purely performs
file I/O requests via blocking syscalls as the micro-benchmark,
which approximates the best-case scenario for UB. The thread
runs a tight loop that sequentially reads files from kernel to
userspace buffer via READ syscall 8.39 M times. The real-
world applications may exhibit different patterns like exe-
cuting more instructions between consecutive I/O requests,
reducing the acceleration ratios by UB. For comparison, we
employ io_uring (liburing-2.2) for the same task (i.e., tight-
loop READ syscall) and compare the IOPS.
In-memory file access. We create a large file in ramfs to
avoid possible disk bottleneck, in order to assess how UB
accelerates syscalls more accurately. Admittedly, this setting
makes the micro-benchmark less realistic. We gradually in-
crease the size of the buffer for each read and evaluate the
acceleration ratios of UB under different buffer sizes.

Figure 5 shows the results. For the virtualized environ-
ment with KPTI on, UB accelerates syscall-based I/O by
88.3%±0.75%

4, when the I/O size is small (64B). For larger
I/O size, IOPS drops for both UB and baseline, and the ac-
celeration ratio drops to 30.3%±0.96% for the 4KiB I/O size,
because fewer syscalls are invoked. Turning off KPTI in-
creases the IOPS, but the acceleration ratio of UB drops to
14.3%±1.83% – 41.6%±1.73%, because the syscall overhead is
reduced. The acceleration on physical machine is higher es-
pecially when the I/O size is small (e.g., 112.9%±1.78% when
the I/O size is 64B when KPTI is on), as the IOPS on physi-
cal machine is higher and UB saves more context switching
overhead.

For io_uring, we first examine the different queue depths
(i.e., how many requests can be batched) from 1 to 1024, and
found IOPS is stable after the depth reaches 128, as shown in
Figure 6. Hence, we set the depth to 128 for its comparison
with UB. It turns out io_uring yields more IOPS for most
buffer sizes, according to Figure 5. When running in physical

4We report the acceleration ratio together with the standard deviation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 41

Figure 5: IOPS of READ syscalls, io_uring and UB syscalls
against different buffer sizes. The percentage number is the
acceleration ratio of UB against the baseline. Figure 7, 8, 9
and 10 follow this style.

Figure 6: IOPS of different io_uring depth.

machine, for the small size (64 Byte), UB yields higher IOPS
than io_uring, though it is expected io_uring should always
outperform UB. We have not found a good explanation, but
we notice that IOPS of io_uring increases by 13% when up-
grading the Linux kernel from 5.4.44 (the version used by
our testing environment) to 5.15. Hence, it is possible that
io_uring will outperform UB consistently on newer Linux.
File access on NVMe. We also test reading a file in NVMe
disk by 1KiB block size, and show the comparison in Table 3
(“w/o sum”). We only consider the physical machine setting,
because when VM accesses a file in a virtual NVMe disk, the
file will be automatically cached into memory a priori, which
behaves similarly to in-memory file access. The IOPS can
be increased from 779±5K to 852±3K, yielding 9.4%±0.3%
acceleration (KPTI on). When KPTI is off, the baseline in-
creases to 810±22K while UB increases slightly to 858±10K,
making the acceleration ratio smaller.

We also consider the situation that an I/O thread conducts

lightweight calculation, like parsing packets. When the com-
putations between consecutive I/O requests have dependency,
the requests cannot be batched. Specifically, we set the I/O
thread to calculate the sum of the buffer by treating it as a
64-bit integer array, after retrieving the buffer from kernel.

w/o sum w/ sum
KPTI on 779±5 (852±3) 630±4 (793±3)
KPTI off 810±22 (858±10) 686±65(795±6)

Table 3: KIOPS of reading file on NVMe disk (1KiB size)
on physical machine (w/o sum), and reading together with
integer summation (w/ sum). The UB accelerated number is
shown in the bracket.

As shown in Table 3 (“w/ sum”), even the lightweight
computation could reduce considerable amount of IOPS. The
baseline IOPS drops by 149K, while it only drops by 59K
when UB is on, as such lightweight calculations in userspace
can be entirely ported into kernel for execution, so their IPC
is less affected by syscalls.

6.2 Redis

We choose a popular key-value store engine Redis as one
macro-benchmark to test how UB handles real-world work-
loads. We evaluate Redis 6.2.6 with the built-in Redis-
benchmark tool [39] to generate workload. We run the Redis
server with its default configuration and launch the Redis-
benchmark with 2 threads. The connection number is kept
at the default value 50. In each round, the client issues 1M
requests.

By default, Redis completes most of its work within the
main thread, which is responsible for not only I/O but also
computation tasks like hashing. For a normal workflow, which
is also described in [30], the main thread invokes EPOLL to
get a list of readable sockets. For each readable socket, the
thread READs the socket and then processes the request. As a
result, the userspace paths following READs are long (from 3k
to 20k), as the computation tasks happen there. At last, Redis
WRITEs responses to corresponding sockets one by one, with
a small number of instructions in between (around 300).
Results. Figure 7 shows RPS with and without UB for GET
and SET data of sizes ranging from 1B to 16KiB. When tested
in VM with KPTI on, for GET, the acceleration ratio ranges
from 4.4%±1.52% to 10.8%±2.69%, when the data size is less
or equal than 4KiB. The ratio drops to −3.7%±0.51%, when
the size rises to 16KiB. Turning KPTI off drops the accel-
eration ratio to between −2.0%±1.32% and 4.6%±1.96%. The
negative acceleration ratio suggests the overhead brought by
UB outweighs the syscall overhead saved by itself. Executing
on physical machine observes a different range: −5.4%±1.17%
to 6.4%±2.01% for KPTI on and −6.4%±3.02% to 3.9%±1.67%
for KPTI off. Noticeably, the RPS of Redis is much smaller

42 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: RPS of Redis GET and SET in different data sizes.

than that in our I/O micro-benchmark, so the expense from
syscall is not the dominant factor. As a result, the acceleration
ratio is much smaller.

Regarding SET, the acceleration ratio ranges from
−0.4%±2.19% to 12.4%±3.96% in VM with KPTI on. Simi-
lar trend is observed when KPTI is turned off and running in
physical machine. Noticeably, Redis RPS drops significantly
over 1KiB data size for both SET and GET, and similar obser-
vation was reported in the official documentation of the Redis
benchmark [39].

Surprisingly, we found the RPS on VM is often higher
than physical machine, though the virtual setup is supposed
to yield lower RPS. We do not have a good explanation for
why the opposite happened for Redis.

Redis
Server BTC User

Space
Do

Write
w/o UB 108.57 – 34.29 36.73
w/ UB 102.98 2.42 28.38 36.07

Table 4: Time spent on each part of Redis (VM+KPTI, SET).

Profiling performance gain. We let the BTC runtime profile
BTC execution and userspace execution using the RDTSCP
instruction. We run 20M Redis SET transactions (about 100
seconds) with and without UB. Table 4 shows the results. As
we can see, by elevating the fast path to BTC, 5.91s userspace
time can be saved, while the BTC only costs 2.42s. The differ-
ence (3.49s) can be attributed to the userspace IPC increase
(indirect overhead). 5.59s are saved in total (the “Redis Server”
column) and 2.1s (i.e., 5.59s - 3.49s) are saved directly by
invoking fewer syscalls.

Overhead of memory checks. When strong kernel memory
safety is unnecessary, e.g., when the binary is formally veri-
fied, a user may choose to chase higher performance gain by
removing the instructions inserted to check memory boundary
(i.e., SHL and SHR). We evaluate how much RPS gain can we
get if we ask the translator not to insert such instructions. The
results show that only 0.4% more RPS can be gained.
Comparison with DPDK. We compare the acceleration ratio
of UB on Redis with that on DPDK as there are open-source
implementations to empower Redis, like Redis-DPDK [2] and
F-Stack Redis [45]. We chose F-Stack as the maintenance of
Redis-DPDK has stopped since 2017 and it cannot run on the
latest CPUs. F-stack supports the recent Redis 6.2.6 [46] as
well as the recent DPDK 20.11. The comparison result is also
shown in Figure 7.

It turns out F-Stack provides higher acceleration ratios for
small size consistently (no larger than 4KiB). Interestingly,
we found for 16KiB, F-Stack performs worse than UB and
Redis baseline. One potential explanation is that F-Stack does
not benefit from our multi-core setting. When we measure
the CPU usage, it is always 100% for F-Stack, but UB and
baseline can go up to 124%, which means multiple cores are
used. Hence, F-Stack might outperform UB consistently when
we restrict the core number to 1.

6.3 Nginx

In addition to Redis, we use Nginx (Version 1.20.0), a popular
static web server with high RPS, as another macro-benchmark.
Table 5 shows the number of instructions in the path followed
by each syscall. These followed by less than 1,000 instruc-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 43

syscall recvfrom openat fstat setsockopt writev sendfile close setsockopt
#Instructions followed 4,328 38 4,412 43 177 541 477 509

Table 5: Number of instructions following each syscall of Nginx. Those followed by less than 1,000 instructions are hot. The two
setsockopt calls are different.

tions can be regarded as hot. Therefore, 6 out of the 8 can be
accelerated. We run wrk [50] (Version 4.1.0, with 8 threads
and 1024 connections), an HTTP benchmark tool, on the
client machine to issue requests to the Nginx server for 12s
to examine how much RPS Nginx can handle.

Figure 8: RPS of Nginx against different file sizes (Bytes).

Results. We gradually increase the file size requested by wrk
and Figure 8 shows the RPS before and after UB accelera-
tion. When being tested in VM with KPTI on, Nginx can
be accelerated by 9.6%±1.81% to 10.9%±0.22% for 1KB to
64KB files, but the ratio drops to 0.4%±0.86% for 256KB
file. For physical machine, the acceleration ratio ranges from
6.3%±0.17% to 13.4%±3.32% for 1KB to 64KB files, but also
drops to −1.4%±0.28% for 256KB file. These results show the
bottleneck shifts from syscall to I/O for large files. When

turning off KPTI, UB does not yield noticeable acceleration.

Multiple worker threads. We evaluate how multi-threading
affects the acceleration ratio. We gradually increase the num-
ber of worker threads of Nginx and evaluate the case of
4KB file size. Figure 9 shows the RPS. As we can see, with
more worker threads, the acceleration ratio drops noticeably
when KPTI is on (from 8.6%±0.22% to 7.1%±0.17% for VM
and 4.7%±0.15% to 2.0%±0.26% for physical machine), as the
worker threads are increased from 2 to 8. When there are
more worker threads, more cycles are used for thread synchro-
nization, so fewer requests can be served per thread, reducing
the syscall overhead saved by UB.

Figure 9: RPS of Nginx against different # of threads.

6.4 Raw Socket vs. eBPF

To avoid the syscall overhead, eBPF is another popular so-
lution as described in Section 2.2. We show that, with the
help of UB, developers can simply write the processing logic
entirely in userspace with raw socket, and compare Packets
Per Second (PPS) with eBPF.

We run a program on the client machine to send UDP
packets to the server, and the server handles the incoming
packets by either raw socket or XDP (eBPF library for packet
processing) for 12s in each round. The client runs 15 threads,
which can saturate the server. The processing tasks include
counting the number of packets and summing packets by
treating a packet as an integer array.

Results. Figure 10 shows the results by 3 packet sizes (128B,
512B, and 1472B). For VM with KPTI on, eBPF outperforms
raw socket for small packets by up to 368.4%±8.92%. For pack-
ets of MTU size (i.e., 1472B), eBPF still has 236.7%±4.15%
more PPS. UB accelerates raw socket by 31.5%±0.25% –
34.3%±0.72%, which are much smaller than eBPF. The PPSs
for raw socket are similar across different packet sizes. How-
ever, eBPF is very sensitive to packet size, and we believe
it is because the bottleneck of raw socket is protocol stack
processing, which is bypassed by eBPF whose bottleneck may
be the data movement, whose time consumption is related
to packet size. When KPTI is off, the acceleration ratio of
UB drops to 14.5%±0.45% – 17.8%±0.44% for various packet
sizes. On physical machine, the acceleration ratios of UB

44 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: PPS of server handling incoming UDP packets in different packet sizes.

have larger ranges (30.9%±0.87% – 38.6%±0.56% for KPTI on
and 9.2%±0.14% – 19.8%±0.31% for KPTI off).

Computation. We also consider adding lightweight computa-
tion workload, i.e., packet summing, like the experiments for
NVMe file access (Section 6.1). In VM, the PPS of raw socket
sees greater drop when the packet size increases, but UB can
still accelerates raw socket in similar ratios (30.1%±0.20% –
31.8%±0.50% for KPTI on and 10.1%±0.18% – 20.1%±0.15%
for KPTI off). eBPF is able to keep the similar PPS without
packet summing. On the physical machine, similar trend is
observed for raw socket, UB, and eBPF, except that eBPF sees
considerable drop of PPS for 512B packet size and KPTI on.

Profiling execution performance. We profile the execution
time of BTC and eBPF respectively for the case of packet
summing with RDTSCP, like our experiments on Redis (Sec-
tion 6.2). In VM with KPTI on, for handling 33.85M incoming
packets of 128B, BTC spent 5.86s. In contrast, eBPF costs 9s.
As we can see, the execution performance of BTC is better
than eBPF VM. However, UB still cannot achieve similar PPS
to eBPF based on the previous results. According to our anal-
ysis, the reason is that eBPF runs in softirq, so the packets can
be dispatched into different cores. In contrast, the raw socket
protocol stack has in-kernel locks for concurrent access. In
particular, we added more threads for socket read, but did not
see PPS increase at all. We also tried to assess how eBPF
works without multi-threading, by restricting the IRQ of the
NIC to a single core and repeating the sum experiment in VM
with KPTI on. UB-accelerated socket reaches 1M, 0.96M and

0.93M PPS for the three packet sizes, while eBPF reaches
0.96M, 0.93M and 0.91M PPS respectively. Therefore, we
believe the PPS of raw socket can be significantly improved if
kernel optimizes its protocol stack for concurrent access. One
potential approach is to build a better UB runtime so more
deeper kernel trace points can be exposed via syscall, and we
leave this as a future work.

7 Discussion

7.1 UB vs. eBPF

In addition to the comparison on the performance between
UB and eBPF, here we compare their restrictions and security
guarantees. As eBPF is developed mostly for packet process-
ing and kernel tracing, it has a number of restrictions on the
application code. For example, eBPF is not Turing Complete,
as infinite loops are not allowed [33]. Due to its extensive
restrictions on code, the eBPF verifier is prone to produce
false positives, i.e., legal code regarded as illegal [14]. UB
does not add any restrictions to developers and translates the
userspace code transparently.

Regarding performance, UB only accelerates the paths fol-
lowing syscalls, but eBPF can be attached to many tracing
points inside kernel, which makes it more flexible and capa-
ble of overcoming kernel bottlenecks. We believe UB could
realize similar performance as eBPF, if kernel exposes more
tracing points via syscalls.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 45

In terms of security, eBPF relies on the isolation from in-
kernel VM, while UB relies on the policies of SFI translator.
Attacks targeting eBPF might be effective against UB as well,
as described in Section 7.2. Formally verifying the imple-
mentation of eBPF and UB could mitigate these issues, but
verifying eBPF is likely easier than UB, because eBPF has an
official specification and it uses a reduced set of instructions.

7.2 Security Risks
Though we follow the SFI principles to design UB, new secu-
rity risks could be introduced. First, UB might be vulnerable
under side-channel attacks, which infer the secrets according
to micro-architectural state changes. For instance, the Spec-
tre attack has demonstrated that eBPF can be exploited to
steal kernel memory, as eBPF VM compiles userspace code
into kernel code [25]. The BTC of UB may also be exploited
for similar attacks. To mitigate such risk, defenses against
speculation attacks should be considered, e.g., placing specu-
lation blocking instructions by the compiler [25]. Second, our
BTC translator might not be able to sanitize privileged undoc-
umented X86 instructions. To mitigate the introduced risk,
the translator could allow a whitelist of instructions. When
instructions outside the whitelist are encountered, UB should
give up elevating their fast path. Third, previous research
showed kernel races can lead to time-of-check to time-of-use
(TOCTOU) attacks [28]. Since the BTC runtime does not en-
force atomicity between the checking point and the use point
for the fast path, the malicious userspace code can exploit
kernel races. The mitigation can rely on the existing defenses
that detect kernel races actively [20].

7.3 Other Limitations
Admittedly, kernel-bypass frameworks like DPDK could
achieve better performance than UB, when the developers
take the right measures to integrate them into the userspace
applications. The better performance not only comes from
the reduction of context switching overhead, but also the sim-
plified and more efficient userspace drivers. For example,
userspace drivers could avoid unnecessary buffer copying,
interrupt, etc. In contrast, UB only reduces the context switch-
ing overhead. The key advantage of UB is that it does not
require any change on the applications by the developers (see
Table 1). Therefore, we believe kernel bypass would be fa-
vored when the developers are willing to refactor their code
or design a new application with kernel bypass in mind.

UB does not aim to replace asynchronous I/O. Admittedly,
when an application is both computation-intensive and I/O
intensive, asynchronous I/O helps the developers decouple
I/O from computation in different threads, making better use
of multi-cores. UB does not give synchronous I/O tasks more
IOPS than asynchronous tasks, but it can be used jointly with
asynchronous I/O. In some cases, the I/O threads of asyn-

chronous tasks still intensively invoke syscalls to submit I/O
and UB can accelerate these tasks.

8 Related Work

Section 2 has surveyed related works about syscall optimiza-
tion. Below we describe other related works.
Dynmaic Binary Translation (DBT). DBT is a powerful
method for debugging and instrumentation [3, 19, 22, 48]. Ke-
dia et al. proposed a fast DBT in kernel to instrument kernel
code [22]. Our translator has some similarities with theirs in
indirect branch processing, but our translator differs largely
in memory protection and register renaming. Besides, some
functionalities of their runtime require rollback. In contrast,
our runtime never rolls back.
Software-Based Fault Isolation (SFI). Enforcing SFI in ker-
nel is not an entirely new idea. XFI was firstly proposed
to isolate kernel modules with SFI, and later LXFI added
kernel API check to restrict the fault propagated via kernel
APIs [13,32]. UB uses SFI in a different way for the fast path.
Accelerating Inter-Process Communication (IPC). Some
schemes were proposed recently to exploit hardware assis-
tance to accelerate IPC. Similar to accelerating system calls,
they also try to minimize context switching overhead. Gu
et al. proposes to accelerate IPC with the help of recent inno-
vation in Intel processors, i.e., MPK [16]. Mi et al. borrows
a hardware function designed for virtualization to acceler-
ate IPC [35]. Du et al. proposes to add new features to CPU
for context switching without involving kernel [12]. They
implemented the prototype on RISC-V FPGA processors.

9 Conclusion

The overhead brought by syscalls is prominent to high-IOPS
applications, but the existing approaches have not completely
addressed this issue, because they require efforts in code
refactoring. To preserve binary compatibility, we propose
userspace bypass (UB) that executes userspace instructions
directly in kernel. UB employs a JIT translator that translates
userspace instructions between syscalls into sanitized code
blocks. The code blocks are constrained to avoid introducing
extra harm, therefore they can be executed directly in kernel.
With UB, I/O micro-benchmark can be accelerated by 30.3
– 88.3% and real-world applications like Redis can be accel-
erated by 4.4 – 10.8% for 1B – 4KiB data sizes under GET,
when the applications are executed in VM with KPTI on.

Acknowledgement

We thank our shepherd Dan Tsafrir for his highly valuable sug-
gestions. The Fudan authors are sponsored by National Key
R&D Program of China (Grant No. 2022YFB3102901) and
Natural Science Foundation of Shanghai (No. 23ZR1407100).

46 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[2] ansyun. DPDK-Redis. https://github.com/ansyu
n/dpdk-redis. Accessed: 2021-05-05.

[3] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In USENIX annual technical conference,
FREENIX Track, volume 41, page 46. Califor-nia, USA,
2005.

[4] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Com-
munications Security, pages 30–40, 2011.

[5] Zach Brown. Asynchronous system calls. In Proceed-
ings of the Ottawa Linux Symposium (OLS), pages 81–
85, 2007.

[6] Erik Buchanan, Ryan Roemer, Stefan Savage, and Hovav
Shacham. Return-oriented programming: Exploitation
without code injection. Black Hat, 8, 2008.

[7] Jeff Caruso. 1 million IOPS demonstrated.
https://www.networkworld.com/article/2
244085/1-million-iops-demonstrated.html.
Accessed: 2021-12-01.

[8] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Security,
CCS ’10, page 559–572, New York, NY, USA, 2010.
Association for Computing Machinery.

[9] Vitaly Chipounov and George Candea. Dynamically
translating x86 to LLVM using QEMU. Technical report,
EPFL, 2010.

[10] Alibaba Cloud. Improving Redis performance through
multi-thread processing. https://alibaba-cloud.m
edium.com/improving-redis-performance-thr
ough-multi-thread-processing-ca4d8353523f.
Accessed: 2020-11-30.

[11] DPDK. Data Plane Development Kit. https://www.
dpdk.org/. Accessed: 2021-05-01.

[12] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. XPC: architectural support for secure and

efficient cross process call. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture, pages
671–684, 2019.

[13] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai
Budiu, and George C Necula. XFI: Software guards for
system address spaces. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,
pages 75–88, 2006.

[14] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted Linux kernel extensions. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 1069–1084, 2019.

[15] GlareR. Code repository of this project. https://gith
ub.com/GlareR/UserspaceBypass. Accessed: 2022-
09-25.

[16] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi,
Yubin Xia, and Haibo Chen. Harmonizing performance
and isolation in microkernels with efficient intra-kernel
isolation and communication. In 2020 USENIX Annual
Technical Conference (USENIXATC 20), pages 401–417,
2020.

[17] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-
Min Wang, and Yeh-Ching Chung. HQEMU: a multi-
threaded and retargetable dynamic binary translator
on multicores. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimiza-
tion, pages 104–113, 2012.

[18] Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim,
Hanadi Hussein, and Ahmed Fahmy. An analysis of
x86-64 instruction set for optimization of system soft-
wares. Planning perspectives, page 152, 2011.

[19] Andrew Jeffery. Using the LLVM compiler infrastruc-
ture for optimised, asynchronous dynamic translation in
QEMU. University of Adelaide Honors Thesis, 2009.

[20] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, By-
oungyoung Lee, and Insik Shin. Razzer: Finding kernel
race bugs through fuzzing. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 754–768. IEEE, 2019.

[21] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a highly scalable user-level TCP
stack for multicore systems. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 489–502, 2014.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 47

https://github.com/ansyun/dpdk-redis
https://github.com/ansyun/dpdk-redis
https://www.networkworld.com/article/2244085/1-million-iops-demonstrated.html
https://www.networkworld.com/article/2244085/1-million-iops-demonstrated.html
https://alibaba-cloud.medium.com/improving-redis-performance-through-multi-thread-processing-ca4d8353523f
https://alibaba-cloud.medium.com/improving-redis-performance-through-multi-thread-processing-ca4d8353523f
https://alibaba-cloud.medium.com/improving-redis-performance-through-multi-thread-processing-ca4d8353523f
https://www.dpdk.org/
https://www.dpdk.org/
https://github.com/GlareR/UserspaceBypass
https://github.com/GlareR/UserspaceBypass

[22] Piyus Kedia and Sorav Bansal. Fast dynamic binary
translation for the kernel. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, pages 101–115, 2013.

[23] Kernel.dk. Efficient IO with io_uring. https://kern
el.dk/io_uring.pdf. Accessed: 2021-12-01.

[24] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo
Kim. Nvmedirect: A user-space I/O framework for
application-specific optimization on NVMe SSDs. In
8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16), 2016.

[25] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19. IEEE, 2019.

[26] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and
Sibin Mohan. A Linux in unikernel clothing. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, pages 1–15, 2020.

[27] Dmitry Kuznetsov and Adam Morrison. Privbox: Faster
system calls through sandboxed privileged execution. In
2022 USENIX Annual Technical Conference (USENIX
ATC 22), 2022.

[28] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
ExpRace: Exploiting kernel races through raising inter-
rupts. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2363–2380, 2021.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18), pages 973–990, 2018.

[30] Zhiyun Luo. How does Redis process requests? (trans-
lated). https://www.luozhiyun.com/archives/6
74. Accessed: 2022-09-25.

[31] Anil Madhavapeddy, Richard Mortier, Charalampos Rot-
sos, David Scott, Balraj Singh, Thomas Gazagnaire,
Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library operating systems for the cloud. ACM
SIGARCH Computer Architecture News, 41(1):461–472,
2013.

[32] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M Frans Kaashoek. Software

fault isolation with api integrity and multi-principal mod-
ules. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pages 115–128,
2011.

[33] Andrea Mayer, Pierpaolo Loreti, Lorenzo Bracciale,
Paolo Lungaroni, Stefano Salsano, and Clarence Filsfils.
Performance monitoring with H^2: Hybrid kernel/eBPF
data plane for SRv6 based hybrid SDN. Computer Net-
works, 185:107705, 2021.

[34] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, 1993.

[35] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1–15, 2019.

[36] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo
Min, and Binoy Ravindran. A binary-compatible uniker-
nel. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, pages 59–73, 2019.

[37] M. Prandini and M. Ramilli. Return-oriented program-
ming. IEEE Security and Privacy, 10(6):84–87, 2012.

[38] Mohan Rajagopalan, Saumya K Debray, Matti A
Hiltunen, and Richard D Schlichting. Cassyopia: Com-
piler assisted system optimization. In HotOS, volume 3,
pages 1–5, 2003.

[39] Redis. Redis Benchmark. https://redis.io/docs/
reference/optimization/benchmarks/. Accessed:
2022-09-25.

[40] Vasily A Sartakov, Lluís Vilanova, and Peter Pietzuch.
Cubicleos: a library OS with software componentisation
for practical isolation. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
546–558, 2021.

[41] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit object-oriented programming: On the dif-
ficulty of preventing code reuse attacks in C++ appli-
cations. In 2015 IEEE Symposium on Security and
Privacy, pages 745–762. IEEE, 2015.

[42] Amol Shukla, Lily Li, Anand Subramanian, Paul AS
Ward, and Tim Brecht. Evaluating the performance of
user-space and kernel-space web servers. In CASCON,
volume 4, pages 189–201, 2004.

48 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://www.luozhiyun.com/archives/674
https://www.luozhiyun.com/archives/674
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/

[43] Livio Soares and Michael Stumm. FlexSC: Flexible
system call scheduling with exception-less system calls.
In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10,
page 33–46, USA, 2010. USENIX Association.

[44] Gang Tan. Principles and implementation techniques of
software-based fault isolation. Now Publishers, 2017.

[45] Tencent. F-Stack. https://github.com/F-Stack/f
-stack. Accessed: 2022-09-25.

[46] Tencent. F-Stack Redis. https://github.com/F
-Stack/f-stack/tree/dev/app/redis-6.2.6. Ac-
cessed: 2022-09-25.

[47] The kernel development community. Page table isola-
tion (PTI). https://www.kernel.org/doc/html/la
test/x86/pti.html. Accessed: 2021-12-01.

[48] Nigel Topham and Daniel Jones. High speed CPU simu-
lation using JIT binary translation. In Workshop on Mod-
eling, Benchmarking and Simulation (MOBS), 2007.

[49] Stephan Van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-
flight data load. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105. IEEE, 2019.

[50] wg. wrk. https://github.com/wg/wrk. Accessed:
2020-12-15.

[51] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. SPDK:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[52] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy, pages
79–93. IEEE, 2009.

[53] Kai Yu, Chengfei Zhang, and Yunxiang Zhao. Web ser-
vice appliance based on unikernel. In 2017 IEEE 37th
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 280–282. IEEE,
2017.

A Artifact Appendix

Abstract
Our artifact includes the source code of UB, and the apps we
used for evaluation. The readers can follow the instructions
to modify the Linux kernel to support UB, compile UB to run
on it, and evaluate the apps on it.

Scope
The IOPS of all the apps we evaluated can be reproduced.
Specifically, Figure 5, Figure 7, 8, 9 and 10. Reproducing
the I/O benchmark is the most convenient case. Therefore, it
is recommended to start from Figure 5.

The whole experiment can be time-consuming, so people
may take fewer repeat rounds to save time.

Content
The artifact includes the implementation of UB, which con-
sists of the three files to be modified over Linux Kernel
(zz_lkm, zz_daemon, and zz_disassem). zz_lkm is the kernel
part of UB, which profiles processes and executes the BTC.
zz_daemon sits at userspace to communicate with the kernel
module and invoke zz_disassem to do the actual translation.

Hosting
The source codes are hosted at https://github.com/gla
rer/UserspaceBypass, as well as the readme file.

Requirement
The I/O benchmark experiment requires only a server ma-
chine. Because Redis, Nginx, and raw socket experiments
involve network, another client machine is required to be
connected to the server.

The IOPS is highly related to CPU performance. Therefore,
the reproduced IOPS values may be different by different
CPUs, but we can always see the performance gain.

The IOPS can also be disturbed by network performance.
If the NIC used is not sufficiently powerful, the IOPS may
drop for large I/O size, as well as the performance gain.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 49

https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack/tree/dev/app/redis-6.2.6
https://github.com/F-Stack/f-stack/tree/dev/app/redis-6.2.6
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://github.com/wg/wrk
https://github.com/glarer/UserspaceBypass
https://github.com/glarer/UserspaceBypass

Triangulating Python Performance Issues with SCALENE

Emery D. Berger
College of Information and Computer Sciences

University of Massachusetts Amherst
emery@cs.umass.edu

Sam Stern
College of Information and Computer Sciences

University of Massachusetts Amherst
jstern@cs.umass.edu

Juan Altmayer Pizzorno
College of Information and Computer Sciences

University of Massachusetts Amherst
jpizzorno@cs.umass.edu

Abstract

This paper proposes the SCALENE Python profiler. SCALENE
precisely and simultaneously profiles CPU, memory, and GPU
usage, all with low overhead. SCALENE’s CPU and memory
profilers help Python programmers direct their optimization
efforts by distinguishing between inefficient Python and effi-
cient native execution time and memory usage. SCALENE’s
memory profiler employs a novel sampling algorithm that lets
it operate with low overhead yet high precision. It also incor-
porates a novel algorithm that automatically pinpoints mem-
ory leaks within Python or across the Python/native boundary.
SCALENE tracks a new metric called copy volume, which
highlights costly copying operations that can occur when
Python silently converts between native and Python data rep-
resentations, or between CPU and GPU. Since its introduc-
tion, SCALENE has been widely adopted, with over 675,000
downloads to date. We present experience reports from devel-
opers who used SCALENE to achieve significant performance
improvements and memory savings.

1 Introduction

Python is now firmly established as one of the most popu-
lar programming languages, with first place rankings from
TIOBE [42] and IEEE Spectrum [6], second place on the Red-
monk Rankings [24], and fourth place in the 2022 Stack Over-
flow Developer Survey [38]. Large-scale industrial users of
Python include Dropbox [4], Facebook [18], Instagram [15],
Netflix [22], Spotify [47], and YouTube [44].

At the same time, Python is (in)famously slow. The stan-
dard Python implementation, known as CPython, is a stack-
based bytecode interpreter written in C [48]. Pure Python
code typically runs 1–2 orders of magnitude slower than na-
tive code. As an extreme example, the Python implementation
of matrix-matrix multiplication takes more than 60,000× as
long as the native BLAS version.

Python’s performance costs are nearly matched by its high
memory overhead. Python data types consume dramatically

more memory than their native counterparts. For example, the
integer 1 consumes 4 bytes in C, but 28 bytes in Python; "a"
consumes 2 bytes in C, but 50 bytes in Python. This increased
space demand is primarily due to metadata that Python main-
tains for every object, including reference counts and dynamic
type information. Python is a garbage collected language; be-
cause garbage collection delays memory reclamation, it can
further increase the amount of memory consumed compared
to native code [14].

Because of these costs, one of the most effective ways for
Python programmers to optimize their code is to identify
performance-critical and/or memory-intensive code that uses
pure Python, and replace it with native libraries. Python’s
ecosystem includes numerous high-performance packages
with native implementations, which are arguably the key en-
abler of its adoption and popularity. These libraries include
the NumPy numeric library [25], the machine learning li-
braries SciKit-Learn [29] and TensorFlow [2,3], among many
others. By writing code that makes effective use of these pack-
ages, Python programmers sidestep Python’s space and time
costs, and at the same time take full advantage of hardware
resources like multiple cores, vector instructions, and GPUs.

Unfortunately, past Python profilers—which can be viewed
as ports of traditional profilers for native code—fall short. We
believe Python programmers need a profiler designed from
the ground up to meet the specific challenges of developing
high performance Python applications.

This paper proposes SCALENE, a profiler that comprises a
suite of profiling innovations designed specifically for Python.
Unlike all past Python profilers, SCALENE simultaneously
profiles CPU, memory usage, and GPU usage. It provides
fine-grained information targeted specifically at the problems
of optimizing Python code. In particular, SCALENE teases
apart time and memory consumption that stem from Python
vs. native code, revealing where programmers can optimize
by switching to native code. SCALENE reports a new metric,
copy volume, that helps identify costly (and often inadvertent)
copying across the Python/native divide, or copying between
CPU and GPU. Its memory profiler accurately tracks memory

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 51

Profiler Slowdown Lines or
Functions

Unmodified
Code Threads Multi-

processing
Python vs.

C Time
System

Time
Profiles
Memory

Python vs.
C Memory GPU Memory

Trends
Copy

Volume
Detects
Leaks

CPU-only profilers
pprofile (stat.) 1.0× lines ✓ ✓ - - - - - - - - -
py-spy 1.0× lines ✓ ✓ ✓ - - - - - - - -
pyinstrument 1.7× functions ✓ - - - - - - - - - -
cProfile 1.7× functions ✓ - - - - - - - - - -
yappi wallclock 3.2× functions ✓ ✓ - - - - - - - - -
yappi CPU 3.6× functions ✓ ✓ - - - - - - - - -
line_profiler 2.2× lines - - - - - - - - - - -
Profile 15.1× functions ✓ - - - - - - - - - -
pprofile (det.) 36.8× lines ✓ ✓ - - - - - - - - -

memory-only profilers
fil 2.7× lines - - - - - peak only - - - - -
memory_profiler ≥37.1× lines - - - - - RSS - - - - -
memray 4.0× lines - ✓ - - - peak only ✓ - - - -

CPU+memory profilers
Austin (CPU+mem) 1.0× lines ✓ ✓ ✓ - - RSS - - - - -
Scalene (CPU+GPU) 1.0× both ✓ ✓ ✓ ✓ ✓ - - ✓ - - -
Scalene (all) 1.3× both ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 1: SCALENE vs. past Python profilers. SCALENE provides vastly more information than past Python profilers, with more accurate
memory profiling (§6.3) and with low overhead (§6.4, §6.5). Most past profilers (§8.5) exclusively profile either CPU time or memory;
SCALENE simultaneously profiles CPU, GPU, and (optionally) memory, and comprises a suite of unique features backed by novel algorithms.

consumption over time, and automatically identifies memory
leaks, whether within Python or in native code. Its GPU pro-
filer tracks GPU utilization and memory consumption, letting
it identify when native libraries are not being used to their best
advantage. At the same time, SCALENE imposes low overhead
(median: 0% for CPU+GPU, 32% for CPU+GPU+memory).
SCALENE’s design addresses the substantial differences be-
tween Python and past environments such as JVMs, including
the widespread use of native libraries, the resulting reduced
usage of garbage collection, and its popularity for machine
learning applications that make GPUs a first-class concern.

Since its introduction, SCALENE has become a popular tool
among Python developers, with over 600,000 downloads to
date. We report on case studies supplied by external users of
SCALENE, including professional Python open source devel-
opers and industrial users, highlighting how SCALENE helped
them diagnose and then remedy their performance problems,
leading to improvements ranging from 45% to 125×.

This paper makes the following contributions: it pro-
poses SCALENE, a profiler specifically tailored to Python;
it presents several novel algorithms, including its algorithm
for attributing time consumption to Python or native code;
its sampling-based memory profiling that is both accurate
and low overhead; and its automatic memory leak detector,
which identifies leaks with low overhead. It also introduces
and demonstrates the value of a new metric, copy volume, that
surfaces hidden costs due to copying.

The next sections explain SCALENE’s implementation and
algorithms. We first outline how SCALENE efficiently per-
forms line-level CPU profiling, focusing on its approach to

teasing apart time spent running in the Python interpreter from
native code execution and system time (§2). We then describe
SCALENE’s memory profiling component (§3), including its
threshold-based sampling approach that reduces overhead
while ensuring accuracy, its memory leak detection algorithm,
and how it tracks copy volume. We then explain how SCA-
LENE profiles GPU utilization and memory consumption (§4).
Finally, we present technical details underpinning SCALENE’s
user interface (§5). We then present our evaluation (§6) and
a number of case studies of user experiences with SCALENE
(§7); we conclude with a discussion of related work (§8).

2 CPU Profiling

SCALENE’s CPU profiler employs sampling, but unlike past
profilers, it leverages an apparent limitation of how Python
delivers signals to extract more granular information.

Sampling profilers like SCALENE work by periodically
interrupting program execution and examining the current
program counter. Given a sufficiently large number of sam-
ples, the number of samples each program counter receives
is proportional to the amount of time that the program was
executing. Sampling can be triggered by the passage of real
(wall-clock) time, which accounts for CPU time as well as
time spent waiting for I/O or other events, or virtual time (the
time the application was scheduled for execution), which only
accounts for CPU time.

However, in Python, using sampling to drive profiling leads
to erroneous profiles. Like other scripting languages such
as Perl and Ruby, Python only delivers signals to the main

52 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 2: An example profile from SCALENE’s web UI, sorted in descending order by GPU utilization. The top graphs provide a summary
for the entire program, with more detailed data reported for each active line (and, not shown, for each function). CPU time is in blue, with
different shades reflecting time taken in Python code, native code, or system/GPU time (§2). Average and peak memory consumption is in
green, with different shades distinguishing memory consumed by Python objects vs. native ones (§3); the memory timeline depicts memory
consumption over time (§5). Copy volume is in yellow (§3.5), as well as GPU utilization and GPU memory consumption (§4). Hovering over
bars provides detailed statistics in hovertips.

pure Python execu.on

Python + na.ve execu.on

q q q ...

q
T

Python: na.ve:q T-q
Figure 3: Overview of SCALENE’s inference of Python vs. native
execution. Sampling profilers depend on regular timer interrupts,
but Python defers all signals when running native code, leading
to the appearance of no time spent executing that code. SCALENE

leverages this apparent limitation to accurately attribute time spent
executing Python and native code (§2.1) in the main thread; it uses a
different algorithm for code running in threads (§2.2).

thread [31]. Also like those languages, Python defers signal
delivery until the virtual machine (i.e., the interpreter loop)
regains control, and only checks for pending signals after
specific opcodes such as jumps.

The result is that, during the entire time that Python spends
executing external library calls, no timer signals are delivered.
The effect can be that the profiler will reflect no time spent
executing native code, no matter how long it actually took. In
addition, because only main threads are interrupted, sampling
profilers can fail to account for any time spent in child threads.

2.1 Accurate Python-Native Code Profiling

SCALENE’s CPU profiler turns these limitations of Python
signals to its advantage, inferring whether a line spent its time
executing Python or native code (e.g., C). It leverages the
following insight: any delay in signal delivery corresponds
to time spent executing outside the interpreter. That is, if
SCALENE’s signal handler received the signal immediately
(that is, in the requested timing interval), then all that time
must have been spent in the interpreter. If it was delayed, it
must be due to running code outside the interpreter, which is
the only cause of delays (at least, in virtual time).

Figure 3 depicts how SCALENE handles signals and at-
tributes time to either Python or native code. SCALENE
tracks time between interrupts recording the current vir-
tual time whenever it receives a CPU timer interrupt (using
time.process_time()). When it receives the next interrupt,
it computes T , the elapsed virtual time, and compares it to the
timing interval q (for quantum).

SCALENE uses these values to attribute time spent to
Python or native code. Whenever SCALENE receives a signal,
SCALENE walks the Python stack until it reaches code being
profiled (that is, outside of libraries or the Python interpreter
itself), and attributes time to the identified line of code. SCA-
LENE maintains two counters for every line of code being
profiled: one for Python, and one for native code. Each time
a line is interrupted by a signal, SCALENE increments the
Python counter by q, the timing interval, and it increments
the native counter by T −q, the delay.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 53

2.2 Accurate Python-Native Profiling of
Threads

The approach described above attributes execution time for
Python vs. native code in the main thread, but it does not
attribute execution time at all for subthreads, which, as de-
scribed above, never receive signals. To correctly attribute
time for code running in subthreads, SCALENE applies an al-
gorithm leveraging a combination of Python features: monkey
patching, thread enumeration, stack inspection, and bytecode
disassembly.

Monkey patching refers to the redefinition of functions
at runtime. SCALENE uses monkey patching to ensure that
signals are always received by the main thread, even when
the main thread is blocking (e.g., waiting to join with
child threads). SCALENE replaces blocking functions like
threading.join with variants that always use timeouts. It
sets these timeouts to Python’s own thread quantum, obtained
via sys.getswitchinterval(). Replacing these calls forces
the main thread to yield regularly and allow signal delivery.

In addition, to attribute execution times correctly, SCA-
LENE maintains a status flag for every thread, all initially
executing. In each of the calls it intercepts, before SCALENE
issues the blocking call, it sets the calling thread’s status as
sleeping. Once that thread returns (either after successfully
acquiring the desired resource or after a timeout), SCALENE
resets the status of the calling thread to executing. SCALENE
only attributes time to currently executing threads.

Now, when the main thread receives a signal, SCALENE
invokes threading.enumerate() to collect a list of all run-
ning threads. It then obtains the Python stack frame from each
thread using Python’s sys._current_frames() method. As
above, SCALENE walks the stack to find the appropriate line
of code to attribute execution time.

Finally, SCALENE uses bytecode disassembly (via the dis
module) to distinguish between time spent in Python vs. na-
tive code. Whenever Python invokes an external function,
it does so using a bytecode whose textual representation is
either CALL_FUNCTION, CALL_METHOD, or, as of Python 3.11,
CALL. SCALENE builds a map of all such bytecodes at startup.

SCALENE checks the stack of each running thread to see
if the currently executing bytecode is a call instruction. SCA-
LENE uses this information to infer if the thread is currently
executing Python or native code.

If a thread is running Python code, it is likely to spend
almost no time in a bytecode before executing another Python
bytecode. By contrast, if if it is running native code, it will be
“stuck” on the CALL bytecode for the duration of native execu-
tion. Leveraging this fact lets SCALENE accurately attribute
execution time: if it finds that a stack is executing CALL, SCA-
LENE assigns time elapsed to the native counter; otherwise, it
assigns time elapsed to the Python counter.

threshold-based samples
rate-based samples

!me

fo
ot
pr
in
t

100M

90M...
...

Figure 4: Threshold-Based vs. Rate-Based Sampling. SCALENE

employs a novel sampling scheme that only triggers when memory
use grows or declines beyond a set threshold, letting it capture all
significant changes in footprint (beyond a given granularity, here
10MB) with low overhead. (§3.2).

3 Memory and Copy Volume Profiling

Almost all past profilers either report CPU time or memory
consumption; SCALENE reports both, at a line granularity. It is
vital that SCALENE track memory both inside Python and out,
as external libraries are often responsible for a considerable
fraction of memory consumption.

3.1 Intercepting Allocation Calls

SCALENE intercepts all system allocator calls (malloc, free,
etc.) as well as Python internal memory allocator by insert-
ing its own “shim” memory allocator, using Python’s built-in
memory hooks. This two-fold approach lets SCALENE dis-
tinguish between native memory allocated by libraries and
Python memory allocated in the interpreter.

The shim allocator extends and uses code from the Heap
Layers memory allocator infrastructure [5]; SCALENE injects
it via library interposition before Python begins executing
using LD_PRELOAD on Linux and DYLD_INSERT_LIBRARIES
on Mac OS X. To interpose on Python’s internal mem-
ory allocator, SCALENE uses Python’s custom allocator API
(PyMem_SetAllocator).

Each shim allocator function handles calls by sampling for
inclusion in the profiling statistics (§3.2) and then passing
these to the original (Python or system) allocator. A complica-
tion arises from the fact that the Python allocators themselves
may handle allocation requests by calling into the system
allocator. To avoid counting Python allocations also as native
allocations, SCALENE sets a flag, stored in thread-specific
data, indicating it is within a memory allocator. When a shim
allocator function is called with this flag set, it skips over
the profiling, just forwarding to the original allocator. This
approach both avoids double counting and simplifies writing
profiling code, as it can allocate memory normally without
causing infinite recursion.

54 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.2 Threshold-Based Sampling

The standard approach to sampling memory profilers, as ex-
emplified by several non-Python memory profilers in Android,
Chrome, Go, and Google’s tcmalloc [40] and in Java TLAB
based sampling [1], use a rate-based sampling approach. This
sampler triggers samples at a rate proportional to the number
of bytes allocated or freed. In effect, each byte allocated or
freed corresponds to a Bernoulli trial with a given probability
p of sampling; e.g., if p = 1/T, then (in expectation) there
will be one sample per T bytes. In practice, for efficiency,
these samplers initialize counters to random numbers drawn
from a Poisson process or a geometric distribution with the
same parameter. Each allocation and free then decrements
this counter by the number of bytes allocated and freed, and
triggers a sample when the counter drops below 0.

By contrast, the SCALENE sampler introduces threshold-
based sampling. The allocator maintains a count of all mem-
ory allocations and frees, in bytes. Once the absolute dif-
ference between allocations and frees crosses a threshold
(|A− F | >= T), SCALENE triggers a sample, correspond-
ing to appending an entry to a sampling file and resets the
counters. Figure 4 illustrates this operation. The sampling
threshold T is currently set to a prime number slightly above
10MB; SCALENE uses a prime number to reduce the risk of
stride behavior interfering with sampling.

Threshold-based sampling has several advantages over rate-
based sampling. Unlike rate-based sampling, which is trig-
gered by all allocation activity (even when it has almost no
effect on footprint), threshold-based sampling is only trig-
gered by significant memory use growth or decline. Table 2
shows the dramatic reduction in the number of samples, as
high as 676× (median: 18×) fewer. This reduced number of
samples translates directly to lower runtime overhead.

At the same time, threshold-based sampling deterministi-
cally triggers a new sample whenever a significant change in
footprint occurs. This approach improves repeatability over
rate-based sampling (which is probabilistic) and avoids the
risk of missing these changes.

Crucially, threshold-based sampling avoids two sources of
bias inherent to rate-based sampling. Rate-based sampling
can overstate the importance of allocations that do not con-
tribute to an increased footprint since it does not take memory
reclamation or footprint into account. It also biases the attribu-
tion of memory consumption to lines of code running Python
code that exercises the allocator, rather than code responsible
for footprint changes. By constrast, threshold-based sampling
filters out the vast number of short-lived objects that are cre-
ated by the Python interpreter itself, and only triggers based
on events that change footprint.

3.3 Collecting and Processing Samples

When a memory sample is taken, SCALENE temporarily en-
ables tracing using Python’s PyEval_SetTrace. Tracing re-
mains active only until it detects execution has moved on
from that line. This approach lets SCALENE properly account
for average memory consumption per line.

Each entry in SCALENE’s sampling file includes informa-
tion about allocations or frees, the fraction of Python (vs.
native) allocations in the total sample, as well as an attribu-
tion to a line of Python source code.

SCALENE attributes each sample to Python source code at
the time the sample is taken. It does so by obtaining the cur-
rent thread’s call stack from the interpreter and skipping over
frames until one within profiled source code is found. This
attribution needs to happen whenever a sample is taken, so it
is implemented as a C++ extension module, using read-only
accesses to Python structures. SCALENE loads this module
upon startup, which in turn uses a symbol exported by the
shim library to complete the linkage, making itself available
to the shim.

A background thread in SCALENE’s Python code reads
from the sampling file and updates the profiling statistics.
SCALENE also tracks the current memory footprint, which it
uses both to report maximum memory consumption and mem-
ory trends. SCALENE records a timestamp and the current
footprint at each threshold crossing, which SCALENE uses to
generate memory trend visualizations (§5).

3.4 Memory Leak Detection

Like other garbage-collected languages, Python can suffer
from memory leaks when references to objects are acciden-
tally retained so that the garbage collector cannot reclaim
them. As in other garbage collected languages, identifying
leaks in Python programs is generally a slow, manual process.

In Python, the standard approach to identifying leaks is to
first activate tracemalloc, which records the size, allocation
site, and stack frame for each allocated object. The program-
mer then inserts calls at the appropriate place to produce a
series of heap snapshots, and then manually inspects snapshot
diffs to identify growing objects. This approach is laborious
and depends on a post hoc analysis of the heap. It also can be
quite slow. In our tests, just activating tracemalloc can slow
Python applications down by 4×.

SCALENE incorporates a novel sampling-based memory
leak detection algorithm that is both simple and efficient. The
algorithm piggybacks on threshold-based sampling (§3.2).
Whenever the sampler triggers because of memory growth,
SCALENE checks if this growth has reached a new maximum
footprint. If so, SCALENE records the sampled allocation.
Every call to free then checks to see whether this object
is ever reclaimed. This checking is cheap—a single pointer
comparison—and highly predictable (almost always false).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 55

Leak Score: At the next crossing of a maximum, SCALENE
updates a leak score for the sampled object. The leak score
tracks the historic likelihood of reclamation of the sampled
object, and consists of a pair of (frees,mallocs). SCALENE
first increments the mallocs field when it starts tracking an
object, and then increments the frees field only if it reclaimed
the allocated object. It then resumes tracking with a newly
sampled object.

Intuitively, leak scores capture the likelihood that an alloca-
tion site is leaking. A site with a high number of mallocs and
no frees is a plausible leak. By contrast, a site with a match-
ing number of mallocs and frees is probably not a leak. The
more observations we make, the higher the likelihood that we
are observing or ruling out a leak.

SCALENE uses Laplace’s Rule of Succession to compute
the likelihood of a success or failure in the next Bernoulli
trial, given a history of successes and failures [50]. Here,
successes correspond to reclamations (frees) and failures are
non-reclamations (mallocs - frees). According to the Rule
of Succession, SCALENE computes the leak probability as
1.0− (frees+1)/(mallocs−frees+2).

Leak Report Filtering and Prioritization: To provide
maximal assistance to Python developers, SCALENE filters
and augments leak information. First, to limit the number of
leak reports, SCALENE only reports leaks whose likelihood
exceeds a 95% threshold, and only when the slope of over-
all memory growth is at least 1%. Second, SCALENE lets
developers prioritize leaks by associating each leak with an
estimated leak rate: the average amount of memory allocated
at a given line divided by time elapsed.

3.5 Copy Volume

SCALENE uses sampling to collect information about copy
volume (megabytes per second of copying) by line. This met-
ric, which SCALENE introduces, helps identify costly (and
often inadvertent) copying across the Python/native divide, or
copying between CPU and GPU.

The SCALENE shim library used for memory allocation
also interposes on memcpy, which is invoked both for general
copying (including to and from the GPU, and copying across
the Python/native boundary). As with memory allocations,
SCALENE writes an entry to a sampling file once a threshold
number of bytes has been copied. However, unlike memory
sampling, copy volume sampling employs classical rate-based
sampling: since copy volume only ever increases, threshold-
based sampling and rate-based sampling would effectively
be equivalent. The current memcpy sampling rate is set at a
multiple of the allocation sampling rate.

4 GPU Profiling

SCALENE performs both line-granularity GPU utilization and
memory profiling on systems equipped with NVIDIA GPUs.
This feature helps Python programmers identify whether they
are efficiently making use of their GPUs.

SCALENE piggybacks GPU sampling on top of its CPU
sampler. Every time SCALENE obtains a CPU sample, it also
collects the total currently used GPU memory and utilization,
which it associates with the currently executing line of code.
Whenever possible, SCALENE employs per-process ID ac-
counting, which increases accuracy in a shared GPU setting.

At startup, SCALENE checks to see if per-process ID ac-
counting has been enabled on the attached NVIDIA GPU. If
not, SCALENE offers to enable it, a process that requires that
the user invoke SCALENE once with super-user privileges.

5 GUI Design and Implementation

SCALENE’s primary user interface is web-based, though it
also offers a non-interactive rich text-based CLI. In the UI,
SCALENE not only reports net memory consumption per line,
but also reports memory usage over time, both for the program
as a whole and for each individual line. Figure 2 presents
several examples. The x-axis corresponds to execution time,
and the y-axis corresponds to the footprint of the program, as
seen by that line of code.

Because it can be expensive to visualize graphs with large
numbers of points, SCALENE limits the number of points
it outputs in its JSON payload and HTML output. Prior to
generating the profile output, SCALENE applies the Ramer-
Douglas-Peucker (RDP) algorithm [9,32] to each line’s mem-
ory footprint log (if any). The RDP algorithm aims to reduce
the total number of points while preserving the overall shape
of the curve. The RDP algorithm depends on a parameter
ε, a distance parameter below which RDP merges adjacent
points; SCALENE sets ε to a value that approximately reduces
the total number of points to a manageable size (100 points).
Sometimes this process fails to reduce the number of points
sufficiently. To guarantee that the number of points is always
bounded, after applying RDP, SCALENE randomly downsam-
ples all memory logs to exactly 100 points.

To further ensure the scalability of the user interface, SCA-
LENE only reports lines of code that are responsible for at
least 1% of execution time (CPU or GPU) or at least 1% of
total memory consumption, along with the preceding and fol-
lowing line. This approach guarantees that a SCALENE profile
never contains more than 300 lines. In practice, profiles are
generally skewed and resulting profilers are often far smaller.

56 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Evaluation

Our evaluation answers the following questions: How does
SCALENE’s CPU profiling accuracy compare to other CPU
profilers? (§6.2) How does SCALENE’s memory profiling ac-
curacy compare to other memory profilers? (§6.3) How does
SCALENE’s CPU profiling overhead compare to other CPU
profilers? (§6.4) How does SCALENE’s memory profiling
overhead compare to other memory profilers? (§6.5)

6.1 Experimental Setup
Our prototype of SCALENE consists of roughly 3,500 lines of
Python 3 code and 1,700 lines of C++-17 code; its user inter-
face comprises 800 lines of JavaScript, excluding white space
and comments as measured by cloc [8]. This prototype runs
on Linux, Microsoft Windows, and Mac OS X, for Python
versions 3.8 and higher; we report Linux results here. We use
the latest version of SCALENE, released 12/08/2022.

We perform all experiments on an 8-core 4674 MHz AMD
Ryzen 7, equipped with 32GB of RAM and an NVIDIA
GeForce RTX 2070 GPU, running Linux 5.13.0-35-generic.
All C/C++ code is compiled with g++ version 9, and we use
CPython version 3.10.9 (release date 12/06/2022) For over-
head numbers, we report the interquartile mean of 10 runs.

6.2 CPU Profiling Accuracy
Here, we explore a specific threat to the accuracy of Python
CPU profilers. We show that some profilers suffer from a
probe effect that distorts the time spent by applications. Specif-
ically, we observe that Python profilers that rely on Python’s
tracing facility exhibit a bias caused by tracing triggering both
on function calls and lines of code, dilating the apparent time
spent in function calls. We call this phenomenon function
bias; we show that sampling-based profilers like SCALENE
do not suffer from this bias.

We wrote a microbenchmark to measure this bias. It ex-
ecutes a varying number of iterations of two semantically
identical functions: one invokes another function inside its
loop, while the other inlines the same logic. We vary the
amount of time spent in one function versus the other, and
compare the profiler results to the ground truth, as measured
with high resolution timers.

Figure 5 presents the results of this experiment. The x-axis
is the amount of time measured while running the variant
with a function call (the ground truth), while the y-axis is
the amount of time reported by each profiler. The ideal is
a diagonal running from the origin. The trace-based profil-
ers exhibit a high degree of inaccuracy, showing significant
function bias. In the worst case, one such profiler reports a
function takes 80% of execution time while in fact it only
consumes 25%. We conclude that such profilers may be too
potentially misleading to be of practical value for developers.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
actual percentage

0

20

40

60

80

100

pe
rc

en
ta

ge
 re

po
rt

ed
 b

y
pr

of
ile

r

Accuracy: Time spent vs. time reported

profile
yappi CPU
yappi wallclock
pprofile (det.)
cProfile
pyinstrument
line_profiler
pprofile (stat.)
Austin
py-spy
Scalene

Figure 5: CPU Profiling Accuracy: SCALENE is among the most
accurate CPU profilers. This graph measures the accuracy of profile
reports vs. the actual time spent in functions; the ideal is shown by
the diagonal line (the amount the profiler reports is exactly the time
spent). Some profilers are highly inaccurate (§6.2).

0 20 40 60 80 100
Percent of array accessed

0

100

200

300

400

500

600

R
ep

or
te

d
al

lo
ca

tio
n

si
ze

 (M
B

)
Memory accounting, Scalene vs. RSS-based proxies

Scalene
Austin
Pympler
memory_profiler
Memray
Fil

Figure 6: Memory Profiling Accuracy: SCALENE produces more
accurate memory profiles than resident set size (RSS) based
profilers. Varying the amount of memory accessed causes RSS-
based profilers to significantly under-report, and sometimes over-
report, the true amount of allocated memory. Interposition-based
profilers are far more accurate (§6.3).

6.3 Memory Profiling Accuracy

We next compare the accuracy of memory profilers with a
simple test designed to explore the effect of using resident set
size (RSS) instead of direct memory tracking. We expect to
see a difference between the two, since RSS corresponds to
the use of memory rather than the allocation of objects. Our
test first allocates a single 512MB array, and then accesses a
varying amount of the array (from 0% to 100%).

Figure 6 presents the result, confirming our hypothesis.
Both memory_profiler and Austin rely on RSS as a proxy

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 57

Benchmark Repetitions Time

async_tree_ionone 22 11.9s
async_tree_ioio 9 12.0s
async_tree_iocpu_io_mixed 14 12.3s
async_tree_iomemoization 16 10.6s
docutils 5 12.5s
fannkuch 3 12.1s
mdp 5 13.4s
pprint 7 12.8s
raytrace 25 11.1s
sympy 25 11.3s

Table 1: Benchmark suite: We conduct our evaluation using
the top ten most time consuming benchmarks from the standard
pyperformance benchmark suite. For each, we extend their running
time by running them in a loop enough times to exceed 10 seconds.

for memory consumption. But RSS is a measure of the phys-
ical memory currently in use, and depends on a number of
other factors such as memory access patterns and the memory
needs of other processes. The figure clearly shows that this
proxy can be wildly inaccurate, leading to under-reporting
and even over-reporting the size of the allocated object. The
other profilers directly measure allocation, and produce much
more accurate results. Both SCALENE and Fil report within
1% of the actual size of the allocated object (512MB), while
Memray is within 6%.

Drawbacks of peak-only profiling: Both Fil and Memray
only report live objects at the point of peak memory allocation
by a program. This information can be useful, but it can both
exaggerate the potential for reducing memory and obscure
other sources of memory consumption. Consider a program
that allocates and discards a 4GB object, and then allocates
a 4GB + 8 byte object. A report that only contains informa-
tion at the point of peak allocation will reveal the second
object but not the first. That profile will suggest an enormous
opportunity to save memory, but eliminating the second ob-
ject entirely would have almost no effect on peak memory
consumption. Unlike peak profilers, SCALENE provides in-
formation about all significant memory allocation over time,
giving programmers a global view of memory consumption.

Summary: SCALENE’s memory profiling is highly accu-
rate, while capturing memory consumption over time.

6.4 CPU Profiling Overhead
In our evaluation, we use the ten longest-running bench-
marks from pyperformance, the standard suite for evaluating
Python performance (Figure 1). We modify these benchmarks
to run in a loop so that they execute for at least 10 seconds
on our experimental platform. We also modify the bench-
marks slightly by adding @profile decorators, as these are

Benchmark Rate Threshold Ratio

async_tree_ionone 556 215 3×
async_tree_ioio 524 187 3×
async_tree_iocpu_io_mixed 719 167 4×
async_tree_iomemoization 375 167 2×
docutils 20 5 4×
fannkuch 426 5 85×
mdp 316 6 53×
pprint 7976 23 347×
raytrace 215 7 31×
sympy 6757 10 676×
Median: 18×

Table 2: Threshold vs. Rate-Based Sampling: SCALENE’s
threshold-based sampling tracks footprint with as many as 676×
fewer samples than conventional rate-based sampling (median:
18×).

required by some profilers; we also add code to ignore the
decorators when they are not used. Finally, we add a call to
system.exit(-1) to force py-spy to generate output. Fig-
ure 7 provides the results of running the profilers across all
these benchmarks.

Summary: In general, SCALENE imposes low to modest
overhead (median: 2% for CPU+GPU, and 30% for full func-
tionality), placing it among the profilers with the lowest over-
head.

6.5 Memory Profiling Overhead

Next, we evaluate the overhead of memory profilers
(memory_profiler, Fil, Memray and Austin), and compare
them to SCALENE. We use the same benchmarks as we used
for measuring runtime overhead for CPU profilers.

Figure 8 shows the results. Because it can slow down ex-
ecution by at least 150×, we omit memory_profiler from
the graph. SCALENE’s performance is competitive with the
other profilers; while Austin is faster, as Section 6.3 shows,
it provides inaccurate estimates of memory consumption.

Log file growth: Some memory profilers feature a surpris-
ing other source of overhead. Two of the memory profilers,
Memray and Austin, produce detailed (and copious) logs of
memory activity that may limit their usefulness for profiling
long-lived applications.

Memray deterministically logs information including all
allocations, all updates to the Python stack, and context
switches, which it later post-processes for reporting. Austin
similarly generates logs meant to be consumed by an exter-
nal tool. These files can grow rapidly: in our tests, Memray’s
output file grows by roughly 3MB/second, while Austin’s
grows by 2MB/second.

58 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mdp

as
yn

c_
tre

e_
io

as
yn

c_
tre

e_
io (io

)

as
yn

c_
tre

e_
io (c

i)

as
yn

c_
tre

e_
io (m

)

fan
nukh

pprin
t

ray
tra

ce

sy
mpy

docu
tils

MEDIA
N

0

2

4

6

O
ve

rh
ea

d
(m

ul
tip

le
 o

f P
yt

ho
n

ru
nt

im
e) CPU profiling: Execution time overhead

pprofile_det
profile
yappi_cpu

yappi_wall
line_profiler

cProfile
pyinstrument

pprofile_stat
py_spy

austin_cpu
Scalene_cpu

Scalene_cpu_gpu
Scalene_full

Figure 7: CPU profiling: SCALENE has modest overhead. Despite collecting far more detailed information, SCALENE is competitive with
the best-of-breed CPU profilers in terms of overhead (§6.4). The graph truncates the slowest profilers; see Table 3 for full data.

mdp a_t_i (io) (ci) (m) fannkuch pprint raytrace sympy docutils Median

py_spy 0.99× 1.03× 1.02× 1.01× 1.02× 1.01× 1.03× 1.00× 1.02× 1.00× 1.02×
cProfile 1.55× 1.71× 1.57× 1.62× 1.80× 1.35× 2.63× 1.98× 2.11× 1.74× 1.73×
yappi_wall 2.16× 3.30× 33.25× 3.89× 5.34× 1.82× 3.77× 2.85× 3.04× 2.67× 3.17×
yappi_cpu 3.38× 3.52× 3.33× 3.14× 3.72× 2.69× 7.07× 4.97× 5.14× 4.05× 3.62×
pprofile_stat 1.01× 1.03× 1.02× 1.02× 1.04× 1.01× 1.01× 0.98× 1.04× 1.00× 1.02×
pprofile_det 37.80× 35.06× 29.30× 28.09× 35.85× 65.19× 103.73× 56.23× 55.68× 34.78× 36.83×
line_profiler 2.48× 2.18× 2.25× 2.01× 2.27× 8.92× 1.01× 11.59× 1.86× 1.67× 2.21×
profile 14.30× 14.53× 13.54× 12.48× 15.71× 10.41× 55.68× 20.87× 26.17× 15.66× 15.1×
pyinstrument 1.40× 1.89× 1.81× 1.74× 1.89× 1.34× 1.96× 1.64× 1.65× 1.54× 1.69×
austin_cpu 1.00× 1.01× 1.00× 0.99× 1.02× 1.00× 1.01× 0.99× 1.02× 0.99× 1.00×
austin_full 0.98× 1.01× 0.99× 1.00× 1.01× 1.01× 1.01× 1.00× 1.00× 0.99× 1.00×
memray 2.43× 4.34× 3.21× 4.80× 3.85× 2.92× 5.36× 3.21× 4.12× 4.11× 3.98×
fil 1.75× 3.05× 2.76× 2.73× 2.91× 1.85× 2.88× 2.15× 2.58× 2.68× 2.71×
memory_profiler > 150× 37.90× 28.42× 36.32× 41.90× > 150× 1.01× > 150× 18.95× 9.19× 37.11×
Scalene_cpu 1.02× 1.05× 1.01× 1.02× 1.04× 1.05× 1.02× 1.00× 1.03× 1.01× 1.02×
Scalene_cpu_gpu 1.03× 1.05× 1.02× 1.02× 1.05× 1.02× 1.03× 1.01× 1.03× 1.01× 1.02×
Scalene_full 1.09× 1.33× 1.76× 1.30× 1.28× 1.36× 4.03× 1.12× 1.31× 1.49× 1.32×

Table 3: Detailed profiling overhead (CPU and memory). All numbers are relative to the Python baseline (no profiling); a_t_i refers to the
async_tree_io benchmark.

By contrast, SCALENE only records samples when memory
consumption grows or shrinks by a large amount (§3.2), lead-
ing to vastly smaller logs. For example, when running the mdp
benchmark, Austin’s log file consumes 27MB and Memray’s
log file consumes almost 100MB, while SCALENE’s log file
consumes just 32K.

Summary: Among the accurate memory profilers, SCA-
LENE operates with the lowest overhead (median: 1.32× vs.
3.98× (memray) and 2.71× (Fil), while capturing memory
usage over time and producing small log files.

7 Case Studies

This section includes reports on real-world experience by
external developers using SCALENE to identify and resolve
performance issues. For each, we identify the features of SCA-
LENE that were instrumental in enabling these optimizations.

Rich: A user reported severe slowness when printing large
tables to the developer of Rich [20], an immensely popu-
lar Python library for formatting text in the terminal (down-
loaded over 130 million times, with 41K stars on GitHub).
When Rich’s developer profiled it using SCALENE, he identi-
fied two lines occupying a disproportional amount of run-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 59

mdp

as
yn

c_
tre

e_
io

as
yn

c_
tre

e_
io (io

)

as
yn

c_
tre

e_
io (c

i)

as
yn

c_
tre

e_
io (m

)

fan
nukh

pprin
t

ray
tra

ce

sy
mpy

docu
tils

MEDIA
N

0

1

2

3

4

5

6

7

O
ve

rh
ea

d
(m

ul
tip

le
 o

f P
yt

ho
n

ru
nt

im
e)

Memory profiling: Execution time overhead

austin_full
memory_profiler
memray
fil
Scalene_full

Figure 8: Memory profiling overhead: SCALENE has competitive
runtime overhead. Despite collecting far more detailed information,
SCALENE is faster than the accurate memory profilers (§6.5).

time. SCALENE indicated that a call to isinstance was
taking an unexpectedly large amount of time–though each
call takes very little time, the developer reported that it was
being called 80,000 times. Rich’s developer replaced these
calls with a lower-cost function, hasattr. In our bench-
marks, isinstance (when marked as a runtime protocol
via @typing.runtime_checkable) can run over 20× slower
than hasattr. The developer also indicated that an unneces-
sary copy was being performed once every cell. Optimizing
these calls led to a reported 45% improvement in runtime
when rendering a large table. [Features: Fine-grained CPU
profiling, copy volume.]

Pandas – Chained Indexing: A developer was seeing
suboptimal performance in their code using Pandas [41].
SCALENE identified that a list comprehension performing
nested indexes into a Pandas dataframe was taking an unex-
pectedly large amount of time and resulting in a significant
amount of copy volume. The developer noted that the first
level of indexing was repeatedly using a string that was loop
invariant; the way this was being done in Pandas caused it to
perform copies rather than using views, a problem known as
chained indexing (https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-
a-view-versus-a-copy). After manually hoisting this
outer indexing operation, the developer obtained an 18×
speedup. [Features: Copy volume and fine-grained CPU
profiling.]

Pandas – concat and groupby queries: An instructor
had their students use SCALENE in a tutorial designed to
teach higher performance Pandas. The instructor found
that SCALENE revealed significant issues in both per-
formance and space consumption when using Pandas.
First, SCALENE revealed that calling concat on Pandas
dataframes was using more memory than anticipated.
SCALENE’s copy volume reporting revealed that the
problem was that concat copies all the data by default
(https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.concat.html#pandas.concat),
effectively doubling memory usage when managing large
dataframes. Second, SCALENE confirmed that exces-
sive RAM usage in some groupby operations is due to
copying of the groups; this bug has been reported to
the Pandas developers (https://github.com/pandas-
dev/pandas/issues/37139). Restructuring the groupby
operation reduced memory consumption by a further
1.6GB (43%). [Features: Fine-grained CPU and memory
profiling, copy volume.]

NumPy vectorization: A graduate student was using
NumPy to implement classification with gradient descent and
was seeing extremely low performance. SCALENE showed
that 99% of the time was being spent in Python (rather than
native code), indicating that his code was not vectorized. In
other words, the code was not expressed in a way that allowed
NumPy to efficiently compute vector operations (using native
code). Guided by SCALENE’s feedback, the graduate student
gradually improved the performance from 80 iterations per
minute to 10,000 per minute, a 125× improvement. [Feature:
Fine-grained native vs. Python CPU profiling.]

Semantic Scholar: Semantic Scholar reports that they have
been using SCALENE as part of their tool suite for operational-
izing their machine learning models. Recently, they found that
a model was cost-prohibitive and put an entire product direc-
tion in jeopardy. They generated a set of test data and ran
their models with SCALENE. SCALENE’s output was able to
pinpoint the issues and help them validate that their changes
were having an impact. While iteratively using SCALENE
while applying optimizations, they were ultimately able to
reduce costs by 92%. Additionally, SCALENE allowed Seman-
tic Scholar’s developers to quickly determine what fraction of
their runtime would benefit from hardware acceleration and
what CPU-bound code they needed to optimize in order to
achieve their goals. [Features: Simultaneous, fine-grained
CPU, memory, and GPU profiling.]

Summary: In nearly all of the cases described above, SCA-
LENE was either invaluable or provided additional help that
narrowed down performance issues, by leveraging unique or
novel features of SCALENE: separation of native from Python

60 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat
https://github.com/pandas-dev/pandas/issues/37139
https://github.com/pandas-dev/pandas/issues/37139

time, copy volume, GPU profiling, and its ability to simul-
taneously measure memory and CPU usage. Though other
tools can separately identify high RAM usage or slow code,
past tools would either misattribute the location of usage due
to the use of resident set size as a metric (unlike SCALENE’s
accurate memory profiling approach) or not be able to si-
multaneously measure memory usage and CPU usage. The
insights generated by SCALENE were actionable, yielding
substantial improvements in execution time and space, and
reducing cost.

8 Related Work

There is an extensive history of profilers; we focus our atten-
tion here on profilers that specifically support Python. The
Python ecosystem contains many Python profilers, most of
which have not been discussed in the academic literature.
This section describes the most prominent profilers; Figure 1
provides a tabular overview.

We first survey CPU-only profilers. We divide them into
two categories: deterministic (tracing-based) (§8.1) and
sampling-based (§8.2). We then discuss memory profilers
(§8.3), ML-specific profilers (§8.4), other Python profilers
(§8.5), and general profilers with Python support (§8.6), and
touch on more distantly related profilers for other languages
(§8.7).

8.1 Deterministic CPU profilers
Python provides built-in tracing support (sys.settrace) that
several profilers build upon. The tracing facility, when acti-
vated, triggers a callback in response to a variety of events,
including function calls and execution of each line of code.
This deterministic, instrumentation-based approach leads to
significant inaccuracies due to its probe effect, as Section 6.2
shows. Because of the overhead of tracing, they are also the
slowest profilers.

Function-granularity: Python includes two built-
in function-granularity profilers, profile [35] and
cProfile [34]. The primary difference between these two
profilers is that cProfile’s callback function is implemented
in C, making it much faster (1.7× slowdown vs. 15.1×)
and somewhat more accurate than profile. Another
profiler, yappi, operates in two modes, wall clock time
(sample-based) and CPU time (deterministic); it is among the
most inaccurate of CPU profilers, with slowdowns ranging
from 1.8× to 33.3×.

Line-granularity: pprofile [30] comes in two flavors:
a deterministic and a “statistical” (sampling-based) profiler.
Both flavors correctly work for multithreaded Python pro-
grams, unlike line_profiler [17]. All of these report infor-

mation at a line granularity. pprofile_det imposes a median
overhead of 36.8×, while line_profiler’s median overhead
is 2.2×.

8.2 Sampling-based CPU profilers

Sampling-based profilers are more efficient and often
more accurate than the deterministic profilers. These in-
clude pprofile_stat, py-spy [10], and pyinstrument [33].
Their overhead is between 1× and 1.7×, comparable to SCA-
LENE. Because it fails to cope with Python’s deferred signal
delivery, pprofile_stat incorrectly ascribes zero runtime
to execution of native code or code in child threads (§2).

Compared to past CPU-only profilers, SCALENE is nearly
as fast or faster, more accurate, and provides more detailed
CPU-related information, breaking down time spent into
Python, native, and system time.

8.3 Memory profilers

memory_profiler is a deterministic memory profiler that
uses Python’s trace facility to trigger it after every line of
execution [36]. By default, it measures the RSS after each
line executes and records the change from the previous line.
memory_profiler also does not support Python applications
using threads or multiprocessing.

Fil measures the peak allocation of the profiled program
by interposing on system allocator functions and forcing
Python to use the system allocator (instead of Python’s
Pymalloc) [45]. Fil records a full stack trace whenever the
current memory footprint exceeds a previous maximum. On
exit, it produces a flamegraph [13] of call stacks responsible
for memory allocation at the point of maximum memory con-
sumption. The Fil website reports that it supports threads (“In
general, Fil will track allocations in threads correctly.” [46]).
However, in our tests, Fil (version 2022.6.0) fails to ascribe
any memory allocations to threads. Fil also does not currently
support multiprocessing.

Memray is a recently released (April 2022), Linux-only
memory profiler that deterministically tracks allocations and
other profiler events [37]. Memray interposes upon the C allo-
cation functions and optionally on the pymem functions, letting
it distinguish native from Python allocations.

The only previous CPU+memory profiler we are aware
of besides SCALENE is Austin [43]. Austin reduces perfor-
mance overhead by profiling with a separate process.

8.4 Profilers for Machine Learning Libraries

Two widely used machine learning libraries, TensorFlow and
PyTorch [28], include their own profilers [11, 19]. Both pro-
filers are targeted at identifying performance issues specific
to deep learning training and inference. For example, the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 61

PyTorch profiler can attribute runtime to individual opera-
tors (running inside PyTorch’s native code). NVIDIA’s Deep
Learning profiler (DLprof) [23] provides similar functionality
for either PyTorch or TensorFlow. Unlike SCALENE, these
profilers are specific to machine learning workloads and are
not suitable for profiling arbitrary Python code. These pro-
filers are complementary to SCALENE, which aims to be a
general-purpose profiler. They also lack many of SCALENE’s
features.

8.5 Other Python Profilers

PieProf aims to identify and surface specific types of inef-
ficient interactions between Python and native code [39].
PieProf leverages data gathered from on-chip performance
monitoring units and debug registers combined with data from
libunwind and the Python interpreter to identify redundant
loads and stores initiated by user-controlled code. It surfaces
pairs of redundant loads and stores for the developer to poten-
tially optimize. PieProf is not publicly available, so it was not
possible to empirically compare it to SCALENE.

8.6 Profilers with Python Support

Several non-Python specific conventional profilers offer lim-
ited support for Python. Intel’s VTune profiler [49] can at-
tribute its metrics to Python lines, with a number of caveats,
including “if your application has very low stack depth, which
includes called functions and imported modules, the VTune
Profiler does not collect Python data.” [16]. VTune does not
directly distinguish between time spent in Python code and
time spent in native code and does not track Python memory
allocations. Google Cloud Profiler [12] only profiles Python
execution time, but neither distinguishes between Python and
native time nor does it perform memory profiling for Python.
Both lack most of SCALENE’s other features.

Python 3.12, the current development version of Python,
recently (November 2022) added support for use with the
perf profiler on Linux platforms by reporting function names
in traces [26]. Using perf in this mode only measures perfor-
mance counters or execution time. Unlike SCALENE, perf
does not measure memory allocation, or attribute runtime
(Python or native) to individual lines of Python code.

8.7 Non-Python Profilers

AsyncProfiler is a Java profiler that, like SCALENE, profiles
both CPU and memory [27]. AsyncProfiler is a sampling
profiler that avoids the safepoint bias problem [21]. Since
Python does not have safepoints (all garbage collection hap-
pens while the global interpreter lock is held), Python profilers
cannot suffer from this bias. Instead, as we show, they can
suffer from function bias (§6.2). Similarly, pprof is a profiler

for the Go language that can report both CPU and memory [7].
Both profilers use rate-based memory sampling (§3.2).

9 Conclusion

This paper presents SCALENE, a novel Python profiler. SCA-
LENE delivers more actionable information than past profilers,
all with high accuracy and low overhead. Its suite of novel
algorithms enables SCALENE’s holistic reporting of Python
execution. SCALENE has been released as open source at
https://github.com/plasma-umass/scalene.

Acknowledgements

We thank SCALENE’s users for their feature requests, ques-
tions, and bug reports, which have helped shape and guide
this research. We are most grateful to users who contributed
pull requests or worked with us to resolve compatibility is-
sues, including Raphael Cohen, James Garity, Ryan Grout,
Friday James, and Marguerite Leang. We thank the users who
contributed their experiences, reported here as case studies:
Will McGugan, Ian Oszvald, Donald Pinckney, Nicolas van
Kempen, and Chris Wilhelm. Finally, we thank our shepherd,
Phil Levis, and the reviewers of this paper, whose feedback
helped improve not only the paper but also SCALENE itself.

This material is based upon work supported by the National
Science Foundation under Grant No. 1954830.

References

[1] Improved JFR allocation profiling in JDK 16. https:
//withent.blogspot.com/2021/01/improved-jfr-
allocation-profiling-in.html, Jan. 2021.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available
from tensorflow.org.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: a sys-
tem for Large-Scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265–283, 2016.

62 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/plasma-umass/scalene
https://withent.blogspot.com/2021/01/improved-jfr-allocation-profiling-in.html
https://withent.blogspot.com/2021/01/improved-jfr-allocation-profiling-in.html
https://withent.blogspot.com/2021/01/improved-jfr-allocation-profiling-in.html

[4] M. Belanger and D. Deville. How we rolled out
one of the largest Python 3 migrations ever - Drop-
box. https://dropbox.tech/application/how-
we-rolled-out-one-of-the-largest-python-3-
migrations-ever, Sept. 2018.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Compos-
ing high-performance memory allocators. In M. Burke
and M. L. Soffa, editors, Proceedings of the 2001 ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), Snowbird, Utah, USA,
June 20-22, 2001, pages 114–124. ACM, 2001.

[6] S. Cass. Top programming languages 2022.
https://spectrum.ieee.org/top-programming-
languages-2022, Aug. 2022.

[7] R. Cox and S. Ma. Profiling go programs. https:
//go.dev/blog/pprof, May 2013.

[8] A. Danial. cloc: v1.94. https://github.com/
AlDanial/cloc, July 2022.

[9] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: the
international journal for geographic information and
geovisualization, 10(2):112–122, 1973.

[10] B. Frederickson. py-spy: Sampling profiler for Python
programs. https://github.com/benfred/py-spy.

[11] Google Corporation. Optimize TensorFlow performance
using the Profiler. https://www.tensorflow.org/
guide/profiler.

[12] Google LLC. Google Cloud: Profiling Python applica-
tions. https://cloud.google.com/profiler/docs/
profiling-python, 2022.

[13] B. Gregg. The flame graph. Commun. ACM,
59(6):48–57, June 2016.

[14] M. Hertz and E. D. Berger. Quantifying the performance
of garbage collection vs. explicit memory management.
In OOPSLA ’05: Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented programming,
Systems, Languages, and Applications, pages 313–326,
New York, NY, USA, 2005. ACM Press.

[15] Instagram Engineering. Python - Instagram En-
gineering. https://instagram-engineering.com/
tagged/python, 2019.

[16] Intel Corporation. Intel VTune Profiler User
Guide. https://www.intel.com/content/
www/us/en/develop/documentation/vtune-
help/top/analyze-performance/code-profiling-
scenarios/python-code-analysis.html, 2022.

[17] R. Kern. line_profiler: Line-by-line profiling
for Python. https://github.com/pyutils/line_
profiler.

[18] R. Komorn. Python in production engineering. https:
//engineering.fb.com/production-engineering/
python-in-production-engineering/, May 2016.

[19] M. Lukiyanov, G. Hua, G. Chauhan, and G. Dankel.
Introducing PyTorch Profiler - the new and improved
performance tool. https://pytorch.org/blog/
introducing-pytorch-profiler-the-new-and-
improved-performance-tool/.

[20] W. McGugan. Rich is a Python library for rich text and
beautiful formatting in the terminal. https://github.
com/Textualize/rich.

[21] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Evaluating the accuracy of Java profilers.
In B. G. Zorn and A. Aiken, editors, Proceedings of
the 2010 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2010,
Toronto, Ontario, Canada, June 5-10, 2010, pages 187–
197. ACM, 2010.

[22] Netflix Technology Blog. Python at Netflix.
https://netflixtechblog.com/python-at-
netflix-bba45dae649e, Apr. 2019.

[23] NVIDIA Corporation. NVIDIA Deep Learning Pro-
filer. https://docs.nvidia.com/deeplearning/
frameworks/dlprof-user-guide/.

[24] S. O’Grady. The RedMonk Programming Language
Rankings: June 2022. https://redmonk.com/
sogrady/2022/10/20/language-rankings-6-22/,
Oct. 2022.

[25] T. E. Oliphant. Guide to NumPy. https://web.mit.
edu/dvp/Public/numpybook.pdf, 2006.

[26] Pablo Galindo. Python support for the Linux perf
profiler. "https://docs.python.org/3.12/howto/
perf_profiling.html, 2022.

[27] A. Pangin. async-profiler. https://github.com/
jvm-profiling-tools/async-profiler.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. Advances in Neural
Information Processing Systems, 32, 2019.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 63

https://dropbox.tech/application/how-we-rolled-out-one-of-the-largest-python-3-migrations-ever
https://dropbox.tech/application/how-we-rolled-out-one-of-the-largest-python-3-migrations-ever
https://dropbox.tech/application/how-we-rolled-out-one-of-the-largest-python-3-migrations-ever
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://go.dev/blog/pprof
https://go.dev/blog/pprof
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://github.com/benfred/py-spy
https://www.tensorflow.org/guide/profiler
https://www.tensorflow.org/guide/profiler
https://cloud.google.com/profiler/docs/profiling-python
https://cloud.google.com/profiler/docs/profiling-python
https://instagram-engineering.com/tagged/python
https://instagram-engineering.com/tagged/python
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/python-code-analysis.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/python-code-analysis.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/python-code-analysis.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/python-code-analysis.html
https://github.com/pyutils/line_profiler
https://github.com/pyutils/line_profiler
https://engineering.fb.com/production-engineering/python-in-production-engineering/
https://engineering.fb.com/production-engineering/python-in-production-engineering/
https://engineering.fb.com/production-engineering/python-in-production-engineering/
https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://github.com/Textualize/rich
https://github.com/Textualize/rich
https://netflixtechblog.com/python-at-netflix-bba45dae649e
https://netflixtechblog.com/python-at-netflix-bba45dae649e
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/
https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/
https://web.mit.edu/dvp/Public/numpybook.pdf
https://web.mit.edu/dvp/Public/numpybook.pdf
https://docs.python.org/3.12/howto/perf_profiling.html
https://docs.python.org/3.12/howto/perf_profiling.html
https://github.com/jvm-profiling-tools/async-profiler
https://github.com/jvm-profiling-tools/async-profiler

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, and
D. Cournapeau. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[30] V. Pelletier. pprofile: Line-granularity, thread-aware
deterministic and statistic pure-Python profiler. https:
//github.com/vpelletier/pprofile.

[31] Python Software Foundation. Signals and threads.
https://docs.python.org/3/library/signal.
html#signals-and-threads.

[32] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer graphics and
image processing, 1(3):244–256, 1972.

[33] J. Rickerby. pyinstrument: Call stack pro-
filer for Python. https://github.com/joerick/
pyinstrument.

[34] B. Rosen and T. Czotter. The Python Profil-
ers (cProfile). https://docs.python.org/3.8/
library/profile.html.

[35] J. Roskind. The Python Profilers (profile). https:
//docs.python.org/3.8/library/profile.html.

[36] S. Saffron. memory_profiler. https://github.com/
SamSaffron/memory_profiler.

[37] P. G. Salgado. Memray. https://bloomberg.github.
io/memray/.

[38] Stack Overflow. Stack Overflow Developer Survey 2022.
https://survey.stackoverflow.co/2022/#most-
popular-technologies-language, May 2022.

[39] J. Tan, Y. Chen, Z. Liu, B. Ren, S. L. Song, X. Shen,
and X. Liu. Toward efficient interactions between
Python and native libraries. In D. Spinellis, G. Gousios,
M. Chechik, and M. D. Penta, editors, ESEC/FSE ’21:
29th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, pages
1117–1128. ACM, 2021.

[40] TCMalloc Team. How sampling in TCMalloc
works. https://github.com/google/tcmalloc/
blob/master/docs/sampling.md, 2022.

[41] The Pandas development team. pandas-dev/pandas: Pan-
das. https://github.com/pandas-dev/pandas, July
2022. [Online; accessed 4-July-2022].

[42] TIOBE Software BV. TIOBE Index for December 2022.
https://www.tiobe.com/tiobe-index/, Dec. 2022.

[43] G. N. Tornetta. austin: A frame stack sampler for
cpython. https://github.com/P403n1x87/austin.

[44] D. Trotter. Grumpy: Go running Python! https:
//opensource.googleblog.com/2017/01/grumpy-
go-running-python.html, Jan. 2017.

[45] I. Turner-Trauring. Fil profiler. https://
pythonspeed.com/fil/.

[46] I. Turner-Trauring. Threading in NumPy (BLAS), Zarr,
numexpr. https://pythonspeed.com/fil/docs/
threading.html.

[47] G. van der Meer. How we use Python at Spo-
tify. https://labs.spotify.com/2013/03/20/how-
we-use-python-at-spotify/, Mar. 2013.

[48] Wikipedia contributors. Cpython — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.
php?title=CPython&oldid=1095361531, 2022. [On-
line; accessed 4-July-2022].

[49] Wikipedia contributors. VTune — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/
index.php?title=VTune&oldid=1107229725, 2022.
[Online; accessed 13-December-2022].

[50] S. L. Zabell. The rule of succession. Erkenntnis,
31(2):283–321, 1989.

64 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vpelletier/pprofile
https://github.com/vpelletier/pprofile
https://docs.python.org/3/library/signal.html#signals-and-threads
https://docs.python.org/3/library/signal.html#signals-and-threads
https://github.com/joerick/pyinstrument
https://github.com/joerick/pyinstrument
https://docs.python.org/3.8/library/profile.html
https://docs.python.org/3.8/library/profile.html
https://docs.python.org/3.8/library/profile.html
https://docs.python.org/3.8/library/profile.html
https://github.com/SamSaffron/memory_profiler
https://github.com/SamSaffron/memory_profiler
https://bloomberg.github.io/memray/
https://bloomberg.github.io/memray/
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://github.com/google/tcmalloc/blob/master/docs/sampling.md
https://github.com/google/tcmalloc/blob/master/docs/sampling.md
https://github.com/pandas-dev/pandas
https://www.tiobe.com/tiobe-index/
https://github.com/P403n1x87/austin
https://opensource.googleblog.com/2017/01/grumpy-go-running-python.html
https://opensource.googleblog.com/2017/01/grumpy-go-running-python.html
https://opensource.googleblog.com/2017/01/grumpy-go-running-python.html
https://pythonspeed.com/fil/
https://pythonspeed.com/fil/
https://pythonspeed.com/fil/docs/threading.html
https://pythonspeed.com/fil/docs/threading.html
https://labs.spotify.com/2013/03/20/how-we-use-python-at-spotify/
https://labs.spotify.com/2013/03/20/how-we-use-python-at-spotify/
https://en.wikipedia.org/w/index.php?title=CPython&oldid=1095361531
https://en.wikipedia.org/w/index.php?title=CPython&oldid=1095361531
https://en.wikipedia.org/w/index.php?title=VTune&oldid=1107229725
https://en.wikipedia.org/w/index.php?title=VTune&oldid=1107229725

Relational Debugging
— Pinpointing Root Causes of Performance Problems

Xiang (Jenny) Ren1, Sitao Wang1, Zhuqi Jin1, David Lion1, Adrian Chiu1, Tianyin Xu2, and Ding Yuan1

1University of Toronto
2University of Illinois at Urbana-Champaign

Abstract
Performance debugging is notoriously elusive—real-world
performance problems are rarely clear-cut failures, but man-
ifest through the accumulation of fine-grained symptoms.
Oftentimes, it is challenging to determine performance
anomalies—absolute measures are unreliable, as system per-
formance is inherently relative to workloads. Existing tech-
niques focus on identifying absolute predicates that deviate
between executions, which limits their application to perfor-
mance problems.

This paper introduces relational debugging, a new tech-
nique that automatically pinpoints the root causes of perfor-
mance problems. The core idea is to capture and reason about
relations between fine-grained runtime events. We show that
relations provide immense utilities to explain performance
anomalies and locate root causes. Relational debugging is
highly effective with a minimal two executions (a good and a
bad run), eliminating the pain point of producing and labeling
many different executions required by traditional techniques.

We realize relational debugging by developing a practical
tool named Perspect. Perspect directly operates on x86 bi-
naries to accommodate real-world diagnosis scenarios. We
evaluate Perspect on twelve challenging performance issues
with various symptoms in Go runtime, MongoDB, Redis, and
Coreutils. Perspect accurately located (or excluded) the root
causes of these issues. In particular, we used Perspect to di-
agnose two open bugs, where developers failed to find root
causes—the root causes reported by Perspect were confirmed
by developers. A controlled user study shows that Perspect
can speed up debugging by at least 10.87 times.

1 Introduction
Performance makes or breaks a software system: severe per-
formance problems lead to unresponsiveness and even mal-
functions; even seemingly-small performance degradations
can incur high costs—a half-second search delay reduces
Google’s revenue by 20% [33]. Therefore, it is crucial to
diagnose performance problems in a timely manner.

Performance debugging is known to be elusive and difficult.
Unlike functional failures with clear-cut symptoms, such as

crashes and runtime exceptions, performance problems are
typically observed via the cumulative effect of fine-grained
symptoms over time, such as latency increases due to regres-
sions of code efficiency and resource overuse due to leaks.
While fine-grained symptoms can potentially be identified by
profilers [9, 10, 12, 13, 19], profiling alone cannot explain a
performance anomaly—not every local symptom is related to
the anomaly. Causality analysis [34, 37, 42] captures runtime
events that are causally related to the symptoms, but it does
not pinpoint the root causes in the code; the causality graph
can be complex to navigate and analyze. In fact, it can be
even challenging to determine whether or not the observed
is performance an anomaly, because absolute measures are
unreliable—system performance is inherently relative to in-
puts and workloads.

Existing performance diagnosis techniques target specific
types of root causes and thus are limited when applied to many
challenging performance problems. For example, X-ray [15]
diagnoses performance anomalies due to unexpected inputs
or configuration values by summarizing performance impact
of each input/configuration value; however, as a tool designed
for end users, X-ray does not address problems rooted in the
source code. Statistical debugging [24, 26, 29, 32, 38] can
address certain types of performance problems which result
in differences in program predicates (e.g., branches and re-
turns) [39]. However, unlike functional failures, many perfor-
mance problems do not cause changes in predicates (e.g., due
to distribution changes in runtime events). Besides, it can be
challenging to design predicates and statistical models in the
first place [39].

This paper introduces relational debugging, a new tech-
nique that automatically pinpoints the root causes of perfor-
mance problems. The core idea is to capture relations be-
tween fine-grained runtime events. We show that relations
provide immense utilities to explain performance anomalies
and locate root causes. Relational debugging analogizes per-
formance problems to relative motion in physics—just like the
speed of an object is a relative measure depending on the ref-
erence frame, so is performance when viewed from different
runtime events during program execution. Root causes of per-
formance problems can be revealed by analyzing changes of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 65

relative measures of these events (i.e., their relations) between
a good run and a bad run (with performance anomalies).

Consider a real-world performance issue (see §2.1), where
the developer observes an abnormal increase in memory con-
sumption by a server application. Potential root causes can
be: 1) an influx of more requests (in which consuming more
memory is normal), 2) each request allocating more memory
(indicating regression of code efficiency), and 3) allocated
memory not being reclaimed (indicating memory leaks). Each
of these hypotheses can be expressed as a relation (a measure
relative to an event): 1) the number of requests relative to each
time epoch, 2) the amount of memory allocated relative to
each request, 3) the amount of memory reclaimed relative to
each request. Relational debugging verifies the hypotheses by
comparing the three relations in executions with and without
the observed performance anomaly. In this example, 1) and
2) are the same, while 3) decreases significantly, suggesting
memory leaks. Relational debugging further pinpoints the root
cause of the memory leak by analyzing fine-grained relations.
It finds that relative to all memory objects not reclaimed by the
garbage collector (GC), many more are unreachable by point-
ers in the abnormal execution than the normal execution—a
bug in the GC mistakenly treats constant values as pointers.

Relational debugging is highly effective with a minimal
two executions (a good and a bad), eliminating the pain point
of producing and labeling many different executions required
by traditional statistical techniques [24,26,29,32,38,39]. No-
tably, relational debugging utilizes the repetitiveness of perfor-
mance symptoms which accumulate during the execution—a
single execution offers a large sample of normal or abnor-
mal patterns. Relational debugging is generic to performance
problems with different types of root causes, including inef-
ficient code, misconfigurations, and workload changes, etc.
Moreover, relations can describe different types of symptoms
such as slowdowns and memory overuse.

We realize relational debugging by developing a practi-
cal tool named Perspect. Perspect is fully automatic; it does
not require manual instrumentations or annotations. Perspect
takes the symptoms (such as a program counter that indicates
excessive memory usage or a function with abnormal execu-
tion time) as inputs. It outputs the relations that are 1) causally
relevant to the symptoms and 2) have significant impacts on
the performance measures of the symptom; such relations de-
scribe the root causes of the performance problems. Perspect
directly operates on x86 binaries to accommodate real-world
diagnosis scenarios (e.g., when the binary build is nontrivial),
and can tolerate small differences in the binaries.

Perspect focuses on capturing a small set of relations that
can pinpoint the root cause. Instead of tracking all possible
relations of every runtime event, Perspect reduces the search
space by identifying runtime events that are causally related
to the symptoms through control or data flow. Perspect then
filters out relations that are not changed between the good
and bad executions. For relations that are changed between

the executions, Perspect automatically differentiates between
relation changes that reflect the effect (e.g., a decrease of re-
claimed memory relative to each request), and changes that
reflect the cause (e.g., an increase in objects not referred by
real pointers). These strategies effectively filter out most of
the irrelevant relations, with the remaining relations being
root cause candidates. Lastly, Perspect ranks root-cause rela-
tions based on their impacts on performance measures of the
observed symptom, and outputs them in descending order.

Perspect is carefully implemented so its analysis is both
precise and scalable to real complex systems. It has an effi-
cient algorithm that computes all the relations by traversing
the dependency graph only once. In addition, it distributes
the precise but expensive data-flow dependency analysis onto
different servers. Finally, Perspect is able to handle the differ-
ence between two different versions of the binary executables.

We evaluate Perspect on twelve real-world performance
issues from complex systems (Go runtime, MongoDB, Re-
dis, and Coreutils), covering different symptoms (slowdown
and memory overuse). Perspect effectively locates the root
causes of these challenging issues. Notably, we applied Per-
spect to two open issues where developers failed to find the
root causes; Perspect successfully located the root causes of
both issues which are confirmed by the developers. For an
issue where the root cause is located outside the target pro-
gram (in the OS kernel), which took developers a long time
to debug, Perspect correctly excluded the root cause from
the application code, since it detects no significant relation
changes.

In summary, this paper makes the following contributions:

• We present relational debugging, a new technique that ana-
lyzes the relations between causally related events, seizing
the essence of performance debugging.

• We build Perspect, a practical tool that realizes relational
debugging for large, complex real-world systems. Perspect
directly operates on x86 binaries and accommodates real-
world diagnosis/debugging scenarios.

• We show that Perspect can effectively locate the root causes
of real performance problems, and can help resolve two
previously unresolved issues. The source code of Perspect
and the dataset are available at https://gitlab.dsrg.
utoronto.ca/dsrg/perspect.

2 Relational Debugging by Examples
We use two real-world examples to show how relational de-
bugging locates the root causes of challenging performance
problems in complex software systems. Both problems are
among the most challenging performance issues faced by
developers, who were unable to locate the root causes with
existing tools. Specifically, the Go runtime bug (§2.1) took
a year of investigation, and the MongoDB bug (§2.2) is an
open issue that developers failed to diagnose. Perspect auto-
matically pinpoints the root causes in the form of relations.

66 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gitlab.dsrg.utoronto.ca/dsrg/perspect
https://gitlab.dsrg.utoronto.ca/dsrg/perspect

2.1 Go-909: A Memory Leak
Go-909 is among the most famous performance bugs in the
Go runtime. The developers reported that “garbage collection
is ineffective on 32-bit” systems, causing workloads to run
out of memory [2]. The same bug resulted in 9 other tickets
(which turned out to have the same root cause) and at least 2
extensive discussion threads on Golang’s email list.The bug
was also discussed in Hacker News with 147 comments [4].

2.1.1 Challenges of Debugging Go-909
Debugging Go-909 was very challenging not only for appli-
cation developers but also for developers of the Go runtime.
During the course, many wrong hypotheses, some of which
were wildly off, were developed. For example, a developer
believed that the bug was caused by the Go runtime forgetting
to munmap freed memory [1]. There are at least three other
bugs, of which developers could not agree on the root cause,
that were eventually attributed to Go-909. After more than a
year of investigations, the root cause was discovered through
a trial-and-error process: the bug can be worked around by
commenting out specific packages that contain a lot of static
constants.

Existing performance debugging techniques can hardly ad-
dress Go-909. First, Go-909 does not always cause a clear-cut
out-of-memory error; in fact, many developers reported the
bug simply after noticing their programs using more memory
than expected [1, 3]. Moreover, since the root cause is not in
program inputs, isolating faulty inputs using X-ray [15] or
delta debugging [48] does not help. The root cause also can
hardly be revealed by statistical debugging [32,39], because it
does not manifest in any abnormal predicates such as branch
targets, unexpected return values, or scalar-pairs [39]. In fact,
the memory leak also occurred in the reference executions
(64-bit systems), only affecting many fewer objects.

2.1.2 Root Cause
Figure 1 shows the simplified code snippet in the
buggy version of the Go runtime. Go programs invoke
runtime.malloc to allocate memory and the Go runtime
uses a mark-and-sweep garbage collector (GC). Once an
object is allocated (L2), runtime.malloc increments the
heap_size counter (L3).

The mark function looks for objects that are reachable
through variables on the stack and in the data segments. Un-
marked objects will later be reclaimed by sweep. During the
stack scan, mark takes the pointer to the start of the stack and
data segments (b), as well as the size of the respective regions
(n). For every word on the stack and data segments, it initially
assumes it to be a pointer and checks whether it points to an
address inside the heap’s range (L15). If so, mark sets the
“marked” bit in the metadata of the object (L18–19). Then,
mark uses an iterative worklist w to further scan the memory
based on the marked pointers. Later, sweep goes through each
span, a memory region containing same-sized blocks. The

1 void* runtime.malloc(unintptr size, ...) {
2 void *p = runtime.Alloc(...);
3 heap_size += size;
4 uintptr bits = get_metadata(p);
5 ...
6 set_metadata(p, bits);
7 return p;

8 }

9 // Mark objects reached by pointers
10 static void mark(byte *b, int64 n) {
11 void **w = get_buffer_head();
12 while(b != nil) { ...
13 for(i = 0; i < n; i++) {
14 byte *p = (byte*)b[i];
15 if(p < HEAD_START || p >= HEAD_USED)
16 continue;
17 uintptr bits = get_metadata(p);
18 bits |= BIT_MARKED; /* set mark bits */
19 set_metadata(p, bits);
20 *w++ = p;
21 }
22 b = *--w;
23 n = get_size(b);
24 }
25 }

26 // Reclaim unreachable objects
27 static void sweep(void) {
28 uintptr size = getsize(span);
29 for(byte *p = span->start; ... p += size) {
30 uintptr bits = get_metadata(p);
31 if((bits & BIT_MARKED) != 0) {
32 bits &= ~BIT_MARKED; /* clear mark bit */
33 continue;
34 }
35 set_metadata(p, bits);
36 runtime.Free(p, size, ...);
37 heap_size -= size;
38 }
39 }

./Perspect run_64 run_32
run_64: R<(L7|L18) = 0.99 // 64-bit (good run)
run_32: R<(L7|L18) = 0.01 // 32-bit (bad run)

GC
log

GC
log

heap_size
is logged

heap_size
is logged

Figure 1: Code snippets showing how Perspect locates the
root causes of Go-909 by pinpointing the changed relation
between L7 and L18 by comparing the two runs.

loop at L29 goes through each block, checks if the marked bit
is set, and if so, clears the mark bit (L32) and continue on to
the next block. Otherwise, it frees the object and decrements
the heap size (L37).

The implementation of mark suffers from fake pointers—
non-pointer variables that happen to have values within the
range of HEAP_START and HEAP_USED (L15). The objects
pointed to by those variables will not be reclaimed. 1 The
defect affects both 32- and 64-bit systems; however, fake
pointers occur orders of magnitude more frequently in 32-bit
systems than 64-bit systems due to data layouts differences.

1This is a known side effect of using a conservative garbage collector.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 67

2.1.3 Relational Debugging Go-909
Perspect takes as inputs a good run (which uses the 32-bit
Go runtime) and a bad run (which uses the 64-bit Go run-
time) of the Go program provided by the bug reporter, as well
as the symptom. Since the bug manifests in abnormal heap
sizes in the GC log, we (users) feed Perspect the heap_size
variable which records the heap size value printed in the log.
Perspect identifies the instructions that modify heap_size ,
i.e., L3 and L37 in the code of Figure 1, and Perspect treats
these instructions as symptom instructions. Perspect will
not only analyze what causes these symptom instructions to
execute, but also what prevents these symptom instructions
from executing; To do this, Perspect also identifies “negation”
symptoms which are instructions that directly prevent a symp-
tom instruction from executing, for example, L18, because
each time L18 executes which marks and object, it directly
prevents an instance of L37 which reclaims the object.

Perspect carries out relational debugging starting from in-
structions that directly determine the heap_size (L3, L37,
and L18). It builds relations between symptom instructions
and their causal predecessors. In this case, Perspect efficiently
locates the root cause to a single relation (see Table 1 for
notations):

R◂(L7malloc.return ∣ L18mark)

On 64-bit systems, the relation is expected to be 1 ∶ 1, in-
dicating that for every marked object on L18, there exists
a dependency on a pointer returned by malloc. Yet, on 32-
bit systems, the relation drops to 1 ∶ 0.01, i.e., only 1% of
the marked objects have a pointer returned by malloc. The
remainings are pointed to by fake pointers (constant values).

Note that the 1 ∶ 1 relation in the reference run on 64-bit
systems is not an invariant. Precisely, Perspect observed the
relation to be 1 ∶ 0.99, i.e., 99% of the marked objects are
pointed to by a pointer returned by malloc. This is because
the defect still exists in 64-bit systems, but only affecting 1%
of the objects in the reference run.

R◂(L7|L18) is not the only relation built by Perspect. Tak-
ing L18 as an example, Perspect builds four relations w.r.t
L18’s causal predecessors L1 and L10:
• R ◂ (L1∣L18): the distribution of the number of marked

objects that depend on malloc;
• R▸ (L18∣L1): the distribution of the number of times an

object (still reachable by real pointers) gets marked;
• R◂ (L10∣L18): the distribution of the number of marked

objects that depend on mark;
• R▸ (L18∣L10): the distribution of the number of objects

marked per mark call;

Perspect filters out R▸ (L18∣L1) because the distribution
of the lifetimes of objects reachable by real pointers do not
change significantly between the good and bad run; and Per-
spect filters out R◂ (L10∣L18) because each marked object
always depend on one invocation of mark. R▸(L18∣L10) is

Ln An static instruction at line n
eLni The i-th instance of Ln in the execution
S A symptom instruction
eSi A symptom event
P A static insn. & causal predecessor of S
P+ A static insn. & direct causal successor of P
R▸(S ∣P) A forward relation between P and S
R◂(P∣S) A backward relation between P and S
R◂▸(P,S) A pair of forward and backward relations
R?(P,S) A relation btw. P and S of unspecified direction

Table 1: Notations for relations.

changed across the runs, because fake pointers causes many
more objects to be marked during each mark call in the bad
run, but Perspect also excludes it because relational debug-
ging recognizes that the relation only reflects the effect of the
root cause, but is not the root cause. Finally, for R◂(L1∣L18),
Perspect refines it to the most specific variant, R◂(L7∣L18).
The other relations (e.g., those w.r.t symptom instructions
at L3 and L37) are handled in similar ways, and eventually
filtered out. We discuss Perspect’s filtering and refinement
techniques in §3.3.

2.2 MongoDB-57221: A Slowdown
“[Perspect’s result] ties all the pieces together into a nice
explanation. That explanation being, having some unnec-
essary cursors simply open on failed plans isn’t strictly the
problem. It’s that we’re paying the (also unnecessary) cost
to reposition them after every delete + restore.”
—MongoDB developer’s comment on Perspect’s result.

MongoDB-57221 is an open bug which developers were
unable to diagnose. It is triggered by executing a query that
deletes all the records in the table. The query could slow down
by 5x on the buggy version. During the deletion, MongoDB
uses a cursor, i.e., a pointer to a record in the table that indi-
cates the current position, to locate each record. It advances
the cursor to the next record after deleting the previous one;
this process is known as cursor restoration.

This bug is caused by maintaining unnecessary cursors on
multiple query plans. Before the query execution, MongoDB
generates multiple query plans, performs a sandboxed trial of
these plans, and chooses the best-performing plan. Different
query plans use different indexes, thereby deleting records in
different orders. The actual order of the deletion is determined
by the index of the winning plan. However, MongoDB still
keeps the rejected plans and their cursors. More importantly,
it restores the cursor of each rejected plan following the same
order as the winning plan. Whereas for the winning plan,
restoring the cursor means simply moving to the next position,
for the losing plan, restoring the cursor requires traversing
through many already deleted records. And if the number of
deleted records encountered exceeds a threshold, it flags the
page for eviction. The increase in unnecessary evictions leads
to the slowdown.

68 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Developers were unable to understand the root cause of
this bug, despite them quickly identifying evictions being the
bottleneck based on profiling and being aware of the existence
of multiple query plans. However, they could not explain why
excessive evictions occurred, because they could not establish
the causal link between evictions and the cursor restoration of
the rejected plans. This led to rounds of ping-pongs between
the Storage Engine team (responsible for the eviction) and the
Query Execution team (responsible for maintaining multiple
plans). The storage team suspected that the slowdown was
caused by maintaining multiple plans, but the query execution
developers believed that it was cheap to keep multiple plans
around. And they further suspected that the slowdown was
caused by the threshold misconfiguration that triggered the
eviction. In the end, seven different developers actively dis-
cussed this issue for over a month. The JIRA discussion has
over 3,000 words in 18 comments, with multiple rounds of
reproduction and profiling with multiple screenshots posted.
And the two teams had multiple off-line teleconference dis-
cussions. Still, they were unsure why the slowdown occurred.

Perspect pinpoints the root cause and explains the slow-
down. It captures that the costly evictions are causally depen-
dent on the restoration of multiple cursors. Figure 2 displays
a simplified version of static dependency graph for eviction.
Starting from eviction as the symptom, Perspect returns
the root cause candidate: (1) R▸(cursor_search | restore),
where restore invokes cursor_search once in the good
run to restore one cursor, but twice in the bad run to restore
two cursors. Perspect infers that restoring an additional cursor
causes a significant increase in evictions in the bad run.

Moreover, Perspect specifically infers that during cur-
sor restoration, additional traversals through dead records
increased evictions. It returns (2) R ◂ ▸(eviction |
search_forward) as a new pair of relations unique to the
bad run: search_forward is invoked by cursor_search
to search for the next cursor position by traversing forward
in the records. In the good run, search_forward almost al-
ways locates the next cursor position immediately, triggering
no evictions; whereas in the bad run, search_forward tra-
verses through many dead records and triggers additional
evictions. Perspect also returns (3) R▸(search_backward
| cursor_search) as a root cause candidate. In the good
run, cursor_search invokes search_backward only 1%
of the time, because search_forward locates the next cur-
sor position most of the time; however, in the bad run,
cursor_search invokes search_backward half of the time.
The increased searches lead to additional evictions.

3 Perspect
Generally speaking, debugging a performance problem takes
three steps: 1) observing symptom(s), 2) capturing runtime
events that are causally related to the symptom(s), and 3)
locating the root cause. Perspect automates the last two steps,
taking the symptoms as its inputs. Perspect supports different

restore cursor_search

search_backward

eviction

search_forward

Figure 2: A simplified version of the static dependency
graph for eviction. Each edge with a single arrow repre-
sents a dependency. An edge with a double arrow repre-
sents a backedge in a loop. restore loops through ev-
ery cursor and restores each by invoking cursor_search.
cursor_search then invokes search_forward which looks
for the next record by iterating forward. If search_forward
returns without locating the next record, cursor_search
will then invoke search_backward. If search_backward
or search_forward encounters too many dead records, it
will trigger eviction.

Ranked list
Relation 1
Relation 2
Relation 3

...
Relation n

./good_run

./bad_run

insn 1
insn 2
insn 3
...

insn m

Dyninst

PINRR

Static
causality
analysis

Dynamic
causality
analysis

Relational
debugger
Compute

Filter

Refine

Input Output
Perspect

Sy
m
pt
om

Figure 3: An overview of Perspect’s workflow

forms of symptoms, including: program variables that record
the symptoms (e.g., heap_size in Go-909), slow functions
(such as eviction in MongoDB-57221), and basic blocks
(captured by profilers like gprof [12]). Perspect automatically
identifies the instructions related to the input symptoms as the
starting points of its analysis (§3.1). Perspect outputs a list
of relations that explain the root cause in descending order
based on their impacts on the observed symptom.

Figure 3 shows the workflow of Perspect. Perspect uses
causality analysis to reduce the search space of relational
debugging to a small set of instructions and their runtime
instances that are causally related to the symptom (see §3.2).
Perspect then performs relational debugging to build relations
with regard to the symptom. It filters out relations that are
irrelevant to the symptom, refines relations to be specific to
the root cause, and ranks relations based on their impacts on
the observed symptom (see §3.3).

3.1 Bootstrapping with Symptoms
Perspect bootstraps itself by identifying the instructions that
reflect the observed symptoms. If the symptom is a per-
formance counter recorded in a program variable (such as
heap_size in Go-909), Perspect identifies the instructions
that use the variable as an operand. If the symptom is a func-
tion or a basic block (typically captured by profilers), Perspect
identifies the first instruction of the function or the first in-
struction in the basic block. Hence, Perspect converts different
types of symptom inputs to unified starting points in the form

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 69

of instructions, termed symptom instructions, denoted as S in
Table 1. A dynamic instance of the symptom instruction is a
symptom event.

Each symptom instruction is assigned a weight. The weight
can be the value of a variable in an instruction, such as size
in L3 or L37 in Go-909 (Figure 1), or the estimated time or
cycles taken by a code block (e.g., eviction).

Perspect also identifies instructions that prevent the occur-
rence of symptoms (i.e., the negation of a symptom) as a
special type of symptom instructions. An example is L18
in Go-909. Perspect searches every conditional branch that
dominates a symptom instruction, which could prevent the
symptom from occurring (e.g., L31 in Go-909 w.r.t L37). It
then identifies the instructions that determine the branch con-
ditions (e.g., L18 in Go-909). In practice, we find it suffices
to only include instructions of negation for the initial symp-
tom instructions. Therefore, in our current implementation,
Perspect does not recursively search for negation symptoms.

3.2 Causality Analysis
Perspect reduces the search space of relational debugging by
restricting the subsequent analysis to a small subset of instruc-
tions and their runtime instances that are causally related to
the symptoms. The high-level idea is to dynamically track
instructions that the symptoms are causally dependent on
through control- and data-flow (aka information flow) during
the execution of the good or bad reproduction runs. Specif-
ically, Perspect generates a dynamic program dependency
graph that contains instances of instructions that the symptom
is causally dependent on.

The causality tracking is done in two phases. Perspect first
generates the static program dependency graph (SDG) [25]
for all the symptom instructions from the program. In the
SDG, a node v is an instruction and an edge (u,v) represents
a causal dependence, either a data dependence (a data value
v depends on) or a control dependence (a control condition
on which v depends on). We call u a causal predecessor
of v and v a causal successor of u. To generate the SDG,
Perspect performs backward causality tracking: it starts from
each symptom instruction (including negation symptoms)
and recursively includes causal predecessor instructions by
tracking control or data flow.

Perspect then automatically instruments the instructions in
the program binary that belong to the SDG; it later generates
dynamic program dependency graphs (DDGs) by running the
program binary and monitoring the execution of each instru-
mented instruction. Different from the SDG, which consists
of static instructions, in a DDG, a node is a runtime event—an
instance of an instruction in the execution. Each instruction
in the SDG can correspond to multiple events in a DDG.
We use eLni to denote an event of the i-th occurrence of the
instruction at line n (i.e., Ln) in the execution (see Table 1).

Section 4 describes the implementation details.

3.3 Relational Debugger
Within the scope of instructions that are causally related to
the symptom(s), Perspect computes the relations between the
symptom instructions and their causal predecessors in the
SDG, based on runtime dependencies derived from the DDGs
(§3.3.1). Perspect only considers relations that are changed
between the good and the bad executions as potential root
causes by filtering out unchanged relations (§3.3.2). Perspect
further refines each relation until it finds the specific relation
that captures a root cause of the change in the number of
symptom events between the good and the bad executions
(§3.3.3). The filtering and refinement steps are iterated repeat-
edly to select a minimal set of relations as the candidates of
the root cause (Figure 3). Lastly, Perspect ranks the root-cause
candidate relations based on their impact on the symptoms
(§3.3.4).

We use Go-909 (Figure 1) as a running example when
explaining the above components.

3.3.1 Computing Relations
For each symptom (including the negative symptoms), Per-
spect computes the relation between an instruction P, which
the symptom depends on causally, and the corresponding
symptom instruction S. Both P and S are nodes in the SDG
generated in §3.2. The relation is computed based on the
DDG (§3.2) which records runtime events of P and S during
the executions. Perspect computes relations for the good run
and the bad run, respectively.

Perspect starts by only considering the relation between
S and the root nodes of the SDG as P. These root nodes are
typically the entry point of a software module and the main

function. It gradually considers other events on the causal
dependency paths between the root node and S using a refine-
ment process described in §3.3.3.

Perspect computes both forward relations and backward
relations. A forward relation is defined as R▸ (S ∣P) = {ni},
where each element ni in the set, which corresponds to an
instance of instruction P (denoted as ePi) in the DDG, is the
number of causally dependent S instances (eS j, eSk ... eSm)
of ePi. Therefore, a relation can be viewed as a distribution;
We use the mean of the distribution to represent a relation for
simplicity. Here, P can be thought of as serving as a reference
point, and S as the object under observation.

For example, in Go-909, for the symptom instruction
L18mark (marking one object), Perspect constructs a relation
R▸ (L18mark∣L1malloc.start), which represents the number of
times each allocated object got marked. If the first allocated
object gets marked (i.e., it results in an instance of L18) but the
second one does not, then R▸(L18mark∣L1malloc.start) would
be {1,0}. In practice, R▸(L18∣L1) has a much larger sample
size, because hundreds of objects are allocated and marked.

A backward relation is defined as R◂(P∣S) = {mi}, where
each element mi, which corresponds to an instance of S in the
DDG (eSi), is the number of causally dependent P instances

70 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(ePi, Pj ... ePk) of eSi. Opposite to a forward relation, for a
backward relation, the symptom serves as the reference point,
and the predecessor as the object under observation.

Regarding the example, R◂(L1malloc.start ∣L18mark), which
contains, for each marked object (L18mark), the number of
causally connected malloc instances (L1malloc.start); each ob-
ject pointed to by real pointers is connected to 1 instance
of L1malloc.start whereas an object pointed to only by fake
pointers is connected to 0 instances.

Note that a backward and forward relation, R◂(P∣S) and
R▸(S ∣P), complement each other. A forward relation tells:
“given the same unit of input, is the same number of symptom
events produced?”, whereas a backward relation tells: “given
the same symptom event, is it still produced by the same
units of input?” In Go-909, fake pointers introduce additional
causal paths through which the symptom at L18 (marking one
object) may occur. This is reflected in a change of the back-
ward relation R◂(L1malloc.start ∣L18mark), from 100% to 1%
on average; the forward relation R▸(L18mark∣L1malloc.start),
reflecting the number of times each object (reachable from
real pointers) gets marked, does not change significantly.

3.3.2 Filtering Unchanged Relations

Perspect filters out a relation R?(P,S) if it has not changed
between the executions of the good and bad runs. Perspect
determines if a relation has changed based on its distribution
using the two-sample Kolmogorov-Smirnov test [27], with a
confidence interval of 95%. For example, in Go-909, the rela-
tion R▸(L18mark∣L1malloc.start) does not change, because, for
the objects still reachable from real pointers, the distribution
of object life-spans (the number of times they get marked)
does not change significantly; therefore, Perspect filters out
this relation.

Furthermore, if a relation R?(P,S) is unchanged across two
executions, it implies that the relations between any of P’s
causal successors—Q—and S have not changed. Perspect
skips the computation of these relations. In other words, if
there exists a causal successor Q where R?(Q,S) is changed,
then R?(P,S) would be changed. Intuitively, it means that
the same set of runtime events produces the same symptom
events (forward relation) or the same set of symptom events
is still produced by the same events (backward relation). This
optimization allows us to skip many unnecessary relation
computations.

In Go-909, Perspect filters out most of the relations at this
step, and only keeps three relations (which will be further
refined and filtered in §3.3.3):
• R◂(L1malloc.start ∣L18mark): the number of marked objects

reachable from real pointers decreased;
• R▸(L18mark∣L10mark.start): the number of objects marked

per mark call increased;
• R▸(L37sweep∣L27sweep.start): the number of objects re-

claimed at L37 per sweep call (L27) decreased.

3.3.3 Relation Refinement

Perspect further refines the relations to replace a more “gen-
eral” relation with a more “specific” one. Refinement is anal-
ogous to moving the reference point closer to the object
under observation in relative motion. If a relation R?(P,S)
is deemed refinable, Perspect replaces the relation with its
child relations: R?(P+0 ,S), R?(P+1 ,S) ... R?(P+n ,S), where
{P+0 ,P

+

1 ...P
+

n } are the direct causal successors of P (i.e., chil-
dren of P). Perspect iteratively refines a relation until it is no
longer refinable or can be filtered out by §3.3.2.

Refinement aims to pinpoint the root cause(s). Without
refinement, Perspect only outputs relations between S and
root nodes R in the SDG, where R can be the entry point
of a module or the main function. But the root cause(s) are
often located at events on the causal paths connecting R and
S. Intuitively, the root cause are events which, if executed,
will inevitably cause the performance bug to manifest [50].
The refinement process aims to locate such events.2

We design the following two refinement rules:

Rule 1: A relation R?(P,S) is refinable, if there is no change in
any of the relations between P and its children {P+0 ,P

+

1 ...P
+

n }:
R?(P,P+0), R?(P,P+1), and R?(P,P+n).

Intuitively, this rule says P is not a root cause; the root
cause(s) is located further down the causal paths. Recall that
the root cause(s) are events which, once executed, the perfor-
mance bug will inevitably manifest. But now we have P+ that
occurred after P in both the good and bad run, and R?(P,P+)
does not change. This means that after P executes, the per-
formance bug may still be avoided when P+ executes. So we
should move one step forward on the causal chain to consider
whether P+ is the root cause.

With this rule, Perspect refines R◂(L1malloc.start ∣L18mark)
to R◂(L7malloc.return∣L18mark) in Go-909, because R◂(L1∣L7)
is an invariant that does not change across executions. In the
actual code, the program logic between L1 and L7 is complex;
ruling out L1 and narrowing it down to L7 significantly helps
the developer to understand the root cause.

Figure 4 further shows the sequence of refinements per-
formed on R▸(L37sweep∣L27sweep.start). Based on rule 1
we can refine it twice to R▸(L37∣L31), because neither
R▸(L29∣L27) nor R▸(L31∣L29) changes.

Even if a relation is not deemed refinable by rule 1, we do
not give up—it can still be refined based on rule 2:

Rule 2: Even if there is a change in R?(P,P+i), R?(P,S) is still
refinable if the change in R?(P,P+i) is caused by the change
of R?(P′,P), where P′ is a predecessor of P+ and P′ ≠ P.

Rule 2 differentiates whether a changed relation is a true
root cause, or merely the effect (i.e., manifestation) of the root

2Zhang et al. defines the root cause as the inflection point: if we model
the execution as a sequence of instructions, the inflection point in a failure
execution F is the point of divergence with a non-failure execution N where
N is the non-failure execution that has the longest common prefix with F [50].
Perspect’s refinement essentially locates such inflection points.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 71

L1:malloc()

L5:clear marked

L18:set marked

L31:if (marked)

L32:clear marked

L37:heap_size-=size

L10:mark()

L27:sweep()

L29:for(byte *p=span-> ...)

L37:heap_size-=size

next invocation

R>(L37|L27)

R>(L37|L29)

R>(L37|L31)

R>(L37|L37)

�������

�������

������

�������

Figure 4: An example to illustrate the refinement rules on Go-
909. On the right is (part of) the SDG; a solid edge indicates
a control-flow dependency, whereas dotted edges represent
dataflow dependencies.

cause. In the former case, we should not be able to find such
a P′, whereas in the latter case, we can.

Specifically, we consider two cases in our implementation.
The first is when P is a branch instruction, P+ is an instruction
in the branch target, and P′ is the dataflow direct predecessor
of P that defines the branch condition variable. In this case, the
change in R▸(P+∣P) is the effect of the change of R◂(P′∣P),
which affects the branch direction.

Consider R▸(L37sweep∣L31sweep.test). Here, P and P+ are
L31 and L37, respectively. This relation decreased in the bad
run since fewer objects are deemed reclaimable by L31, and
is therefore no longer refinable according to Rule 1, as illus-
trated by Figure 4. However, L31’s direct dataflow predeces-
sors include L18, which sets the mark bit (L18 is the P′ in
this case). The decrease in R▸(L37∣L31) is merely caused
by the increase in R◂(L18∣L31), i.e., more objects are being
marked at L18 before L31 checks the marked bit. Therefore,
according to Rule 2, R▸(L37∣L31) is still refinable, and we
refine it to R▸(L37∣L37) (because L37 is L31’s direct succes-
sor). It can be subsequently filtered based on §3.3.2 since a
relation between two identical events doesn’t change between
runs.This is shown in Figure 4.

Note that we do not need to compute relations on this newly
discovered P′ separately, because our algorithm guarantees
that this relation is computed through other causal paths from
the root. For example, after Perspect found L18 is the P′ in
the above example, it does not go on to compute relations
between L18 and its predecessors, because these relations are
already computed through the causal path starting from mark.

The second case involves loops, when P+ is a loop head and
P′ is the loop tail. Consider R▸(L12mark.loop∣L10mark.start). In
this case, P is L10 and P+ is L12 (which is a loop head). This
relation increased in the bad run because more objects are
getting marked. However, this is caused by L12’s backedge
from L24 (loop tail, which is P′) executing more often, i.e.,
R▸(L24∣L10) also increased by the same amount.

As a result, even though R▸(L12mark.loop∣L10mark.start)
has changed, R▸(L18mark∣L10) can be further refined to
R▸(L18∣L12). Eventually, R▸(L18∣L12) will be filtered out
because by further analyzing the dataflow predecessor of L12
under Rule 2, Perspect finds that the number of times L12 ex-
ecutes is controlled by the size of w, which in turn is dataflow-
dependent on L18 itself (i.e., each time an object is marked,
it is pushed onto the queue w and popped from the queue
later into b so mark can further scan the content of the object
for more pointers). So the relation is refined to R▸(L18∣L18)
eventually.

By applying the two refinement rules iteratively,
Perspect filters both R▸(L37sweep∣L27sweep.start) and R ▸
(L18mark∣L10mark.start). Therefore, Perspect only reports
one relation at the end of the filter-refine iterations:
R◂(L7malloc.return∣L18mark).

3.3.4 Ranking Root-Cause Candidates

After the iterative compute-filter-refine process, the remaining
relations are the ones that have not been filtered and are not
refinable anymore. We call them root cause candidates.

Perspect ranks the root-cause candidates based on their
estimated contributions to performance, in terms of the dif-
ference in performance relative to the predecessor P. Specif-
ically, for a forward relation R▸(S ∣P) = {ni}, where each ni
is the number of symptom instances that causally depend on
ePi (the i-th instance of P), Perspect computes a weighted
sum: ∑wi × ni, where wi is the average weight of the ni
symptom events; ∑w′i ×n′i is the weighted sum for the good
run. Then the contribution to performance is estimated by
∑wi×ni−(∑w′i ×n′i)×

cP
c′P

, where cP and c′P are the number
of times P occurred in the bad and good run, respectively.
Note that Perspect normalizes ∑w′i ×n′i with cP/c′P to obtain
the performance relative to P in scenarios where the number
of times P occurred has changed between the executions. (Say
the change in P’s occurrences is caused by relation R▸(S ∣P′),
where P′ is a predecessor of P, the normalization helps cor-
rectly attribute performance impact between R▸(S ∣P) and
R▸(S ∣P′).)

In a backward relation R◂(P∣S) = {mi}, Perspect computes
weighted sums: ∑wi, ∑w j where wi is the weight of the i-th
instance of the symptom, and w j is the weight of the j-th in-
stance of P that can reach a symptom event; And ∑w′i , ∑w′j
are the weighted sums for the good run. Then the contribu-
tion to performance is estimated by∑wi−∑w j/(∑w′i/∑w′j),
where∑w j/(∑w′i/∑w′j) estimates the total number of symp-
tom events, had the same number of symptom events been
reachable from P instances in the good run; This formula also
handles when the total number of reachable P instances from
the symptom differs in the two executions. If the symptom has
a negative polarity, as in the case of L37sweep, which reduces
the heap size as opposed to increasing it, Perspect multiplies
its performance impact with −1.

72 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 Implementation
Perspect is implemented in 10,199 lines of C++ and 14,006
lines of Python. It is built on top of three tools, Dyninst [8]
(a binary-level static analysis tool), RR [7] (a deterministic
record-and-replay tool), and PIN [11] (a binary instrumenta-
tion tool). Perspect operates on application binaries directly.

A key challenge in our implementation is to scale Perspect
to the real, complex systems software. This section describes
a number of techniques we use for scalability.

4.1 Building Static Dependency Graph (SDG)
Perspect generates the SDG by recursively identifying instruc-
tions that are causal predecessors of the symptom instructions
via control and data flow. (Figure 4 shows a snippet of the
SDG on Go-909.) This is done by three components: 1) a
static analysis (SA) process running Dyninst, 2) 64 dynamic
dataflow analysis (DDA) processes running RR (across 4
servers), and 3) a controller. These components form a dis-
tributed system that parallelizes computation to scale to real-
world systems.

The SA process iteratively infers the instructions on which
the symptom instruction S is control-flow dependent. It ana-
lyzes the control-flow graph provided by Dyninst, and only
keeps those instructions that S actually depends on. This anal-
ysis is first performed in the function (f) that contains S; it is
then repeated iteratively in the caller functions by tracing the
call-sites starting from f.

To obtain dataflow dependencies, Perspect uses a combi-
nation of static and dynamic analysis. Perspect only uses
Dyninst to obtain the dataflow dependencies of local vari-
ables stored in registers or on the stack with static offsets.
On the other hand, when a variable is read from other mem-
ory locations, i.e. the heap or stack locations with non-static
offsets, Perspect does not analyze them statically through
pointer analysis, because precise pointer analysis can be hard
to scale [31]. Instead, Perspect uses the DDA processes to
dynamically identify such data dependencies in parallel.

For example, say S is dominated by an if statement: if
(*p || *q); at this point, Perspect needs to infer the dataflow
of both *p and *p, and Dyninst cannot infer the source of
the dataflow precisely. Therefore, the SA process sends this
request to the controller, which forwards it to a (pre-forked)
DDA process to run the RR-guided reproduction. The DDA
process first sets breakpoints at the if statement to deter-
mine the addresses of *p and *q. It then sets watchpoints at
these two addresses and re-run the RR-guided reproduction.
3 (Since execution through RR is deterministic, addresses
stay the same across multiple runs.) And via the watchpoints,
Perspect locates the store instructions that defined *p and *q.
The DDA process then sends these newly located store in-

3 If a breakpoint or watchpoint is not hit in the RR-guided reproduction,
Perspect will deem them causally irrelevant to the symptom events and ignore
them.

eL15
0

eL18
0

eL15
1

eL18
1

eL10
0

eL12
0

eL1
0

eL7
0

{eL18
0
} {eL18

1
}

{eL18
0
}

{eL18
0
,eL18

1
}

{eL18
1
}

{eL18
0
,eL18

1
}

{eL18
0
}

{eL18
0
}

Figure 5: A simplified version of the Dynamic Dependency
Graph (DDG) for the symptom instruction at L18 from Go-
909. The red colour represents the malloc function, and the
grey colour represents the mark function. Solid and dotted
edges represent control and data flow. The set next to each
event is the S-set.

structions back to the SA process (via the controller). This
causes the SA process to restart the analysis with these two
instructions as the new starting points.

In practice, the SA is orders of magnitude faster than the
DDA. Yet, the DDA can be parallelized: for example, the
analysis of the dataflow source of *p and *q can be done in
parallel. We create 64 DDA processes, each of which can set
at most 4 watchpoints in each run (limited by the number of
hardware watchpoints).

4.2 Building Relations
Once the SDG is obtained, Perspect instruments the program
at each instruction in the SDG using PIN, and runs the in-
strumented program to obtain a trace of the good and the bad
run, respectively. Perspect builds one DDG for each unique
symptom instruction. Each vertex in the DDG is an event,
and an edge is a control- or data-flow dependency. Figure 5
shows a simplified version of the DDG for the symptom in-
struction at L18 from Go-909. There are two objects in the
DDG: The first one is reachable from a real-pointer, which
means it’s dependent on malloc (eL10,eL70), and the object
gets marked (eL100,eL120,eL150,eL180). The second object
is from a fake pointer; it also gets marked once in the same
loop iteration as the first object (eL100,eL120,eL151,eL181),
but has no dependencies on malloc.

Instead of traversing the DDG each time it needs to com-
pute a relation, Perspect only carries out a one-pass traversal
of the DDG to compute all the forward and backward rela-
tions. To compute forward relations, each node in the DDG
keeps an S-set, which is the set of all unique reachable symp-
tom events. We initialize the S-set of the symptom nodes
to the symptom event itself. In Figure 5, eL180 and eL181’s
S-sets are initialized with themselves. Perspect then traverses
the DDG in post-order to iteratively compute the S-sets. For
each node N, its S-set is the union of the S-sets of all its chil-
dren nodes. (Post-order traversal guarantees that N’s children
are visited before N.) But keeping the S-set of each node
consumes too much memory. As an optimization, we replace

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 73

node N’s S-set with its cardinality (i.e., number of elements
or ∣S − set ∣) as soon as its S-set is propagated to all of N’s
parent nodes. For a forward relation R▸(S ∣P) = {ni}, each ni
is simply the ∣S − set ∣ of each event of P. For example, in Fig-
ure 5, R▸(L18∣L10) = {2}, where 2 is the ∣S − set ∣ of eL100;
and R▸(L18∣L15) = {1,1}, where the two 1s come from the
∣S − set ∣ of eL180 and eL181.

To compute backward relations, Perspect keeps a hashmap
H for each symptom event. Each H keeps the number of reach-
able predecessor events for every corresponding predecessor
instruction. For example, in Figure 5, Perspect keeps two Hs,
one for eL180 and one for eL181. The H for eL180 contains
5 entries: {L15,L12,L10,L7,L1}, and the count for each key
is 1. H for eL181 only contains 3 entries: {L15,L12,L10},
where the count for each key is also 1. A backward relation
R◂(L1∣L18) is simply the set containing the count kept for
L1 in each H, which is {1,0}.
Optimization: two-phase analysis. As an optimization, we
perform our analysis in two phases. The first phase, or the
“sketch” phase, only performs the analysis on the call graph.
Specifically, each node in the SDG in this phase is a function,
and each edge is a function invocation. The exceptions are
functions that contain the symptom instructions: we directly
connect the symptom instructions to the entry of these func-
tions. We do not perform the expensive data-flow analysis in
the sketch phase. Given this SDG, we build relations using the
same algorithm: first obtain the DDG from the sketch SDG,
and perform the relation analysis on this DDG. So, the P in
the relations R?(P,S) we obtained is a function. For P whose
relation changes, we zoom into P and perform the full data-
and control-flow analysis described in §4.1. This optimization
allows us to avoid the expensive dependency computations
on functions that are not relevant to the root cause; it is par-
ticularly effective in large code bases like MongoDB where
the symptom often has a deep call stack. In practice, this
optimization reduces Perspect’s static analysis time by 10
times.

4.3 Handling Binary Difference
Perspect is able to compare relations generated from different
binaries by matching each binary instruction to its correspond-
ing one in the other binary, or between different binaries gen-
erated from the same source code (i.e., compiled for the 64-
and 32-bit machines). Perspect first performs the source-level
diff to establish the file and line number mapping between
two versions. However, a line in the source code often com-
piles to multiple binary instructions, sometimes even multiple
basic blocks of binary instructions. So we cannot only rely on
source-level line number mapping to map binary instructions.
Instead, for two binary instructions to be considered as the
same between two version, they have to have 1) the mapping
source-level line number, and 2) the same binary basic block
number, assigned according to the postorder traversal of all
the basic blocks of the same source code line, and 3) the same

offset within the basic block. If the instruction is not found at
the same offset, Perspect also searches for nearby instructions.

5 Experimental Evaluation
Perspect’s premise is that relational debugging can automat-
ically and effectively locate the root causes of real-world
performance problems that are hard to diagnose by existing
tools. We validate these hypotheses with three evaluation
questions: 1) Can Perspect effectively locate the root cause of
challenging performance problems? 2) Can Perspect’s output,
in the form of relations, help users understand root causes? 3)
What is the analysis time of Perspect?
• §5.1: Perspect effectively locates root causes of evaluated

performance problems in Go runtime, MongoDB, Redis,
and Coreutils. Perspect also correctly excludes a root cause
from application code when it is in the OS kernel.

• §5.2: The output of Perspect, in the form of relations, can
speed up debugging time by at least 10.87 times.

• §5.3: Perspect diagnoses 10/12 of the issues in 8 minutes
on average, and diagnoses the other two in a few hours.

Target applications and performance problems. We eval-
uate Perspect on twelve real-world performance issues of four
applications: the Go runtime, MongoDB, Redis, and Core-
utils. All three are complex software systems, consisting of
more than 220K, 6,955K, 37K, and 456K lines of code, re-
spectively. The performance problems are collected from the
issue trackers of the target applications, based on keywords
like “performance”, “slow”, “degrade”, etc. Where possible,
we focus on high-priority issues that cannot be simply an-
swered by using a profiler but take significant human time
and effort, as those are the problems that need advanced tools
like Perspect.

We then try to reproduce these issues based on the steps
described in the issue reports. Reproducing performance prob-
lems is nontrivial and time-consuming—many of the issues
are imprecisely described (e.g., no version information or
reproduction steps) and are hard to reproduce. In total, it
took several person-months for us to prepare the dataset. We
realize that our dataset has several “famous” bugs (e.g., Go-
909 in §2) because they have more detailed information for
reproduction.

As shown in Table 2, the twelve issues cover different
symptoms and use cases. In terms of symptoms, nine caused
slowdown; three caused memory overuse, including bloated
heap size and resident set size (the amount of memory used by
the process). There are three different types of performance
baselines: five are from a different version, one from different
hardware architecture, and the other five are from different
inputs. Notably, we evaluated two open issues where devel-
opers were unable to diagnose them (MongoDB-56274 and
-57221).
Inputs. Perspect takes as inputs of the reproduction of the per-
formance problems. We directly used reproduction programs

74 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Issue Description Metric
Succ?

Rank
Abs.
pred.?

Cand.
relns.

SDG
size

DDG
size

G
o

ru
nt

im
e

909 Fake pointers stops GC from freeing dead objects heap Yes 1st No 1 16054 516k
7330 Performance of operator += is worse than single + time Yes 1st Yes 1 26 200k
8832 Hugepage promotion causes memory bloat RSS Partial - - - 3140 6851
11068 Printing is very slow for large Floats time Yes 1st Yes 1 10650 1409k
12228 More aggressive GC degrades performance time Partial - Yes - 9886 39745
13552 Not recycling large stack spans leaks memory RSS Yes 1st No 1 18060 55580

M
on

go 44991 Erroneous cache clear for common prefixed keys time Yes 1st Yes 1 2109 461k
56274 Slow when deleting opposite to search order time Yes 1st No 3 56 6132
57221 Slow due to moving cursor of obsolete query plan time Yes 1st No 3 5100 268k

Redis 7595 performance downgrade after enabling TLS time Yes 1st Yes 1 35 801

C
or

e 930965 seq 84x slower with –equal-width time Yes 1st Yes 1 668 20002
1014738 du –exclude 4x slower when given a trivial string time Yes 1st Yes 1 7563 20784

Table 2: Perspect’s result on 12 real-world performance issues across 4 systems: Go runtime, MongoDB (“Mongo”),
Redis, and Coreutils (“Core”). Mongo-56274 and -57221 are two open bugs. “Metric” shows the type of performance metric
that describes the symptoms. “Succ?” shows whether Perspect successfully locates the root cause. “Rank” shows the ranking of
root-cause relations. “Abs. pred?” tells whether the root-cause relations break any absolute predicates. “Cand. relns.” shows the
number of root-cause candidate relations. Where Perspect returns a pair of forward and backward relations, it is counted as one
root cause candidate. “SDG size” and “DDG size” show the average SDG and DDG size from the good and bad runs, in terms of
the number of instructions and their runtime instances, respectively.

attached in the reports, or created reproductions by closely
following the descriptions in the reports. We find that except
for Go-909, which provided three similar reproductions, all
issues describe at most one good and one bad execution. Per-
spect is able to exploit high repetitiveness of runtime events
within one execution, and works with two executions as is.

5.1 Effectiveness
Table 2 shows the effectiveness of Perspect in diagnosing
the twelve performance bugs. The overall results are very
positive. Perspect successfully locates the root causes for ten
performance problems, and ranks the root-cause relation as
the highest (or the only) suspect. Eight of them are closed
issues and we use the criteria that the reported root cause
has to be captured by the output relations of Perspect. For
the two open bugs, the relations output by Perspect provided
explanations of the root causes that were confirmed by the
developers.

Perspect partially locates the root causes of the other two
issues (Go-8832 and Go-12228). For Go-8832, Perspect cor-
rectly excludes the root cause (which lies in Linux) from
the Go runtime. For Go-12228, the source codes changed
significantly; Perspect is unable to map the relations across
the executions. In this case, Perspect outputs the relations be-
tween the symptoms and causal predecessors so that a human
developer can complete the rest of the debugging process.

As shown in Table 2, Perspect is able to effectively nail
down a very small set of root-cause candidate relations. This
is attributed to its iterative filtering (§3.3.2) and refinement
(§3.3.3); Our experiments confirm that the relations between
most events and their direct successors do not change across

executions. Perspect also filters out most causally related
events with low contributions to the symptoms.

Note that 10/12 of the evaluated issues have no clear-cut
failures—they are reported because the programs ran slower
or consumed more memory than their respective baselines;
the remaining two only occasionally result in out-of-memory
errors (Go-909 and Go-13552). Hence, those issues can hardly
be diagnosed by tools for functional failures. In at least four
issues, the root causes do not manifest in any absolute predi-
cate changes—the relations captured by Perspect show that
the root causes exist in both executions, only their distribu-
tions differ. Lastly, as shown by the sizes of SDGs and DDGs,
there are too many causally related instructions and runtime
events—causality analysis alone can hardly pinpoint the root
cause in code.

We discussed how Perspect locates the root causes of Go-
909 and MongoDB-57221 in §2. We briefly present a few
more.
Mongodb-44991. Mongodb-44991 is major performance
regression introduced in v4.2.1 and took developers several
days to diagnose. Figure 6 shows the simplified code con-
taining the root cause. As a memory optimization, Mongodb
stores key prefixes only once per page [5]; hence, it needs
to decompress a key before evicting it back to disk. If the
same key has been decompressed before, Mongodb copies
the cached data directly (L4) to avoid building the key from
scratch (L6). In v4.2.1, L11 was erroneously added, which
clears the size variable, effectively invalidating cached data
(L4).

Perspect takes the inputs of two executions from the good
version (v4.0.13) and the buggy version (v4.2.1) as reported

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 75

1 void convert(void *key) {...
2 get_key_info(key, &data, &size);
3 if (... && size > 0)
4 memcopy(key, data, size); // fast path
5 else
6 build_key(entry, key); // slow path
7 }

8 void get_key_info(void *key, void *data, int *size) {
9 data = get_data(key);
10 ...
11 size = 0;
12 }

Invalidated the condition of using cached data (fast path);
Erroneously introduced in v4.2.1.

Figure 6: The root cause of MongoDB-44991 (used in §5.2).

in the issue. Perspect locates a pair of relations in the bad run:
R◂▸(L6,L11) and reports it as the highest-ranked root cause.

Go-13552. Developers noticed that the RSS slowly creeped
over to 1GB, even though the actual heap usage stayed below
4MB [6]. Diagnosing this bug took 5 days, and the developers
eliminated several wrong guesses before nailing down the
root cause. First, they had a hard time deciding whether the
problem came from the heap or the stack. Once they focused
on the stack, they further thought that the memory bloat was
due to normal stack spans not being recycled fast enough.
Finally, they found the root cause to be a special type of large
stack spans which were not recycled at all.

Perspect ranks a relation R▸(sysMmap∣allocLarge) the
highest, indicating that the increased mmap allocations are
for large-sized stack spans. This connects the two essential
pieces of information together to pinpoint the bug.

MongoDB-56274 (open issue). MongoDB-56274 is another
open issue we diagnosed using Perspect, and the root cause
has been confirmed by developers. The developers noticed
that deleting records in descending order was twice as slow
as in ascending order. MongoDB deletes records iteratively:
after it deletes the record, it searches for the next record
to delete. The search function has a hard-coded order: it
always looks for the next record in ascending order first
(search_forward); if no record is found, it searches back-
wards in descending order (search_backward). Hence, when
the deletion order is the same as the search order, the next
record is always found immediately; but, when the deletion or-
der is the opposite, MongoDB traverses through many deleted
records, then searches in the opposite direction, causing the
slowdown.

Perspect locates the root cause to the hard-coded
search order logic; In particular, it identifies three
relations that increased significantly in the bad run:
1) R▸(search_backward∣search): in the good run,
search_backward is rarely invoked, as the next record
is always immediately located by search_forward;
2) R▸(prev_record∣search_backward) and 3)
R▸(next_record∣search_forward) indicates increased
number of records traversed in both directions of search.

Go-8832. Developers observed unexpected memory bloat
and mistakenly thought it was caused by bugs from Go’s
GC code. In fact, the root cause was Linux’s promotion of
huge pages in the background, which bloated the resident set
size (RSS) since the distribution of the base 4KB pages was
sparse. The developers spent a lot of time examining incorrect
hypotheses about bugs in the GC logic, making it one of the
most discussed Go performance issues.

While the current implementation of Perspect cannot an-
alyze the OS kernel, it can help rule out wrongly suspected
buggy behaviors of the Go runtime. Specifically, after compar-
ing relations associated with the symptoms mmap and munmap,
Perspect outputs no root cause candidate relations.

5.2 Usability
We evaluated the usability of Perspect with a controlled user
study. We tested on 20 programmers (who are not co-author of
this paper) who indicated extensive experience in debugging
and GDB.

We used Go-909 and MongoDB-44991 in the study to
represent resource issues and slowdowns. Each participant
was asked to debug one case without any help and a different
case with Perspect; so each bug has two controlled groups for
comparison. For each participant, we first described the bugs
and helped reproduce them. We chose one of the two cases
randomly and asked the participant to diagnose it without
Perspect; then for the second case, we introduced relational
debugging and allowed them to use Perspect. We limited the
debugging session to two hours for each bug (not including
setup or reproduction time). If the time was exceeded, we
considered the bug unsolved.

For Go-909, we considered a participant to have caught
the root cause if they concluded that unreachable objects got
marked and prevented reclamations. For MongoDB-44991,
we used the criteria that the participant had to locate the
instruction that clears the size variable eroneously (L11 in
Figure 6).

Our results show that when using Perspect, participants
concluded the root cause at least 10.87 times faster than when
not using Perspect. With the help of Perspect, all participants
successfully located the root causes of both issues, with an
average of 10 minutes; much of the time was spent on navi-
gating code and understanding instructions pointed to by the
relations. Without Perspect, only 5/10 of the participants con-
cluded the root causes within two hours, with an average of
one hour and 47 minutes.

Interestingly, we observed that without Perspect many par-
ticipants had manual practices like relational debugging: they
printed out counters to compare occurrences of functions or
instructions in the good and bad runs, and ruled out ones that
did not change. However, we observed that such manual effort
was neither rigorous nor systematic. For example, for Go-909,
many participants examined if GC happened less often, but
did not realize objects reclaimed per GC cycle changed.

76 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We interviewed participants after the debugging session.
The most overwhelming feedback is that the relation seman-
tic is intuitive and easy to understand. One suggestion is to
visualize SDGs and DDGs alongside the changed relations,
which we consider implementing via GUI support.

5.3 Analysis Time
For the twelve performance issues, Perspect takes an average
of under one hour to output the results. For 10/12 issues, Per-
spect finishes under 20 minutes, with an average of 8 minutes.
The other two take an average of 5.3 hours. Most of the anal-
ysis time was spent on static and dynamic causality analysis
(§3.2); the relational debugger (§3.3) takes a small fraction of
the total analysis time.

Static causality analysis takes 24 minutes on average. It is
bottlenecked by repeatedly invoking RR to build non-local
dataflow dependencies (§4). The worst-case complexity of
static causality analysis is O(n∗m), where n is the number of
dynamic instructions executed during each RR run, and m is
the number of static instructions that are causally related to the
symptom instructions. The two-phase optimization described
in §4.2 reduces m significantly. We can further speed up static
analysis by adding more servers to parallelize the invocation
of RR runs (§4.1).

Dynamic causality analysis is bottlenecked by running the
instrumented program in PIN. It takes on average 35 minutes
across the 12 issues (<20 minutes for 10/12 issues). Perspect
effectively reduces the DDGs’s sizes by sampling one symp-
tom event out of N, while keeping a large number of symptom
events to maintain statistical significance.

In comparison, the relational debugger only takes a small
fraction of the total dynamic analysis time, typically a few
minutes. Reducing the size of the DDG also effectively re-
duces the average complexity of the relational debugger,
which has a worst-case complexity of O(p2), where p is the
number of instructions executed that are causally relevant to
the symptom events.

6 Discussion and Limitations
Relational debugging provides a new way of understanding
performance problems. We find it generally applicable to
many challenging performance problems that do no manifest
via clear-cut predicates. Relational debugging assumes that
the relations in the executions are statistically significant.
It is possible that an execution is too short. On the other
hand, our evaluation shows that the executions based on the
reproduction steps documented in real-world issue reports
are mostly sufficient—there are enough repetitive patterns for
Perspect to be effective. It is straightforward to apply Perspect
to multiple runs if one is too short.

Our current implementation of Perspect shares some lim-
itations of its building blocks. Specifically, Perspect cannot
debug performance problems that are non-deterministic (e.g.,
they depend on the scheduling and timing of events), because

Perspect uses deterministic replay (RR [7]) and its dynamic
instrumentation could change the timing. Please note: this
does not mean that Perspect cannot debug multi-threaded
systems—all the evaluated systems (except Coreutils) are
multi-threaded. In fact, it is reported that the vast majority
(>90%) of real-world performance problems are determinis-
tic [28].

Perspect currently only supports native code. We plan to
implement relational debugging for applications in managed
languages like Java. We believe the implementation can be
built on the JVM Tool Interface. Perspect can be easily ex-
tended to handle additional language constructs like exception
handling etc. 4 We will also explore how to apply relational
debugging to performance problems of distributed systems
by analyzing relations of distributed events. Perspect can be
extended to support metrics such as P95 latency etc. 5

7 Related Work
Performance debugging with Perspect takes three steps: 1)
identifying symptoms, 2) causality analysis, and 3) relational
debugging for automatically pinpointing root causes. We dis-
cuss related work based on the three components.

Automatic performance debugging/diagnosis. The closest
related work (in terms of locating root causes in code) is [39],
which applies statistical debugging [32] to performance prob-
lems. The essential idea of statistical debugging is to identify
predicates that have strong correlations with the failure. How-
ever, as we have shown in this paper, it is fundamentally
limited to performance problems that manifest via absolute
predicates. Moreover, since statistical debugging in [39] does
not take causality into consideration, many of the observed
predicates could be irrelevant to the symptom; To compensate,
it requires a large number of highly variable good and bad
executions. Another related work is X-ray [15] which sum-
marizes performance costs of runtime events and attributes
them to input and configuration values w.r.t the symptom.
Different from Perspect, X-ray is designed for end users (e.g.,
sysadmins) and does not target root causes in the code. X-ray
uses differential performance summarization which identifies
branches where execution paths diverge and reasons about the
performance difference between the two branch outcomes. In
this sense, it also focuses on divergence of predicates between
executions.

There are tools for debugging special types of performance
problems with predefined patterns, such as loops [35, 40, 44],

4 When Perspect detects a symptom instruction is causally related to
an exception handler, it can perform the analysis at instructions that can
potentially throw an exception that is caught by this handler, treating these
instructions as symptom instructions.

5 Instead of calculating weighted sums, Perspect can perform the z-test on
the weight of each symptom event against the distribution of weights of all
symptom events (symptom events with a z-test score of 1.645 corresponds to
the 95th percentile). The rank of each relation can be the number of causally
related outlier symptom events.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 77

memory leaks [41], and data locality [30]. Differently, Per-
spect is designed to be a general debugging/diagnosis tool.

Automatic functional failure debugging/diagnosis. Prior
studies developed techniques to pinpoint the root causes of
functional failures in code, based on invariant analysis [24,26,
38], log analysis [50] and statistical debugging [32]. Perspect
focuses primarily on performance problems which have very
different characteristics from function failures.

Causality analysis. Perspect applies relational debugging to
instructions and their runtime events that are causally related
to the symptoms. Many advanced techniques have been devel-
oped for causality analysis [16,22,29,34,37,42,45–47,49,53].
Perspect can potentially use them to enhance its causality anal-
ysis (§3.2). For example, we can further accelerate the causal-
ity analysis, learning from failure sketching [29], REPT [22]
and ER [53] that use Intel PT to efficiently trace causally
dependent instructions and augment the trace with symbolic
execution [18, 21]. Argus [42] developed a way to annotate
causality graphs with strong and weak edges, which can prior-
itize relational analysis of Perspect. SherLog [45], lprof [52],
and Pensieve [49] show that runtime logs can be used with
static analysis to guide the reconstruction of causal paths.

Our work is complementary to causality analysis for dis-
tributed systems (many targeting performance problems [14,
17, 20, 34, 43, 51]). Relational debugging for distributed sys-
tems based on distributed causality is our future work (§6).

Profilers. Profilers [9, 10, 12, 13, 19, 23, 36] are impor-
tant utilities for performance debugging. Advanced profilers
like [23, 36] can effectively identify true bottlenecks. They
provide effective inputs for Perspect to locate root causes.

8 Conclusion
Debugging performance problems is (still) among the most
challenging, time-consuming tasks. We presented relational
debugging as a new way of understanding performance prob-
lems and locating their root causes in the code. Our key insight
is that the root causes of performance bugs can be generalized
to changes in relations between fine-grained runtime events,
and by using relations, we capture root causes of performance
bug existing semantics (such as invariants or predicates etc.)
fail to capture. We developed Perspect to automate relational
debugging. Perspect takes a minimal of just two executions (a
good and bad run), and pinpoints the root causes of complex
real-world bugs to a small number of root cause relations
using an effective “filter-and-refine” algorithm. We further
demonstrate Perspect’s effectiveness by diagnosing two open
issues which developers were unable to diagnose using exist-
ing tools. Finally, we deploy a number of carefully designed
optimizations to scale Perspect to large-scale code-bases. We
open-sourced Perspect and will continue improving it towards
a common toolkit for performance debugging.

Acknowledgement
We thank our shepherd, Jason Flinn, and the anonymous re-
viewers for their feedback and comments on our work. We
also thank Serguei Makarov for the suggestion to output bi-
nary instead of plain-text PIN logs for optimized performance.
This work was supported by the Canada Research Chair fund,
an NSERC Discovery grant, an NSERC Alliance Mission
grant, and an NSF grant CNS-2130560.

References
[1] Go-1091: runtime: gob leaks memory for larger objects (above

MMAP_THRESHHOLD?). https://github.com/golang/
go/issues/1091, Sept. 2010.

[2] Go-909: runtime: garbage collection ineffective on 32-bit.
https://github.com/golang/go/issues/909, July 2010.

[3] memory leak on 8g. https://github.com/golang/go/
issues/1210, Oct. 2010.

[4] Go: Severe memory problems on 32bit Linux. https://news.
ycombinator.com/item?id=3805302, 2012.

[5] File formats and compression . http://source.wiredtiger.
com/2.3.0/file_formats.html, 2014.

[6] Go-13552: runtime: RSS creeps over 1GB even though heap
is 4MB. https://github.com/golang/go/issues/13552,
2015.

[7] rr: lightweight recording and deterministic debugging. https:
//rr-project.org/, 2017.

[8] Paradyn/Dyninst - Welcome | Putting the Performance in High
Performance Computing. https://www.dyninst.org/,
2021.

[9] perf: Linux profiling with performance counters. https://
perf.wiki.kernel.org/index.php/Main_Page, 2021.

[10] SystemTap. https://sourceware.org/systemtap/, 2021.

[11] Pin: A Dynamic Binary Instrumentation
Tool. https://software.intel.com/
content/www/us/en/develop/articles/
pin-a-dynamic-binary-instrumentation-tool.html,
2022.

[12] The GNU Profiler. https://ftp.gnu.org/old-gnu/
Manuals/gprof-2.9.1/html_mono/gprof.html, 2022.

[13] Valgrind: a memory profiling and debugging tool. https:
//valgrind.org/, 2022.

[14] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance
Debugging for Distributed Systems of Black Boxes. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03) (Oct. 2003).

[15] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-
tomating Root-Cause Diagnosis of Performance Anomalies
in Production Software. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’12) (Oct. 2012).

78 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/golang/go/issues/1091
https://github.com/golang/go/issues/1091
https://github.com/golang/go/issues/909
https://github.com/golang/go/issues/1210
https://github.com/golang/go/issues/1210
https://news.ycombinator.com/item?id=3805302
https://news.ycombinator.com/item?id=3805302
http://source.wiredtiger.com/2.3.0/file_formats.html
http://source.wiredtiger.com/2.3.0/file_formats.html
https://github.com/golang/go/issues/13552
https://rr-project.org/
https://rr-project.org/
https://www.dyninst.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://sourceware.org/systemtap/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://valgrind.org/
https://valgrind.org/

[16] ATTARIYAN, M., AND FLINN, J. Automating Configuration
Troubleshooting with Dynamic Information Flow Analysis.
In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI’10) (Oct. 2010).

[17] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER,
R. Using Magpie for Request Extraction and Workload Mod-
elling. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design and Implementation (OSDI’04)
(Dec. 2004).

[18] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’08) (Dec. 2008).

[19] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL,
A. H. Dynamic Instrumentation of Production Systems. In
Proceedings of the 2004 USENIX Annual Technical Conference
(USENIX ATC’04) (June 2004).

[20] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. The Good, the Bad, and the Differences: Better Network
Diagnostics with Differential Provenance. In Proceedings of
the 2016 ACM SIGCOMM Conference (SIGCOMM’16) (Aug.
2016).

[21] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
Platform for in-Vivo Multi-Path Analysis of Software Systems.
In Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS-XVI) (Mar. 2011).

[22] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,
WANG, R., AND YUN, I. REPT: Reverse Debugging of Fail-
ures in Deployed Software. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’18) (Oct. 2018).

[23] CURTSINGER, C., AND BERGER, E. D. COZ: Finding Code
that Counts with Causal Profiling. In Proceedings of the 25th
ACM Symposium on Operating Systems Principles (SOSP’15)
(Oct. 2015).

[24] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND

NOTKIN, D. Dynamically Discovering Likely Program In-
variants to Support Program Evolution. In Proceedings of
the 21st International Conference on Software Engineering
(ICSE’99) (May 1999).

[25] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D.
The Program Dependence Graph and Its Use in Optimization.
ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319–349.

[26] HANGAL, S., AND LAM, M. S. Tracking Down Software
Bugs Using Automatic Anomaly Detection. In Proceedings
of the 22rd International Conference on Software Engineering
(ICSE’02) (May 2002).

[27] HODGES, J. J. The significance probability of the smirnov
two-sample test. Arkiv fiur Matematik, 3 (1958), 469–486.

[28] JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-
derstanding and Detecting Real-World Performance Bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’12)
(June 2012).

[29] KASIKCI, B., SCHUBERT, B., PEREIRA, C., POKAM, G., AND

CANDEA, G. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-production Failures. In Proceed-
ings of the 25th Symposium on Operating Systems Principles
(SOSP’15) (Oct. 2015).

[30] KHAN, T. A., NEAL, I., POKAM, G., MOZAFARI, B., AND

KASIKCI, B. DMon: Efficient Detection and Correction of
Data Locality Problems Using Selective Profiling. In Proceed-
ings of the 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’21) (July 2021).

[31] LI, Y., TAN, T., MØLLER, A., AND SMARAGDAKIS, Y.
Scalability-First Pointer Analysis with Self-Tuning Context-
Sensitivity. In Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’18)
(Nov. 2018).

[32] LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JOR-
DAN, M. I. Scalable Statistical Bug Isolation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’05) (June 2005).

[33] LINDEN, G. Marissa Mayer at Web 2.0. http://glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.
html, Nov. 2017.

[34] MACE, J., ROELKE, R., AND FONSECA, R. Pivot Tracing: Dy-
namic Causal Monitoring for Distributed Systems. In Proceed-
ings of the 25th Symposium on Operating Systems Principles
(SOSP’15) (Oct. 2015).

[35] NISTOR, A., SONG, L., MARINOV, D., AND LU, S. Toddler:
Detecting Performance Problems via Similar Memory-Access
Patterns. In Proceedings of the 35th International Conference
on Software Engineering (ICSE’13) (May 2013).

[36] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER,
S., AND CHUN, B.-G. Making Sense of Performance in Data
Analytics Frameworks. In Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’15) (May 2015).

[37] RAVINDRANATH, L., PADHYE, J., AGARWAL, S., MAHAJAN,
R., OBERMILLER, I., AND SHAYANDEH, S. AppInsight: Mo-
bile App Performance Monitoring in the Wild. In Proceedings
of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’12) (Oct. 2012).

[38] SAHOO, S. K., CRISWELL, J., GEIGLE, C., AND ADVE, V.
Using Likely Invariants for Automated Software Fault Local-
ization. In Proceedings of the 18th Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS’13) (Mar. 2013).

[39] SONG, L., AND LU, S. Statistical Debugging for Real-World
Performance Problems. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA’14) (Oct. 2014).

[40] SONG, L., AND LU, S. Performance Diagnosis for Inefficient
Loops. In Proceedings of the 39th IEEE/ACM International
Conference on Software Engineering (ICSE’17) (May 2017).

[41] VILK, J., AND BERGER, E. D. BLeak: Automatically Debug-
ging Memory Leaks in Web Applications. In Proceedings of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 79

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

the 39th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’18) (June 2018).

[42] WENG, L., HUANG, P., NIEH, J., AND YANG, J. Argus: De-
bugging Performance Issues in Modern Desktop Applications
with Annotated Causal Tracing. In Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC’21) (July
2021).

[43] WU, Y., ZHAO, M., HAEBERLEN, A., ZHOU, W., AND LOO,
B. T. Diagnosing Missing Events in Distributed Systems
with Negative Provenance. In Proceedings of the 2014 ACM
SIGCOMM Conference (SIGCOMM’14) (Oct. 2014).

[44] XIAO, X., HAN, S., ZHANG, D., AND XIE, T. Context-
Sensitive Delta Inference for Identifying Workload-Dependent
Performance Bottlenecks. In Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’13)
(July 2013).

[45] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. SherLog: Error Diagnosis by Connecting
Clues from Run-time Logs. In Proceedings of the 15th In-
ternational Conference on Architecture Support for Program-
ming Languages and Operating Systems (ASPLOS-XV) (March
2010).

[46] ZAMFIR, C., AND CANDEA, G. Execution Synthesis: A Tech-
nique for Automated Software Debugging. In Proceedings
of the 5th ACM European Conference on Computer Systems
(EuroSys’10) (Apr. 2012).

[47] ZAMFIR, C., KASIKCI, B., KINDER, J., BUGNION, E., AND

CANDEA, G. Automated Debugging for Arbitrarily Long
Executions. In Proceedings of the 14th Workshop on Operating
Systems (HotOS-XIV) (May 2013).

[48] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolat-
ing failure-inducing input. IEEE Trans. Softw. Eng. 28, 2 (Feb.
2002), 183–200.

[49] ZHANG, Y., MAKAROV, S., REN, X., LION, D., AND YUAN,
D. Pensieve: Non-Intrusive Failure Reproduction for Dis-
tributed Systems Using the Event Chaining Approach. In
Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP’17) (Oct. 2017).

[50] ZHANG, Y., RODRIGUES, K., LUO, Y., STUMM, M., AND

YUAN, D. The Inflection Point Hypothesis: A Principled
Debugging Approach for Locating the Root Cause of a Failure.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP’19) (Oct. 2019).

[51] ZHAO, X., RODRIGUES, K., LUO, Y., YUAN, D., AND

STUMM, M. Non-intrusive Performance Profiling for Entire
Software Stacks Based on the Flow Reconstruction Principle.
In Proceedings of the 12th Conference on Operating Systems
Design and Implementation (OSDI’16) (Nov. 2016).

[52] ZHAO, X., ZHANG, Y., LION, D., ULLAH, M. F., LUO, Y.,
YUAN, D., AND STUMM, M. Lprof: A Non-intrusive Request
Flow Profiler for Distributed Systems. In Proceedings of the
11th Conference on Operating Systems Design and Implemen-
tation (OSDI’14) (Oct. 2014).

[53] ZUO, G., MA, J., QUINN, A., BHATOTIA, P., FONSECA, P.,
AND KASIKCI, B. Execution Reconstruction: Harnessing Fail-
ure Reoccurrences for Failure Reproduction. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI’21)
(June 2021).

80 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Accountable authentication with privacy protection:
The Larch system for universal login

Emma Dauterman
UC Berkeley

Danny Lin
Woodinville High School

Henry Corrigan-Gibbs
MIT

David Mazières
Stanford

Abstract. Credential compromise is hard to detect and hard
to mitigate. To address this problem, we present larch, an
accountable authentication framework with strong security
and privacy properties. Larch protects user privacy while
ensuring that the larch log server correctly records every
authentication. Specifically, an attacker who compromises
a user’s device cannot authenticate without creating evidence
in the log, and the log cannot learn which web service
(relying party) the user is authenticating to. To enable
fast adoption, larch is backwards-compatible with relying
parties that support FIDO2, TOTP, and password-based login.
Furthermore, larch does not degrade the security and privacy
a user already expects: the log server cannot authenticate on
behalf of a user, and larch does not allow relying parties to link
a user across accounts. We implement larch for FIDO2, TOTP,
and password-based login. Given a client with four cores and a
log server with eight cores, an authentication with larch takes
150ms for FIDO2, 91ms for TOTP, and 74ms for passwords
(excluding preprocessing, which takes 1.23s for TOTP).

1 Introduction

Account security is a perennial weak link in computer systems.
Even well-engineered systems with few bugs become vulnera-
ble once human users are involved. With poorly engineered or
configured systems, account compromise is often the first of
several cascading failures. In general, 82% of data breaches in-
volve a human element,with the most common methods includ-
ing use of stolen credentials (40%) and phishing (20%) [79].

When users and administrators identify stolen credentials,
it is challenging to determine the extent of the damage. Not
knowing what an attacker accessed can lead to either inade-
quate or overly extensive recovery. LastPass suffered a breach
in November 2022 because they didn’t fully recover from a
compromise the previous August [72]. Conversely,Okta feared
366 organizations might have been accessed when an attacker
gained remote desktop access at one of their vendors. It took a
three-month investigation to determine that, in fact, only two or-
ganizations, not 366, had really been victims of the breach [32].

Single sign-on schemes, such as OpenID [74] and “Sign
in with Google,” can keep an authentication log and thereby
determine the extent of a credential compromise. However,
these centralized systems represent a security and privacy
risk: they give a third party access to all of a user’s accounts
and to a trace of their authentication activity.

An ideal solution would give the benefits of universal
authentication logging without the security and privacy
drawbacks of single-sign-on systems. For security, the logging
service shouldn’t be able to authenticate on behalf of a user.
For privacy, the logging service should learn no information
about a user’s authentication history: the log service should
not even learn if the user is authenticating to the same web
service twice or to two separate web services.

In this paper, we propose larch (“login archive”), an account-
able authentication framework with strong security and privacy
properties. Authentication takes place between a user and a
service, which we call the relying party. In larch, we add a third
party: a user-chosen larch log service. The larch log service
provides the user with a complete, comprehensive history of
her authentication activity,whichhelps users detect and recover
from compromises. Once an account is registered with larch,
even an attacker who controls the user’s client cannot authenti-
cate to the account without the larch log service storing a record
that allows the user to recover the time and relying-party name.

The key challenge in larch is allowing the log service to
maintain a complete authentication history without becoming
a single point of security or privacy failure. A malicious
larch log service cannot access users’ accounts and learns
no information about users’ authentication histories. Only
users can decrypt their own log records.

Larch works with any relying party that supports one of three
standard user authentication schemes: FIDO2 [36] (popular-
ized by Yubikeys and Passkeys [3]),TOTP [68] (popularized by
Google Authenticator), and password-based login. FIDO2 is
the most secure but least widely deployed of the three options.

A larch deployment consists of two components: a browser
add-on, which manages the user’s authentication secrets, and
one or more larch log services, which store authentication logs
on behalf of a set of users. At a high level, larch provides four
operations. (1) Upon deciding to use larch, a user performs a
one-time enrollment with a log service. (2) For each account
to use with larch, the user runs registration. To relying parties,
registration looks like adding a FIDO2 security key, adding
an authenticator app, or setting a password. (3) The user then
performs authentication with larch as necessary to access
registered accounts. Finally, (4) at any point the user can audit
login activity by downloading and decrypting the complete
history of authentication events to all accounts. The client
can use auditing for intrusion detection or to evaluate the
extent of the damage after a client has been compromised.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 81

All authentication mechanisms require generating an
authentication credential based on some secret. In FIDO2,
the secret is a signature key and the credential is a digital
signature; the signed payload depends on the name of the
relying party and a fresh challenge, preventing both phishing
and credential reuse. With TOTP, the secret is an HMAC
key and the credential an HMAC of the current time, which
prevents credential reuse in the future. With passwords, the
credential is simply the password, which has the disadvantage
that it can be reused once a malicious client obtains it.

Larch splits the authentication secret between the client
and log service so that both parties must participate in
authentication. We introduce split-secret authentication
protocols for FIDO2, TOTP, and password-based login. At
the end of each protocol, the log service holds an encrypted
authentication log record and the client holds a credential.
Larch ensures that if the client obtains a valid credential, the
log service also obtains a well-formed log record, even if the
client is compromised and behaves maliciously. At the same
time, the log service learns no information about the relying
parties that the user authenticates to.

We design larch to achieve the following (informal) security
and privacy goals:

• Log enforcement against a malicious client: An attacker
that compromises a client cannot authenticate to an
account that the client created before compromise without
the log obtaining a well-formed, encrypted log record.

• Client privacy and security against a malicious log: A
malicious log service cannot authenticate to the user’s
accounts or learn any information about the relying
parties to which the user has authenticated, including
whether two authentications are for the same account
or different accounts.

• Client privacy against a malicious relying party:
Colluding malicious relying parties cannot link a user
across accounts.

Larch’s FIDO2 protocol uses zero-knowledge proofs [43]
to convince the log that an encrypted authentication log record
generated by the client is well-formed relative to the digest
of a FIDO2 payload. If it is, the client and log service sign
the digest with a new, lightweight two-party ECDSA signing
protocol tailored to our setting. For TOTP, larch executes an
authentication circuit using an existing garbled-circuit-based
multiparty computation protocol [87, 84]. For password-based
login, the client privately swaps a ciphertext encrypting the
relying party’s identity for the log’s share of the corresponding
password using a discrete-log-based protocol [46].

In the event that a user’s device is compromised, a user
can revoke access to all accounts—even accounts she may
have forgotten about—by interacting only with the log
service. At the same time, involving the log service in every
authentication could pose a reliability risk (just as relying
on OpenID does). We show how to split trust across multiple

log service providers to strengthen availability guarantees,
making larch strictly better than OpenID for all three of
security, privacy, and availability.

We expect users to perform many password-based authen-
tications, some FIDO2 authentications, and a comparatively
small number of TOTP authentications. Given a client with
four cores and a log server with eight cores, an authentication
with larch takes 150ms for FIDO2, 91ms for TOTP, and 74ms
for passwords (excluding preprocessing, which takes 1.23s for
TOTP). One authentication requires 1.73MiB of communica-
tion forFIDO2,65.2MiB forTOTP,and 3.25KiB forpasswords.
TOTP communication costs are comparatively high because
we use garbled circuits [84]; however, all but 202KiB of the
communication can be moved into a preprocessing step.

Larch shows that it is possible to achieve privacy-preserving
authentication logging that is backwards compatible with
existing standards. Moreover, larch provides new paths for
FIDO2 adoption, as larch users can authenticate using FIDO2
without dedicated hardware tokens, which could motivate
more relying parties to deploy FIDO2. Users who do own
hardware tokens can use them to authenticate to the larch
log service, providing strong security guarantees for relying
parties that do not yet support FIDO2 (albeit without the anti-
phishing protection). We also suggest small changes to the
FIDO standard thatwould substantially reduce the overheads of
larchwhile providing the same security andprivacy properties.

2 Design overview

We now give an overview of larch.

2.1 Entities
A larch deployment involves the following entities:

Users. We envision a deployment with millions of users,
each of which has hundreds of accounts at different online
services—shopping websites, financial institutions, news sites,
and so on. Each user has an account at a larch log service,
secured by a strong, unique password and optionally (but
ideally) strong second-factor authentication such as a FIDO2
hardware security key. (In Section 6, we describe how a user
can create accounts with multiple log services in order to
protect against faulty logs.) A user also has a set of devices (e.g.
laptop, phone, tablet) running larch client software and storing
larch secrets, including cryptographic keys and passwords.

Relying parties. A relying party is any website that a user
authenticates to (e.g., a shopping website or bank). Larch is
compatible with any relying party that supports authentication
via FIDO2 (U2F) [36, 80], time-based one-time passwords
(TOTP) [68], or standard passwords. The strength of larch’s
security guarantees depends on the strength of the underlying
authentication method.

82 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Log service. Whenever the user authenticates to a relying party,
the client must communicate with the log service. We envision
a major service provider (e.g. Google or Apple) deploying
this service on behalf of their customers. The log service:

• keeps an encrypted record of the user’s authentication
history, but

• learns no information about which relying party the user
authenticates to.

At any time, a client can fetch this authentication record from
the log service and decrypt it to see the user’s authentication
history. That is, if an attacker compromises one of Alice’s
devices and authenticates to github.com as Alice, the attacker
will leave an indelible trace of this authentication in the larch
log. At the same time, to protect Alice’s privacy, the log ser-
vice learns no information about which relying parties Alice
has authenticated to. A production log service should consist
of multiple, georeplicated servers to ensure high availability.

2.2 Protocol flow

Background. We use two-out-of-two additive secret shar-
ing [75]: to secret-share a value 𝑥 ∈ {0, . . . , 𝑝−1}, choose ran-
dom values 𝑥1, 𝑥2 ∈ {0, . . . , 𝑝−1} such that 𝑥1 +𝑥2 = 𝑥 mod 𝑝.
Neither 𝑥1 nor 𝑥2 individually reveals any information about 𝑥.
We also use a cryptographic commitment scheme: to commit
to a value 𝑥 ∈ {0,1}∗, choose a random value 𝑟 ∈ {0,1}256

(the commitment opening) and output the hash of (𝑥∥𝑟)
using a cryptographic hash function such as SHA-256. For
computationally bounded parties, the commitment reveals
no information about 𝑥, but makes it impractical to convince
another party that the commitment opens to a value 𝑥′ ≠ 𝑥.

The client’s interaction with the log service consists of four
operations.
Step 1: Enrollment with a log service. To use larch, a user
must first enroll with a larch log service by creating an account.
In addition to configuring traditional account authentication
(i.e., setting a password and optionally registering FIDO2
keys), the user’s client generates a secret archive key for each
authentication method supported. For FIDO2 and TOTP, the
archive key is a symmetric encryption key, and the client sends
the log service a commitment to this key. For passwords, the
archive key is an ElGamal private encryption key, so the client
sends the log service the corresponding public key. The client
subsequently encrypts log records using these archive keys,
while the log service verifies these log records are well-formed
using the corresponding commitment or public key.
Step 2: Registration with relying parties. After the user has
enrolled with a log service, she can create accounts at relying
parties (e.g., github.com) using larch-protected credentials.
We call this process registration. Registration works
differently depending on which authentication mechanism the
relying party uses: FIDO2 public-key authentication, TOTP

codes, or standard passwords. All generally follow the same
pattern where at the conclusion of the registration protocol:

• the log service holds an encryption of the relying party’s
identity under a key that only the client knows,

• the log service and client jointly hold the account’s authen-
tication secret using two-out-of-two secret sharing [75],

• the relying party is unaware of larch and holds the usual in-
formation necessary to verify account access: an ECDSA
public key (for FIDO2), an HMAC secret key (for TOTP),
or a password hash (for password-based login), and

• the log service learns nothing about the identity of the
relying party.

By splitting the user’s authentication secret between the client
and the log, we ensure that the log service participates in
all of the user’s authentication attempts, which allows the
log service to guarantee that every authentication attempt is
correctly logged.

The underlying authentication mechanisms (FIDO2, TOTP,
and password-based login) only provide security for a given
relying party if the user’s device was uncompromised at the
time of registration; larch provides the same guarantees.
Step 3: Authentication to a relying party. Registering with
a relying party lets the user later authenticate to that relying
party (Figure 1). At the conclusion of an authentication
operation, larch must ensure that:

• authentication succeeds at the relying party,
• the log service holds a record of the authentication attempt

that includes the name of the relying party, encrypted
under the archive key known only to the client, and

• the log service learns no information about the identity
of the relying party involved.

The technical challenge here is guaranteeing that a compro-
mised client cannot successfully authenticate to a relying
party without creating a valid log record. In particular, the
log service must verify that the log record contains a valid
encryption of the relying party’s name under the archive key
without learning anything about the relying party’s identity.

To achieve these goals, we design split-secret authentication
protocols that allow the client and log to use their split authen-
tication secrets to jointly produce an authentication credential.
Our split-secret authentication protocols are essentially special-
purpose two-party computation protocols [88]. In a two-party
computation, each party holds a secret input, and the protocol
allows the parties to jointly compute a function on their inputs
while keeping each party’s input secret from the other. Our
split-secret authentication protocols follow a general pattern,
although the specifics depend on the underlying authentication
mechanism in use (FIDO2, TOTP, or password-based login):

• The client algorithm takes as input the identity of the
relying party, the client’s share of the corresponding
authentication secret, the archive key, and the opening
for the log service’s commitment to the archive key.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 83

y!"!#$%, …, y&$$&'(,)*

, amazonx, k, r

1.

2.

)+,-
3.

).

)+,-4.

amazon.comClient

Log server

If :

amazon

)* = /0**1.(k, r)
)+,- ← 345,/+,-(x + y!"!#$%)
). ← 67)(k,)

Two-party computation

Figure 1: The client and log service run split-secret authentication
where the client obtains the credential for amazon.com and the log
service obtains an encryption of amazon.com under the client’s key.
The client’s inputs are its share 𝑥 of the authentication secret, the
archive key 𝑘 , a random nonce 𝑟, and the string amazon.com. The
log’s inputs are its shares 𝑦amazon, . . . , 𝑦google of all the client’s
authentication secrets and the commitment cm to the archive key
generated at enrollment. The MakeCred function takes extra inputs
for FIDO2 and TOTP.

• The log algorithm takes as input its shares of authenti-
cation secrets and the client’s commitment to the archive
key (which it received at enrollment).

• The client algorithm outputs an authentication credential:
a signature (for FIDO2), an HMAC code (for TOTP),
or a password (for password-based login).

• The log algorithm outputs an encryption of the relying
party identifier under the archive key.

In this way, the client and log service jointly generate
authentication credentials while guaranteeing that every
successful authentication is correctly logged. The client
and log do not learn any information beyond the outputs of
the computation. We use this general pattern to construct
split-secret authentication protocols for FIDO2 (Section 3),
TOTP (Section 4), and password-based login (Section 5).
Step 4: Auditing with the log. Finally, at any time, the
user can ask the log service for its collection of log entries
encrypted under the archive key. A user could do this when
she suspects that an attacker has compromised her credentials.
The user’s client could also perform this auditing in the
background and notify the user if it ever detects anomalous
behavior. The client uses the encryption key it generated
during enrollment to decrypt log entries.

2.3 System goals
We now describe the security goals of larch (Figure 2).
Goal 1: Log enforcement against a malicious client. Say
that an honest client enrolls with an honest log service and
then registers with a set of relying parties. Later on, an attacker
compromises the client’s secrets (e.g., by compromising one of
the user’s devices and causing it to behave maliciously). Every

successful authentication attempt that the attacker makes using
credentials managed by larch will appear in the client’s authen-
tication log stored at the larch log service. Furthermore, the
honest client can decrypt these log entries using its secret key.
Goal 2: Client privacy and security against a malicious
log. Even if the log service deviates arbitrarily from the
prescribed protocol, it learns no information about (a) the
client’s authentication secrets (meaning that the log service
cannot authenticate on behalf of the client) or (b) which
relying parties a client has interacted with.
Goal 3: Client privacy against a malicious relying party. A
set of colluding malicious relying parties learn no information
about which registered accounts belong to the same client.
That is, relying parties cannot link a client across multiple
relying parties using information they learn during registration
or authentication.

To be usable in practice, larch should additionally achieve
the following functionality goal:
Goal 4: No changes to the relying party. Relying parties that
support FIDO2 (U2F), TOTP, or password authentication do
not need to be aware of larch. Clients can unilaterally register
authentication credentials such that all future authentications
are logged in larch.

2.4 Non-goals and extensions

Availability against a compromised log service. Larch does not
provide availability if the log service refuses to provide service.
We discuss defenses against availability attacks in Section 6.
Privacy against colluding log and relying party. If the log ser-
vice colludes with a relying party, they can always use timing in-
formation to map log entries to authentication requests. There-
fore, larch makes no effort to obscure the relationship between
private messages seen by the two parties and only guarantees
privacy when the relying party and log service do not collude.
Limitations of underlying authentication schemes. Larch
provides security guarantees that match the security of the
underlying authentication schemes. FIDO2 provides the
strongest security, followed by TOTP, and then followed
by passwords. For TOTP and password-based login, larch
provides no protection against credential breaches: if an
attacker steals users’ authentication secrets (MAC keys or
passwords) from the relying party, the attacker can use those
secrets to authenticate without those authentications appearing
in the log. FIDO2 defends against credential breaches because
the relying party only ever sees the client’s public key.

Larch does protect against device compromise for all three
authentication mechanisms: even if an attacker gains control
of a user’s device, generating any of the user’s larch-protected
credentials requires communicating with the log service and
results in an archived log record. If the user discovers the
device break-in later on, she can recover from the log a list

84 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Log enforcement against malicious client
Goal 1

Privacy against malicious log
Goal 2

?

Security against malicious log

?

Privacy against malicious RP
Goal 3

Client LogClient Logamazon Client Log
RPs

Logamazon

amazon

amazon

Figure 2: Larch security goals.

of authentications and take steps to remediate the effects of
compromise (contacting the affected relying parties, etc.).

An attacker who compromises an account can often disable
two-factor authentication or add its own credentials to a
compromised account. Therefore, only an attacker’s first
successful access to a given relying party is guaranteed to
be archived in larch. That said, many relying parties send
out notifications, require step-up authentication, or revoke
access to logged in clients on credential updates, all of which
could complicate an attack or alert legitimate users to a
problem. Hence, it is valuable to ensure that all accesses
with the original account credentials are logged. Larch can
make this guarantee for FIDO2, where every authentication
requires a unique two-party signature. It does not provide this
guarantee with passwords, as the attacker learns the password
as part of the authentication process: only the attacker’s first
authentication to a given relying party will be logged. With
TOTP, each generated code produces a larch log record. Some
relying parties implement a TOTP replay cache, in which case
one code allows one login. Other relying parties allow a single
TOTP code to be used for arbitrarily many authentications
in a short time period (generally about a minute).

Fortunately, when recovering from compromise, a user
is most interested in learning whether an attacker has
accessed an account zero times or more than zero times. For
larch-generated credentials, users will always be able to learn
this information from the larch log. However, if users import
passwords that are not unique into larch, this guarantee does
not hold. By default, the larch client software generates a
unique random password for every relying party, but it also
allows user to import existing legacy passwords, which might
not be unique. In the event of password reuse, the attacker
can generate a single log record to obtain the password and
then use it to authenticate to all affected relying parties.

3 Logging for FIDO2

3.1 Background

FIDO2 protocol. The FIDO2 protocol [36, 80] allows a client
to authenticate using cryptographic keys stored on a device
(e.g., a Yubikey hardware token or a Google passkey). To regis-
ter with a relying party (e.g., github.com), the client generates
an ECDSA keypair, stores the secret key, and sends the public

key to the relying party. When the client subsequently wants
to authenticate to relying party github.com, Github’s server
sends the client a random challenge. The client then signs the
hash of the string github.com and the Github-chosen chal-
lenge using the secret key the client generated for github.com
at registration. If the signature is valid, the Github server au-
thorizes the client. Because the message signed by the client is
bound to the name github.com, FIDO2 provides a strong de-
fense against phishing attacks. The FIDO2 protocol supports
passwordless, second-factor, and multi-factor authentication.

Zero-knowledge arguments. Informally, zero-knowledge ar-
guments allow a prover to convince a verifier that a statement is
true without revealing why the statement is true [43]. More pre-
cisely, we consider non-interactive zero-knowledge argument
systems [13, 35] in the random-oracle model [10]. Both the
prover and verifier hold the description of a computation𝐶 and
a public input 𝑥. The prover’s goal is to produce a proof 𝜋 that
convinces the verifier that there exists a witness 𝑤 that causes
𝐶 (𝑥,𝑤) = 1, without revealing the witness𝑤 to the verifier. We
require the standard notions of completeness, soundness, and
zero knowledge [13, 43]. Throughout the paper, we will refer
to this type of argument system as a “zero-knowledge proof.”

We use the ZKBoo protocol [54, 42, 20] for proving
statements about computations expressed as Boolean
circuits. Our system could also be instantiated with succinct
non-interactive arguments of knowledge, which would
decrease proof size and verification time, but at the cost
of increasing proving time and requiring large parameters
generated via a separate setup algorithm [12, 39, 45, 71].

Threshold signatures. A two-party threshold signature
scheme [28, 29] is a set of protocols that allow two parties to
jointly generate a single public key along with two shares of
the corresponding secret key and then jointly sign messages
using their secret key shares such that the signature verifies un-
der the joint public key. Informally, no malicious party should
be able to subvert the protocols to extract another party’s
share of the secret key or forge a signature on a message other
than the honest party’s message. We would ideally instantiate
our system using BLS multisignatures [14]. Unfortunately,
the FIDO2 standard limits the choice of signing algorithms
to ECDSA and RSASSA [67]. For backwards-compatibility,
we present a construction for two-party ECDSA signing with
preprocessing tailored to our setting in Section 3.3.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 85

3.2 Split-secret authentication
We now describe our split-secret authentication protocol for
FIDO2 where the authentication secret is split between the
larch client software and the log service. The key challenge
is achieving log enforcement and log privacy simultaneously:
every successful authentication should result in a valid log
entry encrypting the identity of the relying party, but the log
should not learn the identity of the relying party.

We use threshold signing to ensure that both the client and
log participate in every successful authentication. A natural
way to use threshold signing would be to have the client and
log each generate a new threshold signing keypair at every
registration. Unfortunately, if the log service used a different
key share for each relying party, it would know which authenti-
cation requests correspond to the same relying party, violating
Goal 2 (privacy against a malicious log). Instead, we have the
log use the same signing-key share for all relying parties. The
client still uses a different signing-key share per party, ensuring
the public keys are unlinkable across relying parties. To
authenticate to a relying party with identifier id and challenge
chal, the client computes a digest dgst = Hash(id,chal) that
hides id. The client and log then jointly sign dgst.

We also need to ensure that the log service obtains a
correct record of every authentication. In particular, the log
should only participate in threshold signing if it obtains a
valid encryption ct of the relying-party identifier id [77].

To be valid, a ciphertext ct must (1) decrypt to id under
the archive key 𝑘 established for that client, and (2) be
correctly related to the digest dgst that the log will sign (i.e.,
Dec(𝑘,ct) = id and dgst = Hash(id,chal)). To allow the log
service to check that the client is using the right archive
key without learning the key, we use a commitment scheme.
During enrollment, the client generates a commitment cm
to the archive key 𝑘 using random nonce 𝑟 and sends cm
to the log service. During authentication, the client uses a
zero-knowledge proof to prove to the log that it knows a key 𝑘 ,
randomness 𝑟, relying-party identifier id, and authentication
challenge chal such that ciphertext ct, digest dgst, and com-
mitment cm from enrollment meet the following conditions:
(a) cm = Commit(𝑘,𝑟),
(b) id = Dec(𝑘,ct), and
(c) dgst = Hash(id,chal).
The public inputs are the ciphertext ct, digest dgst, and
commitment cm (known to the client and log); the witness
is the archive key 𝑘 (known only to the client), commitment
opening 𝑟 , relying-party identifier id, and challenge chal.
Final protocol. We now outline our final protocol.
Enrollment. During enrollment, the client samples a symmet-
ric encryption key 𝑘 as the archive key and commits to it with
some random nonce 𝑟. The client sends the commitment cm
to the log, and the log generates a signing-key share for the
user. The log sends the client the public key corresponding

to its signing-key share to allow the client to derive future
keypairs for relying parties.
Registration. At registration, the client generates a new
signing-key share for that relying party. The client then
aggregates the log’s public key with its new signing-key share
and sends the resulting public key to the relying party. No
interaction with the log service is required.
Authentication. To authenticate to id with challenge chal, the
client computes dgst← Hash(id,chal) and ct← Enc(𝑘, id).
The client then generates a zero-knowledge proof 𝜋 that it
knows an archive key 𝑘 , commitment nonce 𝑟, relying-party
identifier id, and authentication challenge chal such that
dgst and ct are correctly related relative to the commitment
cm that the client generated at enrollment. The client sends
dgst, ct, and 𝜋 to the log service. The log service checks the
proof and, if it verifies, runs its part of the threshold signing
protocol. The log service stores ct and returns its signature
share to the client. The log service also stores the current
time and client IP address with ct, allowing the user to obtain
additional metadata by auditing. Finally, the client completes
the threshold signature and sends it to the relying party.
Auditing. To audit the log, the client requests the list of
ciphertexts and metadata from the log service and decrypts
all of the relying-party identifiers.

3.3 Two-party ECDSA with preprocessing
Section 3.2 shows how to implement larch for any two-of-two
threshold signing scheme that cryptographically hashes input
messages. However, FIDO2 compatibility forces us to use
ECDSA, which is more cumbersome than BLS to threshold.
We present a concretely efficient protocol for ECDSA signing
between the client and log.

There is a large body of prior work on multi-party ECDSA
signing [31, 61, 22, 4, 23, 18, 48, 41, 40, 19]. However,
existing protocols are orders of magnitude more costly than
the one we present here [61, 41, 40, 18, 19]. The efficiency
gain for us comes from the fact that we may assume that the
client is honest at enrollment time and only later compromised.
In contrast, standard schemes for two-party ECDSA signing
must protect against the compromise of either party at any
time. Prior protocols provide this stronger security property at
a computational and communication cost. In our setting, we
need only ensure that an honest client can run an enrollment
procedure with the log service such that if the client is later
compromised, the attacker cannot subvert the signing protocol.

We leverage the client to split signing into two phases:
1. During an offline phase, which takes place during

enrollment, the client performs some preprocessing to
produce a “presignature.” Security only holds if the
client is honest during the offline phase.

2. During an online phase, which takes place during authen-
tication, the client and log service use the presignature to

86 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

perform a lightweight, message-dependent computation
to produce an ECDSA signature. Security holds if either
the client or log service is compromised during the
online phase.

Prior work also splits two-party signing into an offline and
online phase. However, prior work performs this partitioning
to reduce the online time at the expense of a more costly offline
phase [22, 85, 23, 18]. (The offline phase in these schemes is
expensive since the protocols do not assume that both parties
are honest during the offline phase.) We split the signing
scheme into an offline and online phase to take advantage of the
fact that we may assume that the client is honest in the offline
phase and so can reduce the total computation time this way.

An additional requirement in our setting is that the log
should not learn the public key that the signature is generated
under. Because the public key is specific to a relying party,
hiding the public key is necessary for ensuring that the log can-
not distinguish between relying parties. The signing algorithm
can take as input a relying-party-specific key share from the
client and a relying-party-independent key share from the log.
Background: ECDSA. For a group G of prime order 𝑞 with
generator 𝑔, fixed in the ECDSA standard, an ECDSA secret
key is of the form sk ∈Z𝑞 ,whereZ𝑞 denotes the ring of integers
modulo 𝑞. The corresponding ECDSA public key is pk = 𝑔sk ∈
G. ECDSA uses a hash function Hash : {0,1}∗→ Z𝑞 and a
“conversion” function 𝑓 : G→ Z𝑞 . To generate an ECDSA
signature on a message 𝑚 ∈ {0,1}∗ with secret key sk ∈ Z𝑞 ,
the signer samples a signing nonce 𝑟←R Z𝑞 and computes

𝑟−1 · (Hash(𝑚) + 𝑓 (𝑔𝑟) · sk) ∈ Z𝑞 .

Our construction. We now describe our construction for
a two-party ECDSA signing protocol with presignatures.
(See the full version [26] for technical details.) To generate
the log keypair, the log samples 𝑥←R Z𝑞 , sets its secret key
to 𝑥 ∈ Z𝑞 , and sets its public key to 𝑋 = 𝑔𝑥 ∈ G. Then to
generate a keypair from the log public key, the client samples
𝑦 ←R Z𝑞 and sets the relying-party-specific public key to
pk = 𝑋 · 𝑔𝑦 ∈ G. For each public key of the form 𝑔𝑥+𝑦 ∈ G,
the log has one share 𝑥 ∈ Z𝑞 of the secret key that is the same
for all public keys and the client has the other share 𝑦 ∈ Z𝑞

of the secret key that is different for each public key.
We split the signature-generation process into two parts:

1. Offline phase: a message-independent, key-independent
“presignature” algorithm that the client runs, and

2. Online phase: a message-dependent, key-dependent
signing protocol that the log and client run jointly.

To generate the presignature in the offline phase, the client
samples a signing nonce 𝑟 ←R Z𝑞 , computes 𝑅 ← 𝑔𝑟 ∈ G,
and splits 𝑟−1 into additive secret shares: 𝑟−1 = 𝑟0 + 𝑟1 ∈ Z𝑞 .
The log’s portion of the presignature is (𝑓 (𝑅), 𝑟0) ∈ Z2

𝑞 , and
the client’s portion is (𝑓 (𝑅), 𝑟1) ∈ Z2

𝑞 . Then, to produce a
signature on a message in the online phase, the client and

log simply perform a single secure multiplication to compute

𝑟−1 · (Hash(𝑚) + 𝑓 (𝑅) · sk) ∈ Z𝑞

where 𝑟−1 ∈ Z𝑞 (signing nonce) and sk ∈ Z𝑞 (signing key)
are secret-shared between the client and log.

To perform this multiplication over secret-shared values, we
use Beaver triples [9]. A Beaver triple is a set of one-time-use
shares of values that the log and client can use to efficiently
perform a two-party multiplication on secret-shared values.
Traditionally, generating Beaver triples is one of the expensive
portions of multiparty computation protocols (e.g., in prior
work on threshold ECDSA [22]). In our setting, the client
at enrollment time can generate a Beaver triple as part of the
presignature. Note that the client and log can use each signing
nonce and Beaver triple exactly once. That is, the client and
log must use a fresh presignature to generate each signature.
Malicious security. By deviating from the protocol, neither
the client nor the log should be able to learn secret information
(i.e., the other party’s share of the secret key or signing
nonce) or produce a signature for any message apart from the
one that the protocol fixes. We describe how to accomplish
this using traditional tools for malicious security (e.g.
information-theoretic MACs [24]) in the full version [26].
Formalizing and proving security. We define and prove
security in the full version [26].
Implications for system design. Our preprocessing approach
increases the client’s work at enrollment: the client generates
some number of presignatures (e.g., 10K) and sends the
log’s presignature shares to the log. To reduce storage burden
on the log, the client can store encryptions of the log’s
presignature shares.

When the client is close to running out of presignatures,
it can authenticate with the log, generate more presignatures,
and send the log’s presignature shares to the log service.
If the log service does not receive an objection after some
period of time, it will start using the new presignatures. An
honest client periodically checks the log to see whether any
unexpected presignatures (created by an attacker) appear in
its log. If the client learns that a new batch of presignatures
was generated that the client did not authorize, the client
authenticates to the log service and objects.

If the client runs out of presignatures and the log service
rejects the client’s presignatures, the client and the log can
temporarily use a more expensive signing protocol that
does not require presignatures [41, 61, 31, 85]. The client
could run out of presignatures and be forced to use the slow
multisignature protocol in the following cases:
1. The attacker compromised the user’s credentials with

the log service, allowing the attacker to object to the new
presignatures. In this case, the attacker could change the
user’s credentials and permanently lock the user out of
her account.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 87

2. The honest client was close to running out of presigna-
tures, generated new presignatures, and then ran out of
presignatures while waiting for a possible objection. This
scenario only occurs when the honest client makes an
unexpectedly large number of authentications in a short
period of time. The client only needs to pay the cost of the
slow multisignature protocol for a short period of time.

An attacker that has compromised the log service can also
deny service, as we discussed in Section 2.4.

4 Logging for time-based one-time passwords

We now show how larch can support time-based one-time
passwords (TOTP).

4.1 Background: TOTP
TOTP is a popular form of second-factor authentication
that authenticator apps (Authy, Google Authenticator, and
others [68]) implement. When a client registers for TOTP
with a relying party, the relying party sends the client a secret
cryptographic key. Then, to authenticate, the client and the
relying party both compute a MAC on the current time using
the secret key from registration. The client sends the resulting
MAC tag to the server. If the client’s submitted tag matches
the one that the server computes, the relying party authorizes
the client. TOTP uses a hash-based MAC (HMAC).

4.2 Split-secret authentication for TOTP
At a high level, in our split-secret authentication protocol
for TOTP, both the client and log service have as private
input additive secret shares of the TOTP secret key. At the
conclusion of the split-secret authentication, the client holds
a TOTP code and the log service holds a ciphertext. We now
give the details of our protocol.
Enrollment. At enrollment, just as with FIDO2, the client
generates and stores a long-term symmetric-encryption
archive key 𝑘 and random nonce 𝑟. Then, the client sends
the commitment cm = Commit(𝑘,𝑟) to the log service.
Registration. To register a client, a relying party generates
and sends the client a secret MAC key kid for TOTP. The
client samples a random identifier id for the relying party
and then splits the TOTP secret key kid into additive secret
shares klogid and kclientid. The client sends (id,klogid) to the
log service and locally stores (id,kclientid) alongside a name
identifying the relying party (e.g., user@amazon.com).
Authentication. In order to authenticate to the relying party id
at time 𝑡, the client needs to compute HMAC(kid, 𝑡) with the
help of the log service. Let 𝑛 be the number of relying parties
with which the client has registered. To authenticate, the client
and log service run a secure two-party computation where:

• The client’s input is its long-term symmetric archive
key 𝑘 and commitment opening 𝑟 from enrollment, the
relying-party identifier id, and the client’s share of the
TOTP key kclientid.

• The log service’s input is the commitment cm from enroll-
ment, the list of relying-party identifiers that the client has
registered with (id1, . . . , id𝑛), and the log service’s TOTP
key shares (klogid1

, . . . ,klogid𝑛)—one per relying party.
• The client outputs the TOTP code HMAC(kid, 𝑡).
• The log outputs an encrypted log record: an encryption

of the relying-party identifier id under the archive key 𝑘 .
We execute this two-party computation using an off-the-shelf
garbled-circuit-based multiparty computation protocol.
Garbled circuits allow two parties to jointly execute any
Boolean circuit on private inputs, where neither party learns
information about the other’s input beyond what they can infer
from the circuit’s output [87]. We use the protocol from Wang
et al. [84], which provides malicious security, meaning that the
protocol remains secure even if one corrupted party deviates
arbitrarily from the protocol. As long as either the client or the
log service is honest, the log service does not learn any infor-
mation about the client’s authentication secrets, and the client
learn no information about the TOTP secret, apart from the
single TOTP code that the protocol outputs. Because we use
an off-the-shelf garbled-circuit protocol, the communication
overhead is much higher than in the special-purpose protocols
we design for FIDO2 and passwords (Section 8). TOTP is
challenging to design a special-purpose protocol for because
the authentication credential must be generated via the SHA
hash function which, unlike the authentication credentials
for FIDO2 and passwords, does not have structure we can
exploit. Clients can ask the log service to delete registrations
for unused accounts to speed up the two-party computation.
Auditing. To audit the log, the client simply requests the list
of ciphertexts from the log service. The client decrypts each
ciphertext with its archive key 𝑘 and then, using its mapping
of id values to relying party names, outputs the resulting list
of relying party names.

5 Logging for passwords

We now describe how larch can support passwords.

5.1 Protocol overview
We construct a split-secret authentication protocol that takes
place between the client and the log service. In particular,
we show how the client can compute the password to
authenticate to a relying party in such a way that (a) the log
service does not learn the relying party’s identity and (b) the
client’s authentication attempt is logged. At the start of the
authentication protocol run:

88 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• the client holds a secret key, the log service’s public
key, and the identity id∗ of the relying party it wants to
authenticate to, and

• the log service holds its own secret key, the client’s public
key, and a list of relying-party identities (id1, . . . , id𝑛) at
which the client has registered.

At the end of the authentication protocol run:
• the client holds a password derived as a pseudorandom

function of the client’s secret, the log’s secret, and the
relying party identity id∗, and

• the log service holds a ciphertext encrypting the relying
party’s identity id∗ under the client’s public key.

Limitations inherent to passwords. As we discussed in Sec-
tion 2.4, larch for passwords does not protect against credential
breaches, but does defend against device compromise.

5.2 Split-secret authentication for passwords
The larch scheme for password-based authentication uses a
cyclic group G of prime order 𝑞 with a fixed generator 𝑔 ∈ G.
Our implementation uses the NIST P-256 elliptic-curve group.

When using password-based authentication in larch, the
client and log service after registration each hold a secret
share of the password for each relying party. In particular,
the password for a relying party with identity id ∈ {0,1}∗ is
the string pwid = 𝑘 id ·Hash(id)𝑘 ∈ G, where:

• 𝑘 id ∈ Z𝑞 is a per-relying-party secret share held by the
client,

• Hash : {0,1}∗→G is a hash function, and
• 𝑘 ∈ Z𝑞 is a per-client secret key held by the log service.

Thus, computing pwid requires both the client’s per-site
key 𝑘 id and the log’s secret key 𝑘 .

The technical challenge is to construct a protocol that
allows the client to compute the password pwid while
(a) hiding id from the log service and (b) ensuring that the
log service completes the interaction holding an encryption
of id under the client’s public key.
Protocol. We describe the protocol steps:
Enrollment. The client samples an ElGamal secret key 𝑥 ∈ Z𝑞

as the archive key and sends the corresponding public key
𝑋 = 𝑔𝑥 ∈ G to the log service. The log service samples a
Diffie-Hellman secret key 𝑘 ∈ Z𝑞 and sends its public key
𝐾 = 𝑔𝑘 ∈ G to the client.
Registration. The client samples a per-relying-party random
identifier id←R {0,1}128, saves id locally alongside the name
of the relying party (e.g., user@amazon.com), and sends id to
the log service. The log service saves the string Hash(id) and
replies withHash(id)𝑘 ∈G. To generate a new strong password
pwid (the recommended use), the client samples and saves a ran-
dom key share 𝑘 id←R G and sets pwid← 𝑘 id ·Hash(id)𝑘 ∈ G.
To import a legacy password pwid (less secure), the client

computes and stores 𝑘 id← pwid ·
(
Hash(id)𝑘)

)−1 ∈ G. The
client then deletes Hash(id)𝑘 and pwid. Note that the log
server can discard id, which it only uses to avoid providing ℎ𝑘
for arbitrary ℎ. When the client samples id and 𝑘 id randomly
in the recommended usage, the password pwid for each relying
party is random and distinct.
Authentication. During authentication, the client must recom-
pute the password pwid. To do so, the client first sends the log
service an encryption of Hash(id) under the public ElGamal
archive key 𝑔𝑥 : the client samples 𝑟←R Z∗𝑞 and computes the
ciphertext (𝑐1, 𝑐2) = (𝑔𝑟 ,Hash(id) ·𝑔𝑥𝑟) ∈G2. In addition, the
client sends a zero-knowledge proof to the log service attest-
ing to the fact that (𝑐1, 𝑐2) is an encryption under the client’s
public key 𝑋 of Hash(id) for id ∈ {id1, id2, . . . , id𝑛}—the set
of relying-party identifiers that the client sent to the log service
during each of its registrations so far. The client executes this
proof using the technique from Groth and Kohlweiss [46]. The
proof size is𝑂 (log𝑛) and the prover and verifier time are both
𝑂 (𝑛). (See the full version [26] for implementation details.)

The log service saves the ciphertext as a log entry, checks
the zero-knowledge proof, and returns the value ℎ = 𝑐𝑘2 =

Hash(id)𝑘 ·𝑔𝑥𝑟𝑘 ∈G to the client. The client can then compute

pwid = 𝑘 id · ℎ ·𝐾−𝑥𝑟 = 𝑘 id ·Hash(id)𝑘 ∈ G.

Crucially, the client deletes pwid after authentication to ensure
that future authentications must again interact with the log
service.
Auditing. To audit the log, the client downloads the ElGamal
ciphertexts and can decrypt each ciphertext to recover a list
of hashed identities: (Hash(id1),Hash(id2), . . .). The client
uses its stored mapping of ids to relying-party identifiers to
recover the plaintext names of the relying parties in the log.

6 Protecting against log misbehavior

The larch log service must participate in each of the user’s
authentication attempts. If the log service goes offline, the
user will not be able to authenticate to any of her larch-enabled
relying parties. In a real-world deployment, the log service
could consist of multiple servers replicated using standard
state-machine replication techniques to tolerate benign
failures [58, 70]. However, users might also worry about
intentional denial-of-service attacks on the part of the log.

To defend against availability attacks, a user can split trust
across multiple logs. At enrollment time, the user can enroll
with 𝑛 logs. Then at registration, the user can set a threshold 𝑡
of logs that must participate in authentication. Thus, the user
can authenticate to her accounts so long as 𝑡 logs are online,
and she can audit activity so long as 𝑛− 𝑡 +1 logs are available.
We need 𝑛− 𝑡 + 1 logs to be available for auditing in order
to guarantee that at least one of the 𝑡 logs that participated
in authentication is online. To ensure that colluding logs
cannot authenticate on behalf of a client, the user’s client

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 89

can run 𝑛+1 logical parties, and 𝑛+ 𝑡 +1 parties can generate
an authentication credential. In the setting with multiple log
services, we need to adapt our two-party protocols to threshold
multi-party protocols. Although we present our techniques
for two parties (the client and a single log), our techniques
generalize to multiple parties in a straightforward way.

For FIDO2 and passwords, the client now sends a
zero-knowledge proof to each of the 𝑛 logs. In the password
case, the client can then retrieve (𝑡, 𝑛) Shamir shares of the
password [75], and in the FIDO2 case, the client can run any ex-
isting multi-party threshold signing protocol that does not take
the public key as input [76, 22]. For TOTP, the client and the 𝑛
logs can execute the same circuit using any malicious-secure
threshold multi-party computation protocol [11].

Note that for relying parties that support FIDO2, users can
optionally register a backup hardware FIDO2 device to allow
them to bypass the log. In this case, the user can authenticate
either via larch or via her backup FIDO2 key. While regis-
tering a backup hardware device protects against availability
attacks, if an attacker obtains this hardware device, they can
authenticate as the user without interacting with the log.

7 Implementation

We implemented larch for FIDO2, TOTP, and passwords with
a single log service. We use C/C++ with gRPC and OpenSSL
with the P256 curve (required by the FIDO2 standard). We
wrote approximately 5,700 lines of C/C++ and 50 lines of
Javascript (excluding tests and benchmarks). Our implementa-
tion is available at https://github.com/edauterman/larch.

For our FIDO2 implementation, we implemented a ZK-
Boo [42] library for arbitrary Boolean circuits. Our ZKBoo
implementation (with optimizations from ZKB++ [20]) uses
emp-toolkit to support arbitrary Boolean circuits in Bristol
Fashion [83]. To support the parallel repetitions required for
soundness error < 2−80, we use SIMD instructions with a
bitwidth of 32 and run 5 threads in parallel. For the proof
circuit, we use AES in counter mode for encryption and SHA-
256 for commitments (SHA-256 is necessary for backwards
compatability with FIDO2). We built a log service and client
that invoke the ZKBoo library, as well as a Chrome browser
extension that interfaces with our client application and is
compatible with existing FIDO2 relying parties. We built our
browser extension on top of an existing extension [56].

Our TOTP implementation uses a maliciously secure
garbled-circuit construction [84] implemented in emp-
toolkit [83]. We generated our circuit using the CBMC-GC
compiler [37] with ChaCha20 for encryption and SHA-256
for commitments.

For our passwords implementation, we implemented Groth
and Kohlweiss’s proof system [46].

Our implementation uses a single log server for the
log service, does not encrypt communication between the
client and the log service, and does not require the client to

authenticate with the log service. A real-world deployment
would use multiple servers for replication, use TLS between
the client and the log service, and authenticate the client
before performing any operations.
Optimizations. We use pseudorandom generators (PRGs)
to compress presignatures: the log stores 6 elements in Z𝑞

and the client stores 1 element. Also, instead of running an
authenticated encryption scheme (e.g. AES-GCM) inside the
circuit for FIDO2 or TOTP, we run an encryption scheme
without authentication (e.g. AES in counter mode) inside the
circuit and then sign the ciphertext (client has the signing key,
log has the verification key). The log can check the integrity
of the ciphertext by verifying the signature, which is must
faster than checking in a zero-knowledge proof or computing
the ciphertext tag jointly in a two-party computation.

8 Evaluation

In this section, we evaluate the cost of larch to end users and
the cost of running a larch log service.
Experiment setup. We run our benchmarks on Amazon AWS
EC2 instances. Unless otherwise specified, we run the log
service on a c5.4xlarge instance with 8 cores (2 hyperthreads
per core) and 32GB of memory and, for latency benchmarks,
the client on a c5.2xlarge instance with 4 cores and 16GB
of memory, comparable to a commodity laptop. We configure
the network connection between the client and log service
to have a 20ms RTT and a bandwidth of 100 Mbps.

8.1 End-user cost
We show larch authentication latency and communication
costs for FIDO2, TOTP, and passwords.

8.1.1 FIDO2

Latency. The client for our FIDO2 scheme can complete
authentication in 303ms with a single CPU core, or 117ms
when using eight cores (Figure 3). Loading a webpage often
takes a few seconds because of network latency, so the client
cost of larch authentication is minor by comparison. The
client’s running time during authentication is independent of
the number of relying parties. The heaviest part of the client’s
computation is proving to the log service that its encrypted
log entry is well formed.

At enrollment, the client must generate many “presigna-
tures,” which it later uses to run our authentication protocol
with the log. Generating 10,000 presignatures for 10,000
future FIDO2 authentications takes 885ms. When the client
runs out of presignatures, it generates new presignatures it
can use after a waiting period (see Section 3.3).
Communication. During enrollment, the client must send the
log 1.8MiB worth of presignatures. Thereafter, each authenti-

90 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/edauterman/larch

cation attempt requires 1.73MiB worth of communication: the
bulk of this consists of the client’s zero-knowledge proof of
correctness, and 352B of it comes from the signature protocol.
By using a different zero-knowledge proof system, we could
reduce communication cost at the expense of increasing client
computation cost.
Comparison to existing two-party ECDSA. For comparison,
a state-of-the-art two-party ECDSA protocol [85] that does not
require presignatures from the client and uses Paillier requires
226ms of computation at signing time (the authors’ measure-
ments exclude network latency, which we estimate would add
80ms) and 6.3KiB of per-signature communication. In con-
trast, our signing protocol only requires 0.5KiB per-signature
communication (including the log presignature and the signing
messages) and takes 61ms time at signing,almost all ofwhich is
due to network latency and can be run in parallel with proving
and verifying as the computational overhead is minimal (1ms).

8.1.2 TOTP

Latency. In Figure 3 (right), we show how TOTP authentica-
tion latency increases with the number of relying parties the
user registered with. Because we implement TOTP authenti-
cation using garbled circuits [84], we can split authentication
into two phases: an “offline”, input-independent phase and
an “online”, input-dependent phase (the log service and client
communicate in both phases). Both phases are performed
once per authentication. However, the offline phase can be
performed in advance of when the user needs to authenticate
to their account, and so it does not affect the latency that the
user experiences. For 20 relying parties, the online time is
91ms and the offline time is 1.23s. For 100 relying parties,
the online time is 120ms and the offline time is 1.39s.
Communication. Communication costs for our TOTP
authentication scheme are large: for 20 relying parties, the
total communication cost is 65MiB, and for 100 relying
parties, the total communication is 93MiB. The online
communication costs are much smaller: for 20 relying parties,
the online communication is 202KiB and for 100 relying
parties, the online communication is 908KiB. We envision
clients running the offline phase in the background while they
have good connectivity. While these communication costs are
much higher than those associated with FIDO2 or passwords,
we expect users to authenticate with TOTP less frequently
because TOTP is only used for second-factor authentication.

8.1.3 Passwords

Latency. In Figure 3 (center), we show how password authenti-
cation latency increases with the number of registered relying
parties. With 16 relying parties, authentication takes 28ms, and
with 512 relying parties, it takes 245ms: the authentication time
grows linearly with the number of relying parties. The proof
system we use requires padding the numberof relying parties to

the nearest power of two, meaning that registering at additional
relying parties does not affect the latency or communication un-
til the number of relying parties reaches the next power of two.
Communication. In Figure 5,we show how communication in-
creases logarithmically with the numberof relying parties. This
behavior is due to the fact that proof size is logarithmic in the
number of relying parties. With 16 relying parties, the commu-
nication is 1.47KiB, and with 512 relying parties, it is 4.14KiB.

8.2 Cost to deploy a larch service
If successful, larch can become much simpler and more
efficient with a little support from future FIDO specifications
(see Section 9). Nonetheless, we show larch is already
practical by analyzing the cost of deploying a larch service
today (Table 6). We expect a larch log service to perform many
password-based authentications, some FIDO2 authentications,
and a comparatively small number of TOTP authentications.
This is because the majority of relying parties only support
passwords, and relying parties typically require second-factor
authentication only from time to time.

Throughout this section, we consider password-based au-
thentication with 128 relying parties (based on the fact that the
average user has roughly 100 passwords [73]) and TOTP-based
authentication with 20 relying parties (based on the fact that
Yubikey’s maximum number of TOTP registrations is 32 [2]).
The authentication overhead of FIDO2 in larch is independent
of the number of relying parties the user has registered with.
Storage. For each of the three protocols, the log service
must store authentication records (timestamp, ciphertext,
and signature). FIDO2 and TOTP have 88B authentication
records, and passwords have 138B records (due to the size
of ElGamal ciphertexts). The FIDO2 protocol additionally
requires the client to generate presignatures for the log, each
of which is 192B. For 10K presignatures, the log service must
store 1.83MiB. In Figure 4 (left), we show how per-client
log storage actually decreases as presignatures are consumed
and replaced by authentication records. To minimize storage
costs, the log service can encrypt its presignatures and store
them at the client. The log service then simply needs to keep
a counter to prevent presignature re-use.
Throughput. In Table 6, we show the number of auths/s a
single log service core can support assuming 128 passwords
and 20 TOTP accounts. We achieve the highest throughput
for passwords (47.62 auths/cores/s), which are the most
common authentication mechanism. For FIDO2, which can
be used as either a first or second authentication factor and
is supported by fewer relying parties than passwords, we
achieve 6.18 auths/core/s. Finally, for TOTP, which is only
used as a second factor, we achieve 0.73 auths/core/s.

Our FIDO2 protocol can be instantiated with any NIZK
proof system to achieve a different tradeoff between authentica-
tion latency and log service throughput. Forexample,we instan-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 91

Verify (Server) Other Prove (Client) Offline Online

1 2 4 8
Client cores

FIDO2

0

100

200

300
A

ut
h

tim
e

(m
s)

0 100 200 300 400 500
Relying parties

Passwords

0
50

100
150
200
250

A
ut

h
tim

e
(m

s)

20 40 60 80 100
Relying parties

TOTP

0.0

0.5

1.0

1.5

A
ut

h
tim

e
(s

)

Figure 3: On the left, larch FIDO2 latency decreases as the number of client cores increases (latency is independent of the number of relying
parties). In the center, larch password latency grows with the number of relying parties, with the majority of the time spent on client proof
generation. On the right, larch TOTP latency grows with the number of relying parties, with the majority of the time spent in an input-independent
“offline” phase as opposed to the input-dependent “online” phase (both phases require network communication).

tiate our system with ZKBoo, but could also use Groth16 [45]
to reduce communication and verifier time (increasing log
throughput). We measure the performance of Groth16 on our
larch FIDO2 circuit on the BN-128 curve using ZoKrates [91]
with libsnark [57] with a single core (we only measure the
overhead of SHA-256, which dominates circuit cost, to provide
a performance lower bound). While the verifier time is much
lower (8ms) and the proof is much smaller (4.26KiB), (1) the
trusted setup requires the client to store 19.86MiB and the log
service to store 9.2MiB per client, and (2) the proving time
is 4.07s, meaning that authentication latency is much higher.

Cost. We now quantify the cost of running a larch log service.
The cost of one core on a c5 instance is $0.0425-$0.085/hour
depending on instance size [1]. Data transfer to AWS
instances is free, and data transfer from AWS instances costs
$0.05-$0.09/GB depending on the amount of data transferred
per month [1]. In Table 6, we show the cost of supporting 10M
authentications for each authentication method with larch.

Supporting 10M authentications requires 450 log core
hours for FIDO2, 3,832 log core hours for TOTP, and 59 log
core hours for passwords. Compute for 10M authentications
costs $19.13-$38.25 for FIDO2, $162.86-$325.72 for
TOTP, and $2.51-$5.02 for passwords. Communication
for 10M authentications costs $0.10-$0.19 for FIDO2,
$17,923-$32,262 for TOTP, and $0.015-$0.027 for passwords.
The high cost for TOTP is due to the large amount of
communication required at authentication: the log service
must send the client 36.8MiB for every authentication. In
both the FIDO2 and password protocols, the vast majority of
the communication overhead is due to the proof sent from the
client to the log service, which incurs no monetary cost. We
show how cost increases with the number of authentications
for each of the the authentication methods in Figure 4 (right).

TOTP is substantially more expensive than FIDO2 or
passwords. However, we expect a relatively small fraction
of authentication requests to be for TOTP.

0 5K 10K
Authentications

FIDO2

0

1

Lo
g

sto
ra

ge
(M

iB
)

Presignatures
Authentication records

1K 10K100K 1M 10M
Authentications

$0.1

$10

$1K

$100K

C
os

t

FIDO2
TOTP
Passwords

Figure 4: On the left,per-client storage overhead at the log decreases as
presignatures are replaced with authentication records (client enrolls
with 10K presignatures). On the right, minimum cost of supporting
more authentications with passwords, (128 relying parties), FIDO2,
and TOTP (20 relying parties). Both axes use a logarithmic scale.

2 8 32 128 512
Relying parties

Passwords

1

2

4

C
om

m
un

ic
at

io
n

(K
iB

)

Figure 5: Communica-
tion for larch with pass-
words increases logarith-
mically with the number
of relying parties (both
axes use a logarithmic
scale).

9 Discussion

Deployment strategy. Because larch supports passwords,
TOTP, and FIDO2, people can use it with the vast majority
of web services. In addition, larch offers users many of the
benefits of FIDO2 without a dedicated hardware security
token, particularly FIDO2’s protection against phishing.
The flexibility for users to choose log services can foster an
ecosystem of new security products, such as log services
that request login confirmation via a mobile phone app, apps
that monitor the log to notify users of anomalous behavior, or
enterprise security products that monitor access to arbitrary

92 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FIDO2 TOTP Password
Online auth time 150 ms 91 ms 74 ms
Total auth time 150 ms 1.32 s 74 ms

Online auth comm. 1.73 MiB 201 KiB 3.25 KiB
Total auth comm. 1.73 MiB 65 MiB 3.25 KiB

Auth record 88 B 88 B 138 B
Log presignature 192 B ∅ ∅
Log auths/core/s 6.18 0.73 47.62

10M auths min cost $19.19 $18,086 $2.48
10M auths max cost $38.37 $32,588 $4.96

Table 6: Costs for larch with FIDO2, TOTP (20 relying parties), and
passwords (128 relying parties). We take the cost of one core on a
c5 instance to be $0.0425-$0.085/hour (depending on instance size)
and data transfer out of AWS to cost $0.05-$0.09/GB (depending
on amount of data transferred) [1]. For comparison, the Argon2
password hash function should take 0.5s using 2 cores.

third-party services that a company could contract with.
FIDO improvements. Larch can benefit from enhancements
we hope to see considered for future versions of the FIDO
specification. One simple improvement would be to support
BLS signatures, which are easier to threshold and so eliminate
larch’s need for presignatures [14].

Future versions of FIDO could also directly support secure
client-side logging by allowing the relying party to compute
the encrypted log record itself. The relying party could then
ensure that the log service receives the correct encrypted log
record by checking for the log record in the signing payload.
Specifically, the signature payload could have the form:

Hash(log-record-ciphertext,Hash(remaining-FIDO-data)) .

The log server can then take the outer hash preimage as input
without needing to verify anything else about the log record.

We want to allow the relying party to generate the encrypted
log record without making it possible to link users across
relying parties. Instead of giving the relying party the user’s
public key directly at registration, which would link a user’s
identity across relying parties, we instead give the relying
party a key-private, re-randomizable encryption of the relying
party’s identifier (we can achieve this using ElGamal encryp-
tion). At authentication, the relying party can re-randomize
the ciphertext to generate the encrypted log record.

We also hope that future FIDO revisions standardize and
promote authentication metadata as part of the challenge and
hypothetical log record field. For users with multiple accounts
at one relying party, it would be useful to include account
names as well as relying party names in signed payloads. It
would furthermore improve security to allow distinct types
of authentication log records for different security-sensitive
operations such as authorizing payments and changing or

removing 2FA on an account. An app monitoring a user’s
log can then immediately notify the user of such operations.
Multiple devices. Clients need to authenticate to their
accounts across multiple devices, which requires synchro-
nizing a small amount of dynamic, secret state across
devices. Cross-device state could be stored encrypted at
the log, or could be disseminated through existing profile
synchronization mechanisms in browsers. There is a danger of
the synchronization mechanism maliciously convincing two
devices to use the same presignature. Therefore, presignatures
should be partitioned between devices in advance, and devices
should employ techniques such as fork consistency [65] to
detect and deter any rollback attacks. Existing tools can help
a user recover if she loses all of her devices [25, 55, 81, 62].
Enforcing client-specific policies. We can extend larch
in a straightforward way to allow the log to enforce more
complex policies on authentications. The client could submit
a policy at enrollment time, and the log service could then
enforce this policy for subsequent authentications. If the
policy decision is based on public information, the log service
can apply the policy directly (e.g., rate-limiting, sending
push notifications to a client’s mobile device). Other policies
could be based on private information. For example, if we
used larch for cryptocurrency wallets, the log could enforce
a policy such as “deny transactions sending more than $10K
to addresses that are not on the allowlist.” For policies
based on private information, the client could send the log
service a commitment to the policy at enrollment, and the log
service could then enforce the policy by running a two-party
computation or checking a zero-knowledge proof.
Revocation and migration. If a client loses herdevice orwants
to migrate her authentication secrets from an old device to a
new device, she needs a way to easily and remotely invalidate
the secrets on the old device. Larch allows her to do this easily.
To migrate credentials to a new device, the client and log
simply re-share the authentication secrets. To invalidate the
secrets on the old device, the client asks the log to delete the
old secret shares (client must authenticate with the log first).
Account recovery. In the event that a client loses all of her
devices, she needs some way to recover her larch account.
To ensure that she can later recover her account, the client
can encrypt her larch client state under a key derived from
her password and store the ciphertext with the larch service.
The security of the backup is only as good as the security of
the client’s password. Alternatively, the client could choose
a random key to encrypt her client state and then back up
this key using her password and secure hardware in order to
defend against password-guessing attacks [25].
Limitations. If an attacker compromises the client’s account
with the log, the attacker can access the client’s entire authen-
tication history. To mitigate this damage, the log could delete
old authentication records (e.g., records older than one week)
or re-encrypt them under a key that the user keeps offline.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 93

10 Related work

Privacy-preserving single sign-on. Like larch, existing
privacy-preserving single sign-on systems hide the relying
party from the identity provider. Unlike larch, these systems
do not protect users’ accounts from a malicious attacker
that compromises the identity provider, and they do not
privately log the identity of the relying party. BrowserID [33]
(implemented in Mozilla Persona and Firefox Accounts) and
SPRESSO [34] are single sign-on services that ensure that
the identity provider does not learn the identity of the relying
parties. However, neither prevents colluding relying parties
from linking a user’s accounts across relying parties. EL
PASSO [90], UnlimitID [53], UPRESSO [50], PseudoID [30]
and Hammann et al. [51] show how to build single sign-on
services that protect clients from curious identity providers
while ensuring that relying parties cannot link users’ accounts.

Separately, Privacy Pass allows a user to obtain anonymous
tokens for completing CAPTCHAs, which she can then spend
at different relying parties without allowing them to link
her across sites [27]. Like larch, Privacy Pass does not link
users across accounts, but unlike larch, Privacy Pass does not
provide a mechanism for logging authentications.
Threshold signing. Our two-party ECDSA with preprocessing
protocol builds on prior work on threshold ECDSA. MacKen-
zie and Reiter proposed the first threshold ECDSA protocol
for a dishonest majority specific to the two-party setting [64].
Genarro et al. [41] and Lindell [61] subsequently improved
on this protocol. Doerner et al. show how to achieve two-party
threshold ECDSA without additional assumptions [31]. An-
other line of work supports threshold ECDSA using generic
multi-party computation over finite fields [76, 22]. A number
of works show how to split ECDSA signature generation into
online andoffline phases [23, 18, 48, 47, 38, 19, 85, 4]; in many,
the offline phase is signing-key-specific, allowing for a non-
interactive online signing phase, whereas we need an offline
phase that is signing-key-independent. Abram et al. show how
to reduce the bandwidth of the offline phase via pseudorandom
correlation generators [4]. Aumasson et al. provide a survey
of prior work on threshold ECDSA [8]. Arora et al. show how
to split trust across a group of FIDO authenticators to enable
account recovery using a new group signature scheme [6].
Proving properties of encrypted data. Larch’s split-secret
authentication protocol for FIDO2 and passwords relies on
proving properties of encrypted data, which is also explored
in prior work. Verifiable encryption was first proposed
by Stadler [77], and Camenisch and Damgard introduced
it as a well-defined primitive [15]. Subsequent work has
designed verifiable encryption schemes for limited classes
of relations (e.g. discrete logarithms) [16, 7, 86, 63, 69].
Takahashi and Zaverucha introduced a generic compiler for
MPC-in-the-head-based verifiable encryption [78]. Lee et
al. [60] contribute a SNARK-based verifiable encryption
scheme that decouples the encryption function from the circuit

by using a commit-and-prove SNARK [17]. This approach
does not work for us for FIDO2 authentication because the
ciphertext must be connected to a SHA-256 digest.

Grubbs et al. introduce zero-knowledge middleboxes, which
enforce properties on encrypted data using SNARKs [49].
Wang et al. show how to build blind certificate authorities,
enabling a certificate authority to validate an identity and
generate a certificate for it without learning the identity [82].
DECO allows users to prove that a piece of data accessed
via TLS came from a particular website and, optionally, prove
statements about the data in zero-knowledge [89].
Transparency logs. Like larch, transparency logs detect
attacks rather than prevent them, and they achieve this by
maintaining a log recording sensitive actions [66, 44, 52, 21,
59, 5, 25]. However, transparency logs traditionally maintain
public, global state. For example, the certificate transparency
log records what certificates were issued and by whom in
order to track when certificates were issued incorrectly [59].
In contrast, the larch log service maintains encrypted, per-user
state about individual users’ authentication history.

11 Conclusion

Larch is an authentication manager that logs every successful
authentication to any of a user’s accounts on a third-party log
service. It guarantees log integrity without trusting clients. It
furthermore guarantees account security and privacy without
trusting the log service. Larch works with any existing service
supporting FIDO2, TOTP, or password-based login. Our evalu-
ation shows the implementation is practical and cost-effective.
Acknowledgements. We thank the anonymous reviewers
and our shepherd Ittay Eyal for their feedback. We also thank
Raluca Ada Popa for her support, as well as students in the
Sky security group for giving feedback that improved the
presentation of this paper. The RISELab and Sky Lab are
supported by NSF CISE Expeditions Award CCF-1730628
and gifts from the Sloan Foundation, Alibaba, Amazon Web
Services, Ant Group, Ericsson, Facebook, Futurewei, Google,
Intel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.
Emma Dauterman was supported by an NSF Graduate
Research Fellowship and a Microsoft Ada Lovelace Research
Fellowship. This work was funded in part by the Stanford
Future of Digital Currency Initiative as well as gifts from
Capital One, Facebook, Google, Mozilla, Seagate, and MIT’s
FinTech@CSAIL Initiative. We also received support under
NSF Award CNS-2054869.

References

[1] Amazon EC2 On-Demand Pricing. https://aws.

amazon.com/ec2/pricing/on-demand/, accessed De-
cember 7, 2022.

94 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[2] How many accounts can I register my YubiKey with?,
2020. https://support.yubico.com/hc/en-us/

articles/360013790319-How-many-accounts-can-

I-register-my-YubiKey-with-FIDO2.

[3] Passkeys. Google, 2022. https://developers.google.
com/identity/passkeys.

[4] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter
Scholl, and Omer Shlomovits. Low-bandwidth threshold
ECDSA via pseudorandom correlation generators. In
IEEE Security & Privacy, 2022.

[5] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky,
Gabe Fierro, John Kolb, Hyung-Sin Kim, David E
Culler, and Raluca Ada Popa. WAVE: A decentralized
authorization framework with transitive delegation. In
USENIX Security, 2019.

[6] Sunpreet S Arora, Saikrishna Badrinarayanan, Srini-
vasan Raghuraman, Maliheh Shirvanian, Kim Wagner,
and Gaven Watson. Avoiding lock outs: Proactive fido
account recovery using managerless group signatures.
Cryptology ePrint Archive, 2022.

[7] Giuseppe Ateniese. Verifiable encryption of digital
signatures and applications. ACM Transactions on Infor-
mation and System Security (TISSEC), 7(1):1–20, 2004.

[8] Jean-Philippe Aumasson, Adrian Hamelink, and Omer
Shlomovits. A survey of ecdsa threshold signing.
Cryptology ePrint Archive, 2020.

[9] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In CRYPTO, 1991.

[10] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In CCS, pages 62–73, 1993.

[11] M Ben-Or, S Goldwasser, and A Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computing. In STOC, pages 1–10, 1988.

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and
Eran Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and
back again. In ITCS, pages 326–349, 2012.

[13] Manuel Blum, Paul Feldman, and Silvio Micali.
Non-interactive zero-knowledge and its applications. In
ACM STOC. 1988.

[14] Dan Boneh, Manu Drĳvers, and Gregory Neven.
BLS multi-signatures with public-key aggrega-
tion. https://crypto.stanford.edu/~dabo/pubs/

papers/BLSmultisig.html, Accessed 23 May 2022,
March 2018.

[15] Jan Camenisch and Ivan Damgård. Verifiable encryption,
group encryption, and their applications to separable
group signatures and signature sharing schemes. In
ASIACRYPT, pages 331–345. Springer, 2000.

[16] Jan Camenisch and Victor Shoup. Practical verifiable
encryption and decryption of discrete logarithms. In
CRYPTO, pages 126–144. Springer, 2003.

[17] Matteo Campanelli, Dario Fiore, and Anaïs Querol.
Legosnark: Modular design and composition of succinct
zero-knowledge proofs. In CCS, pages 2075–2092, 2019.

[18] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Niko-
laos Makriyannis, and Udi Peled. UC non-interactive,
proactive, threshold ECDSA with identifiable aborts.
In CCS, pages 1769–1787, 2020.

[19] Ran Canetti, Nikolaos Makriyannis, and Udi Peled.
UC non-interactive, proactive, threshold ECDSA.
Cryptology ePrint Archive, 2020.

[20] Melissa Chase, David Derler, Steven Goldfeder, Claudio
Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key
primitives. In CCS, pages 1825–1842, 2017.

[21] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh,
and Harjasleen Malvai. Seemless: Secure end-to-end
encrypted messaging with less trust. In CCS, pages
1639–1656, 2019.

[22] Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris
Shrishak, and Haya Shulman. Securing DNSSEC keys
via threshold ECDSA from generic MPC. In European
Symposium on Research in Computer Security, pages
654–673. Springer, 2020.

[23] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus
Nielsen, Jakob Illeborg Pagter, and Michael Bæksvang
Ostergård. Fast threshold ECDSA with honest majority.
In SCN, pages 382–400. Springer, 2020.

[24] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO, pages 643–662.
Springer, 2012.

[25] Emma Dauterman, Henry Corrigan-Gibbs, and David
Mazières. SafetyPin: Encrypted backups with Human-
Memorable secrets. In OSDI, pages 1121–1138, 2020.

[26] Emma Dauterman, Danny Lin, Henry Corrigan-Gibbs,
and David Mazières. Accountable authentication with
privacy protection: The larch system for universal login.
arXiv preprint arXiv:2305.19241, 2023.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 95

https://support.yubico.com/hc/en-us/articles/360013790319-How-many-accounts-can-I-register-my-YubiKey-with-FIDO2
https://support.yubico.com/hc/en-us/articles/360013790319-How-many-accounts-can-I-register-my-YubiKey-with-FIDO2
https://support.yubico.com/hc/en-us/articles/360013790319-How-many-accounts-can-I-register-my-YubiKey-with-FIDO2
https://developers.google.com/identity/passkeys
https://developers.google.com/identity/passkeys
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

[27] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy pass:
Bypassing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164–180, 2018.

[28] Yvo Desmedt. Society and group oriented cryptography:
A new concept. In EUROCRYPT, pages 120–127.
Springer, 1987.

[29] Yvo Desmedt and Yair Frankel. Threshold cryptosystems.
In EUROCRYPT, pages 307–315. Springer, 1989.

[30] Arkajit Dey and Stephen Weis. PseudoID: Enhancing
privacy in federated login. In HotPETS workshop, 2010.

[31] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi
Shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In IEEE Security & Privacy,
pages 980–997. IEEE, 2018.

[32] Corin Faife. Okta ends lapsus$ hack investigation, says
breach lasted just 25 minutes. The Verge, April 2022.
https://www.theverge.com/2022/4/20/23034360/

okta-lapsus-hack-investigation-breach-25-

minutes.

[33] Daniel Fett, Ralf Küsters, and Guido Schmitz. Analyzing
the BrowserID SSO system with primary identity
providers using an expressive model of the web.
In European Symposium on Research in Computer
Security, pages 43–65. Springer, 2015.

[34] Daniel Fett, Ralf Küsters, and Guido Schmitz. Spresso:
A secure, privacy-respecting single sign-on system for
the web. In CCS, pages 1358–1369, 2015.

[35] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In EUROCRYPT, pages 186–194. Springer, 1986.

[36] FIDO Alliance. FIDO alliance specifications: Overview.
https://fidoalliance.org/specifications/,
Accessed 20 May 2022.

[37] Martin Franz, Andreas Holzer, Stefan Katzenbeisser,
Christian Schallhart, and Helmut Veith. CBMC-GC:
An ANSI C Compiler for Secure Two-Party Computa-
tions. In Compiler Construction: 23rd International
Conference, volume 8409, page 244, 2014.

[38] Adam Gągol and Damian Straszak. Threshold ecdsa for
decentralized asset custody. Technical report, Tech. rep.,
Cryptology ePrint Archive, Report 2020/498, 2020.

[39] Rosario Gennaro, Craig Gentry, Bryan Parno, and
Mariana Raykova. Quadratic span programs and
succinct nizks without pcps. In EUROCRYPT, pages
626–645. Springer, 2013.

[40] Rosario Gennaro and Steven Goldfeder. Fast multiparty
threshold ECDSA with fast trustless setup. In CCS,
pages 1179–1194, 2018.

[41] Rosario Gennaro, Steven Goldfeder, and Arvind
Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In ACNS,
pages 156–174. Springer, 2016.

[42] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
ZKBoo: Faster zero-knowledge for boolean circuits. In
USENIX Security, pages 1069–1083, 2016.

[43] Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM Journal on computing, 18(1):186–208, 1989.

[44] Trillian. https://github.com/google/trillian.

[45] Jens Groth. On the size of pairing-based non-interactive
arguments. In EUROCRYPT, pages 305–326. Springer,
2016.

[46] Jens Groth and Markulf Kohlweiss. One-out-of-many
proofs: Or how to leak a secret and spend a coin.
In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages
253–280. Springer, 2015.

[47] Jens Groth and Victor Shoup. Design and analysis of a
distributed ECDSA signing service. Cryptology ePrint
Archive, 2022.

[48] Jens Groth and Victor Shoup. On the security of
ECDSA with additive key derivation and presignatures.
In EUROCRYPT, 2022.

[49] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau,
and Michael Walfish. Zero-knowledge middleboxes.
Cryptology ePrint Archive, 2021.

[50] Chengqian Guo, Jingqiang Lin, Quanwei Cai, Fengjun
Li, Qiongxiao Wang, Jiwu Jing, Bin Zhao, and Wei
Wang. UPPRESSO: Untraceable and unlinkable
privacy-preserving single sign-on services. arXiv
preprint arXiv:2110.10396, 2021.

[51] Sven Hammann, Ralf Sasse, and David Basin. Privacy-
preserving OpenID connect. In ASIACCS, pages
277GS22–289, 2020.

[52] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi,
Seung Jin Yang, and Raluca Ada Popa. Merkle 2: A
low-latency transparency log system. In IEEE Security
& Privacy, pages 285–303. IEEE, 2021.

[53] Marios Isaakidis, Harry Halpin, and George Danezis.
Unlimitid: Privacy-preserving federated identity
management using algebraic macs. In Proceedings of

96 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.theverge.com/2022/4/20/23034360/okta-lapsus-hack-investigation-breach-25-minutes
https://www.theverge.com/2022/4/20/23034360/okta-lapsus-hack-investigation-breach-25-minutes
https://www.theverge.com/2022/4/20/23034360/okta-lapsus-hack-investigation-breach-25-minutes
https://fidoalliance.org/specifications/
https://github.com/google/trillian

the 2016 ACM on Workshop on Privacy in the Electronic
Society, pages 139–142, 2016.

[54] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Zero-knowledge from secure multiparty
computation. In STOC, pages 21–30, 2007.

[55] Ivan Krstic. Behind the scenes with iOS security,
2016. https://www.blackhat.com/docs/us-16/

materials/us-16-Krstic.pdf.

[56] Krypton. kr-u2f. https://github.com/kryptco/kr-

u2f, Accessed 17 May 2022.

[57] SCIPR Lab. libsnark. https://github.com/scipr-

lab/libsnark, Accessed 30 May 2022.

[58] Leslie Lamport. The part-time parliament. In TOCS,
pages 133–169, 1998.

[59] Adam Langley, Emilia Kasper, and Ben Laurie. Cer-
tificate transparency. Internet Engineering Task Force,
2013. https://tools.ietf.org/html/rfc6962.

[60] Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok
Oh. SAVER: Snark-friendly, additively-homomorphic,
and verifiable encryption and decryption with
rerandomization. Cryptology ePrint Archive, 2019.

[61] Yehuda Lindell. Fast secure two-party ECDSA signing.
In CRYPTO, pages 613–644. Springer, 2017.

[62] Joshua Lund. Technology preview for secure value
recovery, 2019. https://signal.org/blog/secure-

value-recovery/.

[63] Vadim Lyubashevsky and Gregory Neven. One-shot
verifiable encryption from lattices. In EUROCRYPT,
pages 293–323. Springer, 2017.

[64] Philip MacKenzie and Michael K Reiter. Two-party
generation of DSA signatures. In CRYPTO, pages
137–154. Springer, 2001.

[65] David Mazières and Dennis Shasha. Building secure
file systems out of Byzantine storage. In 21st Annual
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 108–117, July 2002.

[66] Marcela S Melara, Aaron Blankstein, Joseph Bonneau,
Edward W Felten, and Michael J Freedman. CONIKS:
Bringing key transparency to end users. In USENIX
Security, 2015.

[67] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson,
and Andreas Rusch. PKCS# 1: RSA cryptography
specifications version 2.2. Internet Engineering Task
Force, Request for Comments, 8017:72, 2016.

[68] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP:
Time-Based One-Time Password Algorithm. RFC 6238,
May 2011.

[69] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter
Wuille. MuSig-DN: Schnorr multi-signatures with
verifiably deterministic nonces. In CCS, pages
1717–1731, 2020.

[70] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In USENIX ATC,
pages 305–319, 2014.

[71] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE Security & Privacy, pages
238–252. IEEE, 2013.

[72] Emma Roth. LastPass’ latest data breach exposed some
customer information. The Verge, November 2022.
https://www.theverge.com/2022/11/30/23486902/

lastpass-hackers-customer-information-breach.

[73] Adam Rowe. Study reveals average person has 100 pass-
words, November 2021. https://tech.co/password-
managers/how-many-passwords-average-person.

[74] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and
C. Mortimore. OpenID connect core 1.0 incorporating
errata set 1. https://openid.net/specs/openid-

connect-core-1_0.html, November 2014.

[75] Adi Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, 1979.

[76] Nigel P Smart and Younes Talibi Alaoui. Distributing
any elliptic curve based protocol. In IMA International
Conference on Cryptography and Coding, pages
342–366. Springer, 2019.

[77] Markus Stadler. Publicly verifiable secret sharing. In
EUROCRYPT, pages 190–199. Springer, 1996.

[78] Akira Takahashi and Greg Zaverucha. Verifiable
encryption from MPC-in-the-Head. Cryptology ePrint
Archive, 2021.

[79] Verizon. DBIR Data Breach Investigations Report,
2022 edition. https://www.verizon.com/business/

resources/T3cd/reports/dbir/2022-data-breach-

investigations-report-dbir.pdf.

[80] W3C. Web authentication: An api for accessing public
key credentials level 2, April 2021. https://www.w3.

org/TR/webauthn-2/, Accessed 20 May 2022.

[81] Shabsi Walfish. Google Cloud Key Vault Service.
Google, 2018. https://developer.android.com/

about/versions/pie/security/ckv-whitepaper.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 97

https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://github.com/kryptco/kr-u2f
https://github.com/kryptco/kr-u2f
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://tools.ietf.org/html/rfc6962
https://signal.org/blog/secure-value-recovery/
https://signal.org/blog/secure-value-recovery/
https://www.theverge.com/2022/11/30/23486902/lastpass-hackers-customer-information-breach
https://www.theverge.com/2022/11/30/23486902/lastpass-hackers-customer-information-breach
https://tech.co/password-managers/how-many-passwords-average-person
https://tech.co/password-managers/how-many-passwords-average-person
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.verizon.com/business/resources/T3cd/reports/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/T3cd/reports/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.verizon.com/business/resources/T3cd/reports/dbir/2022-data-breach-investigations-report-dbir.pdf
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper

[82] Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ris-
tenpart, and Abhi Shelat. Blind certificate authorities. In
IEEE Security & Privacy, pages 1015–1032. IEEE, 2019.

[83] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[84] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Authenticated garbling and efficient maliciously secure
two-party computation. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications
security, pages 21–37, 2017.

[85] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen,
and Handong Cui. Efficient online-friendly two-party
ECDSA signature. In CCS, pages 558–573, 2021.

[86] Shota Yamada, Nuttapong Attrapadung, Bagus Santoso,
Jacob CN Schuldt, Goichiro Hanaoka, and Noboru Kuni-
hiro. Verifiable predicate encryption and applications to

CCA security and anonymous predicate authentication.
In PKC, pages 243–261. Springer, 2012.

[87] Andrew C Yao. Protocols for secure computations. In
23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE, 1982.

[88] Andrew Chi-Chih Yao. How to generate and exchange
secrets. In FOCS, pages 162–167. IEEE, 1986.

[89] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data
using decentralized oracles for TLS. In CCS, pages
1919–1938, 2020.

[90] Zhiyi Zhang, Michal Król, Alberto Sonnino, Lixia
Zhang, and Etienne Rivière. EL PASSO: Efficient and
lightweight privacy-preserving single sign on. PoPETS,
2021(2):70–87, 2021.

[91] ZoKrates. ZoKrates. https://github.com/Zokrates/
ZoKrates, Accessed 30 May 2022.

98 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/emp-toolkit
https://github.com/Zokrates/ZoKrates
https://github.com/Zokrates/ZoKrates

K9db: Privacy-Compliant Storage For Web Applications By Construction

Kinan Dak Albab Ishan Sharma Justus Adam Benjamin Kilimnik Aaron Jeyaraj
Raj Paul Artem Agvanian Leonhard Spiegelberg Malte Schwarzkopf

Brown University

Abstract
Data privacy laws like the EU’s GDPR grant users new rights,
such as the right to request access to and deletion of their data.
Manual compliance with these requests is error-prone and
imposes costly burdens especially on smaller organizations,
as non-compliance risks steep fines.

K9db is a new, MySQL-compatible database that complies
with privacy laws by construction. The key idea is to make the
data ownership and sharing semantics explicit in the storage
system. This requires K9db to capture and enforce applica-
tions’ complex data ownership and sharing semantics, but in
exchange simplifies privacy compliance. Using a small set of
schema annotations, K9db infers storage organization, gen-
erates procedures for data retrieval and deletion, and reports
compliance errors if an application risks violating the GDPR.

Our K9db prototype successfully expresses the data sharing
semantics of real web applications, and guides developers
to getting privacy compliance right. K9db also matches or
exceeds the performance of existing storage systems, at the
cost of a modest increase in state size.

1 Introduction
New privacy laws including the European Union’s General
Data Protection Regulation (GDPR) [44], the California Con-
sumer Privacy Act (CCPA) [10], and others [7, 17, 20, 56] seek
to protect users’ rights to their data in web services. Many of
these laws provide users with rights to issue subject access
requests (SARs), including a right to access, which lets users
request a copy of their data, and a right to erasure, which
requires its deletion on request [51, 52]. Many also impose a
mandate to store data securely. Compliance with these laws
is important, as violations risk severe fines [9, 39–41].

Achieving compliance can be onerous and expensive, how-
ever, particularly for small and medium-size organizations.
These organizations must write custom queries and track meta-
data to identify and extract data related to a user, and contin-
uously maintain this infrastructure as services evolve. Even
well-intentioned developers sometimes get it wrong: for ex-
ample, the ownCloud collaboration platform [43], though it

claims GDPR compliance [42], retains a user’s activity log
after account deletion. Retrofitting compliance onto existing
systems is tricky, as it still requires manual work [2, 28] and
may harm performance [51].

This paper explores an alternative system design that
achieves privacy compliance by construction. Our key idea
is to make data ownership a first-class citizen in the database
system itself. K9db, our new database system, tracks suffi-
cient information to know, for each row in the database, what
user (or users) have rights to it. This allows K9db to infer
correct procedures for data retrieval and deletion, so that the
database itself can handle requests under the rights to access
or erasure, freeing the application developer from having to
write or maintain custom scripts to handle these requests. The
ownership information also allows K9db to encrypt data with
per-user keys, which helps meet, e.g., the GDPR’s “Protection
by Design and Default” requirement, which can be satisfied
by encrypting at-rest data [36, 44]. Finally, K9db uses owner-
ship information to generate errors if the database schema or
operations on database contents risk violating the GDPR.

To realize K9db, we had to address three challenges. First,
K9db must understand and model the complex data ownership
and sharing semantics of real applications. A user’s data may
span many tables with transitive relationships, may be shared
in complex and data-dependent ways, and may require partial
redaction when returned or removed. Second, K9db must
maintain and enforce compliance invariants matching these
ownership semantics throughout application execution, and
correctly respond to user access and deletion requests. Third,
K9db should match the performance of today’s databases
that lack infrastructure for data ownership tracking, and must
be both compatible with existing applications and easy for
application developers to adopt.

K9db’s design addresses these challenges as follows. First,
K9db derives a data ownership graph (DOG) from a set
of coarse-grained, declarative annotations on the database
schema. Using a small number of primitives, the DOG mod-
els a wide range of complex data sharing relationships found
in real-world applications. The DOG is central to K9db’s

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 99

storage organization, to its handling of users’ access and era-
sure requests, and to K9db’s ability to enforce privacy com-
pliance. Second, K9db organizes data storage around data
ownership to ensure that applications remain in compliance
and handle access and deletion requests correctly by con-
struction, without disrupting regular application operations.
Third, K9db is a MySQL-compatible drop-in-replacement for
existing databases, and requires few application changes be-
yond declarative schema annotations for normalized schemas.
To accelerate complex queries, K9db provides an integrated,
privacy-compliant in-memory cache based on materialized
views. By integrating and managing materialized views, K9db
provides the benefits of caching to applications, while reliev-
ing developers from ensuring compliance of cached data.

K9db structures the actual data storage as a set of user-
specific logical “micro-databases” (µDBs), realized over a
single physical RocksDB [33] store. Each user’s µDB con-
tains the data they own, and is encrypted with a user-specific
key. K9db also helps developers use the system correctly
by providing compliance-specific functionality not found in
other databases. A new EXPLAIN COMPLIANCE SQL com-
mand gives the developer insight into the DOG and highlights
possible schema annotation errors; and K9db supports com-
pliance transactions that guard against dynamic compliance
problems, such as data without an owner being left behind
in the database. K9db provides ACID guarantees similar to
those in default MySQL.

K9db provides out-of-the-box compliance for well-
intentioned developers who want to comply with privacy laws,
and helps developers avoid mistakes. We expect that fines for
privacy violations (e.g., the greater than 4% of annual turnover
or C25M for GDPR violations) discourage intentional mis-
use.

In summary, this paper makes the following contributions:
1. The data ownership graph (DOG) for modeling owner-

ship in a database, specified with schema annotations.
2. K9db, a new database that enforces compliance-by-

construction based on the DOG and a compliant,
ownership-aware storage organization.

3. Mechanisms that, based on the DOG, warn developers
if schema annotations are insufficient or if the database
becomes non-compliant at runtime.

4. An evaluation of K9db, demonstrating that a database
centered around first-class data ownership and
compliance-by-construction is practical.

We evaluate K9db with scenarios based on the Lobsters
web application [27], the ownCloud document sharing plat-
form [43], and the Shuup e-commerce platform [53]. Our
experiments show that K9db can express a wide variety of
nuanced data sharing and ownership patterns found in these
applications, and that K9db performs on-par with or better
than MariaDB and the widely-used MariaDB/memcached
stack when serving typical web application workloads.

K9db is open-source at https://github.com/brownsys/K9db.

2 Background and Related Work

2.1 Privacy Laws

Web services must comply with new privacy and data protec-
tion laws [7, 10, 17, 20, 44, 56]. Many of these laws have a
comprehensive scope: e.g., the EU’s GDPR applies to any-
one who offers services to users physically in the EU and
touches many aspects of web services [52]. In particular,
most laws grant users rights over their data that require ser-
vices to identify all data related to a user. The GDPR, for
example, provides Subject Access Requests (SARs) that al-
low a “data subject” (i.e., an end user) to request a copy of
their data (Right to Access, Art. 15), to request the deletion
of their data (Right to Erasure, Art. 17), and to receive the
data in a portable and machine-readable format (Right to Data
Portability, Art. 20). Complying with SARs requires the ser-
vice provider (“data controller” in GDPR terms) to identify
the information related to a data subject. As the GDPR has
become a model for other privacy laws, many have adopted
similar SAR-like requirements. The California Consumer Pri-
vacy Act (CCPA), for example, gives consumers a right to
request the “specific pieces of personal information [a busi-
ness] has collected about the consumer” [10, §1789.110] and
its deletion [10, §1789.105].

The GDPR and other laws also impose mandates for secure
data handling, particularly encryption at rest [44, Arts. 25,
32, 10, §1798.150(a)(1)]. These mandates avoid prescribing
particular technologies: e.g., the GDPR only requires that
organizations take “appropriate technical measures” to secure
personal data [44, Art. 32], giving freedom to meet the require-
ment in different ways. In practice, encrypting data at rest and
deleting encryption keys (referred to as “crypto-shredding”),
e.g., to make backups inaccessible, is widely considered a
compliant approach [45].

This paper primarily focuses on technical infrastructure to
ease compliance with SARs and the requirement for secure
storage. Privacy laws also include other provisions that e.g.,
mandate user consent for processing and regulate data shar-
ing with third parties. Our design is compatible with these
requirements, but they are not the focus of this paper.

2.2 Complexity of Data Ownership

Compliance with SARs is difficult, both manually and in au-
tomated systems, because web services often have complex
ownership and data sharing semantics. Identifying data asso-
ciated with a particular user (“data subject”) is challenging.
In relational databases, these associations are expressed as
foreign keys; but data in many tables link to data subjects
transitively via one or more intermediate tables, rather than di-
rectly. Multiple data subjects can be associated with the same
data (e.g., private messages), and sometimes this association
is asymmetric and implies different rights for different data
subjects (e.g., a teacher and a student). Finally, many-to-many
relationships introduce dynamically changing associations

100 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brownsys/K9db

between data and a variable number of data subjects.
GDPR-like laws afford companies with some flexibility in

handling SARs. Applications may keep data associated with
the data subject (possibly in some anonymized form) after a
deletion request due to legal or contractual obligations (e.g.,
tax laws) or public interest [44, Art. 17.3]. Data may also be
retained depending on the purpose of its processing, including
the interests of other users [44, Art 6.1, Art. 17.1(b)]. For
example, Facebook’s privacy policy specifies that Facebook
deletes the comments that a withdrawing data subject made,
but not the private messages they sent to a friend, unless that
friend also deletes them [16]. Thus, the compliance policy and
exact handling of SARs are application and data dependent.

2.3 Existing Approaches to Privacy Compliance

Privacy compliance today requires application developers
to write custom queries and maintain metadata to identify
and track information related to each data subject [51]. The
queries are tricky to get right and maintain as the application
evolves. To address part of this burden, some large companies
built bespoke GDPR metadata stores [13, §1] and dedicated
frameworks for data deletion [14]. However, these frame-
works only solve part of the problem, and most organizations
lack the resources to build such systems themselves. Our work
provides compliance within an off-the-shelf database.

Adaptations of existing database systems can go some way
towards providing privacy compliance, but can come at a
steep performance cost. For example, Shastri et al. found that
secondary indexes and strict metadata tracking impose over-
heads up to 5× [51], leading to proposals to accelerate these
operations in hardware [21]. SchengenDB [23] outlines a de-
sign that provides GDPR compliance, but relies on extensive
metadata and conservative, coarse-grained enforcement, e.g.,
destroying entire VM clusters when a data subject deletes
their account. Our work redesigns the database to make cor-
rect privacy compliance a first-class property [49], without
sacrificing performance and with moderate overheads.

Other proposals have advocated restructuring web services
to enforce users’ privacy rights, but face barriers to adoption.
W5 [24], Oort [11], Blockstack [3], and Solid [29] decouple
data storage from the web application and put data storage un-
der user control. This approach allows for strong guarantees,
but requires rewriting web applications, comes with restric-
tions (e.g., all application logic must run in JavaScript in
the browser), and is incompatible with today’s advertising-
based business model for web services. Data Capsules [58],
Riverbed [57], and Zeph [8] let users specify individual pri-
vacy policies for their data in web services. Though powerful,
custom policies do not solve the problem of identifying all in-
formation related to a user; and may limit possible operations
(e.g., to those expressible as homomorphic additions). Our
work provides by-construction compliance with subject ac-
cess requests, but with a storage model and database interface
that works for existing web applications.

K9db

Compliant Storage
Organization

EXPLAIN
 COMPLIANCE

Schema +
Annotations

Data Ownership
Graph

Compliance
Transaction

MySQL API

Queries

determines

Specification

Feedback

μDBsViews

maintains

Secondary
Indexes

Figure 1: K9db provides privacy-compliant storage based
on its data ownership graph, micro-databases (µDBs), and
compliance helper mechanisms behind a MySQL interface.

3 K9db Overview
K9db is a relational database that makes data ownership an ex-
plicit first-class citizen. K9db targets typical web application
workloads, which are dominated by reads and point lookup
queries [18]. Its design goals are (i) to require few changes to
application code, (ii) to capture and enforce the complex data
ownership and sharing semantics of real-world applications,
and (iii) to provide feedback that helps developers get privacy
compliance right.

Figure 1 shows an overview of K9db’s components. K9db
requires developers to extend their relational schema (i.e.,
CREATE TABLE statements) with a small set of annotations
that encode data ownership and sharing semantics. The an-
notated schema acts as an application-specific compliance
policy that specifies how K9db handles SARs. From these
annotations, K9db builds its key abstraction, the data owner-
ship graph (DOG) (§4). The DOG lets K9db determine, for
every row in the database, who owns it and who has rights
to it. K9db uses the DOG to satisfy data subjects’ SARs,
to check that the database remains compliant after the ap-
plication makes changes, and to warn the developer if their
annotated schema and the compliance policy it encodes seem
incomplete or contradictory.

Using information from the DOG, K9db organizes its stor-
age in a user-centric way, storing each data subject’s data
in their own logical “micro-database” (µDB), a shard of the
actual database. This design ensures that K9db enforces the
developer-provided compliance policy by construction, lets
K9db encrypt each data subject’s data with a separate crypto-
graphic key, and speeds up compliance-related enforcement
and operations (§5). K9db maintains some additional sec-
ondary indices compared to a traditional SQL database, which
help K9db efficiently resolve which µDBs store particular data.
It also maintains materialized views that help simplify and
accelerate execution of complex queries, while also providing
an integrated, privacy-compliant in-memory cache (§6).

For normalized schemas, K9db requires little to no applica-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 101

OWNED_BY

FK

(a) Ownership With FK.

OWNS

FK

(b) Ownership Against FK.

Figure 2: K9db’s annotations on foreign keys (FKs; orange)
indicate the direction of data ownership (black edge) between
two tables. Circles are tables.

Annotation Example
DATA_SUBJECT CREATE DATA_SUBJECT TABLE

users (...)

TA(x) OWNED_BY TB(y) stories(author_id)
OWNED_BY users(id)

TA(x) OWNS TB(y) member(gid) OWNS
group(id)

TA(x) ACCESSED_BY TB(y) share(share_with)
ACCESSED_BY user(id)

TA(x) ACCESSES TB(y) taggings(tag_id) ACCESSES
tags(id)

ON DEL TA(x) ON DEL chat(receiver)
{ANON (...) | DELETE_ROW} ANON (receiver)

ON GET TA(x) ON GET review(paper_id)
{ANON (...) | DELETE_ROW} ANON (reviewer_id)

Figure 3: K9db’s table and column-level annotations. All
annotations except DATA_SUBJECT and ANON imply a foreign
key from column x in table TA to column y in TB.

tion code changes, except that developers may need to wrap
certain operations in a compliance transaction (§5.5). Devel-
opers can use K9db as a drop-in replacement for MySQL.

4 Modeling Data Ownership and Sharing
K9db aims to provide correct-by construction compliance
with privacy laws, which requires K9db to respond to SARs
correctly and enforce several invariants over the data and its
storage. Correct compliance has two prongs: (i) a compliance
policy that is consistent with the privacy law in question, and
(ii) correct enforcement of this policy when handling both
regular application operations and SARs.

The compliance policy is application-specific and depends
on the relationships in the underlying data. For a single appli-
cation, multiple policies may achieve compliance, and laws
afford developers some flexibility in choosing a policy that
matches their application’s semantics (§2.2).

In K9db, developers express their compliance policy us-
ing schema annotations, which K9db represents using the
data ownership graph (DOG): a directed, acyclic multigraph
whose vertices represent database tables, and whose edges
represent ownership relationships between rows in the tables.

4.1 K9db’s Annotations

Developers use schema annotations on foreign keys to com-
municate their application’s data ownership and sharing se-

mantics to K9db. To communicate how the database repre-
sents human persons who have rights over data (“data subjects”
in GDPR terms), the developer annotates one or more tables
with the table-granularity DATA_SUBJECT annotation.

Foreign keys (FKs) relate rows in tables to each other, and
often imply ownership—consider e.g., a story pointing to its
author. This is the simplest case: a story is owned by the
row its FK value points to. K9db provides the OWNED_BY
keyword for developers to annotate such FKs (Figure 2a; §4.3
discusses transitive cases). But foreign keys may also point
in the opposite direction of ownership, as is the case e.g., if a
user table has a foreign key to their primary address. For such
cases, K9db provides the OWNS annotation (Figure 2b).

In addition to ownership, an application may also have data
that is owned by one data subject (who has the right to delete
it when removing their account), but share it with others. For
example, in the file sharing platform ownCloud [43], users
want to share files with others, but when they remove their
account have the file be removed for everyone. K9db lets
developers express this with the ACCESSED_BY annotation,
and its dual for opposite-direction FKs, ACCESSES.

These annotations extend the semantics of foreign keys
with compliance semantics, and while every annotation is
applied to a foreign key, not every foreign key impacts owner-
ship or needs to be annotated. For example, the foreign key
connecting students in a university database with their de-
clared majors carries no ownership information—the students
do not own the majors—and should not be annotated.

K9db also provides table-level annotations that allow de-
velopers to specify that columns in a table need anonymizing
in the context of SARs. This is important because a row may
need redacting before returning the row as part of a right-to-
access request (ON GET), or because a row may need to be
retained in anonymized form (e.g., for tax compliance) after
a data subject requests deletion of their data (ON DEL). Each
anonymization annotation is associated with an ownership or
access foreign key (i.e., an outgoing edge from the table in
the DOG). This allows for different anonymization behavior
depending on how the data subject who issued a SAR is con-
nected to the data. For example, in the HotCRP conference
review system [22], if a data subject who is both a reviewer
and an author makes an access request, they should receive
an unredacted copy of the reviews they wrote, but redacted,
anonymized reviews for the papers they authored.

Figure 3 shows K9db’s complete set of schema annotations.

4.2 Expressing Developers’ Compliance Policies

We demonstrate how developers annotate their schema to
express their desired compliance policy using two examples
extracted from real applications: stories and messages in Lob-
sters (Figure 4), and file sharing in ownCloud (Figure 5).

In Lobsters, developers begin by annotating the users
table, which records the application’s end-users, with
DATA_SUBJECT. A user may post several stories, and retains

102 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 CREATE DATA_SUBJECT TABLE users (id INT PRIMARY KEY, ...);
2 CREATE TABLE stories (
3 id INT PRIMARY KEY, title TEXT, ...
4 author INT NOT NULL OWNED_BY user(id)
5);
6 CREATE TABLE tags (id INT PRIMARY KEY, tag TEXT, ...);
7 CREATE TABLE taggings (
8 id INT PRIMARY KEY,
9 story_id INT NOT NULL OWNED_BY stories(id),

10 tag_id INT NOT NULL ACCESSES tag(id)
11);
12 CREATE TABLE messages (
13 id INT PRIMARY KEY, body text, ...
14 sender INT NOT NULL OWNED_BY user(id),
15 receiver INT NOT NULL OWNED_BY user(id),
16 ON DEL sender ANON (sender),
17 ON DEL receiver ANON (receiver)
18);

Figure 4: Partial schema for Lobsters. Users own the stories
they authored and their associations with tags. Messages are
jointly owned by both sender and receiver.

1 CREATE DATA_SUBJECT TABLE user (id INT PRIMARY KEY, ...);
2 CREATE TABLE group (id INT PRIMARY KEY, title TEXT, ...);
3 CREATE TABLE member (
4 id INT PRIMARY KEY,
5 uid INT NOT NULL OWNED_BY user(id),
6 gid INT NOT NULL OWNS group(id)
7);
8 CREATE TABLE share (
9 id INT PRIMARY KEY, ...

10 uid_owner INT NOT NULL OWNED_BY user(id),
11 share_with INT ACCESSED_BY user(id),
12 share_with_group INT ACCESSED_BY group(id)
13);

Figure 5: Partial schema for ownCloud file sharing: users own
their group membership, which owns the group; files have an
owner and are shared with users who have access to them.

sole ownership of them: these stories must be retrieved or
deleted when the user issues an SAR. Developers express this
by annotating the author FK in stories with OWNED_BY.
Lobsters also has a set of tags that represent discussion topics,
e.g., games and programming. Users can assign tags to sto-
ries they posted, and have complete ownership of these associ-
ations. Developers express this by annotating the story_id
column in taggings with OWNED_BY. This makes the story
the owner of its taggings, transitively making the data subject
who owns the story (i.e., its author) the owner of the associated
taggings. But the tags themselves are not related to any data
subject. Thus, developers annotate tag_id with ACCESSES
(and not OWNS). As a result, a data subject receives a copy
of their stories and associated tags when they request access,
while disassociating tags from their stories and removing the
stories themselves when requesting deletion.

* OWNED_BY

FK

(a) Transitive Ownership.

n 1* OWNS

FK

(b) Variable Ownership.

Figure 6: Tables can have transitive ownership relationships
(*: zero or more steps of indirection); if an edge follows a one-
to-many or many-to-many relationship, it expresses variable
ownership. Double circles indicate data subject tables.

users stories taggings tagsmessages
4

n 1

5
n 1 2

1 n

1

1 n

3

n 1

Figure 7: The DOG for stories and messages in Lobsters. Red
indicates access-typed edges; 1 and n are cardinalities.

Similar to private messages in Facebook [16], messages
in Lobsters are only deleted when both sender and receiver
request deletion. Thus, developers annotate both sender and
receiver with OWNED_BY (i.e., joint-ownership), along with
anonymization annotations that instruct K9db to hide the iden-
tity of the associated withdrawing user in surviving messages.
An alternative policy could require deleting a message as
soon as one of the associated users is deleted. Developers can
express this via an ON DEL . . . DELETE_ROW annotation.

ownCloud’s data subjects are users in the user table, who
can be members of a group (in the group table), as defined by
the member association table. Users own their group member-
ships, so the developer annotates the uid column of member
with OWNED_BY. The group and its associated resources are
jointly owned by its members (ownCloud has no notion of
group admins). Hence, the developer applies the OWNS anno-
tation to the gid foreign key from member to group.

ownCloud’s share table contains records of users shar-
ing files with others. This table specifies the file’s owner
(i.e., its original creator) via the uid_owner column, which
is a direct FK to the user table. The developer thus an-
notates this column with OWNED_BY. The share_with and
share_with_group columns are also FKs that eventually
lead to the user table, but indicate that the file is shared with
(rather than owned by) these users. The developer therefore
annotates them with ACCESSED_BY.

4.3 Data Ownership Graph

K9db builds the DOG from developers’ annotations by insert-
ing DOG edges in the underlying FK direction for OWNED_BY
and ACCESSED_BY, and against the FK direction for OWNS
and ACCESSES. Thus, DOG edges always point towards a
data subject table, unlike foreign keys.

When tables have a chain of annotated foreign keys, K9db

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 103

user member

groupshare

9
1 n

8n

1

10
1

n

61
n 7

1n

Figure 8: The DOG for ownCloud file sharing. Red edges are
access-typed. Note the variable ownership (Fig. 6b) between
member and group, as member rows are the group’s owners.

adds an edge to the DOG that establishes a transitive owner-
ship relationship (Figure 6a). For example, in Lobsters (Fig-
ure 7), a story’s taggings have no direct references to the
story’s author. Instead, they refer to their story 2 , which in
turn refers to the author 1 . Therefore, edges in the DOG
always represent a single step towards a data subject.

The DOG is a multi-graph because two tables can have
multiple foreign keys between them. For example, in Lobsters
the messages table has two foreign keys, one to the sender
4 and one to the receiver of a message 5 . Since sender

and receiver jointly own a private message—i.e., the message
only disappears if both users delete their account—there are
two annotated edges between messages and users.

Access annotations on foreign keys also add edges to the
DOG, but these edges are access-typed and distinct from
owner-typed edges. For example, in ownCloud (Figure 8)
a file is accessible but not owned by users it is shared with, ei-
ther directly 6 or via a group 7 . Differentiating ownership
and access edges is important for K9db to correctly handle
access and deletion requests.

If the destination of a DOG edge can contain multiple rows
corresponding to a single row in the source table, then that
row can have multiple owners or accessors. The DOG edge
8 from ownCloud’s group to member is a one-to-many re-

lationship, so a group may have many owners. This is an
example of variable ownership (Figure 6b), as the number
of owners varies depending on the data (i.e., depending on
the rows in member). Similarly, DOG edges may also express
variable access, e.g., a single tag in Lobsters may be accessed
through many stories 3 . This contrasts with the typical situ-
ation where the destination of a DOG edge is a primary key
or unique column, making it a one-to-one or many-to-one re-
lationship, both specifying a single owner (e.g., 9 and 10).
K9db’s DOG metadata stores arity of relationships and K9db
handles variable ownership and access appropriately.

4.4 Helping Developers Get Annotations Right

EXPLAIN COMPLIANCE gives the developer information
about the DOG, including heuristic warnings and suggestions
about how it may be improved. K9db runs a simple heuristic
over the schema to discover column names which indicate
user data such as variations on “name”, “email” and “pass-

word”. If a table with such column names is not connected to
a data subject in the DOG, K9db suggests to make it owned.
This heuristic is most useful to discover missing data subjects,
as their tables often contain columns with such names.
EXPLAIN COMPLIANCE also reports information that K9db

derives from the DOG. For every table, it reports which data
subject tables own it, and the paths through the DOG by
which they own the table. This essentially shows the developer
the closure over the DOG that K9db uses to handle SARs.
EXPLAIN COMPLIANCE warns developers if a table is owned
by many data subjects, e.g., if a DOG path contains multiple
variable ownership edges, which can result in multiplicatively
many owners. Such liberal sharing is rare in practice and
likely the result of a schema or annotation mistake.

4.5 Data Ownership Graph Properties

The DOG is well-formed if any path through it terminates at
a data subject table. K9db rejects any schema that results in a
DOG that is not well-formed.

Although the DOG is a graph of tables, its edges represent
relations between rows in the source and destination tables
based on the values of the underlying FK columns. Each
DOG edge maps to a relation between rows in the two tables,
where matching rows in the destination table own (or access)
the rows in the source table. Intuitively, this relation can
be evaluated as a query over the destination table, which
yields exactly the owning row (or rows, in the case of variable
ownership). Well-formedness guarantees that the transitive
closure of these relations terminates at data subject tables.

Several key properties follow from this. First, if no match-
ing rows exist in any destination table when evaluating the
relations along all of the table’s outgoing ownership edges,
data is orphaned (i.e., has no owner). This gives rise to the
necessary (but insufficient1) no orphaned data compliance
condition: any row in a database table connected to the DOG
must resolve to ≥1 owning data subjects. Second, the tran-
sitive closure of relations corresponding to ownership edges
in the DOG, starting from any row, identifies the set of data
subjects that own this row. Third, the DOG’s reverse transitive
closure starting from a row in a data subject table yields:

1. the rows shared with and owned by that data subject, if
considering accessor-typed and owner-typed edges; or

2. the rows owned by that data subject, if considering only
owner-typed edges.

The former set corresponds to the data that needs returning
from a right-to-access request, and the latter identifies the data
that needs deleting for a right-to-erasure request, provided no
other owners exist.

5 Compliant by Construction Storage
In principle, the DOG and its relations are sufficient to identify
a data subject’s data, and one could imagine adding it as a
metadata layer over an existing database. But in practice,

1Sufficiency would require the correct owners, not just any owner.

104 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

compliance is more complex. Although the DOG identifies
all data owned by a data subject, K9db needs to take the
correct actions on this data. For example, K9db must avoid
prematurely deleting jointly-owned data, and deletion must
cover backups outside the live database. K9db must also have
efficient ways to decide if a given database operation will
break compliance, e.g., by violating the no orphaned data
invariant, something that the DOG alone fails to provide.

K9db therefore introduces ownership as a first-class notion
into the storage layer. This makes it simple for K9db to handle
SARs, and to enforce invariants that must hold for compliance.
Specifically, K9db’s storage layer is organized around per-
data subject logical “micro-databases” (µDBs), such that each
µDB contains all of its data subject’s owned data. For jointly-
owned data, K9db stores copies of that data in the µDB of
every data subject that owns it.

This design has several advantages. First, it ensures data
deletion is correct relative to the DOG. When a data subject
requests to delete their data, it is sufficient to delete their µDB.
Data shared with other data subjects survives as copies in
the other µDBs. Second, this design provides an easy way to
check whether data is orphaned, as such data can only exist
outside of all data subjects’ µDBs. Third, this design lets K9db
use a per-data subject key to encrypt data in each µDB. This
simplifies deletion alongside external and replicated backups
of the data, as deleting the owner’s key makes all backups and
copies inaccessible (i.e., “crypto-shredding”).

5.1 Storage Layout and Logical µDBs

K9db determines the µDBs to store each row in using the
DOG. In a well-formed DOG, every table reaches at least one
data subject table via its outgoing ownership edges. K9db
splits the contents of such a table into different µDBs, each of
which contains the rows owned by a particular data subject,
and encrypts them with a key specific to that data subject.
A table also includes an orphaned data section that may be
used temporarily within sequences of operations (§5.5). A
data subject’s µDB therefore includes rows from every table
that stores data owned by them. Note that even though µDBs
store physical copies of rows that have multiple owners, they
are a logical abstraction and realized over a single underlying
physical datastore (e.g., RocksDB in our prototype).

Viewing the datastore as a whole, a previously single row in
a table may now be multiple rows due to copies being stored
in each owner’s µDB. The value of the primary key of that
row refers to all these copies. Internally, K9db identifies the
different copies using a pairing of the data subject identifier
(the value of its primary key in the data subject table) and the
value of the primary key in the row.

K9db maintains on-disk secondary indexes separate from
tables and µDBs, which K9db uses to execute queries effi-
ciently. K9db creates an on-disk index for each unique and
foreign key column and for the primary key. K9db on-disk
indexes differ from traditional database indexes in two key

aspects: they map keys to (µDB identifier, primary key), and
they point to all copies of any jointly-owned row that match
the indexed key. K9db creates a special index for the primary
key column(s) of owned tables, which maps the PK value to
data subject identifiers that own the corresponding row.

K9db stores tables unconnected to the DOG in the same
way as other databases. Such tables contain data that is not
owned by any data subject, e.g., all available tags in Lobsters
or all majors in a university database, and thus are outside any
µDB. Note that this is distinct from orphaned data, which are
rows without owners in tables that are connected to the DOG.

5.2 µDB Integrity

The storage layer maintains an important invariant for com-
pliance, µDB completeness: data owned by a data subject is
exactly identical to the data stored in their µDB.

To maintain µDB completeness, K9db must identify the
µDBs to insert new data into, and correctly apply application
updates that change who owns rows. Changes to the data
in a table may have cascading effects on who owns data in
dependent tables connected to this table via some ownership
path in the DOG. For example, changes to the member table in
ownCloud affect who owns records in the group table. K9db
utilizes the DOG to handle these situations correctly.

Inserting Data. When K9db receives an INSERT state-
ment, it uses the DOG to identify the owners of this data. In
particular, K9db analyzes the outgoing edges from the DOG
vertex for the affected table. For a direct ownership edge, the
data subject identifier is already present in the new row in the
form of a foreign key. K9db determines this by introspection
on the new row and without querying other tables. If an edge
indirectly leads to the data subject table, identifying the owner
becomes more complex. K9db can find the owner(s) by query-
ing the database along the transitive edges between the table
and the data subject. But such a query may be expensive—for
example, the DOG for the Shuup e-commerce application [53]
contains a chain of five edges from the payments table to
the owning data subject. Instead, K9db memoizes the query
by building and maintaining in-memory ownership indexes,
which essentially provide “shortcut” relations over the DOG
that point directly to the owning data subjects. In practice,
K9db can often avoid or reuse ownership indexes (§6.1).

Cascading Updates. INSERT, UPDATE, or DELETE state-
ments may have cascading effects on the ownership of records
in dependent tables. After applying such statements to their
target table, K9db identifies dependent tables from the DOG.
It then queries the rows in each dependent table that match
the updated row. K9db moves or copies the matched rows
between µDBs appropriately, and cascades again into any fur-
ther dependent tables. K9db requires no additional indexes to
perform this matching efficiently, as it can rely on standard
on-disk indexes over foreign keys’ source and destination
columns. In many cases, K9db avoids cascades via optimiza-
tions based on foreign key integrity (§6.1).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 105

5.3 Handling Subject Access Requests

K9db needs to handle two types of SARs: the right to access
and the right to erasure. K9db handles both with a similar
high level procedure: (i) K9db traverses the DOG to identify
all tables and edges connected to the data subject; (ii) K9db
finds the data owned by the data subject in their µDB; (iii)
K9db locates data accessed, but not owned, by the data subject
in other µDBs; and (iv) K9db performs anonymization as
specified by the developers in the schema.

For either type of request, K9db identifies the data subject’s
data by following paths in the DOG, starting from the data
subject table, and moving against incoming edges. A path that
consists solely of ownership edges signifies data owned by
the data subject, while paths that contain one or more access
edges reflect accessed data. K9db locates the relevant rows in
a table before moving on to any dependent tables. For every
incoming edge, K9db uses the rows it located in the parent
table to identify dependent rows in the dependent table. K9db
finds these either in the same µDB for ownership paths, or in
other µDBs using on-disk indexes for access paths.

After traversing an edge and retrieving data in its source
table, K9db selects the anonymization annotations in the
schema that apply to that edge. The anonymization anno-
tations specify the columns to anonymize (e.g., the sender
of a chat message). For access requests, K9db anonymizes
retrieved rows before sending them back to the client. On
deletion requests, K9db removes the data subject’s µDB from
the database, and anonymizes any remaining copies of the
data, which it locates in other µDBs using on-disk indexes.

5.4 Atomicity, Consistency, Isolation, and Durability

A single SQL statement may result in several underlying
operations over K9db’s storage, as it may update rows in
several µDBs or cascade over dependent tables. It is critical for
compliance that we ensure that these updates are all ACID, to
avoid data races that could lead to a non compliant state (e.g.,
by creating orphaned data, or breaking the µDB completeness
invariant). Therefore, K9db executes every SQL statement
as a single statement ACID transaction (similar to MySQL).
This includes all underlying operations over any µDBs and
all updates to on-disk secondary indices or the integrated in-
memory cache (§6.2). Our prototype does not support general
multi-statement SQL transactions yet (see §7).

K9db guarantees that concurrent SQL statements have re-
peatable reads isolation, which is the default in MySQL. Any
weaker isolation level is insufficient for compliance, as it can-
not guarantee that K9db’s compliance invariants hold in the
presence of concurrent updates.

5.5 Compliance Transactions

An application may itself perform operations that risk vio-
lating compliance. Consider the example from ownCloud
shown in Figure 9: 1 the application deletes user “A”’s
membership in group 1, of which “A” is the last remaining

uid gid
A 1
B 2
A 2

member

1
D

el
et

e

gid ...
1
2
2
1

group

A’s µDB
B’s µDB

Orphaned region

2
M

ov
e

3 Delete
START COMPLIANCE TX

1 DELETE FROM member WHERE uid=A AND gid=1;

2 K9db applies cascading effect;

gid=1 is orphaned

3 DELETE FROM group WHERE gid=1;

COMMIT COMPLIANCE TX

COMPLIANCE RESTORED

COMPLIANCE BROKEN

Figure 9: K9db’s compliance transactions help developers
check that the database is in a compliant state after multiple
operations (here, (1) deleting the last owner of a group, and
(3) then deleting the group). Without a compliance TX, K9db
would report an error instead of applying step (2).

member. This deletion from member has a cascading effect
on the dependent group table. Since the group with gid 1
no longer has any owners, K9db 2 moves it into the table’s
orphaned data region. This breaks compliance, as it violates
the DOG’s no orphaned data invariant. A correct application
must now perform some operation that restores compliance,
e.g., by deleting group 1 in a separate SQL operation, which
3 removes the orphaned row, restoring the invariant.

K9db supports this pattern with the idea of a compliance
transaction (CTX). A CTX wraps a set of operations that
may temporarily violate compliance, but commits only if the
database is back to a compliant state at the commit point.
Within a CTX, K9db stores orphaned data in orphaned re-
gions attached to each table. On subsequent operations that
reintroduce owners for this data, K9db migrates the rows from
the orphaned regions to the corresponding µDBs; if deleted,
K9db removes the data. At the end of a CTX, K9db ensures
that every record moved to the orphaned region during the
CTX has an owner again (or was deleted), and produces an
error to the developer otherwise.

Finally, K9db forbids statements that write to the orphaned
region unless they are part of a CTX. In particular, step 1
in Figure 9 will error unless contained in a CTX. This means
that developers need to modify applications that contain such
patterns to use CTXs when necessary. Requiring such limited
modification is desirable, as disallowing compliance-breaking
changes outside of CTX helps developers identify issues and
forces them to fix buggy and incompliant applications. For
example, K9db would reject a buggy version of ownCloud
that does not clean up groups with no members 3 . Introduc-
ing a CTX allows an application to have benign temporary
incompliance; if K9db instead required applications to only

106 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

perform operations that move the database between compliant
states (e.g., deleting groups before deleting their last member),
it would likely require more substantial rewrites.

CTX are different from regular SQL transactions, which
serve to ensure consistency under concurrent execution. CTX
are lightweight and required for compliance, while SQL trans-
actions are expensive and web applications often (but not
always) avoid them. In a privacy-compliant database with
SQL transactions, each such transaction must also be a CTX.

6 Query Execution
When K9db executes a query, it must identify the µDBs af-
fected to locate the relevant rows. Depending on the operation,
this may involve finding one or all copies of shared rows.

Queries that refer to a single table, such as DELETE and
UPDATE statements, and most SELECT queries issued by web
applications (e.g., point lookups), run directly against K9db’s
µDBs with the aid of on-disk indexes. K9db analyzes the
columns that appear in the WHERE condition of the query, and
selects the index that matches the most columns. Like other
databases, K9db finds all the rows that may match the query
using the selected index, and then filters these rows with any
remaining columns. If no index matches, K9db runs a scan
over the table. Developers may create additional indexes using
CREATE INDEX, similar to traditional databases.

When data has multiple owners, an index may refer to
multiple copies of the same row. For DELETE and UPDATE,
K9db atomically operates over all these copies, ensuring that
all copies are consistent. K9db may need to remove or add
some of the affected rows from/to µDBs, and may need to cas-
cade into dependent tables as described in §5.2. For SELECT
queries, K9db identifies a single copy of each matching row
and skips any remaining index entries for other copies. This
avoids overheads for deduplicating copies of the row.

K9db serves some complex SELECT queries from material-
ized view, described in §6.2.

6.1 Optimizations

K9db speeds up query execution and reduces its memory
footprint with a set of optimizations designed to avoid deep
cascades and to reduce the number of in-memory ownership
indexes (§5.2) required. Some of these optimizations rely
on foreign key integrity, which K9db enforces (like many
other databases) to prevent application operations that result
in dangling foreign keys. With FK integrity, rows cannot be
inserted into a table if they contain references to non-existent
rows in a destination table, and rows in the destination table
cannot be deleted as long as source table rows refer to them.

Avoiding Cascades. K9db needs to cascade into depen-
dent tables along incoming DOG edges to update dependent
rows affected by a write (i.e., those owned by a modified row).
But FK integrity guarantees that no such rows exist when
K9db handles INSERT and DELETE queries to a table T that
is the destination of a FK from a dependent table. This lets

K9db skip cascades along T ’s incoming DOG edges if the
edge is in FK direction; otherwise, K9db must cascade.

Ownership Indexes. K9db relies on two techniques to
reduce the number of ownership indexes. First, multiple in-
coming DOG edges that require an ownership index and point
to the same column of a table (usually the primary key) may
reuse the same index. Second, K9db omits ownership indexes
for edges in the DOG that correspond to OWNS annotations,
such as the edge from group to member in ownCloud. These
edges point in opposite direction to the underlying foreign
key. FK integrity ensures that a row must exist at the source
of such an edge (e.g., group) before any rows referring to it
can be inserted to the destination table (e.g., member). Hence,
K9db always inserts new rows from the source table into the
orphaned region, and defers moving them to the correct µDB
to future inserts into destination tables in the DOG (which
must cascade), as discussed in §5.5. These optimizations, for
example, help K9db create only one ownership index for Lob-
sters (which gets re-used three times), and avoid the need for
any ownership indexes in ownCloud.

Queries With Inlined Owners. SQL Statements some-
times directly refer to the owner of their target rows, e.g., by
constraining a foreign key that corresponds to an ownership
edge in the DOG. Queries that fit this pattern are common
in the web applications: e.g., in Lobsters, SELECT * FROM
stories WHERE author = ? selects stories by their author,
which is an annotated foreign key to users. K9db detects
this situation by statically analyzing the WHERE condition and
determines the relevant µDB without an on-disk index lookup.

6.2 Materialized Views

K9db serves complex SELECT queries, such as joins, aggre-
gations, and those that reorder data, from materialized views.
This design makes sense for two reasons. First, it is simple
and avoids the need to engineer a sophisticated query plan-
ner that understands the nuances of ownership and indexes
to efficiently execute these queries over K9db’s µDBs. Sec-
ond, developers often cache the results of complex SELECT
queries in external systems (e.g., memcached). Privacy com-
pliance while using an external cache requires setting appro-
priate expiration policies for the cache [59, §4.5] or explicit
invalidation of cache entries related to a data subject if they
request deletion of their data. This can be painful for develop-
ers and may require manually tracking metadata, e.g., when
caching aggregates over many data subjects’ data. Instead,
K9db provides an integrated privacy-compliant cache using
materialized views.

When K9db receives a complex SELECT query for the first
time, it creates a materialized view and serves further in-
stances of the query from it, until the view is removed or
times out. K9db keeps the materialized views up to date via
an incremental, streaming dataflow computation triggered by
writes to µDBs, as well as µDB deletion. This makes inserts,
updates, and deletes more expensive, but speeds up reads.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 107

K9db updates the materialized views atomically prior to ac-
knowledging the corresponding operation to the client. This,
along with our storage layer, ensures repeatable reads isola-
tion for concurrent operations whether cached or not.

K9db’s ownership indexes are special-case materialized
views, maintained with the same dataflow infrastructure.

7 Implementation
Our K9db prototype consists of 35k lines of C++, 500 lines
of Rust, and 2k lines of Java. It relies on RocksDB for µDB
storage, on Apache Calcite [6] for query planning, and on
libsodium [15] for encryption. Our implementation is similar
to the MyRocks MariaDB storage engine [30], but extends it
with compliance and µDB capabilities.

MySQL Compatibility Layer. K9db exposes a MySQL
binary protocol interface, so unmodified applications can treat
K9db as a MySQL server. The interface to K9db’s materi-
alized views is primarily through prepared SQL statements:
when an application registers a prepared statement, K9db
creates a view if necessary and serves future executions of
the prepared statement from it. Developers can also create
additional views manually.

Storage. K9db relies on RocksDB for persistent data
storage. Each table in the schema is a RocksDB column fam-
ily. Rows in K9db are keyed by a combination of their owner
and primary key, to uniquely identify each owner’s copy of a
row. Our prototype stores rows ordered by their owner identi-
fier, and uses that identifier as a RocksDB prefix. This allows
it to extract and delete µDBs using RocksDB prefix itera-
tors. Our prototype creates and maintains on-disk indexes as
RocksDB column families, and formats their content to allow
writes to retrieve all the copies of a row, and reads to retrieve
a single arbitrary copy, skipping the rest. Like MySQL, K9db
creates indexes for primary, unique, and foreign keys.

Encryption at Rest. K9db uses hardware-accelerated
AES256-GCM to encrypt all data in a µDB with the key of its
owner. The key (µDB identifier, primary key) associated with
every row is encrypted deterministically with a global key to
allow consistent lookup. This has leakage, but is sufficient to
satisfy the GDPR’s “security of processing” requirement (Art.
32), which is often interpreted to require encryption of data
at rest [4]. It is possible to use blind indexes [5] which also
allow consistent lookup but reduce leakage. K9db’s design
is independent of the particular encryption scheme used, and
can benefit from future advances in searchable encryption.
Information in materialized views and secondary indexes re-
mains unencrypted, but K9db deletes it when deleting a user’s
data. K9db destroys the decryption key when a user removes
their account, making any remaining backups inaccessible.

ACID. K9db executes each application SQL statement
in a RocksDB transaction, which is based on row-level lock-
ing. This includes all updates to secondary indices (similar
to MyRocks) and all µDBs and cascade operations. As in
MyRocks, K9db serves reads from a consistent RocksDB

snapshot. K9db also updates all relevant materialized views
prior to committing. Unlike MyRocks, K9db enforces foreign
key integrity and appropriately locks FK targets during execu-
tion. Overall, this ensures that concurrent SQL statements are
atomic and consistent with repeatable reads isolation, which
is the default in MySQL and MyRocks.

View Updates. K9db’s materialized view updates fol-
low a standard design akin to differential dataflow [32, 35]
and Noria [18]. Each table in the schema is associated with
an input vertex in the dataflow graph, and when K9db per-
forms updates to a table, it injects the updates into its dataflow
input vertex. The dataflow processes the updates through a
sequence of operators to derive an incremental update to the
materialized view (or secondary index), and applies this up-
date. Dataflow operators are stateless (e.g., projections, filters,
unions) or stateful (e.g., joins, aggregations). K9db’s materi-
alized views are indexed for ordered and unordered lookups.

Limitations. Our prototype lacks support for general,
multi-statement SQL transactions. These are rare in web ap-
plications, and can be supported using existing RocksDB
primitives and techniques for versioned dataflow process-
ing [31, 35]. While our prototype does not yet support schema
changes, RocksDB is schema-oblivious, and our prototype’s
storage layer could be extended to support schema changes
with some engineering effort, using similar techniques to My-
Rocks. Finally, K9db’s dataflow graph operators sometimes
store copies of a record; by using a record pool, our proto-
type’s memory footprint could be reduced.

8 Evaluation
We evaluate K9db with three applications, Lobsters [27], own-
Cloud [43], and Shuup [53]. We ask three questions:

1. What is K9db’s impact on end-to-end application perfor-
mance? (§8.1)

2. What is the impact of K9db’s design features on perfor-
mance? (§8.2)

3. What effort by application developers does using K9db
require? (§8.3)

We run experiments on a Google Cloud n2-standard-16
VM, storing databases on a local SSD. Our baselines use
MariaDB v10.6.5 (a MySQL fork) with the RocksDB-based
MyRocks storage engine, and memcached v1.6.10.

8.1 Application Performance

We start by analyzing K9db’s performance with two applica-
tions: Lobsters and ownCloud.

8.1.1 Lobsters

Lobsters (lobste.rs) is an open-source discussion board, simi-
lar to Reddit. Lobsters currently lacks GDPR compliance [26],
and has a schema that consists of 19 tables, which store posts,
comments, nested replies, upvotes, invitations and other in-
formation. We annotated this schema for K9db with three
DATA_SUBJECT tables, 14 OWNED_BY, one ACCESSES, and

108 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lobste.rs

Read story
Frontpage

User profile

Comments

Recent stories

Vote on comment

Vote on story

Post comment

Post story

Lobsters endpoint

0

10

20

30

L
at

en
cy

[m
s]

MariaDB
K9db
K9db (unencrypted)

Figure 10: K9db matches or beats MariaDB’s median (solid)
and 95th percentile (shaded) latency on the Lobsters workload,
and encryption has low overheads except on the “Comments”
endpoint, which reads thousands of rows in the tail.

two anonymization annotations (details in §8.3). We use an ex-
isting open-source, open-loop benchmark for Lobsters based
on public workload statistics [19]. The benchmark models ten
endpoints in the Lobsters webapp that correspond to different
pages and each issue between six and fifteen SQL queries,
most of which are reads. We load the database with data
that models the current production Lobsters deployment (15k
users, 100k stories, 313k comments, and 416k votes) [19].
K9db therefore maintains 15k logical µDBs in this experi-
ment. We compare MariaDB, and K9db with and without
data encryption. (Encryption with per-user keys isn’t possible
in the MariaDB baseline.) Lobsters on most requests runs an
expensive query to determine the user’s recently read stories.
This query joins four tables, including the (large) stories and
comments tables. This query is slow in MariaDB (≈30ms)
and dominates its latency for all endpoints, while K9db serves
this query from a materialized view. To make the comparison
fair, we remove the expensive query in the MariaDB baseline.
A good result for K9db would show latencies comparable to
MariaDB for all endpoints, and a low overhead for encryption.

Figure 10 shows the results. Endpoints that mostly read
(on the left) benefit from K9db’s materialized views and are
up to 2.1× faster than in MariaDB, but endpoints with many
writes (on the right) are comparable in both systems. This
makes sense, as K9db performs similar work to MariaDB,
except that some read queries are served from materialized
views, and writes need to be encrypted and must update any
corresponding views. K9db without encryption is on-par with
K9db in most endpoints. For the “Comments” endpoint, K9db
is 2.1× slower than MariaDB and 1.5× slower than K9db
without encryption in the 95th percentile. This happens when
the endpoint retrieves comments and votes on a popular story
from the database, which requires K9db to decrypt thousands
of records. Developers could manually add materialized views
in K9db to speed up this endpoint, at the cost of additional
memory. Other endpoints read fewer rows or rely on (unen-

10k 20k 30k 50k 60k 75k 100k
Number of users

10

20

L
at

en
cy

[m
s]

K9db

Figure 11: K9db’s 95th%ile latency on the Lobsters work-
load remains stable as the number of users (and thus, µDBs)
increases. Each bar shows a distribution of endpoint latencies.

crypted) materialized views. This shows that K9db achieves
good performance for a practical web application, and that
encryption has acceptable cost. All further experiments show
results for K9db with encryption enabled.

We chose the load in this experiment to saturate the hard-
ware for the MariaDB baseline (≈ 760 pages/second, which
results in 10k queries/second) and used the same load for
K9db. K9db supports a up to a 4.8× higher load with-
out latency degradation, thanks to its caching for complex
queries via materialized views; we compare to a caching
MariaDB+memcached baseline below.

Subject Access Requests. We now measure the time
required by K9db to satisfy SARs. We issue an access and a
deletion request for each of the top 1000 users with most data
in the database, and run these requests sequentially through
K9db SARs API. Performance of SARs is secondary as they
are rare operations and can be executed asynchronously. A
good result shows that K9db handles SARs correctly (which
it does by construction) and within reasonable time. In our
experiment, K9db on average takes 1 ms to retrieve and 45
ms to delete the correct data for a user.

Scalability. We designed K9db to have performance in-
dependent of the number of µDBs. We confirm this using the
Lobsters benchmark with different numbers of users. Adding
users increases the number of µDBs and the amount of data
in the database, but keeps the average amount of data per
user constant. A good result for K9db would show latencies
remaining constant as the number of users grows.

Figure 11 shows the results as box-and-whisker plots over
the nine endpoints (i.e., the bottom and top whiskers are the
fastest and slowest endpoints, respectively). K9db’s latency
remains constant as the number of users—and, consequently,
µDBs—grows, because K9db satisfies queries either from
µDBs directly, via indexes, or from materialized views. These
results confirm that K9db’s logical µDB partitioning is practi-
cal for applications with large numbers of users.

Comparison to Caching Baseline. In the previous
experiment, K9db had an unfair advantage over MariaDB:
it serves some data from materialized views, while Mari-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 109

Reads Writes
0.0

0.5

1.0

L
at

en
cy

[m
s]

MariaDB
MariaDB+Memcached
K9db

Figure 12: K9db matches MariaDB+memcached on a com-
mon Lobsters query (solid: median; shaded: 95th%-ile).

aDB recomputes queries every time. We now use one
common query from Lobsters to compare three setups:
(i) standalone MariaDB; (ii) MariaDB with an in-memory
cache (“MariaDB+Memcached”); and (iii) K9db. The Mari-
aDB+Memcached setup is a demand-filled cache [37]: writes
invalidate the cached query result in memcached, and the next
read re-runs the query against the database when it misses in
memcached. In K9db, writes update views via its dataflow
graph. We generate a skewed workload with a Zipfian dis-
tribution (s = 0.6) where 95% of requests in the benchmark
read the details of a random story and its vote count, and 5%
of requests insert new votes. A good result for K9db would
show competitive read performance with memcached and low
overheads on write processing (since K9db does more work
on writes); and MariaDB+Memcached and K9db would show
lower latencies than MariaDB alone.

Our results are in Figure 12. For reads, Mari-
aDB+Memcached and K9db are on par in the median,
but K9db has a lower 95th percentile latency as K9db
updates the cache via streaming dataflow, while Mari-
aDB+Memcached queries the database on a read miss. All
systems perform similarly on writes, as this query requires
little dataflow update work in K9db and the caching baseline
must make an extra RPC to invalidate memcached.

Memory Overhead. K9db’s materialized views and
ownership indexes add memory overhead compared to a tra-
ditional database. We measure this cost and compare it to
a caching setup with memcached. We consider a setup that
caches query results that developers would typically store in
memcached, such as the output of expensive joins and aggre-
gates. These queries are identical to the ones that K9db caches
using materialized views. The experiment caches query re-
sults with the query parameters (? in prepared statements) as
the key, and the concatenated records as the value. K9db stores
additional in-memory data for internal dataflow state and own-
ership indexes. A good result for K9db would therefore show
moderate overheads compared to MariaDB+Memcached.

The Lobsters database is 61 MB on disk, and a typical
memcached caching approach stores an additional 97 MB of
in-memory state. K9db’s memory footprint is 197 MB (3.3×
DB size, and 2× memcached’s footprint), which includes

5

7

9

View files
Share w/ user

Share w/ group Get Update

0.3

1.0

1.7

L
at

en
cy

[m
s]

MariaDB
MariaDB+Memcached
K9db

Figure 13: K9db matches the baseline setups’ performance on
the ownCloud workload (solid: median; shaded 95th%-ile).

6.5MB for the stories ownership index, and 56 MB for caching
the expensive query we removed from MariaDB (without this
query, K9db’s overhead is 2.4× DB size/1.5× memcached).
The overhead comes from K9db’s dataflow state, which allows
K9db to incrementally update materialized views.

8.1.2 ownCloud

ownCloud is a popular open-source application that allows
users to upload files and share them with other users [43].
Recall ownCloud’s schema (Figure 5): each file has a single
owner—the original uploader—but users can share files with
other users and with groups. Files shared with a group are
accessible to all members of the group—i.e., a many-to-many
relationship between users and files (a pattern absent in Lob-
sters). We measure five common queries: (i) listing the files
a user can access (“view files”); (ii) sharing a file with an-
other user (“share with user”); (iii) sharing a file with a group
(“share with group”); (iv) retrieving a file using its primary
key (“Get“); and (v) updating the retrieved file (“Update“).
Our setup uses 100k users who each own three documents;
each document is shared uniformly at random with three users
and two groups; and each group has five members. Our work-
load is 95% read and 5% writes, equally split among the two
types of sharing and file updates. Reads and writes target
users drawn from a Zipf distribution (s = 0.6). We batch ten
reads and measure the per-request latency for the same setups
as in the previous experiment. A good result for K9db would
show comparable read latency to MariaDB+Memcached and
low overheads on writes.

Figure 13 shows the results. “View files”, which returns all
files shared with a user (directly or via a group), involves five
tables and three joins, which MariaDB executes on every read.
MariaDB+Memcached and K9db serve precomputed results
from memory instead, which is fast. The 95th percentile for
MariaDB+Memcached suffers because it queries MariaDB
on a cache miss, which occurs when a query retrieves files
of user(s) invalidated by a previous write. K9db is fast and
stable because it updates the views via dataflow on writes. All
systems perform similarly for the two share queries—a good
result for K9db, as it also updates views.

110 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

100

250

400

View files
Share w/ user

Share w/ group Get Update

2
4
6

L
at

en
cy

[m
s]

Physical separation (1k users)
+ Logical µDBs

+ Accessors
+ Views

Figure 14: K9db matches the baseline setups’ performance on
the ownCloud workload (solid: median; shaded 95th%-ile).

8.2 K9db Design Drill-Down

To evaluate the impact of design decisions central to K9db,
we run ownCloud workload from the previous experiment
against versions of K9db that disable key components. We
start with K9db set up to naïvely store every µDB in its own
database (without cross-µDB indexes); without support for
accessor edges in the DOG; and without materialized views
(i.e., queries always run over data in RocksDB). This guar-
antees strict separation of user’s data, a solution sometimes
adopted for GDPR compliance in practice [46, 47], although
this lacks support for shared data (accessors) or anonymiza-
tion. We then add separation into logical µDBs (“+ Logical
µDBs”), accessor support (“+ Accessors”), and materialized
views (“+ Views”). A good result would show that these fea-
tures improve K9db’s performance.

Figure 14 shows the results. The naïve µDB design is very
slow because every query that K9db cannot statically resolve
to the affected µDBs requires scanning all µDBs; we only
ran this setup with 1k users (vs. 100k for the others). Mak-
ing µDBs a logical abstraction much improves performance,
justifying our design choice. Accessor-typed DOG edges are
important for expressivity: without them, ownCloud would
be restricted to a policy where users jointly own shared files.
In addition, accessor support reduces the number of copies
stored and the fan-out of writes, which slightly reduces query
latency. Finally, materialized views improve latency of the
“View files” query by 5×, as the results are cached in memory.
Since the view update is cheap, writes do not suffer much
overhead. The runtime of “View files” without no views is
comparable to the runtime of the same query in MariaDB
(Figure 13). This illustrates that views are beneficial, but not
essential to good performance in K9db.

8.3 Schema Annotation Effort

To understand the developer effort K9db’s schema annotations
require, we now consider annotations for three applications
(Lobsters, ownCloud, and Shuup [53]) in detail,

Lobsters. The Lobsters schema contains 19 ta-
bles. To use K9db, we had to annotate the schemas
for eight tables. Three tables (users, invitations, and

invitation_requests) contain data subjects. We anno-
tated two FKs in each of hats, messages, and moderations
with OWNED_BY to model joint ownership. We annotated 8
other tables with a single OWNED_BY. For example, votes
has multiple foreign keys that lead to the users table (one
direct, two indirect), and thus requires a single OWNED_BY an-
notation to disambiguate and ensure votes are stored with the
voter, rather than the author of the story or comment voted
on. Finally, we used one ACCESSES in taggings, and two
anonymization rules in messages, as shown in Figure 4.

ownCloud. ownCloud’s schema has 51 tables. We fo-
cused on the file sharing core, which consists of six tables
and has the most complex relationships. In addition to the
annotations in Figure 5, we added an OWNS annotation to the
FK in the share table that points to the corresponding file in
the file table (omitted from Figure 5 for brevity).

ownCloud’s original schema “overloads” the share_with
column to either hold a user or a group ID, and includes a
share_type column to distinguish these cases. K9db could
support such de-normalized schema with more advanced con-
ditional annotations; for our benchmarks, we modified the
schema to track users and groups in separate columns.

Shuup. Shuup [53] is an open source e-commerce plat-
form and supports customers with accounts, guests who do
not have accounts, and shop owners, all of whom have GDPR
rights. The Shuup code lets users request their account to be
anonymized, but retains information for tax compliance, e.g.,
payment data, customers’ countries of residence, and tax ID
numbers, a form of data retention provided for in the GDPR.

Shuup provides GDPR compliance via a manually-
implemented module with 4k lines of Python code (2.7k lines
of implementation and 1.3k lines of tests), developed in 137
commits over three years. At the time of writing, Shuup’s
anonymization behavior is inconsistent; it only anonymizes
default shipping and billing addresses, but retains previous
addresses in cleartext in the mutable_address table [55].
Moreover, downloading data for a user is not supported [54].

We implemented Shuup’s anonymization policy in K9db
using all annotations (Figure 3) over 17 of Shuup’s 278 tables.
We annotate personcontact with DATA_SUBJECT. This ta-
ble stores natural persons, and has FKs to their contact in-
formation (in contact) and their logins (in auth_user) if
they have accounts. Thus, personcontact contains users
with and without accounts, i.e., guests. Using K9db, Shuup
correctly anonymizes data, lets users download the data and
fixes the bug of not anonymizing previous default addresses.

Shuup’s schema has several tables that might correspond
to data subjects. K9db’s EXPLAIN COMPLIANCE helps devel-
opers understand that they need to annotate personcontact.
An incompliant (but plausible) alternative would be to an-
notate auth_user, the login details table. This results in
contact being unconnected to the DOG, as there are no
foreign keys to auth_user. The personcontact table has
such a foreign key, but it is nullable (e.g., for guests who lack

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 111

Application Tables
Data

Subject
Owner Access Anon

Commento [12] 12 3 8 1 3
ghChat [1] 6 1 7 2 4

HotCRP [22] 26 2 15 10 7
Instagram
clone [50]

19 1 18 1 0

Mouthful [25] 3 1 1 0 0
Schnack [48] 5 1 1 0 0
Socify [34] 19 1 10 0 0

Figure 15: K9db requires few DATA_SUBJECT, ownership
(OWNED_BY and OWNS), access (ACCESSED_BY, ACCESSES),
and ANON annotations to support real web applications.

accounts), and thus some of its rows will be stored in µDBs
and others in the orphaned region. EXPLAIN COMPLIANCE
helps developers identify and rectify these issues:

1 Table "contact": GLOBAL
2 [Compliance Warning] Column "email" suggests personal

data, but the table is not connected to any owners.
3 Table "personcontact": in µDB for auth_user.id
4 [Compliance Warning] Table has owners, but nullable

foreign key may prevent correct deletion of data.

A developer might also annotate contact with
DATA_SUBJECT, but that table includes entries for cus-
tomers and companies. Annotating it makes companies into
data subjects, which duplicates company-related tables across
µDBs. EXPLAIN COMPLIANCE also alerts developers to this.

Other Applications. Our schema annotations were suf-
ficient to express reasonable compliance policies for seven
additional applications (Figure 15). We briefly highlight sev-
eral interesting patterns in these applications.

In ghChat [1], a chat application for GitHub, and the Insta-
gram clone [50], a group is owned exclusively by its admin
and accessed by its members. This is unlike ownCloud, which
lacks group admins and has members jointly own the group.

Mouthful [25] is a commenting service that embeds in a
host application (e.g., a blog) to allow users to comment on
the host content (e.g., a blog post). Mouthful has no notion of
users; instead, the host application provides a string that rep-
resents the user identity alongside the comment they posted.
We added a DATA_SUBJECT table to store user identifiers, and
created a FK constraint from the Comment table’s author
column to it.

Finally, the HotCRP [22] review system associates data
subjects to papers via a many-to-many PaperConflict table.
The table has a conflictType column that specifies the
relationship, such as “co-author” or “institutional conflict”.
While this schema is normalized in the traditional SQL sense,
it is not normalized for ownership: rows with the co-author
type signify ownership, while other conflict types do not imply
any ownership or access rights over the paper. We resolved

this by adding a new PaperAuthors table that only stores
authorship associations, and refer to papers from it using
OWNS. We reserve the existing PaperConflict to record
other conflict types with an un-annotated reference to papers.

Migrating Applications to K9db. We identify some
common challenges when migrating applications to K9db.
First, annotating an application schema requires knowledge
of the application functionality and its compliance policy, but
also summarizes the policy in an easy-to-maintain way along-
side the schema. Many web applications also lack explicit
FK constraints in their schema; developers must identify the
columns that act as implicit FKs and annotate them if needed.

Second, applications often have schemas that are not
normalized in the traditional SQL sense (e.g., ownCloud’s
share_with) or with regards to ownership (e.g., HotCRP’s
PaperConflict). Developers must normalize these schemas
by introducing new columns or tables, and apply the corre-
sponding changes to the application code. K9db could support
such schemas via new annotations that condition on other
columns, but this would complicate the annotation language
and DOG model. Instead, K9db guides developers to good,
normalized schema designs.

Finally, applications with variable ownership (e.g., own-
Cloud, Shuup, HotCRP) often have endpoints that temporarily
orphan data. Developers must wrap such endpoints in com-
pliance transactions in order to use K9db. This modification
is relatively unobtrusive, and K9db can be configured to au-
tomatically wrap sessions in a CTX. This alleviates the need
to manually introduce CTX to applications that open new
sessions for each endpoint or sequence of operations, but is
not suitable for applications with long-lived sessions.

9 Conclusion
K9db is a new database system that achieves compliance with
the requirements of privacy laws by construction.

K9db models data ownership to capture the ownership
patterns of real world applications, and handles requests
for access and deletion correctly. K9db matches or exceeds
the performance of a widely-used database and manual
caching setup, and supports the privacy requirements of real-
world applications. K9db is open-source and available at
https://github.com/brownsys/K9db.

Acknowledgements
We are grateful to Deniz Altınbüken, Hannah Gross, Frans
Kaashoek, Franco Solleza, Lillian Tsai, and the ETOS group
at Brown for helpful feedback on drafts of this paper. Feed-
back from the anonymous reviewers and our shepherd, Nat-
acha Crooks, greatly improved the paper. We also thank
Vedant Gupta, Mithi Jethwa, and Colton Rusch for contri-
butions to K9db’s implementation.

This research was supported by NSF awards CNS-2045170
and DGE-2039354, by a Google Research Scholar Award,
and by a gift from VMware.

112 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brownsys/K9db

References
[1] aermin. ghChat (react version). URL: https :

/ / github . com / aermin / ghChat (visited on
05/02/2021).

[2] Archita Agarwal, Marilyn George, Aaron Jeyaraj, and
Malte Schwarzkopf. “Retrofitting GDPR Compliance
onto Legacy Databases”. In: Proceedings of the VLDB
Endowment 15 (Dec. 2021).

[3] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J.
Freedman. “Blockstack: A Global Naming and Storage
System Secured by Blockchains”. In: Proceedings of
the 2016 USENIX Annual Technical Conference (ATC).
Denver, Colorado, USA, June 2016, pages 181–194.

[4] Amazon Web Services. Navigating GDPR Compli-
ance on AWS: Encrypt Data at Rest. URL: https:
//docs.aws.amazon.com/whitepapers/latest/
navigating-gdpr-compliance/encrypt-data-
at-rest.html (visited on 05/05/2021).

[5] Scott Arciszewski. Building Searchable Encrypted
Databases with PHP and SQL. May 2017. URL:
https : / / paragonie . com / blog / 2017 / 05 /
building-searchable-encrypted-databases-
with-php-and-sql.

[6] Edmon Begoli, Jesús Camacho-Rodríguez, Julian
Hyde, Michael J. Mior, and Daniel Lemire. “Apache
Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources”.
In: Proceedings of the 2018 International Conference
on Management of Data. Houston, Texas, USA, 2018,
221–230.

[7] National Congress of Brazil. Lei Geral de Proteção
de Dados [Brazilian General Data Protection Law].
English translation by Ronaldo Lemos, Daniel Douek,
Sofia Lima Franco, Ramon Alberto dos Santos and
Natalia Langenegger. URL: https://iapp.org/
media / pdf / resource _ center / Brazilian _
General_Data_Protection_Law.pdf (visited on
06/11/2020).

[8] Lukas Burkhalter, Nicolas Küchler, Alexander Viand,
Hossein Shafagh, and Anwar Hithnawi. “Zeph: Cryp-
tographic Enforcement of End-to-End Data Privacy”.
In: Proceedings of the 15th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).
Virtual Event, July 2021, pages 387–404.

[9] California Attorney General. Privacy Enforcement Ac-
tions. URL: https : / / oag . ca . gov / privacy /
privacy - enforcement - actions (visited on
05/06/2021).

[10] California Legislature. The California Consumer Pri-
vacy Act of 2018. June 2018. URL: https://leginfo.
legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180AB375.

[11] Tej Chajed, Jon Gjengset, M. Frans Kaashoek, James
Mickens, Robert Morris, and Nickolai Zeldovich. Oort:
User-Centric Cloud Storage with Global Queries.
Technical report MIT-CSAIL-TR-2016-015. MIT
Computer Science and Artificial Intelligence Labora-
tory, Dec. 2016.

[12] Adhityaa Chandrasekar. Commento. URL: https :
/ / github . com / adtac / commento (visited on
05/02/2021).

[13] Andrew Chung, Subru Krishnan, Konstantinos Karana-
sos, Carlo Curino, and Gregory R. Ganger. “Un-
earthing inter-job dependencies for better cluster
scheduling”. In: Proceedings of the 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). Banff, Canada, Nov. 2020, pages 1205–
1223.

[14] Katriel Cohn-Gordon, Georgios Damaskinos, Divino
Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs,
Daniel Obenshain, Paul Pearce, and Ioannis Papa-
giannis. “DELF: Safeguarding deletion correctness
in Online Social Networks”. In: Proceedings of the
29th USENIX Security Symposium (USENIX Security).
Banff, Canada, Aug. 2020.

[15] Frank Denis. The Sodium cryptography library. 2013.
URL: https://download.libsodium.org/doc/.

[16] Facebook. Permanently Delete Your Facebook Ac-
count. URL: https://www.facebook.com/help/
224562897555674 ? helpref = faq _ content (vis-
ited on 05/21/2023).

[17] Thailand Government Gazette. Personal Data Pro-
tection Act. Unofficial English translation. URL:
https : / / thainetizen . org / wp - content /
uploads/2019/11/thailand-personal-data-
protection - act - 2019 - en . pdf (visited on
06/11/2020).

[18] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M.
Frans Kaashoek, and Robert Morris. “Noria: dynamic,
partially-stateful data-flow for high-performance web
applications”. In: Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI). Carlsbad, California, USA, Oct.
2018, pages 213–231.

[19] Peter Bhat Harkins. Lobste.rs access pattern statis-
tics for research purposes. Mar. 2018. URL: https:
//lobste.rs/s/cqnzl5/lobste_rs_access_
pattern_statistics_for#c_hj0r1b (visited on
03/12/2018).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 113

https://github.com/aermin/ghChat
https://github.com/aermin/ghChat
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://docs.aws.amazon.com/whitepapers/latest/navigating-gdpr-compliance/encrypt-data-at-rest.html
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://paragonie.com/blog/2017/05/building-searchable-encrypted-databases-with-php-and-sql
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://github.com/adtac/commento
https://github.com/adtac/commento
https://download.libsodium.org/doc/
https://www.facebook.com/help/224562897555674?helpref=faq_content
https://www.facebook.com/help/224562897555674?helpref=faq_content
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://thainetizen.org/wp-content/uploads/2019/11/thailand-personal-data-protection-act-2019-en.pdf
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b
https://lobste.rs/s/cqnzl5/lobste_rs_access_pattern_statistics_for#c_hj0r1b

[20] PRS Legislative Research India. The Personal Data
Protection Bill, 2019. URL: https://www.prsindia.
org/billtrack/personal- data- protection-
bill-2019 (visited on 06/11/2020).

[21] Zsolt István, Soujanya Ponnapalli, and Vijay Chi-
dambaram. “Software-Defined Data Protection: Low
Overhead Policy Compliance at the Storage Layer is
within Reach!” In: Proceedings of the VLDB Endow-
ment 14.7 (Mar. 2021), pages 1167–1174.

[22] Eddie Kohler. HotCRP conference review software.
URL: https://github.com/kohler/hotcrp (vis-
ited on 07/22/2020).

[23] Tim Kraska, Michael Stonebraker, Michael Brodie,
Sacha Servan-Schreiber, and Daniel Weitzner. “Schen-
genDB: A Data Protection Database Proposal”. In: Pro-
ceedings of the 2019 VLDB Workshop Towards Poly-
stores that manage multiple Databases, Privacy, Secu-
rity and/or Policy Issues for Heterogenous Data (Poly).
Los Angeles, California, USA, Aug. 2019, pages 24–
38.

[24] Maxwell Krohn, Alex Yip, Micah Brodsky, Robert
Morris, and Michael Walfish. “A World Wide Web
Without Walls”. In: Proceedings of the 6th Workshop
on Hot Topics in Networks (HotNets). Atlanta, Georgia,
USA, Nov. 2007.

[25] Viktoras Kuznecovas. Mouthful. URL: https : / /
github.com/vkuznecovas/mouthful (visited on
05/02/2021).

[26] Lobste.rs. Privacy: Lobsters. URL: https://lobste.
rs/privacy (visited on 05/01/2021).

[27] Lobsters Developers. Lobsters News Aggregator. Mar.
2018. URL: https : / / lobste . rs (visited on
03/02/2018).

[28] Connor Luckett, Andrew Crotty, Alex Galakatos, and
Ugur Cetintemel. “Odlaw: A Tool for Retroactive
GDPR Compliance”. In: Proceedings of the 37th IEEE
International Conference on Data Engineering (ICDE).
Chania, Greece, Apr. 2021.

[29] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke,
Maged Zereba, Sarven Capadisli, Abdurrahman
Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. “A
Demonstration of the Solid Platform for Social Web
Applications”. In: Proceedings of the 25th Interna-
tional Conference Companion on World Wide Web
(WWW). Montréal, Québec, Canada, 2016, pages 223–
226.

[30] MariaDB. MyRocks – MariaDB Knowledge Base. URL:
https://mariadb.com/kb/en/myrocks/ (visited
on 12/06/2022).

[31] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf,
and Mothy Roscoe. “Shared Arrangements: practical
inter-query sharing for streaming dataflows”. In: Pro-
ceedings of the VLDB Endowment 13.10 (June 2020),
pages 1793–1806.

[32] Frank McSherry, Derek G. Murray, Rebecca Isaacs,
and Michael Isard. “Differential dataflow”. In: Pro-
ceedings of the 6th Biennial Conference on Innovative
Data Systems Research (CIDR). Asilomar, California,
USA, Jan. 2013.

[33] Meta Platforms, Inc. RocksDB: A persistent key-value
store for fast storage environments. URL: http://
rocksdb.org/ (visited on 12/10/2022).

[34] Sudharsanan Muralidharan. Socify: open source social
network using Ruby on Rails. URL: https://github.
com/scaffeinate/socify (visited on 05/02/2021).

[35] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. “Na-
iad: a timely dataflow system”. In: Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP). Farmington, Pennsylvania, USA, Nov. 2013,
pages 439–455.

[36] European Network and Information Security Agency.
Privacy and data protection by design: from policy to
engineering. 2015. URL: https://data.europa.
eu/doi/10.2824/38623.

[37] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McEl-
roy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkatara-
mani. “Scaling Memcache at Facebook”. In: Proceed-
ings of the 10th USENIX Conference on Networked
Systems Design and Implementation (NSDI). Lombard,
Illinois, USA, Apr. 2013, pages 385–398.

[38] Noria Contributors. Noria Lobsters bench-
mark. 2020. URL: https : / / github .
com / mit - pdos / noria / tree /
3edd3ad55d2564493f7456d27abb41abf0169def/
applications/lobsters.

[39] NOYB: European Center for Digital Rights.
GDPRHub: CNIL SAN-2020-008. URL: https :
//gdprhub.eu/index.php?title=CNIL_-_SAN-
2020-008 (visited on 05/06/2021).

[40] NOYB: European Center for Digital Rights.
GDPRHub: CNIL SAN-2020-018, Nestor SAS. URL:
https://gdprhub.eu/index.php?title=CNIL_-
_SAN-2020-018 (visited on 05/06/2021).

114 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://www.prsindia.org/billtrack/personal-data-protection-bill-2019
https://github.com/kohler/hotcrp
https://github.com/vkuznecovas/mouthful
https://github.com/vkuznecovas/mouthful
https://lobste.rs/privacy
https://lobste.rs/privacy
https://lobste.rs
https://mariadb.com/kb/en/myrocks/
http://rocksdb.org/
http://rocksdb.org/
https://github.com/scaffeinate/socify
https://github.com/scaffeinate/socify
https://data.europa.eu/doi/10.2824/38623
https://data.europa.eu/doi/10.2824/38623
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://github.com/mit-pdos/noria/tree/3edd3ad55d2564493f7456d27abb41abf0169def/applications/lobsters
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018

[41] NOYB: European Center for Digital Rights.
GDPRHub: GPDDP 9485681, Vodafone Italia.
URL: https://gdprhub.eu/index.php?title=
Garante _ per _ la _ protezione _ dei _ dati _
personali_-_9485681 (visited on 05/06/2021).

[42] ownCloud GmbH. GDPR compliant cloud storage.
URL: https://owncloud.com/gdpr (visited on
12/01/2021).

[43] ownCloud GmbH. owncloud – share files and fold-
ers, easy and secure. URL: https://owncloud.com
(visited on 12/01/2021).

[44] “Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the pro-
tection of natural persons with regard to the processing
of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data
Protection Regulation)”. In: Official Journal of the Eu-
ropean Union L119 (May 2016), pages 1–88.

[45] Brent Robinson. Crypto shredding: How it can solve
modern data retention challenges. 2019. URL: https:
/ / medium . com / @brentrobinson5 / crypto -
shredding-how-it-can-solve-modern-data-
retention-challenges-da874b01745b.

[46] Alexander Rubin. 40 million tables in MySQL 8.0 with
ZFS. URL: https://www.percona.com/blog/
2018/09/03/40-million-tables-in-mysql-8-
0-with-zfs/ (visited on 05/03/2021).

[47] Alexander Rubin. One Million Tables in MySQL 8.0.
URL: https://www.percona.com/blog/2017/
10/01/one-million-tables-mysql-8-0/ (vis-
ited on 05/03/2021).

[48] schnack! schnack.js. URL: https://github.com/
schn4ck/schnack (visited on 05/02/2021).

[49] Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek,
and Robert Morris. “GDPR Compliance by Construc-
tion”. In: Proceedings of the 2019 VLDB Workshop
Towards Polystores that manage multiple Databases,
Privacy, Security and/or Policy Issues for Heteroge-
nous Data (Poly). Los Angeles, California, USA, Aug.
2019.

[50] Faiyaz Shaikh. React-Instagram-Clone-2.0. URL:
https : / / github . com / yTakkar / React -
Instagram-Clone-2.0 (visited on 05/02/2021).

[51] Supreeth Shastri, Vinay Banakar, Melissa Wasserman,
Arun Kumar, and Vijay Chidambaram. “Understanding
and Benchmarking the Impact of GDPR on Database
Systems”. In: Proceedings of the VLDB Endowment
13.7 (Mar. 2020), pages 1064–1077.

[52] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. “How Design, Architecture, and Operation
of Modern Systems Conflict with GDPR”. In: Proceed-
ings of the 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud). July 2019.

[53] Shuup Commerce, Inc. Shuup Open-Source E-
Commerce Platform. URL: https://github.com/
shuup/shuup (visited on 12/05/2021).

[54] Shuup Contributors. GDPR - Download Data button
doesn’t return any data. URL: https : / / github .
com / shuup / shuup / issues / 2614 (visited on
12/13/2021).

[55] Shuup Contributors. GDPR - shuup_mutaddress
rows not anonymized. URL: https : / / github .
com / shuup / shuup / issues / 2612 (visited on
12/13/2021).

[56] Griffin Thorne. GDPR Meets its Match ... in China.
July 2019. URL: https : / / www . chinalawblog .
com / 2019 / 07 / gdpr - meets - its - match - in -
china.html (visited on 06/04/2020).

[57] Frank Wang, Ronny Ko, and James Mickens.
“Riverbed: Enforcing User-defined Privacy Constraints
in Distributed Web Services”. In: Proceedings of
the 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI). Boston,
Massachusetts, USA, Feb. 2019, pages 615–630.

[58] Lun Wang, Joseph P. Near, Neel Somani, Peng Gao,
Andrew Low, David Dao, and Dawn Song. “Data Cap-
sule: A New Paradigm for Automatic Compliance with
Data Privacy Regulations”. In: Proceedings of the 2019
VLDB Workshop Towards Polystores that manage mul-
tiple Databases, Privacy, Security and/or Policy Issues
for Heterogenous Data (Poly). Los Angeles, California,
USA, Aug. 2019, pages 3–23.

[59] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A Large-
Scale Analysis of Hundreds of In-Memory Key-Value
Cache Clusters at Twitter”. In: ACM Transactions on
Storage 17.3 (2021).

A Artifact Appendix
Abstract

Our open source artifact contains our prototype implementa-
tion of K9db. It also includes the harnesses and scripts for
running and plotting the experiments described in this paper.

Our prototype provides a MySQL-compatible interface
layer, which applications and developers can use to issue
SQL statements and queries to and retrieve their results. Our
prototype is compatible with the standard MySQL connectors
and drivers for several languages, including C++, Rust, and
Java. It is also compatible with the command line MySQL
and MariaDB clients.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 115

https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://owncloud.com/gdpr
https://owncloud.com
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://medium.com/@brentrobinson5/crypto-shredding-how-it-can-solve-modern-data-retention-challenges-da874b01745b
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2018/09/03/40-million-tables-in-mysql-8-0-with-zfs/
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://www.percona.com/blog/2017/10/01/one-million-tables-mysql-8-0/
https://github.com/schn4ck/schnack
https://github.com/schn4ck/schnack
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/shuup/shuup
https://github.com/shuup/shuup
https://github.com/shuup/shuup/issues/2614
https://github.com/shuup/shuup/issues/2614
https://github.com/shuup/shuup/issues/2612
https://github.com/shuup/shuup/issues/2612
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html
https://www.chinalawblog.com/2019/07/gdpr-meets-its-match-in-china.html

Scope

Our prototype serves as a demonstration of the following:
1. The application scenarios described in the paper work

with K9db and its schema annotations.
2. K9db’s system design and guarantees can be realized

with a familiar MySQL-compatible interface suitable for
web applications.

3. The performance of compliant-by-construction
databases is comparable to traditional databases, such as
MariaDB.

Contents

K9db. The artifact includes our prototype implementa-
tion and its MySQL-compatiblity layer. The artifact contains
instructions for building, running, and using this K9db.

Application Harnesses. The artifact includes harnesses
for Lobsters, a Reddit-like discussion board (§8.1.1), and own-
Cloud (§8.1.2), a file sharing application. The harnesses create
the database schema and load the database with data; they
also execute loads with representative queries, and measure
the time required to process them. We used these harnesses
to evaluate our prototype and the baselines shown in our ex-
periments. The Lobsters harness is a pre-existing open source
harness that we adapted to work with our prototype [38].

Documentation. The artifact wiki on GitHub contains
a tutorial on using K9db and its schema annotations. The arti-
fact also includes unit and end-to-end tests that validate that
our prototype handles application SQL operations correctly
and provides correct compliance with SARs.

Hosting

Our artifact is hosted on GitHub at https://github.com/
brownsys/K9db. The version of the repository correspond-
ing to this paper is available at https://github.com/
brownsys/K9db/releases/tag/osdi2023, with com-
mit hash df2bcdffa05f70f508fad95a11e2a6de8a7efe14.
The corresponding wiki commit hash is
c720b085ca34edc16246f296991e623a29933f9b.

Requirements

We developed our prototype on x86-64 machines running
Ubuntu 20.04 and 22.04. We provide a Docker container
that includes the necessary software dependencies. We ran
our experiments on Google Cloud using n2-standard-16
machines with a local SSD.

116 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/brownsys/K9db
https://github.com/brownsys/K9db
https://github.com/brownsys/K9db/releases/tag/osdi2023
https://github.com/brownsys/K9db/releases/tag/osdi2023

Encrypted Databases Made Secure Yet Maintainable

Mingyu Li1,2,3 Xuyang Zhao1,3 Le Chen1,3 Cheng Tan† Huorong Li⋆ Sheng Wang⋆

Zeyu Mi1,3 Yubin Xia1,2,3 Feifei Li⋆ Haibo Chen1,3

1Shanghai Jiao Tong University 2Shanghai AI Laboratory †Northeastern University ⋆Alibaba Group
3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
State-of-the-art encrypted databases (EDBs) can be divided

into two types: one that protects the whole DBMS engine in
a trusted domain, and one that protects only operators that
support queries over encrypted data. Both types have limita-
tions when dealing with malicious database administrators
(DBAs). The first type either exposes the data to DBAs or
makes maintenance operations difficult if the DBA role is
eliminated. The second type is vulnerable to abuse of the
operator interfaces; in particular, we devise a smuggle attack
that enables DBAs to secretly and effectively access data.

We introduce HEDB, which prevents smuggle attacks and
preserves database maintainability. HEDB uses a dual-mode
EDB design based on our analysis of DBA maintenance tasks.
Execution Mode handles user queries by isolating DBAs
from operators to prevent smuggle attacks, while Mainte-
nance Mode enables DBMS maintenance and operator trou-
bleshooting through authenticated replay and anonymized
replay, respectively. Our evaluation shows that HEDB blocks
smuggle attacks and supports common maintenance tasks
with 5.88% runtime cost and 9.26% storage cost.

1 Introduction
With approximately 60 ZB of data stored in database sys-
tems [6], much of which is sensitive, data breaches pose
one of the most serious security threats today, causing an
average loss of $4.35 million per incident [4]. To protect
against external attacks, database security features such as
role-based access control and encryption at rest have become
de facto standards. However, these features are not effective
at preventing attacks from malicious insiders, who create
new internal threats. This is especially true for Database as a
Service (DBaaS) scenarios, where cloud platform operators
and database administrators (DBA) have full access to the
database engine and customer data. To address this threat, sev-
eral encrypted database (EDB) systems have been proposed
by academia [15, 17, 26, 42, 44, 48] and industry [14, 30, 50].

Despite a broad spectrum of prior efforts [14, 15, 17, 26,
30, 42, 44, 48, 50], EDB systems with (i) full-SQL functional-
ity, (ii) maintainability and (iii) strong security have remained
an unsolved problem for the past decade. State-of-the-art
EDB systems can be largely categorized into two types: (1)

! Request

" Response

(a) Type-I EDB system

Process! Request

$ Response

(b) Type-II EDB system

Ops

" Invoke
Process

User

DBA

User

DBA X Smuggle

attack!

Maintenance
Maintenance

User

DBA Ops

Execution Mode

Maintenance Mode

Ops

fork

(c) HEDB: a dual-mode EDB system

DBMS

DBMS

DBMS DBMS

X

Plaintext data

Encrypted data

Mock data

Invoke

Smuggle

attack

Invoke
Trusted Domain

Figure 1: Existing EDB systems can be categorized into two types:
Type-I lacks maintenance and Type-II lacks interface security. HEDB

leverages a dual-mode design to support both.

a monolithic EDB design that isolates the whole database
engine in a trusted domain, and (2) a plug-and-play EDB de-
sign that leverages protected operators to process user secrets.
We name them Type-I and Type-II for brief, as depicted in
Figure 1. Both types reuse existing database engines, inher-
iting (almost) all features of modern databases such as SQL
execution and ACID transactions.

For Type-I EDBs [17, 44, 45], a system operator or DBA
can only monitor an end-to-end secure channel between an
isolated database engine and a remote user. However, the
conventional role of DBAs conflicts with customer privacy.
Consider a maintenance task that DBAs help to diagnose a
database misconfiguration bug [40]. After curious DBAs log
into the database server, they can read whatever user data of
interest because of their high privilege. Notably, eliminating
the role of DBAs from the database engine requires non-trivial
engineering efforts. Furthermore, excluding DBAs will give
up the benefits of their expertise in managing, optimizing and
diagnosing the outsourced databases.

Type-II EDBs [14, 15, 30, 42, 43, 48, 50] typically use
database extensions to enable various primitive operators over
encrypted data. Operators include arithmetics, comparisons,
string searching, etc. The primary advantage of Type-II is
that operators have a small trusted computing base (TCB)
compared to Type-I. Furthermore, the low complexity of the
operator’s codebase also makes it easy to develop and simple
to vet. Most importantly, Type-II surpasses Type-I in terms of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 117

maintainability, as DBAs can connect to the database server,
examine query plans, attach powerful profilers and debuggers,
and collect crash dumps without concerns of data breaches,
since user data is always encrypted. Type-II EDBs are there-
fore well adopted by cloud database vendors [14, 30, 50].
Regarding data privacy, Type-II leaks information such as
ordering and frequency, which may compromise sensitive
columns with the aid of sophisticated background knowl-
edge [27–29, 32, 39].

Even worse, under existing database access control, an ad-
versarial DBA can arbitrarily invoke Type-II EDB’s operator
interfaces. As Type-II exposes various operators, DBAs can
exploit a sequence of carefully constructed invocations to
recover the victim’s sensitive data [16]. We devise an efficient
and stealthy attack, named smuggle attacks, which applies
to all basic encrypted types (i.e., numerics, time, text) and
can recover 100% data items of 35,243 health records within
2 minutes with no prior knowledge. Conceptually, smuggle
attacks is similar to Iago attack [21], as both abuse interfaces.
But unlike Iago, defending smuggle attacks is more chal-
lenging because it does not tamper with the correctness of
invocation results. Hence, we opt for a new approach to de-
feating smuggle attacks, while retaining Type-II’s advantages
of DBA maintainability.

Our proposal: HEDB1. HEDB is a new EDB design that can
provide interface security (namely, smuggle attacks-resilient)
and maintainability. HEDB’s design is based on two insights:
(a) without authenticated access, interface security cannot
be achieved, and (b) in most cases, accessing plaintext se-
cret data is not essential to EDB maintenance. Hence HEDB
introduces two modes: Execution Mode where operators au-
thenticate valid requests for user queries (defending against
smuggle attacks), and Maintenance Mode where mock data
is used during DBA maintenance (minimizing privacy leak-
ages). In Execution Mode, HEDB adopts Type-II’s design by
decoupling the DBMS and operators, and protects them using
two trusted domains with an authenticated channel. When
switching to Maintenance Mode, HEDB forks a new DBMS
instance from the protected DBMS to an unprotected domain,
and feeds operators (also in the unprotected domain) with
mock data. Figure 1 overviews this process.

This dual-mode EDB design is non-trivial and has several
technical challenges. First, switching EDB components be-
tween modes requires execution environment reconstruction
for maintenance purposes. Second, too accurate maintenance
may help DBAs infer secret data easily, while simply us-
ing fake data hinders maintenance. Third, after maintenance,
there should be a secure way to apply hotfixes to the protected
DBMS instance, without invoking any new attack surfaces.

To overcome the above challenges, HEDB introduces sev-
eral key techniques. To allow DBAs to inspect the stateful
DBMS, HEDB employs DBMS-located VM fork across two

1HEDB is named after He (Helium), the 2nd element, implying its two modes.

hypervisors using existing hardware (i.e., ARMv8.4 S-EL2).
For execution environment reconstruction, HEDB relies on
record-and-replay. HEDB records the operator invocation
trace in Execution Mode, and proposes authenticated replay
to reproduce DBMS issues in Maintenance Mode. To preserve
buggy control flows and protect user data privacy at the same
time, HEDB proposes anonymized replay, which employs
concolic execution to capture path constraints, translates data
masking rules also into constraints, and exploits constraint
solving for operator troubleshooting in Maintenance Mode.
Finally, HEDB uses maintenance templates to securely ap-
ply hotfixes in Execution Mode. HEDB accomplishes these
features with low implementation complexity (~2K lines of
C and Python code). HEDB’s record incurs 5.88% runtime
overhead; replay supports fixing configuration bugs, repro-
ducing functional bugs, and debugging most performance
bugs. Our optimizations speed up HEDB’s TPC-H execution
by 2.49×, and improve HEDB’s constraint solving-based log
anonymization by up to two orders of magnitude.

Contributions. We highlight the following contributions:
• A study of existing EDB systems and the introduction of

smuggle attacks for Type-II EDBs.
• A dual-mode EDB design, based on empirical studies of

typical maintenance issues and DBA operation tasks.
• A new system called HEDB, which prevents smuggle at-

tacks while allowing DBAs to maintain EDB with reason-
able overhead.

While HEDB provides, for the first time, interface security
and maintainability for existing Type-II EDB systems, it does
have some limitations. HEDB’s current implementation does
not support non-deterministic bug reproduction (e.g., concur-
rent transactional writes such as in TPC-C, though TPC-C is
not vulnerable to smuggle attacks). In addition, HEDB does
not cover all DBA tasks (e.g., arbitrary query rewriting) and
may not reproduce all bugs (when using strict masking rules).
Nonetheless, HEDB fills a critical gap in encrypted databases.

2 Background and Motivation
2.1 Database as a Service (DBaaS)

In “Database as a Service” (DBaaS) [31], service providers
take care of the installation, update, backup, and maintenance
of databases. DBaaS provides managed databases with a trans-
parent software stack and infrastructure. This design releases
users from the duty of database administration, which is com-
plex, time-consuming, and requires deep expertise. In DBaaS,
these maintenance tasks are delegated to database adminis-
trators (DBAs). In brief, DBaaS empowers users to focus on
their core business.

2.2 Encrypted Database (EDB)

Data privacy is a major concern of adopting DBaaS. Service
providers might not be fully trustworthy [4]; even if they

118 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Type EDB System Approach F S M

Type-I
(TEE-based)

TrustedDB [17] database on a secure coprocessor
EnclaveDB [44] database in Intel SGX

DBStore [45] database in ARM TrustZone

Type-II
(Crypto-based)

CryptDB [43] operators using crypto schemes
Arx [42] operators using crypto schemes

Monomi [47] server crypto + client computation

Type-II
(TEE-based)

Cipherbase [15] operators in FPGA
StealthDB [48] operators in Intel SGX

Type-II
(TEE-based

from industry)

Always Encrypted [14] operators in Intel SGX
FE-in-GaussDB [30] operators in ARM TrustZone, Intel SGX

Operon [50] operators in Intel SGX, FPGA

Type-II HEDB (this work) dual-mode security architecture

Table 1: Survey of existing EDB systems. F: Functionality; S: Secu-
rity; M: Maintainability.

are, curious staff may leak private information. For instance,
Swiss bank DBAs were reported to have sold customer infor-
mation [12]. This is why an encrypted database (EDB) comes
into place; an EDB executes queries over fully encrypted data.

Ideally, an EDB system should provide a compatible set
of traditional DBMS features (e.g., transactions, recovery)
and most importantly, support all common SQL queries on
the encrypted data. For example, users can perform equality
checks to the highly sensitive personally identifiable informa-
tion (PII) such as names and credit card numbers. As another
example, users should be able to apply arithmetic operations
and range predicates on the encrypted financial data (e.g.,
billings) and healthcare records (e.g., heart rates) to calculate
the maximum expense or to compute the average heart rates.

Both academia [15, 17, 26, 42–44, 48] and industry [14, 30,
50] have shown great interest in EDB systems. We surveyed
state-of-the-art EDBs as listed in Table 1, and classified them
into two categories: (1) a monolithic EDB design, and (2)
a plug-and-play EDB design. For simplicity, we name them
Type-I and Type-II, respectively.

2.3 Type-I EDB: Putting a Database in TEE

Overview. Trusted execution environments (TEE) are a
hardware-assisted approach that offers the essential abilities
of secure isolation, memory encryption and remote attesta-
tion. They are widely available on commercialized processors
(e.g., AMD SEV [13], Intel SGX [11] and TDX [9], ARM
S-EL2 [35] and CCA [36]) or implemented using a secure
co-processor or FPGA. The monolithic EDB design places
an existing DBMS engine into TEE to protect user data and
queries. User secrets are encrypted outside TEE and remain
plaintext inside the trusted database. This design brings a
large trusted computing base (TCB); an operating system or
library OS must be ported into the TEE [17, 44, 45].

Workflow. A user queries the Type-I EDB as follows: 1
The client-side user or the DB-backed application issues a
SQL query to DBMS through a secure channel. 2 DBMS
parses the query, generates a plan, optimizes it and executes
the plan, by reading the encrypted tables from the untrusted
storage, and writing the updated tables after encryption. 3

DBMS returns the query result through the secure channel.

Implications. In Type-I EDB systems, the data privacy and
database implementations are tightly coupled, which raises
several issues. First, simply putting a database into TEE does
not make the database immune to rogue DBAs. For today’s
DBMSes, DBAs have unlimited access to users’ data, includ-
ing secret data in the TEE. To ensure privacy, Type-I EDBs
must either modify DBMS engines or disable the role of
DBAs. However, refactoring the DBMS codebase to preclude
the existence of DBAs and their privileges may require signif-
icant engineering efforts. Even if a DBMS eliminates DBAs,
it would give up maintainability—this DBMS loses the major
benefit of DBaaS that experts (i.e., DBAs) manage, optimize,
and diagnose users’ outsourced databases. People might not
use DBaaS in the first place.

2.4 Type-II EDB: Putting an Operator in TEE

Overview. The plug-and-play EDBs are another type of EDB.
They leverage customizable extensions of modern database
systems (e.g., PostgreSQL, MySQL) to encrypt data on-the-
fly. The extension is written as a database plugin (normally in
the form of a user-defined function or UDF). To implement
Type-II EDBs, developers typically create and register new
data types—encrypted data types—into the database. When
the database execution engine processes encrypted data types,
it invokes the UDF-based operators that are responsible for
handling encrypted data operations.

There are two ways to implement Type-II EDBs. For one,
developers implement different cryptographic schemes in op-
erators to compute directly on the encrypted data [42, 43, 47].
We call them crypto-based Type-II EDBs. For the other, devel-
opers implement operators in TEEs. We call these TEE-based
Type-II EDBs [14, 15, 30, 48, 50]. TEE-based EDBs rely
on hardware modules to provide integrity and confidential-
ity, and data are decrypted only when they are within TEEs.
Crypto-based Type-II EDBs fall short in functionalities (e.g.,
floating-point arithmetics and text concatenation); they must
either rely on a trusted proxy [42, 43] or move the unsup-
ported computation to the client [47]. In this paper, we focus
on the TEE-based Type-II EDBs that have full-SQL supports
and are preferred in production [14, 30, 50].

Workflow. A user queries the Type-II EDB as follows: 1
The client-side user or the DB-backed application sends
a SQL query whose sensitive constants are encrypted. 2
DBMS parses the query, and reads the encrypted data from
storage. The DBMS engine generates, optimizes, and exe-
cutes an execution plan. Upon each computation of the en-
crypted data type, DBMS prepares a tuple, ⟨ciphertext1,
ciphertext2, ...⟩, and feeds it to the operator. 3 The
operator receives the tuple, decrypts the ciphertexts, performs
the operation, encrypts the result (except when returning plain-
text boolean values, e.g., comparisons), sends the result to
DBMS, and waits for the next invocation. 4 The DBMS

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 119

engine finishes the entire query execution by returning the
(encrypted) result to the client.

Advantages. In comparison with Type-I EDBs, the Type-II
EDBs have the following advantages.
• Small TCB: Compared with putting a full-fledged DBMS

in TEE, Type-II EDBs run only operators in TEE which is
a tiny fraction of the entire DBMS.

• Development friendly: The Type-II EDBs leverage DBMS
extension systems and require no modifications to DBMS
engines. The low complexity of operators also makes up-
grades simple and easy.

• Maintenance friendly: The DBMS engine does not touch
plaintext data, so it is accessible to DBAs. DBAs can per-
form maintenance operations such as examining query
plans for performance, collecting crash core dumps for
troubleshooting, or even attaching a debugger to inspect
the execution of a SQL query.

These advantages make Type-II EDB preferable to cloud
vendors such as Azure [14], Huawei [30] and Alibaba [50].

Implications. Compared to Type-I, Type-II EDBs however
expose a larger attack surface. First, unlike Type-I, Type-II
does not protect the integrity of query execution as it relies
on an unprotected DBMS engine. Second, the data-level com-
putation allows an honest-but-curious DBA to learn the data
volume, distribution, frequency, ordering, and correlations
between columns. With prior knowledge, an adversary may
be able to infer secret data [27–29, 32, 39]. Finally, if a mali-
cious DBA can issue arbitrary operator invocations, they can
conduct a full database breach. We call it smuggle attack.

2.5 Smuggle Attack

This section describes how a DBA can mount a smuggle
attack to recover encrypted data types and real-world datasets.
We emphasize that the smuggle attack requires no background
knowledge, and its recovery is deterministic.

Attack overview. We use a minimal working example that
recovers encrypted integers in a Type-II EDB.
• Constructing basic ciphers: By division (÷), a DBA can

obtain the ciphertext of ‘1’ (dividing a number by itself).
With the basic ciphers of ‘1’, in principle, the DBA can
construct all encrypted integers by iteratively asking oper-
ators to add (+) the cipher ‘1’ to a counter.

• Recovering user secrets: With the equality operator (=),
the DBA can recover the victim’s encrypted values by
observing the plaintext boolean values by comparing them
with known ciphertexts. To recover an encrypted integer x,
the DBA can use a binary search to compare x with some
candidate known ciphertexts (using <, >, and =).

Other encrypted types (e.g., decimal, text, and time) can also
be attacked (see § A.1). Extending their data domain to a
larger range (e.g., 64-bit) does not prevent the attack because
binary search is efficient to search on even a 64-bit range.

System Example API numbers Interface attack

Kernel Linux 200+ POSIX APIs Iago attack
DBMS PostgreSQL 79 operator APIs Smuggle attack

Table 2: The analogy between Iago [21] and smuggle attacks.

Removing operators used by smuggle attacks will disable
OLAP workloads because these workloads (e.g., TPC-H)
require all the mentioned operations (e.g., ÷, +, >, =).

Attacking real-world datasets. We illustrate smuggle at-
tacks against a real-world dataset, SPARCS2, with 2.54
million records [8]. We use an open-source Type-II EDB,
StealthDB [48] (commit 1ca645a), which exposes operators
such as arithmetics, comparisons, mathematics, aggregations
(+, −, ∗, /, %, <, =, power(), MAX, AVG, SUM). Only com-
parison operators return boolean values in plaintext; others
return the computation results in ciphertext.

We first select 6 columns of SPARCS patients’ sensitive
information from 239 hospitals in 9 areas, and protect these
columns using StealthDB with the AES-128-GCM encryption.
We then log into StealthDB using a DBA account and can call
operators with crafted parameters, but cannot see the internals
of operators (i.e., cannot see decrypted user data). Lastly, we
issue binary-search SQL queries to conduct smuggle attacks;
these queries do not return to users nor impact their queries’
results. In the end, smuggle attacks recover 100% ciphertexts
in 92 seconds without any prior knowledge.

Defending smuggle attacks is challenging. We argue that
smuggle attacks are hard to defend by today’s EDB designs.
This is because smuggle attacks are an interface attack that
targets the exposed operator interfaces, rather than any partic-
ular implementations. We have seen interface attacks before,
for example, Iago attack [21] that targets OS interfaces (i.e.,
system calls). We summarize the two attacks in Table 2.

In fact, defending smuggle attacks is even harder than
preventing Iago attack because Iago attack can be identified
by checking if a syscall follows its specification. For example,
the return value of sbrk() must not fall into any range of the
allocated memory areas; otherwise, there is a data corruption
(and this is likely an Iago attack). Unlike Iago attack that is
conducted by few syscalls (usually just one syscall), smuggle
attacks require a series of invocations. Neither operators nor
users can resist smuggle attacks because (1) operators within
TEEs cannot distinguish user’s invocations from others (e.g.,
malicious DBAs); (2) invocations issued by smuggle attacks
do not alter the correctness of user queries, and hence users
cannot realize that a smuggle attacks is happening.

Attack summary. The core principle behind smuggle at-
tacks is not new, as it has been established that any column
that enables both computation and comparison operations
could be vulnerable (as noted on page 6, “Write query ex-

2The dataset we use does not contain protected health information (PHI)
under Health Insurance Portability and Accountability Act (HIPAA); all
data elements considered individually identifiable have been redacted.

120 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ecution” in [43]). However, we are the first to successfully
apply this principle to a real-world EDB system. Prior EDB at-
tacks have identified several types of leakage attacks, such as
Count Attack [19], Non-Crossing Attack [29], Access Pattern
Attack [32], and Frequency Analysis [39], which are also ap-
plicable to both Type-I and Type-II EDBs. What sets smuggle
attacks apart is that it requires zero prior knowledge, making it
even more potent than previous leakage attacks. Additionally,
smuggle attacks are not exclusive to DBAs, as anyone who
can access operator interfaces can carry out smuggle attacks.
For instance, an attacker who knows a victim’s password but
not the encryption key could not decrypt the victim’s data,
but they could bypass access control with the password and
then use smuggle attacks to breach the data.

We have studied Type-I and Type-II EDB system designs,
where there is tension between (a) database maintenance and
(b) interface security. In short, Type-I is immune to (b) but
lacks (a), while Type-II provides (a) but suffers from (b).
However, both (a) and (b) are essential for EDBs; we need
both. This motivates our system, HEDB.

3 HEDB Design
We first introduce our design goals and present a new EDB
architecture that HEDB uses. We then describe our threat
model and how HEDB works.

Design Goals. HEDB has three goals.
• G1: smuggle attack resilience. HEDB must protect user’s

sensitive data from smuggle attacks (§ 2.5) which Type-II
EDBs [14, 30, 50] suffer from.

• G2: database maintainability. A DBA should be able to
configure, manage, diagnose, and troubleshoot the HEDB
as a traditional DBMS.

• G3: backward compatibility. HEDB aims to be compatible
with the existing database ecosystems. We do not expect
to reimplement HEDB in new frameworks (e.g., verifiable
computation [51] or secure multi-party computation [41])
which invalidates existing DBMS tools.

HEDB architecture. HEDB uses a new three-zone architec-
ture (depicted in Figure 2) because we observe that different
roles—DBAs, DBaaS providers, and database users—have
different duties and requirements. (1) DBAs are responsible
for managing resources and performing maintenance tasks,
and they want to do these jobs in a low-drama way. (2) DBaaS
providers are supposed to deploy DBMS as services, and they
want their services running correctly. (3) Users are the data
owners whose secret data is stored in the database. They want
the database to be easy to use (e.g., maintained by DBAs),
and meanwhile, users need their data stored securely (i.e.,
having data integrity and confidentiality).

These observations inspire HEDB’s architecture: unlike
prior EDBs [17, 44], HEDB decouples integrity from privacy.
In particular, HEDB’s architecture detangles DBAs’ mainte-

DBMS

Replay OperatorDBMS

Integrity Zone Privacy Zone

Management Zone

logfix

Mode

Switch (§3.2)

Maintenance

(§4.2)

Anonymized

Replay (§4.3)

Authenticated

Replay (§4.2)

E
x

e
c

u
ti

o
n

M
o

d
e

M
a

in
te

n
a

n
c

e

M
o

d
e

Record Authenticated

Channel (§3.2) Operator

Figure 2: HEDB’s high-level architecture.

nance jobs from users’ data confidentiality requirements by
using three zones: integrity zone, privacy zone, and manage-
ment zone. The integrity zone provides execution integrity
but not confidentiality; it runs the DBMS engine. The privacy
zone guarantees data confidentiality; it runs operators and is
the only place containing users’ plaintext data. The manage-
ment zone allows DBAs to troubleshoot both DBMS engine
and operators. This design brings the opportunity to serve
both interface security (G1) and maintainability (G2).

Threat model and security guarantees. HEDB assumes
TEE hardware works as expected; that is, hardware isolation
and security guarantees are reliable and trustworthy. Further,
HEDB assumes remote attestation for authentication. HEDB
uses remote attestation to confirm the integrity of the EDB
executables. We also assume that database users and DBaaS
providers agree on the EDB code and configurations.

In HEDB’s threat model, DBaaS providers are not trusted,
as they could access server-side states over the network, on
disk, or in memory that are not protected by TEE. They may
also tamper with the database logs and data, and drop net-
work connections to the EDB systems. These attacks can be
detected by HEDB. Likewise, cloud administrators (who man-
age the cloud’s physical resources) and database administra-
tors (DBAs) are not trusted either and can behave arbitrarily,
including conducting smuggle attacks. Conversely, HEDB as-
sumes that users will not intentionally attack themselves or
leak their own data. However, co-tenant users may pose po-
tential threats and they can be blocked using the DB’s access
control. Finally, the developers of HEDB are trusted, but the
source code must be verified. Thanks to the small pieces of
code in Type-II operators, HEDB is made easy to verify.

As security guarantees, HEDB ensures no plaintext data
outside TEEs, the same as Type-I and Type-II EDBs. In addi-
tion, HEDB is smuggle attacks resilient. In terms of metadata
privacy (e.g., frequency, ordering), HEDB provides the same
security guarantees as Type-II EDBs. Both HEDB and Type-II
EDBs may leak metadata [27]. Nonetheless, this is a funda-
mental trade-off between functionality and privacy because
revealing these metadata is sometimes necessary for core
database functionalities, for example, database indexing. Pro-
duction systems have made the trade-off by choosing Type-II
EDBs as the de facto method [14, 30, 50]. Finally, similar to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 121

both Type-I and Type-II EDBs, HEDB does not prevent ex-
ploitations of DBMS bugs or vulnerabilities (e.g., code-reuse
attacks), which is an orthogonal line of security problems.

3.1 HEDB Workflow

HEDB provides two modes: Execution Mode and Mainte-
nance Mode. Execution Mode is when HEDB normally runs.
HEDB serves user queries by running the DBMS engine in
the integrity zone and executing operators in the privacy zone.
When performing maintenance, DBAs switch HEDB to Main-
tenance Mode, in which operators stop responding to new
requests and DBMS is forked to the management zone. Man-
agement zone enables DBAs to inspect the internal states
of the DBMS engine. After locating issues and suggesting
solutions, DBAs switch HEDB back to Execution Mode and
resume the service.

Normal execution. To launch a HEDB instance, a hypervisor
starts a virtual machine (VM) in the integrity zone, and runs
a DBMS instance in the VM. The hypervisor calculates the
digest of the VM and ensures its integrity. Meanwhile, the
hypervisor initializes operators that run in the privacy zone.

After HEDB’s initialization, a user can remotely attest both
HEDB’s VMs (containing DBMS and operators). Then, the
user establishes a secure channel with the DBMS instance and
starts sending queries. Note that the query constants are en-
crypted. For example, in a query SELECT ... WHERE year
< 2022, the number 2022 will be encrypted. This is a must
because the integrity zone does not provide confidentiality.

In Execution Mode, DBAs are isolated from the HEDB.
DBAs cannot log into the database VM or access operator
interfaces hence cannot start attacks. HEDB achieves this by
disabling the logins for VM superusers and DBA accounts
when booting. Users can verify this by checking the booting
script and attesting that the script is the one that runs.

To monitor resources while HEDB is running in Execution
Mode, VM resources can be externally monitored by the
cloud hypervisor, and DBMS resources can be queried using
statistics SQLs via a normal user (i.e., non-DBA) account.

Database maintenance. When users encounter problems,
they seek DBAs for assistance. DBAs can request HEDB to
switch to Maintenance Mode. HEDB does this by forking the
current DBMS engine and dumps two logs, authenticated
log (§4.2) and anonymized log (§4.3). In Maintenance Mode,
HEDB uses record-and-replay [24] to help DBAs run user
queries. The record-and-replay enables DBAs to profile, di-
agnose, and troubleshoot EDB in the management zone. We
elaborate on how HEDB supports maintainability in section 4.

After troubleshooting, DBAs submit a fix and request
HEDB to switch back to Execution Mode. During switching,
HEDB in the integrity zone examines the fix (§4.2). HEDB
will reject if the fix does not pass the check or DBAs tamper
with the code or the (encrypted) data of the database.

Mapping HEDB architecture to real hardware. HEDB

makes some security assumptions about the hardware. For
example, HEDB requires the privacy zone to provide either
memory encryption or dedicated on-chip memory. In fact,
HEDB’s architecture can be achieved by using today’s hard-
ware. The current HEDB prototype relies on commercial-off-
the-shelf ARMv8.4 S-EL2 using a Normal World VM as
the management zone, a Secure World VM as the integrity
zone, and another Secure World VM with on-chip memory
as the privacy zone. Both management zone and integrity
zone support virtual machines (VMs) atop hypervisors [35].
It can be further extended to the next-generation confidential
computing platforms such as Intel TDX [9] (using a Normal
VM as management zone, a TD VM as integrity zone, and
an SGX enclave as privacy zone) and ARMv9 CCA [36] (us-
ing a Normal VM as management zone, a TrustZone VM
as integrity zone, and a Realm VM as privacy zone). While
HEDB is designed for virtualized environments, its solution
does not intrinsically rely on the VM. For bare-metal systems,
self-migration [34] can be used as an alternative.

3.2 Defending Smuggle Attack

Existing commercialized Type-II EDB products [14, 30] de-
fend smuggle attacks by sacrificing functionalities. For exam-
ple, Azure AEv2 [14] does not provide arithmetic operations,
and Huawei FE-in-GaussDB Production [30] does not pro-
vide comparison operations. Neither of them can support
analytical queries such as TPC-H. Alibaba Operon [50] is the
first system that supports full-SQL operations but restricts the
callee by specifying which operators can be invoked. Nonethe-
less, when users need to execute TPC-H, Operon then fails to
stop smuggle attacks because TPC-H contains both arithmetic
and comparison operators, and attackers can use them too.
Instead, HEDB chooses to restrict the caller by authenticating
the invoker (described below); HEDB prevents DBAs from in-
voking any operators. Such a design enables diverse operators
without any concerns regarding interface attacks.

Defending smuggle attacks by mode switch. HEDB pre-
vents smuggle attacks by switching the DBMS engine from
Execution Mode to Maintenance Mode; a DBA cannot ac-
cess the DBMS engine in Execution Mode and cannot invoke
the operators in Maintenance Mode. Regarding mode switch,
HEDB chooses to fork VMs rather than processes, and further-
more, many DBMS engines use multiple processes. Forking
a group of processes requires forking their OS kernel states in
addition to careful synchronization (to avoid deadlocks). Be-
sides, trouble may arise from the kernel, such as insufficient
buffer cache and limited process number (see Table 4). As a
result, we choose to fork the DBMS-located VMs instead of
the DB processes, since both management zone and integrity
zone support hardware virtualization. Our design choice is
simple and practical, and meets our goals (G1, G2, and G3).

Defending confused deputy by authenticated channel. In
modern databases, a database user can use the SQL command

122 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Intention Operation

monitor waiting sessions rank running sessions from pg_stat_activity
monitor waiting threads rank running threads from pg_thread_wait_status
monitor database locks analyze lock situations from pg_locks
identify slow queries analyze SQL statements from pg_stat_statements
explain database plan issue EXPLAIN [SQL statement]
collect database statistics issue ANALYZE [table]

Example-1:
query waiting events of
the current running sessions

SELECT wait_event, wait_event_type, Count(*)
FROM pg_stat_activity
GROUP BY wait_event, wait_event_type
ORDER BY Count(*) DESC;

Example-2:
query transactions
that start longer than
a specified duration (100s)

SELECT Count(1)
FROM pg_stat_activity
WHERE pid != pg_backend_pid()
AND (Now() - xact_start > interval ’100s’);

Table 3: The intentions and the corresponding DBAs’ operations
for Step-1 inspections (PostgreSQL-based EDB). The observed phe-
nomena and subsequent actions are listed in Table 4.

“SET ROLE” to change the user ID of the current session.
DBAs can thus switch to any user to launch the smuggle
attacks. In HEDB, we adopt a client-side authentication tech-
nique. The client must hold a master key, and the operators in
the privacy zone can remotely attest to the client using stan-
dard signature verification. Because DBAs do not have the
user credential, an operator rejects requests from the DBAs,
even when the session has the user ID. Our survey shows
that existing commercialized EDBs [14, 30, 50] all support
client-side encryption where the client holds a master key.

4 Supporting Maintainability
HEDB is designed to support database maintainability. For
HEDB (or any Type-II EDB), there are two major pieces
that require maintenance and troubleshooting: the DBMS en-
gine and operators. By studying DBA daily tasks (§4.1), we
observe that DBAs operate differently on the two parts and ex-
pect different tools and functionalities. HEDB supports DBMS
engine maintenance through authenticated replay (§4.2) and
operator troubleshooting through anonymized replay (§4.3).

4.1 Understanding DBA tasks

To understand database maintenance, we conduct an empirical
study of existing DBA guidance from Microsoft SQL Server,
MySQL, PostgreSQL, and several cloud databases, including
Amazon Aurora [1], Google Cloud SQL [7], Azure SQL [14],
Huawei GaussDB [30], and Alibaba Operon [50].

We find that the workflow of DBA administrative tasks
typically contains two steps. In Step 1 , DBAs inspect the
states of DBMS engine and OS to identify the issue and
locating the root cause (see Table 3). During inspection, DBAs
may need to install and use profiling tools or issue proper
SQLs to query various database metadata tables (e.g., index,
locks, activity), for example, examining transactions that last
longer than a desired duration, say 100 seconds. In Step
2 , DBA takes actions to fix the issue (see Table 4). These

actions mainly involve updating the configuration parameters
of the DBMS engine or the underlying OS kernel, kill the

deadlocked database processes, or reclaim database storage.

Observations to support maintainability. We have two
observations from the above two-step maintenance process.
The first observation is that inspections (Step 1) can be arbi-
trary and complex, while the action-taking (Step 2) is rather
regular and structured. We therefore allow DBAs to conduct
any necessary inspections on the forked DBMS engine in
Maintenance Mode (these inspections do make temporary
changes but can be discarded), and provide a maintenance
template which translates maintenance actions into a finite
whitelist of tasks in Execution Mode. Second, we observe
that for operators, DBAs need to reproduce the control flow in
order to trigger bugs, but do not necessarily need the original
inputs (i.e., user secrets). Hence, HEDB provides a set of fake
inputs that preserve operators’ control flows.

4.2 DBMS Maintenance by Authenticated Replay

In this section, we introduce how HEDB supports DBAs
to maintain the DBMS engine. We describe operator trou-
bleshooting in the next section (§4.3).

Overview. When meeting problems, users contact DBAs for
help. DBAs will request HEDB for a mode switch from Exe-
cution Mode to Maintenance Mode. In Maintenance Mode,
DBAs fork the VM without worrying about accidentally dam-
aging the VM snapshot. In the cloned VM, DBAs have the
root privilege and can re-execute the problematic user re-
quests by authenticated replay (described in detail below).
During troubleshooting, DBAs can use arbitrary tools (e.g.,
profilers and debuggers). There are no privacy leaks during
troubleshooting because user data is encrypted in the VM.

After the root cause is identified, HEDB provides a main-
tenance template where DBAs can write the actions to be
applied. Then HEDB is switched to the Execution Mode. The
integrity-zone hypervisor triggers a shim module in the VM.
This shim first performs sanity checks over the submitted fix,
ensuring all parameters in the template are valid, and ulti-
mately takes the maintenance actions on the DBA’s behalf.

Authenticated replay for Step 1 . To provide DBA mainte-
nance without letting DBAs access operator interfaces, HEDB
records the operations’ inputs and outputs in ciphertexts dur-
ing Execution Mode, and replays them to mock operator
executions in Maintenance Mode. On the one hand, authenti-
cated replay rejects any new operator invocations with unseen
parameters, stopping smuggle attacks. On the other hand, au-
thenticated replay ensures that the database follows the same
control flow and data flow as in the history of Execution Mode.
Using authenticated replay, various DBMS bugs (e.g., config-
uration and functional bugs) can be fully reproduced with the
replay log. The log also embeds a timestamp of each operator
invocation, and HEDB provides delay simulation to help de-
bug performance bugs. For example, a DBA can re-execute
the user queries after updating a configuration parameter and
check if this update does improve the query performance.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 123

Phenomenon Action Maintenance Template Sanity Checks

OS
directory permission denied change directory permission chmod 750 [dir] [dir] must be under “/usr/local/pgsql/data”
coredump makes no space left remove coredump file rm /var/crash/*.core NONE
slow buffer cache enable huge pages for shared_buffers hugepage [on|off] [num] [num] is between 64 and 65536

Connectivity
DB connection failure restart DB engine systemctl restart postgresql NONE
too small MTU reconfigure network card’s MTU ifconfig [eth] mtu [num] [eth] exists and [num] is between 64 and 8192
"sorry, too many clients already" enlarge the process number ulimit -u [value] [value] is between 1 and 8000

Database
“No space left on device” vacuum the database VACUUM FULL; NONE
index contains corrupted page rebuild the index REINDEX TABLE [table]; [table] must be an existing table
too large log files remove unused log files SELECT pg_rotate_logfile(); NONE
a query is hung or blocked cancel the hung query SELECT pg_cancel_backend([pid]); [pid] must be an active database process
low throughput adjust I/O load of background writer processes max_io_capacity = [num] [num] is between 0 and 100000
lock wait timeout enlarge timeout values max_query_retry_times = [num] [num] is between 0 and 3600
insufficient buffer update DB buffer configuration parameters shared_buffers = [num] [num] is between 64 and 2048

Table 4: The typical phenomena and DBAs’ common Step-2 actions. The operations used to observe these phenomena are listed in Table 3.

Maintenance templates for Step 2 . HEDB translates com-
mon actions into templates. For example, to adjust the trans-
action timeout, a template is “max_query_retry_times =
[num]”, where the “[num]” is a parameter that DBAs fill
in and is restricted to a reasonable range (between 0 and
3600 seconds). We summarize common DBA actions and the
corresponding templates in Table 4.

Maintenance templates offer a quick path to implement
DBA hotfixes. Our lessons with template-based maintenance
show that it covers common DBA actions used in practice,
such as updating the configuration parameters, fine-tuning
slow queries, and canceling lengthy transactions. For actions
that require modifying the database code, such as patching
functional bugs or adding new query-rewrite rules to the
DBMS engine for better performance, HEDB requires au-
diting the patch before updating.

4.3 Operator Troubleshooting by Anonymized Replay

As operators are highly extensible and designed to support
various operations, bugs are inevitable. Unlike the DBMS
engine that only handles ciphertexts, operators work in the
privacy zone that contains user secrets in plaintext. Debugging
operators requires avoiding or minimizing data leakage.

Overview. The core idea is to construct "control-flow equiva-
lent" inputs using a concolic executor and a constraint solver.
This process generates multiple sets of inputs, causing the
operator to exercise the same path as the buggy inputs. HEDB
selects a new set of inputs from candidates, replaces the en-
crypted values of the authenticated log (called anonymized
log), and replays the log to reproduce the operator’s bugs.

While [20, 22, 49] have also used similar techniques for
diagnosis under privacy regulation, they suffer from issues
related to path explosion or environment modeling. HEDB
enhances these techniques, improving efficiency and privacy.

Efficient constraint collection via simplified operators.
HEDB overcomes the efficiency challenges in three ways.
First, operators are userspace programs with rare system calls
(mostly memory allocation) and no privileged instructions,

hence eliminating the need for modeling OS kernel environ-
ments. Second, operators are designed to be stateless, which
is common in Type-II EDBs [14, 30, 50]. This means that
an operator’s path conditions rely solely on its inputs, result-
ing in significantly fewer possibilities. Third, when operators
become complex, scalability issues with concolic executors
might limit their practicality. HEDB requires developers to
decompose complex operators into micro-operators, each of
which should undergo the concolic executor within a reason-
able short amount of time.

Privacy-preserving log generation via data masking. To
hide user data, HEDB requires a large number of distinct can-
didates sharing the same control flow as the original user data,
which is computationally expensive. For example, generating
1 million candidates for a single control flow takes 24 min-
utes using a state-of-the-art constraint solver, Z3 [23]. While
increasing the number of candidates enhances privacy, deter-
mining the optimal number of candidates is non-trivial. To
address this, HEDB leverages rules from modern data mask-
ing engines [2, 5]. Common rules include scrambling (1234
→ XXX4), substitution (Boston → USA), variance (0.07 →
1.0), etc. Currently, HEDB employs simple rules translated
into constraints understood by Z3.

By feeding both path constraints and masking constraints
into the constraint solver, HEDB can generate new inputs that
not only reproduce the bug but also protect user privacy. This
generation only needs to occur once per control flow, and the
results can be reused for later debugging.

The input parameters of operators comprise two types: user
data (e.g., from columns) and metadata (e.g., size). Following
the security model of previous work [42, 48], HEDB masks
only user data, while metadata can be hidden using padding.
Users can customize the data masking rules for different
columns based on their knowledge of the data semantics.

Example. Here is a demonstrative example of how HEDB
generates the anonymized log. As illustrated in Figure 3,
each entry in the authenticated log is iteratively translated
into an anonymized counterpart. First, a line of log entries

124 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Timestamp: 00:01:28, Operator: “Like”, “MTIx4oCTM”!“ANH5cyU”, True

Timestamp: 00:01:28, Operator: “Like”, “121–067-982”!“121%”, True

Operator Binary

Timestamp: 00:01:28, Operator: “Like”, “xxx–xxx-111”!“xxx%”, True

 substring():
 … …
 like():
 … …
 concatenate():
 … …

"#$

Text Operators

%&'#()

!"#$%&'

123-456-789
↓

xxx-xxx-789

Masking Rule

Constraint Solver

xxx–xxx-111

*+),-./0#(1+&.0*23-./45/678

masking

constraints

path constraints

Concolic Executor

Privacy

Zone

Figure 3: How HEDB translates an authenticated log entry into an
anonymized log entry for replay-based operator troubleshooting.

is decrypted in the privacy zone, and fed into a concolic
executor that captures the path constraints that lead to the
“like” operator using buggy inputs. Then, an constraint solver
utilizes these constraints, along with those derived from a rule
that scrambles the first 6 digits of a phone number, to generate
a new set of fake inputs, namely, “XXX-XXX-111”.

Design rationale. In principle, HEDB’s troubleshooting is
not limited to stateless operators. However, supporting state-
ful operators requires overcoming additional challenges. First,
crash consistency is a critical issue for Type-II plus stateful
operators, because failures can cause inconsistencies between
the states of the DBMS and the operators, and is inherent
to all Type-II systems regardless of HEDB’s design. Second,
consider HEDB with stateful operators; concolic execution
might experience state explosion, whereas record-and-replay
will need to log every state change, resulting in performance
degradation. Finally, applying HEDB’s data masking rules
to operator states may raise security concerns, since these
states are typically less structured and could potentially reveal
information. Another question to ask is whether the proposed
approaches could be applied to provide maintainability to
Type-I EDBs. This is an open question, as it presents signifi-
cant obstacles, such as (i) the challenge of anonymizing the
DBMS’s intricate internal states, and (ii) the potential inabil-
ity to scale over extensive execution paths, given the current
concolic executors and constraint solvers.

5 Implementation
5.1 Implementation Complexity

DBMS and operators. Similar to prior Type-II EDBs [14,
30, 48, 50], we implemented an ARM version of UDF-based
operators using ~4K lines of C for PostgreSQL v13.8. Our
UDFs define 4 encrypted data types and 79 operators. To
protect the DBMS engine in an integrity zone, we run it in
a secure VM on top of a thin ARMv8.4 S-EL2 hypervisor—
S-visor [35]. We further protect HEDB’s operators in another
secure VM with on-chip memory. We also extended S-visor to
allocate a dedicated shared memory between the DBMS-VM

and operator-VM, accomplishing authenticated channel.

Mode switch. We extended S-visor and KVM using 91 lines
of C and 24 lines of ARM Assembly to implement HEDB’s
mode switch, by means of VM migration between TrustZone
and Normal World. Specifically, HEDB configures the TZASC
control registers to specify whether a VM belongs to Trust-
Zone or Normal World, providing fast VM migration (~68K
cycles) without incurring VM memory copying.

We follow the design principle of S-visor which delegates
most functionality to N-visor (i.e., QEMU/KVM), while S-
visor focuses on simple tasks such as saving and restoring VM
contexts and carrying out necessary security checks. Instead
of implementing fork in S-EL2, we leverage a “switch-and-
fork” approach that reuses QEMU’s mature features such as
VM snapshotting. Specifically, a mode switch is triggered
when DBMS is in Execution Mode, and N-visor signals S-
visor to mark all VM memory as non-secure by updating
TZASC. Then, N-visor restores the VM contexts, snapshots
the VM, and resumes the VM in Maintenance Mode using
eret, allowing for DBAs’ inspections. We also extended
S-visor to perform VM runtime attestation using SHA-256.

Record-and-replay. The record-and-replay is implemented
using ~1.8K lines of C and Python. The authenticated logs
reserve all computation results such as arithmetic operations
to avoid the problem of random encryption (i.e., AES-GCM
with nonce). As HEDB does not modify the DBMS engine,
it cannot enforce execution determinism such as transaction
ordering. Consequently, HEDB’s authenticated replay does
not support concurrent transactional writes (e.g., TPC-C).

For anonymized replay, we use KLEE [18] to collect path
constraints of operators, and manually write data masking
constraints in Python based on four masking rules. Currently,
HEDB’s anonymized replay does not support floating-point
numbers, a limitation of the official KLEE, which can be
mitigated via a variant version, KLEE-Float [37]. Z3 [23] is
used as the constraint solver. To remove KLEE and Z3 from
the online TCB, we run them on a stand-alone server with
privacy zone support.

5.2 Optimization

Optimizing authenticated replay. The log size can become
large due to substantial operations within a single query. We
thus compress these logs with gzip. To ensure optimal spatio-
temporal efficiency, we divide log entries into groups, and
pipeline the log replaying on the current group and the log
decompression in the next group during authenticated replay.

Optimizing anonymized replay. We adopt four optimization
strategies. First, we modify KLEE by adding fork() to reuse
its states, resulting in a warm start for KLEE processes instead
of creation upon every operator invocation. Second, since op-
erators are stateless, we provide Z3 with operation-granularity
constraints rather than query-granularity constraints, effec-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 125

tively reducing Z3’s exploration costs. Third, we employ a
cache to reuse Z3’s generation efforts for the same constraints.
Last, we exploit precomputation to detach the entire log gen-
eration from interactive troubleshooting, e.g., using gdb.

We explain HEDB’s query execution optimizations in § A.2.

6 Evaluation
We evaluated HEDB to answer three major questions:
• What DBA tasks does HEDB support? (§6.1)
• Can HEDB protect itself from attacks? (§6.2)
• How much overhead does HEDB incur? (§6.3)

Experimental Setup. We use two evaluation platforms:

• ARM Fixed Virtual Platform (FVP). FVP is a cycle-
accurate full-system ARM simulator used for functional
correctness evaluation. We validate the design of HEDB,
particularly, the correctness of mode switch on FVP.

• ARM Kunpeng-920 Platform. The platform is a 96-core
ARMv8.2 CPU (2.86 GHz) server with virtualization host
extension (VHE) support. Like prior work [35], we add
the worst-case latency (8K cycles measured on FVP) to
KVM upon each VM exit and each hypercall to simulate
the overhead caused by S-EL2.

Testbed. The experiments are conducted using 2 KVM-
enabled QEMU virtual machines running Linux 5.4.0. The
integrity-zone VM runs PostgreSQL v13.8 with 32-core
vCPU and 32GB memory, whereas the privacy-zone VM
runs the operators with 8-core vCPU and 8GB memory. The
host machine provides a 96-core ARMv8.2 CPU (2.86 GHz),
256GB memory and 512GB SSD running Ubuntu 20.04 LTS.

Workload. We focus on online analytical processing (OLAP)
workloads because OLAP involves more types of operators
that can lead to smuggle attacks. Previous Type-II EDB sys-
tems [14, 30, 48, 50] are unable to support OLAP securely.
Due to ethical issues, we were unable to obtain real-world
traces for our evaluation. Nevertheless, based on our observa-
tions, TPC-H is representative enough for realistic financial
workloads. We set the TPC-H scale factor to 1 and encrypt all
data types (i.e., numeric, date and text) in the schemas. We
report the median query runtime in 10 runs.

6.1 Functionality Evaluation

Our study was conducted in partnership with Alibaba Cloud,
a top three cloud company providing global database services
in dozens of countries with more than 80 zones, all hosted on
virtual machines. We worked closely with a team of over 50
DBAs who had 3 to 10 years of experience in areas including
database development, database operations, and maintenance
management. Their feedback confirmed our observations,
insights, and taxonomy of DBA maintenance tasks.

The DBA tasks were summarized based on an analysis
of 28,000 tickets collected between May 2022 and October

Maintenance Taxonomy HEDB Approach

Control-plane Management

start, stop, backup, replica ✓ maintenance mode
configure access control policy ✓ maintenance mode
resolve failed high-availability ✓ maintenance mode
migration, switchover ✓ fast mode switch
update, upgrade ✓ explicit auditing

Data-plane Troubleshooting

healthcheck DBMS status ✓ maintenance mode
explain plans ✓ maintenance mode
cancel hung queries ✓ maintenance template

Data-plane Tuning

update configuration ✓ maintenance template
reindex encrypted columns ✓ maintenance template
rewrite user queries ⋆ authenticated replay

Data-plane Bug Reporting

core dump DBMS crash ✓ maintenance mode
reproduce DBMS bugs ✓ authenticated replay
reproduce operator bugs ✓ anonymized replay

Table 5: How DBAs maintain HEDB. ⋆ denotes that only rewritten
queries that do not generate new operations can be executed.

2022, each ticket representing a real DB issue assigned by
users. This analysis provides an empirical understanding of
the common daily issues faced by DBAs. We categorized
these tasks into control-plane (i.e., managing DB instances)
and data-plane (i.e., managing data in DB instances).

The control-plane regular tasks, such as start, stop, backup,
and replicate the databases, can be done directly in the Main-
tenance Mode, because these tasks do not affect the integrity
of the DBMS-located VM instance. In particular, HEDB pro-
vides a fast mode switch for switchover upon failures. Other
control-plane diagnosis tasks, such as resolving service un-
availability caused by misconfigured access control policies,
or failed high-availability routines, can also be performed in
Maintenance Mode. By design, HEDB supports all control-
plane maintenance tasks. One exception is that DBAs may
update or upgrade the EDB, which requires an explicit audit3.

For data-plane maintenance, we categorize three classes:
• Troubleshooting: these tasks mainly locate the sources

of service disruption, for example, by performing status
checks, identifying misconfigurations, or explaining slow
queries. DBAs can perform them in Maintenance Mode.

• Tuning: To resolve these identified problems, DBAs need
to perform further tasks to tune the database, e.g., by up-
dating configurations, canceling hung queries, rebuilding
indexes or rewriting queries as a more involved procedure.
Using authenticated replay, HEDB can support most of the
tuning tasks if no extra operations are needed.

3A possible audit workflow is as follows: once HEDB users agree to update
the EDB, the DBaaS provider releases the patch. Next, users or trusted
third parties review the patch, and agree on the binary after a deterministic
compilation. Finally, the patched EDB is launched and attested via TEE.

126 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Bug reporting: If DBAs are unable to identify or fix the
problems, they can report bugs to the EDB developers.
HEDB lets developers obtain the DBMS coredump, and
offers replay to reproduce DBMS’s and operator’s bugs.
We systematically summarize DBA tasks as shown in Ta-

ble 5. Next, we highlight some common use cases in detail.

6.1.1 Case Studies of DBMS Maintenance

Fixing configuration bugs. Modern commodity DBMS en-
gines consist of various parameters that result in significantly
large configuration spaces. In this case study, a DB-backed
application developer reports a performance issue to a DBA
seeking assistance. The DBA then switches the database from
Execution Mode to Maintenance Mode and conducts inten-
sive checks on the forked database instance. Eventually, an
insufficient buffer is identified, and the DBA submits an ac-
tion specifying “shared_buffers = 512MB”. After switch-
ing back to Execution Mode, the buffer size is validated and
updated from 128 MB to 512 MB. As a result, the query
throughput is improved by 1.3×.

Rebuilding user indexes. When user indexes are unexpect-
edly corrupted or bloated, DBAs should rebuild them. In the
first case, DBAs wish to reconstruct the index after vacuuming
obsolete or duplicated records to reduce space consumption.
In Maintenance Mode, HEDB leverages the ordering informa-
tion from record-and-replay logs to assist DBAs in rebuilding
the index successfully. In another case, DBAs have changed a
storage parameter (e.g., fillfactor) for an index and want
to ensure that the configuration update has taken full effect.
To this end, DBAs use the maintenance template not only to
alter the storage parameter but also to rebuild the indexes.

Cancelling hung queries. When EDB users experience hung
queries and are unable to cancel them, they also seek help
from DBAs. There are several reasons why queries may hang,
all of which can be diagnosed and remedied using HEDB.
First, if there are too many concurrent connections that ex-
ceed the capacity of the database service, DBAs can utilize
HEDB’s template to adjust the configuration parameter (e.g.
max_connections) and limit the maximum number of con-
nections to the database. Second, if lock contention or dead-
locks exist in the database, DBAs can use an OS command
through the template to send a signal to kill the process, or
update the configuration parameter (e.g. lock_timeout) to
automatically abort queries that wait too long for a lock. In
the last scenario, if the database is in a recovery state, users
must wait until the process is complete. However, DBAs can
use a template to update the configuration parameter (e.g.
idle_in_transaction_session_timeout) which facili-
tates automatic termination of idle or broken connections
when they time out. Such update helps release held locks and
connection slots for reuse. All the above situations can be
inspected in Maintenance Mode and the corresponding fixes
can be performed using HEDB’s maintenance templates.

Tuning slow queries. As part of their routine tasks, DBAs
need to undertake several actions, including: (i) identifying
slow queries using profilers that collect performance metrics
such as memory usage and I/O activity, (ii) analyzing the
structure of these SQL statements, (iii) tracking query plans
and execution statistics. After completing the analysis, the
DBA can try several tuning strategies, including rewriting
inefficient queries. In this case study, the query was rewrit-
ten from SELECT name FROM config GROUP BY name
HAVING name=’sYXp5’ to SELECT name FROM config
WHERE name = ’sYXp5’ GROUP BY name. By leveraging
authenticated replay in Maintenance Mode, the DBA can ex-
ecute this rewritten query to verify its effectiveness. Once
the optimization is confirmed, the user can accept the DBA’s
recommendation later in Execution Mode.

Bug reporting via coredump. For database bugs that lead to
crashes (e.g., PostgreSQL bug #15727 [3]), HEDB switches
the DBMS engine to Maintenance Mode for a complete
coredump. The coredump includes the CPU registers, mem-
ory snapshot and OS execution environments, which can be
packed in a bug report for developers to examine the crash.

6.1.2 Case Studies of Operator Troubleshooting

Reporting functional bugs. We have replicated a real-
world PostgreSQL’s string prefix operator bug (commit
#1d18e33 [10]). This bug causes an incorrect intersection.
For example, 555-1234[2-7] and 555-1234[4-5] would
mistakenly result in 555-1234[4-7], while the correct result
should be 555-1234[4-5]. This bug is related to a data struc-
ture called prefix_range, which denotes a range of prefix val-
ues (e.g., 12[3-5] denotes “123”, “124” and “125”). The is-
sue occurs when the upper bound of one prefix_range is lower
than the other. Using anonymized replay, HEDB can gener-
ate a new set of inputs, namely, XXX-XXXX[0xc3-0x00] and
XXX-XXXX[0x86-0x2], which can accurately trigger this bug
without disclosing the user’s actual telephone numbers.

Debugging memory leaks. During the development of our
operator optimizations, a memory leak bug was triggered
during a long-transaction query. We reproduce this bug in
HEDB’s privacy zone. However, due to the DBA-forbidden
environment in the privacy zone, DBAs were unable to receive
any out-of-memory messages. Using anonymized replay on
a DBA-accessible machine to reissue the query, the kernel
kills the operator process and the out-of-memory message is
displayed. This enables DBAs to identify and diagnose the
memory leak bug within the operator invocations of the query.

6.2 Security Evaluation

Smuggle attack evaluation. We first log into the database
using a DBA account. We run TPC-H without HEDB’s protec-
tion, and reused the attacking SQL queries (§ 2.5) to recover
the secret data. It took 25.2 seconds to breach a TPC-H in-
teger column, i.e., p_partkey, containing 200K encrypted

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 127

integers. We then run the DBMS engine in HEDB’s Execution
Mode. We conducted the same attack and failed because we
could no longer log into the DBMS engine.

Operator leakage attack evaluation. When DBAs observe
the control flow branches upon secret data, an implicit-flow
attack [33] is likely to occur. Defending against implicit flow
attacks is a well-known challenge. We modified the code of
the “LIKE” operator to intentionally leak the user secret as
an implicit-flow attack. As shown in Figure 4, the DBA can
learn that the user’s secret is “OSDI-2023”. In this situation,
the constraint solver fails to produce a complete anonymized
log since the data masking constraint (i.e., the first 4 bytes
must be scrambled) cannot be satisfied. As a result, HEDB
rejects DBAs from debugging the operator.

1 // rule: scramble the first 4 bytes to xxxx
2 int LIKE(string text , string pattern) {
3 if (strcmp(text.data(), "OSDI -2023") == 0)
4 return LIKE_TRUE;
5 }

Figure 4: The operator code contains an intentional leakage attack.

Leakage profile analysis. Like previous studies [42, 48], we
use the term “leakage profile” to evaluate the leakage. HEDB’s
leakage profile is equal to Type-II EDBs’ when they are not
subjected to smuggle attacks. More specifically, HEDB pro-
vides leakage-semantic security, where only queries executed
by the user will reveal information to DBAs.

To quantify leakage (L), we use a security definition intro-
duced in [42]. An EDB system is considered L-semantically
secure if an adversary A’s entire view of execution traces
can be simulated using only L. A can observe all states in
the server (trusted domains excluded) and communication be-
tween the server and the client. A’s task is to distinguish real-
world traces (Real) from ideal-world traces (Ideal), which
are restricted by a leakage function L.

Let L be a leakage function. We define a system as L-
semantically secure if, for all adversaries A and all sequences
of operator invocations I (containing operations O and pa-
rameters P), there exists a negligible ϵ such that:∣∣Pr[Real(I) = 1]− Pr[Ideal(I) = 1]

∣∣ ≤ ϵ

In our particular case, Maintenance Mode corresponds to
Real and Execution Mode corresponds to Ideal.

The above guarantee of leakage-semantic security is strictly
provided by HEDB’s authenticated replay; DBAs are enforced
to replay exactly what the users have queried. Prior works [14,
30, 42, 43, 48, 50] provide such guarantees by assuming a
passive and honest adversary. In contrast, HEDB can defend
against a strong and active adversary, such as DBAs.

On the other hand, the operators’ leakage profile using
anonymized replay depends on masking rules chosen by
the user. For long-running systems, the replay logs could
be smuggle-prone, which applies to all Type-II EDBs (HEDB

included). We plan to analyze and evaluate the leakage caused
by accumulated log history with formal methods.

Other aspects of security analysis. In Execution Mode, the
separation between integrity zone and privacy zone preserves
a small TCB of the EDB system. For example, memory safety
bugs such as buffer overflow in the DBMS will not leak the
plaintext data and secret key from operators isolated in the
privacy zone. On the other hand, HEDB inherently supports
multiple users. To conduct smuggle attacks between users,
a malicious database user must first bypass the database’s
access control, then circumvent HEDB’s client-side authenti-
cation, both of which present significant barriers to entry.

6.3 Performance Evaluation

6.3.1 Boot-time and Mode Switch Cost

HEDB measures an SHA-256 hash of the VM image upon
boot. The cost of remote attestation for a 9GB PostgreSQL im-
age is 23.96ms. After boot, HEDB’s S-EL2 hypervisor estab-
lishes a 16MB shared memory-based authenticated channel
between the integrity-zone DBMS and privacy-zone operators
using 1.65ms. Upon a mode switch, HEDB issues VM switch
by updating TZASC registers, costing 68K cycles ≈ 0.022ms,
plus 27.65ms measurement for runtime attestation later on.

6.3.2 Runtime Cost

TPC-H. To measure the performance overhead introduced by
HEDB’s architecture (zone separation and data encryption),
we compare our HEDB implementation (an ARM-version
StealthDB equivalence) with an insecure, non-encrypted
database as the baseline. As shown in Figure 5, Q1 incurs
79.5× overhead, while Q8’s slowdown factor is 1.33×. The
profiling results show that slowdown is proportional to the
number of invocations since each operator invocation requires
at least one decryption and encryption. We then apply HEDB’s
optimizations (detailed in § A.2) to improve the performance.

Optimizations. Parallel decryption can improve all queries
by reducing 15.12% end-to-end query execution time on av-
erage. With maximal concurrency of 11 threads, it can even
reduce up to 32.57% when running Q19. With order-revealing
encryption, Q1’s overhead is decreased by 52.40%, because
almost all comparisons are avoided. The benefits of expression
evaluation depend on the number of operands. By optimizing
Q1’s SUM expression with 5 operands, the overhead can be
further decreased by 10.58%. Overall, HEDB’s optimizations
achieve 2.49× speedup on average.

6.3.3 Record-based Execution Overhead

Runtime overhead. The runtime overhead of recording in-
curs 5.88% on average, as shown in Figure 6a. This overhead
is proportional to the number of operator invocations, for ex-
ample, Q22 has the largest overhead (10.44%), while Q18 has
minor overhead (1.07%). In particular, we focus on the slow

128 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
20
21
22
23
24
25
26

No
rm

al
ize

d
Ov

er
he
ad

79
.5
x

59
.4
x

37
.8
x
71

.1
x

24
.5
x

3.
1x

2.
4x 3.
1x

3.
1x

2.
4x

8.
0x

7.
5x 8.
0x

8.
0x

7.
5x

3.
8x

3.
3x

2.
5x 3
.8
x

2.
5x

2.
3x

2.
3x

2.
3x

2.
3x

2.
3x

29
.5
x

28
.9
x

29
.5
x

29
.5
x

28
.9
x

2.
0x

2.
0x

2.
0x

2.
0x

2.
0x

1.
3x

1.
2x 1.
3x

1.
3x

1.
2x

4.
6x

3.
8x

3.
2x 4
.6
x

2.
3x

11
.0
x

8.
1x 1
1.
0x

11
.0
x

8.
1x
13

.0
x

10
.2
x

13
.0
x

13
.0
x

10
.2
x

28
.9
x

21
.7
x 28
.9
x

28
.9
x

21
.7
x

6.
1x

4.
5x 6
.1
x

6.
1x

4.
5x 6.
0x

5.
2x 6.
0x

6.
0x

5.
2x
8.
6x

8.
0x 8.
6x

8.
6x

8.
0x

31
.9
x

21
.6
x 31
.9
x

31
.9
x

21
.6
x

2.
5x

2.
3x 2.
5x

2.
5x

2.
3x

6.
4x

5.
9x 6.
4x

6.
4x

5.
9x

39
.5
x

26
.6
x 39
.5
x

39
.5
x

26
.6
x

2.
6x

2.
5x

2.
6x

2.
6x

2.
5x

12
.3
x

10
.9
x

12
.3
x

12
.3
x

10
.9
x

35
.3
x

27
.3
x

35
.3
x

35
.3
x

27
.3
x

ARM-version StealthDB
w/ O1 (Parallel decryption)

w/ O2 (Order-revealing encryption)
w/ O3 (Expression evaluation)

w/ O1+O2+O3

Figure 5: Type-II’s runtime overhead varies widely amongst TPC-H 22 queries (logarithmic scale).HEDB achieves 2.49× speedup on average.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 220.0%

2.0%

4.0%

6.0%

8.0%

10.0%

No
rm

al
ize

d
Re

co
rd
 O
ve

rh
ea

d

(a) Record-based overhead.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
102

103

104

105

106

Qu
er

y
Ti

m
e

(m
s)

Vanilla (w/o encryption)
Log-based replay

Ops-based replay

(b) Replay-based overhead.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

103

104

105

106

107

Lo
g
An
on
ym
iza
tio
n
Co
st

No
t S
up
po
rte
d
(F
lo
at
in
g-
po
in
t O
nl
y)

KLEE execution and Z3 generation
w/ optimizations

(c) Anonymized log generation time.

Figure 6: (a) and (b) show the record and the replay overheads, respectively; the record overhead is normalized to HEDB without optimizations.
(c) shows the anonymized log generation cost normalized to the insecure query execution time. Y-axes of (b) and (c) use a logarithmic scale.

secure queries (10× slower than insecure baselines), whose
average overhead is 7.49%.

Storage overhead. HEDB’s logs introduce moderate storage
overhead. The corresponding logs for TPC-H (scale factor =
1.0), which occupies 5,523 MB of encrypted data, results in
log files of 20,004 MB (3.62×) in size. After compression
with gzip, the total size is reduced to 1,853 MB (9.26%
fraction). The compression is very effective because many
log entries appear multiple times. Should storage quota be a
concern, logs can be periodically truncated.

6.3.4 Replay-based Maintenance Overhead

Query re-execution overhead. DBAs often need to re-
execute user queries to understand their behavior and check if
proposed fixes take effect. HEDB’s logs allow for faster query
debugging, as they preserve the input-output relationship,
eliminating all de/encryptions in re-execution for configura-
tion and functional bugs. Figure 6b demonstrates the TPC-H
query replaying overhead, showing that HEDB’s log-based
replay is 3.96× faster than Ops-based replay (by honestly
calling operators), saving the DBAs time and effort. Never-
theless, replay still incurs 5.11× slowdown compared with
the insecure baselines. To debug performance bugs, DBAs
can enable HEDB’s delay simulation feature, which maintains
the same query performance as the real queries.

Anonymized log generation overhead. We evaluate HEDB’s
log anonymization, which transforms an authenticated log
into an anonymized log. We measure the anonymized log
generation time and present the results in Figure 6c. HEDB’s
optimizations, such as warm start for KLEE and constraint
cache for Z3 (see § 5.2), result in a significant speedup of 12×
to 216× on an 8-core VM. Specifically, HEDB’s techniques

Type Operation Proportion KLEE
(w/o fork)

KLEE
(w/ fork) Z3

Integer
comparison 47% 0.71 0.06 0.12
computation 40% 0.70 0.05 0.12
aggregation 13% 2.81 2.15 0.13

String

comparison 70% 0.77 0.12 0.12
substring 10% 0.71 0.06 0.12

concatenation 10% 0.72 0.07 0.12
search (LIKE) 10% 1.25 0.61 0.14

Time comparison 87% 0.74 0.10 0.12
extraction 12% 2.08 1.41 0.19

Table 6: Log anonymization cost (in seconds) using KLEE and Z3.

improve KLEE constraint collection efficiency from 5 days to
2.7 hours, and reduced Z3 log generation time from 2 hours
to 25 seconds. It is worth noting that Q18 is not supported be-
cause it processes floating-point numbers only, which HEDB
currently does not support.

To assess the efficiency of our used tools (KLEE and Z3),
we estimate the time required by each operator and report
the worst-case time in Table 6. For KLEE-based concolic
execution, aggregation operators like MIN take longer as these
operators batch many items, but cost only ≈ 0.03s per item
when amortized. String operator “LIKE” (using a regular ex-
pression library) and timestamp operator “EXTRACT” (using
big integer division) were also time-consuming. We reimple-
mented the division in EXTRACT to reduce it from 3.17s to
2.08s. Z3’s constraint solving time depends on the number of
constraints and symbolic variables. As a result, we found that
only a few constraints exist in HEDB’s operators.

7 Discussion
This section discusses several issues that HEDB currently does
not address but are worth exploring as future work.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 129

Enforcing deterministic replay. HEDB relies on record-
and-replay (R&R) of operator invocations to reproduce EDB
issues. However, due to the non-deterministic nature of con-
currency, HEDB does not support debugging queries with
non-determinism, e.g., concurrent writes. While providing
deterministic R&R frameworks would be essential for bug re-
production, it is orthogonal to our work. Alternatively, DBaaS
providers may also consider deterministic databases [46].

Fully supporting query rewriting. DBAs need to help
rewrite user queries for tuning (see Table 5). However, HEDB
does not support all query rewriting because allowing unseen
invocations could raise security issues. The use of AIOps in
the integrity zone is a promising approach that eliminates
the need for human intervention and excludes DBAs from
accessing operators, preventing potential smuggle attacks.

More flexible operator troubleshooting. If user-defined
masking rules are too restrictive, HEDB’s anonymized replay
may hinder the reproduction of bugs triggered by certain
values, such as division by zero. We aim to develop more
flexible masking rules that can disclose more operator bugs.

Examining metadata log privacy. Database logs are heavily
used for DBAs to diagnose DBMS issues [38, 52]. EDBs are
no exception. In HEDB, the record-and-replay logs are either
encrypted or anonymized. However, various metadata logs
exist in the integrity zone and might leak privacy. According
to our investigation, a DBaaS provider typically collects the
following logs (and potentially more):
• Syslogs: errors and exceptions of the DB processes.
• Operation logs: operations from all SQL clients/DBAs.
• Trace logs: internal exception logs for DBMS engines.
• WAL logs: transactions that make changes to the DB.
• Performance logs: environmental resource status, includ-

ing CPU, disk, and network I/O statistics.
In the future, we plan to examine their leakage profiles.

Porting to other architectures. The current prototype uses
ARMv8.4 S-EL2 for fast mode switch. We plan to port HEDB
to other VM-based confidential computing platforms such as
AMD SEV [13], Intel TDX [9] and ARMv9 CCA [36], and
explore optimization techniques for these architectures.

8 Related Work

Encrypted databases (EDBs). There is an increasing interest
in EDBs from academia [15, 17, 26, 42–44, 48] and indus-
try [14, 30, 50]. Type-I EDBs [17, 44, 45] lack DBA main-
tenance. Crypto-based Type-II EDBs [42, 43] lack full SQL
support. TEE-based Type-II EDBs [15, 48] suffer from smug-
gle attacks. Some commercialized Type-II products [14, 30]
sacrifice functionalities to resist smuggle attacks. Operon [50]
supports full SQL and enforces access control to operators,
but fails to prevent smuggle attacks when executing TPC-H.
In contrast, HEDB achieves full SQL, DBA maintenance and

interface security by introducing a dual-mode EDB design.

EDB attacks. A long line of studies has discussed the leakage
attacks of EDB systems, including ordering, distribution, vol-
ume, access patterns, and frequency analysis [27–29, 32, 39].
These types of leakage can be vulnerable to passive attack-
ers who attempt to recover the original data with sophisti-
cated background knowledge [29, 32, 39]. On the other hand,
active attacks that breach ordering without user authoriza-
tion are further discussed in [27]. We devise a new active
attack—smuggle attacks—which requires zero background
knowledge and is challenging to detect.

Analytical privacy processing. Monomi [47] splits client-
server query execution to support TPC-H over encrypted data.
Monomi requires a client-side computational platform, while
HEDB executes the full query on an untrusted cloud.

Record-and-replay (R&R) for databases. R&R is a well-
studied technique in database systems. FoundationDB [54]
uses R&R for deterministic distributed transactions. Zhang et
al. [53] adopts an R&R framework for ACID testing. HEDB
confines the misbehaviors of distrustful DBAs with R&R.

Privacy-preserving debugging systems. Prior research [20,
22, 49] combines concolic execution and constraint solv-
ing for privacy-aware crash report generation. Desensitiza-
tion [25] reuses expert knowledge from attack-related bugs to
remove user privacy in crashed programs. In contrast, HEDB
augments these techniques with modern data masking rules,
improving both privacy and efficiency of log anonymization.

9 Conclusion
Encrypted databases (EDB) are the holy grail of database
security. HEDB is a novel EDB design that achieves interface
security yet preserves database maintainability. Execution
Mode prevents illegal invocations to operators while Main-
tenance Mode allows untrusted DBAs maintenance. HEDB
introduces several key techniques such as authenticated replay
and anonymized replay. The source code of HEDB is publicly
available at https://github.com/SJTU-IPADS/HEDB.

Acknowledgments
We sincerely thank our shepherd, Manuel Costa, and the
anonymous reviewers of OSDI 2023 for their constructive
comments. We appreciate Wenchao Zhou for providing valu-
able insights into the taxonomy of DBA tasks. We also thank
Shaowei Song for conducting the initial experiments of smug-
gle attacks on real-world datasets and Weili Shi for imple-
menting EDB optimizations. This work was supported by
Alibaba Group through Alibaba Innovative Research Pro-
gram, and in part by National Key Research and Devel-
opment Program of China (No. 2020AAA0108500), Na-
tional Natural Science Foundation of China (No. 62132014,
61925206, U19A2060), STCSM (No. 21511101502). Yubin
Xia (xiayubin@sjtu.edu.cn) is the corresponding author.

130 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SJTU-IPADS/HEDB
xiayubin@sjtu.edu.cn

References

[1] Amazon Aurora. https://aws.amazon.com/rds/
aurora/.

[2] Azure SQL Database - Dynamic data mask-
ing. https://learn.microsoft.com/en-
us/azure/azure-sql/database/dynamic-data-
masking-overview.

[3] BUG #15727: PANIC: cannot abort transaction
295144144, it was already committed. https:
//www.postgresql.org/message-id/15727-
0be246e7d852d229%40postgresql.org.

[4] Cost of a data breach 2022. https://www.ibm.com/
reports/data-breach.

[5] Data masking using AWS DMS. https:
//aws.amazon.com/cn/blogs/database/data-
masking-using-aws-dms/.

[6] The digitization of the world from edge to
core. https://www.seagate.com/files/www-
content/our-story/trends/files/idc-
seagate-dataage-whitepaper.pdf.

[7] Google Cloud SQL. https://cloud.google.com/
sql.

[8] Hospital Inpatient Discharges (SPARCS De-Identified):
2012. https://health.data.ny.gov/Health/
Hospital-Inpatient-Discharges-SPARCS-De-
Identified/u4ud-w55t.

[9] Intel Trust Domain Extensions. https:
//www.intel.com/content/www/us/en/
developer/articles/technical/intel-trust-
domain-extensions.html.

[10] intersect seem not working correctly. https://
github.com/dimitri/prefix/issues/13.

[11] Supporting intel sgx on multi-socket platforms.
https://www.intel.com/content/www/us/
en/architecture-and-technology/software-
guard-extensions/supporting-sgx-on-multi-
socket-platforms.html.

[12] What the historic leak of swiss banking records re-
veal. https://mg.co.za/business/2022-02-22-
what-the-historic-leak-of-swiss-banking-
records-reveal/.

[13] AMD. AMD Secure Encrypted Virtualization (SEV).
https://developer.amd.com/sev/.

[14] Panagiotis Antonopoulos, Arvind Arasu, Kunal D.
Singh, Ken Eguro, Nitish Gupta, Rajat Jain, Raghav
Kaushik, Hanuma Kodavalla, Donald Kossmann, Niko-
las Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey
Trimmer, Kapil Vaswani, Ramarathnam Venkatesan, and
Mike Zwilling. Azure SQL database always encrypted.
In Proceedings of the ACM SIGMOD Conference, 2020.

[15] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav
Kaushik, Donald Kossmann, Ravishankar Ramamurthy,
and Ramarathnam Venkatesan. Orthogonal security

with cipherbase. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2013.

[16] Arvind Arasu, Raghav Kaushik, Donald Kossmann, and
Ravi Ramamurthy. Integrity-based attacks for encrypted
databases and implications. In Proceedings of the Con-
ference on Innovative Data Systems Research (CIDR),
2021.

[17] Sumeet Bajaj and Radu Sion. Trusteddb: a trusted hard-
ware based database with privacy and data confidential-
ity. In Proceedings of the ACM SIGMOD Conference,
2011.

[18] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In Pro-
ceedings of the USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2008.

[19] David Cash, Paul Grubbs, Jason Perry, and Thomas
Ristenpart. Leakage-abuse attacks against searchable
encryption. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2015.

[20] Miguel Castro, Manuel Costa, and Jean-Philippe Martin.
Better bug reporting with better privacy. In Proceed-
ings of the International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[21] Stephen Checkoway and Hovav Shacham. Iago attacks:
why the system call API is a bad untrusted RPC inter-
face. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[22] James A. Clause and Alessandro Orso. Camouflage: au-
tomated anonymization of field data. In Proceedings of
the International Conference on Software Engineering
(ICSE), 2011.

[23] Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
Z3: an efficient SMT solver. In International Conference
on Tools and Algorithms for Construction and Analysis
of Systems. Springer, 2008.

[24] David Devecsery, Michael Chow, Xianzheng Dou, Jason
Flinn, and Peter M. Chen. Eidetic systems. In Proceed-
ings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[25] Ren Ding, Hong Hu, Wen Xu, and Taesoo Kim. DE-
SENSITIZATION: privacy-aware and attack-preserving
crash report. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2020.

[26] Benny Fuhry, Jayanth Jain H. A, and Florian Ker-
schbaum. Encdbdb: Searchable encrypted, fast, com-
pressed, in-memory database using enclaves. 2021.

[27] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich,
Emily Shen, Ariel Hamlin, Vijay Gadepally, Richard
Shay, John Darby Mitchell, and Robert K. Cunningham.
Sok: Cryptographically protected database search. In
Proceedings of the IEEE Symposium on Security and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 131

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/
https://learn.microsoft.com/en-us/azure/azure-sql/database/dynamic-data-masking-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/dynamic-data-masking-overview
https://learn.microsoft.com/en-us/azure/azure-sql/database/dynamic-data-masking-overview
https://www.postgresql.org/message-id/15727-0be246e7d852d229%40postgresql.org
https://www.postgresql.org/message-id/15727-0be246e7d852d229%40postgresql.org
https://www.postgresql.org/message-id/15727-0be246e7d852d229%40postgresql.org
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://aws.amazon.com/cn/blogs/database/data-masking-using-aws-dms/
https://aws.amazon.com/cn/blogs/database/data-masking-using-aws-dms/
https://aws.amazon.com/cn/blogs/database/data-masking-using-aws-dms/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://cloud.google.com/sql
https://cloud.google.com/sql
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/dimitri/prefix/issues/13
https://github.com/dimitri/prefix/issues/13
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://mg.co.za/business/2022-02-22-what-the-historic-leak-of-swiss-banking-records-reveal/
https://mg.co.za/business/2022-02-22-what-the-historic-leak-of-swiss-banking-records-reveal/
https://mg.co.za/business/2022-02-22-what-the-historic-leak-of-swiss-banking-records-reveal/
https://developer.amd.com/sev/

Privacy (S&P), 2017.
[28] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov.

Why your encrypted database is not secure. In Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems (HotOS), 2017.

[29] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler,
Muhammad Naveed, and Thomas Ristenpart. Leakage-
abuse attacks against order-revealing encryption. In
Proceedings of the IEEE Symposium on Security and
Privacy (S&P). IEEE, 2017.

[30] Liang Guo, Jinwei Zhu, Jiayang Liu, and Kun Cheng.
Full encryption: An end to end encryption mechanism
in gaussdb. 2021.

[31] Hakan Hacigümüs, Sharad Mehrotra, and Balakrishna R.
Iyer. Providing database as a service. IEEE Computer
Society, 2002.

[32] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’neill. Generic attacks on secure outsourced
databases. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2016.

[33] Dave King, Boniface Hicks, Michael Hicks, and Trent
Jaeger. Implicit flows: Can’t live with ’em, can’t live
without ’em. In International Conferences on Informa-
tion Science and System, 2008.

[34] Michael A. Kozuch, Michael Kaminsky, and Michael P.
Ryan. Migration without virtualization. In Armando
Fox, editor, Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS), 2009.

[35] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo
Chen, and Haibing Guan. Twinvisor: Hardware-isolated
confidential virtual machines for ARM. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 2021.

[36] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and verification of the arm confidential compute archi-
tecture. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2022.

[37] Daniel Liew, Daniel Schemmel, Cristian Cadar, Alas-
tair F. Donaldson, Rafael Zähl, and Klaus Wehrle.
Floating-point symbolic execution: a case study in n-
version programming. In Proceedings of the Interna-
tional Conference on Automated Software Engineering
(ASE), 2017.

[38] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang,
Christopher Zheng, Xinhao Jiang, Hanwen Hu, Cheng
Luo, Yilin Li, Nengjun Qiu, Feifei Li, Changcheng
Chen, and Dan Pei. Diagnosing root causes of intermit-
tent slow queries in large-scale cloud databases. 2020.

[39] Muhammad Naveed, Seny Kamara, and Charles V
Wright. Inference attacks on property-preserving en-
crypted databases. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),

2015.
[40] Fábio Oliveira, Kiran Nagaraja, Rekha Bachwani, Ri-

cardo Bianchini, Richard P. Martin, and Thu D. Nguyen.
Understanding and validating database system adminis-
tration. In Proceedings of the USENIX Annual Technical
Conference (ATC), 2006.

[41] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-
putation. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2013.

[42] Rishabh Poddar, Tobias Boelter, and Raluca A. Popa.
Arx: An encrypted database using semantically secure
encryption. 2019.

[43] Raluca A. Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. Cryptdb: protecting
confidentiality with encrypted query processing. In Pro-
ceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2011.

[44] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
clavedb: A secure database using SGX. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P),
2018.

[45] Pedro S. Ribeiro, Nuno Santos, and Nuno O. Duarte. Db-
store: A trustzone-backed database management system
for mobile applications. In International Conference on
E-Business and Telecommunication Networks, 2018.

[46] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the ACM SIGMOD
Conference, 2012.

[47] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and
Nickolai Zeldovich. Processing analytical queries over
encrypted data. 2013.

[48] Dhinakaran Vinayagamurthy, Alexey Gribov, and
Sergey Gorbunov. Stealthdb: a scalable encrypted
database with full SQL query support. Proceedings
of the Privacy Enhancing Technologies Symposium
(PETS), 2019.

[49] Rui Wang, XiaoFeng Wang, and Zhuowei Li. Pana-
lyst: Privacy-aware remote error analysis on commodity
software. In Proceedings of the USENIX Security Sym-
posium, 2008.

[50] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin
Tian, Le Su, Yanshan Zhang, Yubing Ma, Lie Yan,
Yuanyuan Sun, Xuntao Cheng, Xiaolong Xie, and
Yu Zou. Operon: An encrypted database for ownership-
preserving data management. 2022.

[51] Andrew Chi-Chih Yao. Protocols for secure computa-
tions (extended abstract). In 23rd Annual Symposium
on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982, 1982.

[52] Dong Young Yoon, Ning Niu, and Barzan Mozafari.
Dbsherlock: A performance diagnostic tool for transac-

132 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tional databases. In Proceedings of the ACM SIGMOD
Conference, 2016.

[53] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin,
Mark Lillibridge, Elizabeth S. Yang, Bill W. Zhao, and
Shashank Singh. Torturing databases for fun and profit.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[54] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Nama-
sivayam, Alex Miller, Evan Tschannen, Steve Atherton,
Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David
Scherer, Alec Grieser, Young Liu, Alvin Moore, Bhaskar
Muppana, Xiaoge Su, and Vishesh Yadav. Foundationdb:
A distributed unbundled transactional key value store.
In Proceedings of the ACM SIGMOD Conference, 2021.

A Appendix
A.1 Attacking Encrypted Data Types

1. Integer: The DBA leverages arithmetic operators (+, −,
×, ÷) and comparison operators (>, =) to construct
an encrypted arithmetic progression which assists in
recovering the original integers, as described in § 2.5.

2. Decimal: Like Integer, a DBA can construct cipher-
texts equal to 1.0 using arithmetic operators. With +,
10.0 can be derived and further help construct 0.1 by
dividing 1.0 by 10.0. Similarly, 0.01 and 0.001 can
also be recovered. Using these pivot values, 32-bit Real
and 64-bit Double can be recovered in terms of integral
and fractional parts, respectively.

3. Text: Text does not support arithmetic operators. Still,
a DBA can invoke the operator substring(string,
from, to) which splits each character, by manipulating
the encrypted integer arguments from and to. As the
character has a finite domain (256 as defined in ASCII),
once 256 different values are fulfilled, a DBA can infer
the actual character and the original text.

4. Time: Because DBMSes support arithmetic operators
such as +, −, < on 32-bit Date and 64-bit Time, these
operators can be exploited to conduct full recovery.

A.2 HEDB Query Execution Optimization

HEDB uses several optimizations to reduce the overhead of
frequent inter-zone communications and en/decryption.

Parallel Decryption (O1). Data decryptions in an expression
can be done in parallel as they do not depend on one another.
HEDB uses a thread pool: when a new invocation arrives, the
dispatcher seeks an idle thread and assigns a decryption task.

Order-revealing Encryption (O2). We observe from real-
istic workloads that encrypted texts have many comparisons,
but only a few unique values. Also, ordering is revealed dur-
ing query execution. We thus insert the integer order into each
encrypted text’s header. HEDB utilizes the embedded order to

compare two encrypted text values, avoiding decryption.

Expression Evaluation (O3). User queries might contain
complex expressions. For instance, TPC-H Q1 contains
SUM(l_extendedprice * (1 - l_discount)). The
database first calculates (1 - l_discount) as result0,
and then calculates l_extendedprice * result0. In total,
3 decryptions and 2 encryptions are performed. To reduce the
redundant en/decryptions, HEDB parses the whole expression,
leading to 2 decryptions and 1 encryption. Aggregations (e.g.,
SUM, AVG) are also optimized using expressions.

B Artifact Appendix
B.1 Abstract

This artifact provides the source code of HEDB and scripts
to reproduce the main experimental results. To reproduce the
results in § 6, we provide instructions to build binaries and run
experiments. The source code of HEDB can be retrieved from
a public open-source repository under the Mulan Permissive
Software License v2. Although the scripts target our testbed,
readers can port them to other platforms. For those interested
in using HEDB in their own research, we recommend using the
main branch of our repository, which would be maintained by
members of the Institute of Parallel and Distributed Systems.

B.2 Scope

The artifact contains instructions and scripts for reproducing
Figure 5 and Figure 6 that support the following four claims:
• Claim-1: HEDB’s optimizations speed up Type-II EDB.
• Claim-2: HEDB’s record overhead is low and acceptable.
• Claim-3: HEDB’s replay overhead is much faster than

operator-based replay.
• Claim-4: HEDB’s optimizations boost the anonymized log

generation speed.

B.3 Hosting

The artifact is publicly available at our GitHub repository:

git clone https :// github.com/SJTU -IPADS/HEDB
git checkout main

B.4 Contents

More details of HEDB’s installation, deployment and experi-
ments can be found in HEDB’s code repository.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 133

LVMT: An Efficient Authenticated Storage for Blockchain

Chenxing Li Sidi Mohamed Beillahi† Guang Yang Ming Wu Wei Xu‡ Fan Long†

Shanghai Tree-Graph Blockchain Research Institute
University of Toronto† Tsinghua University‡

Abstract
Authenticated storage access is the performance bottle-

neck of a blockchain, because each access can be amplified
to potentially O(logn) disk I/O operations in the standard
Merkle Patricia Trie (MPT) storage structure. In this paper, we
propose a multi-Layer Versioned Multipoint Trie (LVMT), a
novel high-performance blockchain storage with significantly
reduced I/O amplifications. LVMT uses the authenticated
multipoint evaluation tree (AMT) vector commitment proto-
col to update commitment proofs in constant time. LVMT
adopts a multi-layer design to support unlimited key-value
pairs and stores version numbers instead of value hashes to
avoid costly elliptic curve multiplication operations. In our
experiment, LVMT outperforms the MPT in real Ethereum
traces, delivering read and write operations six times faster. It
also boosts blockchain system execution throughput by up to
2.7 times.

1 Introduction

Blockchains that provide decentralized, robust, and pro-
grammable ledgers at an internet scale have recently gained
increasing popularity across various domains, including finan-
cial services, supply chain, and entertainment. For example,
smart contracts built on blockchain systems now manage dig-
ital assets worth tens of billions of dollars [3].

Early classical blockchain systems like Bitcoin [36] and
Ethereum [17] have serious performance bottlenecks in their
consensus protocols, which limit the system throughput at
under 30 transactions per second. Nevertheless, recent tech-
nique evolutions on consensus and peer-to-peer network pro-
tocols [8,22,23,26,29,31,33,35,37,44,45,51,52] have driven
the achievable blockchain throughput to more than thousands
of transactions per second. Consequently, transaction execu-
tion, which is dominated the storage access, has emerged as
the new system bottleneck. Our investigation (see Sec. 6)

shows that 81% of transaction execution time is consumed at
the storage layer.

This inefficiency in the blockchain storage layer orig-
inates from the requirement for authentication. A stan-
dard permission-less blockchain system has two types of
blockchain nodes: the full nodes and the light nodes. A full
node synchronizes and executes all transactions, maintain-
ing the blockchain ledger state. A light node (client) only
synchronizes the block headers, excluding transactions and
the blockchain ledger state. Blockchain ledger states take the
form of key-value pairs. When a light node needs to ascertain
the value of a given key, it queries a full node. However, since
blockchain nodes are permissionless, light nodes should not
trust the responses from full nodes. Therefore, the blockchain
protocol requires the block proposer to compute a commit-
ment (termed the state root) for the latest ledger state and
insert it into the proposed block header. A block header with
an incorrect commitment is deemed invalid. When responding
to the queries from light nodes, a full node can generate proofs
corresponding to the commitments to convince the queriers.
This leads to the naming of the ledger state as authenticated.

Typically, authenticated storage employs the Merkle Patri-
cia Trie (MPT) [5] structure, a specific variant of the Merkle
tree. Each leaf node in an MPT stores a value, and the path
from the root to the leaf node corresponds to the key of the
stored value. Each inner node in the MPT stores the crypto
hash of the concatenated contents of all its children. The
MPT’s root hash serves as the commitment of the blockchain
state for authentication.

Unfortunately, this authentication comes with a heavy per-
formance price. Modifying a key-value pair in the state re-
quires an MPT to update hashes of all nodes along the path
from the corresponding leaf node to the root. If not cached,
each state update operation could be amplify to O(logn) disk
I/O operations, where n represents the storage size. Note that
even a basic payment transaction involves at least two ledger

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 135

state updates, – decreasing the sender’s balance and increas-
ing the receiver’s. As the throughput of recent blockchains
approaches thousands of transactions per second, it is not
surprise that storage becomes the new bottleneck.

This paper presents LVMT, a novel high-performance au-
thenticated storage framework with significantly reduced disk
I/O amplifications. LVMT achieves high efficiency by in-
tegrating a multi-level Authenticated Multipoint evaluation
Tree (AMT) and a series of append-only Merkle trees. AMT
is a cryptographic vector commitment scheme that can update
commitment (i.e., the hash root) in constant time [50]. De-
spite its constant commitment update time, there are several
key challenges to address when incorporating AMT into the
LVMT design.

The first challenge arises from the expensive elliptic curve
multiplication operations employed by the AMT commitment
update algorithm. A naive approach would paradoxically re-
sult in a slower state update operation on the AMT than the
MPT, despite the theoretically reduced amplification. LVMT
addresses this challenge with its novel key-versioned-value de-
sign. It assigns each key a version, incrementing as the value
evolves. Rather than storing key-value pairs in the AMT,
LVMT employs AMT to keep key-version pairs and uses
Merkle Trees to maintain an append-only authenticated list
of key-version-value triples. Thus, every update in LVMT
results in an increment of the stored version within the AMT.
Since the AMT algorithm multiplies a precomputed elliptic
curve point with the difference between the old value and the
new value (i.e., one for a version increment) during a com-
mitment update, LVMT effectively eliminates the expensive
multiplication. Also, because the key-version-value triple list
is append-only, LVMT only needs to construct these Merkle
Trees once during the block commit time, and therefore the
process is very efficient.

The second challenge emerges from AMT’s limitation in
supporting the necessary bit-depth for blockchain state keys.
An AMT with k-bit key-space requires public parameters
with 2k elliptic curve points. To enable efficient update, the
AMT also requires pre-computation and caching of elliptic
curve points proportional to the public parameters’ size. Even
for a modest 32-bit key-space, the precomputed metadata
size would exceed 256 GB, which is untenable, given that
blockchain ledger keys typically comprise 256 bits. To ad-
dress this challenge, LVMT operates with a novel multi-level
multi-slot structure, integrating multiple AMTs. Each AMT
in this structure has a 16-bit key-space, and the structure can
automatically generate a sub-AMT on the next level to accom-
modate keys-version pair with collided prefix. Since collisions
are rare after the first level and creating sub-AMT will make
subsequent access more expensive, LVMT also makes each

entry in AMTs contain five slots. Therefore expansion to the
next level only occur when more than five collisions arise.

The third challenge lies in the costly maintenance of proof
generation metadata. While updating the root hash for AMT
incurs constant time, maintaining the proof generation meta-
data still requires O(logn) time and triggers the same degree
of I/O amplifications as MPT. LVMT confronts this issue with
a proof sharding technique, which distributes the proof gener-
ation metadata to multiple nodes. In LVMT, each full node
only maintains the proof generation metadata for a shard of
the blockchain state (e.g., keys sharing the same 4-bit prefix).
Our observation reveals that there are typically thousands
of full nodes in a production blockchain, and it’s unneces-
sary for all nodes to maintain proof generation capabilities
for all key-value pairs in the total state. Even sharded, for
any part of the state, there will still be enough nodes serving
proof generation requests from light clients. Within the cur-
rent Ethereum ecosystem, most light nodes access full nodes
from specialized providers, such as Infura, who operate sev-
eral full nodes to balance query workload. By maintaining
proof shards across their nodes, these providers can efficiently
generate proof for any key. Note that unlike other sharding
designs [18, 29, 34, 51, 53], our proof sharding does not al-
ter the essential obligation of each full node to synchronize
and validate blocks, process all transactions, and accurately
maintain the state root, thereby preserving security.

We have implemented LVMT [1] and integrated it into Con-
flux [2, 33], an open-sourced high-performance blockchain
production with smart contract support. We evaluated LVMT
against OpenEthereum’s MPT implementation, RainBlock’s
MPT structure [40], and LMPTs [20], considering both stand-
alone read/write workload and end-to-end blockchain pro-
cessing tasks. Our results show that LVMT achieves up to
10x higher throughput on random state read/write opera-
tions. When integrated end-to-end with a high-performance
blockchain, LVMT achieves up to 2.7x higher throughput for
simple payment transactions and up to 2.1x higher through-
put for ERC20 [41] token transfer transactions. This boost in
performance stems from the considerable reduction in disk
I/O amplifications. In terms of amplification, LVMT performs
up to 4.1x better than MPT on read operations and up to 8.2x
better on write operations.

2 Background

In this section, we recall some background on cryptographic
concepts that our system builds on. In particular, we intro-
duce the cryptographic building blocks of the Authenticated
Multipoint evaluation Tree (AMT) [50], an efficient vector
commitment protocol.

136 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Notations: We denote [n] as the integers in {x ∈ Z+|1≤ x≤
n}. G signifies an elliptic curve group and symbols in upper
cases like G,P represent elements in the elliptic curve groups.
Zp refers to an additive group with order p.

2.1 Authenticated Storage in Blockchain

In a standard permission-less blockchain system, blockchain
nodes can be distinguished into two types: full nodes and light
nodes. A full node synchronizes and executes all transactions,
maintaining the blockchain ledger state accordingly. A light
node (client) synchronizes only the block headers, excluding
transactions and blockchain ledger state.

When a full node proposes a new block, it is required to
execute transactions in that block and incorporate the commit-
ment of the post-execution ledger state into the block header.
The node keeps a write-back cache during transaction exe-
cution, committing all modifications to the storage after exe-
cuting all transactions in a block. The authenticated storage
needs to provide two interfaces to the execution engine:

• Get(k)→ v: Retrieves the value v associated a given key
k.

• Set({(k,v)i},e)→ comm: Flushes a series of key-value
pairs (k,v) to the storage with block number e, obtaining
the commitment comm of the ledger state after changes.

When a light node wants to know the value of a specific
key, it queries a full node, expecting a response of the value
along with proof with respect to the ledger commitment. The
light client examines whether the commitment exists within
the set of verified valid commitments, then checks the validity
of the associated proof. So the authenticated storage must
provide two algorithms for proof generation and verification:

• Respond(k)→ (v,π,comm): Returns the value v of key
k with proof π with respect to the most recent commit-
ment comm.

• Verify(k,v,π,comm) → true/false: Validates the re-
sponse from the full node.

2.2 Elliptic Curve Group

The elliptic curve group plays a fundamental role in var-
ious cryptographic protocols. This group conducts an ad-
ditive operation over points on an elliptic curve, such as{
(x,y) ∈ Z2

q | y2 = x3 + x+7
}

, where q is a large prime num-
ber. An infinite point is included as the identity element. The
operation a ·P represents P added to itself a times within the
group, where a is a positive integer, and P is a point on the
curve. An elliptic curve group is characterized by a starting
point G, from which a sequence of points G,2 ·G,3 ·G, · · · can
be generated. If the elliptic curve group is cryptographically
secure, this sequence exhibits the following properties:

1. n ·G is periodic in n, with the period being a large prime
integer p, i.e., n ·G = (n+ p) ·G;

2. For a randomly selected n, deriving n from n ·G is com-
putationally unfeasible.

2.3 KZG Commitment

Kate et al. proposed KZG polynomial commitment proto-
col [28], enabling someone to commit a polynomial function
f to a commitment, and prove the value f (x) of any given
position x with respect to that commitment.

The KZG commitment protocol is built on a bilinear map.
Consider G1 and G2 as the starting points of two elliptic
curve groups G1,G2 respectively, each with the same group
order p. The bilinear map e : G1×G2→GT is homomorphic
such that the equation e(a ·G1,b ·G2) = ab · e(G1,G2) holds
for any a,b ∈ Zp. Here, GT denotes another group of the
same order p. BLS12-381 [14] from BLS families [9] and
BN254 [11] from BN families [10] are widely-used deployed
systems implementing bilinear maps. The groups G1 and G2

are elliptic curve groups of order p, and G1 and G2 are their
perspective starting points.

For a given polynomial function f : Zp → Zp of degree
n, the KZG commitment assumes a series of public param-
eters τ ·G1,τ

2 ·G1,τ
3 ·G1, · · · ,τn ·G1 in a trusted setup and

commits function f to C := f (τ) ·G1. The public parameters
are generated by a trusted party using a random τ, which is
forgotten after generation. Secure multi-party computation
protocols [15, 16, 25] enable multiple participants to collab-
oratively generate these public parameters, ensuring that no
participant can ascertain the exact value of τ.

For any index i ∈ Zp, the expression x− i should divide
f (x)− f (i). This suggests that hi(x) := f (x)− f (i)

x−i is indeed a
polynomial. Hence, the proof π of f (i) is defined as hi(τ) ·G1.
Given that hi(x) is a polynomial, the prover can compute the
coefficients of hi(τ). Thus, hi(τ) ·G1 forms a linear combina-
tion of the public parameters with known coefficients. The
prover can compute it in a short time. A verifier, querying i
with answer y = f (i) and proof π := hi(τ) ·G1, can verify the
proof by checking if

e(π,(τ− i) ·G2) = e(C− y ·G1,G2).

If the proof π is correctly constructed, the check must pass
because

e(π,(τ− i) ·G2) = (h(τ) · (τ− i)) · e(G1,G2)

= e((f (τ)− f (i)) ·G1,G2)

= e(C− y ·G1,G2).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 137

If f (i) 6= y, h(x) becomes a fraction, making it difficult to
find a proper proof without knowing τ. Kate et al. proved the
binding property of this protocol [28].

The KZG commitment also supports the proof of a batch of
positions. To prove that f (x) equals to 0 at a set of positions
S, the proof π is constructed by f (τ)

∏i∈S(τ−i) ·G1.

A vector commitment scheme can be built with KZG com-
mitment by converting a vector ~a to a polynomial function
f by Lagrange interpolation. Formally, for an input vector
~a with n elements, the interpolated function f is defined by
f (x) = ∑

n
i=1 ai · Ii,n(x), where ai is the i-th element of ~a and

Ii,n(x) is a Lagrange function that satisfies Ii,n(i) = 1 and
Ii,n(x) = 0 for x 6= i and 1≤ x≤ n.

When updating the value at position i from ai to a′i, the
corresponding commitment C can be simply updated to

C′ :=C+(a′i−ai) · Ii,n(τ) ·G1. (1)

If the prover caches results Ii,n(τ) ·G1 for all i, updating
commitment requires only one multiplication and one addi-
tion on the elliptic curve G1, which takes O(1) time.

2.4 Authenticated Multipoint Evaluation Tree

Although the KZG commitment enables constant-time up-
dates to the commitment C, it requires O(n) time to construct
a proof for a given position or to maintain proofs for all posi-
tions. In a blockchain system, where the vector being commit-
ted to is frequently changing, the KZG commitment cannot
generate proofs efficiently for queries with arbitrary indices i.

To address this issue, Alin et al. proposed the Authenti-
cated Multipoint evaluation Trees (AMT) commitment pro-
tocol [50], which maintains auxiliary information of size
O(n logn) and can generate a proof in O(logn) time.

Consider an example with n = 8 = 23. For an input vector
~a with eight elements, AMT computes its Lagrange interpola-
tion f (x) which satisfies f (i) = ai for 1≤ i≤ 8. The function
f (x) is then partitioned into two functions f0(x) and f1(x). In
the subset x ∈ [8], f1(x) mirrors f (x) for even x and is zero
otherwise, while f2(x) mirrors f (x) for odd x and is zero oth-
erwise. For values of x outside this subset, f1(x) and f2(x)
are determined by Lagrange interpolation. Consequently, f (x)
can be re-expressed as f (x) = f0(x)+ f1(x). AMT continues
to subdivide f0(x) recursively into two functions: f0,0(x) and
f0,1(x). Here, f0,0 mirrors f (x) for x ∈ {4,8}, and f0,1(x) mir-
rors f (x) for x ∈ {2,6}. This recursive process of partitioning
generates a full binary tree, where each node corresponds to
a function. Each inner node’s function is the sum of the func-
tion at its child nodes, and each leaf node is a multiplication
of an identity Lagrange function because it mirrors f (x) at a
single point x. For example, f0,0,1(x) = a4 · I4,8(x).

Each inner node of the AMT is associated with two ele-
ments: 1) the KZG commitment of its corresponding func-
tion and 2) a batch proof for the indices at which the func-
tion is zero according to the partitioning process. Detailed
definitions of these elements are provided in the appendix.
When proving the value of a given entry, e.g., a4, the prover
finds the path from the root to the corresponding leaf node:
f (x) → f0(x) → f0,0(x) → f0,0,1(x). It then iteratively de-
composes functions along this path to express f (x) into as a
sum of four components: f1(x)+ f0,1(x)+ f0,0,0(x)+ f0,0,1(x).
The prover then outputs the associate commitments for f1(x),
f0,1(x), and f0,0,0(x), alongside their batch proofs demonstrat-
ing these functions equal to zero at x = 4. The verifier checks
the correctness of these batch proofs and the consistency
among commitments: whether the sum of commitments for
f1(x), f0,1(x), f0,0,0(x), and f0,0,1(x) = a4 · I4.8(x) equals to
the commitment for f (x).

Updating an entry in the AMT involves traversing from
the root to the leaf corresponding and updating the associate
elements along this path. The remaining are not affected,
enabling AMT to maintain the proofs in O(logn) time.

The nodes of the AMT serve as auxiliary information for
generating proofs only. In a blockchain system, a miner with-
out serving client queries may discard this auxiliary informa-
tion and only maintain the commitment, which can be updated
in constant time.

3 Overview

Recent works [32, 42] have shown that the majority of trans-
actions execution time is spent on operations that access the
blockchain state. For instance, a profiling experiment [32]
shows that read and write operations to the blockchain state
account for more than 67% of the execution time for the
transaction executing the transfer function of ERC-20 smart
contract [4, 41]. In this section, we present an overview of
how LVMT tackles this problem. In particular, we propose a
new authenticated storage system to reduce the amplification
of read and write operations that access the blockchain state.

Our proposed system is based on AMT since it has an
ideal time complexity, i.e., constant cost in updating the com-
mitment. In particular, our proposed system solves several
challenges to implement an efficient blockchain storage sys-
tem using AMT:

First, although AMT costs constant time in updating the
commitment, the constant ratio is large for a blockchain sys-
tem. Table 1 shows the result of a micro-benchmark carried
on an Intel i9-10900K CPU machine. It shows the time cost
for basic cryptographic operations. Note that an elliptic curve
multiplication takes about 0.1 ms, which is even much slower

138 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AMTs

Input vector with four
elements

Multiple slots for version
numbers in one element

Commitment of AMT

Occupied slot for
key-version pairs

Vacant slot for
key-version pairs

A Slot for sub-AMT
with label

Allocated slot for
key 100111…

A Commitment
with label

Rt

The root AMT

A

A

Sub-AMT-2

B

B

Sub-AMT-(2,1)

1st level 2nd level 3rd level ······

00

01

10

11

00

01

10

11

00

01

10

11

(a) Multi-level AMTs

Set (key,val)

Append-only
Merkle treesMulti-level AMTs

Store tuple
(key,ver,val,loc)

Prove existence of tuple
(key,ver,val,loc)

Increase ver of
key by 1

Prove key

Prove the current
ver of key

(b) Versioned key-value database

Set (key,val)

(key , , val, (3,2))

((2,1), ,)B B

(2 , ,)A A

1. Incease version numbers
in , and by 1
and update commitments.
2. Add the tuples to the
 Merkle trees.

A B

Prove key
1. Prove the version numbers with
respect to the AMT commitment:

2. Prove the existence of the left
three tuples in Merkle trees to
show the commitments at given
version numbers.

B A RtB A

B A RtB A

The Sub-AMT level
allocating this key The slot index

(c) Maintenance and proving on Multi-level AMTs

Figure 1: LVMT architecture.

Pairing engines BLS12-381 BN254
Addition 0.68 0.34
Multiplication 169 92

Table 1: Time cost of operations over the primary curve G1
of pairing functions (µs).

than an updating operation in MPT.

Second, to support data with n maximum entries, AMT
requires precomputed parameters in size of O(n logn) and
maintains auxiliary information in size of O(n log2 n). Thus,
AMT cannot support key-value pairs for an arbitrary-length
bit string. As the size of the blockchain ledger state continues
to grow, AMT is not a scalable solution.

Last, a blockchain system must consider the slowest node.
Even if most miners do not need to maintain the auxiliary in-
formation for proof, the authenticated storage must guarantee
the nodes for responding queries can keep up.

We propose the following techniques to resolve the chal-
lenges above. First, we design a versioned database that only
stores the version number of keys in AMT, thereby avoiding

the elliptic curve multiplications. This design also supports
arbitrary lengths of values, as they are not stored in AMT.
Second, we extend AMT to multiple levels to accommodate
version numbers for unlimited keys, making the AMT size
relatively small to optimize cache for parameters. To support
arbitrary key lengths and minimize deep updates in the multi-
level hierarchy, we utilize key hashes to allocate slots for
version numbers. Last, we introduce proof sharding to reduce
the single node’s cost in maintaining auxiliary information
for proofs.

3.1 Versioned Key-value Database

We designed a versioned authenticated storage to avoid multi-
plication on the elliptic curve during commitment updates. As
shown in Figure 1b, the multi-level AMTs store key-version
pairs, which only serve to identify the recent version number
of a key. LVMT accumulates the key-version-value tuples in
an append-only authenticated data structure consisting of a se-
ries of Merkle trees, with each block constructing one Merkle
tree from the key-version-value tuples for value changes in

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 139

that block.
Imagine a scenario where the blockchain processes a block,

setting a key-value pair (key,val). LVMT first locates the
corresponding entry of key in the multi-level AMTs to in-
crement the stored version number by one. Assume the new
version number for key is ver. LVMT then appends a new
tuple (key,ver,val, loc) to the Merkle tree being constructed
for the block. Here, loc is a tuple (level,slot) that records
the level and slot in the multi-level AMTs where the key’s
version is located. The construction cost of a Merkle tree is
linear with the number of version tuples. Once constructed,
the Merkle tree for a block remains immutable, except for
garbage collection of obsolete nodes. As the blockchain is
append-only, the list of these Merkle trees is also append-only.

When generating a proof for a key-value pair (key,val),
LVMT first use the multi-level AMTs to prove the most re-
cent version ver of the key key. It then uses Merkle trees to
prove the existence of a tuple (key,ver,val, loc). Since the
roots of the Merkle trees are endorsed by the blockchain con-
sensus protocol, light clients can trust that the Merkle trees are
generated correctly without duplicate tuples having the same
key and ver. As the location of the version slot is included
in the version tuple of the key, the prover can not cheat by
providing a version number proof of another slot.

Note that updating one element ai to a′i in an AMT re-
quires computing (a′i− ai) · Ii,n(τ) ·G1 (equation 1), multi-
plying a′i− ai to the elliptic curve point Ii,n(τ) ·G1. In the
versioned key-value database, ai is essentially a version num-
ber and a′i−ai always equal 1. Thus, we eliminate an elliptic
curve multiplication in each storage write, saving approxi-
mately 100 µs.

Since the frequency of bumping version number is limited
by the block generation rate, we can conserve the bits used for
storing version number and store multiple version numbers in
a one vector entry. For example, when employing BN254 as
the underlying bilinear mapping parameter, each entry is an
element in Zp, where p is a prime integer in

(
2254,2255

)
. This

suggests that implies each entry can store at most 254 bits.
In a blockchain system generating 10 blocks per second, the
version number will not exceed 240 in 3000 years. So each
entry can be divided into six slots with 40 bits as shown in
Figure 1a.

3.2 Multi-level AMT

To make AMT scalable and allow it to store the version num-
ber for an unlimited number of keys, we introduce multi-level
AMTs as shown in Figure 1a. The authenticated storage is
initiated by one AMT as the root AMT. Each entry in the
AMT contains several slots for storing version numbers. One
slot in each entry is reserved for storing the version number

of the commitment hash of the sub-AMT, with the remaining
slots utilized for key-value pairs.

Let k denote the height of the AMT. When allocating a
slot for a new key, LVMT accesses the entry in the root AMT
whose index aligns with the first k bits of the key hash. If this
entry lacks a vacant slot, LVMT accesses the corresponding
sub-AMT and locates the entry in the sub-AMT whose index
matches the next k bits of the key hash. LVMT recursively
visits the sub-AMTs to find a vacant slot for the new key.
Figure 1a presents an example with k = 2 for allocating a
version slot for a key with hash 100111 · · · . As the first two
bits of key hash are 10, LVMT accesses the entry with index
2 and attempts to find a vacant slot. Since all slots in the entry
are occupied, LVMT proceeds to the corresponding sub-AMT-
2. Picking the next two bits 01, it accesses the entry with index
1, and recursively visits the sub-AMT-(2,1) because there is
no vacant slot again. Finally, LVMT finds the third slot at the
third level being vacant and allocates this slot.

The commitment of a sub-AMT is treated similarly to a
key-value pair, where the key represents the index of the sub-
AMT and the value is the commitment. The Merkle trees not
only store key-version-value tuples for standard key-value
pairs, but they also store the tuples of the sub-AMT index, the
version of the sub-AMT commitment, and the commitment
hash.

Figure 1c illustrates how LVMT maintains the AMTs
and Merkle trees when a block changes the key with hash
100111 · · · . LVMT first increments the version number for
this key by one. This in turn alters the commitment of sub-
AMT-(2,1), prompting LVMT to also increase the version
number for the commitment (the slot labeled “B”) by one. Re-
cursively, the commitment of sub-AMT-2 is changed and the
version number labeled “A” is updated. Finally, LVMT gets
the updated commitment of the root AMT. LVMT appends
the tuples of changed keys and commitments into the Merkle
trees along with the normal tuple of the key-value pair.

When generating a proof for this key, LVMT finds the
most recent version of tuples for sub-AMT-2, sub-AMT-(2,1)
and this key. LVMT proves the existence of these tuples in
Merkle trees and confirms the correctness of appeared version
numbers with respect to their AMT commitments. When
proving the non-existence of a key, LVMT affirms that all the
possible slots for this key are vacant or have been allocated to
other keys.

3.3 Proof Sharding

We recall that the AMT maintains a binary tree, where each
node holds a commitment and a batch proof. Each input entry
corresponds to a leaf in this tree. When generating a proof,
AMT picks commitments and batch proofs from the siblings

140 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of nodes along the path from this leaf to the root. Each node
can be updated independently of the other nodes, facilitating
the parallelization of tree maintenance. Each blockchain node
can maintain a shard of the proof. It picks a subtree of the root
AMT and takes responsibility for generating proofs for the
leaves in this subtree, and the sub-AMTs extended from these
leaves. Multiple blockchain nodes can collaboratively gener-
ate proof for any key. Similarly, the storage for the Merkle
tree can be distributed to multiple nodes by the block number.

4 LVMT Design

Now we formally define LVMT, which utilizes a key-value
database as a backend and maintains a tuple of key-value
maps (KM,AM,MM,VM,LM) where KM stores the key-
value pairs, AM stores the AMTs data structures, MM stores
the Merkle trees, VM stores the version slots metadata for
keys, and LM records the position of the most recent tuple for
a key or a sub-AMT in the Merkle trees. LVMT decouples the
data storage and data authentication: KM stores unauthentica-
tion data; AM and MM store the authenticated information;
VM and LM store the metadata and indicies for authenticated
information. Each AMT in LVMT encompasses the following
components:

• comm: the commitment of AMT;
• proof_tree: the proof tree of AMT;
• leaves: a list of leaves; leaves[i] denotes the leaf corre-

sponding to the i-th element of the input vector. Each
leaf comprises the two lists vers and keys. vers[0] stores
the version number for the sub-AMT. vers[1] to vers[5]
store the version numbers for the keys keys[1] to keys[5],
respectively. Note that only vers contribute to the AMT
commitment.

4.1 Interfaces to the Transaction Execution

LVMT provides the following two interfaces (instructions)
for the blockchain execution layer:

• Get(k)→ val: Reads the value val stored in k;
• Commit(W,e)→ (aroot,hroot): Flushes the changed

key-value pairs in W with block number e and produces
the commitment of LVMT.

These interfaces match the requirements from the
blockchain execution engine introduced in Section 2.1. The
execution engine uses Get to fetch data from the storage and
LVMT simply loads the value correspondingly from KM.

The instruction Commit is invoked after the execution of a
block. LVMT commits the key-value pairs W using the proce-
dure COM defined in Algorithm 1. The returned commitments
will be filled in the block header. The commit returned values

Algorithm 1 A procedure to compute a commitment. It takes
a list of key-value pairs W and a block number e, and returns
the commitments aroot and hroot.

1: procedure COM(W, e)
2: M← []; T←{ };
3: foreach (k,val) in W
4: (lv,tidx,sidx,ver)← ComKV(k,val);
5: M← (k,ver,val, lv,sidx) :: M;
6: T←{(lv,tidx)}∪T;
7: i←maximum lv in T;
8: while i≥ 0
9: foreach (lv,tidx) in T with lv = i

10: (C,ver)← UpdComVer(lv,tidx);
11: M← (lv,tidx,ver,comm) :: M;
12: if lv > 0
13: T←{(lv−1,btidx/nc)}∪T;
14: foreach (k,ver,val, lv,sidx) in M with index i
15: LM[k]← (e, i);
16: foreach (lv,tidx,ver,C) in M with index i
17: LM[(lv,tidx)]← (e, i);
18: Build merkle tree of M and store inner nodes in MM;
19: mroot←Merkle root of M;
20: hroot←Merkle root of the mroot of all the commits;
21: aroot← AM[(0,0)].comm;
22: return (aroot,hroot);

Algorithm 2 A procedure to compute the commit of a key-
value pair. It returns the level lv, the tree index tidx, the slot
index sidx of the changed AMT, and the version ver.

1: procedure COMKV(k,val)
2: if KM contains k
3: (lv,sidx)←V M[k];
4: else
5: (lv,sidx)← ALLOCATESLOT(k);
6: V M[k]← (lv,sidx);
7: (tidx, lf)← LEAFATLEVEL(lv,k);
8: ver← lf.vers[sidx];
9: lf.vers[sidx]← lf.vers[sidx]+1;

10: Update the corresponding commitments and proofs.;
11: ver← ver+1;
12: return (lv,tidx,sidx,ver);

Algorithm 3 A procedure to allocate a version slot to a new
key. It takes the key k to allocate a slot for, and returns the
level and the allocated slot index.

1: procedure ALLOCATESLOT(k)
2: lv← 0;
3: while true
4: (tidx, leaf)← LEAFATLEVEL(lv,k);
5: for j ∈ [5]
6: if leaf.vers[j] == 0
7: leaf.keys[j]← k;
8: return (lv, j);
9: lv← lv+1;

consist of the roots of both the top-level AMT and MPT.
The procedure COM first commits the key-value pairs in

W (Lines 3 to 6) with the sub-procedure COMKV. Then it
updates the version numbers of all the affected sub-AMTs
from the deepest sub-AMT to the root AMT (Lines 7 to 13)
using the procedure UPDCOMVER. This procedure maintains

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 141

Algorithm 4 A procedure to compute the AMT index and the
leaf index of a key key at a AMT level lv. It returns the tree
index tidx and the leaf leaf corresponding to the key key at
level lv.

1: procedure LEAFATLEVEL(lv,key)
2: tidx← first bit to (k · lv)-th bit of H(key);
3: lidx← (k · lv+1)-th bit to (k · (lv+1))-th bit of H(key);
4: leaf← AM[(lv,tidx)].leaves[lidx];
5: return (tidx, leaf);

Algorithm 5 A procedure to update the commitment and
version of an AMT at level lv and tree index tidx. It returns
the commitment C and the updated version number ver.

1: procedure UPDCOMVER(lv, tidx)
2: C← AM[(lv,tidx)].comm;
3: ptidx← btidx/nc;
4: plidx← tidx mod n;
5: ver← AM[(lv,ptidx)].leaves[plidx].ver[0];
6: Increase AM[(lv,ptidx)].leaves[plidx].ver[0] by 1;
7: Update the corresponding commitments and proofs;
8: ver← ver+1;
9: return (C,ver);

the version number for commitments of sub-AMTs similar
to COMKV. While maintaining the version numbers, LVMT
collects the tuples of keys, versions, values, and other meta-
data in a list M (Line 5). The system treats a pair of the
sub-AMT index and its commitment similarly to a key-value
pair (Line 11). LVMT builds a Merkle tree for M, thereby
authenticating the value of a given key and version (Line 19).
It also stores the positions of these elements in the Merkle
trees (Lines 15 and 17). So when generating a proof, the
prover can locate the corresponding Merkle leaves of a key
or an AMT commitment.

The sub-procedure COMKV (Algorithm 2) is implemented
to maintain and update the version numbers. COMKV(k,val)

first finds the allocated version slot for the given key k (Line 3).
If the key has not been allocated a version slot, it allocates a
slot to it (Line 5). It uses the sub-procedure ALLOCATESLOT

(Algorithm 3) to find a vacant slot in the AMT to allocate.
In particular, starting from the root AMT, ALLOCATESLOT

computes the tree and leaf indices for the given key at each
level, checks if the leaf has a vacant slot, and then returns the
level and slot indices of the slot; if the leaf doesn’t have a free
slot, it proceeds to the next level.

Then, COMKV computes the corresponding tree index tidx

and the leaf lf for k at level lv (Line 7) using the sub-procedure
LEAFATLEVEL (Algorithm 4), which finds the correspond-
ing AMT index and leaf for the key k at the level lv using
the hash H(k) of k. Since each AMT has m levels and 2m

leaves, the first m · lv bits of H(k) decides the AMT index
and the subsequent m bits locate the leaf in the tree. Finally,
COMKV locates the slot for this key and updates its version
and other information according to AMT’s rule (Line 8 to 10).

Algorithm 6 A procedure to generate a proof for an existing
key k. It returns the proof of the key.

1: procedure GENPROOF(k)
2: keypf← PROVEKEY(k);
3: (lv,sidx)← VM[k];
4: while lv > 0
5: tidx← first bit to (k · lv)-th bit of H(k);
6: commpfs[lv]← PROVECOM(lv,tidx);
7: lv← lv−1;
8: return (keypf,commpfs);

Algorithm 7 A procedure to verify the proofs keypf and
commpfs with respect to an AMT root aroot and Merkle root
mroot.

1: procedure VERIFYPROOF(keypf, commpfs, aroot, mroot)
2: Verify the AMT proofs and the merkle proofs in keypf and

commpfs;
3: Verify the commitment in commpfs[1] equals to aroot
4: if all the verification pass
5: return true;
6: else
7: return false;

The sub-procedure UPDCOMVER (Algorithm 5) updates the
commitment and its version number given an AMT located
by its level and index.

4.2 Proving Key-value Pairs

As an authenticated storage, LVMT provides the following
two interfaces to allow a user to query a value from an un-
trusted server and to verify the value with the commitment.

• GenProof(k)→ π: Generates proof π for key k;
• Verify(k,v,π,comm) → true/false: Verifies the key

value pair (k,v) with respect to a ledger state commit-
ment.

When responding to a query k from a light node, a full
node will generate proof π using the procedure PROVE and
responde with the loaded value and the current commitment.

The procedure PROVE (Algorithm 6) consists of two parts:
1) the proof of the value val of the key k with respect to
the sub-AMT it belongs to (line 2) using the sub-procedure
PROVEKEY; 2) the proof of the commitment for all the sub-
AMT along the path from k’s sub-AMT to the root AMT
(excluding the root AMT) (line 4 to line 7) using the sub-
procedure PROVEKEY.

The generated proof consists of a merkle proof for the ex-
istence of the tuple of the key (or the AMT index), the value
(or the AMT commitment) and the version, an AMT proof
for the version number, and other metadatas. We provide the
definition for the sub-procedures PROVEKEY (Algorithm 8)
and PROVECOM (Algorithm 9) in the supplementary mate-
rial. In the supplementary material, we also discuss how to
generate a non-existing proof.

142 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The light node verifies the proof using the procedure
VERIFY (Algorithm 7), which recovers the tuple of Merkle
leaves to to be verified from the proof and verifies the AMT
proofs and the merkle proofs.

5 Implementation

We implemented the AMT using Arkworks [21], a Rust li-
brary for elliptic curve operations. AMT is built using the
pairing parameters BN254 and supports vector commitment
in the length of 216. Each entry contains 254 available bits and
is divided into six slots with 40 bits. For the public parameters
required by the KZG commitment, we utilize the output from
the Perpetual-Powers-of-Tau ceremony [27], which conducts
an MPC protocol among over 70 participants worldwide in
generating secure parameters. Based on the above AMT im-
plementation, we implemented LVMT in Rust [1]. LVMT is
compatible with any backend database that provides a key-
value interface as defined in rust crate “kvdb” [39].

We ported the implementation of MPT from the
OpenEthereum client [48], the most popular high-
performance Rust implementation of Ethereum. We
also implemented a variant of RainBlock [40], which devel-
oped an efficient MPT for distributed in-memory systems, by
referencing its implementation [6]. This variant incorporates
significant RainBlock features, including caching of top
layers in memory, in-memory construction of the Merkle tree
using pointers, and the application of lazy hash resolution.
Unlike RainBlock, our variant stores the bottom layers on
local storage instead of a distributed in-memory system.
These implementation are also compatible with the same
interface.

For the implementation of LVMT, we applied several opti-
mizations:
Combining entries in different maps: For a given key, we
use three maps KM, VM, and LM to store its value, version
slot index, and the position of the Merkle tree for the re-
cent change, respectively. In our implementation, we combine
these entries into a single key-value pair to save read and
write operation for each key.
Cache the root AMT: The root AMT is frequently accessed.
So its leaves and inner nodes of are always stored in memory.
The commitments of the AMTs in the second levels are also
cached. Each leaf and inner node of an AMT has two points
on the elliptic curve. Given that we set the AMT height as 16,
the root AMT and the commitments of AMTs in the second
level store about 200,000 elliptic curve points in memory.
Each point takes 96 bytes in our parameter, so roughly 20 MB
of memory is needed to store them.
Cache cryptographic parameters: We expedited the com-

mitment update procedure by precomputing certain elliptic
curve points. For instance, when the input entry at position i
increases by δ, the commitment can be updated as C′ =C+Pi,
where Pi = Ii,n(τ) ·δ ·G1. Given that each entry is divided into
six 40-bit slots, when the version number increases, the dif-
ference between the new and the previous version will be
one of the following: 1,240,280,2120,2160,2200. Thus, LVMT
precomputes P(j)

i = 240 j ·Pi for all 0 ≤ j ≤ 5 and 1 ≤ i ≤ n.
So LVMT can simplify the commitment update procedure by
merely incrementing a precomputed point. In our design, each
elliptic curve point requires 96 bytes of storage. So a node
excluding proof maintenance necessitates around 37 MB of
memory. However, a node maintaining a shard of proof must
cache additional parameters, resulting in a higher memory
requirement, approximately 650 MB.

Reduce the coordinates conversion time: An elliptic curve
point is uniquely represented by its affine coordinate (x,y) ∈
Z2

q, where q is a large prime number. These points can also
be represented through projective coordinates (x,y,z) ∈ Z3

q,
which accelerate arithmetic operations by eliminating division
operations within a large prime field. The conversion of these
projective coordinates back to the corresponding affine coor-
dinates is given as (x/z2,y/z3) ∈ Z2

q. However, a challenge
arises from the fact that a single elliptic curve point corre-
sponds to multiple projective coordinates, leading to hashing
inconsistencies. To address this issue, LVMT always converts
the projective coordinates back to the affine coordinates when
computing the hash of a sub-AMT commitment. This conver-
sion process, however, is computationally intensive, taking
approximately 60 µs per conversion and can substantially
impact the write speed. To alleviate this, we applied batch
conversion of all projective coordinates to affine coordinates
at the culmination of each block execution, decreasing the
average conversion time to a mere 0.4 µs.

Garbage collection of append-only Merkle trees: As a
key’s version number increases, the old version tuples within
the append-only Merkle trees become unnecessary for future
proofs. When a subtree in a Merkle tree only has obsolete
children, the entire subtree can be truncated, and only the sub-
tree root is stored. A background thread performs this garbage
collection to prevent impacting LVMT’s performance under
heavy workloads. In a scenario where the append-only Merkle
trees have accumulated m version tuples in the past, and only
n tuples are currently active, the overhead of storing truncated
Merkle trees is about (log2(m/n)+1) ·2n. (See appendix for
the details.) While this introduces some additional overhead,
it remains a practical approach.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 143

1m 3m 5m
Number of Initialized Keys

0

5

10

15

20

25

30

35

40

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

36

31
28

25
22 20

13

36

29
27

24

18 17

11

35

29
27

23

17 16

11

Throughput for Simple Transactions

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

(a) Transaction execution for balance transfers.

1m 3m 5m
Number of Initialized Keys

0

5

10

15

20

25

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

(x
10

00
)

18

15 15 14
13 12

9

18

15 14 14

11 10

8

18

15
14

13

10
9

7

Throughput for ERC20 Transfers

RAW
LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

(b) Transaction execution for ERC-20 transfers.

Figure 2: Throughput of transaction execution

6 Evaluation

We evaluate LVMT’s performance and compare it to other
authenticated storage systems using a machine with an Intel
i9-10900K CPU, 32 GB DDR4 RAM, and SSD storages. All
authenticated storage systems utilize RocksDB [47] as their
backend key-value database.

We assess LVMT under different settings: 1) LVMT with-
out associated information (no proof shard), 2) LVMT with
1/64 and 1/16 of the associated information (proof sharding),
3) LVMT with all associated information. In this context,
LVMT-r represents LVMT without any associated informa-
tion, while LVMT64, LVMT16, and LVMT1 signify LVMT
with 1/64, 1/16, and complete proof sharding, respectively.

In addition to LVMT, we evaluate various authenticated
storage systems for comparison. As previously mentioned,
we have ported the MPT in OpenEthereum and have imple-
mented a variant of RainBlock, which we refer to as MPT
and RAIN, respectively. We also examine the Layered Merkle
Patricia Tries (LMPTs) [20] utilized in Conflux [2, 33], a
high-performance blockchain, represented by LMPTs. For
reference, we also examine the performance of directly stor-
ing data into the backend, bypassing authenticated storage,
denoted as RAW.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0

10

20

30

40

50

Ti
m

e
(u

s)

16

1
8

16

9 8

16
11 9

18
13 13

19 21
17 18

42

32

Time Usage Breakdown for Simple Transactions
Execution Engine
Authenticated Structure
Backend

(a) Time cost breakdown for balance transfers.

RAW LVMT-r LVMT64 LVMT16 RAIN MPT
Authenticated Storage Systems

0
10
20
30
40
50
60
70
80

Ti
m

e
(u

s) 43

1
11

44

9 12

44

13 13

43

15 17

44

26 25

44

56

39

Time Usage Breakdown for ERC20 Transfers
Execution Engine
Authenticated Structure
Backend

(b) Time cost breakdown for ERC20 transfers.

Figure 3: Break down of the time usage in transaction execu-
tion on 5 million receivers.

End-to-end performance: We assess the end-to-end perfor-
mance of authenticated storage on Conflux [2, 33], a high-
performance blockchain. To gauge peak performance, we set
a large block size of 20,000 transactions per block. Thus, all
authenticated storage systems can finish executing one block
within 0.5 to 5 seconds, aligning with the block generation
intervals of major high-performance blockchains. To emu-
late the prevalent configuration of contemporary blockchains,
we employ cgroup to restrict the memory consumption of
a blockchain node to 16GB and allocate a 4GB RocksDB
cache size. In the experiment, 10,000 senders randomly se-
lect addresses from the receiver space and transfer non-zero
balances to them, representing simple payment transactions.
We evaluate receiver spaces with one million, three million,
and five million addresses. Conflux is run for an extended
period, ensuring the number of executed transactions is three
times larger than the receiver space.

Figure 2a shows that LVMT-r achieves a maximum
throughput of 29669 TPS on average and is up to 2.7 times
faster than MPT and 1.7 times faster than RAIN. We also
evaluate the performance of transactions executing the trans-
fer function of the popular ERC-20 smart contract [41], the
most common transactions on the Ethereum blockchain [4].
As shown in Figure 2b, LVMT-r is up to 2.1 times faster than
MPT and 1.5 times faster than LMPT in this workload.

To further study the time usage in execution of one transac-
tion, we breakdown the time usage into three parts: 1) Execu-
tion Engine, i.e., transactions execution without access to the

144 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

authenticated storage, 2) Authenticated Structure, i.e., access
to the authenticated storage without accesses the backend
database, 3) Backend Database, i.e., accesses to the backend
database. Figure 3a shows the breakdown of time usage in
executing random balance transfer transactions with 5 million
receivers. The execution engine takes the same time 16 us
across the different storages. LVMT-r takes a similar time 11
us with RAW in accessing the backend. It implies LVMT-r
almost eliminates the overhead of the authenticated storage
from backend access. LVMT64 and LVMT16 take a similar
time to LVMT. MPT requires 42 us and 33 us to access the
authenticated structure and the backend database, respectively,
which is more than 4x the time used in LVMT-r. As shown
in Table 1, a single elliptic curve multiplication requires 92
us, which is even slower than MPT. Therefore, eliminating
the expensive elliptic curve operation is necessary to make
LVMT practical. Figure 3b shows the breakdown in executing
random ERC20 transfers. The execution engine still takes the
same time across the different storages but takes more time
than the execution of the balance transfer. This is because
the execution of ERC20 transfers requires more I/O accesses
(e.g., loading contract bytecode). All the storages take about
20% more time than executing balance transfers.

This experiment shows that LVMT is able to maintain better
throughput than MPT for both simple payment transactions
and the typical ERC-20 smart contract transfer transactions.

Stand-alone performance: We also evaluate the stand-
alone performance of authenticated storage systems in micro-
benchmarks. We developed an authenticated storage bench-
mark tools [1] for evaluation. Since most transactions in the
real world simply read the accounts of the sender and the re-
ceiver and update their balances, we launch a workload of 20
million random “read then write” operations and commit the
changes every 100,000 operations, resembling a block being
generated every several seconds. The authenticated storage is
initiated with random key-value pairs whose size ranges from
106 to 108. Both the key and the value are 256-bit strings.
We use “1m”, “10m”, and “100m” to indicate the initialized
size 106, 107 and 108. Since LVMT needs to allocate version
number slots for new keys, we also evaluate with a “fresh”
setting: the storage has no initialization, and the workload
accesses distinct keys.

In addition, to evaluate the performance under the real
world access pattern, we extract the I/O trace on Ethereum,
the largest smart contract platform. We choose transactions in
2021 winter, when Ethereum is going through its latest boom.
We replay the Ethereum transactions from block 13,500,000
to block 13,600,000 to recover the I/O operations. These
blocks access 22 million distinct keys, and make 97 million
reads and 54 million writes in total. Each block contains an av-

erage of 1,500 operations. Considering that high-performance
authenticated storage can process over 100,000 operations per
second, having only 1,500 operations per block results in an
unreasonably short block generation cycle. This considerably
impacts RAIN’s optimization efforts for lazy hash resolutions.
To address this issue, we aggregated operations from every 50
blocks into a single block, making the block size in the real
trace workload more closely resemble the size in a random
access workload. We use “real” to denote the workload from
real world transactions.

The primary blockchain node like Geth recommands a min-
imum of 16GB RAM for optimal performance. We assume
that half of this memory is allocated for executing smart con-
tracts that access authenticated storage systems, while the
remaining half accommodates other functionalities. Conse-
quently, we limited the runtime memory to 8GB using cgroups
in our micro-benchmarks. We observed that authenticated
storage systems without inherent caching strategies, such as
RAW and MPT, perform better when provided with a higher
RocksDB memory budget. Conversely, authenticated stor-
age systems incorporating caching strategies, like LVMT and
RAIN, show improved performance at a lower memory bud-
get due to the need for an adequate filesystem cache. To
optimize performance, we allocated a 4GB RocksDB cache
size for RAW and MPT and a 2GB cache size for LVMT and
RAIN. As the implementation of LMPTs is highly coupled
with the backend database, and the vague boundary separat-
ing the authentication structure from the backend database
posed a challenge to accurately gauge LMPTs in the micro-
benchmarks. We removed LMPTs in micro-benchmarks.

Figure 4a shows the throughput across various workloads.
LVMT-r outperforms MPT and RAIN by at least 353% and
80%, respectively. When handling a shard of auxiliary in-
formation, LVMT64 and LVMT16 achieve roughly 80% and
60% of LVMT-r’s throughput across most workloads. LVMT1
consistently exhibits the weakest performance in all work-
loads, demonstrating the necessity of proof sharding.Within
the Ethereum real trace workload, the ledger size initially
comprises 4 million keys and eventually grows to 22 million
keys. However, all the authenticated storage systems either
outperform or match their performance in the ’1m’ workload,
as the real trace workload provides better access locality than
random access.

Figure 4b illustrates the throughput for various ledger sizes.
All authenticated storage systems experience a noticeable per-
formance drop when reaching a specific ledger size threshold.
This occurs because the ledger size surpasses memory limita-
tions, preventing both RocksDB’s cache and the file system
cache from effectively storing ledger data. RAIN and MPT
performance begins to drop at a ledger size of 16 million,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 145

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300

Op
er

at
io

ns
 p

er
 se

co
nd

 (1
00

0x
)

261

211

154

114

44

173
146

109
96

38

5

238

193

144
126

47

17

180

140

96
68

32

1

53
24

127 5

Throughput of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1

(a) Throughput under different workloads.

1 1.6 2.5 4 6.3 10 16 25 40 63 100
Keys in Ledger (in millions)

1

2

5

10

20

50

100

200

500

Op
er

at
io

ns
 p

er
 S

ec
on

d
(x

10
00

)

Throughput of Authenticated Storage Systems on Various Ledger Sizes
LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1
RAW

(b) Throughput for various ledger sizes.

Figure 4: Throughput of authenticated storage systems.

whereas LVMT declines at a larger size. LVMT16, LVMT64,
and LVMT-r demonstrate performance degradation starting
from ledger sizes of 25 million, 63 million, and 100 million,
respectively. This suggests that LVMT can provide efficient
ledger access with a smaller memory usage.
Read and write amplification: We further study the read and
write amplification at the backend database interface. Here,
read amplification represents the ratio of backend read oper-
ations to those on authenticated storage systems’ interfaces,
and write operations are defined similarly. Figure 5a shows
the read amplification under the different settings. As the
ledger size grows, LVMT-r exhibits consistent read amplifi-
cations. The root AMT contains 216 entries, and the second
level of AMTs 232 input entries in total. Since each entry has
five slots for key-value pairs, the root AMT can only store 0.3
million keys, and the second level of AMTs accommodate
21 billion keys. So LVMT-r always requires two levels of
AMT in all these workloads. The read amplification of a key
grows linearly with its level in the AMTs, so it is reasonable
for LVMT-r to exhibit similar read amplifications. In contrast,
the read amplification of MPT grows from 2.4 to 4.1. RAIN
demonstrates a smaller read amplification in the Ethereum
real trace, indicating that its cache strategy benefits from bet-
ter access locality in the real trace. For LVMT with proof
shards, the read amplification grows linear with the size of
auxiliary information. LVMT16 maintains four times the aux-
iliary information than LVMT64. So the surplus of LVMT16

real fresh 1m 10m 100m
Workloads

0

1

2

3

4

5

Re
ad

s p
er

 O
pe

ra
tio

n

1.21.3
1.6

0.7

2.0 2.02.2

3.0

0.4

2.1

1.01.1
1.7

0.7

2.4

1.01.2

2.0
1.5

3.2

1.0
1.3

2.0
2.3

4.1

Read Amplication of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Read amplification of authenticated storage systems.

real fresh 1m 10m 100m
Workloads

0

2

4

6

8

10

W
rit

es
 p

er
 O

pe
ra

tio
n

1.31.51.9
3.0

4.4

2.02.2
3.0

3.8

5.6

1.01.1
1.7

3.0

4.8

1.01.2
2.0

4.7

6.5

1.01.3
2.0

6.4

8.2

Write Amplication of Authenticated Storage Systems
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Write amplification of authenticated storage systems.

Figure 5: Read and write amplifications of authenticated stor-
age systems.

compared to LVMT-r is four times larger than the surplus of
LVMT64. When accessing the fresh ledger state, allocating
slots for the version number increases the read amplification
of LVMT-r by 1.

Figure 5b displays the write amplification. The write am-
plification of LVMT is similar to the read amplification. MPT
and RAIN have a larger write amplification than read am-
plification since MPT nodes are keyed by their hash digests.
So each time the storage changes, a write operation and a
deletion operation are applied to the backend.

Figure 6a and 6b present the average sizes of read and
write operations on backend, while figure 6c and 6d pro-
vides a more in-depth analysis of data size percentiles for the
"100m" workload. Considering that each MPT node can ac-
commodate up to 16 children, each containing a 32-byte hash,
an MPT node may store around 500 bytes. So MPT’s perfor-
mance is negatively impacted by the combination of extensive
read amplification and large data size per read operation. By
caching the top six layers of MPT in memory, RAIN effec-
tively reduces data sizes for both read and write operations.
In RAIN, the first layer on disk represents the seventh layer
of MPT, which can house roughly 17 million nodes. Thus, at
the largest ledger size in our experiment, which consists of
100 million keys, each node only needs to accommodate six
children, leading to a 200-byte node. LVMT-r only accesses
elliptic curve points, which are 65 bytes in size. LVMT with
proof shards may load 65-byte elliptic curve points and 192-
bytes auxiliary information for an AMT node from backend.

146 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

real fresh 1m 10m 100m
Workloads

0

50

100

150

200

250

300

350

Da
ta

 S
ize

 (b
yt

es
)

31 40
62 53

244

0
18

57
18

204

65
83

114

67

170

65
89

124

73

242

65
90

125125

300

Data Size per Read Operation on Backend
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(a) Data size per read operation

real fresh 1m 10m 100m
Workloads

0
50

100
150
200
250
300
350
400

Da
ta

 S
ize

 (b
yt

es
)

59 73
101

24

320

53 68
98

30

306

65 83
113

14

205

65
89

124

22

278

65
90

125

45

336

Data Size per Write Operation on Backend
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(b) Data size per write operation

10 20 30 40 50 60 70 80 90
Percentiles

0

50
70

100

200

300

500
700

Da
ta

 S
ize

 (B
yt

es
)

Backend Read Operations: Data Size Distribution
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(c) Data size distribution of backend read operations

10 20 30 40 50 60 70 80 90
Percentiles

0

50
70

100

200

300

500
700

Da
ta

 S
ize

 (B
yt

es
)

Backend Write Operations: Data Size Distribution
LVMT-r
LVMT64
LVMT16
RAIN
MPT

(d) Data size distribution of backend write operations

Figure 6: Data size of backend operations

Figure 6 indicates that around 40% of read operations for
LVMT16 involve auxiliary information, while about 10% of
LVMT64’s read operations relate to auxiliary information.

7 Related Works

Improved MPT structures: mLSM proposes to maintain
multiple levels of MPTs [43]. The most recent updates are in
the lowest level (level 0). The key-value pairs in a lower level
will be merged to higher levels periodically. LMPTs proposes
maintaining three MPTs, one large MPT containing old state

and two small MPTs containing recent state changes [20].
LMPTs periodically merges small MPTs into large ones. For
both mLSM and LMPTs, the concatenation of the Merkle
roots of all the MPTs becomes the commitment for the ledger
state.

Both LVMT and mLSM employ multi-level structures
to minimize write amplification, but their approaches differ.
mLSM maintains shallow top-level trees by regularly merging
entries from the top-level Merkle trees into lower levels. Since
write operations in mLSM only affect the top-level trees, the
reduced depth decreases overall costs. LMPTs adopt a sim-
ilar strategy, keeping a shallow delta MPT and periodically
merging it into the snapshot. Conversely, LVMT’s multi-level
structure is akin to a tree, where each AMT serves as a node.
When a write operation modifies an element in a lower-level
AMT, all AMTs on the path from the root to the target AMT
must be updated. With each AMT capable of accommodating
up to 65,536 children, the high degree effectively reduces
LVMT’s overall depth, thus lowering write amplification.

Their techniques reduce the number of disk I/O operations
on the critical path because the recently accessed state will be
stored into MPTs with smaller depth, and the merge of MPTs
can happen in a background thread. In contrast, LVMT almost
eliminate unnecessary read amplification in practice. Our
results show that when integrated end-to-end into Conflux,
LVMT outperforms LMPTs by up to 2.5x. The mLSM paper
only contains its conceptual design without implementation
and evaluation [43]. It is unclear how mLSM would perform
end-to-end with a blockchain in practice.

Parallelize storage I/O: RainBlock [40] introduces three
different nodes in a blockchain system to accelerate the trans-
action execution: the storage prefetchers, the miners executing
transactions, and the storage nodes. When executing transac-
tions, the miners obtain needed data from multiple prefetchers
and send the updates to multiple storage nodes. Each stor-
age node maintains a shard of MPTs in memory. RainBlock
changes the local storage I/O to network distributed storage
I/O and benefits from the parallel I/O and in-memory storage.
To reduce the read latency of network storage, RainBlock in-
troduces I/O prefetchers and requires the miners to attach all
the accessed key-value pairs and the witnesses (MPT nodes)
when broadcasting blocks. RainBlock reports the average size
of witnesses per transaction is 4 KB and their optimizations
reduce the size of witnesses by 95% , so the additional net-
work message per transaction is about 200 bytes, two times
of a transaction. However, the inefficient usage of networks
brings a bottleneck to a high-performance blockchain sys-
tem [26]. RainBlock also suffers attacks in data availability.
Since in-memory storage is costly, the number of replicas in
RainBlock is much less than in Ethereum. As a comparison,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 147

LVMT does not introduce additional network bandwidth con-
sumption and data availability risk. Even if proof of shard
in LVMT is lost, the other nodes can recover the auxiliary
information of an AMT in minutes.

Both RainBlock and LVMT employ the sharding concept,
but with different targets. RainBlock divides the ledger into
multiple shards, preventing single nodes from accessing the
entire ledger. To address this, RainBlock devised complex
protocols between the prefetchers handling ledger reads and
the miners executing transactions. Conversely, LVMT utilizes
sharding solely to maintain auxiliary information for generat-
ing proof, allowing nodes to access the full ledger data during
transaction execution. The proof sharding is mainly handled
by blockchain node API providers. When users query a key,
providers must direct the query to the corresponding node
along with the relevant proof.

Another similarity between our RainBlock implementation
and LVMT is caching top-level nodes. By default, RainBlock
caches six layers of MPT nodes, while LVMT caches a single
layer of AMT. As LVMT’s nodes having a significantly higher
degree than MPT (65,536 vs. 16), LVMT can use less memory
to accommodate more entries in the first layer beneath the
cached nodes.

Vector commitment for data sharding: Several vector com-
mitment protocols [19, 24, 28, 30, 46, 49] have been proposed
to reduce the proof size, support revealing elements in batch,
or make the commitment efficiently updatable under some re-
quirements. Some research also considers utilizing the vector
commitment for data sharding on blockchain. Alin et al. [49]
use KZG commitment protocol [28] to replace the underlying
Merkle tree for data sharding. Unlike LVMT, the goal of this
technique is not to improve the throughput but to reduce the
data size of the blockchain storage. It requires the clients
to maintain the proofs for their own data, keep updating the
proof, and attach the values and proofs for the accessed stor-
age in a transaction. Each client needs to be online and update
the proofs of all of its data each time a write operation hap-
pens on the blockchain. Note that this protocol takes O(n)
time to generate proof or maintain proofs for all data, which
costs O(n) time to add a new key-value pair. It is therefore
not designed for a high throughput blockchain system. When
thousands of transactions are executed on the blockchain per
second, a client cannot maintain its proofs efficiently.

Pointproofs [24] proposes an aggregatable and maintain-
able vector commitment protocol that can maintain the aux-
iliary information for proofs in O(logn) time (like AMT)
and reveal any k-element subset of elements in O(k) time
with a batched proof. Pointproofs allows a consensus node to
generate a batched proof for all the accessed key value pairs
during block execution, so a node without the whole ledger

can verify the correctness of execution. However, for every
1024 transactions, Pointproofs takes 5 seconds to maintain
the auxiliary information for proofs, which cannot match the
requirements in a high throughput blockchain system.

Accumulators: Accumulators are cryptographic primitives
that commit a set of elements to a short digest (commitment)
while supporting operations like addition, deletion, member-
ship proof, and non-membership proof. Merkle trees are one
example of accumulators. A recent study [13] designed an
RSA accumulator that supports batch operations and stores
UTXO sets for a blockchain, with commitments updated in
constant time.

In a zk-rollup blockchain [7], it is crucial to convince a light
client with a SNARK proof [12] that the ledger root is updated
correctly in a given sequence of operations. Ozdemir et al.
replaced Merkle trees with RSA accumulators to accelerate
SNARK proof generation [38]. Although RSA accumulators
require O(n) time to generate a proof or update proofs for
all elements, the time savings in SNARK proof generation
outweigh the time spent in accumulator proof generation.
However, in a high-performance authenticated storage, opera-
tions are processed in microseconds, rendering proof updates
that require milliseconds per operation as relatively costly.

8 Conclusion

LVMT significantly reduces the disk I/O amplifications asso-
ciated with each blockchain state access. When integrated into
a high performance blockchain, LVMT has up to 2.7x higher
throughput than the standard MPT structure. The promising
results of LVMT demonstrate the potential of eliminating
the performance bottleneck at the storage layer with vector
commitment schemes.

Acknowledgements

We express our gratitude to Peilun Li for his detailed guid-
ance on the Conflux test framework, facilitating our end-to-
end evaluations. We also appreciate the insightful sugges-
tions from our shepherd, Micheal Wei, and the anonymous
reviewers from EuroSys, S&P, and OSDI. Their critique and
suggestions considerably improved our evaluation design
and enriched our protocol discussion. This research has re-
ceived support from the Shanghai Committee of Science and
Technology, China (Grant No. 21511104600, 20DZ2221800),
National Natural Science Foundation of China (Grant No.
U2268202), and a gift fund from Nanjing Turing AI Institute.

148 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Authenticated storage benchmarks.
https://github.com/ChenxingLi/
authenticated-storage-benchmarks.

[2] Conflux rust for authenticated storage bench-
marks. https://github.com/Conflux-Chain/
conflux-rust/tree/asb-e2e.

[3] DefiLlama - DeFi Dashboard. https://defillama.
com.

[4] ERC-20 Top tokens. https://etherscan.io/
tokens.

[5] Patricia Tree. https://eth.wiki/en/
fundamentals/patricia-tree.

[6] Rainblock protocol. https://github.com/
RainBlock/rainblock-protocol.

[7] Zero-knowledge rollups. https://ethereum.org/
en/developers/docs/scaling/zk-rollups/.

[8] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia
Fanti, and Pramod Viswanath. Prism: Deconstructing
the blockchain to approach physical limits. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 585–602, 2019.

[9] Paulo SLM Barreto, Ben Lynn, and Michael Scott. Con-
structing elliptic curves with prescribed embedding de-
grees. In Proceedings of the 2002 International con-
ference on security in communication networks, pages
257–267. Springer, 2002.

[10] Paulo SLM Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In Proceedings
of the 2005 International Workshop on Selected Areas
in Cryptography, pages 319–331. Springer, 2005.

[11] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowl-
edge for a von neumann architecture. In Proceedings of
the 23rd USENIX Security Symposium, pages 781–796,
2014.

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 326–349, 2012.

[13] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching
techniques for accumulators with applications to iops
and stateless blockchains. In Proceedings of the 2019
Annual International Cryptology Conference, pages 561–
586. Springer, 2019.

[14] Sean Bowe. BLS12-381: New zk-snark ellip-
tic curve construction. https://z.cash/blog/
new-snark-curve.

[15] Sean Bowe, Ariel Gabizon, and Matthew D Green. A
multi-party protocol for constructing the public param-
eters of the pinocchio zk-snark. In Proceedings of the
2018 International Conference on Financial Cryptogra-
phy and Data Security, pages 64–77. Springer, 2018.

[16] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable
multi-party computation for zk-snark parameters in the
random beacon model. Cryptology ePrint Archive, 2017.

[17] Vitalik Buterin. Ethereum whitepaper. https://
ethereum.org/en/whitepaper/.

[18] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437, 2017.

[19] Dario Catalano and Dario Fiore. Vector commitments
and their applications. In Proceedings of the 2013 Inter-
national Workshop on Public Key Cryptography, pages
55–72. Springer, 2013.

[20] Jemin Andrew Choi, Sidi Mohamed Beillahi, Peilun
Li, Andreas Veneris, and Fan Long. LMPTs: Elimi-
nating storage bottlenecks for processing blockchain
transactions. In Proceedings of the 2022 International
Conference on Blockchain and Cryptocurrency. IEEE,
2022.

[21] Arkworks contributors. arkworks zksnark ecosystem.
https://arkworks.rs, 2022.

[22] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Rob-
bert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In Proceedings of the 13th USENIX Sympo-
sium on Networked Systems Design and Implementation,
pages 45–59, 2016.

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 51–68. ACM, 2017.

[24] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and
Zhenfei Zhang. Pointproofs: Aggregating proofs for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 149

https://github.com/ChenxingLi/authenticated-storage-benchmarks
https://github.com/ChenxingLi/authenticated-storage-benchmarks
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
https://defillama.com
https://defillama.com
https://etherscan.io/tokens
https://etherscan.io/tokens
https://eth.wiki/en/fundamentals/patricia-tree
https://eth.wiki/en/fundamentals/patricia-tree
https://github.com/RainBlock/rainblock-protocol
https://github.com/RainBlock/rainblock-protocol
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://z.cash/blog/new-snark-curve
https://z.cash/blog/new-snark-curve
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://arkworks.rs

multiple vector commitments. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2007–2023, 2020.

[25] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah
Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-snarks.
In Proceedings of the 2018 Annual International Cryp-
tology Conference, pages 698–728. Springer, 2018.

[26] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong
Zhou, and Fan Long. Shrec: Bandwidth-efficient trans-
action relay in high-throughput blockchain systems. In
Proceedings of the 11th ACM Symposium on Cloud Com-
puting, SoCC ’20, page 238–252, New York, NY, USA,
2020. Association for Computing Machinery.

[27] Koh Wei Jie. Perpetual Powers of Tau. https://
github.com/weijiekoh/perpetualpowersoftau.

[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their ap-
plications. In Proceedings of the International Confer-
ence on the Theory and Application of Cryptology and
Information Security, pages 177–194. Springer, 2010.

[29] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy, pages 583–598. IEEE, 2018.

[30] Russell WF Lai and Giulio Malavolta. Subvector com-
mitments with application to succinct arguments. In
Annual International Cryptology Conference, pages 530–
560. Springer, 2019.

[31] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zo-
har. Inclusive block chain protocols. In Proceedings of
the 2015 International Conference on Financial Cryp-
tography and Data Security, pages 528–547. Springer,
2015.

[32] Ao Li, Jemin Andrew Choi, and Fan Long. Securing
smart contract with runtime validation. In Alastair F.
Donaldson and Emina Torlak, editors, Proceedings of
the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 438–
453. ACM, 2020.

[33] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Wei Xu, Fan Long, and Andrew Yao. A decen-
tralized blockchain with high throughput and fast con-

firmation. In Proceedings of the 2020 USENIX Annul
Technical Conference. USENIX, 2020.

[34] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 17–30, New
York, NY, USA, 2016. ACM.

[35] David Mazieres. The stellar consensus protocol: A fed-
erated model for internet-level consensus. Stellar Devel-
opment Foundation, 32:1–45, 2015.

[36] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. http://bitcoin.org/bitcoin.pdf.

[37] Gleb Naumenko, Gregory Maxwell, Pieter Wuille,
Alexandra Fedorova, and Ivan Beschastnikh. Erlay:
Efficient transaction relay for bitcoin. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, page 817–831, 2019.

[38] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan
Boneh. Scaling verifiable computation using efficient
set accumulators. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2075–2092, 2020.

[39] Parity Technologies. Crate kvdb. https://docs.rs/
kvdb/0.4.0/kvdb/.

[40] Soujanya Ponnapalli, Aashaka Shah, Souvik Baner-
jee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram, and
Michael Wei. RainBlock: Faster transaction processing
in public blockchains. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 333–347,
2021.

[41] Ethereum Improvement Proposals. Eip-20: Token stan-
dard. https://eips.ethereum.org/EIPS/eip-20,
2015.

[42] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gi-
lad Oved, Zachary Keener, Vijay Chidambaram, and Ittai
Abraham. mlsm: Making authenticated storage faster in
ethereum. In Ashvin Goel and Nisha Talagala, editors,
10th USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage 2018, Boston, MA, USA, July
9-10, 2018. USENIX Association, 2018.

[43] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky,
Gilad Oved, Zachary Keener, Vijay Chidambaram, and
Ittai Abraham. mLSM: Making authenticated storage
faster in ethereum. In Proceedings of the 10th USENIX

150 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/weijiekoh/perpetualpowersoftau
https://github.com/weijiekoh/perpetualpowersoftau
http://bitcoin.org/bitcoin.pdf
https://docs.rs/kvdb/0.4.0/kvdb/
https://docs.rs/kvdb/0.4.0/kvdb/
https://eips.ethereum.org/EIPS/eip-20

Workshop on Hot Topics in Storage and File Systems,
page 10, 2018.

[44] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zo-
har. Phantom and ghostdag: A scalable generaliza-
tion of nakamoto consensus. Cryptology ePrint Archive
2018/104, 2018.

[45] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate
transaction processing in bitcoin. In Proceedings of
the 2015 International Conference on Financial Cryp-
tography and Data Security, pages 507–527. Springer,
2015.

[46] Shravan Srinivasan, Alexander Chepurnoy, Charalam-
pos Papamanthou, Alin Tomescu, and Yupeng Zhang.
Hyperproofs: Aggregating and maintaining proofs in
vector commitments. In 31st USENIX Security Sympo-
sium (USENIX Security 22), pages 3001–3018, 2022.

[47] Facebook Database Engineering Team. Rocksdb: A
persistent key-value store for flash and ram storage.
https://rocksdb.org, 2022.

[48] Parity Technologies. Openethereum. https://www.
parity.io/ethereum/, 2019.

[49] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin
Drake, Dankrad Feist, and Dmitry Khovratovich. Ag-
gregatable subvector commitments for stateless cryp-
tocurrencies. In Proceedings of the 2020 International
Conference on Security and Cryptography for Networks,
pages 45–64. Springer, 2020.

[50] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abra-
ham, Benny Pinkas, Guy Golan Gueta, and Srinivas De-
vadas. Towards scalable threshold cryptosystems. In
Proceedings of the 2020 IEEE Symposium on Security
and Privacy, pages 877–893. IEEE, 2020.

[51] Jiaping Wang and Hao Wang. Monoxide: Scale out
blockchains with asynchronous consensus zones. In
Proceedings of the 16th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 95–
112, 2019.

[52] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek
Saxena. OHIE: Blockchain scaling made simple. In
Proceedings of the 2020 IEEE Symposium on Security
and Privacy, pages 90–105. IEEE, 2020.

[53] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full shard-
ing. In Proceedings of the 2018 ACM SIGSAC confer-
ence on computer and communications security, pages
931–948, 2018.

Appendix

Formal definition for inner nodes of AMT

We now provide formal definitions for the two elements asso-
ciated with AMT inner nodes: a polynomial commitment and
a batch proof about this polynomial function.

Since the auxiliary information is a binary tree, each node
can be located by its depth and index. For a node indexed by
i at depth d, its left and right children are assigned indices i
and i+2d , respectively. The root is indexed by 0.

Let w be an n-th root of unity, such that wn = 1, where
n = 2k for some integer k. Given an input~a, AMT constructs
the vector commitment to~a to the polynomial commitment to
f (x) : Fp→ Fp that satisfies f (wi) = ai, where Fp is a prime
field with order p. It is required that 2k|p−1.

The interpolation for points is applied on roots in the {i ∈
[n] |wi}, instead of [n]. This yields a Lagrange function which
supports faster algorithms. The Lagrange function is defined
as:

Ii,n(x) =
∏ j∈[n] ∧ j 6=i

(
x−w j

)
∏ j∈[n] ∧ j 6=i (wi−w j)

,

where the numerator can be simplified to

∏
j∈[n] ∧ j 6=i

(
x−w j)= xn−1

x−wi =
n−1

∑
j=0

(
x/wi) j

,

and the denominator can be simplified to

∏
j∈[n] ∧ j 6=i

(
wi−w j)= n−1

∑
j=0

(
wi/wi) j

= n.

Thus, f (x) is built via Lagrange interpolation as:

Ii,n(x) =
1
n
· x

n−1
x−wi (2)

=
∑

n−1
j=0(x/wi) j

n
. (3)

So f (x) can be constructed by Lagrange interpolation as

f (x) =
n

∑
i=1

ai · Ii,n(x).

Now we consider a node at depth d and index t, its associate
function fd,t(x) only mirrors f (x) at x = wi where index i
satisfies i ≡ t mod 2d , and then covers only the Lagrange
interpolation terms of these elements:

fd,t(x) := ∑
i∈Td,t

ai · Ii,n(x), (4)

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 151

https://rocksdb.org
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/

where Td,t := {i ∈ [n] | i≡ t mod 2d}. This node is associated
with the commitment of function fd,t(x) and the batch proof
demonstrating fd,t(wi) = 0 holds for all i ∈ [n]\Td,t . Accord-
ing to the KZG commitment, the commitment for fd,t(x) is
fd,t(τ) ·G1, and the batch proof is hd,t(τ) ·G1, where hd,t(x)
is defined by

hd,t(x) :=
fd,t(x)

∏i∈[n]\Td,t
(x−wi)

, (5)

with the denominator further simplifying to

∏
i∈[n]\Td,t

(
x−wi)= ∏i∈[n]

(
x−wi

)
∏i∈Td,t

(x−wi)
=

xn−1
∏i∈Td,t

(x−wi)
, (6)

and where the denominator simplifies to

∏
i∈Td,t

(
x−wi)= 2k−d−1

∏
i=0

(
x−wt ·

(
w2d

)i
)
= x2k−d −wt·2k−d

.

(7)
For a leaf in subtree of this node with index s. If as increases
by 1, fd,t(x) and hd,t(x) will be updated accordingly. By equa-
tion 4, fd,t(x) will increases by Is,n(x), denoted as f̄s(x). By
equation 5, hd,t(x) will increase by h̄s,d(x), defined as:

h̄s,d(x) :=
f̄s(x)

∏i∈[n]\Td,t
(x−wi)

,

which can be simplified by equation 2, 6 and 7:

h̄s,d(x) =Is,n(x) ·
x2k−d −ws·2k−d

xn−1

=
1
n
· x

2k−d −ws·2k−d

x−ws

=
1
n
·

2k−d−1

∑
j=0

(ws) j · x2k−d− j.

In AMT, when increasing as by δ, the commitments and
proofs of the node along the path from the root to the corre-
sponding leaf will increases by δ · f̄s(τ) ·G1 and δ · h̄d,s(τ) ·G1

respectively. The sequence of { f̄s(τ) ·G1}n
s=1 and {h̄d,s(τ) ·

G1}n
s=1 for any d can be constructed by FFT. So the AMT

can precompute O(n logn) cached parameters in O(n log2 n)
time and update the associated elements of each node with
two multiplications and two additions on the elliptic curve.

The overhead of storing the append-only Merkle
trees

We provide a rough estimation of the overhead for storing
truncated Merkle trees after garbage collection. Considering

Algorithm 8 A procedure to prove a given key version. It
returns the proof of the key version.

1: procedure PROVEKEY(k)
2: (tidx, leaf)← LEAFATLEVEL(lv,k);
3: vers← leaf.vers;
4: C← AM[(lv,tidx)].comm;
5: (e, i)← LM[k];
6: val← KM[k];
7: (lv,sidx)←V M[k];
8: merklepf ←Prove the existence of (k,vers[sidx],val, lv,sidx)

w.r.t. the current hroot
9: amtpf←Prove vers are the version numbers w.r.t. the commitment

C
10: return (merklepf,amtpf,vers,sidx,val,C);

Algorithm 9 A procedure to prove the level lv and the tree in-
dex tidx of a sub-AMT. It returns the proof of the commitment
of the sub-AMT.

1: procedure PROVECOM(lv,tidx)
2: ptidx← btidx/nc;
3: plidx← tidx mod n;
4: vers← AM[(lv−1,ptidx)].leaves[plidx].vers;
5: Cp← AM[(lv−1,ptidx)].comm;
6: C← AM[(lv,tidx)].comm;
7: (e, i)← LM[(lv−1,ptidx)];
8: merklepf ←Prove the existence of (lv,tidx,vers[0],C) w.r.t. the

current hroot
9: amtpf←Prove vers are the version numbers w.r.t. the commitment

Cp
10: return (merklepf,amtpf,vers,Cp);

the roots of Merkle trees are organized in a tree, we can
treat them as one large Merkle tree. We assume a full binary
Merkle tree has k levels of inner nodes, accumulated m = 2k

version tuples, with n tuples currently active, where 2l ≤ n <

2l+1 for some integer l. A node is not truncated if either
itself or its sibling has active descendants, so each active
tuple corresponds to at most two nodes per level. The bottom
k− l−1 layers have at most 2n · (k− l−1) nodes, less than
2n · log2(m/n). The first l+1 levels have 2l+1−1 nodes, less
than 2n. Therefore, the maximum node count is (log2(m/n)+
1) ·2n.

Non-existence proof of LVMT

The process for generating a non-existence proof in LVMT
is depicted in Algorithm 10. This procedure proves the non-
existence of a key k by demonstrating that all potential version
number slots for the key are already allocated to other keys.

It first allocate a version slot for k and followed by an
immediate rollback of the allocation (lines 2-3). This process
finds the next vacant slot for k.

Then, it proves the version number of this slot is zero, a
process similar to Algorithm 6 except that it omits the merkle
proof of the key (lines 5-12). This demonstrates that the slot
is indeed unoccupied.

152 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Last, it shows that all other potential slots for k are already
allocated to different keys. It generates proof for them; the
second fields of these proofs can be omitted since they have
the same information as commpfs computed in line 11.

Thus, a non-existence proof in LVMT proves the absence
of a key by showing that all its potential slots are occupied by
other keys.

Algorithm 10 A procedure to compute the non-existence
proof for a given key.

1: procedure NONEXISTANCEPROOF(k)
2: (lv,sidx)← ALLOCATESLOT(k);
3: Roll back the changes in allocating slot for k
4: (tidx, leaf)← LEAFATLEVEL(lv,k);
5: vers← leaf.vers;
6: C← AM[(lv,tidx)].comm;
7: amtpf←Prove vers are the version numbers w.r.t. the commitment

C
8: zeropf← (amtpf,vers,sidx,C);
9: while lv > 0

10: tidx← first bit to (k · lv)-th bit of H(k);
11: commpfs[lv]← PROVECOM(lv,tidx)
12: lv← lv−1;
13: L← [];
14: for i ∈ [sidx−1]
15: keypf← the first component of prove(leaf.keys[i]);
16: L← (leaf.keys[i],keypf)∪L;
17: while lv > 0
18: lv← lv−1;
19: (tidx, leaf)← LEAFATLEVEL(lv,k);
20: for i ∈ [5]
21: keypf← the first component of prove(leaf.keys[i]);
22: L← (leaf.keys[i],keypf)∪L;
23: keypfs← L;
24: return (zeropf,commpfs,keypfs);

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 153

Honeycomb: Secure and Efficient GPU Executions via Static Validation

Haohui Mai ˇ “(∗ Jiacheng Zhao1,4,7† Hongren Zheng2 Yiyang Zhao1,7 Zibin Liu6

Mingyu Gao2 Cong Wang5 Huimin Cui1,7 Xiaobing Feng1,4,7 Christos Kozyrakis ˇ “(,3

SKLP, Institute of Computing Technology, CAS1 PrivacyCore Inc. ˇ “(IIIS, Tsinghua University2

Stanford3 Zhongguancun Laboratory4 IDEA Shenzhen5 BUPT6 UCAS7

Abstract
Graphics Processing Units (GPUs) unlock emerging use

cases like large language models and autonomous driving.
They process a large amount of sensitive data, where security
is of critical importance. GPU Trusted Execution Environ-
ments (TEEs) generally provide security to GPU applications
with modest overheads. Recent proposals for GPU TEEs are
promising, but many of them require hardware changes that
have a long lead time to deploy in production environments.

This paper presents Honeycomb, a software-based, secure
and efficient TEE for GPU applications. The key idea of Hon-
eycomb is to leverage static analysis to validate the security
of GPU applications at load time. Co-designing with the CPU
TEE, as well as adding OS and driver support, Honeycomb
is able to remove both the OS and the driver from the trusted
computing base (TCB). Validation also ensures that all ap-
plications inside the system are secure, enabling a concise
and secure approach to exchange data in plaintext via shared
device memory on the GPU.

We have prototyped Honeycomb targeting the AMD
RX6900XT GPU. Honeycomb is evaluated on five repre-
sentative benchmarks and 23 applications in total, covering
workloads of high performance computing, deep learning,
and image processing. The results show that Honeycomb is
both practical and efficient to secure real-world GPU applica-
tions. Validating applications to run on Honeycomb requires
modest developer efforts. The TCB is 18× smaller than the
Linux-based systems. Secure inter-process communication is
up to 529× faster. Moreover, running large language model
workloads like BERT and NanoGPT has ∼2% overheads.

1 Introduction

Innovations in hardware accelerators and deep neural net-
works continue to enable personalized experiences for our
physical and digital presences, reshaping areas ranging from

∗Haohui Mai is also affiliated with Hengmuxing Technologies.
†Jiacheng Zhao is the corresponding author.

smart homes [34], virtual reality [85], to personalized cancer
medicines [22]. Offering such intimate experiences heavily
relies on large amounts of valuable and sensitive user data,
which requires high levels of security and privacy support on
hardware accelerators such as GPUs.

Trusted Execution Environments (TEEs) [4] encapsulate
applications into enclaves to enhance security. TEEs enforce
strong isolation among enclaves and the untrusted host envi-
ronments, so that applications inside the enclaves can process
plaintext data securely at native speed. For each enclave, all
traffic that crosses its boundaries is encrypted to maintain
confidentiality and integrity. Recent prototypes [28,44,45,83]
realize GPU TEEs with modest overheads, via serializing
secure access to the GPU [28], augmenting the GPU hard-
ware [83], customizing the I/O bus [44], or leveraging the
sharing capabilities in device drivers [45].

This paper explores an alternative approach – using static
analysis to validate that mutually distrusted GPU applications
are confined to their enclaves. Intuitively, a validator inspects
the binary code of GPU kernel functions (GPU kernels for
short) to show that all possible execution traces maintain the
confidentiality and integrity of the system, therefore these
applications can safely share the GPU. This approach offers
three benefits. First, it can complement the hardware limita-
tions of existing GPUs. For example, low-cost GPUs such
as the VC4 used by Raspberry Pi allow arbitrary writes to
memory due to the lack of corresponding MMUs [16]. A val-
idator can detect insecure behaviors and thwart the attacks by
running standard static analysis such as def-use analysis and
range checks on the GPU kernels. Moreover, advanced static
analysis [59] might mitigate new attacks [19, 21] much faster
compared to deploying new hardware supports in production.

The second benefit is that it allows more efficient imple-
mentations of current GPU TEEs. Shifting the runtime checks
to load time removes them from the critical paths. Moreover,
validating that applications that always have disjoint contexts
might save the TEE implementation from flushing architec-
tural contexts, including TLBs and buffer queues during every
context switch [28], thus improving performances.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 155

Finally, validating every application provides a system-
wide security invariant asserting that all applications are
“good citizens”. The security invariant enables secure and
efficient communication among enclaves. Real-world appli-
cations such as autonomous driving [89] and video analyt-
ics [66, 70] process data in multiple-stage pipelines. Separat-
ing each stage of the pipeline into different enclaves and con-
necting them using Inter-Process Communication (IPC) not
only increases modularity and robustness, but also enables as-
sembling the pipelines using mutually distrusted components
from multiple vendors [63, 74]. Current GPU TEEs focus
on strengthening isolation, for example, enforcing exclusive
ownerships of GPU device memory [83]. Therefore two mu-
tually distrusted enclaves need to tunnel the data through an
encrypted shared buffer on the host memory for IPC. The
overheads are prohibitive for production applications. For
example, the GPUs on an autonomous vehicle process up
to 50 GB/s of uncompressed video streams to make timely
driving decisions [69]. Copying 50 GB/s of data to the host
already takes up 30∼40% of the total memory bandwidth
of a commodity, high-end AMD Zen3 server, let alone the
overheads of encrypting/decrypting the data. The capability
of exchanging plaintext data directly in GPU reduces the
overheads drastically, thus enabling real-world applications
to migrate towards a more modular and robust architecture.

This paper presents the design and implementation of Hon-
eycomb, a software-based, secure and efficient TEE for GPU
applications. Honeycomb runs multiple mutually distrusted
applications on the same GPU, and facilitates efficient and se-
cure data exchange between applications. It supports common
GPU workloads from simulations of molecular dynamics to
training and inference of neural networks. All these capabil-
ities of Honeycomb are built upon the idea of using static
analysis to confine the behaviors of GPU applications.

Honeycomb faces three challenges to realize the three ben-
efits and to provide a complete, real-world solution for GPU
TEEs. First, it must balance the trade-offs between the ca-
pabilities and the complexities of the validator. A validator
equipped with theorem provers gains their power, but then
Honeycomb must include the theorem provers in the TCB,
which is complex (e.g., Z3 4.12.2 has ∼525 K lines of code)
and occasionally error-prone [77]. On the other hand, a naïve
validator might be insufficient to validate common security
checks at load time, requiring inserting extra runtime checks
that sit squarely on the performance critical paths.

Second, Honeycomb must minimize the end-to-end TCB
to provide high confidence in security. The software/hardware
stack of GPU applications is quite complex. For example, the
compiler toolchain and the driver for the AMD RX6900XT
GPU each consist of two million lines of code. Defects and
vulnerabilities in these components are inevitable [23, 25, 26],
but they should not compromise the security of Honeycomb.

Finally, Honeycomb must provide system-level support for
secure and efficient IPC. The aforementioned plaintext IPC

among GPU enclaves can only be securely implemented if
the data copies are cautiously initialized by the Honeycomb
system and from/to strictly protected memory regions.

Honeycomb addresses the above challenges with three key
techniques. First, the validator of Honeycomb performs static
analysis of GPU kernels directly on binaries. It decodes the
instructions of the GPU kernels to reconstruct the control and
data flows. It models the memory access patterns using scalar
evolution [6] and polyhedral models [14]. Our evaluation
shows that the approach is effective to validate that the ma-
jority of memory accesses in GPU kernels are safe, because
real-world GPU kernels tend to be well-optimized, having
highly regular control flow structures and memory access pat-
terns. The few remaining cases can be handled by inserting
runtime checks, whose latencies are also well tolerated by the
GPU memory hierarchy (§5).

Second, Honeycomb leverages hardware isolation mech-
anisms, and uses security monitors [54, 79, 90] to validate
interactions in the system, so that it can minimize the trust on
the software/hardware stack. Honeycomb launches applica-
tions inside CPU TEEs powered by AMD SEV-SNP [4]. The
validator directly parses the GPU binaries to remove the com-
piler toolchain from the TCB. To remove both the user-space
and kernel-space GPU drivers from the TCB, Honeycomb
uses two security monitors to intercept and regulate all traf-
fic between the applications and the GPU: (1) a Secure VM
Service Module (SVSM) [4] running inside the application
enclave, which enforces security policies at the application
level (e.g., the application only launches validated kernels),
and (2) a security monitor running inside a sandboxing hy-
pervisor of the GPU, which regulates the behaviors of the
GPU driver (e.g., the driver should never map a private mem-
ory page into two applications). Additionally, Honeycomb
secures the data transfer between the CPU and the GPU to
protect the confidentiality and integrity of the data (§6).

For the final challenge, Honeycomb reserves dedicated re-
gions of the virtual address space for secure IPC to exchange
plaintext data. Particularly, Honeycomb divides the virtual
address space of each application into four regions: protected,
read-only, read-write, and private. The validator ensures that
application GPU kernels can only modify the private region.
Putting the metadata and the receiving buffers into the pro-
tected and read-only regions prevents user applications from
tampering with the IPC, reducing IPC in Honeycomb to copy-
ing plaintext data within the device memory (§7).

We have ported five representative benchmark suites, in-
cluding the SpecACCEL 1.2 benchmark suites [76], inference
applications of the ResNet18 neural network model [37] and
the BERT language model [29], an application that trains GPT
language models [48], and an image processing application
that performs Canny edge detection [20], i.e., 23 applica-
tions in total. We have evaluated them on a server equipped
with two AMD EPYC 7443 24-core processors and an AMD
RX6900XT GPU. The results are promising. The TCB is

156 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

18× smaller than the Linux-based systems. A concise val-
idator is sufficient to statically verify the security of large
parts of GPU applications. Validating inference workloads
on neural networks like ResNet18 and BERT requires adding
zero runtime checks into the GPU kernels. Large language
model workloads like BERT and NanoGPT have ∼ 2% run-
time overheads. IPC in Honeycomb is up to 529× faster than
exchanging data using an encrypted, shared buffer on the host.

This paper makes the following contributions:

• The use of static analysis on GPU kernels to confine
the behaviors of GPU applications to improve security.
Our evaluations on five representative benchmark suites
show that the analysis is both practical and effective to
determine whether real-world GPU kernels are safe at
load time with minimal additional runtime checks.

• The design and the implementation of a lightweight,
end-to-end secure execution environment for GPU appli-
cations based on static validation.

• An IPC primitive that enables secure and efficient com-
munications between GPU applications. The co-design
of static analysis and OS support leads to a highly con-
cise implementation.

2 Background

To understand the design of Honeycomb, it is important to first
review the architectures and the programming interfaces of
GPUs, as well as the basic concepts of polyhedral analysis [14,
35] used in this paper.

Architectures and programming interfaces of commodity
GPUs. Modern GPUs offer the single instruction, multiple
thread (SIMT) programming model to the applications. To
run a workload, an application submits a launch request to
the command queue of the GPU. The request specifies the
binary function (i.e., GPU kernel), its arguments, the number
of threads, and optionally, the size of a user-controllable, on-
die high-speed scratchpad (i.e., shared memory) to perform
the workload. Threads are organized into grids and blocks
uniformly. Each grid consists of the same number of blocks,
and each block consists of the same number of threads. Each
thread within the same block has its own vector registers but
shares access to the shared memory. The programming model
provides a conceptual view where each thread executes the
same instruction based on the values of its own registers. To
achieve parallelization, each thread loads the inputs into its
own registers and computes the outputs in parallel. Figure 1
presents an example of filling a region of memory to a specific
value under the SIMT model.

The hardware architecture of GPUs closely matches the
SIMT model above. A typical GPU consists of thousands of
processing elements (PE) that are grouped into a three-level

hierarchy. The lowest level is called a warp, consisting of 32 or
64 logical PEs executed in lock-step. The micro-architecture
(e.g., AMD GCN) might introduce parallel scalar units to per-
form uniform computation within a warp, or pipeline the com-
putations on physical PEs to hide execution latency. Warps
are further grouped into Compute Units (CU). A CU consists
of a pool of vector registers and shared memory. Finally, a
single GPU packages multiple CUs on the same die.

The hardware scheduler multiplexes the hardware re-
sources across applications. The minimal scheduling unit
is a warp. It always schedules all warps of a block within the
same CU, therefore all threads within a block divide the vec-
tor register pool and share the same allocated shared memory
inside the CU. The scheduler continuously schedules all the
blocks and grids until the execution is completed.

The GPU driver creates a virtual address space for each
GPU application. It allocates buffers for arguments and com-
mand queues out of the Graphics Translation Table (GTT)
memory from the host. The buffers are mapped into the virtual
address space on the GPU, from which the GPU kernels read
the arguments and the layouts of grids and blocks directly.

AMD SEV-SNP. AMD SEV-SNP [4] (Secure Encrypted
Virtualization-Secure Nested Paging) offers enhanced secu-
rity features at the hardware level for Virtual Machines (VMs)
running on an untrusted cloud system hypervisor. Similar to
other TEEs, SEV-SNP supports remote attestation as well
as both data confidentiality and integrity guarantees for the
application VMs against untrusted host hypervisors. A dedi-
cated hardware engine in the memory controller encrypts data
before sending them to the off-chip main memory. SEV-SNP
also tracks the ownership of each physical page with a Re-
verse Map Table (RMP) so that only the owner can write to a
memory region. It further validates the page mapping to pre-
vent malicious remapping of a single page to multiple owners.
In such ways, it is able to alleviate typical data corruption,
replay, memory aliasing, and memory remapping attacks.

In addition, SEV-SNP enables tagging each physical page
with Virtual Memory Privilege Levels (VMPLs). It is similar
to Ring 0-3 in the x86 architecture but for TEE VMs. One use
case of VMPL is to implement Secure VM Service Module
(SVSM). SVSM runs at VMPL0 and the guest operating
system runs at VMPL1. SVSM can intercept syscalls and
memory operations and serve as a security monitor.

Polyhedral model. The polyhedral model has been widely
used in automatic parallelization and optimization of GPU
programs [8, 14, 92]. Conceptually it represents each mem-
ory access as an affine expression (i.e. a linear combination)
over an ordered set of loop variables. Analyzing the effects of
memory access, such as aliasing and ranges, reduces to solv-
ing inequalities of integer variables. The polyhedral model
works well with GPU kernels because they implicitly loop
over the grids and the blocks, and performant GPU kernels
have regular memory access patterns.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 157

More concretely, an iteration vector I =(i0, i1, . . . , in)∈Ds

records the values of loop variables i0, . . ., in for an instruction
s. The domain Ds is called the iteration domain. Note that
the iterator vector usually includes the grid index (gid) and
the local thread index (lid) for instructions in GPU kernels.
An access function As (w.r.t. instruction s) takes an iterator
vector as input and outputs the actual memory address.

Note that when As is an affine function and Ds is an affine
space, all loops in I have fixed steps. For simplicity, we denote
an access function as a vector with each element represent-
ing the coefficients of the corresponding dimension of the
iteration vector. The dot product of the access function and
the iteration vector is the actual memory address. We also
introduce an extra dimension which always has the value 1 at
the end of the iteration vector so that the access function can
represent constant offsets in a uniform way.

Figure 2 shows the access functions of the kernel in Fig-
ure 1, a kernel filling a range of memory with a value. Affine
operations on the values directly translate to affine operations
on the vector forms of the corresponding access functions
(e.g., A5 = dim ·A3 +A4), provided that dim is a constant
throughout the analysis. The GPU kernel actually loads dim
from the memory, however. In this case, security invariants
in Honeycomb ensure that the value dim remains constant
throughout the executions so that the analysis remains valid.

3 Threat model

In this paper, we adopt a similar threat model to previous stud-
ies on secure execution environments for GPUs [44, 45, 83].
The adversary controls the entire software stack, including
the compiler toolchains, the operating system, the hypervi-
sor, and the device drivers. It also has physical access to the
server hardware and may sniff the PCIe traffic. We assume
that the host machine CPU features TEE capabilities such as
AMD SEV-SNP or Intel TDX [43], and the GPU features a
hardware random number generator or performance counters
to collect entropy for cryptographic uses. We also assume
that users have the specifications of the server hardware and
how it is connected, such as which PCIe slot that the GPU
is plugged in. Finally we assume that Honeycomb is able
to establish a trusted MMIO path with the GPU. Our proto-
type uses AMD SEV-TIO [1] to establish it, but such a path
can also be realized using other secure I/O buses [44, 65],
or alternatively, equipping the server with tamper detection
mechanisms [75] and establishing a trusted I/O path to the
GPU using a hypervisor [94]. We defer the details to §8.

The adversary can launch applications in Honeycomb, alter
the results of the compiler toolchains, and tamper with the
physical memory of the server. Additionally, the adversary can
tamper with the DMA buffers. However, we trust the device
memory of the GPU, since modern GPUs usually integrate the
device memory using 2.5D/3D silicon interposers inside the
same package. We assume that the adversary cannot observe

or corrupt the data stored in it [83]. Supporting integrated
GPUs is out of the scope of this paper.

Similar to previous GPU TEEs [44, 83], side-channel at-
tacks [17, 40, 82, 86] on trusted hardware are out of the scope
of this paper. Honeycomb relies on the rich set of orthogo-
nal work to alleviate these problems [9, 80]. Availability and
denial-of-service attacks are also out of scope.

Under this threat model, Honeycomb should ensure con-
fidentiality and integrity for multiple mutually distrusted ap-
plications running on the same GPU. The adversary cannot
tamper with the code, the data and the control flows of both
the CPU and GPU parts of the applications.

4 Overview

Figure 1 describes the overall architecture of Honeycomb.
Honeycomb offers unified TEEs that cover both the CPU and
GPU parts of the application. Honeycomb starts an applica-
tion inside an AMD SEV-SNP TEE VM. It first starts the
Secure VM Service Module (SVSM) at VMPL0. The SVSM
bootstraps the BIOS, the guest Linux kernel, and finally the
user-space application at VMPL1. SVSM regulates all inter-
actions between the applications and the GPU. Recall that in
CPU TEEs data are stored as plaintext within the CPU pack-
age. They are only encrypted when leaving for the off-chip
main memory. In Honeycomb data on the device memory are
stored decrypted, and the SVSM encrypts them when they are
sent to the host. The path of reading data is similar.

The application requests GTT memory from Honeycomb
to interact with the GPU. A piece of GTT memory can serve
as a staging buffer for memory copies, which is mapped into
the user-level address space, or serve as backing buffers for
command queues, which are only accessible by the SVSM.
In both cases the SVSM inspects the access to regulate secure
memory transfers between the GPU and the applications [83],
and launches validated GPU kernels with proper parameters.
Note that although the current implementation of Honeycomb
is based on AMD SEV-SNP, our design is applicable to other
VM TEEs such as Intel TDX.

Honeycomb isolates the GPU inside a sandbox VM. The
security monitor (SM) inside the sandbox is a hypervisor
running below the Linux kernel. The SM regulates all interac-
tions between the driver and the GPU. It ensures that the GPU
follows the expected initialization sequences, and keeps track
of the ownerships of the device memory pages to prevent
accidental sharing of device memory among applications.

To execute GPU kernels, an application first loads the GPU
binary that contains the GPU kernels into the device mem-
ory. The validator in Honeycomb takes both the binary code
of a GPU kernel and the accompanying preconditions as in-
puts. It validates that each memory instruction in the GPU
kernel can only access certain regions of the virtual address
space. Note that the actual target addresses sometimes cannot
be determined until the application executes the kernel with

158 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Sandbox VM

GPUCPU & Secure processor

Host OS + Hypervisor

SEV-SNP VM

App.

SVSM

Linux guest

VMPL 0

VMPL 1

Security monitor

Linux + GPU drivers

User space helper

blockDim.x == 256
0 ≤ blockIdx.x < 128
0 ≤ threadIdx.x < 256
base < VApriv - 0x20004

App App

Pr
ot

ec
te

d
R

O
RW

Pr
iv

at
e

248 - 1

0

metadataCode

Args./
Dispatch

void fill(int *base, int n, int b) {
 u32 dim = blockDim.x;
 u32 gid = blockIdx.x;
 u32 lid = threadIdx.x;
 u32 tid = gid * dim + lid;
 if (tid < n)
 base[tid] = b;
}

✓

✓

Preconditions

Validator
(Static analysis)

GPU virtual address space

Validator

System memory command queue

System memory (GTT)

Device memory

Private system memory

1
2
3
4
5
6
7
8

IPC

Spilling

IPC
send()

ABI registers

Figure 1: The overall architecture of Honeycomb. Left: Application VM and sandbox VM in their respective TEEs. Middle: Pre-conditions
and source code of the GPU application kernel. Right: Layout of the virtual address spaces for two GPU applications. Long dashed arrows
represent intercepted and validated requests by the validator (at load time) and the security monitors (at runtime). Dotted arrows represent
physical memory page mappings. VApriv is the topmost virtual address of the private region. Green boxes are components of the TCB.

D = {(gid, lid)|0 ≤ gid < gridDim;0 ≤ lid < blockDim}
A3 = (1,0,0)
A4 = (0,1,0)
A5 = dim ·A3 +A4 = (dim,1,0)
A7 = A5 +(0,0,base) = (dim,1,base)

Figure 2: The iteration domain and the access functions (in the
vector form) of the GPU kernel in Figure 1. The superscript denotes
the corresponding statement. The parameter spaces of all access
functions are (gid, lid,1). gridDim and blockDim describe the total
number of grids and the number of threads in a block.

the concrete values of the arguments (e.g., base in Figure 1).
Therefore we introduce preconditions, which specify the con-
straints on the arguments so that the validator can analyze
the bounds statically. Honeycomb checks the preconditions
at runtime to ensure the attacker cannot subvert the analysis.

The validator decodes the instructions of the GPU kernel to
reconstruct its control and data flows. It represents the target
address of each memory instruction as a symbolic expression
using scalar evolution and polyhedral models. It plugs in the
preconditions to reason about the bounds of the target address,
and ensures that the address stays within specified regions.
The analysis is sound, meaning that once an access is proven,
it is safe for all possible executions. For undecided cases like
an indirect memory access a[b[i]], Honeycomb requires
the developer to annotate and add runtime checks to pass the
validation. Our evaluation on real-world benchmark suites
shows that the overheads of both development and runtime
performance are modest – common production GPU kernels
like matrix multiplications tend to have regular memory ac-
cess patterns. The analysis is sufficient to capture the patterns,
thus requiring few to none annotations.

The validator enforces access control that effectively di-
vides the virtual address space of a GPU application into
four regions: protected, read-only (RO), read-write (RW), and
private, each of which has different access policies. For ex-
ample, the application is prohibited to modify the RO region,
but has full access to the private region. Honeycomb places
the binary code and the arguments in the RO region so that
a malicious kernel cannot modify the code on the fly after
passing the validation. Furthermore, Honeycomb implements
secure IPC through mapping the buffers into different regions.
Honeycomb maps the IPC buffers into the sender’s protected
and receiver’s RO region. The sender calls the trusted send()
endpoint to copy the plaintext data to the IPC buffer, where
both confidentiality and integrity are preserved.

5 Validator

The validator in Honeycomb checks the binary code for each
GPU kernel of the application conforms with the following
security invariants:

• No dangling accesses. A GPU kernel must never read
uninitialized values from hardware registers.

• All memory accesses reside in their regions. All mem-
ory accesses to the memory regions conform with their
access policies respectively.

• Control flow integrity. The execution must start at the
designated entry point of the GPU kernel. The kernel can
only transfer its control to the entry points of its basic
blocks.

Checking uninitialized uses of values. The validator starts
out parsing the binary code of the GPU kernel and building

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 159

s_load_dword s2, s[4:5], 0x4
s_load_dwordx2 s[0:1], s[6:7], 0x8
s_waitcnt lgkmcnt(0)
s_and_b32 s2, s2, 0xffff
v_mad_u64_u32 v[0:1], null, s8, s2, v[0:1]
v_cmp_gt_u32_e32 vcc_lo, s0, v0
s_and_saveexec_b32 s0, vcc_lo
s_cbranch_execz 12
s_load_dwordx2 s[2:3], s[6:7], 0x0
v_mov_b32_e32 v1, 0
v_mov_b32_e32 v2, s1
v_lshlrev_b64 v[0:1], 2, v[0:1]
s_waitcnt lgkmcnt(0)
v_add_co_u32 v0, vcc_lo, s2, v0
v_add_co_ci_u32_e32 v1, vcc_lo, s3, v1, vcc_lo
global_store_dword v[0:1], v2, off
s_endpgm

struct dispatch_pkt {
 u32 …;
 u16 wg_size_x;
};
struct kern_args {
 int *base;
 int n;
 int b;
};

Preconditions
v0⟷lid
s8⟷gid

s[4:5] ∈ [VArw, VAro - 8)
s[6:7] ∈ [VArw, VAro - 16)
val(s[4:5] + 0x4) == 256
val(s[6:7]) ≤ VApriv - 0x20004
0 ≤ v0 < 256
0 ≤ s8 < 128

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

ABIs

(u32)(v[0:1] + s[2:3])|15 = v2|11

(s8*s2+v0)|1*4

(u32)(s[6:7]|0+(0x8+0x4))

(u64)s[6:7]|0

(u16)(s[4:5]|0+0x4)

s1|2

A = (4 ·wg_size_x,4,base)
I = (s8,v0,1)
D = {(gid, lid,base)|0 ≤ gid < 128,0 ≤ lid < 256,

0 ≤ base < VApriv −0x20004}

Target address = A · I ≤ VApriv −0x4

Figure 3: Workflow of validating the binary code generated from Figure 1. Left: the assembly, preconditions and the ABIs. Top right: the value
chain of the symbolic expression that represents the target address of Line 16. Subscripts represent the line number on the left at which the
value should be considered. Bottom right: the access function A , the iteration vector I and the iteration domain D .

the Static Single-Assignment (SSA) representation and the
Control Flow Graph (CFG) for each kernel function. The
validator checks dangling accesses by inspecting whether the
SSA representation of the kernel function is valid.

Checking memory accesses. Figure 3 presents the overall
workflow when validating the program described in Figure 1.
For each memory instruction, the validator constructs a sym-
bolic expression and derives the access function A to rep-
resent the target address of each memory instruction. The
algorithm combines scalar evolution analysis and polyhedral
models, and is flow-sensitive and path-insensitive.

The validator further derives the iteration vector I and the it-
eration domain D from the application binary interface (ABI)
and the preconditions of the GPU kernel. Recall that the dot
product A · I computes the value of the target address. It is
sufficient to plug in D to compute the range of the target
address and to verify whether the memory access is inbound.

A closer look at Figure 3 shows that the validator must
address practical complexities when analyzing the binary
code. For example, the compiler promotes the load of
dispatch_pkt.wg_size_x into a 32-bit load instruction
(Lines 1 and 4). It also lowers a 64-bit addition into two
instructions (Lines 14-15). The validator heuristically redis-
covers their semantics when constructing the symbolic ex-
pressions. Additionally, the validator matches sequences of
instructions to rediscover semantics of divisions, modulus,
and min/max operators.

Another example is that conventional polyhedral models
require all multipliers to be constants. The value of s2 comes
from a load instruction (Lines 1 and 4), breaking the subse-
quent analysis when constructing a polyhedral representation
of the global ID (Line 5). The validator recognizes that the
instruction is loading from the RO region and it is safe to treat
it as a constant in the analysis. Such relaxation is essential to
derive A and eventually to validate that Line 16 is safe.

Aggressive compiler optimizations can create additional

burdens for analysis. For example, the definition and the usage
of a value could be scattered in two basic blocks separated
by other basic blocks in the CFG. They are guarded by the
same condition so the program is valid at runtime but a path-
insensitive algorithm fails to connect them. More powerful
analysis or language-level support [30,41,60] will address the
issue but we intentionally limit the capabilities of the validator
to bound the size of TCB. Honeycomb requires the developer
to alter the GPU kernel to pass the validation. Additionally,
the validator requires the developer to add runtime checks for
indirect memory accesses like a[b[i]] since it does not fully
track the memory access of the heap.

We found that the simple algorithm is effective against
commonly used production kernels such as matrix multiplica-
tions or element-wise transformations as the analysis perfectly
captures the regular and predictable memory access patterns
commonly seen in most GPU kernels.

Enforcing control flow integrity. It is relatively straightfor-
ward to decode GPU kernels since modern GPUs have RISC-
style instruction sets. The validator simply validates that all
branches jump to valid instructions. The validator does not
support indirect branches. Although based on our experience
they are rarely used in real-world GPU kernels, the developer
can turn indirect branches to a series of branches that have
explicit targets. The validator does not support self-modifying
code to ensure the integrity of the analysis.

6 Security monitors

There are two types of security monitors in Honeycomb to
regulate the interactions with the GPU. In Honeycomb every
application runs inside its own TEE VM. The SVSM regu-
lates the interactions between the application and the GPU.
The security monitor (SM) in the sandbox VM regulates the
interactions between the driver and the GPU. The SM also
keeps track of the ownership of memory pages to prevent ac-

160 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cidental sharing between applications. Together they are able
to remove the OS kernel and the GPU driver from the TCB.
Similar to existing GPU TEEs [83], Honeycomb implements
the following functionalities.

Initialization. Honeycomb enforces the untrusted GPU driver
to follow a correct sequence to initialize the GPU. However, to
our best knowledge, no public specifications are available for
our target device, the AMD RX6900XT GPU. We therefore
collect the trace of an initialization sequence on the baseline
platform and use it as the ground truth. We further inspect
the source code of the driver to build state machines to model
the initialization sequence. The SM intercepts all MMIO
traffic to ensure that the GPU driver follows the transitions
of the state machines. The SM directly passes the firmware
to the GPU since the hardware will validate its integrity with
cryptographic signatures.

Despite the fact that there is no specification, we were
able to find five bugs in the AMDGPU driver that violate
security. More specifically, there are two instances where the
parameters of the hardware queues are initialized with incor-
rect values, two instances where the queues are prematurely
enabled before all parameters are set, and one instance of
out-of-bound access on the hardware buffer. All five bugs are
confirmed by upstream developers, and their corresponding
fixes have been deployed since Linux 5.19.

Launching GPU kernels. Applications call the same user-
space APIs (e.g., the HIP APIs [2]) to launch GPU kernels on
Honeycomb. First, applications call hipModuleLoadData()
to load GPU binaries. The implementation of the API traps
into the SVSM, where the SVSM validates the kernels, then
copies the kernels into the protected region and records their
preconditions given that they have passed the validations.

Applications call hipLaunchKernel() to launch a GPU
kernel. Similarly, its implementation traps into the SVSM,
where the SVSM confirms the preconditions are valid with
respect to the actual arguments. It then updates the command
queue to enqueue the launch if preconditions are satisfied.

Isolating address spaces. On the CPU side, Honeycomb lever-
ages existing mechanisms in SEV-SNP TEE to enforce iso-
lation between different applications. SEV-SNP ensures the
integrity of VM data and protects against various vulnerabili-
ties, including replay and remapping attacks (§2).

On the GPU side, the SM intercepts all traffic between
the driver and the GPU to maintain a RMP table similar to
Graviton [83] to track the ownership of the pages. The Linux
driver allocates page tables inside the device memory and
updates them through MMIO requests. The SM intercepts
these requests and updates the RMP table. Additionally, the
SM prevents applications from mapping the page tables into
their address spaces to subvert the isolation.

Securing data transfers. Honeycomb implements secure data
communication channels between the GPU and the host CPU,
and coordinates all data transfers into and out of the GPU

device memory. All transfers between the host and the device
memory must be done via a special trusted kernel in Honey-
comb, with all transferred data encrypted and authenticated
under an ephemeral encryption key. Honeycomb disallows
the applications from mapping the host memory into their
address spaces or directly creating DMA queues.

One practical issue is how to bootstrap and maintain the
secure channel. Honeycomb uses the s_memrealtime instruc-
tion to get the value of the real-time counter on the AMD
RX6900XT GPU. Honeycomb launches a kernel to perform
reads, invalidating caches to generate entropy and extract
them. The entropy is used to establish a shared security key
using Diffie-Hellman key exchange [31]. Honeycomb stores
the entropy in the protected region to prevent user applications
from accessing it.

7 Secure and efficient IPC

Honeycomb enables two enclaves to securely exchange plain-
text data within the device memory. To make an IPC, Hon-
eycomb maps the IPC buffer to the sender’s protected region
and the receiver’s RO region. The sender calls send() to ini-
tiate the IPC. send() is a trusted endpoint that simply copies
the data into the protected region and updates the indices of
the IPC buffers. The GPU kernels on the receiver side can
read the RO region directly but need to update the indices
via recv() provided by Honeycomb. The scheme is secure
because no GPU kernels from the user applications can access
the protected region nor write to the RO region.

For simplicity, the current prototype of Honeycomb maps
all IPC buffers to the protected regions consistently across
all applications so that it is possible to identify the endpoints
using only the virtual addresses. Adding finer-grained access
control through capabilities [33] is relatively straightforward.

To summarize, the ultimate simplicity comes from the guar-
antee that none of the user-provided GPU kernels inside Hon-
eycomb is able to tamper with the data in the protected, RO
and RW regions, making exchanging data between two en-
clave applications in Honeycomb as simple as copying a piece
of memory.

8 Discussion

Establishing a trusted I/O path to the GPU. When the server
does not have AMD SEV-TIO or other secure I/O buses, Hon-
eycomb can leverage prior work [94] to establish a trusted
I/O path to the GPU. On the high level, Honeycomb acquires
exclusive control of the I/O paths at the beginning of the
boot-up process, before any untrusted components can ac-
cess the GPU. Particularly, the server first boots into the SM
where the whole boot-up process is validated and attested
via SecureBoot [55]. Second, the SM enumerates the PCIe
buses to discover the MMIO regions of the GPU and all of its

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 161

upstream PCIe switches. Then it initializes the IOMMU to
protect the MMIO regions from any unauthorized accesses by
the hypervisor and other devices’ DMA buffers. It further pro-
grams the PCIe Access Control Services (ACS) registers [5]
to stop unauthorized peer-to-peer PCIe transactions. After
these steps Honeycomb can continue the normal boot-up pro-
cess. By correctly configuring the IOMMU and by disabling
peer-to-peer PCIe accesses, the above initialization process
is sufficient to isolate the MMIO regions of the GPU from
the untrusted software components and other I/O devices in-
side the server [94]. Honeycomb relies on additional tamper
detection mechanisms to detect and mitigate physical attacks.

In the alternative setup above, the TCB must include all
components used in the boot-up process, such as the UEFI
BIOS. The SM and the untrusted hypervisor must be adopted
to support nested virtualization [11]. Legacy systems without
tamper detection mechanisms have a weaker threat model as
they are unable to defend against physical attacks.

Remote attestations. The user application needs to attest both
its own SEV-SNP VM and the sandbox VM to validate the
security of the execution environment. It follows the standard
procedures to attest its own VM. The attestation also guaran-
tees a valid execution context of the GPU since the SVSM is
part of the attestation, and it regulates the GPU execution con-
text. Note that the SM is part of the TCB. The SM maintains a
public-private key pair for the attestation of the sandbox VM.
The user application authenticates the SM using the key pair
to validate the security of the sandbox VM.

9 Security analysis

Attacking the software stack. An attacker might try to launch a
malicious GPU kernel by subverting the validation in Honey-
comb. Some possible attacks include invalidating the precon-
ditions with invalid arguments, subverting the data flows via
manipulating the values of spilled registers, and modifying the
code or the target addresses of a branch to hijack the control
flows [18]. Recall that SEV-SNP ensures that the user appli-
cation cannot tamper with the SVSM. The SVSM reevaluates
the preconditions with the arguments before executing the
GPU kernels to defend against the first attack. Honeycomb
protects the code and the spilling regions in the RO and RW
regions to defend against the second and third attacks. Par-
ticularly, the validator analyzes each global memory access
in the GPU kernel to ensure that it cannot tamper with the
reserved regions, maintaining the integrity of the validation.

An attacker might tamper with the system software stack,
including the GPU driver, the host operating system, and the
hypervisor, to subvert the security of Honeycomb. To gain
access to the plaintext information residing in the device
memory, they might execute code to craft malicious MMIO
requests, to initiate unauthorized DMA requests, or to map the
device memory from other applications to different address

spaces. This is ineffective because the SM in Honeycomb
regulates all MMIO and DMA requests from the system soft-
ware stack. By intercepting the MMIO requests, it enforces
isolation on address spaces and prevents accidental sharing.
It also enforces that data communication with the external
world is all encrypted and authenticated.

The attacker might alter the GPU firmware or divert from
the designated bootup sequences in order to control the GPU.
This is ineffective because the GPU hardware verifies the
integrity of the firmware [55], and the SM in Honeycomb
validates the bootup sequences during GPU initialization.

Attacking the hardware stack. An attacker might interpose
the host memory to try to alter the trusted components like
the SVSM in Honeycomb. This is ineffective because SEV-
SNP includes attestation procedures to verify the integrity of
the trusted components. SEV-SNP also incorporates memory
encryption and integrity to defend against the attack.

An attacker might interpose on the PCIe fabrics to insert
MMIO or DMA requests, or tamper with existing requests
to access the plaintext information residing in the device
memory. Alternatively, they might map the MMIO regions of
the GPU to another I/O device or initiate peer-to-peer PCIe
transactions to interact with the GPU. Both types of attacks
are ineffective when the GPU is attached to a secure I/O
bus [1, 44, 65]. When using the alternative initialization pro-
cess described in §8 to establish a trusted I/O path, Honey-
comb detects and stops the first type of attacks using tamper
detection mechanisms [75]. To defend against the second type
of attacks, Honeycomb programs the IOMMU and PCIe ACS
registers to acquire exclusive control on the MMIO regions
of the GPU before starting any untrusted components. Ad-
ditionally an attacker might write to the I/O ports that map
to the registers in the PCIe configuration space, in the hope
of relocating the MMIO regions of the GPU. Honeycomb is
able to identify and stop potential attacks as the hardware
topology uniquely determines the mappings [94]. An attacker
might also initiate peer-to-peer PCIe transactions between an
I/O device and the GPU bypassing the IOMMU. Honeycomb
stops the attacks because it programs the PCIe ACS registers
to prevent unauthorized peer-to-peer PCIe transactions.

Our threat model assumes that an attacker cannot snoop
or tamper with the device memory of the discrete GPU. The
attacker can also try to perform the row hammer attack [51],
which can be mitigated by orthogonal research [7, 67, 87].

Side-channel attacks. An attacker might try to exploit various
timing and power side channels. Defending them is out of the
scope of this paper and can leverage orthogonal work [9, 80].

10 Implementation

We have implemented Honeycomb on top of Rust 1.64.0
nightly with about 32,000 lines of code. The current prototype
supports the x64 architecture and the AMD RX6900XT GPU.

162 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We use the AES256-GCM [32] to encrypt and decrypt traffic
between the host and the GPU.

The validator understands the AMDGPU ELF binary for-
mat and disassembles the machine code of the GPU kernels
of the AMD RDNA2 ISA. The structures of scalar evolution
analysis and polyhedral representations closely resemble the
corresponding parts in LLVM [53].

We have implemented both the SVSM and the SM in Rust.
The SM is implemented as a Type I hypervisor. We have im-
plemented the user-space runtime, including the correspond-
ing bindings of HIP and OpenCL in C++, in around 8,500
lines of code. The user-space runtime is outside the TCB.

11 Evaluation

The evaluation of Honeycomb tries to answer the following
questions both qualitatively and quantitatively:

• Does static validation in Honeycomb improve security?

• Is Honeycomb practical for real-world applications?

• Where do the overheads in Honeycomb come from?

• How efficient is the IPC in Honeycomb?

• How much effort is required to adopt Honeycomb for
new applications?

11.1 Experiment setup
We evaluate Honeycomb on a server equipped with two 24-
core 2.85 GHz AMD EPYC 7443 CPUs, 128 GB DDR4 mem-
ory, and a 480 GB SAMSUNG PM893 SSD. The server has an
AMD RX6900XT GPU that has 16 GB of device memory. It
connects to a gigabit Ethernet with the Broadcom BCM5720
Ethernet adapter. The machine runs a patched Linux 5.15.0
kernel to support SEV-SNP VMs. Both the sandbox and the
application VM runs Linux 5.17.0 on top of QEMU 7.1.0. We
have not yet enabled SEV-SNP for the sandbox VM due to
complications of passing the AMD RX6900XT GPU directly
into the VM. We use the ROCm 5.4.0 [3] GPU driver when
running the baseline experiments. We pin all applications to
the first CPU socket where the GPU is attached.

11.2 TCB
Honeycomb provides a secure and efficient execution envi-
ronment for GPU applications. To quantitatively evaluate our
efforts, we count the lines of code (LOC) in the TCB of both
Honeycomb and the Linux platform using SCC [15]. The
current prototype of Honeycomb only supports a limited set
of hardware, thus we only count the lines of code for the
x64 platform and the essential parts of the driver for AMD
RX6900XT. Figure 4 presents the counts of LOC for the TCB
of both Honeycomb and the Linux platform.

Honeycomb provides security guarantees with respect to
the threat model in Section 3 with an order of magnitude
smaller TCB compared to the normal Linux platform. The
security of a GPU application running on Linux relies on
the correctness of both the kernel space and the user space
(ROCm) of the GPU driver. The result of the smaller TCB is
consistent with other systems that adopt the design of security
monitors [79, 90]. The SM and the validator in Honeycomb
separate the concerns of enforcing security from implement-
ing the required functionalities, removing the heavy-lifting
portions (e.g., Linux) of the system out of the TCB.

System LOC

Honeycomb 82,738
SVSM 9,839
SM+Sandbox VM 9,376
Validator 12,299
Rust runtime 50,864

Linux 5.17 ∼ 1,503,519
Core functionalities for x86 844,993
AMDGPU driver for AMD 6900XT 607,689
Kernel libraries (DRM & TTM) 50,837

ROCm 5.4.0 397,151
HIP Library 188,995
ROCR Runtime 73,241
ROCm Common Runtime 62,173
ROCR Thunk interface 72,742

Figure 4: Estimated LOC for TCBs of Honeycomb and Linux. It
also shows the LOC of some major components in the TCB.

11.3 End-to-end performance
We choose five representative benchmark suites to study how
Honeycomb performs on real-world workloads:
SpecACCEL. SpecACCEL is a performance test suite that rep-
resents high-performance computing applications like simula-
tions of computational fluid dynamics and molecular dynam-
ics. We evaluate all 19 OpenCL applications in the SpecAC-
CEL 1.2 benchmark suites. All benchmarks are evaluated
against the default parameters and the reference input size.
ResNet18. ResNet18 is an 18-layer convolutional neural net-
work model. It is a popular image classification model that
is used on low-power edge devices. We implement a bench-
mark that classifies 10 images using the ResNet18 model.
The model uses the single-precision, pre-trained weights
(IMAGENET1K_V1) from PyTorch 1.12.1 [64].
BERT. BERT is a large transformer model that powers various
natural language processing tasks. We derive a benchmark
from the NVIDIA FasterTransformer backend [62]. We use
the BERT_BASE configuration [29]. The model has 12 layers

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 163

0

0.5

1

1.5

2

101.tpacf

103.ste
ncil

104.lbm
110.fft

112.spmv

114.mriq

116.histo
117.bfs

118.cutcp

120.kmeans

121.lav
amd

122.cfd
123.nw

124.hotspot
125.lud

126.ge
127.sra

d

128.heartw
all

140.bplustre
e

ResNet
Canny

BERT

NanoGPT

R
el

at
iv

e
tim

e

Driver
Driver+SVSM

Driver+SVSM+Mem
Driver+SVSM+Mem+V

Figure 5: Relative execution time for the five benchmark suites evaluated on
Honeycomb.

0.01

0.1

1

10

100

32 128 512
2048

8192

V
al

id
at

io
n

Ti
m

e
(m

s)

Number of instructions in the kernel

SpecACCEL
ResNet18

BERT
NanoGPT

Canny

Figure 6: The time spent on validating GPU kernels
in wall clock vs. the size of the kernels.

and 110M parameters, preloaded with the single-precision,
pre-trained weights called bert-base-uncased [38]. The
benchmark reports the time of performing a single shot of
inference on BERT.

NanoGPT. NanoGPT is a minimal implementation of train-
ing medium-size Generative Pre-trained Transformer (GPT)
models. GPT models are often used to power chat bots or to
generate human-like content. We implement a benchmark that
fine-tunes the GPT2 model [68] using the tiny Shakespeare
dataset in the NanoGPT repository. We preload the weights
of its 124M parameters from [39]. The benchmark trains with
a batch size of 4 and uses ∼15 GB out of the 16 GB of total
device memory available.

Canny. Canny implements the Canny edge detection algo-
rithm to detect edges in images. We implement a benchmark
that detects edges on an image in the UHDSR4K dataset [91].
The resolution of the image is 3840× 2160.

Figure 5 presents the relative execution time of all five
benchmark applications. The relative execution time ranges
from 0.89 (104.lbm) to 1.27 (Canny). Large language models
in Honeycomb are particularly efficient: the relative slow-
downs of BERT and NanoGPT are 2% and 0%. This is be-
cause their execution time is dominated by matrix multiplica-
tions, whose memory accesses can be efficiently reasoned
about with scalar evolution analysis and polyhedral mod-
els. The validator requires no runtime checks to be inserted
into the performance-critical, general matrix multiplication
(GEMM) GPU kernels to pass validation. Honeycomb essen-
tially launches the exact same GPU kernels compared to the
baseline.

Figure 5 further breaks down the overheads into four cate-
gories: (1) Driver (slowdowns from an alternative driver), (2)
SVSM (validating the requests in the command queues), (3)
Mem (securing memory transfers) and (4) V (runtime checks).
The characteristics of runtime overheads vary among appli-
cations. First, the alternative driver is simpler and faster in
general but lacks the optimizations on large memory copies.
Running Canny on the alternative driver is 18% slower (7.16s

vs. 6.11s) because it loads an 8MB image into the GPU before
processing it. Second, to enforce security the SVSM must
inspect each request of kernel launch. The overhead is more
evident for applications that mostly consist of small, fast GPU
kernels like ResNet.

The third source of overheads is secure memory transfer.
For example, 117.bfs copies the frontier and the tail of the
BFS queue back and forth between the host and the device
in each iteration, transferring 400 bytes of data for 108,000
times. Enabling secure memory transfer results in a 42%
slowdown (13.97s vs. 9.82s). 116.histo also has significant
overheads because it uses memcpy() to zero out a piece of
device memory at the beginning of each iteration. Changing
it to memset() eliminates the overheads.

The final source of overheads comes from the runtime
checks in GPU kernels that are inserted to facilitate valida-
tions. Runtime checks slow down 121.lavamd by 19% (5.80s
vs. 4.87s). However, most of the overhead can be attributed to
one single runtime check. The GPU kernel writes to a[b[i]
+ threadIdx.x * j] in two-level nested loops. i and j are
loop variables thus b[i] remains constant in the outer loop.
Developer must insert a runtime check to aid the validation
since b[i] is a value from the memory where the validator
does not model. Note that the runtime check can be hoisted
to the outer loop since checking the indices at the first and the
last iterations of j is sufficient to guarantee safety. Hoisting
the check effectively eliminates the overheads (both 4.87s
for disabling runtime checks and hoisting the check to the
outer loop). The case of 128.heartwall is similar. Extending
the validation to understand hoisting is left to future work.

11.4 Overheads
The previous subsection has discussed the overheads on the
runtime checks inside the GPU kernels. This section further
studies other overheads introduced by the system design of
Honeycomb, namely:

• Validating the GPU kernels at load time.

164 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10−2

10−1

100

101

102

103

104

105

25 210 215 220 225 230

B
an

dw
id

th
(M

B
/s

)

Size of the memory copy (Bytes)

ROCm (Linux)
Secure memory transfer (Honeycomb)

Figure 7: Round-trip bandwidth of data copies
of various lengths between the host and the
GPU, with and w/o secure memory transfers.

10−1
100
101
102
103
104
105
106
107
108

4 16 64 256 1024 4096

Pe
rf

or
m

an
ce

(M
FL

O
PS

)

Size of the matrix

ROCm
Honeycomb

ROCm+Precondition
Honeycomb+Precondition

Figure 8: The achieved FLOPS in matrix mul-
tiplication on various sizes of the matrices.
Both the x and y axes are on log scales.

10−2

10−1

100

101

102

103

104

105

25 210 215 220 225 230

B
an

dw
id

th
(M

B
/s

)

Size of the IPC payloads (Bytes)

Insecure
Honeycomb IPC

Encrypted shared buffer (host)

Figure 9: Round-trip IPC bandwidth of the
ping-pong application with different sizes of
payloads.

• Securing memory transfers between the host and the
GPU.

• Checking the preconditions against the arguments and
launching the GPU kernels.

Overheads of validating GPU kernels. Figure 6 describes the
time spent on validating the GPU kernels in all five benchmark
suites we evaluate vs. the number of instructions they have.
The time used by validation is roughly linear with respect to
the size of the GPU kernel. Out of 149 GPU kernels we have
evaluated, the largest one is a GEMM GPU kernel that has
11297 instructions coming from rocBLAS [49]. The longest
time spent on validating an individual GPU kernel is around
30 ms (128.heartwall). At the application level, validating
NanoGPT training takes the longest time in our evaluation. It
consists of 73 GPU kernels, taking 162 ms in total to validate
all of them. Note that the validation is a one-time overhead
when loading the applications. Real-world GPU applications
like training execute the kernels continuously for days. The
evaluation shows that validating GPU kernels is efficient and
has negligible overheads on overall application performance.

Overheads of secure memory transfers. We study the over-
heads of secure memory transfers using a benchmark that
transfers data back and forth between the host and the GPU.
A round trip of a secure memory transfer includes (1) en-
crypting the data on the host CPU, (2) copying the encrypted
data to and from the GPU, and (3) decrypting the data. We
warm up the benchmark for 5 seconds and report the average
transfer bandwidth over a 30-second period for various sizes
of transfers. Figure 7 presents the round-trip data bandwidth
with and without secure memory transfers. The bandwidths
of both ROCm and Honeycomb first increase linearly with the
sizes of the payloads and then peak at 10.63 and 2.20 GB/s.
The bandwidth is bounded by AES encryption/decryption
throughput of a single CPU core.

Overheads of checking preconditions and launching GPU
kernels. We study the performance impacts of checking pre-
conditions in Honeycomb by measuring the performance of

multiplying two single-precision square matrices of various
sizes in Honeycomb. We implement the benchmark using the
GEMM GPU kernels from rocBLAS. The validator has veri-
fied that all global memory accesses in these GPU kernels are
safe, thus there are no extra runtime checks inside the GPU
kernels. We have further ported all checks on preconditions
directly into the benchmark, making precondition checking
the sole overhead in this benchmark.

Figure 8 presents the achieved FLOPS on both Linux and
Honeycomb against various sizes of the square matrices (from
2×2 to 8192×8192), with or without checking the precondi-
tions. Honeycomb performs 41 range checks on the kernel
arguments to validate the preconditions on each launch, tak-
ing roughly 0.04µs to complete. All GEMM GPU kernels in
the benchmark have the identical function signature. Both the
number of checks on preconditions and the performance are
consistent.

Honeycomb is slightly slower than Linux when the size
of the matrices is less than 1024, because SVSM must check
each request to ensure that applications can only launch val-
idated kernels. We observe that the overhead is ∼ 8µs per
launch of GPU kernels. To cross-validate the overheads, we
compare the latency of launching a no-op kernel on Linux and
on Honeycomb. The average latencies over a million launches
on Linux and on Honeycomb are 13.15µs and 25.06µs. The
overhead of checking preconditions is two orders of magni-
tude smaller than launching a no-op kernel.

11.5 IPC performance

We study the case of exchanging data between two TEE appli-
cations on the same host. We compare the bandwidth between
exchanging the data via (1) an encrypted shared buffer on
the host, and (2) the IPC mechanism in Honeycomb, where
no encryption is needed. We have built two applications and
evaluated their performance: (1) a ping-pong application that
sends data back and forth, and (2) a two-stage image pro-
cessing application that mimics the perception pipelines in
autonomous vehicles. It ingests a video stream in an enclave

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 165

and performs edge detection in another one. The isolation not
only increases modularity and robustness, but also simplifies
the integrations with third-party vendor SDKs.

Figure 9 presents the effective bandwidth of the ping-pong
application with different sizes of IPC payloads, along with a
reference, insecure implementation that copies the payloads
within the device memory using hipMemcpyDtoD(). IPC in
Honeycomb is 2-529× faster compared to exchanging data
via a shared encrypted memory buffer on the host. The effec-
tive bandwidth of round-trip IPCs peaks at ∼233 GB/s (89%
of the reference insecure implementation) when sending pay-
loads of 32 MB, where three buffers of such size utilize the
shared L3 cache of the GPU (128 MB). In contrast, the band-
width of using an encrypted shared buffer for IPC peaks at
∼411 MB/s. We attribute the inefficiency to the fact that GPU
TEEs make secure memory transfers transparent to applica-
tions. Other GPU TEEs cannot give out the encryption keys
to the applications without compromising the security, so the
only way of sharing data securely is to re-encrypt the data
before sharing them, where the performance is bounded by
the CPU performance of encryption and decryption as shown
in Figure 7.

We have assembled the Canny application into a two-stage
image processing pipeline. The end-to-end latencies of pro-
cessing a single frame of 4K image are 679 µs and 18579 µs
when using direct IPC and an encrypted shared buffer on the
host, where 617 µs is spent on actual computation.

11.6 Developer experience
Figure 10 presents the metrics on the kernels and develop-
ment efforts of the five benchmark suites we have evaluated.
It presents the number of GPU kernels, the number of memory
instructions, the number of runtime checks inserted, and the
number of preconditions written for each application. Neural
network applications ResNet18, BERT, and NanoGPT are
considerably bigger, where the GEMM kernels contribute to
more than 70% of the total number of instructions. RocBLAS
launches different GEMM kernels based on the sizes of ma-
trices for optimal performances.

Experience with neural network models and the Canny edge
detector. We have ported 109 GPU kernels in total for
ResNet18, BERT, Nano and Canny. We are able to classify
the GPU kernels used in neural network models into three
categories: (1) element-wise operations, (2) matrix opera-
tions, including multiplication, transposition and convolution,
and (3) special-purpose GPU kernels such as Im2d2col or
radix sort. Note that developers do not directly write the GPU
kernels. The GPU kernels either come from well-optimized
libraries such as MIOpen [49] or are generated by PyTorch.

We found that GPU kernels in the first two categories have
well-optimized, regular memory access patterns. Scalar evolu-
tion analysis and polyhedral models are sufficient to verify the
safety of the memory accesses, meaning that no extra runtime

checks are required. However, it is important to extend the
polyhedral models to treat the values of some kernel argu-
ments as constants (§5) to complete the analysis. Many of
these GPU kernels are generic library functions. They take
the shape and the length of the data as arguments, which are
often used in calculating addresses. GPU kernels used in the
Canny edge detector also fall within the first two categories.

GPU kernels in the third category require case-by-base
discussion. The class of Im2d2col GPU kernels used by
ResNet18 essentially unrolls a matrix into a long vector un-
der different configurations. The challenge of analyzing their
memory access is that the GPU kernels use division and mod-
ulo operations to transform the basis of indices. For exam-
ple, the statements out_x = inner_lid % out_cols_wg;
out_y = inner_lid / out_cols_wg; repartition the index
inner_lid based on the value of out_cols_wg. It is easy
to see such accesses are inbound but neither the standard
scalar evolutions nor polyhedral representations can model
them. Such repartitions are often parts of the tight loops thus
extra runtime checks can incur significant performance over-
heads. Fortunately, we found out that the compiler generates
pretty stable code sequences for these statements. We have
implemented a pattern matching algorithm to iterate over the
instructions to uncover the semantics of repartitions, so that
the validator can verify these Im2d2col GPU kernels without
the need of runtime checks.

Radix sorts are introduced to speed up the training of neural
networks on GPUs. Particularly, during the backward propa-
gation pass the training application sorts the sparse gradients
before propagating the values in order to improve locality and
to save the precious memory bandwidth. While radix sorts
are efficient on GPUs, they pose challenges for validation
due to the presence of indirect memory references. It is a
non-goal for the validator in Honeycomb to verify the safety
of indirect memory references, so we have added runtime
checks to the sorting kernels in the NanoGPT training appli-
cation. The overall overheads are insignificant as radix sorts
are accountable for less than 0.02% of the total running time.
Replacing radix sort with an algorithm like merge sort that is
more friendly to validation may be a good alternative.

Many preconditions are mechanical and usually straight-
forward (e.g., ensuring that the whole matrix is in the private
region). Since GPU kernels take data shapes as inputs, all of
which must be specified in the preconditions. For instance,
each GEMM kernel requires 30 preconditions. Writing these
preconditions is tedious, and we have developed a script to
generate the preconditions automatically.

In short, it requires inserting zero runtime checks into
ResNet18, BERT and Canny to pass validation in Honey-
comb. We introduce runtime checks in the NanoGPT training
application with negligible performance overheads. Devel-
oping preconditions for the GPU kernels requires modest
effort. Patching frameworks like PyTorch to use the validated
versions of the GPU kernels, however, turns out to be a big-

166 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Benchmark 10
1.

tp
ac

f

10
3.

st
en

ci
l

10
4.

lb
m

11
0.

ff
t

11
2.

sp
m

v

11
4.

m
ri

q

11
6.

hi
st

o

11
7.

bf
s

11
8.

cu
tc

p

12
0.

km
ea

ns

12
1.

la
va

m
d

12
2.

cf
d

12
3.

nw

12
4.

ho
ts

po
t

12
5.

lu
d

12
6.

ge

12
7.

sr
ad

12
8.

he
ar

tw
al

l

14
0.

bp
lu

st
re

e

R
es

N
et

18

B
E

R
T

N
an

oG
PT

C
an

ny

Kernels 1 1 1 1 1 2 5 2 1 2 1 5 2 1 3 2 6 1 2 24 14 67 4
Mem. instrs. 15 15 30 9 9 21 77 14 10 14 7 119 76 8 105 20 60 121 46 1,531 1,768 7,202 55

Checks 0 0 0 0 5 0 1 8 3 0 5 5 0 0 0 0 6 14 16 0 0 44 0
Preconds. 5 8 5 6 9 13 29 16 8 12 4 29 20 8 9 13 45 25 19 443 181 1,529 18

Figure 10: Metrics on the kernels and development efforts to validate GPU kernels in the five evaluated benchmark suites.

ger practical challenge. We eventually end up patching the
userspace runtime to load the validated GPU kernels.

Experience with the SpecACCEL benchmark suites. We have
ported all 19 benchmarks (40 kernels in total) in the SpecAC-
CEL 1.2 benchmark suites to Honeycomb. We classify the re-
quired changes into three categories: (1) adding optimization,
(2) undoing optimization, and (3) indirect heap references.
Adding optimization. The validator can benefit from opti-
mizing the GPU kernel. For example, 110.fft has a division
instruction in the kernel. The divisor is a power-of-2 constant.
Propagating it into the GPU kernel reduces the division into
bit shifts, simplifying the validation.
Undoing optimization. Aggressive optimization in compilers
issue instruction sequences that are difficult to model in scalar
expression. For example, the compiler compiles the expres-
sion -1-bx in 123.nw to a single instruction s_not_b32 bx.
It is difficult for the validator to model such an instruction
as a scalar expression. We have to rewrite the expression to
undo the optimization so that the validator can recognize the
expression.
Indirect heap references. There are 9 benchmarks that have
indirect heap references in the code. Each instance of irregular
heap access requires adding a runtime check which incurs
runtime overheads. For example, 118.cutfp casts a float to the
index of an array; other benchmarks like 112.spmv expose
patterns like a[b[i]]. All these instances require adding
runtime checks to pass the validations.

12 Related work

TEE designs on GPUs. GPU TEEs enforce isolation among
mutually distrusted enclaves. Graviton [83] augmented the
GPU hardware with RMP tables to isolate physical memory
pages among enclaves. Telekine [42] was built upon Graviton
to remove a side channel regarding the execution time of GPU
kernels, enhancing the overall isolation confidence. HIX [44]
and CRONUS [45] relied on the GPU driver’s isolation mech-
anisms to properly protect and isolate applications. However,
modern GPU drivers are inherently complex, and even secu-
rity features like isolation are prone to vulnerabilities [24,27].
StrongBox [28] leveraged the secure IOMMU on the SoC to

isolate enclaves on integrated GPUs. It required updating the
IOMMU and flushing the IOMMU TLB to switch between
different execution environments.

HETEE [95] deployed a cluster of tamper-resistant servers
with commodity GPUs. These servers accessed secure accel-
erator boxes through a centralized FPGA-based controller,
achieving isolation through physical separation. Visor [66]
focused on privacy-preserving video analytics in the cloud. It
combined oblivious algorithms at the application level and a
hybrid TEE at the system level to provide isolation.

Honeycomb enforces isolation via confining the behav-
iors of GPU applications with static analysis. Honeycomb’s
approach complements the hardware limitations of existing
GPUs, reduces overheads, and creates opportunities for op-
timizations like directly sharing data via IPC. Performing
IPC in current GPU TEEs requires copying the data back and
forth through an encrypted shared memory buffer on the host.
Honeycomb combines confinements from static analysis and
system-level designs to reduce IPC into copying plaintext
within the device memory. IPC in Honeycomb is up to two or-
ders of magnitude faster than conventional methods, enabling
real-world applications to adopt a more modular architecture
with modest overheads.

GPU TEEs also enforce isolation between enclaves and
the untrusted host environment. They need to establish secure
communication channels between the application running
inside the CPU TEE and the GPU. Prior work implemented
end-to-end secure communication channels in the GPU hard-
ware [83], in the PCIe fabrics [44], or leveraging the secure
IOMMU inside the SoC [28, 45]. Honeycomb leverages ex-
isting work on secure I/O bus [1, 44, 65] or software-based
solutions [94] to establish secure communication channels.

Crypto-based secure computing on GPUs. Recent advances
in modern cryptography offer theoretically provable solutions
for privacy-preserving computing, such as Multi-Party Com-
putation (MPC), Garbled Circuit (GC) and Homomorphic
Encryption (HE). These algorithms have been used to real-
ize secure GPU computations for machine learning and data
analytics. On top of GAZELLE [47], Delphi [56] used GPU
to accelerate the HE-based linear operations, and also selec-
tively replace the expensive GC-based nonlinear ReLU opera-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 167

tors with polynomial approximations. CryptGPU [78] further
implemented both linear and nonlinear operations in MPC-
based protocols on GPUs. It embedded the secret-shared value
computations into floating-point operations, effectively uti-
lizing GPU hardware units. GForce [61] instead focused on
inference and addressed the high latency of non-linear opera-
tors by applying new quantization approaches and employing
GPU-friendly protocols. Finally, Piranha [84] was a general
and modular framework for accelerating secret-sharing-based
MPC protocols on GPUs, leveraging optimized integer-based
GPU kernels and memory-efficient in-place computations.

The cryptographic solutions do not keep the plaintext val-
ues in the untrusted platforms, so they are more resistant
to side-channel vulnerabilities. However, their substantially
higher computational cost causes huge slowdown compared
to native processing. Specialized hardware [50, 71, 72] and
trusted hardware units [93] have been proposed to accelerate
HE and MPC, but all require non-trivial hardware changes.

Slalom [81] took a different approach. It used a CPU TEE
to compute the non-linear parts, and offloaded encrypted data
to the untrusted GPU to process linear operations. Both con-
fidentiality and integrity are guaranteed. DarKnight [36] fur-
ther optimized the flow with a better encryption method that
greatly reduced the communication cost between CPU and
GPU as well as the computations involved in the CPU TEE.

Secure operating systems. There is fruitful research on improv-
ing the security of operating systems, including explicitizing
the security policies [73, 90], applying safe languages in the
OS kernel [13, 41], and proving properties via formal veri-
fications [52, 54]. Honeycomb utilizes techniques including
security monitors and virtualization [10, 79] to remove the
Linux kernel and the device driver out of the TCB.

Software fault isolation (SFI). Lightweight fault isolations [46,
57, 88] have been proven effective on the x86 architecture.
Essentially, validation in Honeycomb is a form of SFI for
GPU kernels. Honeycomb, however, combines the SFI with
an alternative memory layout and other system-level supports
to extend the fault isolation to a secure execution environment.

Polyhedral analysis. There is rich literature on utilizing
polyhedral representations for loop analysis and transforma-
tions [8,14,35,58]. Researchers have extended the approaches
to more general cases [12]. Honeycomb uses the polyhedral
analysis to model the effects of GPU memory access and to
ensure that the memory access conforms with the security
policy.

13 Conclusion

Honeycomb demonstrates that static analysis (validation) is a
practical and flexible technique to enforce security for GPU
applications. Combining with hardware and OS support, Hon-
eycomb’s validation guarantees powerful system-wide invari-
ants like every memory access in the applications conforms

with the security policies. As a result, Honeycomb has re-
duced the size of TCB by 18×, and provided a secure IPC
primitive that is 529× faster than conventional approaches.

The evaluation of Honeycomb on five representative bench-
mark suites, 23 applications in total, shows that Honeycomb
is practical and efficient to provide secure GPU TEEs for real-
world applications. It requires inserting few or none runtime
checks into the GPU kernels to validate them, thus the run-
time overhead is minimal. Large language model workloads
like BERT and NanoGPT have ∼2% runtime overheads on
Honeycomb.

The boom of GPU applications today requires continuous
innovations in GPU software/hardware stack. Our experience
on Honeycomb shows that static analysis has a lot of potential
to help explore novel designs in the full software/hardware
stack and to speed up innovations.

Acknowledgments

We would like to thank our shepherd, Christopher Rossbach,
and the anonymous reviewers for their comments and feed-
back on our work. We thank Quanxi Li, Shuoming Zhang
for their contributions on an early implementation of this
work. We also thank the Stanford Platform Lab and its affili-
ates. This work was partially supported by the National Key
R&D Program of China (2021ZD0110101) and the National
Natural Science Foundation of China (62072262, 62090024,
62232015).

References

[1] Advanced Micro Devices, Inc. AMD SEV-TIO: Trusted
I/O for secure encrypted virtualization. https://www.
amd.com/system/files/documents/sev-tio-whi
tepaper.pdf.

[2] Advanced Micro Devices, Inc. HIP: C++ heterogeneous-
compute interface for portability. https://github.c
om/ROCm-Developer-Tools/HIP.

[3] Advanced Micro Devices, Inc. ROCm. https://gith
ub.com/RadeonOpenCompute/ROCm.

[4] Advanced Micro Devices, Inc. AMD SEV-SNP:
Strengthening VM isolation with integrity protection
and more. White paper, 2020.

[5] Advanced Micro Devices Inc. and Hewlett-Packard Inc.
PCI express access control services (ACS), 2006.

[6] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Com-
pilers: Principles, Techniques, and Tools. Pearson Edu-
cation, Inc., 2007.

168 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm

[7] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. ANVIL: Software-based protection
against next-generation rowhammer attacks. In ASPLOS,
2016.

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In CGO, 2019.

[9] Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Be-
lay, M. Frans Kaashoek, and Nickolai Zeldovich. Effi-
ciently mitigating transient execution attacks using the
unmapped speculation contract. In OSDI, 2020.

[10] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged CPU features. In
OSDI, 2012.

[11] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky,
Michael Factor, Nadav Har’El, Abel Gordon, Anthony
Liguori, Orit Wasserman, and Ben-Ami Yassour. The
Turtles project: Design and implementation of nested
virtualization. In OSDI, 2010.

[12] Mohamed-Walid Benabderrahmane, Louis-Noël
Pouchet, Albert Cohen, and Cédric Bastoul. The
polyhedral model is more widely applicable than you
think. In CC, 2010.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility safety and performance in the SPIN Operat-
ing System. In SOSP, 1995.

[14] Uday Bondhugula, Albert Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral pro-
gram optimization system. In PLDI, 2008.

[15] Ben Boyter. Sloc Cloc and Code. https://github.c
om/boyter/scc.

[16] Broadcom Inc. Videocore IV 3D architecture reference
guide. https://docs.broadcom.com/doc/12358545.

[17] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 2005.

[18] Erik Buchanan, Ryan Roemer, Hovav Shacham, and
Stefan Savage. When good instructions go bad: Gener-
alizing return-oriented programming to RISC. In CCS,
2008.

[19] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,

Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX King-
dom with transient Out-of-Order execution. In USENIX
Security, 2018.

[20] John Canny. A computational approach to edge de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1986.

[21] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yin-
qian Zhang. Defeating speculative-execution attacks on
SGX with hyperrace. In DSC, 2019.

[22] Francis S Collins and Harold Varmus. A new initia-
tive on precision medicine. New England journal of
medicine, 2015.

[23] CVE. CVE-2020-5991. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2020-5991.

[24] CVE. CVE-2021-1098. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-1098.

[25] CVE. CVE-2022-20186. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=2022-20186.

[26] CVE. CVE-2022-21821. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-21821.

[27] CVE. CVE-2022-31609. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-31609.

[28] Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing
Liu, Zhenyu Ning, Kevin Leach, Jin Li, Shoumeng Yan,
Zhengyu He, Jiannong Cao, and Fengwei Zhang. Strong-
Box: A GPU TEE on arm endpoints. In CCS, 2022.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.

[30] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
SAFECode: Enforcing alias analysis for weakly typed
languages. In PLDI, 2006.

[31] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography. IEEE Transactions on Information
Theory, 1976.

[32] Morris Dworkin, Elaine Barker, James Nechvatal, James
Foti, Lawrence Bassham, E. Roback, and James Dray.
Advanced encryption standard (AES), 2001.

[33] Petros Efstathopoulos, Maxwell Krohn, Steve VanDe-
Bogart, Cliff Frey, David Ziegler, Eddie Kohler, David
Mazières, Frans Kaashoek, and Robert Morris. Labels
and event processes in the Asbestos Operating System.
In SOSP, 2005.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 169

https://github.com/boyter/scc
https://github.com/boyter/scc
https://docs.broadcom.com/doc/12358545
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-20186
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-20186
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31609
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31609

[34] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In IEEE S&P, 2016.

[35] Tobias Grosser, Armin Groesslinger, and Christian
Lengauer. Polly - performing polyhedral optimizations
on a low-level intermediate representation. Parallel
Processing Letters, 2012.

[36] Hanieh Hashemi, Yongqin Wang, and Murali An-
navaram. DarKnight: An accelerated framework for
privacy and integrity preserving deep learning using
trusted hardware. In MICRO, 2021.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[38] Hugging Face Inc. BERT base model. https://hugg
ingface.co/bert-base-uncased.

[39] Hugging Face Inc. GPT-2. https://huggingface.co
/gpt2.

[40] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
ASLR. In IEEE S&P, 2013.

[41] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the software stack. SIGOPS Oper. Syst. Rev.,
2007.

[42] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J. Rossbach, and Emmett Witchel.
Telekine: Secure computing with cloud GPUs. In NSDI,
2020.

[43] Intel. Intel trust domain extensions. https://www.in
tel.com/content/www/us/en/developer/articl
es/technical/intel-trust-domain-extensions.
html.

[44] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethu-
madhavan, and Jaehyuk Huh. Heterogeneous isolated
execution for commodity GPUs. In ASPLOS, 2019.

[45] Jianyu Jiang, Ji Qi, Tianxiang Shen, Xusheng Chen,
Shixiong Zhao, Sen Wang, Li Chen, Gong Zhang, Xi-
apu Luo, and Heming Cui. CRONUS: Fault-isolated,
secure and high-performance heterogeneous computing
for trusted execution environment. In MICRO, 2022.

[46] Evan Johnson, David Thien, Yousef Alhessi, Shravan
Narayan, Fraser Brown, Sorin Lerner, Tyler McMullen,
Stefan Savage, and Deian Stefan. Trust but verify: SFI
safety for native-compiled Wasm. In NDSS, 2021.

[47] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework
for secure neural network inference. In USENIX Secu-
rity, 2018.

[48] Andrej Karpathy. NanoGPT. https://github.com/k
arpathy/nanoGPT.

[49] Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel
Lowell, Chao Liu, Michael Melesse, Murali Nandhi-
mandalam, Kamil Nasyrov, Ilya Perminov, Tejash Shah,
Vasilii Filippov, Jing Zhang, Jing Zhou, Bragadeesh
Natarajan, and Mayank Daga. MIOpen: An open source
library for deep learning primitives, 2019.

[50] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim,
Wonkyung Jung, John Kim, Minsoo Rhu, and Jung Ho
Ahn. BTS: An accelerator for bootstrappable fully ho-
momorphic encryption. In ISCA, 2022.

[51] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ISCA, 2014.

[52] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In SOSP,
2009.

[53] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In CGO, 2004.

[54] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge
King, and Parthasarathy Madhusudan. Verifying secu-
rity invariants in ExpressOS. In ASPLOS, 2013.

[55] Microsoft Inc. Secure boot. https://docs.microso
ft.com/en-us/windows-hardware/design/devic
e-experiences/oem-secure-boot.

[56] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In USENIX Security, 2020.

[57] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-
Baptiste Tristan, and Edward Gan. RockSalt: Better,
faster, stronger SFI for the x86. In PLDI, 2012.

[58] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bond-
hugula. PolyMage: Automatic optimization for image
processing pipelines. In ASPLOS, 2015.

170 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/gpt2
https://huggingface.co/gpt2
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot

[59] Mayur Naik, Alex Aiken, and John Whaley. Effective
static race detection for Java. In PLDI, 2006.

[60] George C. Necula. Proof-carrying code. In POPL, 1997.

[61] Lucien K. L. Ng and Sherman S. M. Chow. GForce:
GPU-friendly oblivious and rapid neural network infer-
ence. In USENIX Security, 2021.

[62] NVIDIA Inc. FasterTransformer 5.3. https://github
.com/NVIDIA/FasterTransformer.

[63] NVIDIA Inc. Developing a Linux kernel module using
RDMA for GPUDirect. Technical report, 2022.

[64] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in PyTorch. 2017.

[65] PCI-SIG. Integrity and data encryption (IDE) ECN.
https://members.pcisig.com/wg/PCI-SIG/docum
ent/16599.

[66] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath
Setty, Stavros Volos, and Raluca Ada Popa. Visor:
Privacy-Preserving video analytics as a cloud service.
In USENIX Security, 2020.

[67] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar,
and Prashant J. Nair. Hydra: Enabling low-overhead
mitigation of row-hammer at ultra-low thresholds via
hybrid tracking. In ISCA, 2022.

[68] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. 2019.

[69] Adam Rodnitzky. Sensing breakdown: Waymo jaguar
I-pace robotaxi. https://www.tangramvision.co
m/blog/sensing-breakdown-waymo-jaguar-i-pac
e-robotaxi, 2022.

[70] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar,
and Christos Kozyrakis. Llama: A heterogeneous &
serverless framework for auto-tuning video analytics
pipelines. In SoCC, 2021.

[71] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev,
Srinivas Devadas, Ronald Dreslinski, Christopher Peik-
ert, and Daniel Sanchez. F1: A fast and programmable
accelerator for fully homomorphic encryption. In MI-
CRO, 2021.

[72] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev,
Nathan Manohar, Nicholas Genise, Srinivas Devadas,
Karim Eldefrawy, Chris Peikert, and Daniel Sanchez.
CraterLake: A hardware accelerator for efficient un-
bounded computation on encrypted data. In ISCA, 2022.

[73] Alan Shieh, Dan Williams, Emin Gün Sirer, and Fred B.
Schneider. Nexus: A new operating system for trustwor-
thy computing. In SOSP, 2005.

[74] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a file system with GPUs.
In ASPLOS, 2013.

[75] Paul Staat, Johannes Tobisch, Christian Zenger, and
Christof Paar. Anti-tamper radio: System-level tam-
per detection for computing systems. In IEEE S&P,
2022.

[76] Standard Performance Evaluation Corporation. The
SPEC ACCEL benchmark suite. https://www.spec
.org/accel.

[77] Zhendong Su. Refutation unsoundness issue on a
QF_UFNIA instance. https://github.com/Z3Prove
r/z3/issues/6693, 2023.

[78] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu.
CryptGPU: Fast privacy-preserving machine learning
on the GPU. In IEEE S&P, 2021.

[79] Shuo Tang, Haohui Mai, and Samuel T. King. Trust and
protection in the Illinois Browser Operating System. In
OSDI, 2010.

[80] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Context-sensitive fencing: Securing speculative
execution via microcode customization. In ASPLOS,
2019.

[81] Florian Tramèr and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. In ICLR, 2019.

[82] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In USENIX Security, 2017.

[83] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted execution environments on GPUs.
In OSDI, 2018.

[84] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa.
Piranha: A GPU platform for secure computation. In
USENIX Security, 2022.

[85] Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael
Taylor, and Shuaiwen Leon Song. Q-VR: System-level
design for future mobile collaborative virtual reality. In
ASPLOS, 2021.

[86] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE S&P, 2015.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 171

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://members.pcisig.com/wg/PCI-SIG/document/16599
https://members.pcisig.com/wg/PCI-SIG/document/16599
https://www.tangramvision.com/blog/sensing-breakdown-waymo-jaguar-i-pace-robotaxi
https://www.tangramvision.com/blog/sensing-breakdown-waymo-jaguar-i-pace-robotaxi
https://www.tangramvision.com/blog/sensing-breakdown-waymo-jaguar-i-pace-robotaxi
https://www.spec.org/accel
https://www.spec.org/accel
https://github.com/Z3Prover/z3/issues/6693
https://github.com/Z3Prover/z3/issues/6693

[87] A. Giray Yağlikçi, Minesh Patel, Jeremie S. Kim, Rokn-
oddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Has-
san, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Saugata Ghose, and Onur Mutlu. BlockHam-
mer: Preventing rowhammer at low cost by blacklisting
rapidly-accessed DRAM rows. In HPCA, 2021.

[88] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
IEEE S&P, 2009.

[89] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu,
and Yuhao Zhu. Building the computing system for
autonomous micromobility vehicles: Design constraints
and architectural optimizations. In MICRO, 2020.

[90] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler,
and David Mazières. Making information flow explicit
in HiStar. In OSDI, 2006.

[91] Kaihao Zhang, Dongxu Li, Wenhan Luo, Wenqi Ren,
Björn Stenger, Wei Liu, Hongdong Li, and Ming-Hsuan
Yang. Benchmarking ultra-high-definition image super-
resolution. In ICCV, 2021.

[92] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei
Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng,
Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. AKG:
Automatic kernel generation for neural processing units
using polyhedral transformations. In PLDI, 2021.

[93] Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao.
PPMLAC: High performance chipset architecture for
secure multi-party computation. In ISCA, 2022.

[94] Zongwei Zhou, Virgil D. Gligor, James Newsome, and
Jonathan M. McCune. Building verifiable trusted path
on commodity x86 computers. In IEEE S&P, 2012.

[95] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang,
Jiangfeng Cao, Boyan Zhao, Zhongpu Wang, Yuhui
Zhang, Jiameng Ying, Lixin Zhang, and Dan Meng. En-
abling rack-scale confidential computing using hetero-
geneous trusted execution environment. In IEEE S&P,
2020.

172 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

An Extensible Orchestration and Protection Framework
for Confidential Cloud Computing

Adil Ahmad†, Alex Shultz†, Byoungyoung Lee∗, Pedro Fonseca§

†Arizona State University ∗Seoul National University §Purdue University

Abstract
Confidential computing solutions are crucial to address the
cloud privacy concerns. Although SGX has witnessed signif-
icant adoption in the cloud, the reliance on hardware imple-
mentation is restrictive for cloud providers in terms of orches-
trating deployments and providing stronger security to their
clients’ enclaves. eOPF addresses this limitation by provid-
ing a comprehensive, secure hypervisor-level instrumentation
framework with the ability to monitor all enclave-OS inter-
actions and implement protected services. eOPF overcomes
several challenges including bridging the semantic gap be-
tween the hypervisor and SGX and attesting the co-location
of the framework with enclaves. Using eOPF, we implement
two protected services that provide platform resource orches-
tration and complementary enclave side-channel defense. Our
evaluation shows that eOPF incurs very low performance
overhead (<2%) in its default state and only modest overhead
(geometric mean of 17% on SPEC) when strong, comple-
mentary side-channel defenses are enabled, making eOPF an
efficient and practical solution for the cloud.

1 Introduction

The previous two decades have shown a substantial growth in
internet services enabled by the cloud. Unfortunately, using
cloud services requires users to outsource sensitive code, data,
or both to cloud infrastructures shared by untrusted individ-
uals. Moreover, the rise in cyber-attacks and corresponding
increasing governmental regulations on sensitive information
management (e.g., CCPA, GDPR) have made cloud privacy a
first-order concern for many cloud providers and users. Thus,
the cloud model success increasingly depends on providing
strong privacy guarantees.

Cloud providers have been trying to accommodate the user
demand for privacy using confidential computing solutions.
Such solutions allow secure computation on cloud machines
without trusting the machine’s huge and vulnerable software
codebase like the operating system (OS). Among several ap-

proaches, the hardware-protected Intel Software Guard eXten-
sions (SGX) enclaves have turned out to be the most popular
key building block. In particular, SGX is already deployed
by major cloud providers (e.g., Microsoft Azure [24], IBM
Cloud [55]), thanks in no small part due to the extensive
software ecosystem (e.g., development kits and library OSs)
that aids the development of new SGX programs and porting
existing codebases [17, 25, 76, 83].

Despite the strong security properties of SGX, its inflexi-
ble hardware implementation poses pragmatic challenges for
cloud providers and users. For instance, modern cloud ser-
vices aim to be elastic, which often comes with a pay-as-you-
go model that requires detailed fine-grained resource usage ac-
counting. Unfortunately, SGX only provides detailed enclave-
usage data to the OS, which is untrusted even when cloud
providers run containerized instances since the OS’ large
codebase is susceptible to attacks from untrusted users on
the machine. Moreover, since SGX’s inception, many attacks
have been discovered against enclaves, which are currently
difficult for cloud providers to mitigate. In particular, hard-
ware updates for several attacks (e.g., digital side-channels)
were never implemented by Intel, eroding user trust in the
security capabilities of SGX and exposing users to attacks.

This paper proposes eOPF, a framework designed to pro-
vide a privileged trusted software environment for cloud
providers to deploy secure services on enclave-running plat-
forms. eOPF leverages virtualization extensions to enable
trustworthy and complete interposition between enclaves and
the OS. By virtue of such interposition, eOPF allows cloud
providers to build protected services that enhance enclaves.
In particular, this paper shows how eOPF can be used to (a)
securely orchestrate enclaves (e.g., control and monitor en-
clave resource usage) and (b) add complementary enclave
side-channel defenses.

Leveraging a framework like eOPF to enable services for
enclaves poses several technical challenges. First, to enable
protection and resource monitoring, the framework should
interpose between the OS and enclave and mediate all OS-
enclave interactions. Unfortunately, this capability is not na-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 173

tively available to the virtualization layer. Second, for remote
users to trust that their enclaves are protected, they should de-
termine that their enclaves are co-located with the framework.
Unfortunately, there is currently no mechanism to guaran-
tee such co-location. Third, even if previous challenges are
solved, it is necessary to show how to securely implement
orchestration and protection services using the framework.

eOPF achieves complete interposition of all enclave-OS
interactions through a combination of hardware-enabled in-
terception features and several indirect mechanisms (§4.1).
In particular, Intel CPUs allow a virtualization-based frame-
work to intercept all SGX supervisor instructions, which are
used to manage enclave creation and destruction. To reliably
trap on all events during enclave execution (e.g., enclave start
and stop events), eOPF carefully leverages a combination of
memory protection (namely extended page tables), the x86
single-step mode, and interrupt-interception mechanisms.

We address the co-location challenge by designing, to our
knowledge, the first platform-enclave co-attestation proto-
col allowing enclave users to trust that their enclaves are
protected (§4.2). Instead of naively leveraging the virtual-
ization framework for enclave installation, which does not
prove co-location to a remote user, eOPF leverages a combi-
nation of the cloud provider’s initial provisioning, intercepted
enclave installation, and SGX remote attestation to achieve
co-location guarantees for cloud users.

In its current form, eOPF includes a library of functions to
allow cloud providers and users to enable several orchestra-
tion and protection services (§5). For instance, eOPF imple-
ments a library of side-channel defenses that users can select
during runtime. The defense capabilities are implemented
at a resource-level (e.g., page tables, caches) in a principled
manner to isolate resources responsible for side-channel and
ensure full protection. Additional services can be flexibly
implemented through further software libraries.

We implemented a proof-of-concept eOPF framework with
services on the Bareflank extensible framework [3]. In addi-
tion, we analyze the end-to-end security of the system and
show that eOPF is effective at preventing diverse attacks
against its interposition, co-attestation, and implemented ser-
vices. Furthermore, we demonstrate eOPF’s performance (§8)
using benchmarks and real-world programs—the SPEC CPU
2006 integer suite [13], Redis [12], and Lighttpd [9]. Our re-
sults indicate that the base framework (without side-channel
defenses) incurs less than 2% performance impact to enclaves,
and when all side-channel defenses are enabled, it incurs a ge-
ometric mean performance overhead of 17%, hence suitable
for diverse use-cases in today’s clouds.

2 Confidential Cloud Computing

This section describes the confidential cloud computing sys-
tem model, threat model, and research goal of eOPF. Fig. 1
provides an overview of the system model.

Cloud machine

User

Sensitive data

and result

Enclave

Provider-controlled

protected layer (eOPF)

Enclave

System Admin

Logs and

usage rules

Complementary

protection rules

Figure 1: Our confidential computing model.

2.1 System Model

We assume that users want to run sensitive computations on
the cloud (e.g., healthcare analytics on genetic information of
several individuals [16]). They trust the cloud provider (like
other confidential computing approaches [2, 47, 48]) but do
not trust other users on the machine. The cloud provider does
not trust users and aims to protect users from each other, since
some may be malicious.

The cloud provider leverages SGX to enable users to se-
curely run computations in enclaves, without trusting the bulk
of the software stack or other users. SGX has several ad-
vantages over other approaches. First, SGX provides strong
confidentiality and integrity guarantees against a wide-range
of attacks [33]. Second, SGX is now widely-available in Intel
server machines [4], a sizeable portion of all servers in the
market today. Third, there are mature software development
kits (SDKs) allowing users to port their programs to SGX
enclaves [17] and library operating systems [76,83] that allow
users to easily run legacy programs inside enclaves.

Our model also assumes that the cloud provider runs a
type-1 hypervisor on the machine (e.g., AWS Nitro [2], pro-
tected KVM [54]) and provisions containerized instances for
users. Type-1 hypervisors provide better security guarantees
due to a thin software codebase running at the virtualiza-
tion layer (i.e., Intel VMX [52]). Containerized instances in-
crease resource efficiency and simplify resource provisioning;
hence, containerized instances underlay increasingly popu-
lar cloud models, such as microservices and serverless com-
puting [1, 11, 72]. Moreover, since users run their sensitive
computations inside SGX enclaves, the traditional isolation
limitations of container instances do not apply. Nevertheless,
our model also directly applies to scenarios where the cloud
provider provisions virtual machines (VMs) (§9).

Since the cloud machine runs enclaves of different users,
the cloud provider needs to deploy a flexible, protected layer
to easily manage enclave instances, including managing re-
source oversubscription (e.g., AWS burstable instances [6])
to maximize resource efficiency. Furthermore, the cloud
provider wants to use this layer to offer enhanced, comple-
mentary protection for enclaves against attacks that SGX does
not protect, potentially by charging a higher cost.

174 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 Threat Model and Assumptions

The cloud provider and honest users assume that a dishonest
user (or other third-parties) may compromise the machine’s
operating system, by leveraging a kernel vulnerability or mis-
configuration. After OS compromise, they assume that an
attacker will launch attacks to (a) steal sensitive information
from enclaves using digital side-channels [40, 43, 60, 84, 88]
or (b) launch attacks against the platform or other users using
enclaves (e.g., to prevent malware introspection [74]).
Assumptions. This heading describes our assumptions about
the security of the SGX processor and hypervisor, as well as
the availability of a trusted key management service.
SGX processor. We trust that the processor is correctly im-
plemented. In particular, it correctly prevents direct access of
enclaves from external software and implements all crypto-
graphic and remote attestation primitives.
Hypervisor. We trust the hypervisor is correct and securely
initialized on the cloud machine by the trusted cloud provider.
A cloud provider can securely initialize a hypervisor by lever-
aging UEFI secure boot [87] or verified late launch (e.g.,
Intel TXT [52, 63]). Leveraging a trusted platform mod-
ule (TPM) [23], the provider can also attest the correct initial-
ization remotely. Note that although we trust the hypervisor,
its compromise cannot harm existing SGX guarantees since
enclaves are protected from hypervisors. Please refer to §7.3
for a hypervisor TCB discussion.
Key management service. We assume the availability of a
trusted local or remote key management service (KMS). A
trusted local key management service can be designed using
a TPM. In either scenario, we assume that our system has
secure access to the KMS (e.g., using an isolated channel to a
local device [89] or authenticated encrypted channel).
Out-of-scope. We do not consider attacks through micro-
architectural defects, software vulnerabilities inside enclave
programs, system calls, and physical attacks. We also exclude
attacks through micro-architectural defects (e.g., speculative
execution attacks [29, 56, 85]). Defenses enabled by our sys-
tem (§5.2) for side-channels also prevent the exploitation of
micro-architectural defects [27, 56] in SGX enclaves through
these channels. However, the root cause of micro-architectural
defects are hardware bugs, and as such they are already rou-
tinely addressed by Intel through microcode or hardware up-
dates [7, 51]. Existing schemes [57, 75, 76] can prevent vul-
nerability exploitation in buggy enclave programs and protect
enclaves from malicious system call results [25, 49]. Finally,
physical attacks that infer DRAM access patterns and electro-
magnetic analysis are very expensive [58].

2.3 Research Goal

Given the mistrust of the OS, this paper’s research goal is
to design a hypervisor-level instrumentation framework that

allows cloud providers to enable protected services on en-
clave platforms. The framework is designed to be flexible and
support two use-case classes: (a) secure enclave orchestration
(e.g., preventing dishonest users from running enclaves, mon-
itoring enclave resource usage) and (b) complementary side-
channel defense for enclaves (e.g., by isolating resources).

Combining a hypervisor-level framework with SGX is fa-
vorable for cloud providers and users. From a cloud provider’s
perspective, hypervisor-only approaches [47, 48] offer more
control but they require significant investment to design in-
house full enclave abstractions and implement the correspond-
ing SDKs. From a user’s perspective, hypervisor-only ap-
proaches offer flexible functionality (e.g., resource isolation)
but they have a single point-of-failure (i.e., the cloud hyper-
visor) in terms of data protection. Our approach solves both
problems by leveraging SGX with its robust software ecosys-
tem [17,76,83] and complementary data protection guarantees
in the event of a cloud hypervisor compromise. Hence, co-
leveraging SGX and a hypervisor is a best-of-both-worlds
scenario for cloud providers and users.

3 Background on Intel SGX

Intel SGX [64] allows a process to create protected execution
contexts called enclaves. This section describes memory pro-
tection, lifecycle, and remote attestation aspects of SGX since
they are relevant to eOPF.
Enclave page cache (EPC). This is a reserved physical mem-
ory region where enclaves reside. SGX relies on the operating
system to over-subscribe the EPC using demand paging (i.e.,
securely retrieving pages from an encrypted backing store
using page faults and updating page tables).
Enclave lifecycle. An enclave is created by the OS using
SGX supervisor leaf instructions (ENCLS). During enclave ex-
ecution, the untrusted and enclave parts of the process execute
SGX user leaf instructions (ENCLU) for a world switch.

Enclave Creation. The OS executes ECREATE to create an
enclave context. After context creation, the OS invokes EADD
to copy initial code and data, provided by the user, from non-
enclave to enclave pages. Then, the OS executes EEXTEND
to measure the copied page (explained in the next section).
Finally, the OS executes EINIT to finalize the enclave.

Enclave Entry/Exit/Resumption. The untrusted part of the
process can transition to the enclave mode using EENTER.
Afterward, the enclave executes EEXIT to transition back to
the untrusted mode, for two reasons: (a) synchronous exits
(i.e., to perform a system-call or shutdown the enclave) and
(b) asynchronous exits (i.e., to handle page faults, interrupts,
and exceptions). After handling the reason for an exit, the
process executes ERESUME to resume the enclave.
Remote attestation. SGX enables remote users to assert that
their code and initial data is correctly loaded into an enclave

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 175

by sending them the enclave measurement (MRENCLAVE
or Me) signed using the SGX CPU’s attestation key.

The enclave measurement process is entirely determinis-
tic [30]. The measurement algorithm has an initialization, up-
date, and finalization stage. During initialization (ECREATE),
the CPU creates an initial SHA-256 hash using the OS-
provided SGX Enclave Control Structure (SECS), which con-
tains the enclave’s metadata (e.g., base address and size). In
the update stages, the CPU updates the hash using each page
added into the enclave (at EADD) alongside an OS-provided
security information (SECINFO) block. The SECINFO block
contains information about the page’s metadata (e.g., offset
and permissions). In the same stage, the CPU measures each
added page in 512-bit blocks (at EEXTEND). Lastly, in the fi-
nalization stage, the enclave’s measurement is hashed one
last time with the total count of bits that are updated in the
MRENCLAVE (at EINIT).

In formal terms, assuming an enclave of N pages (P1 to
PN) with Z total bits, the entire enclave measurement is:

Me = H f in(Hupd(...Hupd(Hupd(IV,SECS),P1)...,PN),Z)

In this equation, IV are the initialization vectors. Additionally,
for simplicity, we assume that Hupd(state,P) also includes a
hash of the SECINFO of page P.

4 eOPF Design

eOPF provides a privileged trusted software environment
for cloud providers to build protected services on their SGX-
compatible confidential computing platforms. eOPF lever-
ages hypervisor-level instrumentation to enable trustworthy
and complete interposition between enclaves and the OS. This
interposition allows users to run protected services that aug-
ment enclave security and improve resource management
(e.g., measure enclave execution time).

Hypervisor-level or virtual machine extensions (VMX) [52]
allow eOPF to monitor and control the execution of the OS,
e.g., observe and manipulate page tables. In particular, by
leveraging VMX, eOPF can intercept supervisor instructions
executed by the OS and exceptions raised by the machine.
Moreover, eOPF can also leverage VMX features to protect
its TCB from the OS and external devices.

Designing a secure hypervisor-level instrumentation frame-
work for enclaves poses several challenges that we address:
C1: Semantic VMX-SGX gap. Complete and reliable inter-
position of enclave interactions is needed to build protected
services. While VMX framework can natively trap on SGX
supervisor instructions for enclave management, it cannot
natively trap SGX user instructions that determine when an
enclave starts or stops. These latter events are typically junc-
tions of information exchange between enclaves and the OS;
hence, interposition is critical to augment enclave security.
C2: Co-location attestation hurdle. SGX’s remote attesta-
tion allows a remote user to know that their programs are

Enclave
TRP

Untrusted process

(a) EPT-based enclave entry and resume monitor

eOPF

Interposition layer

Return

Resume

Disable
perms.

Enable
perms.

eenter

eresume

Trap

1 4

5

2

3

6

Enclave
TRP

Untrusted process

(b) Single-step-based synchronous enclave exit monitor

eOPF

Interposition layer

Set MTF

Resume
after exitexecute

Trap

eresumeeexit

4

1

23

Figure 2: eOPF’s interposition on enclave entries and syn-
chronous enclave exits.

running inside an enclave, but provides no guarantees that
this enclave is running on the cloud provider’s machine. With-
out such guarantees, users cannot tell that their enclaves are
protected by eOPF.

C3: Practical service libraries. It is necessary to show how
to leverage the enclave instrumentation framework to build
protected services. To help users easily build such services,
it is necessary to design and implement easy-to-use libraries
with core functions (e.g., transparently augment enclave pro-
tections against classes of attacks).

4.1 Enclave Life-Cycle Interposition

eOPF achieves complete interposition over all interactions
between an enclave and the OS using native x86 features and
new indirect interposition mechanisms.

Enclave management monitor. eOPF leverages the native
capabilities of x86 virtualization to trap all SGX supervisor
instructions (ENCLS), which are used for enclave creation,
deletion, and other management tasks. In particular, eOPF
sets the ENCLS-interception bit and its corresponding instruc-
tion bitmap in the x86 Virtual Machine Control Structure
(VMCS) [52] to trap ENCLS instructions. On a trap, eOPF
undertakes three sequential steps. First, eOPF implements
service-specific operations needed for the instruction (refer
to §4.2 and §5.1). Second, eOPF executes the trapped instruc-
tion using its trusted code and parameters provided by the

176 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OS. Third, eOPF resumes the OS’ execution from after the
instruction by updating the processor’s program counter.
EPT-enforced enclave entry and resume monitor. eOPF
tracks enclave entry and resume events using the extended
page tables (EPT). EPT allows a virtualization framework to
protect regions of the physical memory from unauthorized
read, write, and execute operations. By removing execute
permissions from the enclave page cache (EPC) region, eOPF
can ensure that every time enclave code is executed it raises
a trap. The challenge, however, is that the trap is raised as
an enclave exit, and there is no guarantee that the OS will
resume the enclave after eOPF resolves the trap.

eOPF addresses the challenge by creating a trusted resume
pointer (TRP), a reserved location within the process’ address
space that is guaranteed to execute ERESUME. eOPF inserts the
TRP at a location where it does not significantly impact the
OS’ process memory management (i.e., only shares top-level
page table with the remaining addresses). The OS is notified
through a shared memory channel and kernel module (§6) to
reserve the TRP region. eOPF write-protects the TRP and
page tables that address this location using EPT, ensuring the
TRP cannot be modified by the OS.

Fig. 2-(a) illustrates the EPT-based enclave entry and re-
sume scheme employed by eOPF. On every processor core,
eOPF leverages the EPT to disable execute permissions for
all enclave page cache (EPC) regions (1). Hence, when a
process transitions into the enclave region (i.e., using EENTER
or ERESUME) (2), the CPU traps the operation with an EPT
violation (3). eOPF resolves the violation by enabling exe-
cution permissions (4) and redirecting the program counter
(rip) to the TRP (5). Finally, the enclave resumes (6).
Dual enclave exit monitors. eOPF uses the x86 single step
mode and interrupt interception features to track synchronous
and asynchronous enclave exits, respectively.

Single-step-based synchronous exit monitor. eOPF lever-
ages the x86 single step mode to trap synchronous exits (e.g.,
for an exit-based system call). In particular, since system soft-
ware is not allowed to intercept enclave execution apart from
debug mode, the execution (from EENTER to EEXIT) within
an enclave is considered a single step [32].

Fig. 2-(b) illustrates the synchronous exit monitor process
during an exit-based enclave system call. eOPF enables an
the single-step mode by setting the MTF in the current pro-
cessor’s VMCS (1) before entering the enclave (2). Hence,
the processor’s execution traps to eOPF’s monitor when the
enclave executes EEXIT (3 ∼ 4). eOPF disables this trap al-
lowing the exit to be processed by the system. This process is
repeated at the next enclave entry.

Interrupt-based asynchronous exit monitor. Apart from syn-
chronous exits, the enclave performs asynchronous exits in
order to service interrupts (e.g., raised by the timer hardware).
eOPF ensures that all interrupts are trapped by setting the
interrupt-interception bit inside the VMCS.

UsereOPF

initiate communication2

send signed certificate3

eOPF-user

channel est.

pre-measure

if 𝑝𝑀𝑒 = 𝑝𝑀𝑒
′

initiate SGX attestation

Send report (with𝑀𝑒)

Identifier-provisioned

enclave installation

Attest-based

co-loc. check

Enclave

Cloud

Provider

Enclave creation

initiated by OS

share secret key (ECDH)4

9

8

7

Verify𝑀𝑒 contains eid

10

provision

certificate
1

Prepare enclave

and send to OS
5send (𝑝𝑀𝑒 , 𝑒𝑖𝑑)6

append eid

𝐾𝐹𝑂 𝐾𝐹𝑂

11

Figure 3: The platform-enclave co-attestation protocol.

4.2 Platform-Enclave Co-Attestation
SGX’s attestation does not tell a user that their enclaves are
running on their cloud provider’s machine. In particular, the
attestation report only contains information about the plat-
form’s security version (microcode) [53]. This is a significant
challenge that motivates eOPF’s co-attestation protocol.

Without a guarantee of co-location between enclaves and
eOPF, an attacker (e.g., a malicious user) who has compro-
mised a cloud machine’s operating system could trick users
into sending data to enclaves unprotected by eOPF. In partic-
ular, the attacker could exfiltrate a user’s code from a cloud
machine, send it to their own SGX-capable machine, and in-
stall it inside an unprotected enclave. Afterwards, the attacker
could route all network traffic from the cloud machine to their
own machine, and trick the user into sending their confidential
data to the unprotected enclave. This potential attack would
not require collusion with the VMM, since VMMs must allow
network traffic to a cloud user’s machine.

A naive approach to prevent this attack would be to lever-
age eOPF’s interposition (last section) and design an entirely
new in-house SGX attestation approach. Unfortunately, that
is a significant undertaking that would require complex at-
testation functionality to be redundantly re-implemented and
make enclave security completely reliant on eOPF, instead
of complementary to SGX protections.

eOPF implements a more secure, novel co-attestation pro-
tocol that leverages both eOPF’s interposition and SGX re-
mote attestation. The key insight of our approach is that
eOPF’s interposition allows it to bind an infeasible-to-guess
secret (as a watermark) to a user’s enclave created on its ma-
chine, which will be transmitted and validated through SGX
remote attestation to the remote user.

The eOPF co-attestation protocol has three stages. First,
with the help of the trusted cloud provider, a remote user
establishes a secure communication channel with an eOPF
instance. Through this channel, the user sends a secret to this
eOPF instance. Second, during enclave creation, the eOPF

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 177

instance securely and transparently inserts that secret into
initial enclave memory. Third, the remote user leverages SGX
attestation to verify the initial enclave contents and validate
that co-attestation secret is valid, thereby confirming that the
enclave is co-located with a cloud provider eOPF instance.
In all these steps, eOPF uses a side-channel resistant crypto-
graphic library (e.g., EverCrypt [69]) to protect secret keys.
Fig. 3 illustrates our co-attestation protocol.
eOPF-user channel establishment. With the provider’s
help, an eOPF instance on a cloud machine and a user of the
machine establish a secure communication channel. In partic-
ular, during initial platform provisioning, the cloud provider
installs the eOPF framework on the machine with a signed
digital attestation certificate (1). This certificate and the cor-
responding private key is securely stored by eOPF using a
trusted key management service (e.g., protected storage de-
vice or a trusted platform module) (§2.2).

When a remote user wants to run enclaves on the machine,
the user will first establish a secure communication channel
with the eOPF framework (2 – 4). In particular, the user asks
the framework to authenticate itself (2) and the framework
responds with its signed certificate (3). If the certificate sig-
nature is valid—based on the cloud provider’s off-the-band
provided public key (PubKC)—the remote user and the eOPF
instance establish a shared secret key (KFO) (4). Note that
eOPF does not require direct access to the network. In par-
ticular, all eOPF-user communication can be routed through
the operating system. This approach is safe since all com-
munication after shared channel establishment is end-to-end
encrypted (using KFO) and is similar to how enclaves use the
operating system as an untrusted network transport.
Identifier-provisioned enclave installation. Once a secure
channel between the user and an eOPF instance is estab-
lished, the eOPF instance installs a secret identifier into a
user-specified enclave during enclave creation. We explain
this process in the next paragraphs.

The user compiles a special enclave binary with one empty
reserved memory page (4KB) at the end using a custom linker
script and sends it to the OS. The reserved memory page will
be used to hold a random 4KB secret (called eid). The user
also creates a premeasurement (pMe) of this enclave binary.
The pMe is a hash of all enclave binary pages using SGX’s
enclave measurement algorithm (described in §3) except the
last reserved page. In formal terms, assuming the enclave has
N pages (P1 to PN), the pMe is calculated as follows:

pMe = Hupd(...Hupd(Hupd(IV,SECS),P1)...,PN−1)

The user sends the enclave binary to the OS (5). Simulta-
neously, the user sends the pMe and eid to eOPF using their
secure communication channel (6).

During enclave creation, eOPF recreates pMe to attest
that the correct user enclave is being initialized on the ma-
chine (7). In particular, on enclave creation (§4.1), eOPF
recreates the hash using an internal SHA-256 library config-

ured with the OS-provided parameters to ECREATE and EADD
instructions (i.e., SECS, SECINFO, and page contents). If the
premeasurement matches pMe, eOPF transparently modifies
the last enclave page to include the eid (8). This requires
trapping EADD and replacing the contents inside the physical
page being added to the enclave.

There are three requirements for the above operations to
securely happen. First, the OS should not modify an enclave
page while it is being measured by eOPF. Second, the OS
should not read the eid while it is being copied into the en-
clave. Third, after copying eid, there should be no additional
pages added to the enclave. eOPF fulfills the first two re-
quirements using EPT. In particular, eOPF write-protects the
SECINFO and page contents of the enclave page before the
premeasurement process. Similarly, while adding eid to the
reserved page, eOPF removes all permissions from the page
before executing EADD. These protections are only disabled
after EADD executes (§4.1). Finally, eOPF does not allow any
EADD operation on the enclave after adding eid, ensuring that
it really is the user’s enclave, and not a malicious enclave
designed by the OS to steal eid.

Please refer to §9 for a discussion on how this co-attestation
step can be potentially achieved without premeasurement.
Attestation-based co-location check. Once the enclave is
securely provisioned with a secret identifier (eid) that is only
known to the eOPF instance, a remote user can leverage SGX
remote attestation (§3) to check whether their enclave contains
that identifier or not (9 ∼ 11). In formal terms, assuming a
correct enclave page with eid is Peid and Z total bits, the
correct enclave measurement should be as follows:

Me = H f in(Hupd(pMe,Peid),Z)

Since eid is a 4KB identifier, there is an infinitesimally small
chance for an attacker to randomly guess (2−32768); hence, this
measurement can only hold if the enclave memory contains
eid provisioned by eOPF, proving co-location.

5 eOPF Protected Services

eOPF allows cloud providers to implement protected services
in an extensible manner. This section demonstrates eOPF’s
value by presenting the design of two services that help cloud
providers manage resources and augment enclave security.

5.1 Secure Enclave Orchestration
The secure enclave orchestration service gives cloud providers
the ability to control what enclaves run on their platform, de-
tect when enclaves are used for malicious purposes, and ob-
tain detailed enclave-related resource usage for accountability
and billing. This section describes how eOPF allows cloud
providers to achieve such orchestration.
Protected launch control. eOPF ensures that only users ap-
proved by the cloud provider are allowed to run enclaves on

178 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cloud machines. In modern SGX machines, cloud providers
leverage flexible launch control (FLC) [53] to provision a plat-
form and provide launch tokens to their customers without
relying on Intel’s provisioning service. Unfortunately, flex-
ible launch is controlled by the untrusted OS using MSRs,
IA32_SGXLEPUBKEYHASH{0-3} and the attacker can exploit
this feature to launch arbitrary enclaves. eOPF leverages vir-
tualization features to trap all writes to MSRs (i.e., WRMSR)
and disallows modifications to launch control MSRs. Hence,
all valid changes to the FLC feature must come from the cloud
provider directly to eOPF.

Malware scanning. An attacker may try to hide malware
on the cloud machine using shielded environments like en-
claves [39,74]. For instance, research shows that attackers can
use TPMs to hide attack targets from forensic analysts [39]. A
typical approach to detect malware on a machine is by scan-
ning binaries and signature matching against a database of
known malware. Although a simple approach, this is effective
in practice (e.g., one study shows 59% of known malware can
be detected by signature matching tools [81]).

eOPF enables secure scanning of enclave contents within
its framework during enclave creation. In particular, during
enclave creation, as each page is being added to the en-
clave (§4.1), eOPF compares the hash of contents against
known malware hashes. eOPF also provides the ability to
prevent the attacker from installing a barebones enclave and
leveraging it to insert malware (e.g., by enabling execute per-
missions on data pages). This is achieved by intercepting
and rejecting EMODPE, an ENCLS leaf instruction leveraged
for changing existing enclave page permission changes and
adding additional pages.

One concern with enclave content scanning is user privacy
especially in scenarios where enclave code is an intellectual
property (e.g., services like 23andMe [16] with proprietary
healthcare analysis algorithms). Such concerns can be miti-
gated if the cloud provider runs their scanning tool inside an
enclave and makes the source code of the scanner publicly-
available for enclave attestation by remote users. If a propri-
etary scanner is used, the provider can employ SGX sandbox
enforcement mechanisms [19, 49]. With these, users can trust
that the proprietary scanning tool will be unable to leak sensi-
tive information from the scanning enclave.

Resource usage statistics. Once an allowed enclave is run-
ning on the machine, eOPF collects detailed statistics about
the enclave’s machine resource usage and periodically sends
it to a system administrator.

By default, eOPF collects information about two resources:
CPU time and memory. In particular, eOPF collects how
much time (in cycles using RDTSCP) is dedicated to the user’s
enclaves by implementing timers at enclave entries and ex-
its. To prevent the OS from modifying CPU timer informa-
tion, eOPF disallows all changes to timer-related MSRs [52].
eOPF also collects how much memory is allocated to the en-

clave. This is achieved by monitoring enclave page addition
(EADD) and enclave page removal (EWB) instructions.

If a user enables complementary enclave side-channel de-
fense, enclaves use additional resources (§5.2). eOPF also
collects statistics of such usage for reporting purposes. In par-
ticular, eOPF tracks whether hyperthreading is disabled on a
CPU core to defeat per-core side-channels. If the user selects
static memory allocation for paging side-channel defense, this
information is also collected. Finally, eOPF reports whether
the enclave is using an isolated last-level cache or not, and
how many partitions within the LLC are reserved for the user.

5.2 Complementary Side-Channel Defense

This service allows users to enable complementary principled
defenses against digital side-channels. Digital side-channel at-
tacks allow untrusted software on a machine (e.g., the OS) to
observe the interactions of trusted software and the hardware
platform [70]. Observation allow attackers to infer memory
access patterns of an enclave program, which has been shown
to leak sensitive enclave data (e.g., cryptographic keys) be-
cause many programs have data-dependent pathways [26].

To reason about defeating side-channels, we divide hard-
ware resources based on how they can be observed (hence, ex-
ploited) into cross-core and per-core resources. For instance,
last-level cache is shared by all processor cores, hence it can
be observed by attacker on any core, while the L1/L2 caches
are private to each processor core and can only be observed if
the attacker runs code within the same core.

Using our classification and by integrating techniques from
literature [60, 61, 66, 67], this service offers principled side-
channel defense that can be flexibly enabled by users with
minimal effort. In particular, the service isolates cross-core
resources, ensuring an attacker cannot simultaneously observe
enclave access onto the resource from any other core. More-
over, the service invalidates or deactivates per-core resources
to ensure an attacker is unable to observe enclave access se-
mantic when they run sequentially on a processor core after
an enclave, or parrallely on an enclave-running core.

5.2.1 Cross-Core Resource Isolation

Page tables. The page table is created and maintained by the
untrusted OS. The OS can infer page-granular (4KB for SGX
enclaves) access patterns of an enclave through an enclave’s
page tables. In particular, the OS can modify the enclave’s
page tables to induce page faults [88] or stealthily observe
the access bits of the enclave’s page table entries [84]. To
avoid these attacks, eOPF allows the OS to create and delete
the page tables, at enclave creation and deletion, respectively.
However, eOPF prevents modifications to the page tables
during enclave execution. Therefore, eOPF employs temporal
isolation to protect the page tables.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 179

After enclave creation, eOPF write-protects an enclave’s
page tables using EPT. During each enclave entry, eOPF also
checks the CR3 value to ensure that the OS did not try to create
duplicated enclave page tables. Hence, eOPF ensures that the
attacker cannot induce enclave page faults during execution.
Furthermore, eOPF scans the enclave’s page tables and sets
the access bit of each entry, ensuring that the attacker cannot
leak information through access bits. At enclave shutdown,
eOPF disables write-protection to let the OS handle page
table deallocation. Please refer to §9 as to how this defense
can be extended to support oblivious page swapping.
Last-level cache (LLC). The LLC contains cache lines from
all programs executing on all processor cores. Hence, the LLC
is vulnerable to cache attacks [26,74]. To defeat these attacks,
eOPF partitions the LLC such that an enclave’s cache lines
are spatially isolated from untrusted programs.

Cache Allocation Technology (CAT) allows isolating cache
lines of different CPU processors across different partitions
in the LLC. Leveraging CAT, eOPF divides the LLC into
enclave and non-enclave partitions. At enclave entries and
resumes, eOPF switches the processor to the enclave parti-
tion, while the untrusted software (on other processors) use
the non-enclave partition. On enclave exits, eOPF reverts the
processor back to the non-enclave partition. While each parti-
tion can support unlimited enclaves, CAT can only support
15 distrusting partitions concurrently at this time. In particu-
lar, the latest CAT implementation has 16 domains [52] and
1 partition must remain reserved for untrusted software. In
the future, if additional domains are implemented, eOPF can
support additional distrusting partitions.

eOPF creates new LLC partitions using CAT-related MSRs,
IA32_L3_MASK_N. A processor follows the partition speci-
fied in its register IA32_PQR_ASSOC. Whenever a partition
is changed, all cache-lines must be invalidated to enforce
the change. eOPF achieves this using WBINVD. Furthermore,
eOPF prevents modifications to CAT MSRs during enclave
execution to ensure full control over CAT.

5.2.2 Per-Core Resource Invalidation and Deactivation

Intra-core computational units (ICUs). Such units include
Arithmetic Logic Units (ALUs) and Translation-Lookaside
Buffer (TLBs). An attacker can abuse hyper-threading, a hard-
ware feature that allows concurrent execution of two threads
on the same processor core, to infer an enclave’s access se-
mantics onto ICUs [21, 44]. To defeat these attacks, eOPF
ensures that hyper-threading is deactivated on the processor
core that is running an enclave.

eOPF notifies the OS using its shared memory chan-
nel (§6) that a certain enclave should execute without hyper-
threading. The OS can disable hyper-threading in software
(e.g., OpenBSD does this by default [10]) by programming the
x86 Local APIC [52]. In particular, once hyper-threading is
disabled on a processor, it does not raise hardware interrupts.

Hence, eOPF monitors each core for hardware interrupts and
if it observes hardware interrupts on enclave-running (hyper-
threaded) processor cores, it terminates the enclave. On each
enclave exit, ICUs are automatically flushed by the SGX pro-
cessor, leaving no observable intermediatte effect.
L1 and L2 cache. Enclave and untrusted programs that run
sequentially or in parallel (using hyper-threading) on a proces-
sor core share cache lines across the L1 and L2 caches. An at-
tacker can exploit this sharing to leak enclave contents through
cache attacks [26,43]. eOPF deactivates hyper-threading (pre-
vious section) to prevent parallel attacks. To protect against
sequential attacks, eOPF invalidates the L1/L2 cache (us-
ing WBINVD) at enclave exits. Hence, all enclave contents are
flushed back to memory and the attacker observes an empty
cache state on each attack.
Branch predictor units (BPUs). Branch predictor units like
the branch target buffer (BTB) and pattern history table (PHT)
predict the control-flow of a computation in an out-of-order
CPU. Attackers can use them to infer an enclave’s control-
flow by observing whether a particular branch was taken or
not [40,60]. Unfortunately, the SGX CPU does not provide na-
tive mechanisms to invalidate these units. Nevertheless, eOPF
deactivates the components critical for their side-channel ex-
ploits and designs software invalidation.

Prior work has shown that reliable attacks on the BTB re-
quire specialized units such as the Last Branch Record (LBR)
or Intel Processor Trace (PT) [60], particularly because of
the BTB’s small size in comparison to other predictors. The
LBR and PT are performance tools that cannot be used by en-
claves. Hence, eOPF deactivates the LBR and PT by setting
MSRs, IA32_DEBUGCTLA and IA32_RTIT_CTL, respectively,
and denying all modifications to these MSRs.

eOPF uses knowledge of the PHT’s structure to implement
a software invalidation technique, ensuring the attacker is un-
able to observe intermediate enclave artifacts on the PHT. In
particular, the PHT contains 16,384 entries and is indexed
by the lowest log2N bits of a conditional branch instruction’s
address [40]. Each PHT entry is a 2-bit Finite State Machine
with 4 states: (a) Strongly Not-Taken, (b) Weakly Not-Taken,
(c) Weakly-Taken, and (d) Strongly-Taken. An entry is up-
dated each time the processor takes (or does not take) a branch.
Using this knowledge, eOPF generates conditional branches
aligned to each PHT entry. For each branch, the code performs
an always-true arithmetic comparision and takes the branch.
Therefore, each PHT entry moves towards the Strongly-Taken
state. eOPF runs the code thrice to ensure that the final state
of each PHT entry is Strongly-Taken. Hence, the attacker
always observes a uniform state of the PHT.

6 Implementation

We built a prototype of eOPF using the Bareflank extensible
framework [3]. However, in practice, eOPF can be built using

180 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

any VMX framework or type-1 hypervisor (§2.1). By default,
eOPF enables EPT protections, traps all enclave events and
critical processor-related events (e.g., WRMSR), and enables
the enclave orchestration service (refer to §4.1 and §5.1).
Apart from bootstrapping and VMX-specific code, the base
framework includes a SHA-256 hash generator [65] for co-
attestation and kernel module for eOPF-OS communication.
Furthermore, we implemented three eOPF modules: a paging
module (PM) for page table protections, a caching module
(CM) for L1/L2 and last-level cache protections, and a branch-
ing module (BM) for BPU protections.

Our prototype does not currently implement communica-
tion with the user. Such communication is a one-time cost at
enclave creation; hence, it does not impact runtime results.
Also, Bareflank does not currently support IOMMU to protect
the framework against device-based attacks. Nevertheless,
IOMMU should be enabled by default in cloud machines and
it is not an additional slowdown factor incurred by eOPF.

7 Security Analysis

This section provides a security analysis of eOPF and pro-
tected services by discussing several attacks and implemented
defenses (Fig. 4). It concludes with a brief TCB discussion.

7.1 Analyzing Framework Security

Preventing attacks against interposition. eOPF requires
secure interposition of enclave and important system events.
To prevent this interposition, the attacker can try to over-
write the VMCS, a data structure that contains the ENCLS-
interception bitmap, the monitor trap flag (MTF), and is re-
sponsible for enabling other important interception function-
ality (e.g., WRMSR traps). Moreover, the attacker can try to
modify the TRP and trick eOPF into thinking the enclave
resumed. eOPF prevents all aforementioned attacks (§4.1).

The VMCS and its extended instruction bitmaps are lo-
cated in protected eOPF memory and the attacker is unable
to modify these structures to disable ENCLS or other system
functionality interposition. The protected memory is created
from virtualization extensions. In particular, eOPF uses EPT
protections to prevent software access and IOMMU protec-
tions to prevent device access [89]. The critical data structures
(or tables) of EPT and IOMMU are also stored within the pro-
tected memory; hence, the OS cannot access them. Finally,
the TRP is located in a reserved region of the enclave pro-
cess’ address space, it cannot be overwritten due to memory
protections, and its page tables are also write-protected.
Preventing attacks against co-attestation. The attacker can
attempt to circumvent co-attestation by trying to leak secret
eOPF keys provisioned in the machine or the enclave unique
ID (eid), trying to guess eid, and replaying communication.
eOPF prevents all such attacks (§4.2).

Potential attacks eOPF defense

Against interposition (§4.1)
Modify VMCS Prevent software and device access

using EPT and IOMMU, resp.
Disable mem. protections Access-protect EPT/IOMMU structures
Modify TRP Write-protect TRP and its PTs

Against co-attestation (§4.2)
Leak eOPF secrets Store in protected memory/storage

and use SC-resistant crypto libraries
Steal eid using enclave Only install to pre-measured enclave
Guess eid Use very large number
Replay communication Use Random nonces

Against enclave orchestration (§5.1)
Modify LC MSRs Trap writes to MSRs
Hide resource usage Trap EADD; prevent TSC MSR changes
Hide malware in enclaves Scan initial content and disable changes

Against side-channel defense (§5.2)
Write to page tables Write-protect using EPT
Disable/modify CAT Trap writes to MSRs
Enable hyper-threading Monitor interrupts on signalled cores
Enable LBR/PT Trap corresponding MSRs

Figure 4: Table illustrates how eOPF defends against several
attacks directed at its framework and protected services.

The platform is securely provisioned by the trusted cloud
provider and all secret keys established during provisioning
are securely maintained within the system’s protected key
management system (e.g., a persistent dedicated storage).
Every subsequent cryptographic operation is also securely
performed in a side-channel resistant manner ensuring the
attacker cannot leak keys while they are being used. More-
over, during enclave installation, the eid is directly received by
eOPF through a secure communication channel with a remote
user and securely kept in protected memory. The possibility
of the attacker being able to guess the correct eid is infinitesi-
mally small (2−32768). This is harder than guessing an RSA
cryptographic key. Finally, even though the OS can record
and replay network packets, all network communication is
secured using random nonces to prevent replay attacks.

7.2 Analyzing Services Security

Preventing attacks against enclave orchestration. After
compromising the OS, the attacker can attempt to run arbitrary
enclaves by modifying launch control MSRs or hide their
enclave resource usage from the cloud provider. Additionally,
an attacker might try to hide malware inside enclaves. eOPF
prevents all aforementioned attacks.

eOPF ensures that SGX flexible launch control features
can only be configured by the cloud provider by intercept-
ing all writes to the launch control MSRs. Hence, even a
user that has compromised the OS cannot run enclaves on
a machine without obtaining a launch token from the cloud
provider. Since eOPF interposes all enclave supervisor and
user interactions, it can trivially measure how the enclave is
using resources. In particular, it uses RDTSCP to measure CPU

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 181

time on enclave entries and traps all instructions that insert or
remove enclave pages. To prevent the attacker from keeping
malware inside enclaves, eOPF scans enclave contents at load
time and prevents subsequent code changes.
Preventing attacks against side-channel defense. The at-
tacker can attempt to disable side-channel defenses by modi-
fying entries inside enclave page tables (e.g., reset access bit),
modify CAT configuration to disable last-level cache isolation,
resume hyper-threading to leverage per-core side-channels,
and re-enable LBR/PT to exploit BTB-related side-channels.
eOPF protects against all aforementioned attacks (§5.2).

Access and dirty bits are set in enclave page table entries,
and the tables are write-protected (using EPT) to prevent addi-
tional modifications. To modify CAT partitions, the OS would
need to write to CAT-related MSRs (using WRMSR) and such
a write is trapped by eOPF. If the attacker re-enables hyper-
threading, they will be caught since the processor core will
raise an interrupt that will be intercepted by eOPF. Finally,
LBR and PT configurations can only be changed by writing
to MSRs, and any such attempt is caught by eOPF.

7.3 Analyzing eOPF’s TCB
This section analyzes eOPF’s TCB followed by a brief dis-
cussion on the impact of attacks on eOPF to a user.

eOPF allows the OS to handle most functionality and only
interposes on sensitive interactions (e.g., MSR writes). Hence,
from a cloud machine’s perspective, eOPF only marginally
increases the TCB, which can be rigorously tested.

On a virtualized cloud machine, eOPF’s complete TCB
includes the hypervisor. We find this acceptable for several
reasons. In particular, even though hypervisors can be large,
the attacker-exploitable interface is typically significantly nar-
rower than monolithic OSs, resulting in fewer discovered vul-
nerabilities in hypervisor codebases [28, 77]. The exploit of
these vulnerabilities can be made significantly more challeng-
ing by using memory lockdown and compiler instrumentation
to ensure hypervisor code integrity and control-flow integrity,
respectively, with a small performance impact [86]. Moreover,
eOPF’s TCB can be reduced using hypervisor compartmen-
talization [77]. In such scenarios, eOPF can execute alongside
a tiny security monitor and enforce security invariants while
remaining isolated from the large cloud hypervisor.

Finally, since eOPF is external to the enclave and the mi-
crocode, it cannot access enclave contents and, during its
operation, it is not exposed to enclave secrets. Hence, attacks
against eOPF cannot harm the existing SGX guarantees.

8 Performance Evaluation

This section describes eOPF’s performance through custom
benchmarks and diverse real-world programs.
Setup. We evaluated eOPF using SGX desktop and server
machines (Fig. 5). Although SGX is deprecated on desktops,

Desktop Server

Hardware
CPU model i7-8700 Xeon Gold 6348
CPU sockets 1 2
Cores × threads 6 × 2 28 × 2
Clock speed 3.20GHz 2.60GHz
Cache (L1/L2/LLC) 64KB/256KB/12MB 64KB/1.2MB/42MB
LLC ways 16 12
RAM size 16GB 512GB
EPC size 128MB 128GB

Software
Linux kernel 5.4 5.11
SGX SDK 2.3 2.15
SGX driver Legacy 2.6 DCAP 1.41

Figure 5: Machine platforms used for evaluation.

we used the desktop because we observed a large number of
enclave exits on it. In particular, the desktop has a smaller EPC
which leads to frequent page faults (which cause exits) when
running large enclaves [68]. Many of eOPF’s side-channel
defenses incur extra costs at exits; hence, the desktop machine
allows us to better observe worst-case overheads.

We leveraged two software optimizations to reduce enclave
exits, both of which are well-supported by modern systems.
First, unless noted otherwise, we used the exitless (or switch-
less) system call setting for all experiments. This setting is
now widely-supported (e.g., even the relatively basic SGX
SDK supports it [17]) and is known to improve performance
by avoiding expensive enclave exits using background request
handling threads and system call batching. Other work also
evaluates SGX enclaves using this option [22, 68]. Second,
we configured both machine kernels as tickless [15] to reduce
enclave exits due to frequent timer interrupts [66].
Terminology. eOPF refers to the base framework with all
interposition and cloud orchestration features but no runtime
side-channel defense. eOPF+PM refers to the system with
the paging module enabled for paging side-channel defense.
eOPF+CM refers to caching module enabled on a system
to prevent cache attacks, while eOPF+BM refer to the sys-
tem enabled with BPU defenses. Hyper-threading in enclave-
running cores is disabled for both CM and BM. When all
side-channel defenses are enabled, we refer to the system as
eOPF+PM+CM+BM. Our baseline in all experiments was a
non-virtualized system.

8.1 Microbenchmarks
This section describes our experiments to find the raw cost of
eOPF’s enclave interposition and side-channel protection at
different events through two benchmarks.
Enclave event interposition benchmark. We created a test
program that executes 100k barebones enclave entry and exit
tests. In the entry test, the application enters the enclave while
providing current (pre-entry) time as argument. The enclave
measures the time it took to enter and returns to the appli-

182 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: Overheads at enclave entry and exit for eOPF on
our server machine. TF means trap flag. SGX’s EENTER and
EEXIT instruction cost was comparable to existing work [68].

cation. In the exit test, the same set of operations occur but
from enclave to the application. To get a detailed picture, we
also measured the time to perform eOPF-specific tasks (e.g.,
switch EPT during entry) from inside the framework. The
time was measured everywhere using RDTSCP. Finally, we
disabled exitless mode for this experiment to get the full cost
of exits. Fig. 6 shows the performance overhead incurred in
our experiment with native SGX and eOPF.

eOPF overhead. eOPF adds 59% overhead to enclave en-
tries, while it adds 71% overhead to enclave exits.

On each entry, eOPF incurs a virtual machine exit to handle
the EPT violation, which takes 9639 cycles on our machine.
We believe some of this cost is because eOPF is implemented
on Bareflank, which is designed for modularity instead of
performance; hence, it can be further optimized. Once the
violation is handled, eOPF sets the trap flag to trap subsequent
exits and switches the EPT to allow enclave execution. These
tasks take 1067 cycles.

On each enclave exit, eOPF incurs a virtual machine exit
for the trap flag, which only takes 1608 cycles on our machine.
Afterwards, eOPF switches the EPT to trap subsequent en-
clave entries which takes 812 cycles on our machine.
Side-channel protection benchmark. We ran a benchmark
enclave program that continuously writes to a large 256 MB
buffer on both machines. We ran the enclave continuously for
60 seconds and measured incurred performance overheads
(using RDTSCP) while enabling different side-channel protec-
tion modules. Since the resources affected by the caching
and branching modules (CM and BM) have different sizes on
each of our test machines, we ran their experiments on each
machine. Fig. 7 shows the runtime performance overhead.

eOPF+PM overhead. Paging defenses introduce a one-time
cost, during the enclave’s lifetime, at enclave creation. The
paging module performs the following steps: (a) maps guest
page tables to eOPF’s address space, (b) scans entire page
tables (including non-enclave entries) to find the enclave re-
gions and sets access/dirty bits, and (c) write-protects enclave
page table entries. On the server machine, these steps adds an

Invalidation Time (kcycles) Time (ms)
Min Max Min Max

Desktop
CM (L1/L2 + LLC) 247 10560 0.08 3.35
BM (PHT) 120 844 0.04 0.30
Total 367 11404 0.12 3.65

Server
CM (L1/L2 + LLC) 3240 19454 1.25 7.48
BM (PHT) 373 494 0.14 0.19
Total 3613 19947 1.39 7.67

Figure 7: Overheads due to resource invalidation at enclave
exits for CM and BM.

additional ∼1.9 seconds to our enclave’s creation. We expect
this cost is negligible for longer-running enclaves.

eOPF+CM overhead. At enclave exits, eOPF’s cache de-
fenses (§5.2.1 and §5.2.2) require (a) partitioning the last-
level cache (LLC) and switching partitions during enclave
execution and (b) writing back and invalidating the caches at
enclave exits. Please refer to §8.2 for the runtime overhead.

Partitioning the LLC and switching partitions is fast: it
takes ∼200 cycles to update a model-specific register (using
WRMSR). Cache write-back and invalidation time depends on
the state and size of the cache. On the desktop machine, we
noticed that it took up to 3.35 ms, whereas its lower bound
(through consecutive invalidations) was 0.08 ms. Cache inval-
idation took from 1.25 ms to 7.48 ms on the server.

Despite a smaller cache, invalidation on the desktop is not
that much faster than the server. The reason is that, unlike
server machines where SGX does not implement hardware
memory integrity [41], the desktop enforces integrity using
a Merkle tree. This tree is updated on each cache-line that
is flushed to DRAM [46], incurring 6 additional memory
accesses per-cache-line. Notably, invalidating non-enclave
memory on the desktop machine took only up to 0.81 ms.

eOPF+BM overhead. We executed our custom branch pre-
dictor flush to invalidate the PHT (§5.2.2). The lower bound
for invalidation was 0.04 and we saw an upper bound of 0.30
milliseconds. Since typically branch misprediction adds a 5
nanoseconds latency [36], our evaluation results indicate that
all branches were being mispredicted.

Benchmark result summary. eOPF interposition and side-
channel protection cost is only incurred at enclave entry or
exits. Although the cost can be high, these events are only
a small fraction of the program’s execution and can be sig-
nificantly reduced with widely-available optimizations like
switchless enclaves and tickless kernels (§8). For instance, in
our experiments with SGX SDK’s switchless benchmark [14],
we noticed only 3k exits for 2 million enclave calls. Hence,
as the next section will demonstrate, eOPF’s overhead on
real-world programs using software optimizations is typically
modest, even with all side-channel protections enabled.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 183

8.2 Real-world Enclave Programs

Common settings and results. While partitioning sensitive
functionality of a program to run inside an enclave was the
initial SGX intent, it has evolved over the years to run entire
programs inside enclaves using Library OSs [25, 76, 80, 83],
particularly for convenience reasons. In fact, even Intel has
officially adopted (and continuously supports) the Gramine
Library OS (formerly Graphene [83]) as an SDK for run-
ning Linux programs inside SGX [5]. Hence, we also used
the Occlum and Gramine Library OSs [76, 83] to run Linux
programs inside enclaves for evaluation.

Unless noted otherwise, we ran programs on the server
machine using an enclave partition size of 1/12*LLC, the
smallest allowed CAT-based partition on the server machine.
This setting allows the machine to be shared amongst the most
number of users, highly desirable in cloud machines. We ran
each program 10 times and report the average.

Since eOPF+PM only incurs a one-time performance over-
head during enclave creation, in our long-running programs,
its performance impact was negligible. Hence, we do not
illustrate its overhead in Fig. 8 and Fig. 9

We also evaluated the overhead incurred by the base frame-
work alone (i.e., no side-channel modules were enabled) dur-
ing each real-world program’s execution inside enclaves. The
base framework must interpose all enclave events, which
increases the runtime cost (§8.1). However, our evaluation
shows that this cost is very small during execution. On the
server machine, the framework’s cost is less than 2% on aver-
age during execution of each real-world program described
in this section, primarily because exits are low and CPU vir-
tualization (required by the framework) is lightweight.
Assorted (SPEC). SPEC is a collection of well-known CPU
and memory-intensive programs that are useful to assess real-
world system performance. It has been used for evaluation
by the Occlum LibOS (which we used for this experiment)
and includes real-world programs (e.g., compiler toolchains
and compression libraries) that are evaluation targets for other
SGX systems [75]. The Occlum LibOS is designed to support
SPEC 2006 integer benchmarks out-of-the-box, unlike the
latest SPEC 2017. Hence, we decided to evaluate our system
with SPEC 2006 integer benchmarks.

Fig. 8 illustrates eOPF’s performance across SPEC using
reference datasets on the server machine. Encouragingly, even
with all protections enabled, most programs incurred a mod-
est performance overhead—7 out of 11 incurred less than
20% slowdown, and the geometric mean slowdown was 17%.
Across all programs, the biggest slowdown factor was cache
protections. Since our experiments used switchless system
calls and tickless kernels (§8), most programs incurred very
few enclave exits and showed modest performance overhead.
Nevertheless, the smaller enclave LLC partition had a con-
siderable effect (e.g., 311%) on the performance of highly
memory-intensive programs like gcc and omnetpp.

We also ran SPEC programs on the desktop machine using
test datasets to estimate performance in worst-case scenarios
with many enclave exits. Since reference workloads require
significant memory, it is infeasible to run them on the desktop
machine. Fig. 9 illustrates eOPF’s performance on the desk-
top using 1/8*LLC, the closest to fair sharing for each core.
With both CM and BM enabled, the geometric mean overhead
was 34% on the desktop machine. Since the desktop machine
only has a 128 MB EPC, demand paging was inevitable. Thus,
the programs incurred many more enclave exits because of
page faults and performance was (expectedly) lower than the
server machine. We noticed two programs, mcf and sjeng, in-
curred a very high overhead. We found that their test datasets
required up to 1 GB of memory, hence their enclaves incurred
the most exits (due to page faults) per-second.
Key-value store (Redis). Key-value stores like Redis [12]
are widely used in cloud environments. We evaluated Redis
using default settings and its official redis-benchmark, which
tests 20 different key-value store operations including GET,
SET, MSET, and POP. We ran each operation for 100,000
iterations using the default settings of 50 parallel clients. In its
default state, Redis only keeps the key-value store in-memory
for performance and does not write to disk. Additionally,
note that while Redis ran inside an enclave, client network
socket connections were received by user-space code outside
the enclave, since enclaves cannot receive network packets
directly. This code then sent the packets to the Redis enclave.
In typical scenarios, client request in the packets would be
protected using TLS that terminates inside the enclave, but
redis-benchmark does not support TLS. Hence, requests were
unencrypted and we used this for benchmarking purposes.

In our experiments, eOPF+CM+BM reduced throughput by
4–21% (geometric mean was 11%) across these operations.
We only observed 27 enclave exits per-second during the
benchmark’s 119s execution. These exits were few due to
switchless optimizations (§8). Given a low number of enclave
exits and the fact that Redis is highly memory-intensive, the
major factor behind its throughput reduction was the program
executing on a restricted LLC partition.
Web server (Lighttpd). Webservers like Lighttpd [8], handle
sensitive queries to fetch webpages, and hence are a good fit
for SGX. We ran Lighttpd with 8 worker threads because
this setting maximized throughput. From a separate server
machine (average latency between machines was 0.09 ms), we
used ApacheBench to send 10,000 HTTP requests for a 10 KB
file from up to 256 concurrent clients. We sent HTTP requests
like prior research [76] for stress benchmarking. In real-world
cases, HTTPS ensures a request is end-to-end protected with
TLS connections terminating inside the enclave.

In our experiments, eOPF+CM+BM’s geometric mean
throughput reduction across the test was only 5%. Interest-
ingly, requests from a single client incurred a 65% throughput
reduction, while requests from 256 concurrent clients incurred
only 1% reduction. The reason is that the worker threads go

184 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200
P

er
fo

rm
an

ce
 o

ve
rh

ea
d

(%
)

296% 311%

15% 17%

eOPF
eOPF+CM
eOPF+BM
eOPF+CM+BM

Figure 8: SPEC CPU 2006 performance with eOPF using the reference dataset on the server machine. The enclave partition was
1/12*LLC. For this test, the enclave exits per-second were: 3, 105, 4, 3, 3, 2, 2, 1, 11, 1, 8, from left to right.

401.bzip2
403.gcc

429.mcf

445.gobmk

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xalancbmk

GEOMEAN
0

50

100

150

200

P
er

fo
rm

an
ce

 o
ve

rh
ea

d
(%

)

1032% 1085% 970% 982%

31% 34%

eOPF
eOPF+CM
eOPF+BM
eOPF+BM+CM

Figure 9: SPEC CPU 2006 performance with eOPF using the test dataset on the desktop machine. The enclave partition was
1/8*LLC. For this test, the enclave exits per-second were 29, 2184, 3071, 965, 25, 3444, 417, 298, 60, 22, 91, from left to right.

to sleep when there are no requests and they are awakened
through inter-processor-interrupts, hence they incur additional
enclave exits. With greater concurrency, the workers are al-
ways busy handling requests, thus they do not go to sleep.

8.3 Key takeaways

T1. The base eOPF (which enables secure enclave orchestra-
tion) incurs a low performance overhead (<2%) on real-world
programs because (a) it leverages lightweight techniques and
(b) its overhead is incurred at infrequent enclave exits.
T2. While eOPF’s overhead expectedly increases with prin-
cipled side-channel defenses, especially for highly memory-
intensive programs (e.g., 311% for gcc on the server machine),
it remains modest for the vast majority of programs (e.g., 17%
geomean for SPEC programs on the server machine).
T3. eOPF’s side-channel defense overhead is comparable to
defenses that detect attacks using heuristics (e.g., Varys [66]
incurs 15% overhead). However, through invalidation and iso-
lation, eOPF provides strong protection akin to cryptographic
techniques that obfuscate all side-channel leakage with high
costs (e.g., Raccoon [70] incurs 21.8× overhead).
T4. Given the modest defense cost and the fact that eOPF
allows users to flexibly decide when defenses are applied,
eOPF can be practically adopted in today’s cloud machines.

9 Discussion

Virtual machine support. In addition to containers, eOPF
can orchestrate and protect enclaves running in different vir-

tual machines (VMs) without a design change. This is because
eOPF executes at the hypervisor layer, where it has the abil-
ity to distinguish between enclaves in different VMs [50, 52]
during enclave lifecycle interposition (§4.1). In particular,
when the hypervisor starts or resumes a VM, eOPF tracks
this using the virtual machine control structure (VMCS). Sub-
sequently, at any exit to the VMM during enclave creation
or asynchronous enclave exits, eOPF determines which VM
encountered this event by checking the VMCS again. Finally,
eOPF interposes on (a) enclave entries using the per-VM
EPT and (b) synchronous enclave exits using the single-step
interception bit, which is also set in the per-VM VMCS.

Co-attestation without premeasurement. While provi-
sioning an enclave with a secret identifier (eid) during co-
attestation, the requirement is that eid is not disclosed to an
attacker-controlled enclave (§4.2). In principle, this can be
achieved without premeasurement if eOPF (a) installs the
eid in any recently-created enclave and (b) restricts eid en-
clave page permissions using EPT to prevent the enclave
from accessing it, unless SGX measurement is called at which
time the user will verify. We leave the study of alternate co-
attestation primitives for eOPF to future work.

Supported enclave count. By default, eOPF is a thin orches-
tration layer that collects statistics and enforces properties for
cloud providers; hence, it supports as many enclaves as the
platform originally can. If all side-channel protections are en-
forced (§5.2), eOPF can support (a) as many enclaves as can
be kept resident in the EPC (i.e., within 512 GB in modern
systems [41]) and (b) as many distrusting containers (each
with unlimited enclaves) as CAT partitions allow (currently

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 185

15 partitions). The first limit can be removed using oblivious
page swapping mechanisms (discussed in the future eOPF
extensions paragraph in this section). The second limit can be
addressed if future hardware iterations increase the number
of isolated cache partitions (e.g., using recent proposals [37]).
eOPF can be easily extended to leverage new functionality
when it is made available by developers or hardware vendors.
Future eOPF extensions. eOPF is designed to be an exten-
sible framework that flexibly provides several guarantees to
cloud providers and enclave users. One possible extension
would be to support oblivious swapping of enclave pages at
page faults [67]. In particular, when a page fault happens
during enclave execution, eOPF can clear the CR2 register
to shield the faulting page from the OS. Instead, eOPF can
provide a list of candidate pages for the OS to bring into
the EPC. To create a secure candidate list, eOPF can rely
on a cryptographically-secure algorithm like the Oblivious
RAM (ORAM) [82]. eOPF can also enable the use of effi-
cient per-thread hardware memory protection (using MPK)
for enclaves and enable memory protection use-cases [49]. In
particular, currently enclaves cannot securely use MPK since
it requires setting protection keys in page tables [20], which
are controlled by the OS. Instead of relying on the OS, the
enclave can rely on eOPF to set correct protection keys.

10 Related Work

Privileged software monitors for TEEs. A lot of research
has been done to design software security monitors that are
more privileged than the OS and leverage them to create
protected process contexts with strong isolation guarantees.
Many systems [31, 47, 48, 62] rely on hardware memory pro-
tection capabilities (e.g., EPT) of virtualization layers (e.g.,
VMX) for such security monitors. Other systems [35,38] rely
on compiler instrumentation (e.g., software fault isolation) to
deprivilege the OS and execute a security monitor at ring-0.
On non-x86 systems, several designs [34, 41, 42, 59] leverage
architectural privileged layers like ARM TrustZone or RISC-
V machine mode and their protection features (e.g., physical
memory protection). While our design of eOPF takes inspira-
tion from all these systems, eOPF remains unique for several
reasons. First, eOPF only offers complementary protection
to enclaves, ensuring that even if its monitor is compromised,
user computations retain SGX protections. Second, by lever-
aging SGX and its extensive industry support, eOPF can be
readily-adopted by cloud providers without hardware changes
or designing extensive software development kits.
SGX digital side-channel defenses. Researchers have pro-
posed both software and hardware solutions to address digital
side-channels in enclaves. Software solutions implemented
inside enclaves cannot prevent memory access patterns from
being disclosed since that is a hardware limitation. There-
fore, many software protection schemes rely on cryptographic

protocols like ORAM [18, 70, 71] to obfuscate all memory
access patterns (i.e., make all access patterns indistinguish-
able). However, since ORAM is expensive, these defenses
incur significant slowdown (e.g., 21.8× [70]). Other software
solutions [45,66,78,79] leverage heuristics to detect certain at-
tack vectors. On the hardware front, Autarky [67] implements
strong and efficient protection against page table attacks. One
of Autarky’s ideas is to set all access and dirty bits for enclave
page table entries, which is also adopted by eOPF’s page
table defense. In contrast to these defenses, eOPF offers a
more comprehensive protection against several side-channels
with low performance impact and minimal user effort.
Running programs inside enclaves. Haven [25] runs Mi-
crosoft Windows programs in enclaves with minimal changes.
Graphene [83] and Panoply [80] implement library OSs to run
Linux applications inside enclaves, while VC3 [73] allows de-
velopers to protect data analytics. Ryoan [49] provides trusted
client-server application processing in SGX and Scone [22]
enables SGX-protected containers. Eleos [68] designs user-
level paging to reduce enclave exits and improve performance.
eOPF is orthogonal to this line of research and can improve
the security guarantees provided by these systems.
Enclave and platform attestation. Windows 11 machines
leverage the TPM [23] for secure boot and platform attes-
tation. SGX’s remote enclave attestation is also inspired by
the TPM. Recently, MAGE [30] demonstrated how to ex-
tend SGX enclave to attest mutually-trusted enclaves together
by leveraging a premeasurement of enclave memory regions.
eOPF’s use of premeasurement (pMe) is inspired by MAGE,
but eOPF uses it to enable platform-enclave co-attestation.

11 Conclusion

eOPF provides a trusted privileged environment for cloud
providers to enable protected services on their SGX-capable
confidential computing platform. In this paper, we overcome
several challenges to design eOPF, implement secure cloud
orchestration and complementary side-channel defense as ser-
vices enabled by eOPF, and provide a detailed security and
performance analysis of the framework. Our results indicate
that eOPF provides strong protection with very low perfor-
mance impact on average (<2% for the framework alone) and
it can be readily-adopted in today’s clouds.

12 Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd, Bryan Parno, for their insightful reviews which sig-
nificantly improved the paper’s evaluation and presentation.
This work was partly supported by the National Science Foun-
dation (NSF) under grants CNS-2145888 and the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. RS-2023-00209093).

186 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AWS Lambda. https://aws.amazon.com/lambda/.

[2] AWS Nitro Enclaves. https://aws.amazon.com/ec2/
nitro/nitro-enclaves/.

[3] Bareflank/hypervisor. https://github.com/
Bareflank/hypervisor.

[4] Intel 3rd Gen Xeon Scalable Processors (Ice Lake).
https://www.storagereview.com/news/intel-
3rd-gen-xeon-scalable-processors-ice-lake.

[5] Intel(r) Software Guard Extensions. https:
//www.intel.com/content/www/us/en/
developer/tools/software-guard-extensions/
overview.html.

[6] Key concepts and Definitions for Burstable Perfor-
mance Instances. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/burstable-credits-
baseline-concepts.html.

[7] L1 Terminal Fault / CVE-2018-3615 , CVE-
2018-3620,CVE-2018-3646 / INTEL-SA-00161.
https://software.intel.com/security-
software-guidance/software-guidance/l1-
terminal-fault.

[8] Lighttpd - Fly Light. https://www.lighttpd.net/.

[9] Nginx. https://www.nginx.com/.

[10] OpenBSD: HyperThreading Disabled by Default on
Install. https://marc.info/?l=openbsd-cvs&m=
152943660103446.

[11] Qubole Announces Apache Spark on AWS Lambda.
https://www.qubole.com/blog/spark-on-aws-
lambda/.

[12] Redis. https://redis.io/.

[13] Standard Performance Evaluation Corporation. https:
//www.spec.org/cpu2006/.

[14] Switchless Enclave Example. https://github.com/
intel/linux-sgx/tree/master/SampleCode/
Switchless.

[15] Tickless Kernel. https://en.wikipedia.org/wiki/
Tickless_kernel.

[16] 23andme: DNA Genetic Testing and Analysis, 2017.

[17] 01org. Intel(r) software guard extensions for linux* os
(source code). https://github.com/01org/linux-
sgx, 2016.

[18] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang,
Insik Shin, and Byoungyoung Lee. Obfuscuro: A Com-
modity Obfuscation Engine for Intel SGX. In Proceed-
ings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February
2019.

[19] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pe-
dro Fonseca, and Byoungyoung Lee. Chancel: Effi-
cient Multi-client Isolation Under Adversarial Programs.
In Proceedings of the 2021 Annual Network and Dis-
tributed System Security Symposium (NDSS), 2021.

[20] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungy-
oung Lee. Kard: Lightweight Data Race Detection with
Per-thread Memory Protection. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Virtual Event, USA, April 2021.

[21] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida
García, and N. Tuveri. Port Contention for Fun and
Profit. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA,
May 2019.

[22] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell,
et al. SCONE: Secure Linux Containers with Intel SGX.
In Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
Savannah, GA, November 2016.

[23] Will Arthur and David Challener. A Practical Guide
to TPM 2.0: Using the Trusted Platform Module in the
New Age of Security. Apress, 2015.

[24] Microsoft Azure. Azure confidential comput-
ing. https://azure.microsoft.com/en-us/blog/
azure-confidential-computing/, 2018.

[25] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding Applications from an Untrusted Cloud with
Haven. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Broomfield, Colorado, October 2014.

[26] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In 11th USENIX Workshop on Of-
fensive Technologies (WOOT 17), Vancouver, BC, 2017.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 187

https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://github.com/Bareflank/hypervisor
https://github.com/Bareflank/hypervisor
https://www.storagereview.com/news/intel-3rd-gen-xeon-scalable-processors-ice-lake
https://www.storagereview.com/news/intel-3rd-gen-xeon-scalable-processors-ice-lake
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://www.lighttpd.net/
https://www.nginx.com/
https://marc.info/?l=openbsd-cvs&m=152943660103446
https://marc.info/?l=openbsd-cvs&m=152943660103446
https://www.qubole.com/blog/spark-on-aws-lambda/
https://www.qubole.com/blog/spark-on-aws-lambda/
https://redis.io/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://github.com/intel/linux-sgx/tree/master/SampleCode/Switchless
https://en.wikipedia.org/wiki/Tickless_kernel
https://en.wikipedia.org/wiki/Tickless_kernel
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-confidential-computing/

[27] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In 27th
USENIX Security Symposium (USENIX Security 18),
Baltimore, MD.

[28] Ramaswamy Chandramouli, Ramaswamy Chan-
dramouli, Anoop Singhal, Duminda Wijesekera, and
Changwei Liu. Methodology for Enabling Forensic
Analysis Using Hypervisor Vulnerabilities Data.
US Department of Commerce, National Institute of
Standards and Technology, 2019.

[29] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H Lai. Sgxpectre: Steal-
ing Intel Secrets from SGX Enclaves via Speculative
Execution. In Proceedings of IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2019.

[30] Guoxing Chen and Yinqian Zhang. MAGE: Mutual At-
testation for a Group of Enclaves without Trusted Third
Parties. In Proceedings of the 31st USENIX Security
Symposium (Security), August 2022.

[31] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.
Overshadow: A Virtualization-based Approach to
Retrofitting Protection in Commodity Operating
Systems. In Proceedings of the 13th International
Conference on Architectural Support for Programming
Languages and Operating Systems.

[32] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang,
Cong Wang, and Kui Ren. SGXLock: Towards Effi-
ciently Establishing Mutual Distrust Between Host Ap-
plication and Enclave for SGX. In Proceedings of the
31st USENIX Security Symposium (Security), August
2022.

[33] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptology ePrint Archive, 2016:86,
2016.

[34] Victor Costan, Ilia A Lebedev, and Srinivas Devadas.
Sanctum: Minimal Hardware Extensions for Strong Soft-
ware Isolation. In Proceedings of the 25th USENIX
Security Symposium (Security), 2016.

[35] John Criswell, Nathan Dautenhahn, and Vikram Adve.
Virtual ghost: Protecting applications from Hostile Oper-
ating Systems. ACM SIGARCH Computer Architecture
News, 2014.

[36] Jeff Dean. Latency numbers every programmer should
know. https://gist.github.com/jboner/2841832.

[37] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Chunked-
cache: On-demand and Scalable Cache Isolation for Se-
curity Architectures. In Proceedings of the 2021 Annual
Network and Distributed System Security Symposium
(NDSS), Virtual Event, USA, February 2021.

[38] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L
Cox, and Sandhya Dwarkadas. Shielding Software from
Privileged Side-Channel Attacks. In Proceedings of the
27th USENIX Security Symposium (Security), Baltimore,
MD, Aug 2018.

[39] Alan M Dunn, Owen S Hofmann, Brent Waters, and
Emmett Witchel. Cloaking Malware with the Trusted
Platform Module. In Proceedings of the 20th USENIX
Security Symposium (Security), San Francisco, CA, Au-
gust 2011.

[40] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. BranchScope: A New Side-
Channel Attack on Directional Branch Predictor. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2018.

[41] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scal-
able Memory Protection in the PENGLAI Enclave. In
Proceedings of the 15th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), Virtual
Event, USA, July 2021.

[42] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using Verification to
Disentangle Secure-Enclave Hardware from Software.
In Proceedings of the 26th ACM Symposium on Op-
erating Systems Principles (SOSP), Shanghai, China,
October 2017.

[43] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache Attacks on Intel SGX. In EU-
ROSEC, pages 2–1, 2017.

[44] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with {TLB} attacks. In
Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, Aug 2018.

[45] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and
Efficient Cache Side-Channel Protection using Hard-
ware Transactional Memory. In Proceedings of the 26th
USENIX Security Symposium (Security), 2017.

188 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gist.github.com/jboner/2841832

[46] Shay Gueron. A Memory Encryption Engine Suit-
able for General Purpose Processors. Cryptology
ePrint Archive, Report 2016/204, 2016. https://
eprint.iacr.org/2016/204.

[47] Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers
on Untrusted Operating Systems. In Proceedings of the
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, July 2022.

[48] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. InkTag: Secure
Applications on an Untrusted Operating System. In Pro-
ceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems.

[49] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter,
and Emmett Witchel. Ryoan: A Distributed Sandbox
for Untrusted Computation on Secret Data. In Pro-
ceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Savannah,
GA, November 2016.

[50] Intel. Intel Trusted eXecution Technology–Software
Development Guide. Document number 315168-005.

[51] Intel. Intel® processors voltage settings modification
advisory. https://www.intel.com/content/www/
us/en/security-center/advisory/intel-sa-
00289.html.

[52] Intel. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. Volume 3A: System Programming
Guide, 2016.

[53] Intel. Intel 64 and ia-32 architectures software devel-
oper’s manual. Volume 3D: System Programming Guide,
2022.

[54] Intel Jason Chen. Supporting TEE on x86 Client
Platforms with pKVM. https://www.youtube.com/
watch?v=EP9ps_h-WeI.

[55] Pratheek Karnati. Data-in-use Protection on IBM Cloud
using Intel SGX. https://www.ibm.com/cloud/
blog/data-use-protection-ibm-cloud-using-
intel-sgx.

[56] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2019.

[57] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnau-
tov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. Sgxbounds: Memory safety for shielded
execution. In Proceedings of the 12th European Confer-
ence on Computer Systems (EuroSys).

[58] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai,
and Raluca Ada Popa. An off-chip attack on hardware
enclaves via the memory bus. In Proceedings of the
29th USENIX Security Symposium (Security), Boston,
MA, Aug 2020.

[59] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In Proceedings of the 15th European Conference on
Computer Systems (EuroSys), 2020.

[60] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Aug 2017.

[61] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating Last-Level Cache Side Channel Attacks in
Cloud Computing. In IEEE international symposium on
high performance computer architecture (HPCA), 2016.

[62] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In Proceedings of the 31th IEEE Symposium
on Security and Privacy (Oakland), May 2010.

[63] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An
Execution Infrastructure for TCB Minimization. In Pro-
ceedings of the 3rd European Conference on Computer
Systems (EuroSys), Glasgow, Scotland, March 2008.

[64] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. In Proceedings of
the 2nd International Workshop on HASP, 2013.

[65] Shintarou Okada. a header-file-only, sha256 hash
generator in c++. https://github.com/okdshin/
PicoSHA2.

[66] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting SGX
Enclaves from Practical Side-Channel Attacks. In Pro-
ceedings of the 2018 USENIX Annual Technical Confer-
ence (ATC), Boston, MA, June 2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 189

https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.youtube.com/watch?v=EP9ps_h-WeI
https://www.youtube.com/watch?v=EP9ps_h-WeI
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://www.ibm.com/cloud/blog/data-use-protection-ibm-cloud-using-intel-sgx
https://github.com/okdshin/PicoSHA2
https://github.com/okdshin/PicoSHA2

[67] Meni Orenbach, Andrew Baumann, and Mark Silber-
stein. Autarky: Closing Controlled Channels with Self-
Paging Enclaves. In Proceedings of the 15th European
Conference on Computer Systems (EuroSys), 2020.

[68] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: ExitLess OS Services for SGX
Enclaves. In Proceedings of the 12th European Confer-
ence on Computer Systems (EuroSys), Belgrade, Serbia,
April 2016.

[69] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph M. Wintersteiger, and Santiago Zanella-
Béguelin. EverCrypt: A Fast, Verified, Cross-Platform
Cryptographic Provider. In Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2020.

[70] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon:
Closing Digital Side-Channels through Obfuscated Ex-
ecution. In Proceedings of the 24th USENIX Security
Symposium (Security), Washington, DC, August 2015.

[71] Sajin Sasy, Sergey Gorbunov, and Christopher
W. Fletcher. ZeroTrace: Oblivious Memory Primitives
from Intel SGX. In Proceedings of the 2018 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2018.

[72] Sarah Schlothauer. Serverless platform Apache
OpenWhisk graduates to Top Level Project.
https://jaxenter.com/serverless-openwhisk-
top-level-160417.html, 2019.

[73] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. VC3: Trustworthy Data Analytics
in the Cloud using SGX. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2015.

[74] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
eXtension: Using SGX to Conceal Cache Attacks. In
Proceedings of the 14th Conference on Detection of
Intrusions and Malware and Vulnerability Assessment
(DIMVA), July 2017.

[75] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-
Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim.
SGX-Shield: Enabling Address Space Layout Random-
ization for SGX Programs. In Proceedings of the 2017
Annual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, February 2017.

[76] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-
clum: Secure and Efficient Multitasking Inside a Single
Enclave of Intel SGX. In Proceedings of the 25th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2020.

[77] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn,
Haibo Chen, Binyu Zang, and Jinming Li. Deconstruct-
ing Xen. In Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2017.

[78] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-SGX: Eradicating Controlled-Channel At-
tacks Against Enclave Programs. In Proceedings of the
2017 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2017.

[79] S Shinde, ZL Chua, V Narayanan, and P Saxena. Pre-
venting your Faults from Telling your Secrets. In Pro-
ceedings of the 11th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Xi’an, China, May–June 2016.

[80] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek
Saxena. PANOPLY: Low-TCB Linux Applications With
SGX Enclaves. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2017.

[81] Splunk. How Good is ClamAV at Detecting Commodity
Malware? https://www.splunk.com/en_us/blog/
security/how-good-is-clamav-at-detecting-
commodity-malware.html.

[82] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path ORAM: An Extremely Simple Oblivious RAM Pro-
tocol. In Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), Berlin,
Germany, October 2013.

[83] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodi-
fied Applications on SGX. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa
Clara, CA, June 2017.

[84] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling Your Secrets With-
out Page Faults: Stealthy Page Table-based Attacks on
Enclaved Execution. In Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Aug
2017.

190 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://jaxenter.com/serverless-openwhisk-top-level-160417.html
https://jaxenter.com/serverless-openwhisk-top-level-160417.html
https://www.splunk.com/en_us/blog/security/how-good-is-clamav-at-detecting-commodity-malware.html
https://www.splunk.com/en_us/blog/security/how-good-is-clamav-at-detecting-commodity-malware.html
https://www.splunk.com/en_us/blog/security/how-good-is-clamav-at-detecting-commodity-malware.html

[85] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
In-flight Data Load. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), 2019.

[86] Zhi Wang and Xuxian Jiang. Hypersafe: A Lightweight
Approach to Provide Lifetime Hypervisor Control-Flow
Integrity. In Proceedings of the 31th IEEE Symposium
on Security and Privacy (Oakland), May 2010.

[87] Richard Wilkins and Brian Richardson. UEFI Secure
Boot in Modern Computer Security Solutions, 2013.

[88] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2015.

[89] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune.
Building Verifiable Trusted Path on Commodity x86
Computers. In 2012 IEEE Symposium on Security and
Privacy (S&P)).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 191

Nimble: Rollback Protection for Confidential Cloud Services

Sebastian Angel⋆ Aditya Basu† Weidong Cui⋆ Trent Jaeger†

Stella Lau‡ Srinath Setty⋆ Sudheesh Singanamalla⋄
⋆Microsoft Research † Penn State ‡MIT CSAIL ⋄University of Washington

Abstract
This paper introduces Nimble, a cloud service that helps ap-
plications running in trusted execution environments (TEEs)
to detect rollback attacks (i.e., detect whether a data item
retrieved from persistent storage is the latest version). To
achieve this, Nimble realizes an append-only ledger service
by employing a simple state machine running in a TEE in con-
junction with a crash fault-tolerant storage service. Nimble
then replicates this trusted state machine to ensure the sys-
tem is available even if a minority of state machines crash. A
salient aspect of Nimble is a new reconfiguration protocol that
allows a cloud provider to replace the set of nodes running the
trusted state machine whenever it wishes—without affecting
safety. We have formally verified Nimble’s core protocol in
Dafny, and have implemented Nimble such that its trusted
state machine runs in multiple TEE platforms (Intel SGX
and AMD SNP-SEV). Our results show that a deployment of
Nimble on machines running in different availability zones
can achieve from tens of thousands of requests/sec with an
end-to-end latency of under 3.2 ms (based on an in-memory
key-value store) to several thousands of requests/sec with a
latency of 30ms (based on Azure Table).

1 Introduction
Cloud providers today offer confidential computing services
where VMs support trusted execution environments (TEEs) in
which a customer’s code is isolated from other code (includ-
ing the hypervisor). The promise of TEEs is that customers’
applications enjoy security properties even if the provider
is compromised, such as confidentiality of the application’s
memory, and the integrity of the application’s execution.

Unfortunately, TEEs do not provide persistent state. If a
TEE crashes or is maliciously restarted, its volatile state is
lost. Applications running in TEEs must therefore explic-
itly address this. A common approach is for applications to
persist their state in cloud storage services and to use crypto-
graphic primitives such as authenticated encryption to protect
that state so that it remains confidential and is not modified
by a compromised storage service or OS. But encryption
alone does not prevent rollback attacks. In such attacks, the
provider restarts a customer’s TEE; when the application then
attempts to recover its volatile state from persistent storage,
the provider intercepts the request and returns old data.

Rollback attacks can be terribly harmful. For instance, con-

sider Signal’s “secure value recovery”, which is a service that
runs inside TEEs in a public cloud and allows Signal’s users
to back up cryptographic keys or other secret data under a
short PIN [6]. Users can establish a TLS session with the ser-
vice in the TEE, provide their PIN, and recover their key. To
prevent an attacker from brute forcing a PIN, Signal enforces
a quota on the number of times a wrong PIN can be entered by
persisting a counter that tracks the number of attempts made
so far. But a compromised cloud provider who wishes to brute
force the PIN could simply make some guesses, crash the ap-
plication, rollback the value of the counter, and retry. This
example is far from unique; other types of situations where
rollback attacks are problematic include financial transactions,
revocation of certificates, access control changes, etc.

Given the significance of rollback attacks, we ask: how can
a cloud provider deploy a service that customers’ confidential
computing applications can use to detect rollback attacks?
Importantly, since this will be a core service that runs within
a cloud provider, it is paramount that any solution be simple
to understand and implement, and that the trusted computing
base (TCB) be small and easy for customers to audit.

Prior solutions and their limitations. One can use a repli-
cation protocol to address rollback attacks. For example, the
client could keep the latest version of their data replicated
across a set of machines, and, assuming a threshold number
of these machines are honest, the client can obtain the latest
state. In confidential computing, a cloud provider can offer
a cloud service that runs a BFT protocol inside TEEs. For
many prior works [13, 21, 26, 35, 39, 52], this requires only
a small amount of trusted code inside TEEs (typically code
to manipulate a counter or a log) and they guarantee safety as
long as the trusted code is correct. The drawback is that, to
our knowledge, these works do not support reconfigurations
where the set of TEEs changes over time. Meanwhile, recon-
figuration is an absolute necessity: a cloud provider needs
the ability to replace failed nodes or migrate healthy nodes
whenever it wishes to perform maintenance and updates.

An alternate approach pursued by several proposals [6, 41,
49] is to run an entire replication protocol inside TEEs. If the
original replication protocol supports reconfigurations, then it
stands to reason that the resulting system inside TEEs might
do so as well. The drawback is that this significantly increases
the complexity and size of the TCB. Meanwhile, for a cloud

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 193

service, it is crucial that customers be able to audit the code
in the TCB, which is not possible given the complexity and
nuance of replication protocols.

Our solution. In order to simultaneously support efficient
and safe reconfigurations while maintaining a small TCB,
we depart significantly from prior works with two key ob-
servations. First, state machine replication (SMR) protocols
are complex because they must guarantee both safety (for
rollback resistance this means that any value a client reads
is the latest value that had been written) and liveness (that
a client’s request is eventually processed). However, we can
separate these two concerns and focus the efforts of the TCB
on guaranteeing safety. Liveness can be done outside of the
TCB. Such a design is acceptable because, in a cloud setting,
a compromised provider can trivially violate liveness anyway
(by simply refusing to run the client’s code in the first place);
liveness, therefore, is a property that an honest provider im-
plements for its own sake to ensure that its service is good
and highly available.

Second, we observe that a lot of the complexity with SMR
is already implemented by existing storage services so one
should not reinvent or reimplement the wheel. Instead, we
should leverage existing services as much as possible to
achieve liveness without significant engineering effort.

By leveraging the above observations, we design Nimble, a
new SMR protocol that features a small and simple TCB for
guaranteeing safety even in the presence of arbitrary reconfig-
urations, and a simple untrusted protocol that reuses existing
infrastructure to tolerate faults and to keep the system live. In-
deed, owing to Nimble’s small TCB, we have formally proven
the safety of Nimble’s core protocol using the IronFleet [27]
methodology with the Dafny program verifier [31].

Nimble is architected as a traditional cloud service built on
top of a crash fault-tolerant cloud storage service, providing
the interface of a highly-available append-only ledger service.
When clients write data to Nimble, Nimble appends this data
to their ledger. To ensure that the ledger service provides
safety even when the provider is Byzantine, Nimble runs a
small amount of trusted code that we refer to as an endorser
inside a TEE. The job of the endorser is very simple: it holds
the tail of the ledger in its protected volatile memory. When a
client asks for the most recent block written to a ledger, the
client provides a nonce (a cryptographically random value) to
the service. The service forwards this nonce to the endorser
who then returns a signature of the current ledger’s tail and the
nonce. The service then gives the client the data in the ledger
in addition to the signature from the endorser that establishes
the freshness of said data. Nimble cannot rollback a ledger
protected by an endorser because endorsers have no API to
rollback their state!

Of course, an endorser can crash and lose its volatile state,
so Nimble relies on a set of endorsers. Nimble ensures safety
by requiring that there be a quorum of signatures for the
nonce and the tail. Nimble ensures liveness (under an honest

provider) by instantiating multiple endorsers. A crucial aspect
of Nimble’s design is that, since the fault-tolerant storage ser-
vice already establishes a total order of operations, endorsers
do not need to run a replication protocol among themselves.

A remaining challenge is that Nimble needs a mechanism
to add, replace, or remove endorsers. This protocol must
ensure safety even when the provider is fully untrusted, and
must not impede progress when the provider is honest. To
address this, Nimble includes a novel reconfiguration protocol
that preserves these desirable properties.

To demonstrate the simplicity and applicability of Nim-
ble, we have implemented Nimble on top of both Intel SGX
and AMD SEV-SNP, as well as several storage services: an
in-memory key-value store, a local disk filestore, MongoDB,
and Azure Tables. Our implementation of Nimble with the in-
memory key-value store can process 50K requests/sec with an
end-to-end latency of under 3 ms. Our geo-replicated Azure
tables implementation can also process 50K reads/sec with
under 3 ms of median latency; write throughput is more mod-
est, at around 3K writes/sec (without any batching), with an
end-to-end latency of 30 ms.

We also demonstrate how to port a significant application to
use Nimble by equipping the Hadoop distributed file system
(HDFS) with rollback protection. With Nimble-HDFS, data
analytics applications running in confidential computing can
be certain that the data they read from it is the latest version
and has not been rolled back.

Limitations. One of the key design tenets behind Nimble is
simplicity: both from the perspective of customers that must
audit the trusted parts of the system but also from the perspec-
tive of engineering teams that must implement and deploy
Nimble. This is why we chose to reuse existing storage ser-
vices rather than implementing our own. As a result, Nimble’s
implementation inherits the performance of existing systems
and may in some cases be more costly than alternatives that
do not use storage as a black box. For example, a co-design of
Nimble’s endorser and the fault-tolerant storage system could
save a network round trip, but at great engineering expense.

2 Context and rollback attacks
This section provides context, and introduces rollback attacks
and their effect on various applications.

2.1 Context: Confidential computing

Cloud providers such as Google and Microsoft offer confiden-
tial computing services where customers’ applications run on
trusted execution environments (TEEs) provided by hardware
(e.g., Intel’s SGX, AMD SEV-SNP). TEEs encrypt and in-
tegrity protect the memory of an application or a whole VM.
Additionally, when a cloud provider launches a TEE, through
a mechanism known as remote attestation (discussed below),
a customer can verify that their binary is the one executing
in the TEE. Confidential computing promises to help cus-
tomers run high-assurance applications in the cloud, which,

194 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

for example, operate on sensitive data that they wish to keep
hidden from the cloud provider. Some proposed and deployed
applications for confidential computing are key vaults [6],
data analytics [1], machine learning [5], data aggregation [7],
auctions [8], and contact discovery for messaging apps [37].

Remote attestation. A major component in confidential com-
puting is remote attestation, where a client can confirm that
the code running in a TEE is indeed the expected code. De-
tails are elsewhere [19], but at a high level, the TEE produces
a quote (which contains, among other things, the hash of the
binary that was loaded into memory) and signs it with an
attestation key that is part of the hardware. A client can verify
this quote through a variety of ways, including checking a
certificate chain or contacting an attestation service.

Persistent state. In practice, applications need to persist data
in a storage service (e.g., S3, DynamoDB, Cosmos DB) that
lives outside of the TEE’s memory for later retrieval (e.g.,
in case they restart). To preserve the data’s confidentiality
and integrity, TEEs can use authenticated encryption prior
to externalizing any state. Specifically, a TEE can store data
encrypted in a database or on disk, and retrieve it at a later
time—and check that it is a valid ciphertext to ensure the data
has not been modified. In addition to authenticated encryp-
tion, TEEs can use other cryptographic techniques such as
oblivious RAM [25] to ensure that their data access patterns
are additionally kept private.

Physical attacks. Modern TEEs such as the latest version
of Intel SGX, Intel TDX, AMD SEV-SNP, and AWS’s Nitro
cannot protect against attackers who have physical access to
the TEE (they give up memory integrity properties in favor of
higher performance). However, existing confidential comput-
ing applications already accept this threat model, as otherwise
they would not be running inside the TEEs of cloud providers.
As a result, a solution to rollback attacks need not defend
against physical attacks either.

Side channel attacks. There is a large literature [15, 17, 30,
38, 47, 48, 51] that has identified software attacks that can
extract information kept in TEE’s memory or violate the in-
tegrity guarantees provided by TEEs. Nevertheless, hardware
vendors have in the past promptly patched vulnerabilities
when discovered and reported by researchers, and there are
academic hardware designs that are provably safe from many
types of side channels [20]. We believe that TEEs will be
more robust to these types of attacks over time.

In this work, we consider these attacks to be out of scope.
As we discuss next, rollback attacks are challenging enough
even in the absence of these other orthogonal issues.

Rollback attacks. While authenticated encryption provides
ciphertext integrity and plaintext confidentiality, it does not
ensure that the data is fresh. In particular, a malicious storage
service could provide a valid ciphertext (encrypted and signed
by the TEE), that is not the latest version. In Section 1 we
discuss Signal’s “secure value recovery” and showcase how

it can be subverted by an attacker who rolls back the appli-
cation’s state. This same class of attacks can be performed
against a banking application (e.g., rolling back a payment),
a confidential VM (rolling back to an older version of the
OS that has a vulnerability), etc. It is therefore imperative
that confidential computing environments have a way for
applications to detect such attacks.

3 Rollback protection
This section describes a solution for applications running
inside TEEs to detect rollback attacks.

Characterizing rollback attacks. An application running
inside a TEE experiences a rollback attack when one of the fol-
lowing events happens: (1) stale responses, where a malicious
storage service provider returns a prior version of data instead
of the latest (i.e., lack of freshness), possibly because the
malicious storage service forks the views of its clients [33];
(2) synthesized requests, where a malicious provider synthe-
sizes requests on its own (i.e., they were never issued by the
application) and applies them to the storage (thereby affecting
future reads); or (3) replay, where a malicious provider uses
valid requests that were previously sent by the application
and applies them to the storage again.

3.1 Our solution

Addressing stale responses. It is well known that lineariz-
ability [28], a widely studied correctness criterion, captures
freshness. Informally, a system satisfies linearizability if ev-
ery operation on an object in the system appears to take place
atomically, in an order that is consistent with the real-time
ordering of the operations themselves. For example, if an
operation W completes before another operation R begins,
then R must observe the effects of W and complete after it.

Our solution to address stale responses is to rely on an
append-only ledger service that guarantees linearizability [28]
even when the provider is compromised (in Sections 4 and 5,
we describe a novel instantiation of such a ledger service, with
high performance and a small TCB). In particular, whenever
the application wishes to update its persistent state, it stores its
updated state in a block and appends the block to the ledger;
whenever the application wishes to read back its persistent
state, it reads the block found at the ledger’s tail.

Addressing synthesized requests. We require an application
running in a TEE to hold a signing key in a signature scheme
that is known only to the application. When the application
stores its state in the aforementioned ledger, the application
first signs the state with its signing key and then stores the
state and the signature in a block. When reading its state from
a ledger, the application verifies that there is a valid signature.

Addressing replay. To prevent a malicious provider from
replaying prior appends, we make the following modification
to the solution described thus far: the signature stored in an ap-
pended block covers not only the application’s state, but also

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 195

the position of the block in the ledger. When reading its state
from a ledger, an application verifies that the returned position
of the tail matches the position covered by the signature.

Assume that the application’s configuration includes a
label of the ledger (we denote this as ℓ). Let (sk, vk)
denote the application’s signing and verification keys
in a signature scheme, with Sign and Verify methods. The
application maintains a counter, which we denote with
c (when the application is launched for the first time, it
can execute the read protocol to set c).

Update protocol. When an application wishes to update
its persistent state from S to S′, it does the following:
• Issue append(ℓ, B, c + 1) and get receipt, where B =
(S′,σ), and σ = Sign(sk, (ℓ, S′, c + 1)).

• If the append succeeds and receipt is valid, update
c← c + 1, else follow the steps in the read protocol.

Read protocol. When an application wishes to retrieve
persistent state, it does the following:
• nonce← random() // e.g., 128 bits
• (i, B, receipt)← read_latest(ℓ, nonce)
• Parse B as (S,σ).
• If Verify(vk, (ℓ, S, i),σ) passes and receipt is valid with

respect to nonce, set c to i and use S as the state. If not,
abort with Err(“rollback detected”).

Putting things together. We require an append-only ledger
service with the following intuitive APIs. We provide a con-
crete instantiation of such a service in Sections 4 and 5.

• new_ledger(label)→ (ack/nack, receipt)

• append(label, block, exp_index)→ (ack/nack, receipt)

• read_latest(label, nonce)→ (index, block, receipt)

A receipt is a cryptographic object that the client uses to
verify that the operation was executed correctly. The nonce
in read_latest is a random value that prevents the service
from caching and returning old receipts, since each receipt
must cover the nonce. With these checks, a client obtains
linearizability [28] from the ledger service.

The expected index (exp_index) in append is a directive
provided by the application to the ledger service. Its purpose
is to help the honest ledger service determine whether it can
store a particular block in the current tail or whether it must
reject the request and notify the application (an honest ledger
service just needs to maintain for each ledger how many
entries are already appended to support these semantics). In
other words, it acts as a type of concurrency control. This
is important when the application is concurrent and one of
its threads has already stored a block at that position in the
ledger. Given the signature in the block, the ledger service
cannot append a block anywhere different than its expected
index, as the client would detect the inconsistency when it

verifies the signature.
Observe that in the read protocol, if the client’s check

passes, the service could not have rolled back state. By as-
sumption, a receipt is valid for a random nonce if and only
if the service is linearizable. So, it cannot lie about the index
i in the response (i.e., the number of entries in the ledger).
Furthermore, in the update protocol, the client embeds crucial
metadata (including the expected index of the tail) and signs
it with its private key. Since the service provider cannot forge
signatures, it cannot return data that was not previously stored
at that index by the client.

3.2 Storing state in an existing storage service

While the ledger service can be used to append arbitrary data,
it has a very limited API. Therefore, it is often better for an
application to store their state in some existing (untrusted)
storage service better suited to its needs. For example, use
a storage service that has better performance for large data,
or one that supports things like random access reads and
writes, scans, search, stored procedures, etc. We now extend
the solution from the prior subsection to support this.

In a nutshell, for updates, the application proceeds in two
steps: (1) it persists its state in an existing storage service and
then (2) stores a cryptographic digest of that state in the ledger
service using the Update procedure described above. Similarly
for reads, the application reads state from the storage service
and a digest from the ledger service, and in addition to the
checks described thus far, it checks that the digest of the state
retrieved from the storage service equals the digest from the
ledger service. There is one key issue that does not affect
safety, but affects liveness: the application may fail after it
performs step (1) but before step (2), during updates.

We address this as follows. During update, instead of only
storing S′ in the storage service, the application stores (S′, c +
1,σ). This ensures that, by design, the storage service holds a
counter that is at most one higher than the counter stored on
the ledger service (the storage service cannot tamper with S′

or c + 1 since they are protected by σ). When an application
restarts, it can check if the counter in the ledger service is
one lower than the counter in the storage service. If so, this
implies a failure after the application updated the storage
service but before it updated the ledger service. Therefore,
the application uses S′, c + 1, and σ from the storage service
to complete its pending append to the ledger service.

Note that the above mechanism will not lead to the corrup-
tion of the state in the ledger even if the client mistakenly
performs the update more than once. For example, suppose
that the client first issues its update operation to the ledger
and then fails. When the client restarts, the ledger has not
yet processed the update operation (perhaps it is sitting in a
queue somewhere) so the client receives the old counter (c)
from the ledger. If the client re-issues the update, at most one
of the two requests (the one in the queue or the freshly issued
one) will be applied since they have the same expected index.

196 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Cloud Storage
(persists hash chains)

Coordinators
(untrusted,
stateless)

Endorsers

Client

Client

Client

FIGURE 1—Nimble’s architecture (see text for details).

Concurrency. If the application has multiple processes that
operate on the same persistent state, then we require the stor-
age service used by the application to be linearizable. Further-
more, the application must be able to deal with the failure of
its processes and achieve exactly-once semantics [42, 54].

4 An overview of Nimble
This section describes Nimble, an append-only ledger service
that fills the key role in our rollback protection method (§3).

Design goals. To support its target application of rollback
protection for confidential services, a key guarantee that we
desire from Nimble is linearizability [28]. Unfortunately, an
untrusted service can trivially violate linearizability by re-
turning stale responses or by presenting different views of
a ledger to different clients [33, 36]. As we discuss below,
Nimble will make such violations detectable by relying on
certain operations being performed correctly inside TEEs.

Given Nimble’s reliance on TEEs, our second design goal is
to naturally ensure that this trusted code is as small as possible
and simple enough that it can be audited by customers.

If the cloud infrastructure on which Nimble is hosted is
malicious, it can trivially violate liveness (by literally not
running the client’s application in the first place), so our third
goal is to ensure that if an honest provider runs Nimble as
specified, the service will be live.

Finally, we wish to avoid reimplementing complex repli-
cation protocols: optimizing them, and ensuring that they are
correct and comply with a plethora of business and technology
standards for deployment within a public cloud is hard and
time consuming. So, we wish to leverage existing services.

Threat model and assumptions. Nimble assumes that TEEs
work as intended: they protect the memory and the execution
of any application running within it from attacks (§2). Nim-
ble’s code running outside TEEs is untrusted by clients, and
may behave arbitrarily. Nimble makes standard cryptographic
hardness assumptions for its safety guarantee. Nimble ensures
liveness during sufficiently long periods of synchrony and
when the service follows its prescribed protocol.

As we discuss below, providing safety requires Nimble

to run a trusted state machine, called an endorser, inside a
TEE. Since TEEs can crash and lose their state, Nimble runs
a collection of endorsers. Unfortunately, if Nimble loses a
majority of its endorsers, it must either give up safety or
liveness. We discuss this further in Section 9.1. Additionally,
for now, we assume that an endorser’s code does not change
over time. We discuss possible solutions to this in Section 9.2.

Design and architecture. Figure 1 depicts Nimble’s architec-
ture, which is analogous to that of a traditional cloud service.
Nimble employs a collection of worker processes, which we
refer to as coordinators. They are stateless and untrusted, and
their job is to process requests from clients (i.e., customer
applications running in TEEs). For each ledger, Nimble main-
tains a hash chain (a linked list where each node contains data
and a cryptographic hash of the previous node) and stores that
hash chain in an existing untrusted cloud storage service (e.g.,
Azure Table). Note that this storage service is completely
separate from (and may even be different from) the storage
service used by clients to store their data (§3.2).

To guarantee linearizability despite using an untrusted
cloud storage, Nimble runs a trusted state machine inside
a TEE, which we refer to as an endorser. An endorser stores,
for each ledger, the tail of the associated hash chain in its
memory. An endorser’s code is public, and when launched
inside a TEE, it produces a fresh key pair for a signature
scheme such that the TEE platform can prove (via remote at-
testation) that the public key belongs to a legitimate endorser.
An endorser uses its secret key to sign its response to any
append or read operation. Since an endorser’s state is volatile,
Nimble runs a collection of endorsers to achieve fault toler-
ance. When Nimble boots up, it produces a unique and static
identifier that is derived by hashing the public keys of the
endorsers. We assume that this identifier is public knowledge.

For each request issued, a client expects a response and a
receipt. A receipt contains a list of public keys and signatures
that cover the response and the public identifier. The client
first verifies that the public keys in the receipt belong to
legitimate endorsers based on remote attestation.1 The client
then verifies that there is a quorum of valid signatures from
the public keys in the list (in Nimble, a quorum is a majority
of endorsers). This is analogous to witness cosigning [46].
Additionally, for read_latest, a client sends a nonce and checks
that the endorsers’ signed message includes the nonce. This
prevents a malicious service from replaying a stale receipt.

To support reconfigurations (i.e., addition and/or removal
of endorsers), an endorser maintains additional bookkeeping
and performs additional checks when the set of endorsers
changes. Similarly, a coordinator maintains additional state
in the cloud storage service and implements an untrusted
distributed protocol. Details are in the next section.

1Clients can cache public keys to avoid verifying that they belong to legit-
imate endorsers. So, clients only need to do remote attestation when the
endorser set changes or they lose their local state.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 197

Small TCB. Nimble achieves a small TCB because endorsers
contain only safety-critical aspects of a replication protocol.
For example, to process appends and reads, endorsers main-
tain tails of hash chains and provide signed responses to re-
quests. To support reconfigurations, they maintain additional
state and perform checks but that code is only concerned with
safety but not liveness.

5 Design details and correctness
This section describes the details of Nimble’s design. We be-
gin with a core protocol that does not support reconfigurations
and then describe modifications to support reconfigurations.

5.1 Core protocol

Nimble is a replicated state machine with a new architecture
where its APIs (see Section 3) are first built on top of an
existing crash fault-tolerant storage service, which we refer
to as the untrusted state machine. A stateless coordinator
process can use the untrusted state machine as a black box
to implement Nimble’s APIs. To obtain linearizability in the
presence of malicious behavior, Nimble uses a collection of
endorsers running another state machine, which we refer to
as the endorser state machine, inside a TEE (a minority of
endorsers in the collection can crash).

We first describe the state machine run by endorsers and
the untrusted state machine, and then describe how they are
invoked in the end-to-end protocol.

Endorser’s state machine. Let (KeyGen, Sign, Verify) denote
a signature scheme and H a collision-resistant hash function.
In our implementation, each state transition of an endorser
is atomic (achieved via synchronization primitives) and an
endorser state machine provides linearizability.

Endorser’s state

• sk, a secret key in a digital signature scheme.

• status ∈ {“uninitialized”, “active”}.

• id, the identity of a particular instance of Nimble.

• M, a label-value map, where a label is a byte vector and
a value is tuple (t, h) in which t is the tail node of a hash
chain and h is an unsigned integer specifying the number
of entries in the hash chain.

Untrusted state machine. As noted earlier, Nimble relies
on a crash fault-tolerant storage service. In particular, Nimble
uses this storage service to realize the untrusted state machine.
It does so by storing all the necessary state in the storage
service, and using its standard APIs (e.g., put, get, insert,
conditional update, atomic batch update) to carefully mutate
the state to achieve the desired semantics.

The untrusted state machine is same as the endorser’s state
machine, with two key differences. First, it does not generate
a key pair nor does it provide a TEE attestation (naturally, it
does not sign any of its responses). Second, it stores all entries

appended to a ledger not just the tail entry and provides an
API to access ledger entries by their index (as we see below,
this is useful for providing liveness in certain cases).

Endorser’s state transitions

1: fn bootstrap
2: (sk, pk)← KeyGen(1λ)
3: status← “uninitialized”
4: return (pk, a) // a is a TEE attestation proving that pk be-

longs to a legitimate endorser running inside a TEE.

5: fn initialize(c)
6: if status ̸= “uninitialized” then return Err(AlreadyInit)
7: if pk /∈ c then return Err(NotInConfig)
8: id ← H(c), M ← ⊥, status← “active”

9: fn new_ledger(ℓ)
10: if status ̸= “active” then return Err(NotInit)
11: if ℓ ∈ M then return Err(LedgerExists)
12: M.insert(ℓ, (0, 0))
13: return Sign(sk, ⟨“new_ledger”, id, ℓ, 0, 0⟩)

14: fn append(ℓ, b, exp_index)
15: if status ̸= “active” then return Err(NotInit)
16: if ℓ /∈ M then return Err(LedgerDoesnotExist)
17: (tprev, hprev)← M.get(ℓ)
18: if exp_index ̸= hprev + 1 then
19: return Err(OutOfOrder, hprev)
20: tcurr ← (H(tprev), b); hcurr ← hprev + 1
21: M.update(ℓ, (tcurr, hcurr))
22: return Sign(sk, ⟨“append”, id, ℓ, tcurr, hcurr⟩)

23: fn read_latest(ℓ, n)
24: if status ̸= “active” then return Err(NotInit)
25: if ℓ /∈ M then return Err(LedgerDoesnotExist)
26: (tcurr, hcurr)← M.get(ℓ)
27: return Sign(sk, ⟨“read_latest”, id, ℓ, tcurr, hcurr, n⟩)

28: fn append_with_read_latest(ℓ, b, exp_index, n)
29: return (append(ℓ, b, exp_index), read_latest(ℓ, n))

Coordinator’s workflow. A coordinator invokes the APIs
provided by the endorser state machine and the untrusted state
machine to provide the APIs we describe in Section 3.

To initialize a Nimble instance, a coordinator process calls
bootstrap on a configurable number of endorsers (denote it as
n) to obtain their public keys. Let c denotes the list of public
keys and the public identity of the instance is H(c). The coor-
dinator then calls initialize(c) on the untrusted state machine
and when that succeeds, it calls initialize(c) on the endorser
state machine, waiting for ⌊n/2⌋ + 1 out of n endorsers to
respond. At this point, the system is setup to process requests.

When a client issues a request (e.g., new_ledger, append,
or read_latest), the coordinator uses the provided argument to
call the corresponding API on the untrusted state machine and
when that returns, it calls the same API on the endorser state
machine with the same argument, waiting for ⌊n/2⌋+ 1 out
of n endorsers to respond. The coordinator collects a quorum
of those responses and sends it to the client.

198 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The coordinator retries its workflow to account for network
failures (e.g., reordered or dropped messages). Furthermore,
a coordinator uses the “OutOfOrder” error returned by an
endorser to detect if the endorser is “lagging behind”, and if
so, it issues appends to roll forward the endorser’s state using
blocks in the untrusted state machine.

Achieving liveness. For liveness, we require certain exten-
sions to ensure that a coordinator can eventually produce a
valid receipt for each request it successfully executes. Recall
that Nimble’s liveness holds only when the provider is honest,
so the discussion below is limited to that case.

new_ledger and append. An endorser may execute a re-
quest (e.g., an append), but when it responds with its signed
message to a coordinator, the network may drop the mes-
sage. To address this, an untrusted process colocated with the
endorser stores the signatures generated by an endorser and
provides APIs for a coordinator to retrieve them (ensuring that
a coordinator that repeatedly retries can obtain signed mes-
sages that were generated). Since this mechanism is needed
only for liveness, it does not affect the endorser state machine.

Furthermore, when a coordinator assembles a receipt (re-
call from Section 4 that a receipt is a quorum of signatures),
it persists the receipt in the untrusted state machine alongside
an appropriate ledger entry. Once a receipt is persisted, the co-
ordinator calls an API on the untrusted process colocated with
the endorser to garbage collect the associated signed message.
In this way, even if a coordinator crashes or the message from
Nimble to a client is dropped, a client can eventually retrieve
a receipt for a new_ledger or an append request from Nimble.

read_latest. There are cases where a coordinator may not
succeed in obtaining a valid receipt for a read_latest request.
Specifically, the coordinator may struggle to obtain a quorum
of matching responses as each endorser may be in a slightly
different state. This can occur during periods of concurrent
appends when one append has been applied in one endorser
but not yet in another. Nimble addresses this as follows.

Suppose that a coordinator thread (say “read thread”, for
ease of reference) is unable to obtain a valid receipt for a
read_latest request. After a configurable number of retries, the
“read thread” persists the pending read_latest request in the
untrusted state machine. Furthermore, we modify the coordi-
nator’s workflow so that when a coordinator’s thread receives
an append (call it an “append thread”), if there is a pending
read_latest, it invokes the append_with_read_latest API of
endorsers to execute both the append and the pending read_lat-
est as an atomic operation. The “append thread” also persists
receipts from the endorsers in the untrusted state machine,
including the receipt of the pending read_latest. Meanwhile,
the “read thread” retries invoking read_latest on endorsers
and polls the untrusted state machine to see if a concurrent
thread produced a receipt via the append_with_read_latest
API; one of these code paths will eventually succeed.
Safety and liveness guarantees. We have a formal specifi-
cation and a proof of safety in Dafny [31] (our proof uses

IronFleet’s state machine refinement technique [27]). A chal-
lenge in our context is that we must account for arbitrary
responses from a coordinator and the storage service whereas
IronFleet only considers crash faults.

Lemma 5.1. Assuming the integrity and confidentiality guar-
antees provided by TEEs for executing the specified endorser
state machine and standard cryptographic hardness assump-
tions, whenever Nimble produces a valid receipt for a request,
Nimble respects linearizability.

Proof (sketch). By design and implementation, and the stated
assumptions, each endorser’s state machine is linearizable.
Now suppose that Nimble produces valid receipts for two
requests R1 and R2. Suppose that the quorum of endorsers that
produce a valid receipt for R1 and R2 are respectively Q1 and
Q2. In Nimble, a quorum size is a majority, so Q1 ∩ Q2 must
have at least one endorser. Let e ∈ Q1 ∩ Q2. Given that e’s
state machine is linearizable, then it follows that it processed
requests R1 and R2 such that it respects linearizability. Since
a valid receipt requires that a quorum of endorsers sign the
same response, Nimble’s response must equal e’s response.
This implies that Nimble is linearizable.

Lemma 5.2. When the service is honest and during suffi-
ciently long periods of synchrony, and when clients submit
requests that can be successfully executed, a coordinator pro-
cess can eventually generate valid receipts.

Proof (sketch). The claim holds for new_ledger and append
requests because they are first performed on the untrusted
state machine and the same operation is applied on a quorum
of endorsers in the same order. Even if coordinators are sub-
ject to crash failures, or the network drops or reorders packets,
the untrusted state machine is linearizable and internally fault
tolerant by design and implementation. Since the endorser’s
append API takes an additional hint, expected_index argu-
ment, this allows an honest coordinator to apply appends in
an endorser in the same order as it is applied in the untrusted
state machine. Furthermore, if the network drops signed mes-
sages from an endorser to the coordinator, the coordinator can
eventually retrieve them. Thus, a coordinator can eventually
obtain a valid receipt for new_ledger and append requests.

For read_latest requests, there are two cases: (1) no con-
current appends, and (2) concurrent appends. In the first case,
a coordinator eventually succeeds in obtaining a quorum of
signed messages on the same value (if an endorser is lagging
behind, the coordinator can provide missing appends from
the untrusted state machine to bring them up to date). In the
second case, a coordinator uses append_with_read_latest to
combine the read_latest request with a concurrent append
request to obtain a valid receipt.

5.2 A safe and live replacement of endorsers

Nimble’s core protocol is restricted to a static collection of
endorsers. Unfortunately, this restriction is unrealistic: once

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 199

an endorser fails, the system loses its initial level of fault-
tolerance. Furthermore, once a majority of endorsers fail,
the system is permanently unavailable as it cannot process
requests nor produce valid receipts ever again.

Nimble includes mechanisms to introduce new endorsers,
and to retire existing endorsers, thereby enabling it to proac-
tively maintain a sufficient number of endorsers and avoid the
aforementioned issues.

A core challenge is that a proactive replacement of en-
dorsers must not allow untrusted components in the sys-
tem (e.g., a coordinator) to abuse it to violate linearizabil-
ity. Another challenge is that the system should not enter a
deadlock state if a coordinator process performing such a
replacement fails at an inopportune time. In our context, there
is another challenge: to achieve high performance, there is
no total ordering of all operations. That is, in Nimble’s core
protocol, operations on different ledgers proceed in parallel
and they only need to be processed by a majority of endorsers
(i.e., not all endorsers). Thus, at any point in time, the state of
endorsers might not be identical.

Unfortunately, existing solutions are a poor fit in our con-
text. If Nimble were to adopt the folklore solution of keeping
membership (i.e., the identity of “current” endorsers) as part
of state that is replicated, the system will necessarily have to
impose a total order on all operations. This adversely affects
performance. Alternatively, each ledger could maintain its
own membership state (i.e., each ledger has the list of en-
dorsers that are responsible for endorsing operations on that
ledger). However, to change endorsers, the system will need
to invoke N instances of the view-change protocol, where N
is the number of ledgers. In practice, N can be millions or
more, so it is not practical.

Below, we describe how Nimble addresses these challenges
without bloating the TCB. In a nutshell, Nimble’s solution
can be viewed as a way to resolve the tension between the
two existing solutions described above.

Nimble’s reconfiguration protocol. We introduce a new
safe and live protocol, orchestrated by a coordinator, to proac-
tively replace endorsers. At a high level, Nimble proceeds
in a sequence of configurations, where in each configuration,
a particular set of endorsers, identified by their public keys,
are responsible for producing receipts. Nimble’s endorsers
keep track of the current configuration as well as the imme-
diately preceding configuration (we denote these with Ccurr

and Cprev in the endorser’s state machine). Furthermore, when
an endorser joins a configuration it “takes over” a previously
generated public identity of a Nimble instance only when it
can confirm that a quorum of endorsers of the prior configu-
ration have “renounced” it. Moreover, every response signed
by an endorser covers, in addition to the public identity, their
value of Ccurr. This ensures that responses produced by an
endorser are tied to a particular configuration and clients can

use it to discover which public keys and quorum size they
need to use to verify the responses produced by Nimble.

To switch from one configuration to the next, Nimble’s
coordinator proceeds in three phases (this protocol can be
invoked at any time). Before we describe these three phases,
we provide some preliminaries.

Let E and N denote sets of existing and new endorsers
respectively. In Nimble, E ∩N is an empty set (this simplifies
the protocol and proofs, as we discuss in [11, Appendix A]).
A coordinator launches endorsers in the set N , calls their
bootstrap method to obtain their public keys. Let CE and CN
respectively denote the sequence of public keys of endorsers
in E and N . Let id denote the identity of the Nimble instance
(the hash of the list of public keys of the first set of endorsers
that bootstrapped the system and that the provider advertises).

At every step in the protocol below, the coordinator reliably
persists responses it has received in the untrusted state ma-
chine, and by design every step is idempotent. A convenient
way to log this information is to use an append-only ledger
in the untrusted state machine (an endorser is not explicitly
aware of this ledger). Before starting the protocol below, the
coordinator appends CN to this ledger. Furthermore, all mes-
sages logged by the coordinator during the protocol are stored
alongside CN . As a result, if a coordinator fails or is slow at
any point in the protocol, another coordinator can safely take
over and complete the remaining steps.

The additional state and transitions needed to support Nim-
ble’s reconfiguration protocol are given below.

Endorser’s additional state

• status ∈ {“uninitialized”, “initialized”, “active”, “finalized”}.

• Cprev, endorsers’ public keys of the previous configuration.

• Ccurr, endorsers’ public keys of the currrent configuration.

• Cnext, endorsers’ public keys of the next configuration.

• σ, a signature on the finalized state and other metadata

Endorser’s updated initialize function

1: fn initialize(i, m, cprev, ccurr)
2: if status = “initialized” then
3: return Sign(sk, ⟨“initialize”, id, Cprev, Ccurr , M⟩)
4: if status ̸= “uninitialized” then return Err(AlreadyInit)
5: if SecretToPublic(sk) /∈ ccurr then
6: return Err(NotInConfig)
7: if i = H(ccurr) and (m ̸= ⊥ or cprev ̸= ⊥) then
8: return Err(InvalidInit)
9: else if i ̸= H(ccurr) and (m = ⊥ or cprev = ⊥) then

10: return Err(InvalidReconf)
11: id ← i, M ← m, Cprev ← cprev, Ccurr ← ccurr
12: status← “initialized”
13: return Sign(sk, ⟨“initialize”, id, Cprev, Ccurr , M⟩)

200 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Endorser’s additional state transitions

1: fn finalize(cnext)
2: if status = “finalized” then return (M,σ)
3: if status ̸= “active” then return Err(NotActive)
4: Cnext ← cnext , status← “finalized”
5: σ ← Sign(sk, ⟨“finalize”, id, Ccurr , Cnext , M⟩)
6: sk← ⊥ // erase the endorser’s signing key
7: return (M,σ)

8: fn activate(Rexist , A, Rnext)
9: if status ̸= “initialized” then return Err(NotInit)

10: q← ⌊|Cprev|/2⌋+ 1, κ← ⌊|Ccurr|/2⌋+ 1
11: if |Rexist| < q or |Rnext| < κ then
12: return Err(InsufficientQuorum)
13: // Parse Rexist and Rnext
14: [(p1, M1,σ1, a1), . . . , (pq, Mq,σq, aq)]← Rexist
15: [(ρ1, η1,α1), . . . , (ρκ, ηκ,ακ)]← Rnext
16: for all i ∈ [q] do
17: if ai does not attest to pi then
18: return Err(InvalidAttestation)
19: if ¬Verify(pi,σi, ⟨“finalize”, id, Cprev, Ccurr , Mi⟩) then
20: return Err(InvalidFinalize)
21: for all i ∈ [κ] do
22: if αi does not attest to ρi then
23: return Err(InvalidAttestation)
24: if ¬Verify(ρi, ηi), ⟨“initialize”, id, Cprev, Ccurr , M⟩) then
25: return Err(InvalidInitialize)
26: if ¬verify_state((M1, . . . , Mq), M, A) then
27: return Err(InvalidState)
28: status← “active”

29: fn verify_state([M1, . . . , Mq], M, A)
30: [A1, . . . , Aq]← A
31: for all i ∈ [1, . . . , q] do
32: M′

i ← Mi
33: for all ℓ ∈ Mi do
34: for all a ∈ Ai[ℓ] do
35: M′

i [ℓ].tail← (H(M′
i [ℓ].tail), a)

36: M′
i [ℓ].index← M′

i [ℓ].index + 1

37: if M′
i ̸= M then return false

38: return true

(1) Finalize existing endorsers. A coordinator interacts
with endorsers in E to “finalize” their state. In particu-
lar, a coordinator invokes a new API supported by an en-
dorser, called finalize. It takes as input the new configura-
tion’s public keys CN and it outputs (Mi,σi), where Mi is
the endorser’s state and σi is a signature on the message
⟨“finalize”, id, CE , CN , Mi⟩ (an endorser signs over CN be-
cause it is intended to be consumed by endorsers in N). A
coordinator waits for a quorum of endorsers in E to finalize
their state and persists their responses in the untrusted state
machine. We refer to the aggregated response as Rexist.

Once an endorser provides a response to finalize, it enters
a “finalized” mode where it erases its signing key, and hence
it cannot process any further requests.2 It however continues

2Nimble’s threat model (Section 4) assumes that active endorsers are not
vulnerable (e.g., they do not leak their keys). By erasing a signing key in
finalize, Nimble ensures that if an adversary can break the TEE’s guarantees
in the future, they cannot recover finalized endorsers’ signing keys.

to respond with its finalized state and the signature on the
finalized state, to ensure liveness.

(2) Initialize new endorsers. We modify the initialize
method of the endorser’s state machine described in Sec-
tion 5.1 to support transfering state (including an existing
public identity) to the new endorsers (N). As before, if the
coordinator supplies an empty state and an empty prior con-
figuration (i.e., M and CE are both ⊥), then this means that
this is a new instance of Nimble and the public identity is the
hash of the current configuration (H(CN)). What is new is
that the coordinator could instead supply any state (M), prior
configuration (CE), and public identity (i) that it wishes, and
the endorsers simply accept that information. The endorsers
check that this information is actually safe to use before they
start processing requests during the activate function, which
we describe next. The initialize function outputs a signature
ηi on the message ⟨“initialize”, id, CE , CN , M⟩.

A coordinator waits for a quorum of endorsers in N to ini-
tialize their state and persists their responses in the untrusted
state machine. We refer to the aggregated response as Rnext.

(3) Activate new endorsers. We add a new API called
activate that allows a coordinator to convince an initialized
endorser in N to start processing requests. The coordinator
must provide evidence that it is safe for the endorser to “take
over” the initialized identity. An endorser performs a sequence
of checks: (1) it checks that a quorum of existing endorsers
in E have been finalized; (2) it checks that a quorum of new
endorsers in N have been initialized with the same state; and
(3) the state of a quorum of new endorsers is derived from the
state of a quorum of existing endorsers by picking ledger tails
with the highest positions seen in the quorum.

To prove (1) and (2), the coordinator provides Rexist and
Rnext respectively. To prove (3), the coordinator provides addi-
tional blocks (A) that can be appended to the tail of each of the
ledgers that were supplied by existing endorsers when they
called finalize (Mi) such that the resulting state equals M. This
check is in the verify_state function. An honest coordinator
can find these blocks in the untrusted state machine.

Verifying receipts in the presence of reconfigurations.
Suppose that a client goes offline and Nimble executes several
reconfigurations. We now discuss how such a client can verify
receipts produced by Nimble. Recall that a client retains the
public identity of Nimble (id).

Observe that Nimble’s reconfiguration protocol ensures
that endorsers in a Nimble instance always use the same pub-
lic identity id. Furthermore, an endorser’s signature covers,
in addition to its response, both the public identity id and the
public keys of endorsers in its own configuration (i.e., Ccurr).
We extend the coordinator’s APIs so a client can use them
to retrieve Ccurr and each endorser’s attestation report. This
allows a client to (lazily) learn the public keys of endorsers
in the latest configuration as well as verify that those public
keys belong to legitimate endorsers. Finally, a client does the
following checks to verify a receipt: (1) public keys in the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 201

Component Trusted? Language SLoC

Coordinator No Rust 3564
Endorser Yes Rust 1843
Endorser Yes C++ 559
Endpoint Yes Rust 517

FIGURE 2—Implementation of Nimble (SLoC) (excluding existing
libraries and crates used by Nimble)

receipt are in Ccurr; (2) signatures are valid when verified with
the known id and Ccurr (as well as other information specific
to a request); (3) there is a quorum of valid signatures based
on the number of public keys in Ccurr.

Lemma 5.3. Assuming the integrity and confidentiality guar-
antees provided by TEEs for executing the specified endorser
state machine and standard cryptographic hardness assump-
tions, at any point in time, if Nimble produces a valid receipt
for an append operation O using endorsers in E , and if a
coordinator activates a majority of endorsers in N with state
M, then M must contain the effects of executing O.

Proof (sketch). Consider an append request O for which Nim-
ble produces a valid receipt using endorsers in E . This means
that a majority of endorsers in E applied O and provided a
signature on the same response (let Q denote that majority).
Furthermore, any majority of endorsers in E must contain at
least one endorser from the set Q.

Now, by the premise, the coordinator successfully activates
a majority of endorsers inN . This means that the coordinator
must have called their initialize and activate methods such
that all checks in the activate method pass. By assumptions
about TEEs and cryptography, this means that a majority of
endorsers in N must have been given with (Rexist, A, Rnext)
such that all checks in the activate method pass. Again, by the
aforementioned assumptions, the only feasible way to achieve
this is by calling finalize on a majority of endorsers in E to
obtain a valid Rexist. From the aforementioned reasoning, at
least one of states retrieved from a majority of endorsers in E
must contain the effects of applying O. Thus, M provided to a
majority of endorsers inN contains the effects of applying O.
Finally, by design, once an endorser in E returns a response to
the finalize method, it cannnot process any request, as a result,
once Rexist is generated, no valid receipt can be generated by
using a majority of endorsers in E .

Lemma 5.4. When the service is honest and during suffi-
ciently long periods of synchrony, if a majority of endorsers
in E andN are live, then a coordinator that can be subject to
crash failures can eventually obtain a majority of endorsers
in N to start processing requests.

Proof (sketch). We first argue that the claim holds when a
coordinator does not experience crashes. We then argue that
a coordinator that restarts can still complete the protocol by
using state persisted in the untrusted state machine.

We need to establish that the coordinator can provide in-
puts that pass checks in the activate method of the endorser
state machine. By inspection, if the coordinator follows its
prescribed protocol, one can see that nearly all of the checks
in the invoked activate method pass on an endorser state ma-
chine that holds a signing key where the corresponding public
key is in the sequence Ccurr. We now argue that verify_state
check passes too. Suppose that the coordinator computes M as
specified in the protocol. When the service is honest, for every
append request processed by the service, it is first applied on
the untrusted state machine (which is linearizable and crash
fault-tolerant) and then applied on each endorser in the same
order (endorser’s state machine is also linearizable). However,
for any given ledger, some endorsers may be “lagging behind”
others since Nimble requires only a majority of endorsers to
process an append. This implies that an honest coordinator
can retrieve blocks from the untrusted state machine, and con-
struct A such that verify_state((M1, . . . , Mq), M, A) = true.

Now, consider the case where a coordinator may crash.
Observe that each step persists state in the untrusted state
machine. When a coordinator restarts, it can examine the
state in the untrusted state machine to identify the step in
which it failed and repeatedly retry steps in the specified
reconfiguration protocol. Furthermore, by design, all APIs of
an endorser (e.g., initialize, finalize) are idempotent. Even if
a coordinator finished a step but failed before logging state
into the untrusted state machine, a new coordinator can safely
retry the step. As a result, a coordinator that repeatedly retries
eventually activates a quorum of endorsers in N , which then
can produce valid receipts for clients’ requests.

6 Implementation
Nimble is available as an open-source project [3]. Nimble’s
implementation is in Rust. In addition to the Rust-based en-
dorser, we implement an endorser in C++ using the Open
Enclave SDK [4]. The Rust endorser runs inside a confiden-
tial VM supported by AMD SEV-SNP, and the OpenEnclave-
based endorser runs inside Intel SGX. Both a coordinator
and an endorser run as microservices, each exposing an RPC
interface. To ease the adoption of Nimble, we implement an
endpoint that exposes a REST API. The endpoint implements
the client-side verification logic (Section 5.2) and runs inside
a confidential VM (i.e., a client essentially outsources all of
its verification tasks to the endpoint). With an endpoint, a
client only needs to perform remote attestation to ensure that
the right code runs, and establish a secure channel with it.

For cryptographic primitives, endorsers use SHA-256 for
hash functions and ECDSA with P-256 for signatures, both
implemented by OpenSSL.

Figure 2 shows the lines of code for each component in
Nimble. The Rust-based endorser implements the full proto-
col described in Section 5, while the C++ implements only
the core protocol (no reconfiguration).

We implement several optimizations. First, a coordinator
waits only for a quorum of endorsers to provide a matching

202 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

response (this helps reduce latency, especially when a minor-
ity of endorsers is deployed in a remote region, is slow, or is
disconnected). Second, an endorser stores a copy of the tail
node (rather than its hash), so for read operations, this allows
a coordinator to avoid a round trip with the storage service.

Nimble’s implementation supports reconfigurations to re-
place failed endorsers. However, the coordinator microser-
vice does not proactively invoke the reconfiguration protocol.
Instead, it exposes additional control APIs that allow a moni-
toring process to trigger the addition or removal of endorsers.
In a full deployment of Nimble, we expect to make use of a
monitoring infrastructure to invoke these control APIs.

7 Evaluation
This section answers the following evaluation questions:

• What is the latency and throughput of Nimble operations,
and how do they depend on the underlying storage or TEE
technology used by Nimble?

• How does Nimble’s TCB compare to alternative solutions?

• What is the cost of a reconfiguration, and how does it scale
with the number of ledgers in Nimble?

• How difficult is it to port a real application to use Nimble
and what overheads does Nimble introduce?

7.1 Experimental setup

We run all of our experiments on Azure. We run endorsers
on three different machines, each on a different availability
zone to ensure that a server, rack, or even an entire data center
failure does not cause a loss of a quorum of endorsers. When
we run endorsers in Intel SGX, we use Azure DC32s v3 in-
stances; when we run endorsers in AMD SEV-SNP, we use
Azure DC32as v5 instances. The coordinator runs in Azure
D48ads v5 instances, as does our client (a workload gener-
ator). Finally, we deploy several endpoints that run inside
AMD SEV-SNP and execute verification logic. We use an
Azure load balancer to route requests among the endpoints,
and direct all client requests to this load balancer.

Given that Nimble inherits the performance of its underly-
ing storage, we evaluate two configurations:

• An in-memory key-value store: An unreplicated in-memory
key-value store that does not tolerate failures. This key-
value store has low access latency and high throughput. It
serves as a best-case scenario for Nimble. In a real deploy-
ment of Nimble, this store could be replaced with existing
replicated in-memory key-value stores that provide high
throughput and low latency [23, 43, 44].

• Azure table with geo-replication: Azure storage with the
strongest replication guarantees enabled (RA-GZRS). It
has lower throughput and higher latency than our in-
memory key-value store, and suffers from high tail latency
since it is a multi-tenant cloud service with no SLAs.

7.2 Latency and throughput of Nimble

We start by conducting a series of microbenchmarks on Nim-
ble. To generate workloads, we use wrk2 [50], a popular
constant-load open-loop workload generator. The resulting
workload is sent to our Azure load balancer which is then
split across our REST endpoints. We measure the median and
90-th percentile latencies, as well as the throughput achieved
by Nimble on its different configurations.

Figure 3 depicts the results. Figure 3a shows the perfor-
mance of Nimble when using AMD SEV-SNP endorsers and
our in-memory key-value store. In this configuration, the me-
dian latency of all operations is under 2.5ms, and the 90-th
percentile latency is under 3.2 ms. This latency is possible due
to the fast communication between machines inside Azure
data centers, even if the endorsers and coordinator are in dif-
ferent availability zones. Append and read throughput both
peak at around 50K req/sec, which is quite significant given
that Nimble’s endorsers process and sign individual requests;
we do not do any batching in this experiment. The bottleneck
is indeed computational and comes from the cryptographic
operations performed by the endorsers.

Figure 3b shows the performance of Nimble when using
AMD SEV-SNP endorsers and Azure table storage. In this
configuration we observe two things: (1) the higher storage
latency plays a key role for append operations, leading to
median latencies of around 30–40 ms. More significantly, tail
latencies are very high (sometimes up to 2 seconds), owing to
the fact that we use a shared service without guaranteed SLAs.
The append throughput performance is significantly worse
than our in-memory counterpart, reaching around 2,600 re-
qs/sec. Here the bottleneck is no longer computational and is
instead Azure storage which has an account-wide throughput
limit of 20K entities/sec; in Nimble, every append accesses
multiple rows (entities) in Azure Table to provide the required
untrusted state machine semantics (Section 5.1), which hits
this limit. Reads are not impacted by these salient properties
of storage because of our fast-reads optimization (Section 6).

Figure 3c shows the performance of Nimble when using
Intel SGX endorsers and our in-memory key-value store. The
performance is lower than AMD SEV-SNP endorsers because
our SGX endorsers must continuously cross between the
untrusted host that runs the networking stack and the enclave,
in addition to the hardware being completely different. Finally,
we omit the SGX endorsers and Azure Table configuration
because the performance is very similar to that of Figure 3b,
owing to Azure storage being the bottleneck.

7.3 Comparison of TCB size

A key component of Nimble is its relative simplicity. We
therefore ask how Nimble compares to similar proposals. Fig-
ure 2 gives the breakdown of the complexity of Nimble’s
different components (we use TCB as a proxy for it), and Fig-
ure 4 compares it to other works. The key take away is that the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 203

 0

 10

 20

 0 10 20 30 40 50 60

re
sp

o
n
se

 t
im

e
(m

s)

throughput (thousands of requests/sec)

Read 50p
Read 90p

Append 50p
Append 90p

(a) In-memory K/V store and AMD SNP-SEV

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

re
sp

o
n
se

 t
im

e
(m

s)

throughput (thousands of requests/sec)

Read 50p
Read 90p

Append 50p
Append 90p

(b) Azure Table and AMD SNP-SEV

 0

 10

 20

 0 5 10 15 20 25

re
sp

o
n
se

 t
im

e
(m

s)

throughput (thousands of requests/sec)

Read 50p
Read 90p

Append 50p
Append 90p

(c) In-memory K/V store and Intel SGX

FIGURE 3—Microbenchmark of the different operations supported by Nimble. Time is measured end-to-end from the perspective of the client
and includes the time needed for the endpoint to verify the signatures provided by Nimble on behalf of the client.

System TCB restarts? reconfig?

ROTE [35] 1.1K No No
Narrator [39] 5.1K Yes No
TEEMS [22] 11.0K Yes No
CCF [41] 55.5K Yes† Yes

Nimble (this work) 2.3K Yes† Yes

FIGURE 4—Source lines of code (SLoC) comparison of Nimble to
other works that provide a fault-tolerant rollback detection service,
and whether they can support a replica that restarts (fails and then
comes back), as well as replacing the set of replicas. For ROTE,
Narrator, and TEEMS we use the numbers from the papers. For
CCF we use numbers provided by the authors. Note that this table
should be treated qualitatively since these systems are implemented
in different languages with different coding styles, libraries, etc. The
takeaway is that ROTE, Narrator, and Nimble are “simple”; TEEMS
is moderately complex as it implements an entire replication protocol
within the TCB; and CCF is more complex since it implements a
replication protocol in addition to logic that handles blockchain
smart contracts. †CCF and Nimble can handle replica restarts by
treating them as new replicas and engaging reconfiguration.

of ledgers median reconf. time total communication

100K 805 ms 175.59 MB
200K 1.53 sec 337.65 MB
500K 3.72 sec 881.62 MB
1M 7.14 sec 1.68 GB

FIGURE 5—Total reconfiguration time (median across 10 runs) and
the total amount of communication between the coordinator and the
old and new endorsers (measured with tcpdump).

complexity of Nimble’s TCB is similar to that of ROTE [35]
and Narrator [39], despite the fact that Nimble supports re-
configuration and these prior systems do not. When compared
to TEEMS [22] or CCF [41], Nimble is significantly simpler.
Indeed, it is precisely this simplicity that allowed us to for-
mally prove the safety of the core protocol of Nimble using
the Ironfleet methodology [27] and the Dafny program veri-
fier [31]. Doing the same for these other works that include
an entire consensus protocol in their TCB is a daunting task.

7.4 Cost of reconfiguration

One of the key innovations in Nimble is the ability to se-
curely reconfigure from one set of endorsers to another. As

we explain in Section 5.2, this process requires “finalizing”
existing endorsers, which effectively stops request processing
while the reconfiguration takes place. Hence, reconfiguration
time impacts the availability of Nimble. There are two factors
that affect this time: (1) the number of ledgers in the system,
and (2) the difference between the number of ledger entries
processed by the endorsers. We find that (1) is the dominat-
ing factor given that the fast network and endorsers running
on similar hardware in our experimental setup lead to small
differences in which ledger entries they have processed.

To measure the impact of (1), we conduct an experiment
where we populate the system with a varying number of
ledgers and then induce a reconfiguration to replace an exist-
ing set of three endorsers to a brand new set of three endorsers
running on different machines (also on three different avail-
ability zones). Figure 5 depicts the results for both total time
and network communication. We observe a near-linear cost
increase in reconfiguration time in terms of the number of
ledgers. This cost comes from a variety of factors: (i) hashing
of the state at existing endorsers; (ii) determining which state
to initialize the new endorsers and transferring that state; and
(iii) hashing and verification of the provided state at the new
endorsers (e.g., the verify_state method).

Balancing costs. Given that Nimble’s cost of reconfiguration
is high when the system supports many ledgers, and such cost
translates directly to service unavailability, one possibility is
to partition the ledger space so that disjoint sets of endorsers
are responsible for different sets of ledgers. In this manner,
if an endorser in one of the partitions fails, the provider can
perform a reconfiguration that changes only the ledgers within
this partition—without needing to touch the other partitions.
Of course, disaster scenarios such as an entire availability
zone going down could still require endorsers in all partitions
to be swapped, but this is a rarer event.

7.5 Integrating applications with Nimble

One important consideration with a system like Nimble is how
would existing applications use it. To answer this question,
modify the Hadoop Distributed File System (HDFS). We
choose HDFS because (1) it has a lot of state at many different
components and (2) any cloud customer who runs a data
analytics application that uses HDFS is vulnerable to rollback

204 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

5000

10000

15000

create mkdir open delete fileStatus rename

th
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Baseline Nimble (In-memory) Nimble (Table)

FIGURE 6—Results of NNThroughputBenchmark on an HDFS
deployment (Baseline) and a deployment of Nimble-HDFS.

0

100

200

300

400

WordCount sort TeraSort eDFSIO-R eDFSIO-W PageRank

co
m

p
le

ti
o

n
 t

im
e

(s
ec

)

Baseline Nimble (Table)

FIGURE 7—Results of Intel’s HiBench with a dataset scale set to
“large” on a MapReduce deployment running on top of standard
HDFS (Baseline) and a Nimble-HDFS backed by Azure Table.

attacks today—even if HDFS and their application runs on
confidential computing servers. Hence, a rollback-resistant
HDFS would provide significant benefit.

We spent three person months modifying HDFS to inte-
grate with Nimble, for a total of 1,689 lines of Java. We
discuss the specifics in [11, Appendix B]. At a high level, we
observe that HDFS logs data and metadata in order to recover
from crash failures. These logs are committed to disk either
synchronously or periodically in batches (in which case the
system might lose the latest uncommitted state during a fail-
ure). While these logs are in memory, we can protect them by
running HDFS’s namenode and datanode inside TEEs. How-
ever, as soon as they are written to disk, they are vulnerable to
rollback attacks. We identified all such events in HDFS and
replaced them with the approach in Section 3.1. The result is
Nimble-HDFS, a version of HDFS that detects rollbacks.

To measure this overhead, we provision two Azure F64s
v2 machines, one to run the namenode and the other the
datanode of HDFS or Nimble-HDFS. We then run Hadoop’s
NNThroughputBenchmark [9], which is a standard bench-
mark that measures the performance of HDFS operations
such as create, mkdir, etc. We configure Nimble-HDFS to
append an entry to Nimble every 100 operations. At the peak
throughput, the window of vulnerability is tens of ms.

Figure 6 depicts our results. For some operations, Nimble-
HDFS has no overhead over the baseline, particularly those
that do not append entries to Nimble (deviations are basically
experimental noise). For others, Nimble-HDFS introduces
up to a 2 or 3× overhead over the baseline, depending on
the backing store. This cost comes from computing digests,
sending them over HTTP to Nimble’s endpoint, and flushing
operations to disk before moving on.

At first glance, these added costs might appear problematic.

But the reality is that the overhead of Nimble-HDFS is mini-
mal for real applications. To demonstrate this, we run Intel’s
HiBench Suite [2], which consists of big data applications
that run on top of MapReduce. We configure MapReduce to
use either standard HDFS or Nimble-HDFS. The results are
in Figure 7. As we can see, there is essentially no difference
in the job completion time for most of these applications
when using Nimble; the exception is the extended DFSIO
benchmark which is I/O heavy and is meant to measure the
performance of the underlying HDFS instance.

8 Related work
This section discusses works that directly relate to Nimble;
while there are many other works on building untrusted stor-
age systems [14, 16, 24, 33, 34, 36], our focus here is on
projects that guarantee linearizability.

Rollback protection. Many TEEs (e.g., Intel SGX) support
sealing. Sealing enables applications running inside TEEs to
encrypt and sign their state with secret keys known only to
the TEE, prior to storing in untrusted disk. Sealing alone does
not provide rollback protection, but one can additionally use
monotonic counters supported by TEEs. There are several
drawbacks to this combination. First, operations on counters
are slow (e.g., increment latencies are 80–250ms) and wear
out in a few days [12, 35], though recent systems like SPE-
ICHER [12] partially address this issue. Second, monotonic
counters are not as secure as expected (e.g., removing the
BIOS battery or reinstalling TEE software often resets these
counters). Finally, monotonic counters are specific to a given
machine so a crashed application cannot be launched on a
different machine—which is unacceptable in cloud settings.

Memoir [40] provides rollback protection by maintaining a
history of application requests in an append-only hash chain
(which itself is in an untrusted storage) and tracking tail of
the chain in a trusted non-volatile memory supported by a
TPM. If an application restarts, it uses state in the trusted
non-volatile memory and the hash chain to reconstruct its
state. Ariadne [45] similarly uses a TPM’s non-volatile mem-
ory but with a different abstraction (counter instead of hash
chain). The challenge with these approaches in cloud settings
is that, if the TPM or its machine fails, the system becomes
unavailable. Nimble solves this challenge by developing a
fault-tolerant version of Memoir that stores the state in several
TEEs’ volatile memory and supports reconfiguration.

ROTE [35], Narrator [39], and TEEMS [22] are similar to
Nimble in that they propose a solution to help confidential ap-
plications in TEEs detect rollbacks. The main difference with
Nimble is that these works lack a reconfiguration protocol, so
there is no obvious way to add or remove replicas.

CCF [41] provides rollback-resistance and supports recon-
figuration but it is significantly more complex than Nimble
and has a very large TCB since it is designed to run and
validate smart contracts and other blockchain constructs.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 205

Kaptchuk et al. [29] formalizes the interactions of a TEE
with an append-only ledger as a way to provide rollback
protection. A key distinction with Nimble is that their work
assumes the existence of the ledger, whereas Nimble focuses
on building the ledger itself.

Wang et al. [49] study pitfalls with running a crash fault-
tolerant replication protocol inside TEEs to achieve a Byzan-
tine fault-tolerance. In particular, they describe concrete at-
tacks including rollback attacks on state kept by individual
nodes on their local disks. For rollback attacks, they propose
a solution based on ROTE [35] that inherits its drawbacks.

Replicated systems with a small TCB. A2M [18] and
Trinc [32] propose trusted primitives for nodes in a distributed
system to prevent malicious nodes from equivocating (i.e.,
sending conflicting messages to different nodes). Unfortu-
nately, these trusted primitives do not aim to provide fault-
tolerance on their own. A straightforward use of a replication
protocol to add fault-tolerance (including reconfigurations)
results in a large TCB, analogous to CCF’s.

A recent line of work focuses on using minimal trusted
primitives to improve various aspects of replication proto-
cols. Yandamuri et al. [52] use a Trinc-type minimal trusted
hardware in communication-efficient Byzantine fault-tolerant
protocols [10, 53] to preserve communication efficiency while
achieving improved fault thresholds. Similarly, Damysus [21]
separates safety and liveness concerns in HotStuff [53] and de-
scribes minimal trusted components that improve fault thresh-
olds. Hybster [13] and FlexiTrust [26] observe that Trinc-type
trusted hardware forces sequential invocations of consensus
instances, so they introduce variants that support parallel in-
stances and achieve better performance. Unfortunately, these
works do not yet support reconfiguration.

9 Discussion
9.1 Disaster recovery

Recall that Nimble runs a set of endorsers inside TEEs and re-
ceipts consist of signatures from a quorum of endorsers. This
raises a question: what happens if Nimble loses a majority of
endorsers? If the endorsers are alive but disconnected (e.g.,
network partition), then Nimble will experience unavailability
until a quorum is accessible again. If the endorsers actually
crashed and their volatile state is gone, then we refer to this
scenario as a total disaster. This could happen for a number of
reasons. Perhaps the service provider experiences a massive
attack or a natural disaster takes down multiple datacenters.

The good news is that total disasters do not affect safety
properties like freshness. By design and implementation, en-
dorsers cannot be restarted. If Nimble loses a majority of its
endorsers, then there is no longer a quorum of endorsers that
can sign responses that a client will accept. The bad news is
that this leads Nimble to lose liveness.

There are some ways to reduce the chance of total disasters.
The most important one is with a reconfiguration protocol

so that failures do not pile up and cause the system to lose
a quorum of endorsers. This is why we developed one for
Nimble. Second, deploy endorsers in different fault domains
(cloud providers already do this for their replicated systems).

Even with such measures, total disasters could still occur.
Unfortunately, there is no “playbook” for how to proceed. An
option is for customers to periodically snapshot the tails of
their ledgers and store them in some location they trust. After
a total disaster, the customer can ask the service provider if
they have a snapshot that is more recent than the one they have
(the customer can check that it includes more updates than
their own and in fact the snapshot is legitimate by verifying
receipts). Then, customers can explicitly ask the service to
create a new instance of Nimble that starts with that agreed-
upon snapshot. Of course, if the snapshot is stale then the
system will not reflect the most recent operations (i.e., the
responses will not be fresh), but observe that a provider cannot
do this unilaterally: the customer must explicitly ask for it. If a
customer does not want to maintain snapshots, then an option
is to accept a snapshot provided by the provider (the customer
can still verify that some prior endorsers signed those tails).
This might be acceptable in extreme situations such as when
the total disaster was due to a public natural disaster that took
down datacenters where endorsers were deployed.

9.2 TCB changes

Our description has so far assumed that endorsers’ trusted
code does not change (i.e., when verifying receipts Rexist and
Rnext, an endorser checks that its own measurement matches
the measurements of an existing quorum of endorsers and
those of a new quorum of endorsers). But what if that trusted
code needs to be updated? For example, if there was an update
to a library or the attestation verification procedure changed.

To address this, we sketch a solution, which omits the afore-
mentioned check requiring measurements to match; instead
customers have to do certain checks. Specifically, the service
provider persists Rexist and Rnext whenever a reconfiguration
occurs, along with a copy of the code running in an endorser
(and other configuration information to reproduce binaries
loaded inside TEEs). The provider then uses this information
to prove to customers that all configuration changes (includ-
ing code changes in the TCB) were legitimate. Customers
must audit code changes and verify attestation reports, and
decide whether to accept the latest set of endorsers.

Note that the above proposal crucially assumes that when-
ever the provider reconfigures from an existing set of en-
dorsers E to a new set of endorsersN with a new trusted code,
a quorum of endorsers in E was not exploited by an adversary
before the reconfiguration. This is because after a quorum
of endorsers in E finalize their state (which is necessary for
reconfiguration), they erase their signing keys (Footnote 2).
However, there is no known way to prove that the trusted code
was updated before it was exploited by an adversary.

206 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgments

We thank Leslie Lamport, Melissa Chase, the OSDI reviewers, and
our shepherd, Brad Karp, for their thorough comments and helpful
conversations. We thank Jonathan Lee and Jay Lorch for helpful dis-
cussions when the project began, and Amaury Chamayou and Cédric
Fournet for helping us better understand CCF. We also thank Ahmad
Abdullateef, David Altobelli, Anil Bazaz, Pushkar Chitnis, Greg
Kostal, Hervey Wilson, and Sergio Wong for helping us identify
requirements that Nimble must support. Basu and Jaeger were sup-
ported in part by the U.S. Army Combat Capabilities Development
Command Army Research Laboratory under Cooperative Agree-
ment Number W911NF-13-2-0045 (ARL Cyber Security CRA) and
NSF grant CNS-1816282. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the Combat Capabilities Development Command Army Research
Laboratory of the U.S. government. The U.S. government is autho-
rized to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation here on.

References
[1] Big data analytics on confidential computing with Apache

Spark on Kubernetes. https://learn.microsoft.com/en-
us/azure/architecture/example-
scenario/confidential/data-analytics-
containers-spark-kubernetes-azure-sql.

[2] HiBench Suite: The bigdata micro benchmark suite.
https://github.com/Intel-bigdata/HiBench.

[3] Nimble: Rollback Protection for Confidential Cloud Services.
https://github.com/Microsoft/Nimble.

[4] Open Enclave SDK.
https://github.com/openenclave/openenclave.

[5] Reference architecture for privacy preserving machine
learning with Intel SGX and TensorFlow serving.
https://www.intel.com/content/www/us/en/
developer/articles/technical/privacy-
preserving-ml-with-sgx-and-tensorflow.html.

[6] Technology preview for secure value recovery.
https://signal.org/blog/secure-value-recovery/.

[7] PySyft, PyTorch and Intel SGX: Secure aggregation on trusted
execution environments. https:
//blog.openmined.org/pysyft-pytorch-intel-sgx/,
2020.

[8] Fledge services for chrome and android.
https://developer.chrome.com/blog/fledge-
service-overview/, 2022.

[9] Hadoop benchmarking.
https://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-common/Benchmarking.html,
2022.

[10] I. Abraham, D. Malkhi, and A. Spiegelman. Validated
asynchronous byzantine agreement with optimal resilience
and asymptotically optimal time and word communication.
arXiv, 2018.

[11] S. Angel, A. Basu, W. Cui, T. Jaeger, S. Lau, S. Setty, and
S. Singanamalla. Nimble: Rollback protection for confidential

cloud services (extended version). Cryptology ePrint Archive,
Paper 2023/761, 2023.

[12] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. SPEICHER: securing LSM-based key-value
stores using shielded execution. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST),
2019.

[13] J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids:
SGX-based high performance BFT. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
2017.

[14] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza.
Rollback and forking detection for trusted execution
environments using lightweight collective memory. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2017.

[15] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the intel sgx
kingdom with transient out-of-order execution. In
Proceedings of the USENIX Security Symposium, 2018.

[16] C. Cachin, A. Shelat, and A. Shraer. Efficient
fork-linearizable access to untrusted shared memory. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2007.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
Sgxpectre attacks: Leaking enclave secrets via speculative
execution. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2019.

[18] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), page 189–204, 2007.

[19] V. Costan and S. Devadas. Intel sgx explained. Cryptology
ePrint Archive, Paper 2016/086, 2016.
https://eprint.iacr.org/2016/086.

[20] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In
Proceedings of the USENIX Security Symposium.

[21] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu. DAMYSUS:
streamlined BFT consensus leveraging trusted components. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2022.

[22] B. Dinis, P. Druschel, and R. Rodrigues. Rr: A fault model for
efficient tee replication. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2023.

[23] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast remote memory. In Proceedings of the USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

[24] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
Sporc: Group collaboration using untrusted cloud resources.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[25] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. Journal of the ACM (JACM),
43(3), 1996.

[26] S. Gupta, S. Rahnama, S. Pandey, N. Crooks, and M. Sadoghi.
Dissecting BFT consensus: In trusted components we trust! In

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 207

https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://github.com/Intel-bigdata/HiBench
https://github.com/Microsoft/Nimble
https://github.com/openenclave/openenclave
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://signal.org/blog/secure-value-recovery/
https://blog.openmined.org/pysyft-pytorch-intel-sgx/
https://blog.openmined.org/pysyft-pytorch-intel-sgx/
https://developer.chrome.com/blog/fledge-service-overview/
https://developer.chrome.com/blog/fledge-service-overview/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://eprint.iacr.org/2016/086

Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2023.

[27] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill. IronFleet: Proving
practical distributed systems correct. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
2015.

[28] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS), 12(3), July
1990.

[29] G. Kaptchuk, I. Miers, and M. Green. Giving state to the
stateless: Augmenting trustworthy computation with ledgers.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2019.

[30] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In Proceedings of the USENIX Security
Symposium, 2017.

[31] R. Leino. Dafny: An automatic program verifier for functional
correctness. In Proceedings of the Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR),
2010.

[32] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: Small trusted hardware for large distributed systems. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

[33] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[34] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[35] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun. ROTE: Rollback
protection for trusted execution. In Proceedings of the
USENIX Security Symposium, 2017.

[36] D. Mazières and D. Shasha. Building secure file systems out
of byzantine storage. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC), 2002.

[37] moxie0. Technology preview: Private contact discovery for
Signal. https://signal.org/blog/private-contact-
discovery/, 2017.

[38] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,
and F. Piessens. Plundervolt: Software-based fault injection
attacks against intel SGX. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

[39] J. Niu, W. Peng, X. Zhang, and Y. Zhang. Narrator: Secure
and practical state continuity for trusted execution in the cloud.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2022.

[40] B. Parno, J. Lorch, J. J. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2011.

[41] M. Russinovich, E. Ashton, C. Avanessians, M. Castro,
A. Chamayou, S. Clebsch, M. Costa, C. Fournet, M. Kerner,

S. Krishna, J. Maffre, T. Moscibroda, K. Nayak,
O. Ohrimenko, F. Schuster, R. Schwartz, A. Shamis,
O. Vrousgou, and C. M. Wintersteiger. CCF: A framework for
building confidential verifiable replicated services. Technical
Report MSR-TR-2019-16, Microsoft, April 2019.

[42] S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and
J. Ren. Realizing the fault-tolerance promise of cloud storage
using locks with intent. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2016.

[43] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos,
A. Dragojevic, D. Narayanan, and M. Castro. Fast general
distributed transactions with opacity. In Proceedings of the
ACM International Conference on Management of Data
(SIGMOD), June 2019.

[44] W. Shen, A. Khanna, S. Angel, S. Sen, and S. Mu. Rolis: A
software approach to efficiently replicating multi-core
transactions. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2022.

[45] R. Stackx and F. Piessens. Ariadne: A minimal approach to
state continuity. In Proceedings of the USENIX Security
Symposium, 2016.

[46] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, I. Khoffi, and B. Ford. Keeping
authorities" honest or bust" with decentralized witness
cosigning. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2016.

[47] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking Transient Execution through Microarchitectural
Load Value Injection. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020.

[48] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam,
C. Garman, D. Genkin, A. Miller, E. Ronen, and Y. Yarom.
SoK: SGX.Fail: How stuff get eXposed. https://sgx.fail,
2022.

[49] W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang.
Engraft: Enclave-guarded Raft on Byzantine faulty nodes. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2022.

[50] wrk2: A constant throughput, correct latency recording variant
of wrk. https://github.com/giltene/wrk2.

[51] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2015.

[52] S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter.
Communication-efficient BFT protocols using small trusted
hardware to tolerate minority corruption. Cryptology ePrint
Archive, Paper 2021/184, 2021.

[53] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2019.

[54] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu.
Fault-tolerant and transactional stateful serverless workflows.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

208 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://sgx.fail
https://github.com/giltene/wrk2

Kerveros: Efficient and Scalable Cloud Admission Control

Sultan Mahmud Sajal1,3 Luke Marshall1 Beibin Li1 Shandan Zhou2 Abhisek Pan2

Konstantina Mellou1 Deepak Narayanan1 Timothy Zhu3 David Dion2

Thomas Moscibroda2 Ishai Menache1

1Microsoft Research 2Microsoft Azure 3Pennsylvania State University

Abstract
The infinite capacity of cloud computing is an illusion: in
reality, cloud providers cannot always have enough capacity
of the right type, in the right place, at the right time to
meet all demand. Consequently, cloud providers need to
implement admission-control policies to ensure accepted
capacity requests experience high availability. However,
admission control in the public cloud is hard due to dynamic
changes in both supply and demand: hardware might become
unavailable, and actual VM consumption could vary for a
variety of reasons including tenant scale-outs and fulfillment
of VM reservations made by customers ahead of time. In
this paper, we design and implement Kerveros, a flexible
admission-control system that has three desired properties:
i) high computational scalability to handle a large inventory,
ii) accurate capacity provisioning for high VM availability,
and iii) good packing efficiency to optimize resource usage.
To achieve this, Kerveros uses novel bookkeeping techniques
to quickly estimate the capacity available for incoming VM
requests. Our system has been deployed in Microsoft Azure.
Results from both simulations and production confirm that
Kerveros achieves more than four nines of availability while
sustaining request processing latencies of a few milliseconds.

1 Introduction
Cloud capacity appears to be limitless. However, in reality,
cloud providers need to deal with the limitations of data-
centers with a finite number of machines while respecting
contractual service-level agreements (SLAs) that provide
availability guarantees to customer VMs. These SLAs might
be severely compromised if the provider runs out of resources.
Additionally, users expect predictability: not being able to
launch new VMs when required can critically impact a
customer’s business [31]. An admission-control system is
thus necessary to ensure cloud providers do not overcommit
resources, provide seamless elasticity, and are robust to
capacity loss due to failures. This paper describes the design
and implementation of Kerveros: a scalable and efficient

admission-control system for Microsoft Azure.
Admission control in the cloud is hard because it needs

to account for a variety of fluctuations in both supply and
demand across a large number of workload and machine types.
On the supply side, datacenter machines and racks regularly
fail at scale and maintenance tasks like software updates
may also require rebooting machines. The cloud provider
needs to maintain high availability amidst both deterministic
and stochastic events by keeping enough resources free
to provide seamless failover if necessary. On the demand
side, to facilitate predictability, cloud providers have recently
introduced the notion of “reserved resources” (or capacity
reservations) [4, 6, 7, 20, 35] to guarantee the availability of
capacity in the future. With such reservations, customers
pay to have the provider set aside resources that can be
claimed later. Accordingly, admission-control systems need to
accommodate both on-demand VM requests and reservations.

The goal of our cloud admission-control system is to ensure
that it simultaneously achieves high computational scalability
and a low rate of SLA violations while avoiding inefficient
capacity usage (which can lead to negative margins). One
possible approach to accomplish this is to re-use existing VM
allocators [21, 43] to directly allocate space for reservations,
maintenance, and potential tenant growth (scale-outs). How-
ever, such a “placeholder” approach is slow and inherently
inflexible, since the capacity allocated to such placeholders
cannot be immediately used for other incoming VM requests
that can pack well in the reserved space.

Instead, our solution is based on an approximate buffer
approach that avoids early binding of placeholders. At a high
level, we maintain buffers of resources for handling failures,
maintenance, growth, reservations, etc., and track the total
number of remaining resources after accounting for currently
running VMs and buffers. Implementing this idea involves
several algorithmic challenges, such as reasoning about the
capacity required by VMs with multi-dimensional resource
demands (e.g., CPU, memory, disk), quantifying the impact
of buffers on a large variety of possible VM requests (e.g.,
Azure has more than 1000 VM types; see Figure 3 for details),

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 209

60

60

20

20

20

20

20

20

100
50

Empty system

(i) Large buffer (ii) Small buffer

or

+ + New Request =Buffer

60 60

Potential packing placements, depending on shape of buffer and allocation algorithm

(i) Large buffer (ii) Small buffer

20

20

20

20

20

20

50

20

20

20

20

20

20

50

20

20

20

20

20

20

or or

or

Figure 1: Consider an empty cluster of two machines with capacity 100 units each. Suppose one reservation with total size of
120 has already been accepted. We consider two cases: (i) the reservation consists of two VMs of size 60; (ii) the reservation
consists of six VMs of size 20. A new single VM request of size 50 enters the system. Note that by solely taking the available
capacity units into account (i.e., 200−120 = 80 ≥ 50), the system would accept the new request in both cases. However, when
accounting for packing considerations, the request should be accepted only in case (ii). Further, if the underlying allocation
algorithm was designed to load balance the VMs corresponding to a reservation, then the request should be rejected in both cases.

simultaneously accounting for buffers defined at different
levels of the datacenter hierarchy (e.g., cluster vs. zone), and
mimicking how the allocator would place VMs belonging to
admitted reservations. Indeed, simple back-of-the-envelope
buffer calculations might result in two undesired scenarios:
(i) rejecting a request that can actually fit in the cloud, or
worse, (ii) accepting a request at the cost of compromising
reservation and availability guarantees; Figure 1 illustrates
this scenario.

To address these challenges, we introduce a novel admis-
sion control mechanism which relies on Allocable VM (AV)
counts, a bookkeeping technique for quickly determining the
capacity available for an incoming VM request or reservation.
The AV count, defined per VM type, quantifies the number of
VMs that can fit in the inventory at a given time, and reduces
the multi-dimensional problem into a formulation with a
single dimension (the AV count). Kerveros exposes AV counts
to the allocator, which can then accept or reject incoming VM
or reservation requests based on a simple comparison (i.e.,
is the requested capacity less than the current AV count?).
Importantly, this allows the allocator to respond to requests
with high throughput and low latency, a critical requirement
for extreme-scale VM allocation platforms [21, 43].

To enable these highly efficient capacity checks, we de-
sign the Conversion Ratio Algorithm (CRA), which allows
Kerveros to quickly translate all buffer sizes to a common
unit: the AV count of the incoming request’s VM type.
We supplement CRA with a data-driven Linear Adjustment
Algorithm (LAA), which periodically emulates the allocator
to reduce potential biases of CRA. We implement these
algorithms in Azure’s resource-allocation platform, while
selectively reusing and enhancing existing allocator infras-
tructure (e.g., data stores, request handling agents, etc.). We
further accelerate the algorithm with a caching layer that
allows for incremental AV count updates.

Our results from both simulation and production mea-
surements demonstrate that Kerveros sustains at least four
nines of availability without any significant degradation

in request-processing throughput. Our admission-control
strategy estimates the available capacity with less than 1%
error at the 95th percentile. Importantly, this level of accuracy
enables Azure to avoid capacity wastage, leading to high
return on investment (ROI). We emphasize that for today’s
global-scale cloud providers, even a 1% improvement in such
a capacity-efficiency metric can be worth 100s of millions of
dollars in saved hardware expenditure, translating to sizable
impact on the cloud provider’s bottom-line margin.

To the best of our knowledge, this paper is the first to
describe the design, implementation and evaluation of an
admission-control system deployed in a large public cloud.
Prior research on datacenter resource management (e.g.,
Protean [21] and Borg [43,45]) focuses mostly on on-demand
VM placement. The closest work available is Meta’s RAS
system [34], which partitions resources at the granularity of
machines to different sub-organizations and periodically re-
assigns machines across partitions by solving a mixed integer
linear program. While this approach can suit a first-party
workload with a modest number of partitions, it is less efficient
for dynamic public-cloud workloads (§5).

In summary, our main contributions are:

• The design of scalable and efficient admission-control
algorithms for a large and heterogeneous public cloud
inventory (§3).

• A robust system design that separates the admission-control
logic from the components that enforce it, allowing for
latencies of a few milliseconds for admission and placement
decisions (§4). Our system has been successfully deployed
in Microsoft Azure.

• Our extensive evaluation using measurements from both
simulations and production demonstrate that our design
achieves scalable and accurate admission control (§5).

• Supplementary to this paper, we release a new trace that
can be used by the research community to design and
test different packing and admission-control algorithms:
https://github.com/Azure/AzurePublicDataset.

210 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/Azure/AzurePublicDataset

Availability Zone

Datacenter

Cluster

Rack

Machine

Figure 2: Cloud topology. A zone contains one or more
datacenters that house a heterogeneous mix of clusters. Each
cluster is comprised of homogeneous machines organized in
racks. Racks provide isolation for fault tolerance.

2 Background and Motivation
Microsoft Azure is a large public geo-distributed cloud
provider with a massive global footprint. Resources in Azure
are organized into regions, each of which consists of one
or more availability zones (Figure 2). Every zone contains
one or more datacenters. Each datacenter is further divided
into clusters and racks. Each cluster has a homogeneous
set of machines (or servers); however, a zone can have a
heterogeneous mix of clusters. As Figure 3 shows, zones
can have tens of different hardware types. A zone can have
hundreds of thousands of machines, while a cluster is much
smaller (at most a few thousand machines).

Each zone has its own allocation service (or simply, alloca-
tor) that assigns VMs to physical machines. The assignment
(or placement) considers a set of hard and soft constraints,
which are evaluated sequentially for each VM. Examples of
hard constraints include not violating the physical capacity of
a machine and not running a VM type on hardware that does
not support it. An example of a soft constraint is to prefer an
already-occupied machine to increase packing efficiency [21].

In this section, we discuss the general resource manage-
ment problem in Azure by focusing first on challenges arising
from both dynamic and diverse demand patterns (§2.1), as
well as fluctuations in the available compute supply (§2.2).
These challenges, coupled with the fact that demand might
exceed supply, motivate the need for a robust admission-
control system; we outline its requirements in §2.3.

2.1 Demand Versatility
Azure has multiple different offerings for compute, which
each impose specific requirements on the underlying alloca-
tion system.

VM requests. Azure has multiple hardware generations in
its datacenter and offers over a thousand VM types. The
majority of VM types are supported on most hardware
generations, but some types require specialized hardware (e.g.,
GPUs for ML). We note that other major cloud providers like
AWS and GCP also offer a large number of VM types [5, 19].

0 20 40
0
5

10
15
20

hardware types

Fr
ac

tio
n

(%
)

400 600 800 1,000
0
5

10
15
20

supported VM types

Figure 3: Histograms for number of different hardware types
(left) and supported VM types (right) across Azure zones.

New VM types are regularly introduced as new hardware
types and scenarios are onboarded to the cloud.

On-demand VM requests are the most common capacity
consumption mode. A VM request specifies the type of the
VM (which in turn determines the number of CPU cores,
memory, disk, network requirements for the VM, and optional
accelerators) and the VM’s priority. Multiple VM requests
may be grouped into a tenant request. A tenant request is
accompanied by a tenant service model, where additional
constraints can be imposed on the collection of VM requests
(e.g., fault-domain requirements).

By default, VMs are spread across an entire zone. However,
a tenant may request all its VMs be co-located within specific
inventory boundaries such as a cluster or datacenter. A tenant
using legacy Azure services can also be pinned to a single
cluster; this means that such a tenant cannot create new VMs
outside its cluster.

A tenant request succeeds only if all its associated VM
requests are successfully allocated. There is no explicit SLA
on allocation time, but it is desirable to keep these times
as low as possible to ensure a fast and reliable deployment
experience. The volume of VM requests is large: a zone can
handle more than two million requests in a day. The demand
pattern can be quite bursty: Figure 4 shows that a zone can
easily receive a few thousand requests per minute. Hence, low
latency and high throughput are critical requirements for the
VM allocation service (see §2.3).

Higher-order consumption modes, such as Function-as-a-
Service (FaaS or serverless computation [39]) are internally
provisioned through VMs.

Customer scale-outs. Customers may decide to increase
the number of VMs in their tenants; these are termed tenant
scale-outs. Any allocation request, including a scale-out
request, must be handled within milliseconds; the system can
either accept or reject the scale-out request based on available
capacity. Though there is no external acceptance SLA for
scale-outs, Azure internally tracks the acceptance rate of these
requests and attempts to sustain very high acceptance rates (at
least 4 nines). Towards this end, the admission-control logic
must explicitly reserve capacity within individual clusters
for scale-out of pinned tenants (see §3.1). We note that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 211

0 4 8 12 16 20 24
0

1k

2k

3k

Time of day (hours)

#
A

llo
ca

tio
ns

/m
in Maximum Median

Figure 4: Number of high-priority allocations per minute for
a zone over a day, aggregated over a 2-week period. Demand
in the tail is bursty with large spikes.

1 10 100 1,000
60

80

100

Number of VM instances in tenant

A
cc

ep
tr

at
e

(%
) first-party

only

Figure 5: Tenant size versus allocator’s acceptance rate. Data
is obtained from one zone during a busy month. Tenant
requests above 300 VMs are currently offered only internally.

Azure does not distinguish between scale-outs and new tenant
requests for tenants that can span across an entire zone.

Reservations. Consider a scenario where a user wishes to
terminate their VMs for the day, but expects to re-instantiate
the VMs the following morning. Doing so through a regular
on-demand tenant request might result in delays if capacity
is not immediately available in the morning. As Figure 5
shows, this issue is exacerbated for large tenant requests. To
address such scenarios, Azure offers the reservation option.
A reservation request includes the VM type and the quantity.
A reservation need not result in actual allocation of VMs;
instead, it serves as a commitment from Azure to provide the
desired number of VMs in the future, whenever the customer
decides to materialize the reservation.

Reservations are active as soon as the request is accepted
(i.e., we do not support reservation requests with future start
dates). The user can terminate a reservation at any time. To
support economy of scale, VMs that are created against a
reservation cannot be pinned to a single cluster. This basic
reservation model is offered by large public clouds as an
On-Demand Capacity Reservation [4, 7]. We briefly discuss
direct extensions of this basic reservation model, such as
reservations with a future start date, in §6. Other reservation
models are surveyed in §7.

2.2 Supply Fluctuations
Supply in Azure can change dynamically. In this subsection,
we outline the situations that can trigger these changes.

0 5 10 15 20 25
3.30

3.60

3.90

R
at

io
(%

)

Machine Network

0 5 10 15 20 25

0.01

0.03

0.05

Day

Figure 6: Network and machine failures across 30 days. The
average network failure is around 0.01%, but each network
failure can affect several machines. Outside of network
failures, ~3.5% of machines are in a failed state every day.

Machine and other hardware failures. Figure 6 shows the
failure frequencies for machines and network hardware over a
period of 30 days. As the figure demonstrates, a network
failure is much less probable. However, network failures
impact more machines (e.g., a top-of-rack switch can affect
around 50 machines). The cloud provider has to account
for such failures and set aside capacity to migrate the VMs
in affected machines to respect availability SLAs. It is thus
crucial to both predict and have readily available mitigation
for such failures.

Additional events affecting supply. Azure, like any other
large cloud supplier, experiences other events that affect
the available supply. One can roughly classify these events
based on their predictability. Deterministic events include
planned maintenance of machines (e.g., software updates)
and decommissioning of hardware. Stochastic events include
urgent security updates to patch a zero-day vulnerability,
hotfixes to handle software bugs, and malicious attacks that
overload the system.

2.3 Admission Control
We now describe the problem of admission control, and
highlight requirements and design challenges for Kerveros.
Admission control can be defined as the set of decisions that
determine the acceptance of any form of resource request (new
tenant, scale-out, reservation). Admission-control decisions
need to take into account not only the present state of the zone,
but also potential realizations of future state. Future state
is influenced by a variety of factors including reservations
that have been admitted but not yet materialized, potential
hardware failures, tenant scale-outs, etc.

Challenges. As mentioned earlier, admission control in the
cloud presents several challenges:

1. Multiple elements affecting demand and supply.
Kerveros has to consider multiple elements with different
characteristics: on the demand side, one has to consider

212 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

different modes of consumption (e.g., tenant vs. reser-
vation requests) as well as potential tenant growth. On
the supply side, we have different types of events (e.g.,
machine failures, rack maintenance) that affect inventory
availability.

2. Zone heterogeneity. Beyond the inherent stochasticity
in demand and supply, it is hard to determine how much
capacity to set aside since not all machines can serve all
VM types. For example, a new VM series might be served
only on new hardware generations.

3. Numerous VM sizes and fragmentation. Unlike tra-
ditional resource allocation problems, which are often
“single dimensional”, admission control for the cloud needs
to make decisions for VMs that request different types
of resources (e.g., CPU, memory, disk). These multiple
dimensions can cause fragmentation.

4. Accounting for unclaimed capacity. Reservations and
other types of capacity protection impose an additional
challenge since we would ideally like to “late bind”
resources to such requests. This makes machine utilization
an imperfect metric to determine if enough capacity is
available for a new request.

Requirements. An admission-control system also has to
meet several requirements to operate effectively within the
context of a large cloud provider:
1. Scalability. Even for very large zone inventories, the deci-

sion of whether to accept or reject a tenant or reservation
request has to be made within milliseconds.

2. Respect admitted reservations. All VMs that are re-
quested against a previously accepted reservation should
be fulfilled (i.e., assigned to machines) whenever the user
opts to materialize the reservation.

3. Availability. The cloud provider must ensure high avail-
ability to customers. Accordingly, capacity must be set
aside to facilitate the migration of VMs to other machines
in case of machine failures or other events affecting supply.

4. Elasticity. An admission-control system should reserve
capacity to allow tenants pinned to clusters to scale out.

5. Accuracy. The system should not reject requests when
capacity is in fact available.

6. Efficiency. The system should set aside as little capacity
as possible while satisfying the above properties (i.e.,
increase the return on investment).

Time scale of decision making. We observe that the above
challenges and requirements necessitate that decisions be
made at different time scales. For example, estimating how
much capacity to set aside for failures or growth requires com-
prehensive data analysis that is inherently time consuming.
On the other hand, the VM allocation service itself has to
remain highly performant and process requests at low latency.
Consequently, a natural design choice is to decouple the
overall admission-control responsibility between fast- and
slow-twitch systems. Accordingly, the allocator only executes

low-overhead capacity limit checks to determine whether to
accept or reject a resource request (i.e., admission control
enforcer)1. The entire logic for estimating the available
capacity is performed by Kerveros, the focus of this paper,
and is performed off the critical path.

3 Design of Kerveros
The high-level goal of Kerveros is to answer the following
question: How much capacity is available for an incoming
tenant or reservation request? As described earlier, this
information is used by the allocator to accept / reject requests.

To address the complexities of demand and supply fluctu-
ations (§2), our approach relies on two main concepts: (i)
buffers, to specify a need for capacity; and (ii) allocable
VM count, an auxiliary bookkeeping technique to quickly
determine the available capacity for an incoming tenant or
reservation request.

3.1 Buffers
A buffer is an accounting of capacity that must be protected for
a specific purpose. The allocator treats this capacity as unavail-
able when admitting tenant or reservation requests. Kerveros
supports three buffer types: (i) Reservation buffers to accom-
modate already admitted reservations; (ii) Growth buffers to
accommodate existing tenant growth; (iii) Healing buffers to
accommodate currently-running VMs that might need to be
migrated in case of hardware failures.

As we detail below, we use appropriate counts of VM types
to quantify the size of each buffer. Formally, a buffer is defined
as a tuple (t,x), where t is the VM type and x is the number
of VMs of that type that ought to be protected. The size of
each buffer may change over time. For instance, a reservation
buffer can become smaller as the customer gradually starts
using VMs corresponding to that reservation. On the other
hand, a healing buffer may become larger over time, e.g., as
hardware ages and failures become more likely.

We make an important design choice for buffers: although
capacity is protected, it is not mapped to specific physical
machines. Buffers are defined at higher levels of the cloud
hierarchy (e.g., cluster or zone) to reflect the amount of
capacity that must be protected in aggregate at that level. The
physical allocation occurs only when the protected capacity
is needed to fulfill its purpose. For example, after hardware
failures, healing buffer capacity can be used for migrating
VMs from the affected machines. To ensure maximum
utilization of resources, we use unclaimed protected capacity
to offer spot VMs [2,3], which can be immediately preempted
to free up capacity whenever buffer capacity is claimed.

1For a tenant request, the capacity limit check is immediately followed
by an actual allocation of the VMs to physical machines. For reservation
requests, the allocator performs only the limit check since placement is late-
bound for reservations in our design.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 213

We next provide more details on how Kerveros sets sizes
of buffers of different types.

Reservation buffers. Setting reservation buffers is straight-
forward: the buffer size is set exactly according to the user-
provided reservation requirement. That is, suppose reservation
k requires x VMs of type t within a certain zone; Kerveros
sets the respective zone-level buffer as Rk = (t,x). When the
user claims u VMs of that reservation, the buffer is updated
to Rk = (t,x−u).

Growth buffers. Growth buffers are used at a cluster level
to account for the expansion of existing tenants pinned to
each cluster. Kerveros defines a single growth buffer for each
VM type. Intuitively, the buffer size should be proportional to
the current consumption of that VM type. More specifically,
for a given cluster c and VM type t, let xtc be the current
number of active VMs belonging to tenants pinned to cluster
c. Then we set the corresponding growth buffer to Gtc =
(t,αtcxtc), where αtc > 1 is the effective growth rate. We use
a ML model to set this parameter. In a nutshell, we consider a
small set of possible effective growth rates (e.g., five values
in the range between 1.03 and 1.1). The input features to the
ML model consist of tenants’ information (e.g., account IDs,
VM lifetimes), hardware details (e.g., generation, SKU), and
cluster-specific fragmentation details (intuitively, a cluster
that is “badly” packed would induce higher effective growth
rates); the statistics on fragmentation are obtained from the
allocator. The ML model (implemented using XGBoost) is
trained daily using historical growth data.

Healing buffers. Kerveros uses healing buffers to account
for hardware failures and other events affecting supply (§2).
For example, the protected capacity may be used to migrate
VMs away from non-functional hardware. Since tenants
can be constrained to specific clusters, healing buffers are
maintained at the cluster level. Since full-machine VMs are
the hardest to allocate (as they require a completely empty
machine), the healing buffer is defined in units of full-machine
VMs; formally, the buffer is of the form Hc = (L,xc), where
L denotes the full-machine VM type, and xc is the quantity.

We calculate xc using a data-driven approach. The high-
level idea is to set xc in proportion to the hardware failure
probability (i.e., the buffers should be larger if the failure
probability is higher). More specifically, we would like to
ensure that the total number of non-functional machines
does not exceed the buffer size xc with high probability;
let pc denote that probability (e.g., pc = 99.9%). Towards
this end, we extract from historical failure data the empirical
distribution of the total number of non-functional machines
over a given period of time (e.g., a day). The total number
accounts for a variety of events including machine and
network failures as well as maintenance events. Then, xc is
simply derived as the pc-percentile value of this distribution.
Kerveros may add some slack to the obtained value (e.g.,
10%) for clusters that are highly fragmented (as perceived

by the allocator). The choice of pc is specific to the cluster,
and depends on various factors. For example, Kerveros uses
higher pc values for clusters that have a high ratio of tenants
pinned to that cluster, since such tenants have fewer fallback
options in case of failures.

In rare cases, the healing buffer capacity is increased to
allow completion of urgent software updates.

3.2 Allocable VMs
Kerveros uses the notion of allocable VM counts (AV counts)
to reason about available capacity. Specifically, the AV count,
A[t], gives the number of additional VMs of type t that can
currently fit in the zone. For an incoming VM request of type
t and demand x, Kerveros first calculates2 A[t], and then the
allocator rejects the request if A[t]< x.

In this section, we describe how Kerveros calculates the
AV counts across entire clusters and zones. The calculations
are non-trivial because they require a conversion mechanism
that accounts for buffers of different VM types t defined at
different hierarchies of the datacenter (cluster versus zone).
We note that other approaches that do not explicitly account
for multiple resource dimensions might result in either under-
or over-estimating the available capacity.

3.2.1 Overview

The high-level pseudocode of our AV count calculation is pro-
vided in Algorithm 1. Informally, the algorithm implements
the following calculation:

A[t]=
[

available capacity for
type t across clusters

]
−
[

buffers converted from
type t ′ to type t

]
.

The algorithm starts by initializing the AV counts, ex-
cluding buffers, and accounting only for the active VMs in
the system (Step 1). Since certain buffers are defined only
at a zone level, the algorithm then proceeds to transform
them to cluster-level buffers (Step 2), so that all buffers can
be analyzed at the same level of the cloud hierarchy. The
remaining calculations are done at a cluster level, except a
final aggregation step. The heart of the algorithm is converting
buffers of other VM types into buffers of type t (Step 7) and
then deducting them from the current AV count (Step 8). This
conversion step is the subtle part of the algorithm. We term
the full algorithm the Conversion Ratio Algorithm (CRA).

3.2.2 CRA Algorithmic Details

We next describe each of these steps in detail.

AV count initialization (Step 1). The initialization step
calculates A[t,c]: the number of VMs of type t that can
fit in cluster c, excluding buffers. Each VM type requires
different quantities of the various compute resources (e.g.,
CPU, memory) available in a machine; thus these non-
buffered AV counts are obtained by calculating the maximum

2In practice, we update the AV counts only periodically (every minute),
and use caching to track the updated AV counts. See §4 for details.

214 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 CRA: Calculating AV Counts for a VM type t.

1: Calculate the AV counts excluding buffers: A[t ′,c] for all t ′.
2: Distribute zone-level buffers to clusters.
3: for each cluster c do ▷ Calculate per-cluster counts.
4: ac = A[t,c]
5: Aggregate buffers per VM type.
6: for each aggregate buffer (t ′,x) do
7: Convert buffer from t ′ into type t: C(t ′→ t,x,c).
8: ac −= C(t ′→ t,x,c) ▷ Deduct from current total.
9: Aggregate cluster counts for zone: A[t]= ∑c ac.

number of VMs that can fit in each machine (considering all
resource dimensions) and taking the sum over all machines
in the cluster:

A[t,c]= ∑
machine in

cluster c

min
d

⌊
Available resource d on machine

Required resource d for type t on machine

⌋
.

Going from zone- to cluster-level (Step 2). Kerveros
temporarily breaks down the zone-level reservation buffers
into cluster-level buffers, so that all buffers can be analyzed at
the cluster level. The apportioning to cluster-level buffers is
done by mimicking how the allocator would spread the VMs
across multiple clusters when reservations are materialized.
Considerations that are taken into account include load
balancing, prioritizing newer-generation hardware for new
VM types, and more. We omit details for brevity.

Aggregating cluster buffers per VM type (Step 5). Each
cluster may have multiple buffers of the same VM type. We
aggregate all buffers of the same type into a single buffer by
summing their sizes. Intuitively, having a single buffer makes
the conversion across types (discussed next) less lossy and
more efficient.

Converting buffers into other VM types (Step 7). We
convert a buffer from one type (t ′) to another (t) to estimate
the impact that the original buffer has on allocations of type t.

One way to accomplish this is by using conversion ratios
that encode the relative sizes of VM types t and t ′. However,
naïve conversion ratios have issues, since VMs have multi-
dimensional sizes. To illustrate this, consider a simplified
example with the following assumptions:
• Two requested resource types: CPUs and memory.
• Two VM types: large (2 CPUs, 4 GB) and small (1 CPU, 1

GB).
• Two machine sizes: M1 (25 CPUs, 40 GB) and M2 (25

CPUs, 25 GB).
Table 1 shows the counts of each VM type that can fit in one
empty M1 and M2 machine, and also the counts after adding
10 and 20 small VMs using various counting methods. Simple
conversion ratios based on resource ratios in isolation (CPU
and RAM in Table 1) can lead to sub-optimal (yellow bars)
or incorrect outcomes (red bars). This has repercussions on
packing efficiency and SLA adherence: underestimates can

Machine AV Counts
State Method Large on M1 Large on M2 Small on M1 & M2

Empty Actual 10 6 25

10 small

Actual 7 3 15
CPU 5 1 15
RAM 7 3 15
CRA 6 3 15

20 small

Actual 2 1 5
CPU 0 0 5
RAM 5 1 5
CRA 2 1 5

Table 1: Counts of large and small VMs that can fit in two
machines M1 and M2 using various other conversion-ratio-
based methods compared to the true count (Actual). CPU
treats 1 small VM as 1/2 a large VM, and RAM treats 1 small
VM as 1/4 a large VM.

strand resources (leading to fragmentation and worse packing
efficiency) and overestimates can violate hardware constraints
(leading to SLA violations). The optimal conversion ratio
depends both on the machine size and the VMs already
allocated (i.e., resources remaining on the machine).

We use the ratio of AV counts as a low-dimensional
approximation instead. Formally, a buffer of type t ′ with size
x is converted to a buffer of type t with size:

C
(
t ′→ t,x,c

)
=

⌈
A[t,c]
A[t ′,c]

· x
⌉
.

This works well in practice (empirical results in §5).

Example. To illustrate CRA, we return to the example in
Figure 1. As a quick recap, we consider a single cluster
with two empty machines, each with size of 100 units (for
simplicity, we assume only a single resource dimension). The
three VM types small (S), medium (M), and large (L) have
sizes 20, 50, and 60 units respectively. A single medium-sized
VM is requested – this request is rejected if A[M]< 1. We
first initialize the counts for our VM types (S, M and L):

A[S,c]= 2 ·
⌊

100
20

⌋
= 10, A[M,c]= 2 ·

⌊
100
50

⌋
= 4,

A[L,c]= 2 ·
⌊

100
60

⌋
= 2.

In both scenarios in Figure 1, there is a single incoming
request of size 50 and buffers of 120 units total that need
to be taken into account; the only difference between the
scenarios is the VM type of these buffers:

• Large buffers. Assume that we have two large buffers.
We convert these buffers to type medium, which yields
C(L → M,2,c) = 4 medium VMs. This results in
A[M]= 0 < 1, so we reject the request.

A[M]= A[M,c]−C(L → M,2,c)

= A[M,c]−
⌈
A[M,c]
A[L,c]

·2
⌉
= 4−

⌈
4
2
·2
⌉
= 0.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 215

0 20 40 60 80
0

20

40

60

Day

AV
co

un
t(

%
) Large VM Type

Emulation CRA

0 20 40 60 80

Day

Small VM Type

Figure 7: CRA versus emulation for two VM types, where the
AV count is expressed as a percentage of the total capacity.
Simulated results from a single trace.

• Small buffers. Assume that we have six small buffers.
We convert these buffers to type medium, which yields
C(S → M,6,c) = 3 medium VMs. This results in
A[M]= 1 ̸< 1, so we accept the request.

A[M]= A[M,c]−C(S → M,6,c)

= A[M,c]−
⌈
A[M,c]
A[S,c]

·6
⌉
= 4−

⌈
4

10
·6
⌉
= 1.

In Appendix A, we provide a theoretical analysis of CRA
under simplified assumptions; specifically, we prove that the
conversion results in a bounded waste of resources.

3.2.3 Linear Adjustment Algorithm (LAA)

The Conversion Ratio Algorithm offers an efficient and
scalable approach for obtaining the AV counts. Nevertheless,
the output of this algorithm might sometimes be fairly
inaccurate. The main reasons for inaccuracy are potential
fragmentation issues while dealing with conversion between
multi-dimensional VM types and not explicitly modeling how
the VMs would be placed using the allocator (e.g., erroneously
assuming the rightmost outcome in Figure 1 and rejecting the
new request).

The above limitations can be mitigated if Kerveros could
emulate the placing of the different buffers and filling up of
the inventory by allocating VMs using the allocator. This
is the main idea behind the Linear Adjustment Algorithm
(LAA). Since such emulation is compute-intensive and time-
consuming, we run it periodically (every 30 minutes) and
in isolation, i.e., without interfering with the handling of
customer requests (more details in §4.1.2). We then use the
emulation result to calibrate CRA’s output.

To see how the emulation output should be accounted for,
we compare its output to CRA’s output. Figure 7 shows a time
series of emulation and CRA’s output for two different VM
types. We observe that the gap between the two methods is
steady at times, but is spiky at other times. The LAA should
account for both these phenomena.

Formally, for any VM type t, let A′[t] and E′[t] be the AV
counts obtained by CRA and the allocator emulation at the
time when the emulation was run last, respectively. We then

Client Services

Allocation Request Reservation Request

Allocation Placement Updates

Intelligence for AV Count

Reservation Metadata Updates

Allocation Result Reservation Result

Inventory State

Reservation Metadata

Allocator Worker Instances

Pub/Sub

Linear Adjustment Estimator

Placement Store

System State

Request

Generator

Request

Handler

State

Snapshot

ML Platform

Load

Balancer

Request

Handlers

State

Snapshot

AV Count Estimator

State Snapshot

System State

RH

RH

AW LAA

AV Count

Estimator

AV Count

Estimator

PS

Figure 8: Kerveros system architecture.

adjust the current VM count estimate A[t] (result of CRA)
to obtain a new estimate:

Aadjusted[t] := β
t
1 ·A[t]+β

t
2 ·A′[t]+β

t
3 ·E′[t]+β

t
4, (1)

where the coefficients βt
i are learnt using standard linear

regression, with the emulation outputs serving as ground truth
for training. βt

2 and βt
3 incorporate information on the gap

between ground-truth and CRA in the previous time step, and
βt

4 models the constant gap between the two methods. In §5,
we show that LAA substantially decreases AV count error,
while maintaining scalability.

4 System Implementation
In this section, we first describe Kerveros’s various microser-
vices that allow it to respond to allocation and reservation
requests in an availability zone and enforce its admission-
control logic in an efficient and scalable manner (§4.1). We
then discuss tradeoffs that arise from various design decisions
made in our implementation (§4.2).

4.1 Architecture
Kerveros’s microservices work in concert to handle alloca-
tion and reservation requests, estimate AV counts, execute
emulation runs for AV count adjustment, persist state when
allocations and reservations are accepted by the system, and
train ML models as required (Figure 8). The microservices
primarily use a distributed publish-subscribe (pub-sub) plat-
form [42] to transfer state among themselves.

4.1.1 Allocation Worker Instances

Multiple stateless allocation worker instances AW are used
to handle both reservation and tenant allocation requests. An
allocation worker instance is a process typically running on
a dedicated machine. Each instance has two types of agents:

216 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

request-handling (RH) agents to serve requests, and an AV
count estimation agent to periodically compute the number
of allocable VMs. The number of worker instances and RH
agents deployed in a zone is configured based on the request
demand in the zone and size of the allocation inventory.

Request handlers RH . A RH handles both reservation and
tenant requests.

Reservation requests. For a reservation request, the RH
performs a zonal admission-control check. The zonal check
evaluates whether there is enough capacity in the zone by
comparing the number of requested VMs with the zonal AV
count. All buffer types (reservation, healing, and growth)
are considered for this check. On success, the reservation
metadata is persisted to the placement store (see below).

Tenant requests. For new tenant requests, the same zonal
admission-control check is executed. The agent then proceeds
to filter and sort the inventory machines for each requested
VM, following a series of hard and soft constraints respec-
tively, to assign a specific machine for each VM. One of the
filtering steps involves performing cluster-scope admission-
control checks to ensure clusters have sufficient capacity for
the requested VMs.

The buffers used in the admission-control steps are adjusted
based on the nature of the request and scope of the check. For
example, at cluster scope, only healing and growth buffers
are considered for new tenants when computing AV counts.
Similarly, only healing buffers are considered for tenant
growth requests. As another example, all admission-control
checks are skipped for reservation-backed VM requests (i.e.,
requests for VMs against an already-accepted reservation)
and healing requests, since these requests have already been
accepted (either as part of the reservation or as part of the
original VM / tenant request before hardware failure).

On success, the “VM → machine” mapping is persisted in
the placement store.

AV count estimator AV . The AV count estimator executes
both CRA (§3.2.2) and the linear adjustments (§3.2.3). To
avoid adding latency to the RH response time, the estimator
is implemented as a separate agent off the critical path of the
RH. It runs in a tight loop (every minute), and updates the
RHs with new AV counts through in-memory state transfer.

To obtain the AV counts, the estimator requires information
about machine occupancy and health, reservation metadata,
adjustment coefficients, and reservation-VM maps for VMs
allocated against reservations. Each estimator learns about this
information through the pub-sub platform. This information
is organized through multiple pub-sub topics. Given the
distributed nature of the platform, each estimator works with
a somewhat stale view of the inventory and reservations (we
discuss the impacts of this in §4.2).

4.1.2 LAA Instance

The LAA instance performs periodic emulation to obtain
more accurate AV counts (§3.2.3). To do so, it listens to the
same pub-sub topics as the worker instance, but does not
handle customer requests and does not persist any results
to the placement store. It starts each emulation run from a
snapshot of the entire inventory (with buffer information). It
then creates allocation requests corresponding to the buffers
and allocates them using the snapshot of the inventory state.
These results are stored as local in-memory modifications on
the initial inventory snapshot. Once the buffers are allocated,
the LAA instance computes more accurate AV counts for
each VM type from the remaining available capacity by
repeatedly allocating (till failure) and deallocating VMs for
each type. We note that these operations do not interfere
with the critical path of real request handling or admission-
control enforcement. Finally, the LAA instance sends relevant
estimation data to the ML platform, which runs the linear
regression required to tune the βi parameters in Equation 1;
the training is performed at a coarser time granularity (every
day, using a week’s worth of emulations results).

4.1.3 Offline ML Platform

The offline ML platform ML performs relevant ML training
tasks; its output is consumed by the AV count estimators.
In addition to updating the LAA coefficients, the platform
provides the predictions required for buffer management (e.g.,
determining the effective growth rate for a cluster).

4.1.4 Placement Store

A stateful microservice, called the placement store PS ,
persists the results of the computations performed by the
RH agents in the worker instances.

Correctness of the VM→machine assignment is critical
since incorrect assignments can lead to VM start failures and
violation of explicit guarantees provided to customers. Hence,
the PS validates each VM→machine assignment to check
for conflicting assignments made by other concurrent RH
agents, and returns a retry if validation is not successful.
This ensures that the RH’s stale view of the inventory does
not lead to correctness issues. PS uses fine-grained machine-
level locking to allow results from multiple machines to be
checked and persisted concurrently.

On the other hand, validating admission-control checks at a
zonal level with concurrent allocation workers would require
the PS to take a global lock on the entire inventory. This
would severely compromise scalability. Hence, the PS does
not perform any global capacity checks, which means that
buffer enforcement is not guaranteed to be correct for every
request. We note however that temporary reductions in buffer
capacity are rarely seen in practice and are more acceptable
(see discussion below).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 217

4.2 Practical Considerations
We now briefly discuss the implications of some of these
design decisions.

Dependence on underlying allocator. While we build and
design Kerveros within the context of Azure, we note that
other major public clouds face similar challenges (e.g., a multi-
tude of VM types and consumption modes, hardware failures,
efficiency requirements). Moreover, Kerveros’s algorithms
are agnostic to the details of the underlying allocator (e.g.,
exact hard and soft constraints enforced).

Caching. As described in §3.2, AV counts are computed
for every machine separately and then aggregated to derive
the allocable VMs that can fit in the cluster. Instead of
computing AVs for every machine from scratch, the AV counts
are maintained in an in-memory cache per machine and per
cluster. This cache is initialized when the AV count estimator
starts, and then is updated incrementally only for the machines
that are modified because of changes in machine occupancy
or health. Caching the AV counts in this manner massively
reduces the computation overhead because the number of
machines altered between consecutive AV count updates is
orders of magnitude smaller than the total number of machines
in the inventory. The periodic nature of AV count computation
(as opposed to calculating AV counts for every request) might
lead to using protected capacity.

Optimistic concurrency. As noted earlier, Kerveros uses
optimistic concurrency control for better scalability, which
allows allocation worker instances to see stale versions of
state in the system. This is a limitation, since it allows the
possibility of accepting multiple requests eating into the
“same” protected capacity. This can occur, for example, when
multiple worker instances accept requests or reservations
simultaneously while not being aware of each other.

Due to dynamic churn (in particular VM shutdowns) in
the workload (Figure 9), usages of protected capacity are
temporary and rarely result in SLA violations. Running out of
capacity due to stale AV counts or optimistic concurrency is
rare, but if it happens, we have multiple knobs for mitigation,
such as temporarily eating into healing buffers, evicting
internal non-critical workloads, restricting the creation of new
VMs, and migrating VMs to reduce fragmentation.

5 Evaluation
In this section, we seek to answer the following questions:

• Does Kerveros perform better than relevant baselines on the
following dimensions: packing efficiency, SLA violations,
and runtime?

• How well do Kerveros’s various optimizations work to
count AVs accurately (e.g., LAA)?

• How does Kerveros trade off accuracy vs. compute effort?

SUN MON TUES WED THU FRI SAT

−0.5

0

0.5

1

W
or

kl
oa

d
(%

)

Arrivals Departures

Figure 9: Churn for high-priority workloads in a single zone.
Average is computed over 5-minute intervals, and computed
over a 2-week period. Workload is weighted by the size of
VM requested and normalized by the total volume of the zone.
That is, roughly an average of 0.3% of total workload arrives
and exits the zone every 5 minutes.

5.1 Experimental Setup
In this section, we outline the metrics of comparison, the
baselines, as well as details on how we run experiments in
production and simulation.

Metrics. We use the following metrics to measure
Kerveros’s effectiveness:

• Packing efficiency. This metric estimates the capacity
wasted by resource fragmentation due to inefficient packing.
To measure packing efficiency, we temporarily fill the sys-
tem with full-node VM requests, and set packing efficiency
to be the final system load (including unused buffers) as a
percentage of total cores (proxy). We choose full-node VM
requests since they are generally the hardest to place.

• Scalability. The runtime (latency) of Kerveros’s AV count
estimator.

• SLA violations. The proportion of requests where SLAs
(machine failures, growth, reservation) are violated.

• AV error. The deviation in AV counts between offline
emulation (which serves as an oracle) and other approaches.
We use this metric to study the effectiveness of Kerveros’s
approximate AV counting approaches.

Baselines. We compare Kerveros against the following:

• Offline emulation (Oracle). In the event of a tenant or
reservation request, the allocator first makes temporary
allocations for all unused buffers in the system. The
allocator then checks the feasibility of accepting the current
request; if there are not enough resources to satisfy the
request, it is rejected. All temporary allocations for unused
buffers are then discarded. This is slow but gives an accurate
AV count, which can then be used as ground truth to
estimate the AV error described above.

• Placeholder (PH). All buffers are allocated and assigned
to physical machines at the time of request (or update).
For example, an accepted reservation is allocated all of its
required resources at admission time.

218 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 20 40 60 80
60

70

80

90

100

Days

E
ffi

ci
en

cy
(%

)
LAA CRA PH PT

Figure 10: Comparison of packing efficiency across various
baselines against the inventory partitioning algorithm (PT).
The results are computed over a single trace. As can be seen,
PT does not work well with our workloads.

0 5 10 15 20 25 30
80

85

90

95

100

Unused buffer (%)

E
ffi

ci
en

cy
(%

)

LAA CRA PH

Figure 11: Packing efficiency vs. unused buffer size. We show
the median and 25/75th percentiles, aggregated over all traces.

• Inventory partitioning (PT). Each buffer is allocated its
own set of dedicated machines, enough to satisfy demand.
The partitioning approach is similar to the method used by
RAS [34], where machines are dynamically partitioned as
new reservations arrive.

Production. Azure collects telemetry on different aspects
of VM resource management in an internal data analytics
platform. We use this data to measure healing and growth
failures as well as latencies (§5.2). All production metrics are
gathered for a period of one month in 2022.

Simulator. Production data is not sufficient to provide a
full evaluation of Kerveros. In particular, comparison against
other approaches requires a simulator since the baselines we
consider are not deployed in our production setting.

To this end, we use our event-driven simulator to test
various aspects of the entire admission control system (includ-
ing both the allocator and Kerveros). Due to the allocator’s
relative complexity, the simulator includes only a lightweight
version, which supports the key constraints of the allocator
logic. The simulator handles both tenant and reservation
events (arrival, departure, and updates). Despite supporting
a subset of the allocator’s logic, the simulator provides an
excellent approximation of the system in production and
is able to scale adequately to large inventories. We have
extended the simulator to support the above baselines.

1,000 10,000 100,000
0

20
40
60
80

100

Machines

R
un

tim
e

(m
s)

Allocation AV count computation

Figure 12: Latency (25/50/75th percentiles) versus inventory
size, extracted from Azure over a month. Randomly-sampled
allocation times are included for further context. End-to-end
allocation latency is more significantly affected by inventory
size compared to the AV count computations.

Simulation traces. We run simulation experiments on
twenty traces that include both tenant and reservation requests.
The traces use historical production data for tenant requests.
Reservations, on the other hand, are a relatively new offering
without significant traffic yet. Consequently, we synthetically
add reservations to augment the historical data. The reserva-
tion characteristics, such as VM type and size, are extrapolated
from real reservations.

5.2 End-to-End Experiments
Our goal here is to show that Kerveros’s CRA and LAA
approaches outperform other baselines along three axes:
packing efficiency, scalability, and SLA adherence.

5.2.1 Packing Efficiency

Figure 10 shows a timeline view of packing efficiency for
one of the traces. The partitioning (PT) approach of splitting
by machine is inefficient for our workloads: PT might work
well in other limited settings (e.g., small number of total
tenants). However, our general setting includes a large number
of requests which require many fractions of machines. We
therefore exclude PT from the rest of the analysis.

We now further explore the remaining baselines and aggre-
gate results over all traces. Figure 11 illustrates how unused
buffer sizes influence packing efficiency. As the unused
buffer size increases, CRA suffers from accumulated rounding
errors, and the PH algorithm can lock into sub-optimal
packing decisions, resulting in inferior packing efficiency.
LAA can compensate for rounding errors, and sustains high
packing efficiency even with large unused buffers.

5.2.2 Scalability

Figure 12 shows the latency of the AV count computation
for various inventory sizes. For reference, we also show
the allocator’s latency for a single VM. We observe that
Kerveros’s approximate AV counting algorithm scales well
with inventory size, taking less than ten milliseconds even
for inventories of over a hundred thousand machines. Ap-
proximate AV counting is cheap because the underlying
computation is proportional to the number of VM types; in

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 219

−1 −0.5 0 0.5 1
0

50

100
Wastage

Violation

AV error (%)

Pr
ob

ab
ili

ty
(%

)

Figure 13: Cumulative density function (CDF) of AV error
from LAA. SLA violations can occur when the AV error
is positive (i.e., the algorithm overestimates AV counts, or
asserts that there is more available capacity than reality).

0 10 20 30

99.992

99.996

100

Day

A
va

ila
bi

lit
y

(%
)

(a) Healing.

0 10 20 30

99.96

99.98

100

Day

(b) Growth.

Figure 14: The impact on availability due to healing and
growth failures. Note that these values are not weighted by
time, but represent a normalized count of all failures within
each day. The actual loss of availability to each customer
is less than what is indicated above. This historical data is
aggregated over the entire cloud for a month in 2022.

contrast, the allocator runtime depends on the inventory size
(since the allocator has to choose the most suitable machine
for allocation). Overall, the results indicate that Kerveros’s
AV-based approach is not the computational bottleneck.

5.2.3 SLA Violations

We also want to verify that Kerveros’s approach results in
a low number of SLA violations. We verify this in both
production and simulation.

Reservation. Figure 13 shows the cumulative density func-
tion (CDF) of AV errors obtained from simulation. When
the AV error is positive, Kerveros overestimates the avail-
able capacity. This behavior might lead to reservation SLA
violations in some extreme cases (for example, if all users’
reservations, healing buffers, and growth buffers are claimed
almost simultaneously). As the LAA curve shows, Kerveros
reserves sufficient capacity to cover all promised resources
around 86% of the time; Kerveros requires less than 1%
additional capacity to satisfy requests about 99.7% of the
time. With typical workload churn, we expect to obtain this
additional capacity promptly.

Healing. Figure 14a shows production data over a month
for instantaneous SLA violations due to healing failures.

0 2 4 6 8 10 12 14 16
0
5

10
15
20 pc = 99.99%

xc = 14

Machine failures

Pr
ob

ab
ili

ty
(%

)

Figure 15: Illustration of healing buffer size, where xc =
⌈13.4⌉ = 14 machine-equivalent buffers are prepared to
satisfy the desired 99.99% SLA.

0 50 100 150

80

90

100

Healing buffer size (%)

H
ea

ls
uc

ce
ss

(%
)

Figure 16: Tradeoff between healing buffer size and healing
success rate.

We observe that Kerveros is able to sustain four nines of
availability through the entire month by appropriately sizing
healing buffers.

As Figure 15 shows, we calculate the healing buffer
size based on a data-driven method (see §3.1). To better
understand the tradeoff between packing efficiency and SLA
adherence quantitatively for healing, we show how the healing
buffer size influences the healing success rate based on data
over a month in 2022, as shown in Figure 16. The x-axis
shows the ratio of the buffer size compared to the size used
in production, where 100% healing buffer size corresponds
to the current production’s decisions. When the ratio is zero,
Kerveros does not reserve any healing buffers, but can still
heal VMs affected by hardware failures if enough resources
are coincidentally available in the cluster.

Growth. Figure 14b shows production data on instantaneous
growth failures for the same month. We observe that growth
is supported more than 99.9% of the time.

5.3 Deep Dive on AV Counting Algorithms
We now further evaluate the various components used to
calculate AV counts.

Improvements from linear adjustment. Figure 17 shows
the AV error of CRA (top) and LAA (bottom) versus the size
of unused buffers. The estimation error with CRA increases
with the unused buffer size, as fragmentation is amplified.
LAA is more robust by fixing biases periodically (§3.2.3).

220 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 10 20 30 40
0

20

40

60

80

AV
er

ro
r(

%
)

Small VM Large VM

0 10 20 30 40
0
1

Unused buffers (%)

CRA

LAA

Figure 17: AV errors when calculating AV counts for two VM
types (small and large) versus unused buffer size. The top
graph, with average and 25/75th percentiles for CRA, shows
CRA performing increasingly worse as unused buffer grows.
LAA with an adjustment frequency of 30 minutes obtains
small error even as the unused buffer percentage becomes
large. We show 95th percentiles for LAA for emphasis.

1m 10m 30m 1h 5h 10h 1d
0

0.2

0.4

0.6

Adjustment frequency

AV
er

ro
r(

%
)

Figure 18: AV errors versus adjustment frequency in LAA.
As we increase the frequency of adjustment, error is reduced
at the expense of additional computation. In the x-axis, ‘m’
stands for minute, ‘h’ for hour, and ‘d’ for day.

Adjustment frequency. Figure 18 shows how the AV error
changes with the frequency of LAA emulation. The figure
shows that emulating every few minutes does not drastically
reduce AV error. Consequently, we choose an emulation
frequency of 30 minutes. Interestingly, we find that even with
just one adjustment a day, the LAA algorithm still performs
better than the basic CRA approach.

6 Discussion
We briefly discuss additional considerations relevant to
Kerveros.

The public cloud eco-system. Modern public clouds have
a large number of components that interact with each other,
making multi-faceted decisions related to economically in-
centivizing usage, managing quota, provisioning capacity, etc.
For example, special permissions or quotas are needed for
very large customer demands; similarly, discounts are often
offered to incentivize prominent customers. Such decisions
are made on a slower time scale, often involving humans in

the loop, and influence the inputs to Kerveros.

Constraints beyond capacity checks. The decision of
admitting a tenant request is complex, and involves a variety
of constraints beyond capacity checks (e.g., fault domains,
locality). However, when Kerveros reserves buffers (healing,
growth, reservations), it can afford to take a simplified view,
relying on the economy of scale (large inventory, workload
churn) and mitigation actions as a last resort. Accordingly,
the basic CRA algorithm does not account for the entire set
of constraints. Nonetheless, CRA is supplemented by LAA.
LAA in turn strongly relies on emulating the allocator’s logic,
which does account for multiple preferences and constraints
and uses realistic tenant requests against unused reservations.
We note that the actual tenant requests against reservations
can only specify a limited set of constraints by design (e.g.,
limit the maximum number of fault domains). The net effect is
that Kerveros has proven to be reliable in production, despite
the simplifying assumptions.

Priorities. While some business priorities are enforced
at higher layers, allocation requests to Kerveros can have
different priorities based on preemption level: higher-priority
requests can preempt lower-priority ones to grab capac-
ity [21,45]. However, all buffers (reservation, growth, healing)
are maintained only for the highest (non-preemptible) priority.
Regardless of their priority, Kerveros handles all tenant and
reservation requests on a first-come-first-serve basis.

Predictive modeling. Having a large percentage of unused
buffers impacts resource efficiency; running preemptible
workloads (e.g., spot VMs) on unused buffers is a partial
mitigation. Currently, we avoid setting aside capacity in
anticipation for future new customers. Incorporating ML
models into Kerveros to predict resource usage and utilize
the unused capacity even more aggressively is an interesting
future direction.

Comparison to early binding. As an alternative to
Kerveros’s late-binding approach, an early-binding or place-
holder approach that exploits the existing allocation system to
allocate buffers when needed (e.g., when a reservation request
is accepted, or when a machine failure occurs) may seem like
a more natural solution. Our evaluation of Kerveros against
the baseline placeholder solution (PH) in §5 showed that this
strategy suffers from worse packing efficiency. In addition, it
introduces other various complications:

• Early binding requires lock-in of VM configuration pa-
rameters (e.g., VM type) when not necessary yet, reducing
flexibility on the clients’ side.

• Buffers like the healing buffer need to have their sizes
updated regularly, which is more inefficient with the early-
binding approach.

• Early binding makes it harder to support over-subscription
using spot VMs or harvest VMs.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 221

• Early binding might require complex migration logic to
move “placeholder” VMs between machines to pack VMs
efficiently on the available physical machines.

• The early-binding approach incurs an additional caching
cost, even if live migrations are free, i.e., the corresponding
caches that reference the source and destination machines
for each placeholder migration need to be invalidated.

Reservations with future start dates. Kerveros only sup-
ports reservations starting immediately. To guarantee reser-
vations starting at future time t, we either need accurate
estimates of the capacity at t (high risk), or we can reserve
capacity now and hold it until t (high cost). Both approaches
have significant issues that become worse as t is pushed out
further into the future; these issues are also exacerbated by
larger reservations (both in terms of the number and size of the
reservation). It might be possible to estimate future capacity
using a probability distribution, but we expect the accuracy to
be poor without a reservation end time. Alternatively, rather
than requesting a specific start and end time for a reservation,
a user could specify a reservation with a demand profile that
indicates the desired usage and expected growth over time.

7 Related Work
Kerveros builds on a rich line of previous work on admission
control and reservations in the cloud.

Admission control. Admission control is a broad topic
that has been studied in a variety of contexts such as
cloud systems [9, 16, 26, 27, 29, 43, 45, 51, 52, 55], computer
networks [8, 11, 18, 28, 30, 36, 44, 46, 47, 53], cellular net-
works [37, 50], mobile edge computing [1, 23, 24], real-time
database systems [12, 22, 32, 38, 48], distributed systems [13–
15,41,49,54], and caching systems [10,33,40], among others.
Each domain provides unique challenges and requirements
that advocate for custom solutions to be developed. This
work focuses on datacenter-scale VM admission control with
support for VM reservations. To the best of our knowledge,
there is no published work in this space that explicitly covers
availability, scalability, and efficiency considerations. The
bulk of the related papers in this space is centered more
around VM allocation and placement, and admission control
is addressed only at a high level. Similarly, reservations
are a relatively new offering and are not directly addressed.
For example, Protean [21] describes Microsoft’s rule-based
zonal allocator, while focusing on systems enhancements to
reduce latencies. However, Protean does not address either
the problems of admission control or support for reservations.
Google’s Borg [43, 45] scheduler introduces efficient packing
and machine-sharing techniques to achieve high resource
utilization, but admission control is only briefly described in
terms of a quota system, and managing the fragmentation and
quota allocation of the admission control is outside the scope
of the paper. In terms of reservations, Borg uses the concept

of Borg Allocs, which are akin to the placeholder approach
that we compare against.

Reserving cloud resources. The (VM) reservations we
consider in this paper are a relatively new consumption mode
that has been introduced to provide predictability to customers.
Note that this mode is different from reserved instances
(RIs) [6, 7, 17, 20, 35], under which customers make a 1-3
year commitment in return for a significant discount over on-
demand offerings. For reservations in datacenters, we are
only aware of Meta’s RAS [34] system, which manages user
reservations at the granularity of a server. RAS works by
partitioning machines and dynamically migrating machines
between partitions, guided by a mixed-integer linear program.
While the partitioning approach works well for Meta’s internal
services, it is not well-suited for our public cloud setting (§5).

Resource reservations have also been proposed for internal
big data analytics systems (e.g., [16, 25]). However, the
provider there has more information about the jobs (e.g.,
job duration and deadline) and can better create an explicit
resource allocation plan over time.

8 Conclusion
This paper describes the design, implementation, and evalu-
ation of Kerveros, an admission-control system deployed in
a large public cloud. Our design accurately retains capacity
for hardware failures, tenant scale-out, and reservations while
being computationally scalable to large inventories and peak
loads. Kerveros can be extended to support additional scenar-
ios such as improving margin efficiency through reservation
overbooking and supporting enhanced reservation semantics
(e.g., reservations with a start date).

Acknowledgements
We thank our shepherd David Richardson and the OSDI
reviewers for their valuable feedback. We also thank Bertus
Greeff, Saurabh Agarwal and Ricardo Bianchini for useful
discussions. The research of Timothy Zhu is supported in
part by the National Science Foundation under Grant No.
1909004.

References
[1] Nadine Abbas, Wissam Fawaz, Sanaa Sharafeddine,

Azzam Mourad, and Chadi Abou-Rjeily. SVM-based
Task Admission Control and Computation Offloading
using Lyapunov Optimization in Heterogeneous MEC
Network. IEEE Transactions on Network and Service
Management, 19(3):3121–3135, 2022.

[2] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf
Schuster, and Dan Tsafrir. Deconstructing Amazon EC2
Spot Instance Pricing. ACM Transactions on Economics
and Computation (TEAC), 1(3):1–20, 2013.

222 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[3] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, et al. Providing
SLOs for Resource-Harvesting VMs in Cloud Platforms.
In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020.

[4] AWS. EC2 Capacity Reservations. https:
//docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-capacity-reservations.html,
2023.

[5] AWS. EC2 Instance Offerings, 2023. https://
instances.vantage.sh.

[6] AWS. EC2 Reserved Instances. https://aws.amazon.
com/ec2/pricing/reserved-instances/, 2023.

[7] Microsoft Azure. On-demand Capacity Reser-
vations. https://azure.microsoft.com/en-us/
reservations/, 2023.

[8] Sihem Bakri, Bouziane Brik, and Adlen Ksentini. On
Using Reinforcement Learning for Network Slice Ad-
mission Control in 5G: Offline vs. Online. International
Journal of Communication Systems, 34(7):e4757, 2021.

[9] Gaurav Baranwal and Deo Prakash Vidyarthi. Admis-
sion Control in Cloud Computing using Game Theory.
The Journal of Supercomputing, 72(1):317–346, 2016.

[10] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the Hot
Object Memory Cache in a Content Delivery Network.
In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 483–498,
2017.

[11] Pablo Caballero, Albert Banchs, Gustavo De Veciana,
Xavier Costa-Pérez, and Arturo Azcorra. Network Slic-
ing for Guaranteed Rate Services: Admission Control
and Resource Allocation Games. IEEE Transactions on
Wireless Communications, 17(10):6419–6432, 2018.

[12] M Carey, Sanjay Krishnamurthi, and Miron Livny. Load
Control for Locking: The Half-and-Half Approach. In
Proc. of 9th Symp. on Principles of Database Systems,
1990.

[13] Huamin Chen and Prasant Mohapatra. Session-based
Overload Control in QoS-Aware Web Servers. In
Proceedings of Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies,
volume 2, pages 516–524. IEEE, 2002.

[14] Xiangping Chen, Prasant Mohapatra, and Huamin Chen.
An Admission Control Scheme for Predictable Server
Response Time for Web Accesses. In Proceedings of
the 10th international conference on World Wide Web,
pages 545–554, 2001.

[15] Ludmila Cherkasova and Peter Phaal. Session-Based
Admission Control: A Mechanism for Peak Load Man-
agement of Commercial Web Sites. IEEE Transactions
on Computers, 51(6):669–685, 2002.

[16] Carlo Curino, Djellel E Difallah, Chris Douglas,
Subru Krishnan, Raghu Ramakrishnan, and Sriram Rao.
Reservation-Based Scheduling: If You’re Late Don’t
Blame Us! In Proceedings of the ACM Symposium on
Cloud Computing, pages 1–14, 2014.

[17] Alibaba Cloud ECS. How to Use Alibaba
Cloud Reserved Instances to Reduce Costs.
https://www.alibabacloud.com/blog/
how-to-use-alibaba-cloud-reserved/
instances-to-reduce-costs_595237/, 2023.

[18] Domenico Ferrari and Dinesh C Verma. A Scheme
for Real-Time Channel Establishment in Wide-Area
Networks. IEEE Journal on Selected Areas in Com-
munications, 8(3):368–379, 1990.

[19] GCP. Compute Engine Instance Offerings, 2023. https:
//gcpinstances.doit-intl.com.

[20] GCP. Reservations of Compute Engine Zonal
Resources. https://cloud.google.com/compute/
docs/instances/reserving-zonal-resources,
2023.

[21] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, et al. Protean: VM
Allocation Service at Scale. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 845–861, 2020.

[22] Hans-Ulrich Heiss and Roger Wagner. Adaptive Load
Control in Transaction Processing Systems. Universität
Karlsruhe. Fakultät für Informatik, 1991.

[23] Dinh Thai Hoang, Dusit Niyato, and Ping Wang. Opti-
mal Admission Control Policy for Mobile Cloud Com-
puting Hotspot with Cloudlet. In 2012 IEEE Wireless
Communications and Networking Conference (WCNC),
pages 3145–3149. IEEE, 2012.

[24] Jiwei Huang, Bofeng Lv, Yuan Wu, Ying Chen, and
Xuemin Shen. Dynamic Admission Control and Re-
source Allocation for Mobile Edge Computing Enabled
Small Cell Network. IEEE Transactions on Vehicular
Technology, 71(2):1964–1973, 2021.

[25] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. Morpheus: Towards
Automated SLOs for Enterprise Clusters. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 117–134, 2016.

[26] Kleopatra Konstanteli, Tommaso Cucinotta, Konstanti-
nos Psychas, and Theodora Varvarigou. Admission
Control for Elastic Cloud Services. In 2012 IEEE Fifth
International Conference on Cloud Computing, pages
41–48. IEEE, 2012.

[27] Kleopatra Konstanteli, Tommaso Cucinotta, Konstanti-
nos Psychas, and Theodora A Varvarigou. Elastic

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 223

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-reservations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-reservations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-reservations.html
https://instances.vantage.sh
https://instances.vantage.sh
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://aws.amazon.com/ec2/pricing/reserved-instances/
https://azure.microsoft.com/en-us/reservations/
https://azure.microsoft.com/en-us/reservations/
https://www.alibabacloud.com/blog/how-to-use-alibaba-cloud-reserved/instances-to-reduce-costs_595237/
https://www.alibabacloud.com/blog/how-to-use-alibaba-cloud-reserved/instances-to-reduce-costs_595237/
https://www.alibabacloud.com/blog/how-to-use-alibaba-cloud-reserved/instances-to-reduce-costs_595237/
https://gcpinstances.doit-intl.com
https://gcpinstances.doit-intl.com
https://cloud.google.com/compute/docs/instances/reserving-zonal-resources
https://cloud.google.com/compute/docs/instances/reserving-zonal-resources

Admission Control for Federated Cloud Services. IEEE
Transactions on Cloud Computing, 2(3):348–361, 2014.

[28] J-Y Le Boudec. Application of Network Calculus to
Guaranteed Service Networks. IEEE Transactions on
Information Theory, 44(3):1087–1096, 1998.

[29] Nikolaos Leontiou, Dimitrios Dechouniotis, and Spyros
Denazis. Adaptive Admission Control of Distributed
Cloud Services. In 2010 International Conference
on Network and Service Management, pages 318–321.
IEEE, 2010.

[30] Jörg Liebeherr, Dallas E Wrege, and Domenico Ferrari.
Exact Admission Control for Networks with a Bounded
Delay Service. IEEE/ACM Transactions on Networking,
4(6):885–901, 1996.

[31] Ming Mao and Marty Humphrey. A Performance Study
on the VM Startup Time in the Cloud. In 2012 IEEE
Fifth International Conference on Cloud Computing,
pages 423–430. IEEE, 2012.

[32] Axel Mönkeberg and Gerhard Weikum. Performance
Evaluation of an Adaptive and Robust Load Control
Method for the Avoidance of Data Contention Thrashing.
In VLDB, volume 92, pages 432–443, 1992.

[33] Giovanni Neglia, Damiano Carra, Mingdong Feng,
Vaishnav Janardhan, Pietro Michiardi, and Dimitra
Tsigkari. Access-Time-Aware Cache Algorithms. ACM
Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), 2(4):1–29, 2017.

[34] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan,
Pavan Kumar, Maxim Khutornenko, Mayank Pundir,
Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le,
Brendon Daugherty, Apurva Samudra, Prashasti Baid,
James Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre
Rodrigues, Scott Michelson, Ben Christensen, Kaushik
Veeraraghavan, and Chunqiang Tang. RAS: Contin-
uously Optimized Region-Wide Datacenter Resource
Allocation. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 505–
520. Association for Computing Machinery, New York,
NY, USA, October 2021.

[35] Oracle. Capacity Reservations. https:
//docs.oracle.com/en-us/iaas/Content/
Compute/Tasks/reserve-capacity.htm, 2023.

[36] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-
Saavedra, Vincenzo Sciancalepore, and Xavier Costa-
Perez. Overbooking Network Slices through Yield-
Driven End-to-End Orchestration. In Proceedings of the
14th International Conference on emerging Networking
EXperiments and Technologies, pages 353–365, 2018.

[37] Amilcare Francesco Santamaria and Andrea Lupia. A
New Call Admission Control Scheme based on Pattern
Prediction for Mobile Wireless Cellular Networks. In
2015 Wireless Telecommunications Symposium (WTS),
pages 1–6. IEEE, 2015.

[38] Bianca Schroeder, Mor Harchol-Balter, Arun Iyengar,
Erich Nahum, and Adam Wierman. How to Deter-
mine a Good Multi-Programming Level for External
Scheduling. In 22nd International Conference on Data
Engineering (ICDE’06), pages 60–60. IEEE, 2006.

[39] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the Wild: Characterizing
and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 205–218, 2020.

[40] David Starobinski and David Tse. Probabilistic Methods
for Web Caching. Performance Evaluation, 46(2-3):125–
137, 2001.

[41] Lalith Suresh, Peter Bodik, Ishai Menache, Marco
Canini, and Florin Ciucu. Distributed Resource Manage-
ment across Process Boundaries. In Proceedings of the
2017 Symposium on Cloud Computing, pages 611–623,
2017.

[42] Khin Me Me Thein. Apache Kafka: Next Generation
Distributed Messaging System. International Journal
of Scientific Engineering and Technology Research,
3(47):9478–9483, 2014.

[43] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: The Next Generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–14, 2020.

[44] Guillaume Urvoy-Keller, Gérard Hébuterne, and Yves
Dallery. Traffic Engineering in a Multipoint-to-Point
Network. IEEE Journal on Selected Areas in Communi-
cations, 20(4):834–849, 2002.

[45] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
Scale Cluster Management at Google with Borg. In
Proceedings of the Tenth European Conference on
Computer Systems, pages 1–17, 2015.

[46] Matteo Vincenzi, Elena Lopez-Aguilera, and Eduard
Garcia-Villegas. Timely Admission Control for Network
Slicing in 5G with Machine Learning. IEEE Access,
9:127595–127610, 2021.

[47] Boqian Wang, Zhonghai Lu, and Shenggang Chen.
ANN-Based Admission Control for On-Chip Networks.
In 2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2019.

[48] Donghui Wang, Peng Cai, Weining Qian, and Aoying
Zhou. Discriminative Admission Control for Shared-
Everything Database under Mixed OLTP Workloads.
In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 780–791. IEEE, 2021.

[49] Matt Welsh and David Culler. Adaptive Overload
Control for Busy Internet Servers. In 4th USENIX Sym-

224 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.oracle.com/en-us/iaas/Content/Compute/Tasks/reserve-capacity.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/Tasks/reserve-capacity.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/Tasks/reserve-capacity.htm

posium on Internet Technologies and Systems (USITS
03), 2003.

[50] Chen-Feng Wu, Liang-Teh Lee, Hung-Yuan Chang, and
Der-Fu Tao. A Novel Call Admission Control Policy
using Mobility Prediction and Throttle Mechanism for
Supporting QoS in Wireless Cellular Networks. Journal
of Control Science and Engineering, 2011, 2011.

[51] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya.
SLA-based Admission Control for a Software-as-a-
Service Provider in Cloud Computing Environments.
Journal of Computer and System Sciences, 78(5):1280–
1299, 2012.

[52] Haitao Yuan, Jing Bi, Wei Tan, and Bo Hu Li. CAWSAC:
Cost-Aware Workload Scheduling and Admission Con-
trol for Distributed Cloud Data Centers. IEEE
Transactions on Automation Science and Engineering,
13(2):976–985, 2015.

[53] Xiaolu Zhang, Demin Li, Wei W Li, and Wei Zhao. An
Optimal Dynamic Admission Control Policy and Upper
Bound Analysis in Wireless Sensor Networks. IEEE
Access, 7:53314–53329, 2019.

[54] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin
She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng
Yang. Overload Control for Scaling WeChat Microser-
vices. In Proceedings of the ACM Symposium on Cloud
Computing, pages 149–161, 2018.

[55] Timothy Zhu, Daniel S Berger, and Mor Harchol-Balter.
SNC-Meister: Admitting More Tenants with Tail La-
tency SLOs. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, pages 374–387, 2016.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 225

Appendix
A Theoretical Guarantees
In this section, we show that the conversion ratio approach
does not lead to an excessive wastage of resources.

Notation. We start by defining some useful notation.

• Let yt
m denote the type-t VMs that can fit in a machine m,

ignoring buffers.
• Let xt

c denote the number of VMs of type t required for
buffers in cluster c, and let xt ′→t

c = C(t ′ → t,xt ′
c ,c) be the

converted number of VMs from type t ′ to type t.
• We define Ct ′→t =

A[t,c]
A[t ′,c] , which allows us to write the

conversion ratio from type t ′ to type t as

xt ′→t
c = C(t ′ → t,xt ′

c ,c) =
⌈
Ct ′→t · xt ′

c

⌉
.

Setting. Our analysis focuses on the following setting:
• We assume that one of the resources (e.g., CPU) is the main

bottleneck in a cluster; let qt denote the amount of that
resource that VM type t requires.

• When Ct ′→t < 1 (i.e., we are converting from “smaller”
to “larger” VMs), we omit the ceiling function from the
converted AV count calculation. Instead, xt ′→t

c =Ct ′→t · xt ′
c .

• Let Mt,t ′
c denote the set of machines in cluster c that can

currently fit both VM types t ′ and t. The conversion ratio
from t ′ to t is then calculated using only the machines
in Mt,t ′

c . Specifically, we let A[t,c] = ∑
m∈Mt,t′

c
yt

m and

A[t ′,c]= ∑
m∈Mt,t′

c
yt ′

m for calculating Ct ′→t .

Results. To quantify the waste in resources, we compare
the total capacity of the VMs that are being converted with
the total capacity of the AV counts that are deducted by this
conversion. In particular, let Uoriginal = ∑t ′ xt ′

c ·qt ′ denote the
total capacity of the VM types before conversion (i.e., “real”
capacity of buffers), and Uconverted = qt ·∑t ′ xt ′→t

c denote the
converted capacity of these VMs.

Theorem 1 The conversion guarantees at least 1
4−utilization

of the converted AV counts’ capacity; explicitly: Uoriginal ≥
1
4 ·Uconverted .

To prove Theorem 1, we will need the following auxiliary
lemma that relates the conversion ratio with the sizes of the
VM types.

Lemma 1 Under the above assumptions, Ct ′→t ≤ 2 · qt′
qt

.

Proof of Lemma 1. Consider a machine m that can currently
fit at least one VM of type t or one VM of type t ′. Let Qm
denote the available capacity of the bottleneck resource (e.g.,
CPU) of machine m. By definition, yt

m = ⌊Qm
qt
⌋ and yt ′

m = ⌊Qm
qt′

⌋.
Then, the following are true:

qt · yt
m ≤ Qm and qt ′ · (yt ′

m +1)> Qm.

Combining the above two inequalities, we obtain:

qt · yt
m < qt ′ · (yt ′

m +1)⇒ yt
m

yt ′
m
<

qt ′

qt
+

qt ′

qt · yt ′
m
≤ 2 · qt ′

qt

where the last inequality follows from the fact yt ′
m ≥ 1.

Since this is true for all machines m that fit both VM types,
we obtain:

A[t,c]= ∑
m∈Mt,t′

c

yt
m ≤ 2 · qt ′

qt
∑

m∈Mt,t′
c

yt ′
m = 2 · qt ′

qt
·A[t ′,c].

We can then easily see that:

Ct ′→t =
A[t,c]
A[t ′,c]

≤ 2 · qt ′

qt
.

Proof of Theorem 1. We need to consider two cases.
• Case 1: Ct ′→t < 1. In this case, we obtain the following:

xt ′→t
c =Ct ′→t · xt ′

c ≤ 2 · qt ′

qt
· xt ′

c .

We then get for the original and converted capacity of VM
type t ′:

qt ′ · xt ′
c ≥ 1

2
·qt · xt ′→t

c .

• Case 2: Ct ′→t ≥ 1. Similarly, in this case:

xt ′→t
c =

⌈
Ct ′→t · xt ′

c

⌉
≤Ct ′→t · xt ′

c +1 ≤Ct ′→t · (xt ′
c +1)

≤ 2 ·Ct ′→t · xt ′
c ≤ 4 · qt ′

qt
· xt ′

c .

In the above, the second inequality follows from Ct ′→t ≥ 1.
The third inequality is due to xt ′

c ≥ 1 (otherwise, no buffer
of type t ′ would exist, clearly leading to zero waste in
the conversion by default). Finally, the last inequality uses
Lemma 1. As a result,

qt ′ · xt ′
c ≥ 1

4
·qt · xt ′→t

c .

Putting both cases together, we can see that for all converted
VM types t ′, we have:

qt ′ · xt ′
c ≥ 1

4
·qt · xt ′→t

c .

Summing over all such VM types:

∑
t ′

qt ′ · xt ′
c ≥ 1

4
·∑

t ′
qt · xt ′→t

c ⇒Uoriginal ≥
1
4
·Uconverted .

which concludes the proof of Theorem 1.

226 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Security and Performance in the Delegated User-level Virtualization

Jiahao Chen
1,2∗

, Dingji Li
1,2,3∗

, Zeyu Mi
1,2
�, Yuxuan Liu

1,2
,

Binyu Zang
1,2

, Haibing Guan
4
, and Haibo Chen

1,2

1
Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

2
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

3
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

4
Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Abstract

Today’s mainstream virtualization systems are plagued by

severe security threats due to the large attack surface exposed

by in-kernel hypervisor components such as KVM. To ad-

dress this issue, this paper proposes a novel design called

delegated virtualization, which decouples the commodity hy-

pervisor into two planes: the hypervisor plane for hypervisor

control (which is typically small and has fixed logic) and the

VM plane for handling virtual machine (VM) requests and

exceptions at runtime. As our investigation reveals that all

known hypervisor vulnerabilities that threaten the host ker-

nel lie in the VM plane, delegated virtualization completely

offloads the in-kernel VM plane to a user-space hypervisor

called DuVisor that directly interacts with its VM without

exiting to the host kernel, based on a small hardware exten-

sion (481 lines of Chisel). We have implemented the hard-

ware extension on an open-source RISC-V CPU on FireSim

and built a Rust-based DuVisor atop it. The evaluation results

demonstrate that DuVisor significantly reduces the attack sur-

face with negligible performance overhead (< 5%). DuVi-

sor’s source code is publicly available at https://github.

com/IPADS-DuVisor.

1 Introduction

The technique of system virtualization, also known as virtual-

ization, is essential for efficiently running concurrent virtual

machines (VMs). Since its conception, virtualization has un-

dergone three rough stages of evolution, gradually moving

hypervisor functions outside of kernel mode. In the first stage

(Figure 1-a), all hypervisor functions were implemented in

kernel mode to multiplex scarce resources of large main-

frame machines, such as the IBM VM/370 [44, 48, 54, 83].

In the second stage (Figure 1-b), mainstream hypervisors be-

gan to offload hypervisor functions to user mode, which is-

sued system calls to take advantage of a host operating sys-

tem (OS) [42,43] or a management VM [40]. However, some

functions still remained in kernel mode, such as instruction

*Co-first authors.
�

Corresponding author: Zeyu Mi (yzmizeyu@sjtu.edu.cn).

emulation and memory virtualization. The third stage (Fig-

ure 1-c) began with the release of hardware extensions (e.g.,

Intel VMX [19] and AMD SVM [2]), which further reduced

the kernel involvement in virtualization by shifting some vir-

tualization functions to hardware.

Nowadays, third-stage hypervisors that are based on hard-

ware extensions typically utilize a split model consisting

of two cooperative components: a kernel-mode module

and a user-mode helper. For instance, the most popular

Linux/KVM-based virtualization system
1

includes a global

KVM kernel module [49, 61] and a per-VM user-mode

helper, such as QEMU [26]. The KVM module interacts with

hardware extensions and the host kernel, while the user-mode

helper is responsible for VM management and I/O virtualiza-

tion.

Unfortunately, vulnerabilities in the kernel-mode compo-

nent of virtualization systems are discovered from time to

time, making them a major threat to host security. For exam-

ple, there have been more than a hundred CVEs reported in

KVM during the course of its evolution [22]. These vulnera-

bilities can be exploited by a malicious VM to compromise

the KVM component that interacts with the VM directly. The

majority of these CVEs can be utilized to launch denial of

service (DoS) attacks, causing host crashes and undermin-

ing the reliability of the host kernel as well as all co-located

VMs [10, 16]. Even more concerning, once the KVM kernel

module is hacked, the attacker may gain control of the entire

system and carry out more severe attacks [3, 13]. In contrast,

a compromised QEMU has a considerably smaller impact,

usually limited to the current user-mode process and not af-

fecting the host kernel or other VMs, thanks to the isolation

between applications and kernel [24, 37].

The key idea of this paper is to move all hypervisor com-

ponents that directly interact with VMs at runtime to

user space, with the aim of minimizing the impact of any

security bugs and reliability issues found in the user-mode

hypervisor. However, there are three significant challenges

1
Xen [40] and VMware products [36, 88] also exhibit a similar architec-

ture.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 227

https://github.com/IPADS-DuVisor
https://github.com/IPADS-DuVisor
yzmizeyu@sjtu.edu.cn

Hardware extensionInteract

VM

K

U

(a) Monolithic Hypervisor

Hypervisor

H
e
lp
e
r

VM

Host Kernel or Hypervisor

(c) Hardware Virtualization

H V

U

K

(b) Reusing Host OS
or Management VM

H
e
lp
e
r

VM

Host Kernel or Hypervisor

Driver

U

K

Offload
Hypervisor-plane function

Virtualization function

VM-plane function

VM

Host Kernel or Hypervisor

(d) Delegated Virtualization

H V

D
u
V
is
o
r

DV-driver

U

K

Driver

General function

Figure 1: The architectural evolvement of mainstream hypervisors (a → b → c) that gradually demote hypervisor functionalities out

of kernel mode and the delegated virtualization proposed by this paper (d). U and K represent user mode and kernel mode; H and V are

hypervisor mode and virtualization mode introduced by hardware virtualization. The Virtualization functions includes ① VM-plane functions

serving VMs directly at runtime, and ② hypervisor-plane functions performing resource control and error handling for the VM plane. The

General functions comprises other VM-required functions such as virtualizing I/O devices. (a) Stage-1: The monolithic hypervisor puts all

functions in kernel mode; (b) Stage-2: Offloading some functions to a user-mode helper process (e.g., I/O backend drivers), which can reuse

host OS or management VM that manage hardware resources; (c) Stage-3: Offloading some virtualization functions into hardware (e.g.,

shadow paging → nested paging); (d) We propose the DuVisor approach that delegates all VM-plane functions (e.g., VM exit handling) to

user space and minimizes direct interactions between the host kernel and VMs at runtime.

that make the design more complex than it initially appears:

1) Privilege Restriction: modern hardware virtualization ex-

tensions are only configurable in kernel mode, such as setting

a VM’s stage-2 page table. This necessitates the presence of

a hypervisor component in the host kernel to use these ex-

tensions. 2) Security Risk: simply moving all the manage-

ment of VMs’ hardware resources to user mode violates the

least privilege principle and enlarges the attack surface. For

instance, if QEMU is allowed to modify a VM’s stage-2 page

table, it can then access any physical memory pages, posing

a significant security risk. 3) Performance Overhead: most

VM exits are now forwarded by the kernel to the user-mode

functions to handle. Then, the control flow must return to the

kernel again to resume VMs’ execution, resulting in exces-

sive runtime ring crossings and unacceptable performance

costs [56, 91].

We identify that the tight coupling between hardware virtu-

alization extensions and kernel mode is the root cause of the

challenges mentioned above. Fortunately, we observe that re-

cent hardware advancements have made it possible to expose

many hardware resources that were previously only acces-

sible by the kernel to user mode. One prominent example

is that Intel has released user-level interrupts, which allow

a user-level process to handle physical interrupts [20]. An-

other example is physical memory checking, such as RISC-V

Physical Memory Protection (PMP) [32,63], which limits the

physical memory range a program can access. With these re-

cent hardware trends, we believe it is time to retrofit existing

hardware virtualization extensions and expose virtualization

interfaces to user mode securely and efficiently, addressing

the challenges mentioned above.

This paper proposes a hypervisor design principle of de-

coupling the VM plane from the hypervisor plane. The

VM plane frequently interacts with VMs at runtime by han-

dling their VM exits, and enables various virtual resources

through instruction emulation, nested paging, device virtu-

alization, etc. In contrast, the hypervisor plane serves the

VM plane with physical resource control (e.g., invoking ker-

nel interfaces to manage resources) and fatal error handling.

Following this principle, we propose a delegated virtualiza-

tion architecture, which eliminates the notion that the ker-

nel mode should provide VM abstractions. Instead, delegated

virtualization offloads the VM plane that interacts directly

with VMs into per-VM hypervisors running in user mode,

called DuVisor
2
), while only leaving a tiny DV-driver in ker-

nel mode responsible for the hypervisor plane.

As shown in Figure 1-d, we introduce a novel hardware ex-

tension called Delegated Virtualization Extension (DV-Ext)

by slightly extending the existing hardware virtualization

mechanism to securely expose hardware virtualization inter-

faces to user mode. Based on DV-Ext, all VM-plane func-

tions in the existing hypervisor are offloaded to the user-

mode DuVisor process. Specifically, DuVisor can directly uti-

lize DV-Ext’s registers and instructions to serve runtime VM

exits without trapping into the host kernel. On the other hand,

the tiny DV-driver remaining in the kernel only wakes up oc-

casionally to allocate physical resources or handle fatal er-

rors for DuVisor processes.

DuVisor efficiently provides different virtualization func-

tions in user mode with strong security guarantees. For CPU

virtualization (§5.1), the DuVisor process creates a dedi-

cated thread (vthread) for each virtual CPU (vCPU), and the

vthread utilizes DV-Ext to handle this vCPU’s VM exits in

user mode. For memory virtualization (§5.2), DuVisor con-

figures a stage-2 page table for its VM and processes stage-2

page faults in user mode with a pre-allocated range of phys-

2
Short for Delegated user-level HyperVisor

228 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ical memory. The range used by a DuVisor and its VM is

restricted by the DV-driver and DV-Ext via hardware phys-

ical memory checking. For I/O virtualization (§5.3), para-

virtualized (PV) backend drivers in DuVisor directly com-

municate with their frontends in VMs. DuVisor further uses

user-level posted interrupt to completely bypass the host ker-

nel when sending notifications to its VM.

We have implemented DV-Ext based on a RISC-V Rocket

CPU using FPGA. DV-Ext can be easily implemented by

reusing existing hardware features, including hypervisor ex-

tension (H-Ext [28]) and user-level interrupts extension (N-

Ext [33]). It only adds 481 lines of Chisel code. Based on DV-

Ext, we use Rust to build DuVisor, and the code size is about

7K LoC. We also extend the Linux kernel v5.10.26 with a

tiny DV-driver to cooperate with DuVisor by adding 337 LoC.

Through software-hardware co-design, the kernel attack sur-

face exposed to guest VMs is minimized, and any vulnera-

bilities that threaten existing hypervisors are now confined

in the DuVisor process. Performance evaluation on cycle-

accurate FireSim [59] shows that DuVisor incurs only negli-

gible performance overhead for architectural operations and

real-world applications.

In summary, the contributions of the paper are:

• We propose a delegated virtualization architecture that

offloads the entire VM plane to the user-level DuVisor

and leaves only a tiny DV-driver in the host kernel, min-

imizing the attack surface exposed to guest VMs and

protecting the entire system from being impacted by the

security and reliability issues in traditional hypervisors.
• We design a lightweight hardware DV-Ext that enables

DuVisor to serve VM entirely in user mode.
• We implement the hardware extension on RISC-V with

minimal modification and build a Rust-based DuVisor

prototype.
• We evaluate the performance of DuVisor on AWS F1

FPGAs using cycle-accurate FireSim with a suite of

real-world applications.

2 Background and Motivation

2.1 Hardware-assisted Virtualization

Mainstream hardware virtualization extensions [2, 4, 19, 28]

offer comparable functionalities. We use RISC-V’s H-Ext as

an exemplar due to its open-sourced implementations. As il-

lustrated in Figure 1-c, H-Ext introduces two distinct modes,

namely H mode and V mode, which are orthogonal to the

existing privilege levels (U and K for user and kernel, re-

spectively
3
). H mode is exclusively reserved for the hyper-

visor, while VMs operate in V mode. Only the hypervisor

kernel mode (HK mode) is authorized to employ the virtu-

alization interface for initiating, configuring, and resuming

a VM, receiving traps from a VM to the hypervisor (also

3
Although RISC-V kernel mode is referred to as “supervisor” (S) mode,

we shall use the term kernel mode in this paper.

Table 1: CVE analyses of KVM [22] and Xen [38]. Host stands

for the vulnerabilities that could lead to an attack on the host kernel,

including PE (privilege escalation), DoS (denial of service), and DL

(data leakage). Other refers to CVEs that only attack guest VMs

or cannot be exploited. LoC shows the code size in LoCs of each

hypervisor. Time Scale indicates the year strides for each of the two

hypervisor CVE analyses.

Name Total
Host

Other LoC Time Scale
PE DL DoS

KVM 111 21 7 52 31 142K 2008-2022

Xen 370 101 19 179 71 345K 2007-2022

known as VM exits), injecting virtual interrupts into a VM,

and installing a stage-2 page table (S2PT). To control VMs,

the helper process in hypervisor user mode (HU mode) must

issue system calls to invoke functions provided by the kernel

driver (e.g., KVM) in HK mode.

In this paper, we define the VM plane as all VM-serving

functions that handle VM exits and virtualize resources at

runtime, while referring to the hypervisor plane as the set of

all hypervisor-serving functions that initialize the VM plane,

manage physical resources, and handle emergency events.

The VM plane in existing hypervisors spans the HK mode

(e.g., CPU and memory virtualization) and the HU mode

(e.g., device virtualization), whereas the hypervisor plane is

located solely in the HK mode. Whenever a VM exit occurs,

the hardware first switches the CPU control flow to the in-

kernel VM plane. Most VM exits can be handled directly in

the HK mode without switching to the user-mode helper. For

instance, in the case of a stage-2 page fault (#S2PF), the hy-

pervisor plane obtains a physical page, and the in-kernel VM

plane inserts a new address mapping to the VM’s stage-2

page table before resuming the VM directly. However, other

VM exits, such as some Memory-Mapped I/O (MMIO) trap-

pings, cannot be entirely resolved by the in-kernel VM plane

and must be forwarded to the user-level helper for emulation.

2.2 Vulnerabilities of Hypervisors

In contrast to the user-mode helper, which features a clear

isolation boundary with the kernel, vulnerabilities arising

from the in-kernel components of hypervisors pose signif-

icantly more severe threats to the host kernel. This is due

to the fact that these components possess the highest level

of privilege and interact directly and most frequently with

VMs during runtime, thereby exposing a greater number of

attack surfaces to VMs. The in-kernel components of hy-

pervisors have accumulated a considerable number of pub-

licly revealed vulnerabilities, underscoring their weak secu-

rity and fault isolation. While there are also many vulnerabili-

ties in the non-hypervisor components of the host kernel, this

paper primarily focuses on hypervisor vulnerabilities, with

non-hypervisor vulnerabilities being discussed in §7 and §9.

Table 1 presents the statistics of disclosed vulnerabilities in

KVM [22] and Xen [38], highlighting three key characteris-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 229

Table 2: CVE classification based on subsystems of KVM. The

data excludes 31 CVEs in the Other column of Table 1 that do not

harm the host kernel. Original represents the original number of

host-attacking CVEs in the KVM. After Offload means the number

of host-attacking CVEs that remain in HK mode after offloading

most components to HU mode by existing works [87,91].

Subsystem
Number of CVEs

Original After Offload

VM

Plane

Memory Virtualization 10 2

Interrupt Virtualization 18 18

ISA Emulation 19 10

Para-Virtualization 4 0

VM Exit Handling 17 17

Device Virtualization 12 0

Hypervisor

Plane

Hypervisor Initialization 0 -

Resource Control 0 -

Emergency Handling 0 -

tics of the vulnerabilities in the in-kernel components.

• Large Vulnerability Quantity. There are 111 and 370

disclosed CVEs in KVM and Xen, respectively. 72.07%

and 80.81% of them cause kernel-level exploits, includ-

ing information leakage, host DoS [10,16,84], and priv-

ilege escalation of a guest VM [3, 12, 13, 27, 82, 86].

• Severe Security Threats. Due to the high privilege

of in-kernel components, their vulnerabilities can eas-

ily crash the entire system, disrupting the execution of

other co-located VMs. As shown in Table 1, 65.77% and

75.68% of CVEs (i.e., PE and DoS) in KVM and Xen,

respectively, can be exploited to launch DoS attacks via

vulnerabilities such as NULL pointer dereferences [17]

or out-of-bounds reads/writes [15]. Even worse, care-

fully crafted exploits may enable attackers to escalate

a VM’s privilege and compromise the entire system, in-

cluding all other VMs.

• Low Exploit Costs. CVE exploits can be researched

and crafted at relatively low costs by well-financed ex-

perts who are motivated by the significant profit poten-

tial of successful attacks. For instance, it took just two

months for a Google expert to develop an exploit that en-

abled VM escape via a vulnerability in KVM code [3].

2.3 Limitations of Deprivileged Execution

A long line of work has attempted to deprivilege the in-kernel

functionalities of hypervisors to mitigate the threats of vul-

nerabilities in existing hypervisors [46, 80, 87, 91]. For ex-

ample, NOVA [87] builds a microhypervisor based on the

microkernel architecture. DeHype [91] endeavors to demote

most parts of KVM into user mode while leaving a HypLet in

kernel mode because the sensitive hardware virtualization in-

structions can only be executed in this mode. However, such

deprivileged execution methods have two limitations:

Non-eliminable In-kernel Vulnerabilities. We investi-

gated the 80 host-attacking CVEs of KVM from Table 1

and identified the subsystems in which they are present. As

Table 3: Breakdown of the latency of handling an MMIO read

in QEMU/KVM on ARM, RISC-V and x86-64. Kernel represents

the cycles spent on the in-kernel transfer operations. User stands for

the cycles consumed by the I/O emulation and VM entry/exit.

Platform Kernel User Total

ARM 4,323 1,596 5,919

RISC-V 3,135 4,067 7,202

x86-64 2,415 1,704 4,119

shown in the Original column of Table 2, these CVEs are dis-

tributed throughout all VM-plane subsystems, whereas none

of them exist in the hypervisor plane. We further examined

whether these CVEs could be addressed by prior works [87,

91] that attempted to offload as many VM-plane components

as possible to user space. The CVE number that remains in

the host kernel after offloading is displayed in the right-most

column of Table 2. Unfortunately, the majority (58.75%) of

CVEs cannot be eliminated because the VM-plane subsys-

tems in which they reside must operate in the HK mode due

to hardware privilege restrictions. For example, the interrupt

virtualization subsystem accesses privileged registers, so it

must remain in the HK mode. Similarly, some memory vir-

tualization functions, particularly those configuring sensitive

stage-2 page tables for VMs, must also remain in the HK

mode. As a result, the in-kernel VM plane poses entrenched

security and reliability risks to the host kernel.

Redundant and Costly Mode Switching. Because the hy-

pervisor must use the kernel component to drive the hardware

virtualization extension, moving most of the kernel compo-

nent to user space will result in more frequent and expen-

sive interactions between the VM and the user-level hyper-

visor due to the kernel’s involvement, leading to higher per-

formance overhead. To understand the cost associated with

kernel involvement, we break down the handling procedure

of an MMIO read operation in QEMU/KVM to illustrate

the VM-VMM communication cost and find that 73.04%,

43.53%, and 58.63% of CPU cycles are consumed by in-

kernel transfer operations on ARM, RISC-V, and x86-64, re-

spectively (Table 3). As a result, minimizing the host kernel

part by delegating more kernel functions to user space [87,

91] will lead to significant performance overhead due to the

expensive VM-VMM communication costs on each VM exit

handling.

3 System Design Overview

In this paper, we introduce delegated virtualization to safe-

guard the overall security and reliability of virtualization

systems by preventing compromised hypervisor components

from directly breaching the host kernel. To circumvent the

privilege restrictions of existing hardware virtualization, del-

egated virtualization simply exposes the existing virtualiza-

tion interfaces to user mode without requiring intrusive hard-

ware modifications. We explicitly decouple the VM plane

from the hypervisor plane and offload all VM-plane func-

230 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VM Exit

DuVisor

D
V

-E
x
t

H V

U

K

VM

Sched.Mem Mgmt. Dev. Driver

VM Enter

Host Kernel

vCPU
Threads

IRQ & Timer
Virtualization

S2PT &
Mem Mgmt.

Virtio
Backend

APPs

Kernel

Init

Resource Mgmt.

Error Handling

DV-driver

Software Components

Hardware Components

Figure 2: The architecture overview of DuVisor. DV-Ext is Dele-

gated Virtualization Extension.

tions to the user-mode DuVisor. A tiny DV-driver in the host

kernel serves as the hypervisor plane, which is removed from

all runtime interactions (VM plane) between DuVisor and its

VM.

The design of delegated virtualization offers two signifi-

cant advantages. First, it minimizes the attack surface of the

host kernel’s hypervisor components accessible to VMs and

confines hypervisor vulnerabilities to user space, largely im-

proving security and fault isolation between the VMs and the

host kernel. Furthermore, the security and reliability benefits

are obtained without any performance penalty due to the di-

rect runtime interactions between a guest and its hypervisor.

The architecture of delegated virtualization, as depicted

in Figure 2, comprises three primary components: the Del-

egated Virtualization Extension (DV-Ext), per-VM DuVisor

hypervisor processes, and a global DV-driver in the kernel.

The Delegated Virtualization Extension (DV-Ext) must be

installed on the hardware (§4). It empowers the host kernel to

determine whether or not to delegate hardware virtualization

functions to HU mode. If the delegated mode is enabled, the

hardware virtualization interface can be accessed by unpriv-

ileged software without trapping into the host kernel. If it is

not enabled, DV-Ext functions similarly to traditional hard-

ware virtualization for compatibility.

An HU-mode DuVisor process leverages the hardware in-

terface exposed by DV-Ext to control an unmodified VM

(§5). To support the normal execution of a VM, DuVisor dy-

namically virtualizes physical resources to handle runtime

VM exits. In this paper, this workflow is defined as the VM

plane and is handled by the DuVisor process in HU mode.

Moreover, to support memory virtualization in HU mode, the

DuVisor process builds a stage-2 page table for its VM. If

stage-2 page faults occur due to missing or illegal page map-

pings, DuVisor dynamically adds or updates mapping entries

in the stage-2 page table. Like conventional hypervisors, Du-

Visor spawns distinct user-level threads for each vCPU, re-

ferred to as vthreads. It also supports PV I/O devices and vir-

tual interrupts (including timers) for this VM. DuVisor can

depend not only on the host kernel to manage external de-

Table 4: The registers and instructions added (or modified) by

DV-Ext. The lowercase and uppercase names stand for registers and

instructions. The registers starting with “hu” are accessible in HU

mode while those starting with “h” can only be accessed in HK

mode. The two instructions can be invoked in HU mode.

Type Mode Name Description

Registers

HU

hu_er VM exit reason

hu_einfo Additional information about a VM exit

hu_vpc IP address of a faulted vCPU

hu_ehb Base address of the VM exit handler

hu_vcpuid The vCPU ID running on a physical core

hu_vitr Virtual interrupt number to be inserted

HK

h_enable Turn on DV-Ext

h_deleg Delegate VM exits to HU mode

h_vmid The VM ID running on a physical core

Instructions HU
HURET Resume the vCPU execution

HUFLUSHGPA Flush TLB entries associated with a GPA

vices like storage media and network cards but also control

devices in HU mode by DPDK [18] to boost I/O virtualiza-

tion.

A tiny DV-driver is inserted into the host kernel (§6) as the

hypervisor plane, which occasionally participates in the man-

agement of physical resources for each DuVisor without in-

terfering with runtime VM exits processing. Specifically, the

DV-driver uses DV-Ext to enable/disable delegated mode and

allocates resources (such as physical memory) for DuVisor

processes. To mitigate security risks, it also restricts DuVi-

sor’s physical memory view and handles emergencies, such

as exceptions triggered by illegal physical memory accesses

by untrusted VMs. DuVisor still relies on the host kernel to

schedule all its threads and VMs.

Assumptions and Threat Model. We assume that the

hardware (including DV-Ext) is correctly implemented and

trusted. The goal of DuVisor is to defend the host ker-

nel against malicious VMs, so that the host kernel and the

DV-driver are trusted as well. However, in a multi-tenant

cloud environment, a guest VM controlled by a hostile ten-

ant may exploit vulnerabilities in DuVisor to compromise

the hypervisor. Therefore, the user-level DuVisor process

is considered untrusted by the host kernel. Side-channel at-

tacks [73,74] and corresponding defense methods [37,45,76]

are orthogonal to the design of DuVisor and are not consid-

ered in this paper.

4 Delegated Virtualization Extension

In this section, we describe the design of DV-Ext, which lifts

the restriction that hardware virtualization extensions are in-

accessible to user mode. DV-Ext provides hardware inter-

faces to user-level DuVisor for obtaining VM information

and controlling VM behaviors. These hardware interfaces

can take different forms on varied hardware architectures.

This section elaborates on register-based hardware interfaces

as an example to present a detailed design of DV-Ext, which

is suitable for the RISC-V and ARM architectures mentioned

earlier. Additionally, we discuss the design of hardware inter-

faces based on memory and specialized instructions in §9 to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 231

demonstrate DV-Ext’s universality. Table 4 shows the regis-

ters and instructions of DV-Ext.

HU-mode Registers and Instructions. We observe that cer-

tain privileged registers are only configured during hypervi-

sor initialization and are rarely accessed at runtime. There-

fore, these registers can be considered hypervisor-plane reg-

isters and are not exposed to HU mode. The remaining reg-

isters, however, are frequently used during VM runtime and

are defined as VM-plane registers. Accordingly, DV-Ext al-

lows HU mode to access these registers without restriction.

VM-plane registers, as shown in Table 4, are denoted by

names beginning with “hu”. They are accessible in HU mode

when HK mode activates DV-Ext by setting up the h_enable

register. The VM-plane registers are classified into two cat-

egories. The first category records VM information for VM

exits, such as hu_er and hu_einfo, which the hypervisor reads

for handling VM exits. The second category controls the run-

time behaviors of the hypervisor or VMs. For example, a hy-

pervisor can configure hu_vitr to inject a virtual interrupt to

a vCPU.

Delegatable VM Exits. DV-Ext provides delegatable VM ex-

its (DVE), which enables a VM to immediately trap to its

DuVisor process in HU mode. The kernel mode can config-

ure DVEs by modifying the h_deleg register, whose individ-

ual bits regulate the delegation of specific types of VM exits.

For instance, the DV-driver in HK mode can delegate stage-2

page faults and sensitive instruction faults such as WFI (i.e.,

wait-for-interrupt instruction for entering low-power standby

CPU state, similar to HLT on x86) to HU mode by setting

the corresponding bits in h_deleg. When a DVE occurs, the

hardware searches for a hypervisor handler using the ad-

dress specified in hu_ehb. DV-Ext additionally provides the

HURET instruction for HU mode to resume VM execution

after handling a DVE, and the entry point of the VM is stored

in the hu_vpc register.

HU-mode Memory Virtualization. Since the register stor-

ing the base address of a stage-2 page table is rarely modified

after a VM is booted, DV-Ext does not expose it to HU mode.

However, in HU mode, the user-level hypervisor can still

freely update stage-2 translation by exposing the in-memory

stage-2 page table to HU mode. Therefore, the page table

format is consistent with the original stage-2 page table used

in HK mode. As HU mode needs to flush TLB entries after

updating stage-2 translation, DV-Ext exposes a TLB mainte-

nance instruction to HU mode as the HUFLUSHGPA instruc-

tion, which can flush TLB entries associated with a specific

GPA and VMID.

Exitless Interrupt Virtualization. Posted interrupt allows

the hypervisor to deliver virtual interrupts to a running vCPU

without VM exit. DV-Ext enables user-level posted interrupt

that DuVisor can directly utilize for injecting virtual exter-

nal interrupts in HU mode. DuVisor should specify the re-

ceiving vCPU’s VCPUID and the interrupt vector in hu_vitr.

Similarly, DV-Ext supports V-mode posted interrupt that a

DuVisor
Excp.

U

K

Kernel

H V

All Interrupts
& Excp.

Timer Int.
& Excp.

Core 0

HURET

Timer
Interrupt

S
R
E
T

S
R
E
T

S
R
E
T

I/O thread vthread

VMExit HandlerBack-end Drv.

Interrupt & Exception Handlers

CPU Core 2 Core 1 Core 3 Core 4 ……

Timer Int. only to minimize interference
……

Figure 3: Exception and physical interrupt handling when run-

ning a DuVisor VM. I/O threads and vthreads can be dynamically

scheduled on different CPU cores. To minimize the involvement

of the host kernel as well as the interference of physical interrupts,

the DV-driver can configure those cores that run vthreads (e.g., core

1/3/4) to trigger solely timer interrupts. For other physical interrupts

such as external interrupts generated by I/O devices, it is natural to

route them to cores that run I/O threads of the backend drivers (e.g.,

core 0/2).

vCPU can issue a virtual inter-processor interrupt (IPI) with-

out VM exit by configuring hu_vitr. To prevent misdelivery,

the hardware checks the VMID in h_vmid and the VCPUID

information pre-configured by the DV-driver before trigger-

ing a virtual interrupt. An illegal operand triggers a fault into

HK mode to wake up the DV-driver. DV-Ext also adds virtual

timer interrupts that can be triggered without VM exit.

5 DuVisor Design

5.1 Handling VM Exits

VM exits are caused by either exceptions or physical inter-

rupts. In existing virtualization systems, all VM exits are

trapped to the in-kernel hypervisor component for handling,

but this is not the case in DuVisor. In contrast, all exceptions

that result in VM exits are sent to the user-level DuVisor,

while physical interrupts continue to be trapped and handled

by the host kernel. It is inappropriate to direct physical inter-

rupts to HU mode (DuVisor) due to their vital importance to

the host kernel for tasks such as scheduling and device man-

agement, as HU mode is not trusted.

Figure 3 illustrates how exceptions and physical inter-

rupts are handled when running a DuVisor VM. During the

preparation of the VM execution environment, I/O threads

of the backend driver and vthreads are scheduled to different

CPU cores. After preparation, vthreads in DuVisor execute

an HURET instruction to enter V mode and start running

guest code until a VM exit occurs. For VM exits caused by

synchronous exceptions, the CPU control flow directly traps

from the VM to DuVisor’s VM exit handler. The handler then

determines the exception type by accessing corresponding

HU mode registers provided by DV-Ext. After handling the

VM exit, the vthread resumes the VM by executing HURET

again.

On the other hand, VM exits caused by physical interrupts

232 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are directed to the interrupt handler in HK mode. To ensure

that the register states of DuVisor VMs are not corrupted due

to scheduling, the DV-driver saves all DV-Ext-related regis-

ters before handling the physical interrupt and restores them

before directly returning to V mode with an SRET instruc-

tion. Due to the small number of DV-Ext-related registers, the

performance impact from this additional save/restore logic is

minimal (§8.4).

To minimize interference, we configure the DV-driver

so that only physical timer interrupts periodically occur on

cores where vthreads are running. For physical external in-

terrupts generated by physical devices, a PV I/O device in

DuVisor relies on the in-kernel device driver to handle them.

Hence, it is natural to direct these external interrupts to the

same cores as the I/O threads of the backend driver. More-

over, if IOMMU [29] is available, a physical device can be

passthrough into the VM for better performance, which sends

posted interrupts that directly inject physical external inter-

rupts to the VM without VM exit. Additionally, there are few

physical IPIs between vthreads and I/O threads, thanks to the

exitless interrupt virtualization (§5.3). Therefore, only physi-

cal timer interrupts may periodically trigger on cores running

vthreads and bring the running VM into HK mode.

5.2 Restricted Memory Virtualization

In contrast to traditional hypervisors’ in-kernel stage-2 page

table management, a DuVisor process handles stage-2 page

faults and provides memory virtualization in HU mode

without involving the kernel. To establish mappings of

guest physical addresses (GPAs) for the VM, DuVisor pop-

ulates stage-2 page table entries with host physical addresses

(HPAs) in HU mode. Therefore, it requests the DV-driver to

allocate contiguous memory regions with HPA information.

Each stage-2 page fault traps to DuVisor, which then adds

a free physical page from the pre-allocated memory region

into the VM’s GPA space by updating its stage-2 page table.

One natural challenge is how to prevent the untrusted Du-

Visor from maliciously configuring the stage-2 page table

to access arbitrary HPA. A malicious DuVisor, for instance,

may allow its VM to access (or alter) sensitive data in an-

other VM’s memory by directly mapping the attacker VM’s

GPA to the victim’s HPA. Worse, the rogue VM can use this

method to read and modify the host kernel memory. This is-

sue can be addressed with a straightforward technique that

requires DuVisor to manage a fake stage-2 page table in-

stead of the real one. DuVisor only manages the fake stage-2

page table and must invoke system calls to ask the DV-driver

to check this table and synchronize it to the real one. Al-

though this method sounds reasonable, it frequently involves

the kernel at runtime, leading to significant costs for memory-

intensive workloads. Moreover, it complicates the memory

management of the DV-driver.

We adopt an alternative approach, allowing DuVisor to

manage the real stage-2 page table freely in HU mode

GVA

GPA

HPA

Mem

DV-driver

DuVisor

Guest VM

PMC

S2PT

S1PT

PMC Range Register

Valid InvalidFault

V = 1

Figure 4: The translation and checking procedure of a memory

access request issued from the V mode.

without entering kernel mode. Emerging hardware mecha-

nisms, such as Intel TDX’s Physical Address Metadata Ta-

ble (PAMT) [47], AMD SEV-SNP’s Reverse Mapping Ta-

ble (RMP) [1], and ARM CCA’s Granule Protection Table

(GPT) [5], can dynamically restrict access to physical mem-

ory. Take RISC-V Physical Memory Protection (PMP) for

example, it checks every memory access against up to 64

PMP entries configured on each core. Inspired by this, we

propose to utilize such physical memory checking (PMC)

mechanisms to limit the physical memory range that VMs

can access.

With PMC, we can allow DuVisor to configure its stage-

2 page table optimistically. The MMU automatically checks

whether the target HPAs of the VM’s memory accesses ex-

ceed the range limit of the pre-allocated physical memory

regions. If so, the MMU triggers a fault to wake up the DV-

driver. This design eliminates the stage-2 memory manage-

ment module in the DV-driver. Furthermore, the overhead of

dynamic checking is negligible since it is achieved by merely

comparing offsets.

However, the current PMC technique is not specifically

designed to restrict VM memory accesses. It examines ev-

ery HPA access issued from the current physical core, which

also restricts the host kernel and DuVisor from using physical

addresses out of the configured entries. This is a significant

constraint because the host OS can map the virtual addresses

of the kernel and DuVisor to arbitrary physical memory ad-

dresses, which may exceed the ranges specified by the lim-

ited number of PMC regions. To overcome this constraint,

DV-Ext extends the existing PMC mechanism slightly to

make it work only for HPAs targeted by the V-mode mem-

ory accesses. DV-Ext adds a "Virtualization" (V) bit to each

of the current PMC range registers. If the bit is set, the PMC

only verifies the V-mode memory accesses according to the

range registers.

Figure 4 illustrates how a guest virtual address (GVA) is

translated into an HPA and finally reaches physical memory.

The GVA is first translated into a GPA via MMU hardware

according to the stage-1 page table (S1PT) built by the guest

VM. Similarly, the GPA is translated into an HPA referring

to the stage-2 page table controlled by DuVisor. A transla-

tion failure in the stage-2 page table triggers a stage-2 page

fault into DuVisor for handling. Eventually, the PMC pre-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 233

configured by the DV-driver checks the output HPA before

accessing physical memory.

The DV-driver is responsible for allocating multiple phys-

ical memory regions for each VM, with each region being

protected by a single PMP region. If the HPA exceeds the

memory range specified by all PMP regions, the PMC will

generate an exception and awaken the DV-driver to handle

the situation. For example, the DV-driver may terminate the

VM that triggered the exception and proceed to run other

VMs. As the per-core PMP configurations are tied to a spe-

cific VM, the host kernel must save the PMP register values

of the previous VM and install those of the next VM when

switching between them.

5.3 I/O and Interrupt Virtualization

I/O virtualization in DuVisor works similarly to existing ap-

proaches. It supports PV (e.g., virtio) and emulated (e.g., tty)

I/O devices for its VM. Although DuVisor is compatible with

passthrough devices, its current implementation does not sup-

port them due to the lack of IOMMU on the RISC-V plat-

form. However, we can easily support them when IOMMU

becomes available (§ 9).

For each PV and emulated device, DuVisor spawns dedi-

cated I/O thread(s) during VM initialization. These threads

are responsible for responding to VM I/O requests and in-

teracting with host I/O devices. For instance, a TX thread

is launched for a virtio network device’s TX queue to han-

dle network packets from the guest VM. To reduce the ker-

nel attack surface, DuVisor can be combined with kernel-

bypass virtio backends such as vhost-user. In particular, the

RX thread keeps polling the NIC in HU mode to receive in-

coming network packets and notifies the guest VM through

virtual external interrupts (vEXTs).

To enable efficient PV I/O notifications, DV-Ext supports

directly injecting vEXTs into a running VM through user-

level posted interrupt. Posted interrupt is the most efficient

mechanism for interrupt virtualization, which allows a virtual

interrupt to be injected into a running VM without triggering

VM exits. However, on existing hardware, a hypervisor must

enter kernel mode to send a posted interrupt, which means

that communications between vCPUs and between the HU-

mode helper and its VM must go through the host kernel,

contrary to the design principle of DuVisor. By contrast, the

user-level posted interrupt in DV-Ext does not require ker-

nel participation. Specifically, the I/O thread injects vEXTs

by writing the interrupt vector to the posted interrupt register

in HU mode. If the target vCPU is running on a core, DV-

Ext immediately triggers the vEXT on that core. Otherwise,

DV-Ext records the vEXT information and does not deliver

it until the target vCPU resumes execution.

The DV-driver assigns a unique VMID to each DuVisor

during initialization and writes this VMID to the per-core

h_vmid register every time a DuVisor is scheduled on a phys-

ical core. The VMID ensures that DuVisor’s I/O threads can

Core 0

hu_vcpuid

h_vmid VM0 …

hu_vitr

0 1 2
EXT

I/O Thread

vEXT to

vCPU0

IPI

Core 2

hu_vcpuid

h_vmid

vCPU0

VM0

Core 3

hu_vcpuid

h_vmid

vCPU1

VM0

vCPU 1

Core 1

hu_vcpuid

h_vmid VM0

vIPI to

vCPU1

vEXT to

vCPU2

DV-driver

vCPU 0

vIRQ FaultWrite

I/O Thread1

2
5

6

3

4

Figure 5: Exitless interrupt virtualization with user-level posted

interrupt and V-mode posted interrupt. vEXT represents virtual

external interrupt and vIPI represents virtual IPI.

only send posted interrupts to vCPUs with the same VMID

as theirs. Since h_vmid is only accessible in HK mode, the

DuVisor process and the guest VM cannot modify its value.

Each vCPU has its VCPUID, which the guest kernel writes

to hu_vcpuid during the boot process of each corresponding

vCPU. The VCPUID is used by DV-Ext to identify the core

on which the target vCPU is executing before delivering an

interrupt.

Figure 5 depicts how a vEXT is delivered using user-level

posted interrupts. For example, the I/O thread on core 0 at-

tempts to insert a vEXT to vCPU 0 by writing the target

vCPU’s associated location in hu_vitr ①. DV-Ext then finds

that vCPU 0 is executing on core 2 and generates a vEXT

on core 2 ②. If the sending thread attempts to send a wrong

VCPUID or has a different VMID from the receiver, writ-

ing to hu_vitr will trigger a fault and wake up the DV-driver

to handle this issue. For instance, the I/O thread on core 1

attempts to deliver a vEXT to a nonexistent vCPU 2 ③, and

DV-Ext identifies this as an invalid operation and informs the

DV-driver to handle the fault ④.

In addition to vEXTs, a multi-vCPU VM also requires ef-

ficient virtual IPIs (vIPIs) for inter-vCPU communications.

To this end, DV-Ext supports V-mode posted interrupts that

allow both sender and receiver vCPUs to incur no VM exit

for a vIPI. Figure 5 also shows how a vIPI is generated us-

ing V-mode posted interrupts. The VMID and the VCPUID

have the same effect as they do in user-level posted interrupt

cases. Specifically, the vIPI issued from vCPU 0 on core 2

to vCPU 1 via writing hu_vitr ⑤ is triggered by DV-Ext on

core 3, where vCPU 1 is running ⑥.

Furthermore, virtual timer interrupts (vTimers) are neces-

sary for each DuVisor VM. DV-Ext supports directly firing

an expired vTimer inside the VM. Currently, a DuVisor VM

can receive vTimers without VM exits, but it must trap to

the DuVisor to set up timer events. Although the hardware

can further remove the VM exits of setting timer events, we

do not consider it necessary because the infrequent vTimers

have little impact on VM performance.

234 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Implementation

6.1 DV-Ext Implementation

We chose the RISC-V platform to implement DV-Ext be-

cause it has rich open-sourced implementations of system-

on-chip (SoC). We used a 5-stage in-order scalar processor,

specifically the RISC-V Rocket Core [34], with a configura-

tion of 16KB L1 ICache, 16KB L1 DCache, 512KB shared

L2 cache, and 16GB DRAM.

DV-Ext does not require intrusive modifications to the

CPU hardware to implement these VM-plane registers

and instructions. Specifically, hu_er, hu_einfo, hu_vpc, and

hu_ehb are aliases of ucause, utval, uepc, and utvec from

RISC-V N-Ext (i.e., the user-level interrupts extension), and

HURET is implemented based on N-Ext’s URET. The HU-

FLUSHGPA instruction is implemented by exposing H-Ext’s

HFENCE.GVMA to the HU mode. Similarly, h_enable and

h_deleg are implemented by extending H-Ext’s hstatus, hide-

leg, and hedeleg. Therefore, most architectural implementa-

tions for these registers and instructions can be reused. Only

hu_vcpuid, hu_vitr, and h_vmid are newly added registers for

exitless interrupt virtualization.

Our DV-Ext implementation added 481 lines of Chisel to

extend the existing H-Ext implementation [35] and support

DVE. Additionally, we added 14 lines of Chisel to extend

RISC-V PMP for VM memory restriction.

6.2 Software Implementation

Our prototype system of DuVisor consists of 7,128 LoC

(5,052 lines of Rust, 166 lines of assembly, and 1,910 lines

of C). The code of libraries we use is not included in the im-

plementation effort. To implement the virtualization of CPU,

memory and interrupt, 4,984 lines of Rust and 166 lines of

assembly were written, in which the assembly is used to ac-

cess architecture-dependent registers. For the virtualization

of I/O devices, we ported the I/O backend of virtio block

and virtio network devices from the kvmtool to DuVisor to

reduce coding effort, accounting for 1,287 lines of C. We

applied our design (e.g., the user-level posted interrupts) to

these virtual devices as well as made some optimizations.

Since there is no available DPDK support for RISC-V plat-

forms currently, We also extended the virtio network backend

with a user-space NIC driver using 623 lines of C to achieve

a relatively fair performance comparison with KVM’s ma-

ture vhost-net backend. These I/O backend implementations

comprise 1,910 lines of C in total.

We wrote a tiny Linux kernel module to work as the DV-

driver and it has 337 LoC. DV-driver provides an ioctl sys-

tem call for DuVisor to request several services. First, the

DV-driver detects whether the hardware supports DV-Ext and

enables it when a user process requests it. Second, it sets up

the h_deleg register to configure DVEs. Third, the DV-driver

allocates contiguous physical memory regions for DuVisor

from Linux’s contiguous memory allocator (CMA) and pins

Table 5: CVEs in different KVM subsystems that can be success-

fully exploited in NOVA/DeHype and DuVisor’s architecture.

We omit 31 CVEs that cannot attack the host kernel.

Subsystem
KVM NOVA/DeHype DuVisor

PE DoS DL PE DoS DL PE DoS DL

Memory Virtualization 3 6 1 1 1 0 0 0 0

Interrupt Virtualization 3 13 2 3 13 2 0 0 0

ISA Emulation 4 14 1 3 7 0 0 0 0

Para-Virtualization 0 4 0 0 0 0 0 0 0

VM Exit Handling 6 11 0 6 11 0 0 0 0

Device Virtualization 5 4 3 0 0 0 0 0 0

Sum 80 47 0

the physical memory regions to ensure their availability at

runtime. Before returning to HU mode, the DV-driver also

dives into the M-mode OpenSBI and configures the PMP

entries to restrict the VM’s physical memory access range.

Each PMP entry is set up with a pmpcfg register specifying

the V bit and memory accessibility as well as a pmpaddr reg-

ister recording the physical address and length. The host ker-

nel should also have a PMP fault handler that terminates the

fault process gracefully. Currently, our prototype does not im-

plement such a fault handler for simplicity, but it is not hard

to extend the existing exception handler to implement one.

Lastly, the DV-driver initializes a VMID for each DuVisor

process that will be used by interrupt virtualization.

Based on the Linux kernel which already switches the gen-

eral purpose registers and V-mode CSRs, we further modi-

fied the context switch logic (74 LoC) to save and restore the

DV-Ext registers if the process has enabled DV-Ext. If the

next scheduled thread is not a vthread from the same VM,

the PMP registers are also switched.

7 Security Analysis and Evaluation

In this section, we analyze the overall system security of Du-

Visor from the perspective of an attacker.

Attack from Guest to Host Kernel. A hostile VM can ex-

ploit vulnerabilities to compromise the hypervisor. If these

vulnerabilities are exploited in kernel mode, the attacker can

achieve VM escape, steal sensitive kernel data, and even

crash the entire kernel. Table 5 shows such CVEs in differ-

ent KVM subsystems and how many of them can be success-

fully exploited in NOVA [87]/DeHype [91] and DuVisor’s ar-

chitecture. NOVA and DeHype, limited by hardware, cannot

fully move these subsystems to user mode, thus still leaving

58.75% of the vulnerabilities undefended. In contrast, Du-

Visor has deprivileged all of these subsystems in HU mode,

reducing the host kernel’s attack surface and preventing any

of these CVEs from directly jeopardizing it.

Table 6 lists typical vulnerabilities that we evaluated on

DuVisor. Their security and reliability threats are confined

within the DuVisor processes. Therefore, they cannot harm

the host kernel directly.

Attack from Guest to DuVisor. In theory, a malicious

guest can exploit vulnerabilities to attack the user-level Du-

Visor. To enhance security, DuVisor is developed in Rust, a

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 235

Table 6: Case studies of KVM CVEs. This table lists 6 representa-

tive KVM CVEs that have the potential to disrupt the normal execu-

tion of the host kernel, resulting in DoS or even more severe attacks.

To evaluate the impact of these CVEs on a system running DuVisor,

we emulated the vulnerabilities in the corresponding subsystems of

DuVisor. The results show that these CVEs only cause DuVisor it-

self to crash, while the host kernel can continue to execute other

programs (including DuVisor VMs) correctly.

CVE-* Attack Effect

2017-12188 Memory Virtualization: KVM’s misconfiguration of the

stage-2 page table allows the guest to access host memory,

which can cause the host OS to crash or even be controlled.

2018-16882 Interrupt Virtualization: A use-after-free issue in the

posted interrupt handling may allow hostile VMs to execute

arbitrary code in HK mode.

2016-8630 ISA Emulation: Improper implementation for instruction de-

coding of KVM may cause host kernel crashes and jeopardize

the availability of the host OS.

2020-8834 VM Exit Handling: KVM’s imperfect isolation of the guest

states allows malicious VMs to corrupt the stack and destroy

the availability of the entire system.

2016-5412 Para-Virtualization: The incorrect implementation of a hy-

percall in KVM could lead to an infinite loop that crashes the

host kernel.

2019-6974 Device Virtualization: A use-after-free vulnerability in de-

vice virtualization may lead to VM escape in the kernel.

high-performance language that guarantees memory safety

and thread safety. This greatly reduces the security risks

associated with memory vulnerabilities [6, 7, 9, 12, 14] and

threading vulnerabilities [8,11,14], such as the use-after-free

bugs [9, 12] in traditional hypervisors written in C/C++. In

addition, a vulnerable DuVisor can be promptly patched in

user space without rebooting the host OS.

Attack from DuVisor to Host Kernel. Although the Du-

Visor design prevents a malicious VM from directly compro-

mising the host kernel through the in-kernel hypervisor com-

ponent, the VM may still attempt to attack the host kernel af-

ter controlling the DuVisor. Various existing techniques can

be leveraged to defend against such user-level attacks, which

are orthogonal to the DuVisor design. The static resource al-

location and vhost-user devices in DuVisor significantly re-

duce the system calls. For example, DuVisor only requires

17 system calls to serve a Linux VM at runtime. Therefore,

the kernel can use seccomp [24] to effectively restrict the sys-

tem calls and their parameters that a DuVisor can invoke at

runtime. The host kernel can also be reconstructed as a mi-

crokernel to improve its isolation, although this is beyond the

scope of this paper.

Furthermore, neither the DV-driver nor the DV-Ext inter-

face gives DuVisor additional capabilities to compromise the

host kernel. First, the DV-driver has a small enough code base

that it could be formally verified. Second, although the DV-

driver allows user-level processes to request physical mem-

ory, it can still effectively isolate them with the help of the dy-

namic PMC mechanism. Third, the registers and instructions

introduced by DV-Ext cannot be exploited by user-level code

to attack the kernel. The hu_er and hu_einfo registers provide

information related to DVE and do not leak any data from the

host kernel. The hu_vitr, hu_vcpuid, hu_vpc, and hu_ehb reg-

isters, as well as HUFLUSHGPA, only control VM behaviors

and have no effect on the host kernel. The HURET instruc-

tion and DVE implement mode switches between the HU

mode and a VM, but cannot directly enter the HK mode.

8 Performance Evaluation

We answer the following four questions in this section:

Q1: How does the DuVisor compare to the KVM/QEMU in

terms of hypervisor primitive cost? (§8.2)

Q2: How does the performance of applications running on

DuVisor compare to that of KVM/QEMU? (§8.3)

Q3: What is the performance impact of DV-Ext on the co-

located KVM/QEMU that does not use this extension? (§8.4)

Q4: How much performance impact does the extended PMP

mechanism have on DuVisor’s performance? (§8.5)

8.1 Experimental Setup

We ran experiments on the cycle-accurate FireSim plat-

form [59], which consists of two FPGA boards. Each FPGA

board has eight RISC-V processors (3.2GHz, rv64imafdch),

16GB RAM, and 115GB storage. We created a local area net-

work (LAN) between the two boards using 1Gbps IceNICs

for network-related benchmarks. Both FPGA boards were

controlled by an EC2 instance running CentOS 7.6.1810

on a 16-core Intel E5-2686 v4 CPU (2.3 GHz) and 240 GB

RAM. We used OpenSBI v0.8 [31] as the firmware for RISC-

V, and used Linux kernel 5.10.26 as the host kernel, which

was equipped with the DV-driver. The baseline is KVM [23]

(with H-Ext [35] support) and QEMU v7.0.0-rc0 running on

Linux 5.16.

For Q1 and Q2, posted interrupts can greatly improve

the performance in interrupt-intensive scenarios, but the cur-

rent open-sourced RISC-V hardware does not support this

feature. To make a fair performance comparison, we ex-

tended DV-Ext’s interrupt virtualization support to the kernel

level and implemented an optimized KVM/QEMU (“KVM-

OPT”) that enables kernel-level posted interrupts. To an-

swer Q3, we compared KVM with a slightly modified KVM

(“KVM-DVext”) that was patched with context save/restore

code related to DV-Ext and virtualization registers. For Q4,

we compared DuVisor with a PMP-less version (“DuVisor-

noPMP”) that removes PMP checking from the hardware.

8.2 Microbenchmarks

In this section, we quantify the performance of five fre-

quently used hypervisor primitives. We leveraged the cycle

CSR to measure CPU cycles. Figure 6 shows the average

cost of the five operations in KVM and DuVisor. We calcu-

lated the average cycle count after recording the total time

spent performing each operation 10,000 times. For three syn-

chronous exceptions, we only compared DuVisor with KVM

because there is no difference between KVM and KVM-OPT

when interrupt virtualization is not involved. For the other

two asynchronous exceptions, results of KVM, KVM-OPT

236 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 150

 300

 450

 600

 750

KVM DuVisor

O
v
e

rh
e

a
d

(a) Hypercall

Exit
Entry

Handling618

214

 0

 1500

 3000

 4500

 6000

 7500

KVM DuVisor

(b) Stage-2 Page Fault

Entry/Exit
GetPage
Mapping

Metadata
Other6344

694

 0

 1000

 2000

 3000

 4000

 5000

 6000

KVM DuVisor

(c) MMIO

Entry/Exit
Transfer
Decode

Other4758

494

 0

 1000

 2000

 3000

 4000

 5000

 6000

KVM KVM-OPT DuVisor

(d) Virtual IPI

Exit
vIPI Insert4692

147 147
 0

 1000

 2000

 3000

 4000

 5000

KVM KVM-OPT DuVisor

(e) Virtual Ext IRQ

vEXT Insert4084

184 184

Figure 6: Breakdown of different hypervisor primitives (Unit: cycles). (a) shows a null hypercall. Exit: from invoking a hypercall in the

guest VM to arriving at the hypercall handler in the hypervisor. Entry: the reverse procedure of Exit. Handling: processing in the hypercall

handler. (b) shows a stage-2 page fault handling. Entry/Exit: from triggering a stage-2 page fault in the VM to arriving at the #S2PF handler,

and the reverse procedure. GetPage: getting the available physical page for the fault GPA. Mapping: the PTE update in the stage-2 page table.

Metadata: maintaining the metadata of the physical page to be mapped. Other: other logic such as lock protections and fault GPA checking.

(c) shows an MMIO emulation. Entry/Exit: from invoking an MMIO operation in the VM to arriving at the user-space MMIO handler, and

the reverse procedure. Transfer: transfers between the kernel in HK mode and the user-space VMM in HU mode, which DuVisor gets rid

of. Decode: decoding the corresponding virtual MMIO device according to the fault address. Other: other logic, such as checking if the

fault address belongs to the MMIO address range. (d) shows a virtual IPI sending. vIPI Insert: For KVM, from the hypervisor inserting the

virtual IPI and kicking the receiver vCPU to the receiver vCPU’s arriving at the IPI handler. For KVM-OPT and DuVisor, from the sender

vCPU’s writing hu_vitr register to the receiver vCPU’s arriving at the IPI handler. Exit: Only for KVM, from the sender vCPU’s invoking

SEND_IPI hypercall to the hypervisor’s insertion, and from the receiver vCPU’s being kicked to it being inserted with the pending virtual IPI.

(e) shows an I/O notification sending. vEXT Insert: For KVM-OPT and DuVisor, from the I/O thread’s writing hu_vitr register to the vCPU

thread’s arriving at the IRQ handler. For KVM, from the I/O thread invoking the SET_INTERRUPT interface to the receiver vCPU’s arriving

at the IPI handler.

and DuVisor are shown.

In the hypercall microbenchmark, both KVM and DuVisor

ran a guest VM with a single vCPU pinned to a pCPU. The

guest VM invoked a null hypercall, which trapped to the hy-

percall handler and then returned immediately without doing

any functional operations. The number of cycles between the

start of the hypercall and its return position was counted. As

shown in Figure 6-a, DuVisor consumes 65.37% (404 cycles)

less time during the hypercall procedure than KVM. This

is because DuVisor in the user space does not need to per-

form operations that are only necessary in the kernel (e.g.,

enabling and disabling preemption and interrupts).

For stage-2 page fault handling, each hypervisor ran a

guest VM with a single vCPU pinned to a pCPU. The guest

VM read one byte from a page unmapped in the stage-2 page

table, triggering a stage-2 page fault exception trapped to

the hypervisor. The hypervisor allocated memory and estab-

lished a valid mapping in the stage-2 page table before re-

suming the vCPU execution. We collected cycles before and

after the guest VM read. As shown in Figure 6-b, DuVisor

spends about 89.06% (5,650 cycles) less time compared with

KVM. The main reason for the decreased cycles is that the

KVM implementation is generic but more complex, whereas

DuVisor can choose a dedicated but more concise implemen-

tation. According to our breakdown of the stage-2 page fault

handling in KVM, most of the time is spent on getting the

available physical page for the guest fault address, account-

ing for about 59.52% (3,776 cycles) of the total time as the

GetPage part shows. Similarly, the Other and Metadata parts

in KVM account for 23.31% (1,479 cycles) of the whole pro-

cess, consisting of many generic Linux kernel logic, such as

finding virtual memory area (VMA), taking locks of mmap

and maintaining metadata in Linux page structures. In com-

parison, DuVisor only spends 26 cycles in the GetPage part

and 324 cycles in the Other and Metadata part.

For MMIO emulation, a single-vCPU guest VM pinned to

a pCPU performed a load operation from an MMIO address

of a virtual console device, which trapped to the user-level

hypervisor and immediately returns. We counted the elapsed

cycles of the MMIO read operation. The result shows that

DuVisor takes 89.62% (4,264 cycles) less time than KVM

primarily due to the shorter path of MMIO handling as shown

in Figure 6-c. Traditional hypervisors such as KVM offload

most MMIO emulations to user mode for security and relia-

bility, which leads to a longer path than DuVisor. The break-

down shows that 65.89% (3,135 cycles) of the time during

the MMIO emulation in KVM is spent on multiple world

switches: VM(V) ↔ KVM(HK) ↔ QEMU(HU).

For vIPIs, both KVM and DuVisor ran a dual-vCPU guest

VM and pin two vCPUs to separate cores. The sender vCPU

sent an IPI and waited for the ACK from the receiver vCPU

by polling on the shared memory, while the receiver vCPU

wrote to the shared memory as soon as entering the IPI han-

dler to inform the sender. We calculated the cycles on the

sender vCPU from sending IPI to getting ACK from the

shared memory. Figure 6-d shows the results. Since both

KVM-OPT and DuVisor leverage hardware posted interrupt

support, their virtual IPI processes are done without hypervi-

sor involvement and thus equally cost 147 cycles. In contrast,

the KVM spends 4,692 cycles on sending a vIPI. To send an

IPI, the sender vCPU has to invoke a hypercall and trap to the

KVM (Exit part), which occupies 11.83% of the total cost.

While the rest 88.17% is cost by the cumbersome vIPI Insert

part, in which the hypervisor sends the vIPI request, kicks

the receiver vCPU, and inserts the vIPI before resuming the

receiver vCPU.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 237

For virtual external interrupts, a single-vCPU guest VM

pinned to a pCPU spun and waited for external interrupts. We

calculated the average consumed cycles from the hypervisor

inserting a virtual external interrupt to the vCPU acknowl-

edging the inserted interrupt in the interrupt handler. Using

the same hardware posted interrupt support, both KVM-OPT

and DuVisor averagely spend 184 cycles. While KVM needs

4,084 cycles in total due to the long emulation processes,

such as kicking the vCPU.

8.3 Application Benchmarks

Table 7: Descriptions of application benchmarks.

Name Description

Netperf Netserver v2.6.0 on the local server (guest VM) and Netperf v2.6.0

on the remote client (native) to test the TCP stream throughput for 5

seconds.

iperf3 iperf v3.9 on both the local server (guest VM) and the remote client

(native) to test the TCP throughput for 10 seconds.

Memcached Memcached v1.6.10 running the memtier benchmark 1.3.0 on the re-

mote client to test transactions per second. The thread number is set to

the same as the number of server vCPUs. Each round of the test lasts

5 seconds.

Hackbench Hackbench using Unix domain sockets and default 10 process groups

running in 100 loops, measuring the time cost.

CPUPrime CPU test in sysbench v0.4.12 that calculates prime numbers up to the

max prime 10000. The thread number is set to the same as the number

of server CPUs.

In this section, we evaluated the performance of five ap-

plication benchmarks described in Table 7, compared KVM-

OPT and DuVisor’s results with native, and analyzed the rea-

sons for the performance differences. We ran the benchmark

in three VMs with 1, 2 and 4 vCPUs, respectively. Every VM

was equipped with 512MB memory, a virtio-based network

device, and a virtio-based block device. In each case, we as-

signed the same number of CPUs and memory size to na-

tive as to VMs via maxcpus and mem using the kernel com-

mand line. To demonstrate the best performance of the in-

kernel KVM, we used vhost-net as the network backend of

the KVM-OPT VMs. For DuVisor VMs, we implemented

a lightweight user-space network backend driver by porting

ixy [51], a 1,000-LoC user-space ixgbe driver, to FireSim’s

IceNet. Each vCPU and I/O thread of a guest VM was pinned

to a separate physical CPU to avoid instability caused by the

host kernel scheduler. All applications were evaluated after

warmup to eliminate stage-2 page faults during benchmarks.

As shown in Figure 7-a and Figure 7-b, both KVM-OPT

and DuVisor make full use of the NIC’s bandwidth with dif-

ferent vCPU numbers and have no significant overhead com-

pared to native. Because KVM-OPT and DuVisor used dif-

ferent network backends, their performance when running

network-intensive applications can vary due to backend im-

plementations. Nevertheless, what we intend to demonstrate

is that DuVisor can attain comparable performance to KVM-

OPT’s mature vhost-net with a simply-implemented user-

space network backend. For the network-intensive mem-

cached application shown in Figure 7-c, DuVisor has a sim-

ilar performance to KVM-OPT. However, they introduce up

to 35% virtualization overhead when compared with the na-

tive. According to our analysis, the reasons for the perfor-

mance degradation mainly consist of the longer network data

transfer path and the sub-optimal frontend/backend notifica-

tions. Massive small memcached requests travel longer than

native before reaching the memcached in VMs due to the

I/O virtualization. Besides, guest VMs’ interrupt frequency

during the benchmark is much higher than that of the native

due to the frequent notifications from the backend drivers,

making memcached threads in VMs have less CPU time to

process requests. We also compared QEMU/KVM with na-

tive on Intel and ARM platforms with similar configurations

and find that they also introduce 15% to 40% overhead.

As shown in Figure 7-d, DuVisor is also comparable to

KVM-OPT and native for hackbench. It is worth noting that

KVM, which did not use the hardware interrupt virtualiza-

tion, will incur about 12% more overhead in this experiment.

The reason is that many IPIs are generated under this test, and

the virtual IPI operation can be effectively accelerated by the

posted interrupt, as shown in Figure 6-d. This also explains

why DuVisor’s better microbenchmark performance results

in no better application performance than KVM-OPT. Infre-

quent VM exits in DuVisor and KVM-OPT result in very low

costs for hypervisor primitives (<5% CPU cycles), which are

hardly observable in application benchmarks. Figure 7-e in-

dicates that KVM-OPT and DuVisor attain the same perfor-

mance as native execution in the CPUPrime benchmark.

As a result, the design of DuVisor does not introduce per-

formance overhead compared with KVM-OPT, while achiev-

ing better host kernel security and reliability.

8.4 Impact on Co-located KVM VMs

When co-locating a traditional in-kernel hypervisor together

with a user-level hypervisor, both hypervisors can indepen-

dently configure registers related to virtualization, which can

lead to VM state conflicts if not handled properly. There-

fore, the host kernel needs to save and restore virtualization-

related registers during context switches between them, in-

troducing additional switching latency. To clarify how much

impact such delay has on KVM, we evaluated and com-

pared the application performance of KVM and KVM-

DVext (with necessary context save/restore code). Figure 8

shows that there is no discernible performance difference

between KVM and KVM-DVext, indicating that such addi-

tional switching latency due to DuVisor’s co-location has lit-

tle impact on traditional VMs.

8.5 Memory Virtualization Overhead

Scaling Memory: To show DuVisor’s memory scalability

compared with KVM-OPT, we ran memcached in a 4-vCPU

guest VM with 512MB, 1024MB, 1536MB and 2048MB

memory. As shown in Figure 9-a, DuVisor achieves almost

the same performance as KVM-OPT in all cases. Compared

with KVM-OPT, the memory virtualization of DuVisor dif-

fers only in that it places the stage-2 page table configuration

in the user space and extends PMP for security checks. There-

238 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0%

20%

40%

60%

80%

100%

120%

1 2 4N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d

 (a) Netperf

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

1 2 4

 (b) iperf3

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

140%

1 2 4

 (c) Memcached

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

1 2 4

 (d) Hackbench

vCPU(s)
0%

20%

40%

60%

80%

100%

120%

1 2 4

KVM-OPT
DuVisor

(e) CPUPrime

vCPU(s)

Figure 7: Normalized VM performance of real-world applications running in KVM-OPT and DuVisor. The Y-axis is the normalized

overhead compared with the corresponding native environment. Error bars are added due to the performance fluctuation.

-6%

-3%

0%

3%

6%

9%

Netperf
iperf3

Memcached

Hackbench
CPUPrime

O
v
e
rh

e
a
d

1-vCPU 2-vCPU 4-vCPU

Figure 8: Normalized performance overhead of real-world ap-

plications of KVM-DVext compared with KVM.

fore, there is little impact on the memory access latency and

thus scales well as the memory size grows.

Impact of PMP: DuVisor slightly extends the PMP hard-

ware with a V bit to verify the validity of memory accesses

from guest VMs. To evaluate whether this memory protec-

tion mechanism degrades the memory performance of the

VM, we compared the memory test results of lmbench be-

tween DuVisor and DuVisor-noPMP in a dual-vCPU VM

with 512MB memory. As shown in Figure 9-b, the memory

bandwidth of the VM is almost the same with and without

PMP checking. The result shows that the design of PMC

does not introduce significant overhead to VMs.

0

0.2%

0.4%

0.6%

0.8%

512MB

1024MB

1536MB

2048MB

N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d

(a) Memory Sizes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

cp wr rd rdwr
frd fwr fcp bzero

bcopyM
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

(b) Memory Bandwidth

DuVisor
DuVisor-noPMP

Figure 9: Performance of DuVisor’s memory virtualization. (a)

DuVisor’s normalized overhead of different sizes of memory com-

pared with KVM-OPT using memcached. (b) DuVisor’s memory

performance w/ and w/o PMC using bw_mem of lmbench.

9 Discussion and Limitations

Nested Virtualization. In traditional nested virtualiza-

tion [41, 71, 77, 92], VM exits are intercepted by the L0 hy-

pervisor (bare-metal one) before being handled by the L1

hypervisor (nested one), incurring tremendous runtime over-

head. Prior work [72] optimizes nested VM exits via para-

virtualization and passthrough. In the future, we plan to ex-

tend the idea of DVE to optimize nested virtualization by

directly trapping VM exits to the L1 hypervisor.

Memory Utilization. DuVisor’s PMP-based memory virtu-

alization may lead to low memory utilization. To cover all

VM memory with a limited number of PMP regions, we use

the coarse-grained physical memory protection that can re-

sult in memory fragmentation and scalability issues. Addi-

tionally, it is difficult to support memory multiplexing (e.g.,

deduplication and overcommitment) among VMs based on

PMP. Fortunately, such limitations can be mitigated by mem-

ory migration software mechanisms [65]. They can also be

resolved through scalable fine-grained memory protection

hardware mechanisms. For example, the RISC-V PMP ta-

ble [25] has been proposed recently, which extends PMP to

support physical memory restriction in page granularity.

IOMMU Support. Although IOMMU [29] is not yet sup-

ported on currently available RISC-V hardware, DuVisor is

theoretically able to support it. Specifically, the stage-2 page

table of IOMMU can be directly controlled by DuVisor, as

the DV-driver can restrict access from guest devices by the

IOPMP mechanism [30] with the V bit introduced by DV-Ext.

The passthrough of the guest devices and the management

of IOMMU’s stage-1 page table within VMs is no different

from traditional virtualization.

DV-Ext Universality. While the current prototype is imple-

mented on RISC-V platforms, applying DV-Ext to other ar-

chitectures would also be feasible, as they all share the same

high-level virtualization functions. Consider Intel VMX

hardware virtualization as an example.

CPU virtualization: Intel VMX directs all VM exits to the

host kernel mode, and guest states in the in-memory VMCS

can only be obtained and configured with the kernel-only

VMREAD and VMWRITE instructions. To apply DV-Ext,

Intel can just take VM exits and expose such VMX instruc-

tions to the DuVisor in the host user mode, while preventing

access to host states (e.g., host CR3) in the VMCS.

Memory virtualization: The stage-2 page tables can be

managed by the user-mode DuVisor without hardware mod-

ifications. However, PMP-like primitives are also necessary

to enforce security. Fortunately, such hardware has emerged

with confidential VM extensions [1, 21, 64, 69]. To apply

DV-Ext, Intel can extend existing TDX’s Physical Address

Metadata Table (PAMT) [47] to provide fine-grained physi-

cal memory protection for DuVisor.

Interrupt virtualization: Intel can expose VMCS fields re-

lated to virtual interrupts to the DuVisor to deliver virtual in-

terrupts. Specifically, virtual interrupts can be issued in user

space by writing the VMCS with the user-mode VMX in-

structions mentioned above.

Host Kernel Vulnerability. Although DuVisor minimizes

the attack surfaces of in-kernel hypervisors that are exposed

to VMs, it does not completely exclude the host kernel from

the VMs’ runtime. Resource management (e.g., schedul-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 239

ing and physical interrupt handling) involves non-hypervisor

components in the host kernel, which may still contain many

vulnerabilities, especially in mainstream monolithic kernels.

Consequently, DuVisor is still vulnerable to the vulnerabil-

ities of non-hypervisor components. Reconstructing it as

microkernels may mitigate the problem, however, there are

tradeoffs among compatibility, performance, and security.

10 Related Work

Moving Kernel Functions to Userspace. Deprivileging ker-

nel features to userspace is a classic approach to enhance se-

curity, ease development, and improve performance. Micro-

kernel is one typical design [52,62,70,78], where system ser-

vices such as file systems and drivers run in user mode. For

monolithic kernels, similar methods also exist, which imple-

ment the file systems [50, 79], scheduler [57], network ser-

vice [75] and sandbox [53] in user space. In terms of hyper-

visor functions, research focuses on reducing the hypervisor

TCB by moving some of its functions to userspace, as demon-

strated by designs such as DeHype [91] and NOVA [87]. Un-

like DuVisor, they still require an in-kernel trusted module

to perform VM-plane functions via hardware virtualization

interfaces. DuVisor is the first system that entirely moves

runtime VM-plane functions to user space, benefiting virtual-

ization architectures on both monolithic kernels [40, 61] and

microkernels [55].

Securing VMs. Apart from the above solutions, many other

studies have investigated how to achieve better isolation for

VMs atop unreliable hypervisors. Numerous efforts have fo-

cused on reducing the hypervisor TCB [66,81,85,92]. Cloud-

Visor [92] leverages nested virtualization to deprivilege the

Xen [40] hypervisor. HypSec [66] separates a tiny Corevi-

sor as TCB from the KVM hypervisor. Other approaches

have worked on hardening the hypervisor TCB, such as

SeKVM [67, 68], which use formal verification to ensure se-

curity guarantees of hypervisors. Unlike DuVisor, these solu-

tions still rely on in-kernel hardware virtualization interfaces

and incur modest performance overhead compared to unmod-

ified traditional hypervisors.

Some solutions improve hypervisor reliability by provid-

ing per-VM hypervisor instances that are isolated from each

other. Nexen [84] deconstructs the hypervisor into per-VM

non-privileged service slices. HyperLock [90] decomposes

the hypervisor into isolated shadow copies for each VM. In

contrast to DuVisor, they still rely on traditional hardware

virtualization interfaces and suffer from performance penal-

ties of software isolation mechanisms. Others propose hard-

ware extensions to remove the vulnerable hypervisor from

the TCB [39, 58, 60, 66, 89]. NoHype [60] eliminates the hy-

pervisor and its attack surfaces by static partitioning physical

resources with hardware modifications. Nonetheless, it dis-

allows resource oversubscription and is thus impractical for

deployment in production scenarios.

Industrial confidential virtual machine (CVM) solutions,

such as AMD SEV-SNP [1] and ARM CCA [5, 69], lever-

age specialized hardware security extensions to protect the

data of VMs against a malicious hypervisor, which cannot ac-

cess or taint the memory and registers of VMs. Both CVMs

and DuVisor are vulnerable to non-hypervisor DoS attacks

because they both rely on the host kernel. However, unlike

CVMs, DuVisor can avoid DoS attacks due to in-kernel hy-

pervisor vulnerabilities by deprivileging all VM-plane func-

tions to user space to minimize the host kernel’s runtime at-

tack surfaces exposed to VMs. On the other hand, CVMs re-

quire guest OS device driver modifications, while DuVisor

supports unmodified VMs.

CVM and DuVisor are orthogonal techniques that can be

combined for greater benefits. The design of DuVisor can be

applied to defend against DoS attacks due to in-kernel hyper-

visor vulnerabilities for CVMs, which we plan to explore as

future work. Existing CVMs are controlled by the in-kernel

hypervisor through secure firmware interfaces (e.g., ARM

CCA’s RMM and TF-A, Intel TDX module) that can only

be invoked in the host kernel. DuVisor can be used alongside

CVMs by exposing these interfaces to user space, thereby

eliminating shared in-kernel hypervisor vulnerabilities.

11 Conclusion

We introduce the first delegated virtualization architecture

that delegates all VM-plane virtualization functions to user

space without trapping into the host kernel, minimizing at-

tack surfaces exposed to VMs by in-kernel hypervisor com-

ponents. To enable delegated virtualization, we present DV-

Ext and DuVisor. DV-Ext is a hardware virtualization exten-

sion that securely exposes hardware virtualization interfaces

to user space. DuVisor is a user-level hypervisor design that

directly serves VM-hypervisor interactions in user space. We

also present security techniques to prevent malicious use of

DV-Ext. We have implemented a prototype for DV-Ext and

DuVisor on the RISC-V platform. The security and perfor-

mance evaluation results demonstrate that DuVisor protects

the host kernel from hypervisor vulnerabilities without com-

promising performance compared to Linux KVM, establish-

ing a new direction for secure virtualization research and de-

velopment.

12 Acknowledgments

We express our sincere gratitude to our shepherd Jason Nieh

for providing us with valuable suggestions that significantly

helped in improving our paper. We thank the anonymous

OSDI reviewers for their insightful suggestions. We are grate-

ful to Yubin Xia and Rong Chen for their thorough and

constructive comments that greatly improved this paper. We

also thank Chenhui Ji and Yifan Tan for their contributions

to the artifact evaluation. This work was supported in part

by the National Natural Science Foundation of China (No.

62002218, 61925206, 62132014).

240 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AMD SEV-SNP: Strengthening VM Iso-

lation with Itegrity Protection and More.

https://www.amd.com/system/files/TechDocs/

SEV-SNP-strengthening-vm-isolation-wit

h-integrity-protection-and-more.pdf. Referenced

May 2023.

[2] AMD64 Architecture Programmer’s Manual, Volume 2: Sys-

tem Programming. https://www.amd.com/system/files/

TechDocs/24593.pdf. Referenced May 2023.

[3] An EPYC Escape Case Study of KVM. https://

googleprojectzero.blogspot.com/2021/06/

an-epyc-escape-case-study-of-KVM.html. Referenced

May 2023.

[4] ARM Architecture Reference Manual ARMv8, for ARMv8-

A architecture profile. https://developer.arm.com/

documentation/102105/latest. Referenced May 2023.

[5] ARM CCA Hardware Architecture. https://developer.

arm.com/documentation/ddi0615/latest/. Referenced

May 2023.

[6] CVE-2013-1796. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2013-1796. Referenced May

2023.

[7] CVE-2014-0049. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-0049. Referenced May

2023.

[8] CVE-2014-7842. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2014-7842. Referenced May

2023.

[9] CVE-2018-16882. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-16882. Referenced May

2023.

[10] CVE-2019-19332. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-19332. Referenced May

2023.

[11] CVE-2019-6974. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-6974. Referenced May

2023.

[12] CVE-2019-7221. https://bugs.chromium.org/p/

project-zero/issues/detail?id=1760. Referenced

May 2023.

[13] CVE-2021-22543. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-22543. Referenced May

2023.

[14] CVE-2021-29657. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-29657. Referenced May

2023.

[15] CVE-2021-4093. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-4093. Referenced May

2023.

[16] CVE-2021-43056. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-43056. Referenced May

2023.

[17] CVE-2021-8106. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2017-8106. Referenced May

2023.

[18] DPDK. hhttps://www.dpdk.org/. Referenced May 2023.

[19] Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual. https://www.intel.com/content/

dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-v

ol-3c-part-3-manual.pdf. Referenced May 2023.

[20] Intel® Architecture Instruction Set Extensions Pro-

gramming Reference. https://software.intel.

com/content/www/us/en/develop/download/

intel-architecture-instruction-set-extensio

ns-programming-reference.html. Referenced May 2023.

[21] Intel® Trust Domain Extensions (Intel®

TDX). https://www.intel.com/content/

www/us/en/developer/articles/technical/

intel-trust-domain-extensions.html. Referenced

May 2023.

[22] KVM CVE. https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=KVM. Referenced May 2023.

[23] KVM RISC-V. https://github.com/KVM-riscv. Refer-

enced May 2023.

[24] Linux Seccomp. https://en.wikipedia.org/wiki/

Seccomp. Referenced May 2023.

[25] PMP Table Extension. https://

docs.google.com/document/d/

158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/

edit#heading=h.rjobwmo1vft1. Referenced May 2023.

[26] QEMU: A Generic and Open Source Machine Emulator and

Virtualizer. https://www.qemu.org/. Referenced May 2023.

[27] QEMU-KVM Guest to Host Kernel Escape Vulnerability:

vhost/vhost_net kernel buffer overflow. https://bugs.

gentoo.org/show_bug.cgi?id=CVE-2019-14835. Refer-

enced May 2023.

[28] RISC-V Hypervisor Extension, Version 1.0.0-rc. https://

github.com/riscv/riscv-isa-manual/blob/master/

src/hypervisor.tex. Referenced May 2023.

[29] RISC-V IOMMU Specification. https://github.com/

riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.

pdf. Referenced May 2023.

[30] RISC-V IOPMP Specification. https://github.com/

riscv-non-isa/iopmp-spec. Referenced May 2023.

[31] RISC-V OpenSBI, Version 0.8. https://github.com/

riscv-software-src/opensbi/releases/tag/v0.8. Ref-

erenced May 2023.

[32] RISC-V Privileged Architectures, Version 1.12. https://

github.com/riscv/riscv-isa-manual/releases/

download/Priv-v1.12/riscv-privileged-20211203.

pdf. Referenced May 2023.

[33] RISC-V “N” Standard Extension for User-Level Inter-

rupts, Version 1.1. https://five-embeddev.com/

riscv-isa-manual/latest/n.html. Referenced May

2023.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 241

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wit
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wit
h-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-{KVM}.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-{KVM}.html
https://googleprojectzero.blogspot.com/2021/06/an-epyc-escape-case-study-of-{KVM}.html
https://developer.arm.com/documentation/102105/latest
https://developer.arm.com/documentation/102105/latest
https://developer.arm.com/documentation/ddi0615/latest/
https://developer.arm.com/documentation/ddi0615/latest/
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2013-1796
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2013-1796
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-0049
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-0049
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-7842
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2014-7842
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2018-16882
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2018-16882
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-19332
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-19332
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-6974
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2019-6974
https://bugs.chromium.org/p/project-zero/issues/detail?id=1760
https://bugs.chromium.org/p/project-zero/issues/detail?id=1760
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-22543
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-22543
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-29657
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-29657
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2021-4093
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2021-4093
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-43056
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE-}2021-43056
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2017-8106
https://cve.mitre.org/cgi-bin/cvename.cgi?name={CVE}-2017-8106
hhttps://www.dpdk.org/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-v
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-v
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-v
ol-3c-part-3-manual.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensio
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensio
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensio
ns-programming-reference.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={KVM}
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={KVM}
https://github.com/{KVM}-riscv
https://en.wikipedia.org/wiki/Seccomp
https://en.wikipedia.org/wiki/Seccomp
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://docs.google.com/document/d/158j99tm1gmZ5VH0l0scZhLKRU5lJzJhj2zS2RlUWMeQ/edit#heading=h.rjobwmo1vft1
https://www.qemu.org/
https://bugs.gentoo.org/show_bug.cgi?id={CVE-}2019-14835
https://bugs.gentoo.org/show_bug.cgi?id={CVE-}2019-14835
https://github.com/riscv/riscv-isa-manual/blob/master/src/hypervisor.tex
https://github.com/riscv/riscv-isa-manual/blob/master/src/hypervisor.tex
https://github.com/riscv/riscv-isa-manual/blob/master/src/hypervisor.tex
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/riscv-iommu/blob/main/riscv-iommu.pdf
https://github.com/riscv-non-isa/iopmp-spec
https://github.com/riscv-non-isa/iopmp-spec
https://github.com/riscv-software-src/opensbi/releases/tag/v0.8
https://github.com/riscv-software-src/opensbi/releases/tag/v0.8
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://five-embeddev.com/riscv-isa-manual/latest/n.html
https://five-embeddev.com/riscv-isa-manual/latest/n.html

[34] Rocket Chip. https://github.com/chipsalliance/

rocket-chip. Referenced May 2023.

[35] Rocket Chip H-Ext PR. https://github.com/

chipsalliance/rocket-chip/pull/2841. Referenced

May 2023.

[36] The Architecture of VMware ESXi. https://www.vmware.

com/content/dam/digitalmarketing/vmware/en/pdf/

techpaper/ESXi_architecture.pdf. Referenced May

2023.

[37] The Current State of Kernel Page-table Isolation. https://

lwn.net/Articles/741878/. Referenced May 2023.

[38] XEN CVE. https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=XEN. Referenced May 2023.

[39] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xi-

aolan Zhang, and Nathan C. Skalsky. HyperSentry: Enabling

Stealthy in-Context Measurement of Hypervisor Integrity. In

Proceedings of the 17th ACM Conference on Computer and

Communications Security, CCS ’10, page 38–49, New York,

NY, USA, 2010. Association for Computing Machinery.

[40] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew

Warfield. Xen and the Art of Virtualization. In Proceedings

of the 19th ACM Symposium on Operating Systems Principles,

SOSP ’03, page 164–177, New York, NY, USA, 2003. Asso-

ciation for Computing Machinery.

[41] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael

Factor, Nadav Har’El, Abel Gordon, Anthony Liguori, Orit

Wasserman, and Ben-Ami Yassour. The Turtles Project: De-

sign and Implementation of Nested Virtualization. In Proceed-

ings of the 9th USENIX Conference on Operating Systems

Design and Implementation, OSDI’10, page 423–436, USA,

2010. USENIX Association.

[42] Edouard Bugnion, Scott Devine, and Mendel Rosenblum.

Disco: Running Commodity Operating Systems on Scalable

Multiprocessors. SIGOPS Oper. Syst. Rev., 31(5):143–156,

oct 1997.

[43] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy

Sugerman, and Edward Y. Wang. Bringing Virtualization to

the x86 Architecture with the Original VMware Workstation.

ACM Trans. Comput. Syst., 30(4), nov 2012.

[44] J. P. Buzen and U. O. Gagliardi. The Evolution of Virtual Ma-

chine Architecture. In Proceedings of the June 4-8, 1973, Na-

tional Computer Conference and Exposition, AFIPS ’73, page

291–299, New York, NY, USA, 1973. Association for Comput-

ing Machinery.

[45] Sanchuan Chen, Fangfei Liu, Zeyu Mi, Yinqian Zhang,

Ruby B. Lee, Haibo Chen, and XiaoFeng Wang. Leveraging

Hardware Transactional Memory for Cache Side-Channel De-

fenses. In Proceedings of the 2018 on Asia Conference on

Computer and Communications Security, ASIACCS ’18, page

601–608, New York, NY, USA, 2018. Association for Comput-

ing Machinery.

[46] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello,

George Coker, Tim Deegan, Peter Loscocco, and Andrew

Warfield. Breaking up is Hard to Do: Security and Function-

ality in a Commodity Hypervisor. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles, SOSP ’11,

page 189–202, New York, NY, USA, 2011. Association for

Computing Machinery.

[47] Intel Corporation. Architecture Specification: Intel Trust Do-

main Extensions (Intel TDX) Module, Section 13. 2020.

[48] R. J. Creasy. The Origin of the VM/370 Time-Sharing System.

IBM Journal of Research and Development, 25(5):483–490,

1981.

[49] Christoffer Dall and Jason Nieh. KVM/ARM: The Design and

Implementation of the Linux ARM Hypervisor. In Proceed-

ings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems,

ASPLOS ’14, page 333–348, New York, NY, USA, 2014. As-

sociation for Computing Machinery.

[50] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo

Chen. Performance and Protection in the ZoFS User-Space

NVM File System. In Proceedings of the 27th ACM Sym-

posium on Operating Systems Principles, SOSP ’19, page

478–493, New York, NY, USA, 2019. Association for Com-

puting Machinery.

[51] Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan

Huber, Thomas Zwickl, and Georg Carle. User Space Net-

work Drivers. In Proceedings of the ACM/IEEE Symposium

on Architectures for Networking and Communications Sys-

tems (ANCS 2019), September 2019.

[52] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrish-

nan, Michael M. Swift, and Somesh Jha. The Design and Im-

plementation of Microdrivers. In Proceedings of the 13th In-

ternational Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS XIII, page

168–178, New York, NY, USA, 2008. Association for Comput-

ing Machinery.

[53] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A

Delegating Architecture for Secure System Call Interposition.

In Proceedings of the Network and Distributed System Secu-

rity Symposium, NDSS 2004, San Diego, California, USA. The

Internet Society, 2004.

[54] P. H. Gum. System/370 Extended Architecture: Facilities for

Virtual Machines. IBM Journal of Research and Development,

27(6):530–544, 1983.

[55] Gernot Heiser and Ben Leslie. The OKL4 Microvisor: Con-

vergence Point of Microkernels and Hypervisors. In Proceed-

ings of the 1st ACM Asia-Pacific Workshop on Workshop on

Systems, APSys ’10, page 19–24, New York, NY, USA, 2010.

Association for Computing Machinery.

[56] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and

Christos Kozyrakis. A Case against (Most) Context Switches.

In Proceedings of the Workshop on Hot Topics in Operating

Systems, HotOS ’21, page 17–25, New York, NY, USA, 2021.

Association for Computing Machinery.

[57] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir

Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rom-

bakh, Paul Turner, and Christos Kozyrakis. GhOSt: Fast &

242 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip/pull/2841
https://github.com/chipsalliance/rocket-chip/pull/2841
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=XEN
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=XEN

Flexible User-Space Delegation of Linux Scheduling. In Pro-

ceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, SOSP ’21, page 588–604, New York, NY,

USA, 2021. Association for Computing Machinery.

[58] Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and Jaehyuk

Huh. Architectural Support for Secure Virtualization under

a Vulnerable Hypervisor. In Proceedings of the 44th An-

nual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-44, page 272–283, New York, NY, USA, 2011.

Association for Computing Machinery.

[59] Sagar Karandikar, Howard Mao, Donggyu Kim, David Bian-

colin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel

Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle

Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach,

and Krste Asanović. Firesim: FPGA-Accelerated Cycle-Exact

Scale-out System Simulation in the Public Cloud. In Pro-

ceedings of the 45th Annual International Symposium on Com-

puter Architecture, ISCA ’18, page 29–42. IEEE Press, 2018.

[60] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee.

NoHype: Virtualized Cloud Infrastructure without the Virtual-

ization. In Proceedings of the 37th Annual International Sym-

posium on Computer Architecture, ISCA ’10, page 350–361,

New York, NY, USA, 2010. Association for Computing Ma-

chinery.

[61] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony

Liguori. KVM: the Linux Virtual Machine Monitor. In Pro-

ceedings of the Linux symposium, volume 1, pages 225–230.

Dttawa, Dntorio, Canada, 2007.

[62] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-

dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,

Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas

Sewell, Harvey Tuch, and Simon Winwood. SeL4: Formal

Verification of an OS Kernel. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles,

SOSP ’09, page 207–220, New York, NY, USA, 2009. Asso-

ciation for Computing Machinery.

[63] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste

Asanović, and Dawn Song. Keystone: An Open Framework

for Architecting Trusted Execution Environments. In Pro-

ceedings of the 15th European Conference on Computer Sys-

tems, EuroSys ’20, New York, NY, USA, 2020. Association

for Computing Machinery.

[64] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haib-

ing Guan, and Haibo Chen. Analysis and Optimization of

Network I/O Tax in Confidential Virtual Machines. In Pro-

ceedings of the 2023 USENIX Conference on Usenix Annual

Technical Conference, USENIX ATC ’23, Boston, MA, July

2023. USENIX Association.

[65] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and

Haibing Guan. TwinVisor: Hardware-Isolated Confidential

Virtual Machines for ARM. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles,

SOSP ’21, page 638–654, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery.

[66] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting Cloud

Virtual Machines from Hypervisor and Host Operating Sys-

tem Exploits. In Proceedings of the 28th USENIX Security

Symposium (USENIX Security 19), pages 1357–1374, Santa

Clara, CA, August 2019. USENIX Association.

[67] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and

John Zhuang Hui. Formally Verified Memory Protection for

a Commodity Multiprocessor Hypervisor. In Proceedings of

the 30th USENIX Security Symposium (USENIX Security 21),

pages 3953–3970. USENIX Association, August 2021.

[68] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John

Zhuang Hui. A Secure and Formally Verified Linux KVM Hy-

pervisor. In 2021 IEEE Symposium on Security and Privacy

(SP), pages 1782–1799, 2021.

[69] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason

Nieh, Yousuf Sait, and Gareth Stockwell. Design and Verifi-

cation of the ARM Confidential Compute Architecture. In

Proceedings of the 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages 465–

484, Carlsbad, CA, July 2022. USENIX Association.

[70] J. Liedtke. On Micro-Kernel Construction. SIGOPS Oper.

Syst. Rev., 29(5):237–250, dec 1995.

[71] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and

Marc Zyngier. NEVE: Nested Virtualization Extensions for

ARM. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, page 201–217, New York, NY,

USA, 2017. Association for Computing Machinery.

[72] Jin Tack Lim and Jason Nieh. Optimizing nested virtualiza-

tion performance using direct virtual hardware. In Proceed-

ings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems, ASPLOS ’20, page 557–574, New York, NY, USA,

2020. Association for Computing Machinery.

[73] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan

Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and

Mike Hamburg. Meltdown: Reading Kernel Memory from

User Space. In Proceedings of the 27th USENIX Security

Symposium (USENIX Security 18), pages 973–990, Baltimore,

MD, August 2018. USENIX Association.

[74] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and

Ruby B. Lee. Last-Level Cache Side-Channel Attacks are

Practical. In 2015 IEEE Symposium on Security and Privacy,

pages 605–622, 2015.

[75] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher

Alfeld, Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita

Dukkipati, William C. Evans, Steve Gribble, Nicholas Kidd,

Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick,

Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn,

Paul Turner, Valas Valancius, Xi Wang, and Amin Vahdat.

Snap: A Microkernel Approach to Host Networking. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP ’19, page 399–413, New York, NY, USA,

2019. Association for Computing Machinery.

[76] Zeyu Mi, Haibo Chen, Yinqian Zhang, Shuanghe Peng, Xi-

aofeng Wang, and Michael K. Reiter. CPU Elasticity to Mit-

igate Cross-VM Runtime Monitoring. IEEE Transactions on

Dependable and Secure Computing, 17(5):1094–1108, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 243

[77] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing

Guan. (Mostly) Exitless VM Protection from Untrusted Hy-

pervisor through Disaggregated Nested Virtualization. In Srd-

jan Capkun and Franziska Roesner, editors, Proceedings of the

29th USENIX Security Symposium, USENIX Security 2020,

August 12-14, 2020, pages 1695–1712. USENIX Association,

2020.

[78] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo

Chen. SkyBridge: Fast and Secure Inter-Process Communi-

cation for Microkernels. In Proceedings of the 14th EuroSys

Conference 2019, EuroSys ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[79] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan Jen-

nings, Ang Chen, Danyang Zhuo, and Thomas E. Anderson.

High Velocity Kernel File Systems with Bento. In Marcos K.

Aguilera and Gala Yadgar, editors, Proceedings of the 19th

USENIX Conference on File and Storage Technologies, FAST

2021, February 23-25, 2021, pages 65–79. USENIX Associa-

tion, 2021.

[80] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. Im-

proving Xen Security through Disaggregation. In Proceedings

of the 4th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments, VEE ’08, page 151–160,

New York, NY, USA, 2008. Association for Computing Ma-

chinery.

[81] Anh Nguyen, Himanshu Raj, Shravan Rayanchu, Stefan

Saroiu, and Alec Wolman. Delusional Boot: Securing Hy-

pervisors without Massive Re-Engineering. In Proceedings

of the 7th ACM European Conference on Computer Systems,

EuroSys ’12, page 141–154, New York, NY, USA, 2012. As-

sociation for Computing Machinery.

[82] Gaoning Pan, Xingwei Lin, Xinlei Ying, Jiashui Wang, and

Chunming Wu. Scavenger: Misuse Error Handling Leading

To QEMU/KVM Escape. In Black Hat Asia, 2021.

[83] L. H. Seawright and R. A. MacKinnon. VM/370—A study of

multiplicity and usefulness. IBM Systems Journal, 18(1):4–17,

1979.

[84] Le Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo

Chen, Binyu Zang, and Jinming Li. Deconstructing Xen.

In Proceedings of the 24th Annual Network and Distributed

System Security Symposium, NDSS 2017, San Diego, Califor-

nia, USA, February 26 - March 1, 2017. The Internet Society,

2017.

[85] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazu-

masa Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hi-

rano, Kenichi Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji

Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko Kato.

BitVisor: A Thin Hypervisor for Enforcing i/o Device Secu-

rity. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments,

VEE ’09, page 121–130, New York, NY, USA, 2009. Associ-

ation for Computing Machinery.

[86] Baibhav Singh and Rahul Kashyap. Back To The Future: A

Radical Insecure Design of KVM on ARM. In Black Hat USA,

2018.

[87] Udo Steinberg and Bernhard Kauer. NOVA: A

Microhypervisor-Based Secure Virtualization Architec-

ture. In Proceedings of the 5th European Conference on

Computer Systems, EuroSys ’10, page 209–222, New York,

NY, USA, 2010. Association for Computing Machinery.

[88] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong

Lim. Virtualizing I/O Devices on VMware Workstation’s

Hosted Virtual Machine Monitor. In Proceedings of the 2001

USENIX Annual Technical Conference (USENIX ATC 01),

Boston, MA, June 2001. USENIX Association.

[89] Jakub Szefer and Ruby B. Lee. Architectural Support for

Hypervisor-Secure Virtualization. In Proceedings of the 17th

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XVII,

page 437–450, New York, NY, USA, 2012. Association for

Computing Machinery.

[90] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang.

Isolating Commodity Hosted Hypervisors with HyperLock.

In Proceedings of the 7th ACM European Conference on Com-

puter Systems, EuroSys ’12, page 127–140, New York, NY,

USA, 2012. Association for Computing Machinery.

[91] Chiachih Wu, Zhi Wang, and Xuxian Jiang. Taming Hosted

Hypervisors with (Mostly) Deprivileged Execution. In Pro-

ceedings of the 20th Annual Network and Distributed System

Security Symposium, NDSS 2013, San Diego, California, USA,

February 24-27, 2013. The Internet Society, 2013.

[92] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.

CloudVisor: Retrofitting Protection of Virtual Machines in

Multi-Tenant Cloud with Nested Virtualization. In Proceed-

ings of the 23rd ACM Symposium on Operating Systems Prin-

ciples, SOSP ’11, page 203–216, New York, NY, USA, 2011.

Association for Computing Machinery.

A Artifact Appendix

Abstract

The artifact evaluation of DuVisor contains two parts: the security

evaluation and the performance evaluation. For security evaluation,

we evaluate representative CVEs in the DuVisor on the QEMU-

emulated RISC-V platform. For performance evaluation, we mea-

sure the performance of various microbenchmarks and application

benchmarks on native, DuVisor, vanilla KVM and optimized KVM

using the cycle-accurate FireSim platform.

Scope

Security Evaluation: DuVisor is able to prevent host kernel from

crashing even if the user-level VM-plane is attacked. As mentioned

in the Table 6 of our paper, this artifact emulates 6 representative

KVM CVEs and evaluates their impact on the system. The results

can show that these CVEs could crash DuVisor itself, but the host

kernel can continue to execute other programs (including DuVisor

VMs) normally.

Performance Evaluation: DuVisor achieves higher security while

also maintains comparable performance to the optimized KVM (i.e.,

KVM-OPT in our paper). As shown in Figure 7-10 of our paper, this

artifact compares various benchmarks between DuVisor and KVM,

and also evaluates the impact of DV-Ext hardware extension KVM.

244 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The results can show that DuVisor performs good and DV-Ext has

little impact on existing KVM.

Contents

• Run-time environment: FireSim cycle-accurate FPGA plat-

form based on AWS EC2 instances (two C5 and one F1)

• Hardware: QEMU (security AE) and RocketChip (perfor-

mance AE)

• Software: OpenSBI, Linux, QEMU, DuVisor, related bench-

marks

• Metrics: Benchmark results, usually latency and throughput

• Estimated time: about 20 hours with pre-built software im-

ages

• Available on GitHub: https://github.com/

IPADS-DuVisor/ae-guide/tree/main/

Hosting

The artifacts are available on the GitHub, please refer to the main

branch of this guide: https://github.com/IPADS-DuVisor/

ae-guide/tree/main/

Requirements

Because the FireSim platform relies on special AWS FPGA (F1) in-

stances, requiring multiple machines and complicated environment

configurations. Besides, a newer version of FireSim platform may

not be compatible with an older one. To simplify the AE procedure,

we provided pre-configured AWS instances for reviewers.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 245

https://github.com/IPADS-DuVisor/ae-guide/tree/main/
https://github.com/IPADS-DuVisor/ae-guide/tree/main/
https://github.com/IPADS-DuVisor/ae-guide/tree/main/
https://github.com/IPADS-DuVisor/ae-guide/tree/main/

Core slicing: closing the gap between leaky confidential VMs and bare-metal cloud

Ziqiao Zhou∗ Yizhou Shan† Weidong Cui∗ Xinyang Ge∗‡ Marcus Peinado∗ Andrew Baumann∗§

∗Microsoft Research †University of California, San Diego

Abstract
Virtual machines are the basis of resource isolation in today’s
public clouds, yet the security risks of entrusting that isolation
to a cloud provider’s hypervisor are substantial. Such concerns
have motivated hardware extensions for “confidential VMs”
that seek to remove the hypervisor from the trusted computing
base by adding a highly-privileged firmware layer that checks
hypervisor actions, and supports memory encryption and re-
mote attestation. However, the hypervisor retains control of
resource management and observes associated guest actions
including nested page table faults and CPU scheduling, and
thus confidential VMs remain vulnerable to an ever-changing
variety of hypervisor-level side channel attacks. Bare-metal
cloud servers avoid such leaks, but remain a niche due to the
high cost of dedicated hardware.

We observe that typical cloud VMs run with a static allo-
cation of memory and discrete cores, and increasingly rely
on I/O offload, thus negating the apparent need for a hypervi-
sor and the fragile hypervisor/guest isolation boundary. Our
design, core slicing, enables multiple untrusted guest OSes
to run on shared bare-metal hardware. To ensure isolation
without the complexity of virtualization, we propose simple
hardware extensions that restrict guests to a static slice of a
machine’s cores, memory and virtual I/O devices, and del-
egate resource allocation to a dedicated management slice.
We demonstrate practicality and evaluate performance with
prototypes for RISC-V and x86.

1 Introduction

We are in the early stages of a new generation of trusted ex-
ecution environment (TEE). Motivated by cloud workloads,
their main new feature is the ability to run “confidential VMs”
inside the TEE [13, 17, 53]. Driven by the demand for secure
cloud computing in which the user need not trust the cloud

†Yizhou Shan is now at Huawei Cloud.
‡Xinyang Ge is now at Databricks.
§Andrew Baumann is now at Google.

provider [78], these TEEs are expected to see much wider
adoption than their predecessors [50]. Although confidential
VMs offer enhanced functionality, their security model and
architecture are largely identical to earlier TEEs such as SGX.
The user shares one or more processor cores with a powerful
adversary who controls hardware resources. Processor exten-
sions provide the TEE with private memory and a trusted
“context switch” to prevent the administrator-adversary from
directly breaking the confidentiality and integrity of the TEE.

However, the past decade has produced a broad and rapidly
growing spectrum of attacks on this model [22, 25, 41, 44,
62, 65, 67, 68, 72, 82, 90, 98, 104, 110, 112–116], including
the complete breakdown of SGX security on several occa-
sions [112, 114, 115]. Most of these can be described as side-
channel attacks. As §2.3 will describe, they take advantage
of the fact that attacker and victim run on the same core and
share a multitude of sometimes obscure microarchitectural
components. The same risks [39, 44, 67, 68] exist in confi-
dential VMs. Although today’s confidential VM architectures
remove privileges from the host hypervisor (e.g., the ability
to read plaintext guest memory), it retains a large degree of
control over guest execution, such as the ability to arbitrarily
interrupt guests, leading inexorably to side-channel attacks.

It is this paper’s thesis – backed by evidence from recent
work on computer architecture [31, 96, 97] and security [60]
– that these failures of TEE hardware are not isolated events
of the past. More than a decade of microarchitectural opti-
mizations have taken processor complexity to a level where
it is practically impossible to reason about isolation bound-
aries within a core [60, 96]. This problem is not only the
likely ultimate root cause of the known attacks, but it is also
bound to result in periodic breakdowns of TEE security for
the foreseeable future. Indeed, Intel takes the position that
side channels “can’t be eliminated” [48, 51, 56] but that it will
provide mitigations as new vulnerabilities are found. While
similar to the current approach to software vulnerabilities,
this expects the users of confidential cloud computing (e.g.,
financial institutions and governments) to tolerate data leaks
whenever a new side channel is discovered.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 247

In this paper, we present a much more robust TEE archi-
tecture, core slicing, that is realistic for infrastructure-as-a-
service (IaaS) workloads. Rather than making confidential
guests share cores with an adversarial hypervisor, we give the
guest exclusive access to its own CPU cores. This moves the
isolation boundary to the much more defensible and robust
one between processor cores. We show that this boundary can
be enforced with simple (and thus less fragile) hardware.

We observe that, although cloud guests may benefit from
a VM-level execution abstraction, cloud providers do not ex-
ploit the full complexity enabled by hypervisor-based virtual
machines for IaaS workloads. For example, although hypervi-
sors support time-slicing VMs on shared cores, VMs offered
by major public cloud providers including Amazon [11] and
Azure [81] are sized at core granularity and scheduled on
distinct physical cores [7, 76, 77]. Likewise, the memory
allocated to guest VMs is static; techniques such as mem-
ory ballooning [118] or transparent page sharing [118, 124]
are avoided. Cloud providers are also moving to reduce the
overhead of I/O virtualization by offloading I/O processing
to dedicated hardware [5, 8, 36]. To ensure that resources
sold match those available, cloud providers limit oversub-
scription to only their own (first-party) VMs [28] or disable
it entirely [7]. Overall, although today’s cloud runs virtual
machines, leading public cloud providers do so using an effec-
tively static allocation of cores and memory. The hypervisor is
relied upon for isolation, but it does so merely by partitioning
platform resources.

By giving the guest exclusive access to CPU cores, core
slicing eliminates the potential for the entire class of side
channels where the attacker shares per-core microarchitec-
tural resources with its victim. Moreover, we enforce this
isolation boundary with a new hardware mechanism that is
self-contained and simple enough to permit reasoning about
confidentiality and integrity. Fully isolated guest OSes (or,
potentially, guest hypervisors) run in their own slice of a ma-
chine. Each slice consists of a dedicated, static allocation of
cores, memory, and directly-assigned I/O devices (e.g., the
virtual functions of network and storage controllers); hard-
ware ensures that the cores of a slice are sequestered such
that they have no access to memory or I/O devices outside
the slice, nor can they interrupt cores of other slices. Because
only a single guest runs code on any given core, a huge class
of microarchitectural side-channel leaks are out of scope, and
continued innovation in complex microarchitectural perfor-
mance optimizations is unhindered, since those cannot impact
the TEE isolation boundary. While core slicing eliminates
intra-core leakage, it does not prevent cross-core side chan-
nels such as CrossTalk [91] which will have to be addressed
by other means. Nevertheless, we believe that obviating intra-
core channels removes by far the largest and most serious
part of today’s side channel problem in terms of the number
and seriousness of known attacks, granularity of sharing, and
number of shared components.

Resource allocations are determined by a slice manager
that runs on a dedicated core (ideally, a separate low-power
processor), and is responsible for starting and stopping slices,
but is otherwise untrusted by the guest. Guest kernels (or
guest hypervisors) are enlightened if necessary to run within
a slice, ensuring that they attempt only access to those named
resources available to them. For example, a guest cannot as-
sume that physical memory starts at address 0, nor that pro-
cessors have contiguous IDs; in practice, modern kernels
including Linux make no such assumptions, and it suffices to
pass boot-time information on the accessible resources.

In the following §2, we elaborate on the security risks of
confidential VMs, and explore the way VMs are deployed in
the cloud today. Like Keller et al. [58] over 10 years ago, we
find that hypervisors add significant needless complexity to
the cloud’s trusted computing base. However, their system No-
Hype [107] did not protect VMs from the (fully trusted) cloud
provider and relied on virtualization hardware to enforce iso-
lation. The numerous attacks demonstrated since [31, 62, 97]
showed that the security provided by this hardware is frag-
ile [62, 96]. By contrast, core slicing maintains a strict separa-
tion between core processor logic that is performance-critical
and thus complex, and the hardware that enforces isolation,
which is not performance critical and simple. It also permits
guests to run their own bare-metal hypervisors.

To grant guests bare-metal access to cores in a shared ma-
chine while still securely isolating them from one another
raises a key design challenge: without a more privileged
software layer on the core, what can enforce isolation? The
key insight behind our design is that simple hardware tech-
niques used to enable trusted execution features such as secure
boot and remote attestation for an entire system [127] can be
adapted and applied at the granularity of individual cores to
help resolve this dilemma. Specifically, §3 contributes lock-
able filter registers and a core-local secure reset mechanism,
and describes how they can be used to enable core slicing.

To test the practicality of our design, we build two pro-
totypes. The first (§4) leverages RISC-V physical-memory
protection (PMP) registers [93, §3.6] to run multiple isolated
Linux slices. The other x86-based prototype (§5) lacks secu-
rity but enables an evaluation (§6) showing that core slicing
offers bare-metal performance without VM overheads, with a
substantially smaller TCB, while closing side channels based
on caches, page faults [128], and other intra-CPU resources.
We also analyze traces from a public cloud to find that we
can allocate physically-contiguous slice memory, and confirm
that our extensions add minimal hardware cost to an existing
design. Finally, §7 outlines a path to applying our design to
more mainstream architectures, §8 covers related work, and
§9 concludes.

248 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Background and motivation

2.1 Hardware-accelerated virtualization

Since VMware first demonstrated the value of virtual ma-
chines on commodity platforms [23], hardware vendors have
added features to progressively reduce the overhead of virtu-
alization. Although first-generation VM hardware suffered
poor performance [1], the gap closed to the point where to-
day’s cloud platforms rely fully on hardware support for CPU
virtualization, with features such as nested paging and vir-
tual APICs ensuring that many guest VMs now run with low
(<5%) CPU overhead compared to bare-metal execution [2].
Unfortunately, this is not true of all VMs; a recent study by
Teabe et al. [108] found that up to 30% of CPU time was
consumed by virtualization overheads on memory-intensive
workloads, even when using nested address translation with
huge pages. Other studies reported similar or worse address
translation overheads (even with huge pages) [3, 37, 88].

Besides CPU features, modern hardware also supports effi-
cient virtualization of I/O, through advanced IOMMUs [12,
49] and single-root I/O virtualization (SR-IOV) devices [32,
63]. These enable low-overhead virtual I/O by permitting a
single physical I/O adapter (such as a network interface or
storage controller) to export multiple virtual PCI functions.
These are configured by a hypervisor and assigned to guest
VMs by installing appropriate IOMMU translations and in-
terrupt mappings. A guest OS thus interacts directly with
the device, without the software overhead of traditional I/O
virtualization [117]. The hypervisor’s role is reduced to con-
figuring the virtual devices and mapping them to the guests, a
slower (control path) operation generally performed at startup.

2.2 Confidential VMs

Notwithstanding attempts to reduce the size or attack surface
of cloud hypervisors [27, 66, 105, 107, 121, 125], the cloud’s
trusted computing base is controlled by cloud providers
and opaque to its users. Threats such as supply-chain at-
tacks [85] and rogue employees (e.g., cloud administrators
and developers) have alternatives to traditional cloud architec-
ture [55, 106, 126]: new architecture extensions such as AMD
SEV-SNP [13, 78], Intel TDX [53] and Arm Realms [17] seek
to remove the hypervisor entirely from the guest’s TCB by
extending the approach of earlier user-level TEEs such as
Intel SGX [50]. In these designs, guest memory and register
context are encrypted by hardware, and resource management
actions of the hypervisor, such as mapping of memory to the
guest, are checked for consistency with the expected VM state.
This prevents, for example, a compromised hypervisor from
interfering with a guest’s memory layout. Finally, like other
trusted computing technologies, these designs include a hard-
ware root of trust with support for remote attestation of the
guest VMs, enabling a cloud user to verify that their VM has

been correctly launched before trusting it with any secrets.
While the various architectures share many similarities,

they differ in the trusted components that check hypervisor
operations and enable remote attestation. In AMD’s design,
these are delegated to firmware on a separate platform secu-
rity processor, whereas in the Intel and Arm designs these
are performed by trusted and attested software running on
the CPU itself. Regardless of where it runs, the relevant
firmware/software must be trusted by both host and guest,
and although it is simpler than a full hypervisor, that is hardly
a guarantee of correctness. Notably, AMD’s firmware (the
only one of the three to have reached production) has already
suffered serious vulnerabilities [13, 14, 24, 26].

2.3 Side channels in processor-based TEEs

Because confidential VMs inherit from SGX the key design
feature of a privileged attacker who controls resources and
shares processor time with the TEE, we expect them to remain
vulnerable to many forms of side-channel attacks similar to
those that devastated SGX [112, 114, 115].

Several attacks have demonstrated that the processor’s ad-
dress translation mechanism can be used to extract informa-
tion such as cryptographic keys, text documents or JPEG
images from SGX enclaves [101, 111, 128]. In these attacks,
the adversary manipulates or simply monitors page tables to
observe addresses accessed by the victim. While these attacks
were demonstrated for SGX, it is clear that they carry over to
TEEs like AMD SEV where the attacker controls nested page
tables and handles nested page faults.

Other transmission channels include processor caches [22,
41, 82], branch prediction hardware [65] and interrupt la-
tency [90, 113]. Some of these attacks generalize not only
beyond SGX but also beyond TEEs. These channels also
form the basis for tools that allow the adversary to single-step
instruction-by-instruction through the enclave code [110] and
to replay TEE instructions arbitrarily many times without hav-
ing to rerun the TEE code [104]. Both techniques generalize
beyond SGX, as they only require the adversary to control
address translation and interrupts, respectively.

Speculative execution attacks have been used to leak infor-
mation across all x86 isolation boundaries, including virtual
machines and SGX [25, 62, 72, 98, 112, 114–116]. For exam-
ple, Foreshadow [112] results in the disclosure of the entire
enclave memory and the processor’s SGX attestation key.
To mitigate such attacks, confidential VMs rely on the same
basic approach as SGX: microarchitectural tweaks and mi-
crocode patches to the “context switch” path between TEE
and host code. More recent research demonstrates that side
channels remain a problem on AMD SEV, including SQUIP
attacks [39] via scheduler queues within the same CPU core;
CipherLeaks [68] via online encrypted memory analysis; and
attacks via hypervisor-observable nested page faults [44, 67].
By contrast, core slicing avoids the shared core resources,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 249

the online memory access from other security domains (i.e.,
slices), and the hypervisor.

2.4 VMs as used in public clouds
We next look at how VMs are deployed in clouds today, focus-
ing on infrastructure-as-a-service platforms, which offer VMs
backed by guaranteed resources (CPUs, memory, and in some
cases accelerators and I/O bandwidth). We consider Ama-
zon EC2 and Microsoft Azure, as they collectively represent
60% of the worldwide IaaS market [38]. We do not consider
non-IaaS workloads such as serverless or micro instances for
which core slicing may be a poor fit.

VMs are allocated at core granularity. Despite offering
a plethora of different VM sizes [11], all current-generation
VMs in Amazon EC2 occupy at least an entire core (i.e., two
vCPUs on platforms that support hyperthreading), and Ama-
zon states explicitly that host cores are “pinned” to specific
guest vCPUs and are not shared across guests [7]. Microsoft
Azure also offers a wide range of VM configurations [81].
Like Amazon, Azure does not oversubscribe customer vCPUs:
Cortez et al. [28] note explicitly that their system will “only
oversubscribe servers running first-party workloads.”

For both providers, burstable VMs [10, 80, 119] represent
the main special case as far as CPU allocation is concerned.
These VM types are optimized for workloads that are mostly
idle, with only occasional bursts of CPU activity. Like all
cloud VMs, they have a fixed number of vCPUs, but consume
on average only a fraction of their vCPU allocation in physical
CPU runtime. Thus, of all the VM types offered across EC2
and Azure, burstable VMs are the only type that fundamen-
tally requires the use of a hypervisor to perform time-slicing,
in order to account for the VM’s actual CPU utilization, and
(presumably) to benefit from sharing CPUs across burstable
VMs. All other VMs have a guaranteed allocation of physical
CPUs, and for these the cloud provider derives no obvious
benefit from hypervisor time-slicing.

Virtual I/O is becoming fully offloaded. Cloud vendors
have deployed dedicated hardware “cards” that replace soft-
ware I/O virtualization stacks, exposing virtual devices to
guests directly via SR-IOV. For example, Amazon Nitro [5, 7]
and Azure AccelNet [36] enable low-overhead networking.
EC2 also supports direct access to NVMe storage [8], and
Azure supports SR-IOV for InfiniBand and GPUs [57]. It thus
seems reasonable to assume that, in the near future, the only
I/O devices that are still emulated by host software will be
those that are not performance sensitive, such as the virtual
serial port or console device used for debugging.

Advanced VM features are not needed. Cloud providers
rely on VMs to isolate tenants, but make little to no use of

the advanced features enabled by full virtualization. Some
features are incompatible with the IaaS model of dedicated
resources. For example, a customer paying for a VM with
16 GiB of RAM has no incentive to enable memory balloon-
ing [118] and return unused memory to the hypervisor. Other
features, such as transparent shared page detection [118, 124],
are disabled because of their significant security risks in a mul-
titenant cloud [86]. Cloud providers may use live migration
to update host software [129], but this has significant perfor-
mance impact and hot patching is often preferred [9, 79]. We
will discuss this further in §3.4.

Bare-metal clouds. Although the bulk of IaaS cloud work-
loads run in virtual machines, there is also a sizable and
growing market for bare-metal cloud servers that offer dedi-
cated machines at a premium price. The three primary reasons
for a customer to choose a bare-metal instance over a VM
are: (a) to avoid the CPU overhead (“virtualization tax”) for
memory-intensive workloads (described in §2.1), (b) a need
for predictable performance without any possible contention
from other co-located VMs (or “noisy neighbors”), or (c)
security/compliance concerns arising from a shared hyper-
visor [92]. Customers that need to run their own hypervisor
may also choose bare-metal servers to avoid the substantial
performance overhead of nested virtualization [20, 70]. Core
slicing seeks to offer similar features at flexible granularity
and consequently lower cost.

2.5 Summary

We see that the bulk of IaaS VMs deployed in public clouds to-
day run with a fixed allocation of memory and discrete cores,
with I/O that is or soon will be fully offloaded, and have little
to no use for features of virtual machines except for isola-
tion. At the same time, CPU vendors are adding substantial
complexity (not to mention, security risks and performance
overhead) to their designs to support confidential VMs. We
ask the question: since the resources assigned to cloud VMs
are effectively static slices of a machine, rather than relying
on complex software to check the actions of a hypervisor that
is not expected to do anything at VM runtime, why not enforce
those partitions in hardware?

3 Design

We describe the design of core slicing, starting with its overall
architecture and threat model, before detailing our proposed
hardware mechanisms, and how those mechanisms can be
used by system software under the control of the host to
securely partition hardware among untrusted guests.

Our design goals are as follows:

1. Partition shared hardware at natural boundaries, such

250 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 1: Core slicing system architecture.

as whole cores, while relying only on simple, easy-to-
implement hardware mechanisms to ensure isolation.

2. Keep the trusted computing base small and simple, to
permit a formally-verified implementation.

3. Support memory encryption and remote attestation fea-
tures equivalent to confidential VMs.

3.1 Overview and terminology
Rather than VMs, we partition a machine into multiple guest
slices, as shown in Figure 1 (denoted as sliceU). Each slice
consists of a distinct set of named hardware resources: cores,
memory ranges, and (virtual) I/O devices. Those resources
are allocated exclusively to a slice for the duration of its
execution. In the case of cores, this means that guest code
runs in the highest privilege level (e.g., hypervisor mode), and
controls every CPU cycle executed on that core until the slice
is terminated. Like VMs, slices may start or stop at any time,
and resources that were allocated together in one slice may
later be partitioned among distinct slices after the first slice
terminates. The key invariant is: at any given time no two
slices may share access to the same resource. This avoids the
need for any hypervisor-level mechanisms to share resources
between guests, such as time-slicing VMs on a shared core or
demand-paging overcommitted memory.

To allocate resources and manage the lifetime of guest
slices, we rely on a distinguished control slice (termed slice0)
running a slice manager. Somewhat like the host domain or
root partition of a hypervisor, the slice manager is started at
boot, and is responsible for creating and destroying user slices
and determining their resource allocations. The slice manager
runs on a core dedicated to that purpose, ideally a low-power
management processor, potentially even on a separate chip as
in Amazon’s Nitro system [7]. We do not assume that the slice
manager shares memory cache-coherently with user cores, nor
that it executes the same instruction set. The slice manager

software is further divided into a small, privileged portion,
the slicevisor, that must be trusted by both cloud guests and
the host, and a larger, unprivileged portion, that need not be
trusted by guests. The unprivileged slice manager cannot in-
terfere in the execution of a guest slice except for terminating
it and resetting its cores. The slice manager maintains an idle
slice to account for any unused resources. Cores in the idle
slice do not execute, and merely wait to be assigned to a user
slice.

To isolate resources, we rely on a new hardware mechanism,
lockable filter registers, that restricts access to resources from
a given core. Once configured and locked, these registers are
read-only until the core is reset via another new mechanism,
core-local secure reset. We require that it be restricted so that
only the slicevisor can initiate a reset. A trusted loader, the
sliceloader, is the first code to execute after a reset.

3.2 Security properties and threat model
Core slicing offers strong security, eliminating interference
between all slices (including the control slice). Specifically:

1. The resources assigned to a slice are static from its cre-
ation until its termination.

2. A slice cannot access memory outside the slice, neither
from cores nor via DMA.

3. A slice cannot interrupt cores outside the slice.

4. A slice cannot access I/O devices outside the slice.

5. Only slice0 may terminate another slice or reset its cores.

The threat model for core slicing is comparable to other
forms of trusted computing including confidential VMs and
enclaves [29, 35, 64]. The host (cloud provider) and guests
(cloud users) are mutually distrusting, with one caveat: a guest
relies on the host to provide agreed resources (thus, denial
of service is out of scope), but can check at runtime that suf-
ficient resources (e.g., as many hardware cores as expected)
are available. The cloud provider trusts the management stack
executing in the control slice, which determines both which
specific resources (CPU cores, memory, etc.) a guest is per-
mitted to use, and for how long it executes.

Guests must trust only hardware, the slicevisor, and the
sliceloader. The slicevisor ensures that resource allocations
are disjoint (for example, that none of the memory allocated to
a guest slice is ever shared with another slice) and configures
hardware protection mechanisms accordingly. The slicevisor
is also responsible for attesting guest slices, and forms part
of the attestation root of trust. The sliceloader ensures that
lockable filter registers are properly configured and locked
before transitioning control to guest code on each core of a
slice.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 251

Core slicing provides substantially stronger protection from
side-channel attacks than confidential VMs. Because slicing
partitions a machine at core granularity, the only side channels
possible are those that can be observed from another core;
notably, side-channel leaks to sibling hardware threads or to
a malicious hypervisor are impossible.

Hardware security features including memory encryption
and cache partitioning are orthogonal to our design; if present,
they allow us to strengthen the defenses against physical and
cross-core side-channel attacks respectively.

3.3 Hardware support for core slicing

Recall that our goal is to partition shared hardware at core
boundaries while relying only on simple hardware mecha-
nisms to ensure isolation. To keep this hardware simple, a
key choice we make is to expose the underlying physical re-
sources directly to guest software. Specifically, a guest slice
may not have access to all cores or physical memory of a
machine, but the identifiers it uses (i.e., the processor IDs
and physical addresses) for the resources to which it does
have access are always those of the underlying hardware. The
only role of our hardware extensions is to restrict the set of
accessible resources on a per-core (and thus, per-slice) basis.

This design choice avoids the need for any additional trans-
lation layers (as in virtualization) but it does place some
requirements on guest software (i.e., OSes or hypervisors).
Specifically, guests must be able to run with non-contiguous
processor IDs, and cannot assume that physical memory starts
at any particular address (such as zero). Luckily, modern OSes
already meet this requirement: the initial OS boot image is
a position-independent binary that uses a well-specified data
structure (either ACPI tables [109] or a devicetree blob [71])
to locate all accessible resources, including memory ranges
and additional processors. As long as this boot-time data struc-
ture accurately describes the resources accessible to a slice, a
correct guest will make no attempt to access other hardware,
and it is sufficient to treat any illegal accesses as fatal.

We therefore require a hardware mechanism that can re-
strict access to named physical resources (physical addresses
for memory and I/O, and processor IDs for inter-processor
interrupts). However, by design, guest software running in a
slice should be able to use the highest privilege level on those
cores, which raises a conundrum: how can we configure these
restrictions without a slice being able to change them?

Our solution borrows from a pattern seen in hardware sup-
port for trusted execution: we introduce lockable filter reg-
isters that restrict the accessible resources by all software
(including the most privileged) running on a given core. Once
configured and locked, these registers are read-only until a
subsequent core-local secure reset regains control of the core
from the slice. Similar lockable registers (sometimes referred
to as “latches”) have been used to implement hardware secu-
rity mechanisms such as secure boot and attestation for an

entire system [127]. To our knowledge, we are the first to
propose such a technique at the granularity of a single core.

At a hardware level, our proposed secure reset mechanism
is just a subset of the existing system-wide reset function-
ality, exposed separately at core granularity: it stops execu-
tion, resets the entire core to a well-defined architectural state
(resetting locked registers), and causes the core to begin ex-
ecution at a fixed address. The unique constraints we place
on this mechanism are that (a) only the slicevisor running in
the control slice’s privileged mode can initiate such a reset,
and (b) the address of the jump target that receives control
after reset remains inaccessible to any user slice. Here, we
host the sliceloader, a small piece of trusted code similar to a
secure bootloader that will reassign the core by programming
and locking its filter registers before transferring control to
untrusted user code, or taking it offline as part of the idle slice.

We next describe how hardware filters enable slicing of
each distinct resource (memory, interrupts, cache, and I/O).

Memory To prevent a core from accessing any memory
outside its slice, we rely on lockable memory range registers
that restrict physical memory accesses by a core. Although
we leave the precise semantics of these registers, such as the
number of ranges and any alignment/size constraints, up to
hardware designers, we assume that they can be configured in
such a way as to restrict access to at least one contiguous range
of RAM for a slice, as well as any virtual I/O devices (e.g.,
network and storage controllers) assigned to the slice, and
any other memory-mapped registers (such as a local interrupt
controller or timer) that are necessary. The minimum number
of range registers is thus platform-specific, but we anticipate
that around 10 ranges per core will generally suffice. More
ranges will permit the slice manager greater flexibility in
memory allocation, especially on multi-socket systems with
non-uniform memory, but comes with a small but non-zero
cost in additional hardware resources.

Range checks are trivially parallelizable and can be applied
before installing a page translation in the TLB, thus hav-
ing negligible runtime overhead. By contrast, virtualization
relies on a nested page table which not only requires addi-
tional memory, it also increases page translation overhead and
TLB pressure [3, 37, 88, 108]. However, because a slice is
restricted to discrete physical ranges, its memory cannot be
allocated in arbitrary pages, but instead must occupy a limited
number of contiguous physical regions. We will evaluate the
impact of this constraint on memory fragmentation in §6.4.

Interrupts We require hardware support to prevent a slice
from sending inter-processor interrupts (IPIs) to cores outside
its slice. Luckily, the address space of processor identifiers is
substantially smaller than memory addresses, so we propose
to use a lockable IPI destination mask register in preference
to range checks. This register, which may in reality consist of
a number of consecutive model-specific registers (e.g., four

252 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

64-bit registers for an 8-bit processor ID), permits a slice to
run on any combination of cores. Of course, most workloads
will benefit from adjacent cores (and caches).

Cache By design, any state internal to a core including the
L1 cache is never shared across slices. However, shared L2
or L3 caches may raise performance interference and security
concerns around cache-based side channels. To mitigate these,
core slicing can make use of existing hardware support for
cache partitioning [84], as long as the relevant configuration
registers can also be locked or otherwise restricted.

I/O devices As described in §2.1–2.4, SR-IOV has been
deployed by cloud providers to allow VMs to directly access
networking, storage, GPUs, and more at no overhead. Just as
the virtualization host OS assigns virtual functions to VMs,
slice0 configures and assigns virtual functions to slices.

I/O devices interact with software in three ways: memory-
mapped registers, direct memory access, and interrupts; all
three require a suitable access control mechanism. Access to
memory-mapped I/O is restricted by the same range checks as
regular memory, and we do not discuss it further here. How-
ever, we need a way to prevent a slice from initiating DMA
transfers to any memory outside its slice. Such restrictions are
typically implemented by an IOMMU [12, 49], and typical
IOMMU functionality suffices for core slicing, as long as the
IOMMU remains under the control of the slicevisor.

One simple approach is to configure the IOMMU to map
accessible slice memory 1:1 for each virtual function belong-
ing to a slice. Its main downside is security: all memory
assigned to a slice is available for DMA. This does not com-
promise slice isolation, but, like a bare-metal system without
an IOMMU, it may allow a buggy device driver to access
the wrong guest memory. Rather than reprogramming the
IOMMU at runtime to restrict DMA, recent work found that
it is more efficient to simply allocate all I/O buffers from a
dedicated pool of physical memory that remains mapped in
the IOMMU [74]; this is naturally supported by core slicing,
and avoids the need for runtime interaction with slicevisor to
reprogram a slice’s IOMMU translations.

Besides DMA, an I/O device also sends interrupts. The
interrupts of virtual functions are mapped and routed to host
cores by the IOMMU, and the same mechanisms apply di-
rectly to core slicing. Since slice cores are statically assigned
and there is no host hypervisor, direct interrupt mapping is
substantially simpler than VMs [40].

One unique challenge of SR-IOV is that virtual functions
do not implement normal PCI configuration space registers.
Rather, a hypervisor typically emulates configuration space
accesses for an assigned virtual function. For slices, we could
rely either on an enlightened guest to avoid the need for such
virtualization (as in our x86 prototype, see §5), or else on a
custom PCI “card” [6, 36] to emulate a standard memory-
mapped configuration space within its own device window.

3.4 Slice management

We now turn our attention to the slice0 software stack respon-
sible for resource allocation, slice lifetime, and a handful of
runtime services. This may run on a dedicated host core, a
low-power management core, or a separate SoC. We require
only that it (a) has hardware privilege separation, (b) is able
to trigger secure resets of guest cores, and (c) shares some
memory, not necessarily cache-coherently, with those cores.

Recall that only the privileged portion of the slice manager,
the slicevisor, is trusted by guest slices. The unprivileged
slice manager has no access to guest slice memory or cores.
The slicevisor implements all security-sensitive aspects of the
process of creating, starting, stopping, and deleting a slice. Its
primary role is to ensure that no resource is ever accessible
to two slices at the same time; this includes checking that
memory ranges assigned to slices are disjoint, and ensuring
that all cores of an expired slice have been stopped via a
secure reset prior to reassigning any resources of that slice.

To keep the slicevisor as simple as possible (and permit its
eventual implementation in formally-verified code), it does
not directly allocate resources, but merely checks the correct-
ness of resource assignments provided by the unprivileged
slice manager. This permits the unprivileged slice manager to
implement flexible policies to choose the memory ranges and
cores assigned to slices, without the need to trust them.

The only other code that must be trusted by guests is the
sliceloader which is the first thing to run after a core is reset
by the slicevisor. It is responsible for configuring and locking
the per-core access filters, and then coordinating with other
loaders of the slice to securely boot the guest OS. To do this, it
relies on a slice table of configuration information maintained
by the slicevisor (and inaccessible to untrusted software).

Starting a guest To create a slice, the unprivileged slice
manager assigns available cores and memory, and determines
the configuration of virtual I/O devices. Next, it invokes the
slicevisor to create the slice, which rejects the request if the
new slice includes any resource shared with another slice
(including slice0), other than the idle slice. Otherwise, the
slicevisor updates the slice table, programs devices to con-
figure virtual functions, and updates IOMMU translations as
described earlier. At this stage, the assigned cores remain idle.

To start the new slice, the slicevisor resets the relevant cores,
which causes them to execute the sliceloader and follow a
secure boot flow. After reading the relevant configuration
from the slice table (recall that at this point the sliceloader is
trusted and has unrestricted access to system memory), the
loader determines whether the current core belongs to the
idle slice or a new guest slice. It then programs and locks
the core’s access filters for memory ranges and IPIs, before
synchronizing with the loaders (if any) for other cores in the
slice. The rest of the boot process has no access to memory or
cores of other slices. It zero-fills slice memory ranges, before

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 253

copying the guest’s boot image and transferring control.

Terminating a guest Unless they are unresponsive, guest
OSes will generally execute a controlled shutdown initiated
via an out-of-band signal. To finally terminate a slice, the
slice manager invokes the slicevisor which clears the relevant
configuration in the slice table. Then, to stop the guest cores
(which no longer have access to the slice table), the slicevisor
reassigns them to the idle slice and resets them.

Auxiliary services At runtime, the slice manager exposes a
simple shared memory device (much like a virtual I/O device)
to guest slices, permitting an enlightened guest OS driver to
initiate a shutdown or reset of the slice, or access slow-path
emulated I/O devices (such as a virtual serial port and console)
for which no offload device is warranted.

Unsupported features The functionality of a guest slice
is similar to bare-metal clouds, and lacks advanced VM fea-
tures such as live migration. This does not preclude a guest
from implementing its own mechanisms (e.g., by running its
own hypervisor, or doing so at process level [34]), but it does
prevent a cloud provider from transparently migrating guests
to implement software upgrades [129]. Since core slicing es-
chews the use of a hypervisor and runs the entire host stack
on a dedicated management core, we do not anticipate that up-
dates will require live migration. In particular, we expect that
it will be possible to update the slice manager and slicevisor
without any guest interruptions.

3.5 Attestation and memory encryption
We assume that hardware implements a root of trust for se-
cure boot, permitting the initial bootloader and slicevisor to
be cryptographically measured and attested. In turn, the slice-
visor attests individual slices; this includes a measurement of
slice configuration, the sliceloader code, and the guest image.
Once booted, a guest can prove to a remote verifier that its
slice is configured as expected and that its isolation is enforced
by trusted slicevisor and sliceloader implementations.

As described earlier, slice memory is strongly isolated to
defend against software attacks. To defend against physical
attacks on memory, such as cold-boot and memory-bus at-
tacks [43, 89], core slicing can leverage memory encryption
hardware. The details of memory encryption are orthogonal
to our design, and we expect to leverage existing platform
mechanisms. In particular, because only trusted components
(sliceloader, guest code, and I/O devices within DMA regions)
can access slice memory, it is irrelevant to slice guests whether
memory is encrypted by a random system-wide key (as in
Intel SGX and Arm CCA), one of a set of random keys (as in
Intel TDX), or a unique key for each guest (as in AMD SEV).

If per-slice memory encryption is nevertheless desired, we
assume that the hardware will provide a suitable interface for

Figure 2: RISC-V prototype with the slice manager (upper
left) and two Linux guest slices (lower terminals).

the slicevisor to configure a unique slice memory encryption
key. In that case, when initializing a new slice, the sliceloader
starts out in an unencrypted context before enabling encryp-
tion to load and boot the guest. Similarly to other confidential
computing architectures [15, 54], once the guest boots, at-
tested I/O devices may access the encrypted memory using
the guest’s encryption context.

4 RISC-V Prototype

We demonstrate the feasibility of our design with a RISC-
V prototype. We chose RISC-V because an existing feature
closely approximates the lockable filter registers required by
core slicing. Our prototype runs in two environments: on a
modified version of QEMU, and on an unmodified Microchip
PolarFire Icicle board with a SiFive FU540-C000 SoC shown
in Figure 2, the latter with some limitations due to partial
support for our requirements. As the guest OS we run Linux.

Common RISC-V CPUs implement three privilege levels:
machine (M) mode for firmware, supervisor (S) mode for an
OS kernel, and user (U) mode for applications. Our SiFive
SoC includes four general-purpose application cores and one
less-powerful monitor core that implements a limited instruc-
tion set with only M and U modes. The monitor core is ideal
for slice0, with the slicevisor running in privileged M-mode,
and the rest of the slice manager in user mode. The remaining
four application cores are available for guest slices in arbitrary
combinations (i.e., up to four single-core guests).

Memory In addition to typical address translation mecha-
nisms, RISC-V supports physical memory protection regis-
ters [93, §3.6] which can be programmed to restrict access
to physical address ranges on a per-core basis. These regis-
ters are grouped into 8 or 16 PMP entries. Each PMP entry
consists of a configuration register and an address register
that specify the access permission (read/write/execute) to a
particular region. Once programmed, PMP checks apply to
all memory accesses from user and supervisor modes, and

254 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: PMP permissions by physical region.
Physical address range slice0 M-mode slice0 U-mode sliceU1

sliceU1 RAM — — RWX
slice0 trusted RAM RWX — —
slice0 untrusted RAM RWX RWX —
sliceU1 bus RW — RW
Other sliceU bus RW — —
Cache controller RW — —
Reset unit RW — —
Interrupts to sliceU1 — — RW
Interrupts to slice0 RW — RW
Physical I/O devices* RW — —
sliceU1 virtual devices* — — RW
* Not implemented due to hardware limitations.

optionally from machine mode. Finally, as required by core
slicing, PMP registers include a lock bit that, once set, pre-
vents any subsequent modifications until a reset. Our proto-
type sliceloader configures and locks the PMP entries for each
core in the slice before booting the OS. Thus, code in a slice
cannot access physical addresses outside its slice, even from
the most privileged machine mode.

Besides memory, other locked PMPs grant access to a
slice’s hardware resources (described below), and enforce
privilege separation between the slice manager and slicevisor
on the monitor core. Table 1 summarizes their configuration.

Interrupts Recall that our design calls for lockable mask
registers restricting the destinations for inter-processor inter-
rupts. We found that although RISC-V lacks such a feature,
the careful use of PMPs permits an equivalent mechanism.
To send an IPI on the SiFive SoC, the source core writes to
a memory-mapped register of the destination’s “core-local
interruptor” [102]. Because the register’s address is unique
for every destination, we can use the source core’s PMPs to
restrict the addressable (and thus interruptible) destination
cores. Access to core-local timers is restricted similarly.

I/O devices Our board includes several I/O controllers, and
our prototype grants access to slices using PMPs and routes
interrupts accordingly. We were unable to prototype SR-IOV
support due to a lack of suitable hardware, such as an IOMMU.
The RISC-V community has proposed PMP-like mechanisms
to restrict DMA [103], but these are not yet available.

Cache partitioning The SiFive SoC includes a 2 MiB
shared L2 cache that supports way masking, allowing each
cache master to be restricted to a subset of the 16 total ways.
Since each core’s L1 I- and D-cache act as separate masters
for the L2 cache, we can flexibly partition it by enabling dis-
tinct way sets for each slice. Our implementation scales the
size of a slice’s cache partition with the number of cores in
that slice (i.e., four ways per core); thus, larger slices enjoy a

Figure 3: Boot flow for each core after reset.

larger share of the cache. Untrusted code cannot change the
cache configuration because the cache control registers are
enabled only in the monitor core’s M-mode PMP registers.

Core reset Recall that our design relies on a secure core-
local reset to re-establish trusted control of a core from a user
slice. Unfortunately, our board does not expose per-core reset
signals, requiring a full system reset that reboots the entire
board to clear any PMP lock bits. We have taken a number of
approaches, with different trade-offs, to avoid this limitation.

First, we modified QEMU to implement a new device that
exposes per-core reset registers; our prototype slicevisor uses
these to reassign cores.

Second, we modified the slicevisor to create slices at boot
time using a pre-determined configuration. On our board,
such slices cannot be destroyed without a whole-system reset
because their PMPs are locked. However, despite the loss of
flexibility, this provides a strong security guarantee.

Finally, to test our ability to destroy and create slices on
hardware, we implemented an insecure slice manager with an
alternative software-based reset mechanism. In this version,
PMP lock bits are not set. This provides no meaningful secu-
rity (a malicious slice could reconfigure PMPs), but permits a
cooperative slice to emulate a “secure” reset upon receipt of
an IPI by clearing PMPs and jumping to the sliceloader.

Sliceloader and guest firmware As shown in Figure 3,
the actions of the sliceloader vary depending on the slice to
which the running core is assigned. When booting a guest, the
sliceloader copies itself to private slice memory before setting
PMPs, because doing so makes the main copy inaccessible.

When Linux boots, it infers the system configuration from
a devicetree blob [71] provided by the firmware. This de-
scribes the available memory, cores, and devices on a given
platform. To allow Linux to boot in a slice, we enlightened
the OpenSBI bootloader [94] to run as untrusted code inside
a newly-created slice. It constructs a devicetree describing the
slice configuration before booting Linux. Given an appropri-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 255

ate devicetree, Linux itself required no modifications to run
with arbitrary physical memory ranges or core IDs.

Slice communication To enable communication between
the slice manager and guests, we implemented a slice bus
message transport, using a region of shared memory between
each guest slice and slice0, with IPIs for signaling.

Attestation To prove that a guest slice runs only the image
expected on a trusted platform, we implemented measured
boot in the sliceloader and attestation in the slicevisor. When
creating a slice, the sliceloader measures guest code and stores
its hash in slice0 trusted memory. To attest, slicevisor gener-
ates an attestation report including the guest measurement and
user-provided data, signed by a slicevisor-held key derived
from a hardware root of trust. A remote party can verify the
attestation using the device public key and the TCB report.

Limitations Due to hardware limitations, our prototype
lacks support for memory encryption. We do not yet imple-
ment virtual serial ports, but assign a UART to each slice.

5 x86 Prototype

We also implemented an x86 prototype. This lacks security
isolation, but permits us to experiment with SR-IOV devices
and compare performance to the state-of-the-art in hardware
virtualization. We discuss ideas for actual hardware support
on x86 platforms later, in §7.

Since there is no security, we simplified our management
stack by building on top of Linux. Specifically, we run Linux
on the bootstrap core, using kernel parameters that restrict
Linux to a single core and a minimal amount of physical mem-
ory. Non-boot cores remain idle, in the wait-for-startup-IPI
state. A privileged process is later responsible for configuring
and booting slices with a user-specified set of cores, range of
physical memory, and set of PCI devices.

Booting a slice To boot a slice, we load the guest kernel into
the chosen physical memory range (accessed via /dev/mem),
construct ACPI and E820 tables describing resources avail-
able to the slice, and then send a startup IPI to the slice’s first
core. This runs a tiny (48-instruction) real-mode bootloader
that constructs a page table, switches to 64-bit mode, and
enters the slice kernel, which then boots as usual, sending
further startup IPIs to other cores.

Guest enlightenments Because all the host hardware
remains accessible, the Linux guest needed a few mod-
ifications. We disabled the CONFIG_DMI and CON-
FIG_X86_MPPARSE build options to prevent the slice kernel
discovering these legacy firmware tables (and hardware they

0%

25%

50%

75%

100%

125%

150%

cjpeg linear loops nnet radix2 sha zip

R
un

tim
e

vs
.n

at
iv

e

Shared
Shared+noise
Private
Private+noise

Figure 4: RISC-V CoreMark results (lower is better).

describe) in the system BIOS. We fixed a bug that uncondi-
tionally enabled interrupts from the legacy PIC despite ACPI
flagging it as absent. Finally, we added 283 lines of code to
(a) use an SR-IOV virtual function without a virtual config-
uration space, and (b) enable only a subset of PCI devices.
These enlightenments would be irrelevant to a hardware im-
plementation. In particular, host firmware and devices would
be inaccessible to slices, and (as described in §3.3) an I/O
device could emulate standard PCI configuration space.

6 Evaluation

This evaluation seeks to answer the following questions:

• What is the performance overhead of core slicing? (§6.1)

• How does the design of core slicing translate into con-
crete security benefits for guest slices? (§6.2)

• What is core slicing’s hardware complexity? (§6.3)

• Does the need for contiguous physical memory lead to
slice allocation failures due to fragmentation? (§6.4)

6.1 Performance
Our experiments run on the RISC-V board described in §4
with a 16-way 2 MiB L2 cache and 1 GiB of DRAM, and
on an HP Z8 workstation with two Intel Xeon 4214 12-core
CPUs (HyperThreading disabled), 64 GiB of RAM, a Mel-
lanox ConnectX-4 25GbE NIC, and a Samsung PM1735
NVMe SSD. Another HP Z8 with two Xeon 4108 CPUs
and the same NIC serves as a client.

RISC-V We run CoreMark PRO [33] and focus on two
questions: (a) does a slice achieve bare-metal performance,
and (b) what is the impact of a “noisy neighbor” slice?

For the native baseline, we enable two application cores and
512 MiB memory. This allows a fair comparison with the slice
measurements, in which we launch two guests, sliceU1 and
sliceU2, each with two cores and 512 MiB memory. As shown
by the shared results, performance in a slice exactly matches

256 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0%

25%

50%

75%

100%

Graph analytics

Data caching (peak)

Data caching (QoS)

Data serving

Pe
rf

or
m

an
ce

vs
.n

at
iv

e

Slice
VM (2M)
VM (1G)

Figure 5: x86 CloudSuite results (higher is better).

bare-metal execution. To determine the impact of cache con-
tention, we run a workload in sliceU2 as a noisy neighbor
(denoted by ‘noise’) that repeatedly accesses a 2 MiB array
(the same size as the L2 cache). Unsurprisingly, the aver-
age runtimes (denoted by shared+noise) increase depend-
ing on the given workload’s cache intensity. Specifically,
radix2 suffers the most (almost 50% overhead) since it op-
erates on a 512 KiB array and suffers frequent cache misses.
As demonstrated by private+noise, when the cache is parti-
tioned, a noisy neighbor has a substantially smaller impact,
with all workloads achieving stable performance, and out-
performing the shared+noise configuration. The runtimes in
private+noise increase slightly (< 5%) with noise compared
to private, due to contention for the memory controller.

x86 We compare slice performance to equivalent VMs using
CloudSuite 3.0 [87]. Both slice and VM guests have 8 cores
and 16 GiB of RAM (allocated on the same NUMA node),
with NIC and NVMe virtual functions for I/O. We run VMs
under KVM using full hardware acceleration including virtual
APICs, and confirm via performance counters that the only
significant source of VM exits is to service and emulate timer
interrupts. To minimize memory management overhead we
use pre-allocated and locked huge-pages (2 MiB and 1 GiB).

The results in Figure 5 are scaled to a native baseline with
the same cores/memory. Graph analytics, which uses Apache
Spark and GraphX to run PageRank on a large Twitter dataset,
runs 10% slower in a VM. Data caching models a Twitter
cache server with Memcached. Despite sustaining a similar
peak throughput, the VMs have higher jitter and thus perform
up to 8% worse while meeting the published QoS target of
10 ms p95 latency. This appears to be due to the extra TLB
pressure of nested paging: DTLB misses are more than 3×
native for 1 GiB pages, and 5× for 2 MiB pages. Finally, Data
serving runs Apache Cassandra with 10M records of YCSB
workload A and incurs a 12% throughput penalty in a VM.

Summary Core slicing achieves bare-metal performance
without the overhead of virtualization, which remains signifi-
cant for memory-intensive workloads, even with huge pages.

Table 2: Size of software TCB.

Source linesa Executable codeb

slicevisor 3,609 18 KiB
sliceloader 3,607 11 KiB

Total 4,826c 29 KiB
a Non-header lines, counted by cloc [30]. b Size of text section,
from binutils size. c A library common to both is counted once.

Furthermore, hardware cache partitioning (as on RISC-V) not
only lessens the impact of a noisy neighbor, it can also elimi-
nate both cache contention and cache-based side channels.

6.2 Security

Size of trusted computing base Although no guarantee of
security, a small TCB helps make formal verification tractable.
Table 2 reports the executable source and binary sizes of our
prototype. These are comparable to the firmware for Arm
CCA (4.3 kLOC [69]), although we note that core slicing’s
TCB eschews runtime interaction with a running guest, and
thus its attack surface is drastically simpler.

Side channels By partitioning a machine at core granularity
and without a trusted hypervisor, core slicing avoids either the
host or another guest running concurrently on a core. This is
inherently more secure than either reducing the hypervisor’s
size [99, 100] or de-privileging it [13, 17, 53]. We also gain a
systematic defense from a wide variety of CPU side-channel
attacks. Following our threat model (§3.2), we consider two
classes of attacker: guest attackers who may run arbitrary code
in a guest slice, and the host attacker who controls untrusted
code in slice0. We describe the extent to which these may
compromise a guest’s confidentiality.

Cache side-channel attacks are defeated by cache par-
titioning and memory isolation. Because slices never share
memory, a guest attacker cannot steal secrets by analyzing
whether a co-located tenant accesses shared memory ad-
dresses. Because caches are partitioned, the attacker cannot
observe how many cache lines are used by the guest per cache
set. slice0 is similarly restricted. Thus, given suitable hard-
ware support, core slicing eliminates cache-based side chan-
nels. It also defeats all side-channel attacks where the attacker
executes on the victim core, including sibling threads [4, 98].

Transient execution attacks can leak secrets through the
side effects of speculative memory accesses [62, 72], and can
break isolation between hypervisors and VMs. Core slicing
relies on lockable filter registers to restrict memory access.
Because filters only perform a range comparison (with no
memory-bound table walk), they derive no significant benefits
from speculation; e.g., current RISC-V CPUs cache PMP
range checks in the TLB along with address translations [83].

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 257

Cross-core transient execution leaks were recently ob-
served on Intel CPUs [91]; although these remain a threat, we
expect them to be drastically simpler for vendors to identify
and fix in future CPUs, since few instructions access uncore
state. Of note, the demonstrated attack relies on delaying a
victim enclave’s execution with page faults and exceptions,
which is impossible across a slice boundary.

Page-fault- and page-table-based attacks are highly ex-
ploitable on TEEs where an untrusted hypervisor manages
guest memory using a nested page table. In these attacks, a
host learns the guest’s secret-dependent memory access pat-
tern via page faults, page table access/dirty bits, or even cache
contention with hardware table walks. Core slicing prevents
this by allocating physical memory directly to guests. In ad-
dition, memory encryption can suffer from ciphertext-only
attacks (e.g., dictionary attacks) with weak encryption algo-
rithms. In our design, lockable filter registers prevent access
to guest memory, including ciphertext, even by the host.

Side channels in resources shared by multiple cores remain,
including power [61], row-hammer [59], cold-boot [43], and
memory bus [89] attacks. Those can be mitigated with addi-
tional orthogonal hardware support.

6.3 Hardware complexity
To estimate the hardware cost of supporting core slicing, we
extended the default tiny configuration of the RISC-V Rocket
Chip implementation [18]. To measure the overhead of adding
lockable filter registers, we doubled the number of PMPs from
16 to 32 (as might be necessary when existing PMPs are
required for other uses), resulting in only a 3% increase in
total FPGA resources. We also added per-core resets and a
reset device for the monitor core, for 1.7% extra resources.
Since these results are for an embedded core, we expect the
fraction of resources required on a server-grade CPU to be
much smaller.

6.4 Impact of physical contiguity
Unlike VMs, slices require contiguous physical memory, and
the memory assigned to a slice cannot be changed without ter-
minating and restarting it. Thus, it is possible that the available
memory on a node becomes fragmented over time, leading to
a situation where sufficient free memory exists to support a
new slice, but cannot be used as it is not contiguous. Whether
this is a problem in practice depends on both the pattern of
memory allocations (i.e., the order of slices created and de-
stroyed) and the policy implemented by the memory allocator
(i.e., which region of memory to allocate for any given re-
quest). In this section, we report the analysis of VM start/stop
events on a public cloud workload, modeling the effects of
memory allocation policy and hardware capabilities.

The trace we use is similar to the VM allocation trace of
Hadary et al. [42]. It includes all VM start and stop events (in

0.0%

0.1%

0.2%

Fa
ilu

re
s

(%
of

V
M

s) First fit
Best fit
Best fit, 2 regions

0 10 20 30 40 50 60
Trace time (days)

0.0%

0.2%

0.5%

0.8%

Fa
ilu

re
s

(%
of

m
em

or
y)

Figure 6: Rate of slice allocation failures due to memory
fragmentation over a 7-day moving window.

excess of 750k events) for an Azure cluster, and was gathered
over two months in mid-2021. Each VM has a type [81]
that defines its resource allocation, including its memory size
(other resources are irrelevant to our analysis).

In this analysis we ask the question: how often does frag-
mentation prevent the allocation of a slice on a node when a
VM would have succeeded? Thus, although it may be benefi-
cial for the cloud scheduler to use node-level memory conti-
guity in its placement decisions (allocating slices on nodes to
reduce fragmentation), we leave the mapping of VMs to nodes
unchanged and model slices as a drop-in replacement. Since
our focus is memory allocation, we model every VM as a slice
with physically contiguous memory. In reality, we expect that
some types (such as burstable VMs) would continue to run as
VMs on the cloud provider’s hypervisor either within a slice
of a larger machine, or using dedicated machines.

The results of our analysis are shown in Figure 6. We
experimented with a variety of memory allocators, and found
unsurprisingly that a best-fit policy (which places each new
slice in the smallest free region of sufficient size) minimized
fragmentation and thus allocation failures. Other policies,
including a traditional buddy allocator, performed uniformly
worse and are not shown on the figure. Calculating the best
allocation will take slightly longer, but given the low rate of
slice instantiations relative to traditional memory allocation
workloads, this overhead is not expected to be significant.

As shown in the figure, the allocation failure rate for fully
contiguous memory is less than 0.3% of VMs in the trace, rep-
resenting less than 1% of the total requested memory (since
larger VMs are more likely to fail allocation). We also mod-
eled the effect of permitting multiple contiguous regions per
slice. With hardware support for two memory regions per
slice, the memory allocator is able to split large slices across
two distinct allocations, and the failure rate drops further to

258 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

less than 0.1% (only 6 failures across the entire trace). With
three regions per slice, there are no failures. Overall, we con-
clude that restricting slices to contiguous memory does not
pose a significant constraint for cloud operators. A different
analysis by Teabe et al. [108] reached the same conclusion.

7 Discussion: core slicing beyond RISC-V

For a prototype implementation of core slicing, RISC-V had
several advantages; most significantly, the use of physical
memory protection registers allowed us to implement the bulk
of our design on unmodified hardware. However, our design
does not depend on RISC-V, and we ultimately hope to see
it adopted by the x86 and Arm architectures that dominate
today’s cloud. This section discusses some of the challenges
in doing so, and offers guidance to hardware designers.

The obvious first step in adapting an existing architecture
to support core slicing would be to implement our hardware
requirements: lockable filter registers to restrict a core’s abil-
ity to access memory and send inter-processor interrupts, and
a secure core-local reset to regain control of it. Of course,
the details matter, and thanks to the long evolution of these
architectures, there are many interactions with existing archi-
tectural features that must be considered.

Recall that our design goal with core slicing is to give guest
software unfettered bare-metal access to a single core (or set
of cores). As a first rule of thumb, we propose that resource
restrictions imposed via filter registers should take priority
over other core-level architectural features. This implies that
existing features granting privileged access to memory, such
as hardware shadow stacks [52] or secure-world memory
regions [16] must be constrained by lockable address filters.

Second, any hardware resources that are shared by more
than one core must be restricted. This includes peripherals,
memory and cache controller configurations, and power man-
agement registers, among others. In RISC-V systems, such
registers are memory mapped and thus restricted by PMPs,
but on x86 they are configured via model-specific registers
(MSRs) that occupy a distinct address space accessible to
privileged software on each core (Arm system registers are
similar). The access restriction could be implemented via fur-
ther filter registers, or as a simpler alternative, access to these
resources could be limited to the management core running
the sliceloader. For the specific case of x86 MSRs, we expect
that the MSR bitmaps found in the VM control block will
serve as a useful starting point in determining the appropri-
ate policy. Finally, the x86 legacy I/O address space must be
filtered or (for legacy-free guests) blocked outright.

Finally, the platform must not depend on firmware running
on guest cores. Thus, the system design should avoid the need
for platform firmware in x86 system management mode or
Arm EL3 on general-purpose cores. The motivation for this
requirement is the same as that of core slicing: to avoid relying
on intra-core privilege separation due to its demonstrated

weakness. In our view, firmware tasks are better delegated to
a dedicated management core (along with the slicevisor).

8 Related work

Direct hardware assignment We discussed secure hyper-
visors and confidential VMs in §2.2.

NoHype’s [58, 107] central security goal is to protect a
trusted cloud provider and its legitimate customers from rogue
VMs that try to exploit vulnerabilities in the hypervisor or the
associated virtualization stack. NoHype achieves this goal by
removing all run-time interfaces that traditional hypervisors
expose to traditional VMs. The security goals of core slic-
ing reach significantly further and address threats that have
emerged during the decade since NoHype was designed. In
addition to protecting the cloud infrastructure from rogue
guest VMs, core slicing protects guests from the untrusted
cloud provider. This task is complicated by an ever-growing
array of microarchitectural attacks that can leak information
out of VMs. Therefore, core slicing does not allow any cloud
provider code to run on a guest’s processor cores. In contrast,
NoHype requires a highly privileged “temporary hypervisor”
on those cores.

Core slicing relies on simple lockable filter registers to
confine guests which enjoy bare-metal control over cores, and
may run their own hypervisor. NoHype relies on conventional
processor privileges; guests thus lack access to virtualization
extensions, must be modified to avoid VM exits (notably,
they must not execute CPUID, including in user mode), and
must ignore spurious interrupts from other guests (both a side
channel and a denial-of-service attack).

TrustOSV [120] and Quest-V [123] minimize runtime
guest-hypervisor interactions by statically assigning cores
and memory. The core of TrustOSV is a microhypervisor
that uses nested paging to constrain guest memory accesses.
Quest-V replaces a global hypervisor by trusted per-core mon-
itors that also run in host/root mode and use nested paging.
TrustOSV reduces trust in the cloud provider by attesting the
microhypervisor and exposing a limited management inter-
face. In contrast to core slicing’s use of I/O offload, TrustOSV
exposes a virtual NIC which is also the basis of its storage.

Space partitioning The use of core-granularity spatial par-
titioning [47, 73] for resource and security isolation has been
explored in the context of prior many-core systems includ-
ing the Tilera TILE64 [122], Intel single-chip cloud com-
puter [75] and M3 [19], and the core idea dates back at least as
far as IBM’s logical partitioning feature from the 1980s [21].
Core slicing builds on the same mechanism, but is unique
in its adoption of the confidential computing threat model,
with a clear separation of host and guest trusted computing
base. This leads us to the use of a unique mechanism com-
bining per-core secure reset with lockable filter registers to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 259

enable attested boot while minimizing the guest TCB. Past
designs, including those cited above, permit a guest’s acces-
sible resources to be reconfigured at runtime by a privileged
management core, requiring substantially more trust by the
guest in the host’s resource manager.

RISC-V security Several systems use PMP hardware for
different goals. Keystone [64] is a framework for trusted exe-
cution environments similar to Intel SGX [46]. The OpenSBI
bootloader can partition a machine into static PMP-isolated
domains at boot time [95]. MultiZone [45] isolates software
components (e.g., core RTOS and communication stack).

9 Conclusion

VMs are the basis of cloud isolation, but relying on them
for confidential computing carries a serious risk from side
channels. Core slicing offers an attractive middle ground
between bare-metal servers and confidential VMs. By parti-
tioning hardware at natural boundaries (discrete cores and
contiguous physical memory ranges), it enables VM-like func-
tionality and bare-metal performance with strong isolation.

Our prototypes are available at https://github.com/
MSRSSP/core-slicing.

Acknowledgments

We thank Luke Marshall for help preparing the VM traces
in §6.4. The detailed reviews we received from OSDI’22,
ASPLOS’23 and OSDI’23 along with feedback from our
shepherd Ed Bugnion helped us greatly improve the paper.

References

[1] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. In
Proceedings of the 12th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 2–13, 2006. doi:
10.1145/1168857.1168860.

[2] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, and D.-M. Popa. Fire-
cracker: Lightweight virtualization for serverless appli-
cations. In Proceedings of the 17th USENIX Sym-
posium on Networked Systems Design and Imple-
mentation, pages 419–434, Feb. 2020. ISBN 978-
1-939133-13-7. https://www.usenix.org/conference/
nsdi20/presentation/agache.

[3] H. Alam, T. Zhang, M. Erez, and Y. Etsion. Do-
It-Yourself virtual memory translation. In Proceed-
ings of the 44th IEEE International Symposium on
Computer Architecture, pages 457–468, 2017. doi:
10.1145/3079856.3080209.

[4] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P.
García, and N. Tuveri. Port contention for fun and
profit. In Proceedings of the 40th IEEE Symposium
on Security and Privacy, pages 870–887, 2019. doi:
10.1109/SP.2019.00066.

[5] Enhanced networking on Linux. Amazon
Web Services, Dec. 2022. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/enhanced-
networking.html.

[6] AWS Nitro System. Amazon Web Services, Dec. 2022.
https://aws.amazon.com/ec2/nitro.

[7] The Security Design of the AWS Nitro System. Amazon
Web Services, Nov. 2022. https://docs.aws.amazon.
com/whitepapers/latest/security-design-of-aws-nitro-
system/security-design-of-aws-nitro-system.html.

[8] Amazon EBS and NVMe on Linux in-
stances. Amazon Web Services, Dec. 2022.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/nvme-ebs-volumes.html.

[9] Amazon EC2 Maintenance Help Page. Amazon Web
Services, 2022. https://aws.amazon.com/maintenance-
help.

[10] Amazon EC2: Burstable performance in-
stances. Amazon Web Services, Dec. 2022.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/burstable-performance-instances.html.

[11] Amazon EC2: Instance types. Amazon Web Services,
Dec. 2022. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/instance-types.html.

[12] AMD I/O Virtualization Technology (IOMMU) Spec-
ification. AMD, Dec. 2016. Publication #48882
rev. 3.00 https://developer.amd.com/wordpress/media/
2013/12/48882_IOMMU.pdf.

[13] AMD SEV-SNP: Strengthening VM isolation with
integrity protection and more. AMD, Jan. 2020.
https://www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf.

[14] AMD. AMD server vulnerabilities, Nov. 2021. Secu-
rity Bulletin ID AMD-SB-1021 https://www.amd.com/
en/corporate/product-security/bulletin/amd-sb-1021.

[15] AMD SEV-TIO: Trusted I/O for Secure En-
crypted Virtualization. AMD, Mar. 2023.
https://www.amd.com/content/dam/amd/en/
documents/developer/sev-tio-whitepaper.pdf.

260 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/MSRSSP/core-slicing
https://github.com/MSRSSP/core-slicing
https://doi.org/10.1145/1168857.1168860
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1109/SP.2019.00066
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://aws.amazon.com/ec2/nitro
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://aws.amazon.com/maintenance-help
https://aws.amazon.com/maintenance-help
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
https://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf

[16] Building a Secure System using TrustZone Technol-
ogy. ARM Limited, Apr. 2009. Ref. PRD29-GENC-
009492C.

[17] Arm Realm Management Extension (RME) System
Architecture. Arm Limited, Nov. 2021. Docu-
ment DEN0129 ver. A.b https://developer.arm.com/
documentation/den0129/ab.

[18] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer,
D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser,
A. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Mag-
yar, H. Mao, M. Moreto, A. Ou, D. A. Patter-
son, B. Richards, C. Schmidt, S. Twigg, H. Vo,
and A. Waterman. The Rocket Chip generator.
Technical Report UCB/EECS-2016-17, EECS De-
partment, University of California, Berkeley, Apr.
2016. https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2016/EECS-2016-17.html.

[19] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and
G. Fettweis. M3: A hardware/operating-system co-
design to tame heterogeneous manycores. In Pro-
ceedings of the 21st ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 189–203, 2016. doi:
10.1145/2872362.2872371.

[20] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles Project: Design and im-
plementation of nested virtualization. In Proceedings
of the 9th USENIX Symposium on Operating Systems
Design and Implementation, Oct. 2010. URL https:
//www.usenix.org/conference/osdi10/turtles-project-
design-and-implementation-nested-virtualization.

[21] T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk.
Multiple operating systems on one processor com-
plex. IBM Systems Journal, 28(1):104–123, Mar. 1989.
ISSN 0018-8670. doi: 10.1147/sj.281.0104.

[22] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi. Software grand expo-
sure: SGX cache attacks are practical. In Proceedings
of the 11th USENIX Workshop on Offensive Technolo-
gies, 2017. doi: 10.5555/3154768.3154779.

[23] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman,
and E. Y. Wang. Bringing virtualization to the x86
architecture with the original VMware Workstation.
ACM Transactions on Computer Systems, 30(4), Nov.
2012. doi: 10.1145/2382553.2382554.

[24] R. Buhren, C. Werling, and J.-P. Seifert. Insecure until
proven updated: Analyzing AMD SEV’s remote attes-
tation. In Proceedings of the 26th ACM Conference on

Computer and Communications Security, pages 1087–
1099, 2019. doi: 10.1145/3319535.3354216.

[25] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and
T. H. Lai. SgxPectre: Stealing Intel secrets from
SGX enclaves via speculative execution. In Pro-
ceedings of the 2019 IEEE European Symposium on
Security and Privacy, pages 142–157, 2019. doi:
10.1109/MSEC.2019.2963021.

[26] C. Cohen, J. Forshaw, J. Horn, and M. Brand.
AMD secure processor for confidential comput-
ing security review. Google Project Zero, May
2022. https://googleprojectzero.blogspot.com/2022/
05/release-of-technical-report-into-amd.html.

[27] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield. Breaking
up is hard to do: Security and functionality in a com-
modity hypervisor. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles, pages
189–202. ACM, 2011. doi: 10.1145/2043556.2043575.

[28] E. Cortez, A. Bonde, A. Muzio, M. Russinovich,
M. Fontoura, and R. Bianchini. Resource central: Un-
derstanding and predicting workloads for improved
resource management in large cloud platforms. In Pro-
ceedings of the 26th ACM Symposium on Operating
Systems Principles, pages 153–167, Oct. 2017. doi:
10.1145/3132747.3132772.

[29] V. Costan, I. Lebedev, and S. Devadas. Sanc-
tum: Minimal hardware extensions for strong
software isolation. In Proceedings of the
25th USENIX Security Symposium, pages 857–
874, Aug. 2016. ISBN 978-1-931971-32-4.
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/costan.

[30] A. Danial. cloc: Count lines of code, 2022. https:
//github.com/AlDanial/cloc.

[31] S. Dinesh, G. Garrett-Grossman, and C. W. Fletcher.
SynthCT: Towards portable constant-time code. In
Proceedings of the Annual Network and Distributed
System Security Symposium, Feb. 2022. doi:
10.14722/ndss.2022.24215.

[32] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with SR-
IOV. In Proceedings of the 16th IEEE Interna-
tional Symposium on High-Performance Computer
Architecture, pages 1–10. IEEE, Jan. 2010. doi:
10.1109/HPCA.2010.5416637.

[33] CoreMark PRO. EEMBC, July 2019. v1.1.2743 https:
//www.eembc.org/coremark-pro.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 261

https://developer.arm.com/documentation/den0129/ab
https://developer.arm.com/documentation/den0129/ab
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2872362.2872371
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://doi.org/10.1147/sj.281.0104
https://doi.org/10.5555/3154768.3154779
https://doi.org/10.1145/2382553.2382554
https://doi.org/10.1145/3319535.3354216
https://doi.org/10.1109/MSEC.2019.2963021
https://googleprojectzero.blogspot.com/2022/05/release-of-technical-report-into-amd.html
https://googleprojectzero.blogspot.com/2022/05/release-of-technical-report-into-amd.html
https://doi.org/10.1145/2043556.2043575
https://doi.org/10.1145/3132747.3132772
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.14722/ndss.2022.24215
https://doi.org/10.1109/HPCA.2010.5416637
https://www.eembc.org/coremark-pro
https://www.eembc.org/coremark-pro

[34] P. Emelyanov. Checkpoint/restore in userspace
(CRIU), 2022. https://criu.org.

[35] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and
B. Parno. Komodo: Using verification to disentan-
gle secure-enclave hardware from software. In Pro-
ceedings of the 26th ACM Symposium on Operating
Systems Principles, pages 287–305, Oct. 2017. doi:
10.1145/3132747.3132782.

[36] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Sri-
vastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,
K. Vaid, D. A. Maltz, and A. Greenberg. Azure accel-
erated networking: SmartNICs in the public cloud. In
Proceedings of the 15th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 51–
66, Apr. 2018. ISBN 978-1-939133-01-4. https://www.
usenix.org/conference/nsdi18/presentation/firestone.

[37] J. Gandhi, M. D. Hill, and M. M. Swift. Agile paging:
Exceeding the best of nested and shadow paging. In
Proceedings of the 43rd IEEE International Sympo-
sium on Computer Architecture, pages 707–718, 2016.
doi: 10.1109/ISCA.2016.67.

[38] Gartner Says Worldwide IaaS Public Cloud Ser-
vices Market Grew 40.7% in 2020. Gartner, June
2021. https://www.gartner.com/en/newsroom/press-
releases/2021-06-28-gartner-says-worldwide-iaas-
public-cloud-services-market-grew-40-7-percent-in-
2020.

[39] S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar,
A. Kogler, S. Franza, M. Kostl, and D. Gruss. SQUIP:
Exploiting the scheduler queue contention side chan-
nel. In Proceedings of the 44th IEEE Symposium
on Security and Privacy, pages 468–484, 2023. doi:
10.1109/SP46215.2023.00027.

[40] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. ELI: Bare-
metal performance for I/O virtualization. In Proceed-
ings of the 17th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 411–422, 2012. doi:
10.1145/2150976.2151020.

[41] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller.
Cache attacks on Intel SGX. In Proceedings of the
10th European Workshop on Systems Security, pages
1–6, 2017. doi: 10.1145/3065913.3065915.

[42] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Gre-
eff, D. Dion, S. Dorminey, S. Joshi, Y. Chen, M. Russi-
novich, and T. Moscibroda. Protean: VM allocation
service at scale. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 845–861, Nov. 2020. ISBN 978-
1-939133-19-9. https://www.usenix.org/conference/
osdi20/presentation/hadary.

[43] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten. Lest we remember:
Cold boot attacks on encryption keys. In Proceedings
of the 17th USENIX Security Symposium, pages 45–60,
July 2008. https://www.usenix.org/conference/17th-
usenix-security-symposium/lest-we-remember-cold-
boot-attacks-encryption-keys.

[44] F. Hetzelt and R. Buhren. Security analysis of en-
crypted virtual machines. ACM SIGPLAN Notices, 52
(7):129–142, 2017. doi: 10.1145/3050748.3050763.

[45] MultiZone Security Reference Manual. HEX-Five,
Sept. 2020. https://github.com/hex-five/multizone-sdk/
raw/8c92f55/manual.pdf.

[46] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proceedings of the
2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, 2013. doi:
10.1145/2487726.2488370.

[47] J.-C. Huang, M. Monchiero, Y. Turner, and H.-H. S.
Lee. Ally: OS-transparent packet inspection using
sequestered cores. In 7th IEEE Symposium on Archi-
tectures for Networking and Communications Systems,
pages 1–11, 2011. doi: 10.1109/ANCS.2011.11.

[48] Intel. Resources and response to side chan-
nel variants 1, 2, 3, Aug. 2018. https:
//www.intel.com/content/www/us/en/architecture-
and-technology/side-channel-variants-1-2-3.html.

[49] Intel Virtualization Technology for Directed
I/O Architecture Specification. Intel, Apr.
2021. Order number D51397-013, rev. 3.3
https://www.intel.com/content/www/us/en/develop/
download/intel-virtualization-technology-for-
directed-io-architecture-specification.html.

[50] Software Guard Extensions Programming Refer-
ence. Intel Corp., Oct. 2014. Ref. #329298-002
https://software.intel.com/sites/default/files/managed/
48/88/329298-002.pdf.

262 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://criu.org
https://doi.org/10.1145/3132747.3132782
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/ISCA.2016.67
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://doi.org/10.1109/SP46215.2023.00027
https://doi.org/10.1145/2150976.2151020
https://doi.org/10.1145/3065913.3065915
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://doi.org/10.1145/3050748.3050763
https://github.com/hex-five/multizone-sdk/raw/8c92f55/manual.pdf
https://github.com/hex-five/multizone-sdk/raw/8c92f55/manual.pdf
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1109/ANCS.2011.11
https://www.intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
https://www.intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
https://www.intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[51] Intel SGX. Intel Corp., June 2015. Ref. #332680-002
https://www.intel.com/content/dam/develop/external/
us/en/documents/332680-002-610985.pdf.

[52] Control-flow Enforcement Technology Preview. Intel
Corp., June 2016. Ref. #334525-001 https://software.
intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf.

[53] Intel Trust Domain CPU Architectural Extensions.
Intel Corp., Sept. 2020. Ref. #343754-001US
https://software.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-cpu-architectural-
specification.pdf.

[54] Intel TDX Connect Architecture Specification.
Intel Corp., May 2021. https://www.intel.com/
content/www/us/en/content-details/773614/intel-tdx-
connect-architecture-specification.html.

[55] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural support
for secure virtualization under a vulnerable hypervisor.
In Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-44,
pages 272–283, 2011. doi: 10.1145/2155620.2155652.

[56] S. Johnson. Intel SGX and side-channels. Intel
Developer Zone, Feb. 2018. https://web.archive.org/
web/20200228140427/https://software.intel.com/en-
us/articles/intel-sgx-and-side-channels.

[57] V. Kanchanahalli. Power your Azure GPU worksta-
tions with flexible GPU partitioning. Azure Blog, Mar.
2020. https://azure.microsoft.com/en-us/blog/power-
your-azure-gpu-workstations-with-flexible-gpu-
partitioning.

[58] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
Virtualized cloud infrastructure without the virtualiza-
tion. In Proceedings of the 37th IEEE International
Symposium on Computer Architecture, pages 350–361,
June 2010. doi: 10.1145/1815961.1816010.

[59] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits
in memory without accessing them: An experimen-
tal study of DRAM disturbance errors. In Proceed-
ings of the 41st IEEE International Symposium on
Computer Architecture, pages 361–372, 2014. doi:
10.1109/ISCA.2014.6853210.

[60] P. Kocher. Conference presentation of Kocher et al.
[62], May 2019. https://youtu.be/zOvBHxMjNls.

[61] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the 19th International
Cryptology Conference, pages 388–397. Springer, Aug.
1999. doi: 10.1007/3-540-48405-1_25.

[62] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre at-
tacks: Exploiting speculative execution. In Proceed-
ings of the 40th IEEE Symposium on Security and Pri-
vacy, pages 1–19, 2019. doi: 10.1109/SP.2019.00002.

[63] P. Kutch. PCI-SIG SR-IOV primer: An in-
troduction to SR-IOV technology. Intel ap-
plication note 321211–002, Jan. 2011. https:
//www.intel.com/content/dam/doc/white-paper/pci-
sig-single-root-io-virtualization-support-in-
virtualization-technology-for-connectivity-paper.pdf.

[64] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and
D. Song. Keystone: An open framework for ar-
chitecting trusted execution environments. In Pro-
ceedings of the 15th ACM European Conference on
Computer Systems, pages 1–16, Apr. 2020. doi:
10.1145/3342195.3387532.

[65] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim,
and M. Peinado. Inferring fine-grained control
flow inside SGX enclaves with branch shad-
owing. In Proceedings of the 26th USENIX
Security Symposium, pages 557–574, 2017.
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-sangho.

[66] M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. MyCloud:
Supporting user-configured privacy protection in cloud
computing. In Proceedings of the 29th ACM Annual
Computer Security Applications Conference, pages 59–
68, 2013. doi: 10.1145/2523649.2523680.

[67] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Ex-
ploiting unprotected I/O operations in AMD’s
secure encrypted virtualization. In Proceed-
ings of the 28th USENIX Security Symposium,
pages 1257–1272, Aug. 2019. ISBN 978-1-
939133-06-9. https://www.usenix.org/conference/
usenixsecurity19/presentation/li-mengyuan.

[68] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth,
R. Teodorescu, and Y. Zhang. A systematic look
at ciphertext side channels on AMD SEV-SNP. In
Proceedings of the 43rd IEEE Symposium on Se-
curity and Privacy, pages 1541–1541, 2022. doi:
10.1109/SP46214.2022.9833768.

[69] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and
G. Stockwell. Design and verification of the Arm
confidential compute architecture. In Proceedings
of the 16th USENIX Symposium on Operating Sys-
tems Design and Implementation, July 2022. https:
//www.usenix.org/conference/osdi22/presentation/li.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 263

https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-610985.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-610985.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://doi.org/10.1145/2155620.2155652
https://web.archive.org/web/20200228140427/https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://web.archive.org/web/20200228140427/https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://web.archive.org/web/20200228140427/https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://azure.microsoft.com/en-us/blog/power-your-azure-gpu-workstations-with-flexible-gpu-partitioning
https://azure.microsoft.com/en-us/blog/power-your-azure-gpu-workstations-with-flexible-gpu-partitioning
https://azure.microsoft.com/en-us/blog/power-your-azure-gpu-workstations-with-flexible-gpu-partitioning
https://doi.org/10.1145/1815961.1816010
https://doi.org/10.1109/ISCA.2014.6853210
https://youtu.be/zOvBHxMjNls
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/SP.2019.00002
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://doi.org/10.1145/2523649.2523680
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://doi.org/10.1109/SP46214.2022.9833768
https://www.usenix.org/conference/osdi22/presentation/li
https://www.usenix.org/conference/osdi22/presentation/li

[70] J. T. Lim and J. Nieh. Optimizing nested virtualization
performance using direct virtual hardware. In Pro-
ceedings of the 25th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 557–574, 2020. ISBN
9781450371025. doi: 10.1145/3373376.3378467.

[71] The Devicetree Specification. Linaro, 0.4-rc1 edition,
Nov. 2021. https://www.devicetree.org/specifications.

[72] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In Proceedings of the 27th
USENIX Security Symposium, pages 973–990, Aug.
2018. ISBN 978-1-939133-04-5. https://www.usenix.
org/conference/usenixsecurity18/presentation/lipp.

[73] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and
J. Kubiatowicz. Tessellation: Space-time partitioning
in a manycore client OS. In Proceedings of the 1st
USENIX Workshop on Hot Topics in Parallelism, Mar.
2009. https://www.usenix.org/legacy/events/hotpar09/
tech/full_papers/liu/liu.pdf.

[74] A. Markuze, I. Smolyar, A. Morrison, and D. Tsafrir.
DAMN: Overhead-free IOMMU protection for net-
working. In Proceedings of the 23rd ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
301–315, Mar. 2018. doi: 10.1145/3173162.3173175.

[75] R. J. Masti, C. Marforio, K. Kostiainen, C. Soriente,
and S. Capkun. Logical partitions on many-core plat-
forms. In Proceedings of the 31st ACM Annual Com-
puter Security Applications Conference, pages 451–
460, 2015. doi: 10.1145/2818000.2818026.

[76] Hyper-V HyperClear Mitigation for L1 Terminal
Fault. Microsoft, Aug. 2018. https://techcommunity.
microsoft.com/t5/virtualization/hyper-v-hyperclear-
mitigation-for-l1-terminal-fault/ba-p/382429.

[77] Managing Hyper-V hypervisor scheduler
types: The core scheduler. Microsoft, Dec.
2021. https://docs.microsoft.com/windows-
server/virtualization/hyper-v/manage/manage-
hyper-v-scheduler-types#the-core-scheduler.

[78] About Azure DCasv5/ECasv5-series confidential
virtual machines. Microsoft Azure, Nov. 2021.
https://docs.microsoft.com/en-us/azure/confidential-
computing/confidential-vm-overview.

[79] Maintenance for virtual machines in Azure. Microsoft
Azure, Oct. 2021. https://docs.microsoft.com/en-us/
azure/virtual-machines/maintenance-and-updates.

[80] B-series burstable virtual machine sizes. Microsoft
Azure, June 2022. https://docs.microsoft.com/en-us/
azure/virtual-machines/sizes-b-series-burstable.

[81] Azure compute unit. Microsoft Azure, Apr.
2022. https://docs.microsoft.com/en-us/azure/virtual-
machines/acu.

[82] A. Moghimi, G. Irazoqui, and T. Eisenbarth.
CacheZoom: How SGX amplifies the power of
cache attacks. In Proceedings of the Interna-
tional Conference on Cryptographic Hardware and
Embedded Systems, pages 69–90. Springer, 2017.
https://eprint.iacr.org/2017/618.

[83] L. Nelson and X. Wang. Developing security monitors
on RISC-V: Case studies on HiFive Unleashed. Techni-
cal Report UW-CSE-2019-11-01, University of Wash-
ington, Nov. 2019. URL https://unsat.cs.washington.
edu/papers/nelson-hifive-tr.pdf.

[84] K. T. Nguyen. Usage models for cache allocation
technology in the Intel Xeon processor E5 v4 family,
Feb. 2016. https://www.intel.com/content/www/
us/en/developer/articles/technical/cache-allocation-
technology-usage-models.html.

[85] U. G. A. Office. Solarwinds cyberattack demands
significant federal and private-sector response,
Apr. 2021. https://www.gao.gov/blog/solarwinds-
cyberattack-demands-significant-federal-and-private-
sector-response-infographic.

[86] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida.
Secure page fusion with VUsion. In Proceed-
ings of the 26th ACM Symposium on Operating
Systems Principles, pages 531–545, 2017. doi:
10.1145/3132747.3132781.

[87] T. Palit, Y. Shen, and M. Ferdman. Demystifying cloud
benchmarking. In IEEE International Symposium on
Performance Analysis of Systems and Software (IS-
PASS), pages 122–132, Apr. 2016. doi: 10.1109/IS-
PASS.2016.7482080.

[88] A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee,
K. Gopinath, and J. Gandhi. Fast local page-tables
for virtualized NUMA servers with vMitosis. In Pro-
ceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 194–210, 2021. doi:
10.1145/3445814.3446709.

[89] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard. DRAMA: Exploiting DRAM addressing
for Cross-CPU attacks. In Proceedings of the 25th
USENIX Security Symposium, pages 565–581, 2016.
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl.

264 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.1145/3373376.3378467
https://www.devicetree.org/specifications
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/liu/liu.pdf
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/liu/liu.pdf
https://doi.org/10.1145/3173162.3173175
https://doi.org/10.1145/2818000.2818026
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates
https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://eprint.iacr.org/2017/618
https://unsat.cs.washington.edu/papers/nelson-hifive-tr.pdf
https://unsat.cs.washington.edu/papers/nelson-hifive-tr.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://doi.org/10.1145/3132747.3132781
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1145/3445814.3446709
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl

[90] I. Puddu, M. Schneider, M. Haller, and S. Čap-
kun. Frontal attack: Leaking Control-Flow in
SGX via the CPU frontend. In Proceedings
of the 30th USENIX Security Symposium, pages
663–680, 2021. https://www.usenix.org/conference/
usenixsecurity21/presentation/puddu.

[91] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida. CrossTalk: Speculative data leaks across cores
are real. In Proceedings of the 42nd IEEE Sym-
posium on Security and Privacy, May 2021. doi:
10.1109/SP40001.2021.00020.

[92] Research and Markets. Bare metal cloud market
by service type, organization size, vertical, and
region – global forecast to 2026, Apr. 2021. Report
number 5316699 https://www.researchandmarkets.
com/reports/5316699/bare-metal-cloud-market-by-
service-type-compute.

[93] The RISC-V Instruction Set Manual, Voume II: Privi-
leged Architecture. RISC-V International, June 2019.
Ver. 20190608-Priv-MSU-Ratified https://riscv.org/
risc-v-isa.

[94] RISC-V Open Source Supervisor Binary Interface
(OpenSBI). RISC-V International, Jan. 2021. https:
//github.com/riscv/opensbi.

[95] OpenSBI Domain Support. RISC-V OpenSBI, Nov.
2020. https://github.com/riscv/opensbi/blob/c0d2baa/
docs/domain_support.md.

[96] J. R. Sanchez Vicarte, P. Shome, N. Nayak, C. Trip-
pel, A. Morrison, D. Kohlbrenner, and C. W. Fletcher.
Opening Pandora’s Box: A systematic study of new
ways microarchitecture can leak private data. In Pro-
ceedings of the 48th IEEE International Symposium
on Computer Architecture, pages 347–360, 2021. doi:
10.1109/ISCA52012.2021.00035.

[97] J. R. Sanchez Vicarte, M. Flanders, R. Paccagnella,
G. Garrett-Grossman, A. Morrison, C. W. Fletcher,
and D. Kohlbrenner. Augury: Using data memory-
dependent prefetchers to leak data at rest. In Proceed-
ings of the 43rd IEEE Symposium on Security and
Privacy, 2022. doi: 10.1109/SP46214.2022.00089.

[98] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. ZombieLoad:
Cross-privilege-boundary data sampling. In Proceed-
ings of the 26th ACM Conference on Computer and
Communications Security, pages 753–768, 2019. doi:
10.1145/3319535.3354252.

[99] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles, pages
335–350, 2007. doi: 10.1145/1294261.1294294.

[100] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai,
Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and
K. Kato. BitVisor: A thin hypervisor for enforcing I/O
device security. In Proceedings of the 5th ACM Interna-
tional Conference on Virtual Execution Environments,
pages 121–130, 2009. doi: 10.1145/1508293.1508311.

[101] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets. In
Proceedings of the 11th ACM Asia Conference on Com-
puter and Communications Security, pages 317–328,
2016. doi: 10.1145/2897845.2897885.

[102] SiFive FU540-C000 Manual. SiFive, 1.0 edition, Apr.
2018. https://static.dev.sifive.com/FU540-C000-v1.0.
pdf.

[103] SiFive WorldGuard White Paper, v1.2. SiFive, Dec.
2020. https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-
4077-8103-682f26141b69_WorldGuard_White_
Paper_v1.2.pdf.

[104] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery,
J. Torrellas, and C. W. Fletcher. Microscope: En-
abling microarchitectural replay attacks. In Proceed-
ings of the 46th IEEE International Symposium on
Computer Architecture, pages 318–331, 2019. doi:
10.1109/MM.2020.2986204.

[105] U. Steinberg and B. Kauer. NOVA: A microhypervisor-
based secure virtualization architecture. In Pro-
ceedings of the 5th ACM European Conference
on Computer Systems, pages 209–222, 2010. doi:
10.1145/1755913.1755935.

[106] J. Szefer and R. B. Lee. Architectural support
for hypervisor-secure virtualization. In Proceed-
ings of the 17th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 437–450, 2012. doi:
10.1145/2150976.2151022.

[107] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Elimi-
nating the hypervisor attack surface for a more secure
cloud. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, pages 401–
412, 2011. doi: 10.1145/2046707.2046754.

[108] B. Teabe, P. Yuhala, A. Tchana, F. Hermenier, D. Hag-
imont, and G. Muller. (No)Compromis: Paging
virtualization is not a fatality. In Proceedings of
the 17th ACM International Conference on Virtual
Execution Environments, pages 43–56, 2021. doi:
10.1145/3453933.3454013.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 265

https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://doi.org/10.1109/SP40001.2021.00020
https://www.researchandmarkets.com/reports/5316699/bare-metal-cloud-market-by-service-type-compute
https://www.researchandmarkets.com/reports/5316699/bare-metal-cloud-market-by-service-type-compute
https://www.researchandmarkets.com/reports/5316699/bare-metal-cloud-market-by-service-type-compute
https://riscv.org/risc-v-isa
https://riscv.org/risc-v-isa
https://github.com/riscv/opensbi
https://github.com/riscv/opensbi
https://github.com/riscv/opensbi/blob/c0d2baa/docs/domain_support.md
https://github.com/riscv/opensbi/blob/c0d2baa/docs/domain_support.md
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/SP46214.2022.00089
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1145/1508293.1508311
https://doi.org/10.1145/2897845.2897885
https://static.dev.sifive.com/FU540-C000-v1.0.pdf
https://static.dev.sifive.com/FU540-C000-v1.0.pdf
https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-4077-8103-682f26141b69_WorldGuard_White_Paper_v1.2.pdf
https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-4077-8103-682f26141b69_WorldGuard_White_Paper_v1.2.pdf
https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-4077-8103-682f26141b69_WorldGuard_White_Paper_v1.2.pdf
https://doi.org/10.1109/MM.2020.2986204
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/2150976.2151022
https://doi.org/10.1145/2046707.2046754
https://doi.org/10.1145/3453933.3454013

[109] Advanced Configuration and Power Interface (ACPI)
Specification. UEFI Forum, 6.4 edition, Jan. 2021.
https://uefi.org/specifications.

[110] J. Van Bulck, F. Piessens, and R. Strackx. SGX-Step:
A practical attack framework for precise enclave exe-
cution control. In Proceedings of the 2nd Workshop on
System Software for Trusted Execution, 2017. ISBN
978-1-4503-5097-6. doi: 10.1145/3152701.3152706.

[111] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx. Telling your secrets without
page faults: Stealthy page table-based attacks on
enclaved execution. In Proceedings of the 26th
USENIX Security Symposium, pages 1041–1056, 2017.
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

[112] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient
out-of-order execution. In Proceedings of the 27th
USENIX Security Symposium, pages 991–1008, 2018.
ISBN 978-1-939133-04-5. https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck.

[113] J. Van Bulck, F. Piessens, and R. Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary CPU interrupt logic. In Proceedings of
the 25th ACM Conference on Computer and Com-
munications Security, pages 178–195, 2018. doi:
10.1145/3243734.3243822.

[114] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
RIDL: Rogue in-flight data load. In Proceedings of the
40th IEEE Symposium on Security and Privacy, pages
88–105, May 2019. doi: 10.1109/SP.2019.00087.

[115] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom.
SGAxe: How SGX fails in practice, 2020. https://sgaxe.
com/files/SGAxe.pdf.

[116] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom. CacheOut: Leaking data on Intel CPUs
via cache evictions. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy, pages 339–354,
2021. doi: 10.1109/SP40001.2021.00064.

[117] C. Waldspurger and M. Rosenblum. I/O virtualization.
Communications of the ACM, 55(1):66–73, Jan. 2012.
doi: 10.1145/2063176.2063194.

[118] C. A. Waldspurger. Memory resource manage-
ment in VMware ESX Server. In Proceed-
ings of the 5th USENIX Symposium on Oper-
ating Systems Design and Implementation, Dec.

2002. https://www.usenix.org/legacy/events/osdi02/
tech/waldspurger/waldspurger.pdf.

[119] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis.
Using burstable instances in the public cloud: Why,
when and how? Proceedings of ACM on Measurement
and Analysis of Computing Systems, 1(1), June 2017.
doi: 10.1145/3084448.

[120] X. Wang, Y. Shi, Y. Dai, Y. Qi, J. Ren, and Y. Xuan.
TrustOSV: Building trustworthy executing environ-
ment with commodity hardware for a safe cloud. Jour-
nal of Computers, 9(10):2303–2314, Oct. 2014. ISSN
1796-203X. http://www.jcomputers.us/vol9/jcp0910-
07.pdf.

[121] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
commodity hosted hypervisors with HyperLock. In
Proceedings of the 7th ACM European Conference
on Computer Systems, pages 127–140, 2012. ISBN
9781450312233. doi: 10.1145/2168836.2168850.

[122] D. Wentzlaff, C. J. Jackson, P. Griffin, and A. Agar-
wal. Configurable fine-grain protection for mul-
ticore processor virtualization. In Proceedings of
the 39th IEEE International Symposium on Com-
puter Architecture, pages 464–475, 2012. doi:
10.1109/ISCA.2012.6237040.

[123] R. West, Y. Li, E. Missimer, and M. Danish. A virtu-
alized separation kernel for mixed-criticality systems.
ACM Transactions on Computer Systems, 34(3), June
2016. doi: 10.1145/2935748.

[124] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers,
E. Cecchet, and M. D. Corner. Memory buddies: Ex-
ploiting page sharing for smart colocation in virtual-
ized data centers. In Proceedings of the 5th ACM
International Conference on Virtual Execution Envi-
ronments, pages 31–40, 2009. ISBN 9781605583754.
doi: 10.1145/1508293.1508299.

[125] C. Wu, Z. Wang, and X. Jiang. Taming hosted
hypervisors with (mostly) deprivileged execution.
In Proceedings of the 20th Annual Network and
Distributed System Security Symposium, Feb. 2013.
https://www.ndss-symposium.org/ndss2013/ndss-
2013-programme/taming-hosted-hypervisors-mostly-
deprivileged-execution.

[126] Y. Xia, Y. Liu, and H. Chen. Architecture support for
guest-transparent VM protection from untrusted hyper-
visor and physical attacks. In Proceedings of the 19th
IEEE International Symposium on High-Performance
Computer Architecture, pages 246–257, 2013. doi:
10.1109/HPCA.2013.6522323.

266 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://uefi.org/specifications
https://doi.org/10.1145/3152701.3152706
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1109/SP.2019.00087
https://sgaxe.com/files/SGAxe.pdf
https://sgaxe.com/files/SGAxe.pdf
https://doi.org/10.1109/SP40001.2021.00064
https://doi.org/10.1145/2063176.2063194
https://www.usenix.org/legacy/events/osdi02/tech/waldspurger/waldspurger.pdf
https://www.usenix.org/legacy/events/osdi02/tech/waldspurger/waldspurger.pdf
https://doi.org/10.1145/3084448
http://www.jcomputers.us/vol9/jcp0910-07.pdf
http://www.jcomputers.us/vol9/jcp0910-07.pdf
https://doi.org/10.1145/2168836.2168850
https://doi.org/10.1109/ISCA.2012.6237040
https://doi.org/10.1145/2935748
https://doi.org/10.1145/1508293.1508299
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/taming-hosted-hypervisors-mostly-deprivileged-execution
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/taming-hosted-hypervisors-mostly-deprivileged-execution
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/taming-hosted-hypervisors-mostly-deprivileged-execution
https://doi.org/10.1109/HPCA.2013.6522323

[127] M. Xu, M. Huber, Z. Sun, P. England, M. Peinado,
S. Lee, A. Marochko, D. Mattoon, R. Spiger, and
S. Thom. Dominance as a new trusted computing
primitive for the internet of things. In Proceedings of
the 40th IEEE Symposium on Security and Privacy,
pages 1415–1430, 2019. doi: 10.1109/SP.2019.00084.

[128] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side-channels for untrusted op-
erating systems. In Proceedings of the 36th IEEE

Symposium on Security and Privacy, pages 640–656,
May 2015. doi: 10.1109/SP.2015.45.

[129] X. Zhang, X. Zheng, Z. Wang, Q. Li, J. Fu, Y. Zhang,
and Y. Shen. Fast and scalable VMM live up-
grade in large cloud infrastructure. In Proceed-
ings of the 24th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 93–105, 2019. doi:
10.1145/3297858.3304034.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 267

https://doi.org/{10.1109/SP.2019.00084}
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/3297858.3304034

ExoFlow: A Universal Workflow System for Exactly-Once DAGs
Siyuan Zhuang
UC Berkeley

Stephanie Wang
UC Berkeley, Anyscale

Eric Liang
Anyscale

Yi Cheng
Anyscale

Ion Stoica
UC Berkeley

Abstract
Given the fundamental tradeoff between run-time and
recovery performance, current distributed systems often
build application-specific recovery strategies to minimize
overheads. However, it is increasingly common for different
applications to be composed into heterogeneous pipelines.
Implementing multiple interoperable recovery techniques
in the same system is rare and difficult. Thus, today’s users
must choose between: (1) building on a single system, and
face a fixed choice of performance vs. recovery overheads, or
(2) the challenging task of stitching together multiple systems
that can offer application-specific tradeoffs.

We present ExoFlow, a universal workflow system that en-
ables a flexible choice of recovery vs. performance tradeoffs,
even within the same application. The key insight behind our
solution is to decouple execution from recovery and provide
exactly-once semantics as a separate layer from execution. For
generality, workflow tasks can return references that capture
arbitrary inter-task communication. To enable the workflow
system and therefore the end user to take control of recovery,
we design task annotations that specify execution semantics
such as nondeterminism. ExoFlow generalizes recovery for
existing workflow applications ranging from ETL pipelines
to stateful serverless workflows, while enabling further opti-
mizations in task communication and recovery.

1 Introduction
A key requirement for distributed applications is fault toler-
ance, i.e. the appearance of execution without failures even
when failures occur. In general, there is a tradeoff between
recovery and run-time overhead. For example, logging gen-
erally adds higher execution overhead but reduces recovery
time by allowing the system to only re-execute computations
that failed [23]. Meanwhile, checkpointing reduces execution
overhead but can impose higher recovery overhead as the
system must roll back additional computation after a failure.

Current distributed systems often choose different tradeoff
points between recovery and performance based on the
application. For example, Apache Spark uses lineage-based
logging for batch processing [48], and Apache Flink uses
checkpointing for stream processing [19].

However, it is becoming increasingly common for different
applications to be composed into heterogeneous pipelines.
For example, a machine learning pipeline might use batch
ingest to build a training dataset, then stream the data to a

batch distributed training job to reduce latency and memory
overhead. If we use a single recovery strategy for the entire
pipeline, performance and recovery may be suboptimal
because different recovery strategies are suited to different
applications. Thus, to optimize end-to-end performance and
recovery, we need to compose different recovery strategies.

Implementing multiple, interoperable recovery techniques
within the same system, let alone a single one, is challenging.
For example, Spark introduced “continuous processing” to
reduce performance overheads for stream processing applica-
tions, but this mode does not yet provide exactly-once seman-
tics during failures [10]. On the other hand, Flink has added a
batch processing mode, but this required building an entirely
separate recovery system from the streaming path [20].

Overall, these challenges have led to patchy support for
applications that have diverse requirements in the recovery-
performance tradeoff space. Users must choose between:
(1) building on a single system, and face a fixed choice of
performance vs. recovery overheads, or (2) stitching together
multiple systems that offer different application-specific
tradeoffs. The latter, however, is challenging and requires
coordinating the flow of data, control, and recovery across
disparate systems. This is true even in a single system, if
using disparate execution modes such as batch vs. streaming.

In this paper, we propose a universal workflow system
that enables a flexible choice of recovery vs. performance
tradeoffs, even within the same application. A workflow is a
directed acyclic graph (DAG) of tasks, where each task encap-
sulates a function call and edges between tasks represent data
dependencies. Workflows are used to orchestrate execution
across systems and thus prioritize generality. The DAG API
is popular because it allows arbitrary application code in each
task, from submitting a Spark job to invoking a microservice.

In contrast to other workflow systems, however, we
decouple the unit of execution from the unit of recovery. In
particular, ExoFlow guarantees fault tolerance by durably
logging the workflow DAG and coordinating task checkpoint
and recovery, while execution of the DAG is handled by a
generic “backend”. This has three key benefits. First, it en-
ables heterogeneous application pipelines that need multiple
recovery strategies for performance. Second, it augments
existing distributed execution frameworks that provide only
at-most-once or at-least-once semantics with strong exactly-
once semantics. Third, it disaggregates the execution backend
from recovery, allowing independent deployment and scaling.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 269

Previous workflow systems provide exactly-once seman-
tics but with significant limitations. For generality, workflow
systems such as Apache Airflow [3] assume that each task
is nondeterministic and may have side effects on external
systems that in general cannot be rolled back. Thus, each task
must synchronously checkpoint its outputs before they can be
made visible to any downstream tasks. Otherwise, the system
may have to re-execute the task in case of a failure. If the re-
execution produces a different result, this can cause an incon-
sistent view among downstream tasks and external systems.

Thus, by assuming the worst, the workflow system has only
one option of ensuring fault tolerance: no task can start before
its upstream tasks have finished checkpointing all of their
outputs. This limits the workflow system’s ability to incorpo-
rate key optimizations often employed by application-specific
frameworks that exploit the application’s semantics. For exam-
ple, large datasets passed between tasks can often be determin-
istically regenerated, making checkpointing unnecessary. In
addition, while some tasks may indeed have external effects,
e.g., starting a transaction on an external database, some ef-
fects can also be rolled back, e.g., by aborting the transaction.

Our goal is to hand control over recovery to ExoFlow and
ultimately the end user. Thus, we use two key interfaces to
enable awareness of application semantics. First, we extend
the typical workflow DAG API with pluggable first-class
references to enable more flexible workflow-internal commu-
nication. A workflow task can return references to its outputs,
which the workflow system then passes to downstream tasks.
In contrast, current workflow systems require the application
to pass data by explicitly copying and checkpointing, which
can be expensive for large data, or implicitly through external
storage, which makes it difficult to guarantee exactly-once
semantics. By using references to capture arbitrary data move-
ment between workflow tasks, ExoFlow leverages third-party
systems’ existing communication and recovery mechanisms
while retaining control over workflow-level recovery.

Second, we introduce user annotations that specify relevant
task semantics, i.e. whether to checkpoint a task, whether
the outputs are deterministic, and whether the task has
externally visible outputs. Before execution, ExoFlow checks
the safety of the user’s specification. During execution,
ExoFlow synchronizes task execution and checkpointing.
During recovery, ExoFlow coordinates rollback, e.g., deletion
of outputs from a previous execution, and task replay. For
example, before executing a task with an externally visible
output, ExoFlow will first synchronize upstream checkpoints
to commit any nondeterministic outputs, i.e. ensure they will
never be rolled back. This allows the user to flexibly and
safely optimize the recovery technique.

ExoFlow is built on Ray [37] and consists of a per-workflow
centralized controller, a pluggable checkpoint storage, and a
pluggable execution backend. Centralizing controller logic
makes it simple to guarantee recovery correctness. Mean-
while, checkpointing and execution are fully disaggregated,

allowing these to be scaled independently of the controller.
We demonstrate the benefits of ExoFlow with two

execution backends, the Ray framework and AWS Lambdas,
both distributed frameworks that provide at-most-once or
at-least-once tasks. We show that references can enable ∼5×
speedup for Spark data processing workflows compared to
Apache Airflow, while task annotations enable 51% lower
latency for transactional serverless workflows compared
to Beldi [49]. These optimizations are possible because
correctness is ultimately guaranteed by ExoFlow. These
results also demonstrate ExoFlow’s universality, as the
system is not specific to data processing or serverless
environments. In summary, our contributions are:

1. Decoupling execution from recovery to enable a flexible
tradeoff between performance and fault tolerance.

2. Designing a universal workflow system that guarantees
exactly-once DAG execution.

3. Demonstrating benefits for a diverse set of applications,
including an ML pipeline, serverless transactions, and
graph processing that mixes stream and batch execution.

2 Motivation

2.1 Overview of recovery strategies
We use exactly-once semantics as our correctness condition.
This condition often implies application-specific correctness
properties, such as global consistency in message-passing
systems [23] or linearizability in storage systems [29].

More precisely, exactly-once semantics require all outputs
to appear consistent with a physical execution where all
inputs were processed without failures. In a workflow setting,
the inputs are the DAG and the root task arguments. Outputs
are values produced by a task that are viewed by others.

Output visibility can be internal or external. For example,
values passed between tasks in Figure 1a are internal because
they are viewed only by other tasks. Meanwhile, (key,val)
is external because it is sent to a key-value store. Once
outputs are made external, the workflow system no longer
has control over how they will be used, e.g., via reads from
external key-value store clients. Outputs can also be either
deterministically or nondeterministically generated.

Output visibility and determinism are important because
together they determine the recovery procedures that will
guarantee exactly-once semantics (Figure 1b). For example,
consider the cases if A is nondeterministic and we do not
checkpoint a_out in Figure 1a. Suppose C views an initial
value a_out1 and produces c_out1, but we lose a_out1 due
to a failure. If we re-execute A to produce a_out2 and pass
this to B, the outputs of B and C will not be consistent with
a failure-free execution. To handle this case, we also need
to “rollback” c_out1 and re-execute C on a_out2.

We encounter additional problems in the opposite case
where B finishes and we then lose a_out1. B has already made
(key,val) external and these values may depend on a_out1.

270 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

If we execute C on a_out2, c_out will be inconsistent with
(key,val). Thus, the only way to guarantee correctness in
this case is to either: (1) “commit” a_out1 before executing
B, e.g., by checkpointing it, or (2) gain application semantics
about how to roll back visibility of (key,val).

Meanwhile, deterministic outputs are safe to view as
long as the task can be replayed on its original inputs and
recomputed outputs can be deduplicated. The external output
in Figure 1a can for example be deduplicated by attaching
a deterministic req_id.
Solution space. Handling nondeterministic outputs is gener-
ally done in two ways: (1) global checkpointing and rollback
on failure, or (2) logging and deterministic replay on fail-
ure [23]. Both “commit” a prefix of a failure-free execution
by saving the outputs of a task frontier, allowing recovery to
resume execution from a consistent set of intermediate out-
puts. Global checkpointing advances this frontier several tasks
at a time and upon failure, rolls back to the last frontier to undo
partially visible nondeterministic outputs. For outputs that
cannot be rolled back, however, upstream nondeterministic
outputs must first be committed by taking a global check-
point. Logging-based methods advance the frontier one task
at a time by committing each nondeterministic output before
making it visible, thus avoiding additional rollback on failure.

Note that rollback and durability options vary based on out-
put visibility. External outputs may be impossible to roll back,
e.g., a transaction commit cannot be undone, or make durable,
as third-party system context is not always serializable.

Current workflow systems guarantee exactly-once seman-
tics by: (1) durably checkpointing each internal output before
making it visible, and (2) requiring the developer to make
external outputs idempotent and durable. This one-size-fits-all
approach does not leverage application-specific recovery
methods (Figure 1b). Furthermore, existing workflow systems
have fundamental limits on internal outputs, usually because
they must be sent between tasks through the workflow
controller. Apache Airflow uses a database to coordinate
tasks, which imposes a maximum output size on the order
of MBs [3], and direct task communication in FaaS is
limited [24]. Together, these force developers to use external
outputs for much of their task communication [24, 42].

Our goal is to support different recovery methods in a
single workflow system and even within a single application.
The key insight behind ExoFlow is that knowing the DAG
structure makes it simple to identify a consistent execution
frontier, allowing the recovery methods before and after the
frontier to be decoupled. For example, a_out is internal to
the outlined sub-DAG in Figure 1a and thus its recovery
method can be chosen flexibly as long as the inputs (args)
and outputs (b_out,c_out,key,val) are consistent.

Thus, our solution consists of two parts. First, references
enable ExoFlow to capture a broader range of inter-task
communication as internal outputs, without being involved
in the physical communication. This encourages recovery

A(args) B(a_out)

C(a_out)
args

a_out

D(args,
b_out, c_out)

c_out
d_out

External state

root()

b_out

put(key, val)

(a) Workflow DAG
Internal External

Nondeterministic Commit output OR on
failure, rollback visibility

Commit output before
visibility OR if possible,
rollback visibility on failure

Deterministic Replay failed task(s) on pre-
vious inputs, dedupe outputs

Also dedupe external out-
puts

(b) Recovery strategies for workflow DAGs

Figure 1: (a) An example workflow with internal outputs (e.g., a_-
out) and external outputs (e.g., put(key,val)). (b) The most efficient
recovery strategy depends on output visibility and nondeterminism.

flexibility within a sub-DAG and recovery independence
across sub-DAGs. References enable efficient passing of task
outputs of any size and location as well as outputs that may
not be serializable.

Second, we support annotations to specify task semantics
(checkpointing, nondeterminism, output visibility). These al-
low the system to determine recovery correctness before exe-
cution. The system “commits” the application to this specifica-
tion by durably logging the DAG before execution, then coor-
dinates and synchronizes task checkpoints during execution.

2.2 Applications
We use three representative applications to show the value of:
(1) making workflow-internal outputs more flexible, and (2)
exposing application semantics to the workflow controller:

1. Extract-transform-load (ETL) pipelines: Using
references to pass large data as internal outputs.

2. Machine learning (ML) pipelines: Using references to
pass large data and leveraging application semantics.

3. Serverless workflows: Leveraging application semantics
to reduce recovery overheads, in a way that is agnostic
to external systems.

ETL pipelines. Workflow systems such as Apache Airflow
are commonly used to orchestrate extract-transform-load
(ETL) pipelines composed of data processing jobs. Figure 2a
shows an example in which a Spark job A performs batch
data cleaning and writes the data to an external database, e.g.,
Delta Lake [11]. Jobs B and C then load the data for querying.

Current practice for exactly-once workflow execution
requires all of A’s outputs to be made durable before executing
B and C. Synchronous checkpointing adds high overhead for
large and distributed data. In addition, B and C must each
reload the data, imposing an unnecessary memory copy. This
is of course unnecessary if A is deterministic. Execution sys-
tems such as Spark leverage this property to natively support
distributed in-memory caching. Ideally, A should pass its
output as a cached RDD [48] to B and C (Figure 2b), avoiding
the round trip to external storage, allowing B and C to share

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 271

A

table_name C

write(RDD,
 table_name)

External DB
RDD = read(
 table_name)

B

(a)

External DB

A
B

C

Sharing a cached Spark RDD
across workflow tasks

● Use an actor to hold Spark
context

● Async actor checkpoint,
which internally uses Spark
API to materialize to
external DB (or use native
checkpoint API)

● B and C can share the RDD
cached in-memory

● Mark execB and execC
tasks as idempotent, so
rollback is not required on
recovery.

RDD

(b)

Ingest

Dataset augmentation

Distributed training
pathname

Distributed FS

write(dataset,
 pathname)

dataset = read(pathname)

(c)

Distributed
FS

dataset
1

dataset
2

dataset
3

TF workers

TF workers

Ingest augmentData

augmentData

augmentData

train

train

train

model
1

model
2

model
3

dataset

(d)
Figure 2: (a) ETL workflow today, using external outputs for communication. (b) The same ETL workflow with internal outputs only. (c)
ML training workflow today, with external outputs and manual orchestration within a task. (d) The same ML workflow with internal outputs
only, and orchestration is handled by the workflow system. Third-party framework state (TF workers) can be passed between workflow tasks.

physical memory, and enabling asynchronous checkpointing.
Building such optimizations into a workflow system would

enable orchestration of arbitrary DAGs and third-party frame-
works. However, even with awareness of task determinism,
current workflow systems cannot execute Figure 2b due to
limitations in workflow-internal data passing.
ML pipelines. Machine learning (ML) pipelines are similar
to ETL pipelines, but with an ML application as the end
consumer. This requires composition of traditional ETL
systems with distributed ML frameworks for training and
inference. Figure 2c shows a typical ML training workflow, in
which training data is extracted and transformed in the Ingest

task, then consumed by a distributed training job. Loading
data into the training job may itself require complex and
possibly distributed data processing, with computations such
as random transforms to augment datasets [40]. Furthermore,
datasets are often large enough that preprocessing must be
pipelined with training to maximize GPU utilization.

Current workflow systems cannot effectively orchestrate
within the training task, as training data and worker state
must be passed through distributed memory. Expanding
workflow-internal outputs would enable workflows such as
Figure 2d. To reduce the overhead of recovery, however, the
workflow system also requires application semantics, such
as whether dataset augmentation is deterministic. Also, the
model output can be consumed in a variety of ways, from
local one-off testing during development to deployment on
an ML serving system during production. All of these factors
affect the optimal correct recovery strategy.
Serverless workflows. In the functions-as-a-service (FaaS)
model, the user breaks their application into small functions
that can be transparently executed and scaled without explicit
resource provisioning. Serverless functions have a limited life-
time, all local state is transient, and failure handling is usually
limited to function retries. This makes it challenging to build
fault-tolerant nontrivial applications directly on FaaS [28].

Recently, serverless workflow systems [16, 46, 49] have
gained popularity as a solution, especially for stateful appli-
cations. A common strategy for guaranteeing exactly-once
execution is to provide fault-tolerant APIs to capture external
outputs. For example, Figure 3 shows an example of a trip
reservation workflow [25] that places the order if and only if
both the hotel and flight were successfully reserved. Systems
such as Aft [46], Beldi [49], and Boki [32] guarantee exactly-

beginTxn commitOr
Abort(txn)

reserve(hotel)

reserve(flight) reserved?

placeOrder(
hotel, flight)

ok?txn: {id, …,}

Transaction buffer
or write-ahead log

Figure 3: Serverless workflow systems [32, 46, 49] guarantee
exactly-once semantics by interposing on all communication to
external storage, e.g., through a transaction buffer, and explicitly
managing visibility of these external effects.

once semantics by providing a transactional key-value store
to manage external output visibility.

However, each system offers different isolation levels that
require different recovery strategies. Aft buffers uncommitted
writes, which are safe to rollback, while Beldi and Boki use
write-ahead logging. Thus, each system implements their own
recovery procedures, e.g., durability and task re-execution.

ExoFlow factors out workflow recovery to enable flexibil-
ity and optimizations. Instead of providing opinionated APIs
for external outputs, we treat external systems such as the
transaction buffer in Figure 3 as a black box. ExoFlow does
not interpose on the communication to this external system
and instead requires that the application can specify task se-
mantics such as whether the external effect can be rolled back.
These semantics can be specified by a particular transaction
system, i.e. Aft or Beldi.

3 API
3.1 Overview and requirements
ExoFlow is a general workflow layer that abstracts a workflow
backend, i.e. a distributed framework providing at-least-once
and/or at-most-once remote function invocation. We overview
the application-facing API (Table 1) and requirements. The
application must be able to: (1) differentiate deterministic
tasks, and (2) for tasks with external outputs, ensure that the
task is idempotent or specify an idempotent rollback function.
DAG interface. The application invokes workflow tasks
and specifies arguments using f.bind (Table 1). The caller
receives a WorkflowDAG that represents the task’s output and
that can be passed to other tasks as dependencies. Workflow
execution is lazy: to evaluate a WorkflowDAG, the developer
must run it. This is to simplify recovery, as the workflow
system can check DAG-level properties before executing it.

The workflow backend should implement an RPC-like inter-

272 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Workflow API Semantics

f.options(Opts).bind(Value | WorkflowDAG)

→ WorkflowDAG

Create a workflow task f. Creates and returns a WorkflowDAG, whose value is lazily evaluated. The caller may
pass the WorkflowDAG to another task. The return value of f can be a WorkflowDAG, i.e. a nested workflow.

run(WorkflowDAG w, str name) → Value Run the workflow w and return the result. Optionally take a string identifier for this workflow.
run_async(WorkflowDAG w, str name) → Fut Run the workflow w asynchronously and return a future that can be used to retrieve the result.
Ref.get() → Value Used by the application to dereference to a value. Ref construction is backend-specific.

bool Opts.checkpoint=True True if the task’s output should be saved.
bool Opts.deterministic=False True if outputs are deterministically generated.
bool Opts.can_rollback=False True if task has no external outputs, or if they can be rolled back. If False, the task must be idempotent.
Fn Opts.rollback=null If external outputs can be rolled back, a function to do so. The function must be idempotent, and any

WorkflowDAG arguments must be a subset of the original workflow task f’s arguments.

Ref._id() → ID Used by the workflow system to compare equality.
Ref._checkpoint() → Fut[Value] Used by the workflow system to coordinate checkpointing. The Value is the checkpoint data or metadata.
Ref._restore(Value) Used by the workflow system to reload from a saved checkpoint.

Table 1: Workflow API. Top: API calls exposed to the application. Middle: Task annotations specified by application or third-party library.
Bottom: ExoFlow-internal Ref API, pluggable by execution backend.

face. Within a task, the application can invoke arbitrary local
or distributed execution. For greater generality, we also adopt
the dynamic task model [39]: tasks can dynamically invoke
exactly-once nested workflows by returning a WorkflowDAG.
Task annotations. The application specifies semantics rel-
evant to recovery at task invocation time (Table 1). The work-
flow system uses these to ensure correctness of: (1) coordi-
nation of distributed workflow checkpoints during execution,
and (2) output rollback and task re-execution upon failure.

First, the application specifies whether to skip checkpoint-
ing a task’s output. Note that the workflow system guarantees
correctness, so this can be considered an optimization hint,
e.g., to avoid recomputation for long tasks,

Next, the application can specify whether a task’s outputs
(both internal and external) are deterministic. This allows the
workflow system to minimize rollback during recovery.

Finally, the application specifies whether a task can be
rolled back and if yes, how to do so. Tasks with no external
outputs, such as the data processing tasks in Figure 2, should
set can_rollback=True. Tasks that have external outputs that
cannot be rolled back should set can_rollback=False and
ensure idempotence, as recovery may require re-execution.

Non-idempotent tasks with external outputs that can be
rolled back should set can_rollback=True and the rollback

callback. On failure, ExoFlow executes these rollback “tasks”
in reverse dependency order before resuming execution.
The rollback task can take any arguments available to the
original workflow task, but the application must additionally
guarantee that the rollback task is idempotent. For example,
to implement the transaction in Figure 3, rollback for the
beginTxn and reserve tasks could simply abort.

On run, ExoFlow checks the WorkflowDAG for specification
errors and throws an exception if any are found. In particular,
correctness requires the application to set checkpoints
between each nondeterministic task and each downstream
task with external output. Section 3.3 makes this precise.
Internal outputs. Direct task outputs are subject to limits
of the execution backend. For greater flexibility, ExoFlow

allows outputs to include Refs created by the task. Refs are
(optionally) pluggable by the execution backend. They are
intended to capture volatile outputs that would be expensive
or complex to natively support in ExoFlow, e.g., large dis-
tributed data or third-party framework context. For an AWS
Lambdas backend, for example, values can be stored in an
external (volatile) key-value store and the key can be passed
in a Ref. Other tasks can dynamically get the value, which
can throw an error if the value is irretrievable due to failure.

Refs are uniquely identifiable objects typically containing
backend-specific metadata. A task can only return Refs that
it created or that were passed to it by an upstream task. Then,
upon failure, ExoFlow can either restore the Ref from a
checkpoint, or trace the DAG back to the creating task. On
re-execution, the task need not return the same Refs as its
original execution. For example, with the annotation deter-

ministic=True, it is only necessary that the value of a returned
Ref is deterministic; the Ref itself may have a nondetermin-
istic ID. This is safe because ExoFlow simply cancels tasks
using the previous Refs and re-executes with the new Refs.

By default, Ref values are immutable. This improves recov-
ery efficiency, as it simplifies checkpointing and minimizes
task rollback. To capture task outputs that are expensive or
impossible to materialize, we also support stateful references,
i.e. actors [30]. An ActorRef extends Refs with application-
defined methods that execute on the actor’s state (Listing 1).
However, mutable state is more complex to recover efficiently
and correctly. Thus, compared to Refs, we limit how Actor-

Refs can be passed between workflow tasks (Section 3.4).

3.2 Model
We present a formal model of workflows to more precisely
capture the API and assumptions. A workflow G = (V,E) is
a directed acyclic graph with vertices V and edges E. Each
vertex vi has an associated function Fi, a function Ni repre-
senting a (potential) source of nondeterminism, a nullable
rollback function Ri, and the annotations described in Table 1.

A workflow execution produces one internal and one

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 273

beginTxn
acquire(txn,

hotel) commitOr
Abort(txn)acquire(txn,

flight)

reserve(txn,
hotel)

reserve(txn,
flight)

acquired?

reserved?

placeOrder(
hotel, flight)

ok?

txn: {id, …,}

Deterministic, no external outputs
Nondeterministic

External outputs can be rolled back
External outputs cannot be rolled back

rollback_acquire(txn, hotel)

rollback_acquire(txn, flight)

Rollback tasks. Only
executed if acquire tasks
must be rolled back

(a)

dataset
2

dataset
1

…

Ingest

augmentData train

augmentData

model
2

…

TF workers

train

(b)

init generate_df

Spark DF

A

Bexec(B)

Cexec(C)

(c)

Figure 4: (a) Task annotations. Edge cuts represent checkpoint=True. (b) Passing references (small boxes) in an ML workflow. Blue Refs are
actors that wrap TensorFlow worker state. (c) Passing an ActorRef in an ETL workflow. B and C call read-only methods on the Spark context actor.

external output per vertex, both nullable. For brevity, we
do not consider tasks with multiple outputs. We denote an
execution’s outputs by (OInt ,OExt), both mappings from
vertex to a single output oInt or oExt . Fi outputs oExt by
adding it to a global set W , which can be read by other tasks
and external processes. Each Fi takes as inputs:

• IInt : Internal outputs of vertices with an edge to vi.
• wi: A read of W , i.e. the external outputs so far.
• ni: A nondeterministic value returned by Ni.
In other words, an edge (vi,v j) indicates that vi’s internal

output is passed to task v j. Internal outputs passed between
vertices are analogous to messages passed between processes
in a message-passing model [23], except that the application
must declare the “messages” (dependencies) before execution.

Ni captures nondeterministic inputs. For example, if Fi de-
pends on the current time, then Ni returns the current time. We
assume that if Ni reads some external state, the external state
will not be rolled back (unless Fi is also rolled back via Ri).

The correctness condition relates outputs to a failure-free
execution. W denotes all possible sequences of reads of W
by an external process.
Definition 1 (Consistency). OInt , OExt are consistent with
a workflow G = (V,E) if W is monotonic and ∀w ∈W:

oExt ∈ w ⇒∃i,OExt [i] = oExt
∧

(OInt [i],oExt) =

Fi
(
[OInt [j] |(v j,vi) ∈ E] ,{OExt [j]|v j <G vi},

Ni()
)∧

{OExt [j]|v j <G vi} ⊆ w

More simply, from an external process’s perspective, if it
sees an external output, then: (1) the same output was seen
in all previous reads, (2) it must correspond to one invocation
of some Fi, and (3) it also sees the external outputs of all
predecessors of vi. This is analogous to global consistency
in message-passing [23], i.e. that every visible output has a
corresponding task that created it. The goal is to provide a
consistent execution under a crash failure model.

The application assumptions are as follows. For each vi:

1. If v j is concurrent with vi (vi ̸<G v j and v j ̸<G vi), then
Fi(IInt ,wi,ni) = Fi(IInt ,wi \{OExt [j]},ni).

2. If deterministic=True, then {OExt [j]|v j <G vi} ⊆
wi,w′

i =⇒ Fi(IInt ,wi,ni) = Fi(IInt ,w′
i,n

′
i).

3. If the oExt returned by Fi is not null, then either
can_rollback=False or Ri is not null.

(a) If can_rollback=False, then Fi is idempo-
tent. That is, if (oInt ,oExt) = Fi(IInt ,w,ni) and
(o′Int ,o

′
Ext) = Fi(IInt ,w′,n′i), then oExt = o′Ext .

(b) If Ri is provided, then it is a deterministic and
idempotent function of the task’s internal inputs. If
(oInt ,oExt) = Fi(IInt ,w,ni), then Ri(IInt) removes
oExt from all past reads of W .

(1) means that we do not consider cases in which a task
vi depends on a task v j’s external output, where vi, v j cannot
be ordered in G. To ensure consistency, v j’s external output
should be considered part of vi’s nondeterministic input, and
v j must set can_rollback=False. Regarding (3b), note that
the meaning of removing oExt from past reads is application-
dependent. For example, suppose Fi executes a transaction
and Ri aborts the transaction; if uncommitted reads are
allowed, then Ri does not need to roll back the reader.
Nested tasks and references. While not explicitly captured
in the above model, nested tasks can be thought of as tasks that
expand into a sub-workflow. Refs and ActorRefs are native
data types that can be returned in a function’s internal output.
Because actors are mutable, ActorRefs are versioned: if a
caller writes to an actor by calling a method on its ActorRef,
the caller’s resulting ActorRef is of a different version. This
becomes relevant in Section 3.4, which discusses the rules that
the application must follow to ensure exactly-once semantics
when ActorRefs are passed between workflow tasks.

3.3 Guaranteeing exactly-once execution
Task annotations simplify the decision of when to commit
task outputs. To illustrate this, we use Figure 4a, a modified
version of the workflow described in Figure 3. We show
the annotations for a workflow using an external two-phase
locking (2PL) transaction system. beginTxn generates a trans-
action context with a random txn_id. The acquire tasks each
attempt to acquire a lock on an external table row. If this is suc-
cessful, we attempt to reserve the flight and hotel if available,
then finally commit the transaction and place the order if both
succeed. The cuts in Figure 4a indicate checkpoint=True.

As an example, we first consider the acquire and commi-

tOrAbort tasks. acquire tasks are nondeterministic because
they depend on the run-time state of the external table. com-
mitOrAbort has can_rollback=False because it is impossible
to abort a committed transaction and vice versa. Although ac-

274 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

quire can be rolled back (e.g., by aborting the transaction and
releasing the lock), once we have started the commitOrAbort

task, it is no longer safe to do so because the transaction
may already be committed. Thus, we must ensure that both
acquire outputs are saved before commitOrAbort starts. We
can generalize this rule for the application as follows:

Invariant 1 (External output commit). For each workflow
task vi with deterministic=False, let G be the minimal
subgraph that contains vi and all downstream tasks (tasks for
which there is a path from vi). Then, for each workflow task
v j with can_rollback=False in G, there must exist a vertex
cut that partitions vi from v j such that all tasks in the cut
have checkpoint=True.

Intuitively the vertex cut of the sub-DAG defines a commit
point for the nondeterministic output of vi. There may exist
multiple such cuts. For example, another acceptable specifica-
tion in Figure 4a is to instead checkpoint the reserve outputs.

ExoFlow guarantees that at least one task frontier is fully
checkpointed by the time commitOrAbort (v j) starts. Interest-
ingly, this also tells us that we do not need to commit the ac-

quire outputs synchronously. In particular, the reserve tasks
in this case are deterministic, as their outputs depend only on
whether the lock was acquired and the value stored in the ex-
ternal table, which cannot be modified while locked. Further-
more, their external outputs are not visible while the lock is
held. Thus, in this case, it is safe to annotate the reserve tasks
with deterministic=True and can_rollback=True. Together,
these annotations allow ExoFlow to overlap the checkpoint of
acquire’s outputs with execution of the reserve tasks, as long
as the checkpoints are synchronized before commitOrAbort.

There is a similar requirement for rollback tasks. The
rollback tasks in Figure 4a are conditionally invoked by the
workflow system to undo external outputs of the acquire tasks.
We must ensure that all inputs to the original acquire task
are recoverable before execution. Otherwise, if the rollback
task and its inputs fail simultaneously, it will be impossible
to finish rollback. Thus, in Figure 4a, the application must set
checkpoint=True for beginTxn, and ExoFlow synchronizes
this checkpoint before executing the acquire tasks.

Invariant 2 (Rollback durability). For each path beginning
at a task vi with deterministic=False and ending at a task
v j that has a rollback function R j, there must exist at least
one vertex along the path with checkpoint=True.

Unlike Invariant 1, here we only require checkpointing
a single task to handle nondeterminism, as the availability
of a rollback function R j means that we do not need to
commit to the original output. The checkpointed task can
also be a task other than vi or v j. For example, if there were
additional deterministic tasks between beginTxn (T) and
rollback_acquire (R), then checkpointing any is sufficient.

Both invariants can be easily checked by walking the DAG
passed to run. If an invariant is not met, the system throws an
exception to the user. Annotations do therefore require user

@ray.remote

class SparkActor:

def __init__(self):

self.spark_context = connect(); self.df = None

def generate_df(self):

self.df = generate_df(self.spark_context).cache()

@const

def exec(self, seed: int) -> int:

return exec(self.df, seed=seed).count()

def _checkpoint(self):

return self.spark_context.save(self.df)

def _restore(self, path):

self.df = self.spark_context.load_df(path)

Listing 1: Psuedocode for passing a Spark DataFrame by actor. The
execution backend implements the actor. Public methods are user-
defined. Methods prepended by _ are called internally by ExoFlow.

cooperation, but note that a user with minimal performance
needs can use the defaults in Table 1. This specification triv-
ially satisfies the invariants and indeed corresponds to current
workflow systems that commit all task outputs. Section 4
describes how ExoFlow leverages the invariants to improve
run-time performance for more sophisticated specifications.

Note that the system will not durably record a nested work-
flow returned by a task with checkpoint=False. To simplify
recovery, we disallow sub-tasks with checkpoint=True, as we
may lose all references to these checkpoints upon failure. We
also disallow can_rollback=False and rollback, as these are
challenging to recover without workflow durability.

3.4 References
Immutable Refs enable efficient passing of large and

distributed data between workflow tasks. For example,
Figure 4b shows how the Ingest task from Figure 2d can use
Refs to return distributed in-memory data. ExoFlow tracks
inter-task Ref dependencies for recovery purposes, while the
execution backend handles intra-task execution (e.g., get).

Some cases require stateful actors for performance. For ex-
ample, the blue boxes passed between train tasks in Figure 4b
are ActorRefs representing a training worker’s state, e.g., a
Distributed TensorFlow session. This helps avoid expensive
materialization, such as the worker’s local model copy.

Guaranteeing exactly-once semantics for state is challeng-
ing. If one task writes the ActorRef’s state, the output is visible
to any other task holding a reference to the same actor. This
can cause cascading rollbacks on failure depending on how
ActorRefs are passed. Furthermore, checkpointing is more
challenging if multiple tasks write concurrently to the actor, as
the system must ensure that the actor checkpoint is consistent.

To simplify recovery, we limit ActorRef passing to two
patterns, analogous to a read-write lock. By default, the
ActorRef is in “write” mode. In this mode, only one workflow
task may have a reference to the actor at a time. That task can
call any actor methods as long as they finish before the task
returns. For example, in Figure 4b, only one train task refers

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 275

to each actor at a time. ExoFlow can then checkpoint the
actors’ state between tasks, and on failure, roll back the actors
with the workflow. This pattern is useful for abstracting and
checkpointing distributed workers in third-party frameworks
such as Distributed TensorFlow [9] and Flink [20].

If there are multiple concurrent workflow tasks with a ref-
erence to the same actor, however, the tasks are restricted to
read-only methods annotated by the user, as shown in List-
ing 1. Figure 4c shows an expanded Figure 2b in which we use
an ActorRef to capture a Spark DataFrame. Initially, A has the
only ActorRef, so it can write to the actor’s state (generate_-
df). B and C share the actor concurrently, however, and so
they are limited to read-only methods (exec). Invoking a write
method such as generate_df would throw a run-time error.

Similar to a read-write lock, ExoFlow can only provide
correctness if the application respects certain conditions. In
particular, the workflow tasks must explicitly pass ActorRefs

through their outputs and arguments. Any other ActorRefs

cannot be tracked by ExoFlow and exactly-once semantics is
not guaranteed, similar to reading a variable without holding
the lock. Also, while methods may be called asynchronously
on an ActorRef, a workflow task must synchronize any
outstanding calls to an actor before returning.

4 Architecture
We describe the ExoFlow design and the requirements of
the pluggable execution backend and persistent storage. The
workflow controller is a long-running service that can be
sharded by workflow (Figure 5). Persistent storage can be
implemented by any durable blob storage supporting puts and
gets with read-after-write consistency, such as Amazon S3.
The execution backend should implement a remote function
invocation interface, used by the controller to scale check-
pointing and task execution. The backend should provide:
(1) ability to detect and report task and Ref failures, and (2)
guarantee no resource leaks for failed task execution and Refs.

The controller runs as an event loop with the following
events: task or checkpoint completes, and task or checkpoint
failed. All critical workflow state, such as the workflow DAG,
is cached by the workflow controller and written-through to
persistent storage, making it simple to also recover the work-
flow controller. On restart, the controller simply scans the stor-
age for any unfinished workflows, and re-runs to completion.

4.1 Workflow execution
The workflow control layer is implemented using the system
Ray [37]. Ray provides remote task invocation, distributed
immutable memory, and distributed actors. However, Ray
only provides at-most-once or at-least-once guarantees and
lacks built-in persistence for memory and actors. Thus, Ray
tasks and actors are distinct from workflow tasks and actors,
which execute exactly-once and can be natively checkpointed.

We use Ray actors to implement the workflow controller
and task executors (Figure 5). The controller uses Ray’s

a b

c

Persistent storageWorkflow controller

Ex
ec

ut
or

 1

Ex
ec

ut
or

 2

A()
B(a)

C(a)
D(b,c)

x x

ID Args Output Placeholders Ckpted?

A [] Ref(be5) {} False

B [a] Ref(d1a) { :Ref(e02)} True

C [a] Ref(1bf) - PENDING

D [b,c] - - -

C(a)

Ckpt loc Value

/w0/A/spec …

/w0/B/spec …

/w0/B/output

/w0/B/x

… …

b

ID Value

B

x

b

Execution backends

Custom
application
checkpoints

Workflow storage

x

Figure 5: Workflow architecture. The controller and executors are
RPC-like services built using Ray actors. Each invocation on these
services returns a distributed future (system-internal Refs).

distributed futures [47] to coordinate task execution and
checkpointing. Distributed futures are an asynchronous
extension of RPC where each invocation returns a future
pointing to the eventual and possibly remote return value.
Ray actors and distributed futures also directly implement
application-facing references (Section 3).

We build on Ray for three reasons: (1) futures make it sim-
ple for the controller to manage concurrent task execution and
checkpointing, (2) passing remote values by reference avoids
bottlenecks from large task outputs being passed directly
through the centralized controller, and (3) the RPC-like inter-
face straightforwardly and efficiently wraps other execution
backends. For example, the Lambdas backend is implemented
by wrapping a synchronous Lambda invocation in a Ray task.

The controller is a state machine where the state describes
the current execution status of a workflow DAG and is
persisted in storage. On run, the controller logs the workflow
DAG specification (arguments, Opts, etc.) to durable storage
and triggers execution. On each iteration of the event loop, the
controller may select a workflow task whose inputs are ready
and submit the task to an executor. For example, in Figure 5,
the controller submits C to executor 1 and immediately
receives back the distributed future Ref(1bf). The controller
uses this system-internal Ref to wait for task completion, and
then passes it to downstream workflow tasks (e.g., D).

Checkpointing is carried out asynchronously by back-
ground threads on the executors, enabling parallel and
distributed checkpoints that are not bottlenecked by the cen-
tralized controller. To checkpoint an output, the executor asyn-
chronously writes a copy to a deterministic storage location
(e.g., w0/B/output in Figure 5). The controller considers the
checkpoint done once it is fully written. For convenience, the
controller can also synchronize the checkpoint by requesting a
signal from the executor (controller to executor 2 in Figure 5).

Checkpoint synchronization is required: (1) at the end

276 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of a workflow, (2) before executing a task with can_roll-

back=False, and (3) before executing a task with a rollback

option. Section 6 evaluates a simple policy that synchronizes
all pending checkpoints for a workflow in any of these cases
and shows that this provides sufficient performance for key
applications. A more sophisticated policy may synchronize
only the minimum necessary.

ExoFlow handles passing and checkpointing application
references (Section 3.4). When a task finishes, the executor
replaces any Refs and ActorRefs appearing in the task’s out-
put with placeholders, e.g., x in Figure 5. When passing the
output to another task, the controller also passes a list of con-
crete references (Ref(e02) for x) used by the executor to fill
the placeholders. Task checkpoints include a list of Ref check-
point locations, which are written in parallel and distributed
fashion. The controller restores and swaps Refs after a failure.

If a workflow task returns a WorkflowDAG as its output,
the controller simply records the sub-workflow (if check-

point=True), points the output of the parent task to the output
of the sub-workflow, then resumes execution.

4.2 Workflow recovery
The controller handles task and checkpoint failures. In both
cases, the protocol rolls back any previous outputs as needed,
then rolls “forward” by re-executing workflow tasks.

The first step is to determine the re-execution task frontier.
For example, suppose C in Figure 5 fails because we lost A’s
cached output Ref(be5). Then, we walk the DAG backwards
from C and add each visited task node to the re-execution set.
For each task, we check argument availability, i.e. whether the
value has a checkpoint or a live Ref. If all arguments are avail-
able, then we terminate. Else, we add the tasks that create the
arguments (A) to the re-execution set. If a visited task has de-

terministic=False, then we also add all tasks downstream to
the re-execution set. Thus, if C fails and we need to re-execute
A, we also re-execute B, even though it has a checkpoint.

From the re-execution task set, we carry out rollback. In
reverse-topological order of the re-execution set, we first
clear any cached output Refs and output checkpoints, e.g.,
/w0/B/output and /w0/B/x for B. If it has a rollback task, then
we re-execute this task, using the same protocol as normal task
execution. Finally, we resume workflow execution as normal,
starting from the earliest task frontier of the re-execution set.

Critical controller state is persisted, so recovering from
controller failure is straightforward. On failure, all in-memory
controller state (the table in Figure 5) is wiped, including
any Refs. On restart, the controller simply scans persistent
storage for incomplete workflows, rebuilds its in-memory
table, then re-executes them using the described protocol.
Correctness. We provide informal proofs that the final out-
puts are consistent (Definition 1). During normal execution,
this follows from the execution protocol: starting from a
consistent prefix of outputs, executing a task will produce
another consistent prefix.

For recovery, we first consider reconstruction of internal
outputs, i.e. values returned by workflow tasks. If the task is
deterministic, then the reconstructed output will match the
original. If the task is nondeterministic, then the described
rollback procedure returns execution to a consistent prefix that
does not include any results downstream to the original output.

Next, we consider external outputs: tasks with can_roll-

back=False or rollback defined. For a task T with can_roll-

back=False, the application guarantees idempotence, so it is
enough to show that once T begins, the failure-free execution
will include the same inputs for T . To show this, we rely on
Invariant 1 (Section 3.3) and checkpoint synchronization (Sec-
tion 4.1). The system synchronizes the partition provided by
Invariant 1 before submitting T ; thus once T begins, any
future recovery procedure will never add T to the rollback set.

If T instead has rollback defined, we must show that if T
fails, rollback will complete with the same view of inputs as
T ’s previous execution, before re-executing T . Invariant 2 and
checkpoint synchronization guarantee that we can determinis-
tically and idempotently recreate rollback’s original inputs.

Correctness also requires preventing conflicts between
different executions of the same task. For task checkpoints,
if the backend’s failure detection for executors is reliable,
then by the time we re-execute T , we can be sure that there
is no concurrent checkpoint in progress. Under unreliable
failure detection, the ExoFlow controller assigns unique
checkpoint locations to prevent races between concurrent
executions. This requires one extra durable write before each
task execution to record the expected checkpoint location.

For a task that returns Refs or ActorRefs, the execution
backend can provide reliable failure detection for references
by killing all copies of a Ref before reporting failure to
ExoFlow. Alternatively, a safe and efficient method that
works for both crash and fail-stop failures is to generate
unique references for each execution.

4.3 Execution backends
Integration. ExoFlow references are compatible with
existing third-party mechanisms for task communication and
recovery. For example, Ray does not provide exactly-once
semantics, but it does automatically reconstruct Refs

created by deterministic (at-least-once) tasks [47]. ExoFlow
encourages hierarchical recovery, wherein the execution
backend can attempt to handle Ref failures first, then throw
unrecoverable errors up to the workflow controller.

ExoFlow is compatible with backends that use logging and
checkpointing. In general, log-based tasks would use deter-

ministic=True and can_rollback=False annotations, while
checkpoint-based tasks would use deterministic=False and
can_rollback=True. The backend can also directly lever-
age ExoFlow for checkpointing instead of supplying a user-
defined rollback function; this shifts the responsibility of
checkpoint coordination to ExoFlow and automatically en-
ables optimizations such as overlapping with execution.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 277

Preventing leaks. The workflow layer ensures that previous
Refs and pending checkpoints do not leak; invalid Refs and
checkpoints are dropped during rollback. The execution
backend must additionally prevent resource leaks for dead
Refs. Dead Refs can be deleted via reference counting
(the controller calls back to the backend once a Ref goes
out of scope) or garbage collection (the backend scans the
controller’s in-memory state for dead Refs).

5 Implementation
ExoFlow is built on Ray v2.0.1, which uses gRPC [6] for
tasks and actors and a custom shared-memory object store for
Ref storage [37]. ExoFlow is implemented as a Ray Python
program in 4k LoC.

We implemented two execution backends for ExoFlow:
Ray itself (“ExoFlow-Ray”) and the serverless FaaS offering
AWS Lambdas (“ExoFlow-Lambdas”). In each case, a typical
deployment would use one Ray node to host the ExoFlow
controller. In ExoFlow-Lambdas, the controller node takes the
place of the gateway provided by AWS for their proprietary
serverless workflow offering (Step Functions).

We chose to implement ExoFlow on Ray for three reasons:

1. Support for first-class references to immutable data,
which we use to implement Refs.

2. Support for actors (stateful workers), which we use to
implement ActorRefs.

3. Low task and actor overhead, similar to pure RPC.

We also use Ray actors to implement executors. Workflow
tasks are stateless, but we use actors to store execution state
about checkpoints that are pending after task completion.

To build ExoFlow on another actor system such as
Akka [2] or Orleans [13], we must implement Refs. This is
straightforward for workloads that only pass small data. For
data-intensive workflows, one can build a custom in-memory
store that is tightly coupled to executors, as in Ray, or use an
external key-value store. The latter requires low implemen-
tation effort, but may result in poor locality. It is ideal if the
execution backend cannot be modified, e.g., to support values
larger than the Lambdas response size in Exoflow-Lambdas.

6 Evaluation
Our evaluation covers the following questions:

1. What overheads does ExoFlow add to at-least-once or
at-most-once execution backends?

2. How can applications leverage first-class references and
task annotations to have greater flexibility in recovery?

3. How does this flexibility in recovery strategy affect
performance during execution and recovery?

We compare primarily against these baselines: (1) exactly-
once workflow systems: Airflow [3], “standard mode” AWS
Step Functions [14], and the serverless workflow system
Beldi [49]; and (2) at-least-once distributed DAG systems:
“express mode” AWS Step Functions [14] and Ray [37].

Given the high execution overheads of exactly-once
workflow systems such as Airflow (Section 6.4), to fairly
address questions (1) and (3), we also compare against the
following ExoFlow modes:

1. SyncCkpt: Task outputs are synchronized before
executing downstream tasks. This is used to simulate
the recovery strategy of exactly-once workflow systems
such as Airflow.

2. NoCkpt: All task outputs except the final are skipped.
This is used to simulate the recovery strategy of an
at-least-once or at-most-once system. The application
must guarantee that all tasks are deterministic and
idempotent to achieve exactly-once semantics.

3. AsyncCkpt: The default mode of ExoFlow. Task outputs
are only synchronized where necessary, to provide
exactly-once semantics.

We conduct all of the experiments using the AWS cloud,
specifically in the us-east-1 region. ExoFlow and execution
backends are hosted on EC2 and use Amazon S3 (or EFS in
Section 6.2) for persistent storage.

6.1 ML training pipelines
We show how ExoFlow enables a flexible recovery-
performance tradeoffs for the workflow in Figure 2d. We
use an image classification example adapted from Azure
MLOps [4]. An ETL Ingest task (1 r3.2xlarge node)
downloads the compressed data from S3. “1×” in Figure 6
indicates one data copy with 569 raw image files and total
size 225MB. The task loads the images into memory, and
performs data cleaning and normalization with at-least-once
parallel Ray tasks. The dataset (1.4GB of memory per data
copy) is partitioned and passed using Refs to the dataset
augmentation tasks, via Ray’s shared-memory object store.
Dataset augmentation again uses Ray at-least-once tasks to
apply random cropping, flipping, and color adjustments to the
base dataset, once per epoch. Dataset augmentation requires
repeatedly processing the same dataset in a tight loop with
training. Therefore, the dataset augmentation stage accumu-
lates a total intermediate and checkpoint size of 67GB and
18GB respectively, per data copy. Training tasks are colocated
and pipelined with dataset augmentation (1 g4dn.12xlarge
node, 4 NVIDIA T4 GPUs). We use PyTorch data-parallel dis-
tributed training and the ConvNeXt Tiny (28.6M parameters)
model. PyTorch workers are passed using ActorRefs.

Figure 6L shows end-to-end duration of 25 epochs without
failures of different ExoFlow recovery modes, as a function of
dataset size. Here, we also include Selective AsyncCkpt (skip
checkpointing dataset augmentation outputs) and Workflow

Tasks (include at-least-once Ray tasks for data processing
in the workflow DAG instead of passing volatile Refs).

Duration predictably grows approximately linearly with the
dataset size for all strategies. The overhead of Workflow Tasks

is high because each data processing task is durably (and
unnecessarily) logged as part of the workflow. For the same

278 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1x 2x 3x 4x
Dataset Size

0
200
400
600
800

1000

D
ur

at
io

n
(s

)

Cluster Ingest data Train actor Aug. task Aug. data
Failure Type

0
250
500
750

1000
1250

D
ur

at
io

n
(s

)

Selective AsyncCkpt NoCkpt AsyncCkpt SyncCkpt Workflow Tasks

Figure 6: End-to-end duration for the ML workflow application shown in Figures 2d and 4b. Left: End-to-end duration without failure. Right:
End-to-end duration with different failure types. The shadow represents the execution time without failure.

workflow graph, the overhead for larger data varies depending
on the recovery strategy. NoCkpt represents the best possible
performance, where only the final model is checkpointed.
SyncCkpt represents existing workflow systems (Figure 2c)
and its overhead grows the most because checkpointing over-
head grows faster than computation overhead. AsyncCkpt’s
overhead grows less because checkpointing of augmented
datasets is overlapped with training tasks. Selective

AsyncCkpt has nearly identical duration as NoCkpt because the
Ingest checkpoint is perfectly overlapped with training tasks.

Meanwhile, Figure 6R shows end-to-end duration in
different failure scenarios compared to normal run-time
execution (dark): whole cluster failure (including the
ExoFlow controller); in-memory ingest data lost; PyTorch
worker actor lost; augmentation task lost; and in-memory
augmented data lost. Here, we see the tradeoff between
recovery and performance. SyncCkpt has similar or better
recovery time overhead than NoCkpt for cluster and ingest
data failures because it avoids re-executing the Ingest task,
but overall it does worse because of high normal run-time
overhead. Selective AsyncCkpt checkpoints the Ingest data
asynchronously, so recovering from cluster and ingest data
failures is fast because it simply restores the Refs from the
checkpoint. Together, Figure 6L and R demonstrate how the
developer can flexibly choose the best recovery strategy.

Figure 6R also demonstrates ExoFlow’s broad failure
coverage and ability to integrate with Ray’s built-in recovery:
Ray automatically reconstructs deterministic data processing
results but does not handle persistence or actor recovery [47].
Thus, ExoFlow handles the first four failures, while Ray
handles the last. Recovery for the last two failures is fast
because rollback and checkpoint restore are unnecessary.

6.2 Stateful serverless workflows
We compare ExoFlow on a travel reservation benchmark [26]
to Beldi [49], a recent system for fault-tolerant and transac-
tional stateful serverless workflows that uses intent logging
to ensure exactly-once semantics. Our implementation uses
Beldi’s APIs for reading and writing state but the ExoFlow
controller with an AWS Lambdas backend for workflow
execution and recovery. We use a single m5.16xlarge instance
to host ExoFlow and EFS for persistent storage, which

provides lower latency than S3. The benchmark procedure
follows [49], and we report response latency in Figure 7a.

ExoFlow achieves about 51% lower p50 latency than Beldi
for request rates up to 400, despite using the same execu-
tion system (AWS Lambdas) and state APIs (Beldi). This is
because most of the workflows have deterministic computa-
tion and no external effects (i.e. read-only), so the additional
logging used by Beldi is unnecessary for correctness. Fur-
thermore, Beldi schedules an additional Lambda function to
orchestrate others, while ExoFlow directly schedules Lamb-
das. When requests/s is higher than 700, ExoFlow’s median
latency is greater than Beldi’s. This is due to the Lambdas
invocation bottleneck at the ExoFlow controller node and can
be easily removed through sharding across workflows. The
Lambdas gateway used in Beldi is likely sharded internally.

The use of ExoFlow as a Lambdas gateway has benefits
in recovery time. Figure 7a also shows latency with a 10%
failure rate for all Lambdas. ExoFlow directly invokes
Lambdas, so it can detect failures and recover virtually
instantaneously, resulting in 0-31% extra overhead in p99
latency. In contrast, Beldi is fully decentralized and relies on
timeouts for recovery correctness. Thus, although Beldi-style
logging may reduce re-execution on recovery, the actual
recovery time would be lower-bounded by a timeout ([49]
evaluates 1min as a possible lower bound).

Figure 7b further demonstrates the performance benefit
of exposing application semantics to the workflow system.
We report latency of the most complex workflow in the
benchmark, the trip reservation request described in Figure 3.
Beldi implements the transaction using two-phase locking
(2PL). We demonstrate progressive improvement over the
original solution by varying the execution and recovery
strategy. First, we eliminate Beldi logs for dynamic task
invocation, as the DAG can be easily specified upfront,
reducing p50 and p99 latency by 17% and 25% respectively
(-WAL). Next, we parallelize the hotel and flight reservation
tasks, further reducing p50 and p99 latency by 17% and
15% respectively (+parallel). Beldi executes these tasks
sequentially because asynchronous invocation does not allow
retrieval of the reply. Finally, we split each reservation task
into two steps: lock acquisition and reservation, as seen in
Figure 4a. -async shows that with synchronous checkpoints,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 279

100 200 300 400 500 600 700 800 900 1000
Throughput (request/second)

0

200

400

600

800

1000

1200

1400

1600

La
te

nc
y

(m
s)

ExoFlow 50p
ExoFlow 99p
ExoFlow 50p w/ failure
ExoFlow 99p w/ failure
Beldi 50p
Beldi 99p

(a)

Method
0

100

200

300

400

500

600

La
te

nc
y

(m
s)

Beldi
-WAL
+parallel
+async
-async

(b)

0 1 2 3 4 5
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

ExoFlow AsyncCkpt
ExoFlow SyncCkpt
ExoFlow NoCkpt

(c)

Figure 7: (a) Response latency percentile for a serverless travel reservation benchmark [25]. (b) Median latency of the trip reservation request
from the travel reservation benchmark. Error bar represents 99-percentile latency. (c) Latency CDF of online-offline graph processing.

Trigger 1B 128KB 1MB 32MB 128MB
Operation

10−3

10−2

10−1

100

101

La
te

nc
y

(s
)

Airflow
AWS Std.SF-λ

AWS Exp.SF-λ
ExoF.-λ SyncCkpt

ExoF.-λ AsyncCkpt
ExoF.-λ NoCkpt

ExoF.-Ray SyncCkpt
ExoF.-Ray AsyncCkpt

ExoF.-Ray NoCkpt
Ray

(a)

1 2 4 8
Number of Consumers

0

20

40

60

80

D
ur

at
io

n
(s

)

Airflow
Spark

ExoFlow + SyncCkpt
ExoFlow + NoCkpt

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

1000

2000

3000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

5000

10000

15000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(d)
Figure 8: Microbenchmarks. (a) Triggering and data passing latency of ExoFlow and other workflow systems, using AWS Lambda (λ) and
Ray as execution backends. Missing bars indicate limitations in inter-task communication. (b) End-to-end run time for the ETL workflow
shown in Figures 2b and 4c, compared with Airflow and native Spark. (c, d) Maximum task throughput (c: 1 task/DAG; d: 100 tasks/DAG)
of 10k tasks, compared against Ray as an optimal baseline, on 1 node and 4 nodes.

this actually increases latency due to the added task. However,
+async shows that by overlapping checkpointing with
execution, we can further reduce p50 and p99 latency by 34%
and 16% respectively, without compromising correctness.

6.3 Online-offline graph processing
Distributed graph processing systems can be generally
divided into stream vs. batch processing [36]. Streaming
systems can handle continuous updates and produce timely
results, but may not offer the same precision as batch systems.

We use references in ExoFlow to link stream and batch

graph processing, producing a single application that can
both handle online queries and produce periodic exact
results. We use Ray actors to implement a version of
Kineograph [21], a streaming graph processing system that
uses distributed snapshots for consistency. Each workflow
task ingests one epoch of incoming graph updates to compute
a graph snapshot and an online approximate result, and
we periodically pass the snapshot in-memory to another
workflow task that uses Spark to compute the full result.

We evaluate on the SNAP Twitter follower network

280 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

dataset [33] (41M nodes and 1.5B edges), with each input
record representing an edge insert event. We run the push-
model TunkRank algorithm used by Kineograph to compute
Twitter user influences on a 3-node r3.8xlarge cluster, 1 for
streaming and 2 for the Spark cluster. We use two Ray actors
to process the input stream and use ExoFlow to checkpoint
and pass the ActorRefs between streaming tasks. Each
streaming task represents a 10-second epoch and also returns
4 Refs that represent the partitioned graph snapshot. These
Refs are passed to a Spark task every 20 epochs. Latency is
reported for 200 epochs, after an initial warmup of 150 epochs.
The average digestion rate is 44.94k tweets per second with
our dataset. Kineograph achieves about 40k tweets per second
with 2 ingest node + 48 graph nodes with a similar setting.
We outperform Kineograph likely because we utilize shared
memory for data passing, with more powerful hardware,
which significantly reduces overhead of data pushing.

Figure 7c shows a CDF for latency from input event to
the earliest time that the event is reflected in a streaming
task’s output (although inconsistent results can be returned
earlier by querying the ingest actors directly). AsyncCkpt

allows the snapshot to be viewed before it is checkpointed.
NoCkpt has impractical recovery overhead, but we use it as a
performance baseline. AsyncCkpt achieves similar latency as
NoCkpt, meaning that checkpointing overhead remains stable
as the graph grows larger; this is because streaming tasks
pass through previous Refs that are already checkpointed, so
ExoFlow only checkpoints new data on each epoch. SyncCkpt
is similar to Kineograph, checkpointing the snapshot before
making it visible, and adds less than 1s latency. Finally,
the error rate of the online results and the batch processing
task duration both grow linearly over time, confirming the
tradeoffs between batch vs. stream processing.

6.4 Microbenchmarks
Latency. With equivalent backends, ExoFlow matches or
reduces execution overheads of existing workflow systems
while enabling more flexible inter-task communication. Fig-
ure 8a (1 m5.8xlarge instance) shows the latency of workflow
execution (“Trigger”) and task execution with different size
arguments. We use exactly-once systems (Airflow [3], AWS
Standard Step Function [14]) and at-least-once systems (AWS
Express Step Function [14], Ray [37]) as baselines. Airflow is
an industrial custom-built workflow system while Step Func-
tions are the AWS-native workflow offering for Lambdas.

First, with the Lambdas backend, ExoFlow has similar
trigger latency as AWS Standard Step Function. Airflow
has generally high overhead due to coordinating execution
through a database, which can easily lead to inefficient scans.

“1B” in Figure 8a compares minimum task execution
latency. ExoFlow-Lambdas achieves comparable latency as
AWS Step Functions, as the primary overheads for exactly-
once and at-least-once execution come from durability and
Lambdas invocation, respectively. ExoFlow-Ray improves

upon the latter as it uses Ray for execution.
Finally, we compare the ability to pass large data

between tasks. AWS Step Functions limit data passing
to 256KB, but plain Lambdas have a size limit of 6MB.
Thus, ExoFlow-Lambdas can actually support larger data
sizes. This could be improved further with Refs, e.g., with
Redis [44] for distributed memory. Airflow’s XCom [1] can
support slightly larger data but is fundamentally limited by its
database-centric design. Meanwhile, ExoFlow-Ray uses Ray
Refs for efficient data passing. The gap between AsyncCkpt

and NoCkpt latency is small but grows with data size; although
the checkpoint is asynchronous, ExoFlow synchronously
copies the data to guard against concurrent writes.

In summary, ExoFlow’s low execution overheads make it a
practical replacement for existing workflow systems, and it en-
ables greater flexibility in task communication and recovery.
Data sharing for ETL. We evaluate ExoFlow against Air-
flow for a Spark workflow similar to Figure 2b (1 m5.8xlarge
instance, 4GB Spark memory). Figure 8b measures total
run time for a workflow that uses Spark to generate a 1GB
random dataset, followed by multiple downstream tasks that
consume the data with data sampling Spark jobs. Such a
workflow requires orchestration across Spark jobs, which
Spark does not provide, and is therefore often run on a
workflow orchestrator such as Airflow.

Airflow run time grows proportionately with the number
of consumers because they cannot share data in-memory.
Meanwhile, ExoFlow scales well even with synchronous
checkpointing because consumers share data via Spark’s
native cache. Furthermore, ExoFlow runs as fast as native
Spark alone, while facilitating composition with other
systems as well.
Throughput and Scalability. We measure maximum
throughput with varying numbers of controllers, (AWS
m5.2xlarge) nodes, and tasks per DAG. We use Ray as the
optimal baseline, as Ray is also the execution backend.

Figure 8c (1 task/DAG) shows that ExoFlow and Ray
both reach saturation after 4 controllers on one node. With
4 nodes, scalability continues, and the gap between ExoFlow
and Ray narrows at around 16 controllers. Figure 8d (100
parallel tasks/DAG) shows that throughput overall improves
via task batching. Again, with four nodes, both ExoFlow
and Ray scale linearly with the number of controllers.
ExoFlow achieved roughly 50% of Ray’s throughput, due
to additional overhead from workflow orchestration and
ensuring exactly-once semantics.

7 Related Work
Workflow systems. Industry workflow systems [3, 5, 7, 14]
orchestrate execution and recovery for distributed applica-
tions by durably logging the workflow, checkpointing task
outputs and replaying failed tasks. However, they require
external outputs to be idempotent and significantly limit how
tasks can pass data to each other (Section 2).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 281

Many workflow systems for FaaS focus on stateful server-
less workflows. Several provide a fault-tolerant transactional
key-value store interface [45, 46, 49]. ExoFlow is agnostic
to external state APIs and implementation and factors out
execution and recovery orchestration from such systems.

Some stateful workflow systems offer a fault-tolerant actor
programming model [8, 15, 16]. A common recovery tech-
nique is event sourcing, i.e. durably logging nondeterministic
events. However, this requires the developer to use special
APIs for nondeterministic code and can add higher overheads
than necessary when deterministic replay is not required for
application correctness [23, 38]. ExoFlow also supports plug-
gable actors but only with coarse-grained logging (i.e. record-
ing the workflow DAG) and checkpoint-based recovery (Sec-
tion 3.4). This is intentionally minimal, as it enables composi-
tion of both log- and checkpoint-based actor implementations.

ExoFlow is similar to DARQ [35]: both use composable
atomic steps (tasks) and asynchronous checkpointing. Unlike
DARQ, ExoFlow exposes references and annotations to avoid
materializing and/or persisting outputs where possible.
Dataflow systems. Many dataflow systems use the DAG
model [22, 31, 48]. Several use lineage reconstruction for re-
covery, a form of logging that records the DAG but not the
data, to reduce run-time overhead. CIEL [39, 41] also intro-
duces dynamic tasks, which we adopt. However, these systems
target data processing applications in which all tasks are state-
less and deterministic. Ray proposes a unified API for DAGs
and actors [37], which we also adopt, but cannot support
exactly-once semantics or persistence [47]. Tachyon [34] pro-
poses a method of optimizing checkpoints for lineage-based
systems; this could be applied to a future version of ExoFlow.

Other systems such as Naiad [38], Apache Flink [18] and
Canary [43] implement both batch and streaming dataflow
with message passing and global checkpoints at run time
for recovery. This produces lower latency but requires more
rollback on failure; it can also add more overhead for applica-
tions with frequent external outputs [23]. ExoFlow augments
log- and checkpoint-based systems by orchestrating recovery
across systems with different internal strategies (Section 6.3).

Falkirk Wheel [27] targets efficient and flexible recovery
for batch and streaming. It uses logical message timestamps
to transparently determine the minimum to roll back on
failure. ExoFlow provides practical recovery for black-box
functions (tasks) by asking semantics from the developer
through references and task annotations.
Actor systems. The actor model is a distributed pro-
gramming model where processes communicate through
asynchronous method calls [30]. Most systems do not guaran-
tee exactly-once semantics [2, 12, 17, 47]. ExoFlow provides
a limited exactly-once actor model to support workflows that
pass actors between tasks. Meanwhile, the application has
full flexibility of existing actor systems within a task.
Message-passing systems. Message-passing systems are
a generalization of actors in which processes communicate

through message sends and receives. There is a large body
of work on recovery for message passing, primarily focusing
on logging vs. checkpointing [23]. Our work adapts these
techniques to the distributed workflow setting and aims to
compose log- and checkpoint-based applications.

8 Discussion
References for framework interoperability. Like other
dataflow systems, ExoFlow captures the logical data
movement in an application. ExoFlow also aims to enable
interoperability across distributed execution frameworks,
unlike abstractions such as RDDs [48] or timely dataflow [38]
that are tightly coupled to a specific framework. This moti-
vates some of the differences between Refs and ActorRefs

vs. other dataflow abstractions: they can be used to capture
third-party data and context, they are serializable, and they
do not impose a particular model of parallelism.
Limitations. Using ExoFlow effectively requires developer
effort. ExoFlow offers recovery flexibility but the developer
must choose the right tradeoff for their application. For ex-
ample, the developer must decide how large a workflow task
should be, and whether checkpointing the output is desirable.
Currently task annotations are also very coarse-grained,
which makes the system general-purpose but also makes
it more challenging for an application to achieve optimal
performance and recovery overheads.

There are a number of future directions towards improving
ExoFlow’s interfacing with external systems. First, while
Refs allow the application to efficiently pass data between
workflow tasks, reading and writing a Ref’s data may still
require data movement to or from an external framework.
Second, currently ExoFlow does not support transactions,
i.e. there is no way to specify that a task should be rolled
back if another task fails. In this case, the developer must
manually roll back the effects of both tasks, e.g., in a final
commitOrAbort task. Finally, for cases where tasks read and
write external state, capturing more fine-grained semantics
could reduce developer burden and improve performance.
For example, native support for popular types of external
state (e.g., a database) could be added.

9 Conclusion
Many existing distributed systems provide specialized,
efficient, and transparent recovery for specific application
domains. ExoFlow has an orthogonal and complementary
goal. To unify heterogeneous applications, we must provide
general and interoperable recovery methods. The greatest
challenge is to gain sufficient application semantics without
sacrificing flexibility. ExoFlow presents one approach that
strikes a balance between usability (minimal annotations,
compile-time safety checks) and functionality (flexible Refs,
automatic recovery). In doing so, we hope to provide universal
recovery that matches a universal API: the workflow DAG.

282 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgement
We thank the OSDI reviewers and our shepherd, Steven
Hand, for their valuable feedback. We also thank Haoran
Zhang and Vincent Liu for their insightful discussions and
help with Beldi. This work is in part supported by NSF CISE
Expeditions Award CCF1730628 and gifts from Astronomer,
Google, IBM, Intel, Lacework, Microsoft, Mohamed Bin
Zayed University of Artificial Intelligence, Nexla, Samsung
SDS, Uber, and VMware.

References
[1] Airflow XComs. https://airflow.apache.org/docs/

apache-airflow/stable/concepts/xcoms.html. Ac-
cessed: 2022-12-13.

[2] Akka. https://akka.io/.

[3] Apache Airflow. https://airflow.apache.org/.

[4] End-to-end mlops pipeline example on azure.
https://github.com/microsoft/MLOps/tree/master/
examples/KubeflowPipeline.

[5] Google Cloud Composer. https://cloud.google.com/
composer.

[6] gRPC. https://grpc.io.

[7] Kubeflow. https://www.kubeflow.org/.

[8] Temporal. https://temporal.io/.

[9] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).
Savannah, Georgia, USA, 2016.

[10] Michael Armbrust. SPARK-20928: Continuous
Processing Mode for Structured Streaming. https:

//issues.apache.org/jira/browse/SPARK-20928, 2017.

[11] Michael Armbrust, Tathagata Das, Liwen Sun, Burak
Yavuz, Shixiong Zhu, Mukul Murthy, Joseph Torres,
Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. Delta lake: high-performance acid table storage
over cloud object stores. Proceedings of the VLDB
Endowment, 13(12):3411–3424, 2020.

[12] Joe Armstrong. Making reliable distributed systems
in the presence of software errors. PhD thesis,
Mikroelektronik och informationsteknik, 2003.

[13] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel
Kliot, and Jorgen Thelin. Orleans: Distributed virtual
actors for programmability and scalability. Technical
Report MSR-TR-2014-41, March 2014.

[14] Jyothi Prasad Buddha and Reshma Beesetty. Step
functions. In The Definitive Guide to AWS Application
Integration, pages 263–342. Springer, 2019.

[15] Sebastian Burckhardt, Badrish Chandramouli, Chris
Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless
workflows. Proceedings of the VLDB Endowment,
15(8):1591–1604, 2022.

[16] Sebastian Burckhardt, Chris Gillum, David Justo,
Konstantinos Kallas, Connor McMahon, and Christo-
pher S Meiklejohn. Durable functions: semantics
for stateful serverless. Proc. ACM Program. Lang.,
5(OOPSLA):1–27, 2021.

[17] Sergey Bykov, Alan Geller, Gabriel Kliot, James R
Larus, Ravi Pandya, and Jorgen Thelin. Orleans: Cloud
computing for everyone. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 16. ACM, 2011.

[18] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State management
in Apache Flink: Consistent stateful distributed stream
processing. Proc. VLDB Endow., 10(12):1718–1729,
August 2017.

[19] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi,
and Kostas Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603, 2015.

[20] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 36(4), 2015.

[21] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao,
Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng
Zhao, and Enhong Chen. Kineograph: taking the pulse
of a fast-changing and connected world. In Proceedings
of the 7th ACM european conference on Computer
Systems, pages 85–98, 2012.

[22] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008.

[23] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi,
Yi-Min Wang, and David B Johnson. A survey of
rollback-recovery protocols in message-passing systems.
ACM Computing Surveys (CSUR), 34(3):375–408, 2002.

[24] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 283

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://akka.io/
https://airflow.apache.org/
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://cloud.google.com/composer
https://cloud.google.com/composer
https://grpc.io
https://www.kubeflow.org/
https://temporal.io/
https://issues.apache.org/jira/browse/SPARK-20928
https://issues.apache.org/jira/browse/SPARK-20928

and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 475–488, 2019.

[25] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 3–18, 2019.

[26] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 3–18, 2019.

[27] Ionel Gog, Michael Isard, and Martín Abadi. Falkirk
wheel: Rollback recovery for dataflow systems. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 373–387, 2021.

[28] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez,
Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

[29] Maurice P Herlihy and Jeannette M Wing. Lineariz-
ability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[30] Carl Hewitt, Peter Bishop, and Richard Steiger. A
universal modular actor formalism for artificial intel-
ligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, IJCAI’73, page
235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

[31] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07,
pages 59–72, New York, NY, USA, 2007. ACM.

[32] Zhipeng Jia and Emmett Witchel. Boki: Stateful
serverless computing with shared logs. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 691–707, 2021.

[33] Jure Leskovec and Andrej Krevl. SNAP
Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

[34] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, pages
1–15, 2014.

[35] Tianyu Li, Badrish Chandramouli, Sebastian Bur-
ckhardt, and Samuel Madden. Darq matter binds
everything: Performant and composable cloud program-
ming via resilient steps. In Proceedings of the ACM on
Management of Data, 2023.

[36] Robert Ryan McCune, Tim Weninger, and Greg Madey.
Thinking like a vertex: a survey of vertex-centric
frameworks for large-scale distributed graph processing.
ACM Computing Surveys (CSUR), 48(2):1–39, 2015.

[37] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 18), Carlsbad, CA, 2018. USENIX Association.

[38] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Naiad:
A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[39] Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. CIEL: A universal execution engine for
distributed data-flow computing. In Proceedings of
the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 113–126,
Berkeley, CA, USA, 2011. USENIX Association.

[40] Derek G Murray, Jiri Simsa, Ana Klimovic, and Ihor
Indyk. tf. data: A machine learning data processing
framework. arXiv preprint arXiv:2101.12127, 2021.

[41] D.G. Murray. A Distributed Execution Engine Sup-
porting Data-dependent Control Flow. University of
Cambridge, 2012.

[42] Qifan Pu, Shivaram Venkataraman, and Ion Stoica.
Shuffling, fast and slow: Scalable analytics on server-
less infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 193–206, 2019.

284 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://snap.stanford.edu/data

[43] Hang Qu, Omid Mashayekhi, Chinmayee Shah, and
Philip Levis. Decoupling the control plane from
program control flow for flexibility and performance
in cloud computing. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[44] Salvatore Sanfilippo. Redis: An open source, in-memory
data structure store. https://redis.io/, 2009.

[45] Vikram Sreekanti, Chenggang Wu Xiayue Charles
Lin, Jose M Faleiro, Joseph E Gonzalez, Joseph M
Hellerstein, and Alexey Tumanov. Cloudburst:
Stateful functions-as-a-service. arXiv preprint
arXiv:2001.04592, 2020.

[46] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati,
Joseph E Gonzalez, Joseph M Hellerstein, and Jose M
Faleiro. A fault-tolerance shim for serverless computing.
In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–15, 2020.

[47] Stephanie Wang, Eric Liang, Edward Oakes, Benjamin
Hindman, Frank Sifei Luan, Audrey Cheng, and Ion
Stoica. Ownership: A distributed futures system for
fine-grained tasks. In NSDI, pages 671–686, 2021.

[48] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[49] Haoran Zhang, Adney Cardoza, Peter Baile Chen,
Sebastian Angel, and Vincent Liu. Fault-tolerant and
transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1187–1204, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 285

https://redis.io/

A Artifact Appendix
Abstract
Our artifact includes a comprehensive guide and the source
code of the project that allows the evaluators to validate the
claims made in ExoFlow. Our artifact runs on Amazon AWS
without additional requirements or dependencies. Deploying
the code, performing the measurements, generating the plots,
and running the benchmarks depend on some third-party
frameworks including Anaconda, awscli, and Ray. Please refer
to our Github repository https://github.com/suquark/ExoFlow
for the latest instructions on reproducing the results.

Scope
The artifact allows the evaluators to validate the claims made
in the ExoFlow paper (mostly in the figures) and provides
a means to replicate the experiments described. The artifact
can be used to set up the necessary environment, execute the
main results, and perform microbenchmarks, thus providing
a comprehensive understanding of ExoFlow’s capabilities.

Contents
Our artifact includes a comprehensive guide designed to
assist the evaluator in setting up and running experiments
for the ExoFlow paper. It is organized into three primary
sections: Local Setup, Main Results, and Microbenchmarks.

The Local Setup section provides instructions to set up an
initial AWS EC2 instance. All subsequent experiments will
be conducted within that instance.

The Main Results section contains instructions to repro-
duce the main experiments (ML training pipelines, Stateful
serverless workflows, Online-offline graph processing)
presented in our paper. These experiments may take a
significant amount of time to run (>30 hours) for evaluation.
Therefore, we provide options for both batch running
experiments and testing individual data points.

The Microbenchmarks section includes instructions for run-
ning microbenchmarks, which take a shorter time to complete.

Hosting
You can obtain our artifacts from GitHub:
https://github.com/suquark/ExoFlow. The Github repository
may be updated later, but we will maintain clear and acces-
sible instructions about our artifacts in an easily identifiable
"README" file.

Requirements
ExoFlow is developed and tested on AWS, and we use some
AWS services as the baseline. Thus, an AWS account and
quota for certain experiments are required.

286 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/suquark/ExoFlow
https://github.com/suquark/ExoFlow

Hyrax: Fail-in-Place Server Operation in Cloud Platforms

Jialun Lyu1,2 Marisa You1 Celine Irvene1 Mark Jung1 Tyler Narmore1 Jacob Shapiro1

Luke Marshall1 Savyasachi Samal1 Ioannis Manousakis∗ Lisa Hsu∗ Preetha Subbarayalu1

Ashish Raniwala1 Brijesh Warrier1 Ricardo Bianchini1 Bianca Schroeder2 Daniel S. Berger1,3

1Microsoft Azure 2University of Toronto 3University of Washington

Abstract
Today’s cloud platforms handle server hardware failures by
shutting down the affected server and only turning it back on-
line once it has been repaired by a technician. At cloud scale,
this all-or-nothing operating model is becoming increasingly
unsustainable. This model is also at odds with technology
trends, such as the need for new cooling technology.

This paper introduces Hyrax, a datacenter stack that en-
ables compute servers with failed components to continue
hosting VMs while hiding the underlying degraded capacity
and performance. A key enabler of Hyrax is a novel model
of changes in memory interleaving when deactivating faulty
memory modules. Experiments on cloud production servers
show that Hyrax overcomes common hardware failures with-
out impacting peak VM performance. In large-scale simu-
lations with production traces, Hyrax reduces server repair
requirements by 50-60% without impacting VM scheduling.

1 Introduction

Server hardware failures are quite frequent in cloud plat-
forms. For example, a typical cloud server relies on at least
24 DIMMs, six SSDs, six fans, and two CPU sockets [48].
Even assuming optimistic annual failure rates1 of 0.1% per
DIMM and 0.2% per SSD, 22% of servers will have at least
one failure during the typical 6-year lifetime of a cluster. In
practice, repair rates are typically even higher.

The common approach to dealing with hardware failures
in today’s cloud platforms is to evict all virtual machines
(VMs) and stop using the affected server. The server goes
back into production only once a technician has replaced all
faulty components. This maintains server homogeneity, which
simplifies scheduling and operation [4, 24, 32, 41, 42, 46, 61,
64, 69]. We call this the “all-or-nothing” operating model.

Recent technology trends make all-or-nothing operations
increasingly unsustainable in cloud platforms. First, server
power consumption increasingly requires liquid cooling,
which offers performance, efficiency, and sustainability ben-
efits [33, 63, 72]. Liquid cooling significantly increases the
time and effort required to repair servers. Second, the share

∗Formerly at Microsoft Azure
1Prior work reported 0.09% [58, 59], 0.12% [12], and 1.6% [57, 66] for

DIMMs and 0.22% [43, 44] to 1.2% [3, 54] for SSDs.

of total costs that are due to repairs are increasing (§2). This
is in part due to servers staying in datacenters for longer2.
Third, all-or-nothing requires a continuous supply of spare
components, which is increasingly hard to procure. Com-
ponent supply chains have emerged as a barrier to further
extending server lifetimes and reducing carbon emissions [7].
Fourth, the human repair process can cause interruptions to
nearby servers [32], which is becoming an obstacle in cloud
provider’s pursuit to improve the availability of their servers.

This paper advocates that cloud providers should move to-
ward a fail-in-place paradigm where servers with faulted com-
ponents continue to host VMs without requiring repairs. Fail-
in-place operation would significantly reduce repair needs,
improving costs, carbon emissions, and availability. How-
ever, fail-in-place faces multidimensional challenges in prac-
tice. First, it requires a form of graceful degradation where
individual faulty components are deactivated instead of de-
commissioning the entire server. Unfortunately, we find that
mechanisms to deactivate components are largely undocu-
mented. Furthermore, deactivating the right component re-
quires accurate fault diagnostics and it is unclear whether this
can be achieved in practice. Second, deactivating common
components such as DIMMs can significantly impact server
performance due to reduced memory interleaving. This per-
formance loss should not be exposed to VM customers. Third,
the cloud platform must be able to actually use the capacity
on servers with deactivated components. This requires algo-
rithmic changes in VM scheduling and changes to adopt the
cloud control plane to support heterogeneous servers.

We introduce Hyrax— the first implementation of the fail-
in-place paradigm for cloud compute servers. In a multi-year
study of component failures across five server generations,
we find that sufficient redundancy in existing servers can
overcome the most common memory and SSD device fail-
ures. While existing diagnostics can only identify a subset
of component types, we empirically find that they are 95%
accurate. We identify hooks in deployed firmware that enable
deactivating components in ways that overcome many fail-
ure possibilities (e.g., dirty or corroded connectors or chip
failures). Finally, Hyrax adds a degraded server state and cor-
responding scheduling rules to a production control plane to

2Major cloud providers have moved to a minimum server lifetime of six
years [7, 26, 53] for cost and sustainability reasons.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 287

95

96

97

98

99

100

20 40 60 80 10
0

Repair Frequency [% Relative to IR]

All-or-Nothing (AoN)

Hyrax

A
va

ila
bl

e
C

or
es

 [%
 R

el
at

iv
e

to
 IR

]

(a) US Region.

95

96

97

98

99

100

20 40 60 80 10
0

Repair Frequency [% Relative to IR]

All-or-Nothing (AoN)

Hyrax

A
va

ila
bl

e
C

or
es

 [%
 R

el
at

iv
e

to
 IR

]

(b) EU Region.

Figure 1: Hyrax dominates all-or-nothing (AoN) operations along
the entire trade-off spectrum between available resources (core
hours) and the number of required server repairs (repair tickets).
Different points on the trade-off spectrum are generated by varying
the repair schedule, ranging from immediate repairs (IR) to perform-
ing repairs in batches at periodic intervals ranging from 1-12 months
long. All numbers are normalized to those for AoN with immediate
repairs, which is the common approach in today’s cloud platforms.

support servers with deactivated components.
Hyrax overcomes the reduced performance of degraded

servers by exploiting existing heterogeneity in VM sizes and
configurations. Specifically, we find that the peak performance
expectation of small and old VM types matches the perfor-
mance offered by degraded servers. Further, we find that there
are sufficiently many small and old VM types to effectively
utilize the capacity of degraded servers. Hyrax also introduces
scheduling optimizations for efficiency at scale.

Hyrax has been deployed for a few months on a subset of
Azure clusters and a small set of component types. We report
on its effectiveness on real failures and use microbenchmarks
and large-scale trace-driven simulations to extrapolate a full
deployment over six years. Our experience demonstrates that
the fail-in-place paradigm is practical under real-world plat-
form constraints.

To evaluate the benefits of at-scale deployment, we simu-
late 66 compute clusters from two geographic regions over
a period of six years. Overall, Hyrax reduces the number of
server repairs in a region by 50-60% depending on the region
(Figure 1), while offering the same resource availability and
scheduling the same VMs as today’s all-or-nothing opera-
tion. Figure 1 also shows that Hyrax’s benefits carry over to
different repair schedules, including Azure’s existing repair
schedule (immediate repairs) as well as previously-suggested
batching of repairs [4, 5], where repairs are scheduled at pe-
riodic intervals (e.g. once per year). Furthermore, Hyrax re-
duces replacement rates by 40% for fans, 50% for SSDs, and
75% for memory, which enables extending server lifetimes for
multiple years to amortize server costs and carbon emissions.

We hope that, by sharing our journey towards the fail-in-
place paradigm, we motivate the community to invest in future
cross-stack systems research to make degraded mode and fail-
in-place operation significantly more efficient.
Contributions:

• The first description of design goals and constraints for

Healthy Diagnostics

Repair

Certification

Suspect

NoStill
faultyReliable

Online

fault

Offline

Figure 2: At Azure, servers are either online and serving VMs, or
offline and being repaired. Repairs take between 3 and 190 days at
the 50-th and 99-th percentile, respectively.

fail-in-place and feasibility analysis of degraded mode
operation at a large public cloud platform (§3).

• The design and implementation of Hyrax, the first fail-
in-place system at a cloud provider. Hyrax’s implementa-
tion includes novel mechanisms to deactivate component
pathways and a novel model of memory interleaving
when memory modules are deactivated (§4, §5, and § 6).

• Experimental results that show Hyrax’s effectiveness,
performance, and cost impacts (§7).

• A discussion of deployment experience, broader impacts,
and research avenues (§9).

Limitations. Hyrax is not applicable to all repair operations.
The following assumptions underpin our work.

• Hyrax focuses on server repairs, which account for the
majority of technician hours in Azure datacenters. Hyrax
does not reduce other technician duties, such as power,
network, and cooling maintenance.

• Hyrax focuses on compute servers, where degraded op-
eration is challenging. Storage servers often already im-
plement variants of degraded mode (§8).

2 Background

This section reviews repair workflows and costs, typical server
configurations, and cloud workloads.

Repair workflow. A software agent called Server Health
Monitor (SHM) checks server error logs and component types,
counts, and capacity for deviations from the expected (homo-
geneous) configuration. If the SHM suspects any kind of fault,
the server is marked as “offline”, which signals the VM sched-
uler to filter out this server (Figure 2). VMs are migrated
away or gracefully evicted. The server is then rebooted into
a diagnostics environment. If diagnostics finds a hardware
problem, it immediately creates a repair ticket [4, 32, 41, 66].

Repair tickets can point to a specific component pathway
(like DIMM #4, Figure 3a) or require a manual diagnosis.
After a technician resolves a ticket, e.g., by reseating connec-
tors or swapping out components, the server is tested again
to certify reliability (certification step). A reliable server is
marked “online” and again becomes a candidate for hosting
VMs.

Impact of all-or-nothing repairs on TCO. Server repairs
are a significant component of total cost of ownership (TCO).
The main components of TCO are CapEx (capital expendi-

288 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Memory component pathway.

(b) SSD component pathway.

Figure 3: A component can appear faulty due to other component
faults along the path between a core and the actual component. We
call this a pathway that typically spans the socket and pins, printed
circuit board (PCB), and slots/risers to the actual component like the
NVMe SSD or memory DIMM.

ture for the purchase of servers, networking, cooling, and
power infrastructure) and operational costs due to energy and
power (estimated at 6% of CapEx per year [19, 20, 62]), and
maintenance (estimated at 5% of CapEx per year for each
server [4, 66]). Maintenance costs are largely made up by
technician salaries and cover maintenance of all datacenter
components. At Azure, server repairs account for about half of
technician work hours in the all-or-nothing operating model.
Server repairs thus account for 9% and 12% of total cost
(TCO) for server lifetimes of 6 and 10 years [7], respectively.3

Repairs are also known to be slow [69]. At Azure, 2%
of servers are waiting for repairs at any given time in the
all-or-nothing operating model.

Server hardware. Figure 4 shows a typical cloud server con-
figuration [48]. Variants of this base architecture include one
or two NICs and 24-32 DIMMs; most servers use a single
NIC. We note that the component count for some compo-
nent types is larger than one (marked in green in Figure 4).
We refer to these as degradable components as they do not
represent a single point of failure.

We note that hardware components internally contain re-
dundancy, such as spare blocks in SSDs [8, 25, 34, 44, 52,
55, 67, 68]. Moreover, the operating system and hypervisor
at Azure employ an aggressive policy for offlining memory
pages to mask faulty cachelines. A repair ticket is generated
for a component only when the above mechanisms cannot
resolve the problem.

Cloud workload. All workloads run within virtual machines
(VMs) for security and ease of management. Resources for
each VM are typically preallocated at its start time to improve
performance and facilitate the use of virtualization acceler-
ators [2, 39, 60, 70, 71]. VMs come in hundreds of different
types with many combinations of the number of virtual cores,
memory capacity, local and remote storage options, NIC and
GPU configurations.

The cloud provider has no introspection into the workloads
that a customer is running inside their VMs and does not know
their performance requirements. Hence, performance goals

3We calculate TCO based on the three dominant cost factors: Deployment
years (y), CapEx (C), Maintenance (y×C×5%), and Energy/Power (y×C×
6%). This leads to TCO(y)=C+y×5%×C+y×6%×C =C(1+0.11×y).

Power supply units (PSU)
Single-rotor fans (Fan)

Memory modules (DIMM)
CPU sockets (CPU)

NVMe flash drives (SSD)
Motherboard (MB)

Network interfaces (NIC)
Management controller (BMC)

Network cables (Cable)

3
6

24-32
2
6
1

1-2
1

2-3

Count

Figure 4: A typical cloud server configuration and its component
counts. We refer to the component types marked in green as degrad-
able, as their component count is large enough that they are not a
single point of failure.

are defined in terms of peak performance, e.g., bandwidth and
latency for memory and IOPS and bandwidth for SSDs. For
older VM types that are scheduled on newer servers, their
performance goals are defined for the server generation they
were originally introduced on.

Azure’s distributed VM scheduler is called Protean [1, 9,
22, 37, 61]. Protean first forwards VM requests to a compute
cluster within the specified region based on hardware require-
ments and available capacity. At the cluster level, Protean
places VMs following a series of rules that balance tightly
packing resources with spreading workloads across racks for
high availability. Filter rules select which servers are con-
sidered candidates for placing each VM. They ensure that
only servers are considered that can ensure the SLAs asso-
ciated with the requested VM type. Preference rules rank
these candidates to find the best placement. Similar to other
schedulers [4, 22, 24, 32, 41, 42, 46, 61, 64, 69], Protean as-
sumes identical hardware configurations for all servers within
a cluster.

3 Fail in Place

The “all-or-nothing” operating model and the associated high
repair frequency is costly and at odds with multiple server and
data center trends. This paper pursues an alternative paradigm,
which we term Fail-in-Place (FIP). In FIP, servers are allowed
to exist with failed components for prolonged periods of time,
sometimes forever. The main goal of FIP is to reduce repair
tickets while continuing to offer the same user experience to
VMs and minimal impact on cluster capacity and scheduling.

FIP is motivated by our observation that the majority of
hardware repair tickets are due to the failure of degradable
components. Consider Figure 5, which breaks down repair
tickets at Azure into the component type that triggered them.
We see that, for example, in Generation 3 clusters4 more than
65% of tickets are due to degradable components. Recall
from Section 2 that degradable components do not represent
a single point of failure as their component count per server
is larger than one.

4Higher server generations reflect newer server and component architec-
tures. Generation 3 is a currently highly utilized hardware generation.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 289

0

10

20

30

40

50

DIMM SSD/HDD Fan CPU PSU Any Cable NIC MB Unknown Other

P
er

ce
nt

ag
e

of
 R

ep
ai

r
T

ic
ke

ts
(%

)

Degradable Not Degradable

Server Generation

1 2 3 4 5

Complete Location

Missing Location

Figure 5: Breakdown of repair tickets at Azure into the component
type responsible for the ticket. The repair tickets were recorded on
dozens of production clusters spanning regions across two conti-
nents and clusters from five different hardware generations, which
have been deployed between 2018 to 2022. Most repair tickets in
server generations later than 2 are for degradable components and
diagnostics indicates a specific pathway.

For degradable component types, Figure 5 further marks in
a darker shade the share of tickets that also identify a specific
pathway, rather than just the component type. For example,
for DIMMs, these tickets would include the specific DIMM
slot (recall Figure 3a). We observe that for generations above
2, almost all repair tickets among degradable components also
indicate the specific pathway.

The key idea behind FIP is to avoid repair tickets by deacti-
vating (rather than repairing) a faulty degradable component
and allowing the server to continue to host customer VMs,
albeit with reduced capacity. We refer to this new server state
as degraded servers.

While Figure 5 illustrates FIP’s potential to reduce repair
tickets, a real FIP implementation must also satisfy the fol-
lowing constraints.

• CPerformance VMs placed on degraded servers must still be
able to achieve the same peak performance (e.g. memory
bandwidth) expected for this VM type (§2).

• CEfficiency A FIP system must be able to effectively use
the capacity on degraded servers. For example, it must
not strand one resource (e.g., CPUs) because another
resource is degraded (e.g., memory).

• CCapacity A FIP system must continue to be able to satisfy
a region’s demand for VM resources. In particular, VMs
must not be turned away from a region because of server
degradation or disrepair.

For cloud platforms, FIP system design can be guided by
the following observations based on real-world cloud work-
loads and failure patterns.

First, a majority of VMs that customers are running belong
to smaller VM types that can be accommodated on a degraded

Requested Cores Core-hours v3 Core-hours pre-v3
≤ 2 27.7% 26.9%
(2,4] 26.8% 16.9%
(4,8] 21.5% 18.9%
(8,16] 10.6% 16.6%
>16 13.4% 20.7%

Table 1: Core counts for VMs introduced with 3rd-generation
servers (v3) and with previous-generation servers (pre-v3).

mode server without impacting their performance. For exam-
ple, Table 1 shows a breakdown of core hours by VM type
at Azure. VMs with four or fewer cores account for 40-50%
of all core hours and are small enough that they require only
a small fraction of a server’s full capacity to achieve their
expected performance.

Second, our study of server repair tickets at Azure reveals
that the number of component failures per server is typically
small compared to a server’s total component count. For exam-
ple, for servers in Generation 3, 90% of servers that develop
SSD and/or DIMM failures in a one-year period exhibit two
or fewer failures. The most common failure patterns among
those servers are one failed DIMM (36.5%) followed by one
failed SSD (10.3%). Hence for the bulk of servers with fail-
ures, deactivating the affected components would reduce the
server’s capacity by only a small fraction (recall that typi-
cal server configurations include 24-32 DIMMs and 6 SSDs)
and not cause a significant amount of resource fragmentation.
We note however that over long time periods, more than a
few components will fail. To prevent resource stranding, any
FIP system must thus control how many components can be
deactivated in any degraded server.

Third, we find that FIP systems will still have to accommo-
date some repairs (albeit at a greatly reduced frequency) in
order to satisfy capacity requirements. While servers with fail-
ures of degradable components are returned to online status,
the capacity loss due to servers with failures of undegradable
components (which will stay offline in the absence of repairs)
is not acceptable.

The design and implementation of a complete FIP system
pose multiple open challenges not captured in the simple vi-
sion above. For example, FIP requires accurate diagnostics,
mechanisms to deactivate component pathways, a detailed
understanding of how component deactivation impacts perfor-
mance, policies to determine when to degrade (versus repair)
a server, and a control plane that supports FIP (including the
VM scheduler and automated diagnostics).

4 Hyrax System Design

Hyrax is a concrete implementation of the FIP idea and the
first FIP system at a cloud provider. Hyrax implements a new
“degraded” online server state on servers and in the control
plane and changes multiple aspects of the offline workflow at
Azure. Currently, Hyrax supports three degradable component

290 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Healthy

Degraded

Diagnostics Repair

Certification Deactivation

Suspect

Reliable
Online

NoStill
faulty fault

H

Hyrax Policy
- Degradability
- Accuracy

H
Offline

Figure 6: Server states in Hyrax.

types: memory, SSDs, and fans.

Figure 6 provides an overview of server states in Hyrax.
After a server is marked as suspect, results from Diagnostics
are used by the Hyrax Policy (H) to decide whether to de-
grade or repair. This policy applies first filters for degradable
component types. Second, it verifies that diagnostics points
to a specific pathway within this component type. Third, it
applies a threshold on how many components of each type can
be degraded. Degraded servers are created by deactivating the
faulty component pathway (H , §5.1). Repairs are scheduled
for undegradable component types, when diagnostics can-
not identify the faulty component pathway, or if deactivation
would cross the policy’s threshold. Degraded and repaired
servers are subject to extensive testing (called Certification in
§2 and Figure 2) before becoming available for hosting VMs
(online).

Hyrax achieves CEfficiency via the policy’s thresholds. Cur-
rently, we never deactivate more than two components of any
type. Empirically, we find that this is sufficient to prevent
resource stranding. We provide a detailed sensitivity analysis
in Section 7.4.

Hyrax achieves CPerformance by characterizing how deacti-
vating components affects VM performance for different VM
types. This allows Hyrax to decide whether the remaining
healthy components are sufficient for the server to continue
serving VMs and which VM types it can serve without im-
pacting user experience. Hyrax modifies the VM scheduler
such that only the VM types whose performance requirements
can be met are scheduled on the degraded server.

Hyrax minimizes repair tickets because many servers that
are degraded instead of repaired will not encounter another
fault during their deployed period. If degraded servers en-
counter another fault that cannot be degraded, Hyrax issues
a single repair ticket and technicians repair all faults on the
server at once. We call this technique “mini-batching”. Mini-
batching effectively amortizes technician work like the jour-
ney to the server’s rack, identifying and opening the server,
manual diagnosis, and record keeping.

Hyrax achieves CCapacity in two ways. First, the capacity an
individual degraded server can lose is limited via the policy’s
thresholds. Second, undegradable servers are not permanently
left offline without repairs. We consider a range of different
repair schedules (§7).

We discuss technical details of the Hyrax server design in
Section 5 and the Hyrax policy and control plane in Section 6.

CoreMem CntrlDDR PHY
Socket 0 Chan 2 Rank Enable BitMask = 0x3BIOSH

CoreMem CntrlDDR PHY
Socket 0 Chan 2 Rank Enable BitMask = 0x0BIOSH

(a) Deactivating a failed memory component pathway.

Core PCIe

PCI Express Port Config = 0x0BIOSH

(b) Deactivated SSD component pathway.

Figure 7: Component deactivation takes care of entire paths of
error sources, such as memory controller, DDR phy, PCB, connector,
and DIMM itself. This has the potential to improve over repairs
where reseating or exchanging the DIMM often does not resolve the
problem.

5 Hyrax Servers

Hyrax seeks to convert an offline server with one or multiple
faulty component pathways into a degraded server that can
host VMs. Hyrax focuses on memory, SSD, and fans as the
most common degradable components (§3). This section de-
scribes how to deactivate these three component pathways
and associated performance implications.

5.1 Component Pathway Deactivation (H)

The key challenge is making component deactivation compre-
hensive enough so that faults are effectively hidden. Hyrax
achieves this by deactivating components using combined
firmware and software mechanisms.

Memory pathway. Hyrax targets memory errors that cannot
be resolved by existing, fine-grained mitigations [8, 13, 35,
55, 67]. Common causes are uncorrectable errors across a
DIMM’s banks/ranks, connector problems, or too many faulty
rows. Hyrax exploits a rarely-documented firmware (BIOS)
feature, called Rank Enable BitMask. On Azure servers,
this setting offers a bitmask for each channel, on each memory
controller (MC), and on each socket. Each bitmask controls
which of the DIMM’s ranks on this channel are included in
memory interleaving. Azure diagnostics currently only pro-
vides DIMM-level information, so Hyrax deactivation always
excludes all ranks on a DIMM. Excluding an entire DIMM
means that this DIMM’s memory is not assigned an address.
Furthermore, the MC will not attempt to control or refresh
any data on that DIMM’s memory chips. Figure 7a shows ex-
amples of deactivating one DIMM (0x3) as well as the whole
memory pathway (0x0).

Hyrax has two ways to set the Rank Enable BitMask. If
the server is able to boot a minimal OS, Hyrax software di-
rectly sets the bitmask in the BIOS configuration flash. If the
server does not boot, Hyrax can set the bitmask via the Base-
board Management Controller (BMC) on the management
network.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 291

0

30

60

90

120

2 4 8 16 32

VM Core Count

M
ea

su
re

d
M

em
or

y
B

an
dw

id
th

[G
B

/s
]

(All DIMMs
enabled)

Degraded
DIMM slot
A1 deactivated
DIMM slot
A2 deactivated
DIMM slots
A1,A2

Healthy

deactivated

Figure 8: Peak memory bandwidth of a naïve implementation of
Hyrax as measured from VMs on servers with all DIMMs enabled,
one DIMM or two DIMMs deactivated, respectively.

SSD pathway. Server-local storage for VMs is striped across
six NVMe drives. This configuration improves peak perfor-
mance for IO-intensive VM types and facilitates bin packing
hundreds of VM types with server-local storage. We modify
the striping software module to read a list of serial numbers to
include into the stripe. To deactivate an SSD pathway, Hyrax
deletes the drive’s serial number from the striping configu-
ration file. Additionally, we deactivate the SSD component
pathways in the BIOS using an option called PCIe Port
Config (Figure 7b).

Fan pathway. No explicit deactivation is needed for fans.
They are monitored by the BMC which emits frequent error
messages in case of faults (e.g., zero or low RPM). Hyrax
changes BMC firmware to filter out fan error messages for
deactivated fan slots.

5.2 Achieving High Performance on FIP
Servers

We describe performance challenges when deactivating mem-
ory and SSD pathways and how Hyrax overcomes them.

Memory pathway. Cloud servers maximize achievable mem-
ory bandwidth by interleaving cachelines across DIMM ranks
on all memory channels on the same socket. Deactivating a
DIMM limits the processor’s interleaving options and can
significantly reduce VM memory bandwidth. Unfortunately,
the resulting configuration is almost always outside CPU
specifications, known as DIMM population rules [11, 31, 38].

To understand the performance impact of undocumented
interleaving from deactivating DIMMs, we experiment with
a common production server configuration. This server has
two memory controllers per socket (MC0 and MC1), three
memory channels per controller (A-C on MC0 and D-F on
MC1), and two DIMMs per channel (e.g., A1, A2).

Figure 8 shows memory bandwidth for this server configu-
ration measured in four scenarios: all DIMMs enabled, only
DIMM A1 deactivated, only DIMM A2 deactivated, or DIMM
A1 and A2 deactivated. We measure the memory bandwidth
with a Memory Latency Checker (MLC) [30] for VMs rang-
ing from 4-32 cores and show averages across 10 runs for
each VM size. Error bars indicate the worst-performing run

A B C D E F
0

288

MC0 Channels

H
ea

lth
y

S
er

ve
r

A
dd

re
ss

 S
pa

ce
 [G

B
]

Included in interleaving set Excluded from interleaving set

MC1 Channels

A B C D E F
0

96

224
256

A B C D E F
0

96

160
192
224
240

114GB/s

Deactivated C1

114GB/s

76GB/s

19GB/s

Deactivated A2 Deactivated E1

114GB/s

76GB/s

19GB/s

38GB/s

D
eg

ra
d
ed

 S
er

ve
r

A
d
d
re

ss
 S

p
ac

e
[G

B
]

D
eg

ra
d
ed

 S
er

ve
r

A
d
d
re

ss
 S

p
ac

e
[G

B
]

Rank0 (R0)

Color 3

Color 2

Color 0

Color 3

Color 2

Color 0

Color 1

X1R2X1R1
X2R2X2R1

Interleaving across channels defines bandwidth

Ex

Ex Ex

Ex

Ex Ex

ExEx
Ex Ex

Ex

32GB DIMM (X1)
16GB DIMM (X2) Rank1 (R1) on channel Xwith

B1R1

A1R2

A2R2

A2R2

A1R2

A1R2

B1R2

B2R2

C1R2

C2R2

D1R2

D2R2

E1R2

E2R2

F1R2

F2R2

B2R2 C2R2 D2R2 E2R2 F2R2

B1R2 D1R2 E1R2

B2R2 C2R2 D2R2 E2R2 F2R2

B1R2

C1R2

D1R2

F1R2

A1R1

A2R1

A1R1

A1R1

A2R1

B1R1

B2R1

C1R1

C2R1

D1R1

D2R1

E1R1

E2R1

F1R1

F2R1

B2R1

C2R1 D2R1

E2R1

F2R1

D1R1 E1R1

B2R1

C2R1 D2R1

E2R1

F2R1

B1R1

C1R1 D1R1 F1R1

C1R2
C1R1

A2R2
A2R1

E1R2
E1R1

F1R1
F1R2

a)

b)

c)

Figure 9: Channel interleaving with deactivated DIMMs. The top
image shows interleaving for a healthy server, the middle image
with DIMM C1 deactivated and the bottom image with two DIMMs
(A2, E1) deactivated. Under degraded mode different regions of
the address space experience different memory bandwidths, ranging
from 19GB/s to 114GB/s.

for each VM size. We observe mean bandwidth loss between
0 to 36% depending on which and how many DIMMs are
deactivated. Additionally, we observe that even for the same
configuration, there is a significant variance between runs with
worst case bandwidth loss up to 82%. Such outliers are not
acceptable for deployment. We next explain the underlying
reasons and then explain our mitigation.

We find that the inflexibility inherent in channel interleav-
ing is the reason for the bandwidth loss. While a server
can have multiple interleaving configurations for different
ranks (called sets), each set must either alternate between
MCs or just focus on a single MC. Consequently, cross-MC-
interleaving requires the same capacity in participating chan-
nels on both MCs. To better understand the subtleties involved
in interleaving we use a custom firmware debug mode that
prints interleaving sets and participating channels. Figure 9
compares the interleaving we observe on healthy versus de-
graded servers for a single CPU socket on a common platform.

Figure 9a shows interleaving for a healthy server, which

292 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

contains a 32GB and a 16GB DIMM per channel5. For exam-
ple, channel A on MC0 contains the 32GB DIMM A1 with
ranks A1R1 and A1R2 and a 16GB DIMM A2. Cachelines
are interleaved across all six 32GB DIMMs and across all
six 16GB DIMMs. Interleaving across all channels creates a
uniform address space with 114GB/s, i.e., a sixfold increase
over a single channel (19GB/s).

Figure 9b shows a degraded server with C1 (32GB) deac-
tivated. Since symmetry is required within an interleaving
set, both C1 and F1 are removed from the first set and as a
result, the server interleaves only across the four remaining
32 GB DIMMS. On the other hand, since all 6 16GB DIMMs
are still active, the processor continues to interleave across
all 6 DIMMs achieving the full 114 GB/s for their part of
the address space (note that the 16GB DIMMs now make up
the top part of the address space). As F1 is active, but not
part of any set so far its capacity remains as non-interleaved
(19GB/s). This creates a non-uniform address space with 38%
of pages at 114GB/s, 50% at 76GB/s, and 12% at 19GB/s.

A degraded server with two deactivated DIMMs further
complicates interleaving sets. Figure 9c shows the interleav-
ing that results when A2 (16GB) and E1 (32GB) are deacti-
vated. With deactivated DIMMs having different sizes, the
resulting interleaving sets do not align with full DIMMs and
instead use individual ranks (1/2 of a DIMM). The first inter-
leaving set uses A1’s first rank (A1R1) and five 16GB DIMMs
(B2-F2) achieving the full 114GB/s. The second set uses A1’s
second rank (A1R2) and the first ranks from DIMMs C1, D1,
F1 achieving 76GB/s. The third set uses the second rank from
C1 and F1. Two final sets interleave across only a single chan-
nel using both ranks from B1 and D1’s second rank. This
results in an address space with 40% of pages at 114GB/s,
27% at 76GB/s, 13% at 38GB/s, and 20% at 19GB/s.

The main problem with varying peak bandwidth in differ-
ent address ranges is that it makes VM memory performance
on these servers unpredictable. As the OS and hypervisor are
unaware of bandwidth differences across the address space
the performance of a VM will vary depending on where in
the address space its memory gets allocated. A naïve imple-
mentation of Hyrax would allocate VMs with a mix of pages
leading to low-bandwidth outliers as shown in Figure 8.

To mitigate bandwidth variance on a degraded server, we
must know the exact address map that maps address ranges to
their achievable peak bandwidth. Unfortunately, reading the
interleaving configuration usually requires debugging output
that is typically not available. While we can test the memory
bandwidth of the entire address space, we found this to be
slow and inaccurate. Instead, we conceptually group different
deactivation scenarios into equivalence classes, where scenar-

5The combination of 32GB and 16GB DIMM within one channel is
a common configuration to reach target memory-to-core ratios in cloud
compute servers of recent years. We discuss this configuration since our
experiments with custom firmware happened to run on it. Interleaving on a
32GB/32GB server behaves similarly.

ios in the same class result in the same address map, and store
the resulting address map in a distributed database (§6). For
example, deactivating a single DIMM leads to two equiva-
lence classes depending on the DIMM size of the deactivated
DIMM: The first class includes all scenarios where any one
of the 32GB DIMMS fails (and the resulting map would be
the image in Figure 9b) and the second class includes all sce-
narios where one of the 16GB DIMMs fails. Deactivating two
DIMMs leads to ten equivalence classes, in addition to two
DIMM sizes, interleaving changes with the two DIMMs being
on the same channel, within the same MC, in a symmetric or
asymmetric position on another MC.

Note that our discussion above focused on only one socket.
Since interleaving on different (cache-coherent) CPU sockets
happens independently, it is sufficient to characterize one
socket. We validated equivalence classes by testing almost
all 276 possible combinations. Deactivating three DIMMs
leads to 2024 combinations and a multitude of equivalence
classes — Hyrax thus deactivates at most two DIMMs and
repairs three or more DIMM failures. A sensitivity analysis in
§ 7.4 will show that disabling larger numbers of DIMMs does
also not provide significant gains in terms of repair savings.

Once we know the address map, we employ page coloring
in the OS/hypervisor memory manager (MM) to assign the
same color to pages that are in address regions with equal
bandwidth. For example, in Figure 9 we assign colors 0, 1, 2,
3 to pages within a 19, 38, 76, 114 GB/s region, respectively.
Each VM type comes with a preferred page color, which is set
based on core count. Figure 8 shows that color 0 is sufficient
for 2-core VMs. Color 1 is sufficient for 4-6 cores, color 2 for
8-12 cores, and color 3 for above 16 cores. Older generations
of VMs sometimes run on new servers, while originally being
created for servers with a lower per-channel bandwidth and
four (instead of six) channels. Thus, old VM types do not
even require color 3 and often use colors 0 and 1.

One could use this coloring scheme to guarantee perfor-
mance at all times by exposing the amount of available mem-
ory for each color to the scheduler. However, to reduce cou-
pling between control plane services, we do not expose this
level of detail to the VM scheduler. So, large VMs may be
allocated using colors below their bandwidth expectation if
no higher colors are currently available on the server. Thus,
Hyrax offers only a best-effort guarantee. Empirically, we
find that this is sufficient since these cases are exceedingly
rare (§7).

SSD pathway. The SSD pathway is simple compared to mem-
ory. In a fully healthy server, local VM storage is striped
across six NVMe drives. VM types are capacity and rate lim-
ited (IOPS and bandwidth). When deactivating one NVMe
drive, aggregate throughput remains sufficient for even the
largest VM type. Deactivating two NVMe drives leads to suf-
ficient throughput for all except the largest VM type. Hyrax
thus never schedules this VM type on degraded servers with
only four active NVMe drives. Hyrax never deactivates more

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 293

than two NVMe drives and this failure case is rare.

Fan pathway. Due to cooling overprovisioning, deactivating
up to two fans leads to no performance loss.

6 Hyrax Control Plane

The Hyrax control plane consists of two new distributed ser-
vices that implement the Hyrax policy and many changes to
existing control plane services, including the VM scheduler.

6.1 Hyrax Policy (H)

The Hyrax Policy has two roles (recall Figure 6). First, it in-
terprets diagnostics and sets constraints on which components
are degradable. Second, it ensures that degraded servers meet
CCapacity.

To perform the first role, the Hyrax Policy specifies for
each server type how many component pathways of each type
can be deactivated at once. While Hyrax can adapt to a wide
range of thresholds, for our purposes we use two DIMMs, two
SSDs, and two fans. These thresholds are guided by common
failure scenarios (Section 3) and performance observations
(Section 5). Hyrax schedules repairs for any server with more
than two faulty component pathways of the same type or any
other failure diagnosis. The Policy also includes an extensive
mapping list of diagnostic results to valid component path-
ways. For example, SSD pathways can appear as IO errors,
timeouts, and PCIe errors. Diagnostics for SSD failures can
sometimes point to PCIe ports and slots that have different
(non-SSD) devices or even no device — for these the Hyrax
Policy would just schedule the server for repair.

To ensure CPerformance, the Hyrax Policy maps every de-
graded server configuration to a capacity and performance
profile (CPP). The CPP defines the exact server capacity and
performance equivalence class (§5). Based on the CPP, Hyrax
defines the set of allowable VM types that can run on a de-
graded server and still meet their SLAs. For example, servers
with two DIMMs deactivated on the same channel do not
have any page of color 3. This server thus cannot host latest-
generation VMs with more than 16 cores. A server with two
deactivated SSDs cannot host the largest VM type.

6.2 Control Plane

Deactivating component pathways leads to heterogeneous
server configurations within a cluster. This requires changes
across service and team boundaries. Figure 10 shows a sim-
plified view of Azure’s control plane. We change three and
add two new control plane systems.

Let’s consider a server that starts in healthy state and en-
counters an SSD failure. (1) The Server Health Monitor
(SHM) detects NVMe read errors and follows the offlining
workflow (§2). (2) Diagnostics reports the SSD component

Hardware
Inventory

Server Health
Monitor

VM
Scheduler

Hyrax
Inventory

Diagnostics

Hyrax
Policy

(1)

(2)

(4)

(3)(5)

(6)

Online Offline

Legend:

Modified
existing
system

New
control
plane
system

H

H

Figure 10: Simplified overview of Hyrax’s control plane.

pathway to the Hyrax Policy (H). (3) The policy decides
to start the deactivation workflow and communicates with a
server-local daemon to deactivate that SSD (H). The deac-
tivated SSD’s serial number is also passed to the new Hyrax
Inventory system. (4) After deactivation, the server is tested
in the certification step. In the rare event that diagnostics
leads Hyrax to deactivate the wrong pathway (§3), it would
be detected in this step, e.g., during load testing. After pass-
ing certification, the server is onlined. As multiple control
plane services might cache the server’s capacity, onlining
requires Hyrax to invalidate caches throughout the control
plane including the VM scheduler. (5) The Hyrax Inventory
shares the server’s capacity and performance profile (CPP)
with the VM scheduler (§6.3). Internally, our inventory tracks
server state as a delta to the existing Datacenter Inventory. The
delta consists of the serial numbers and slots of deactivated
components, which remains small enough to fit into a single
inventory server’s memory. (6) The Hyrax Inventory sends
active serial numbers and slots to the SHM. The SHM only
checks for these active components, which prevents the SHM
from triggering warnings over missing components which
have been deactivated.

There are additional changes in downstream services not
shown here. For example, it was previously uncommon for
servers to have multiple concurrent failures, so repair tickets
used to be issued only for a single component type. With
Hyrax, it is common for repair tickets to include multiple dif-
ferent component types. For example, there are no tickets for
a server with two DIMM failures. However, if the two DIMM
failures are later followed by any failures for an undegradable
component (e.g., the NIC) the repair ticket will involve two
different component types. To minimize repair tickets, Hyrax
changed the ticket workflow and retrained technicians to re-
pair multiple different component types at once, with a single
ticket (mini-batching).

6.3 VM scheduling policy

Hyrax requires three changes to VM scheduling and an
optional optimization. First, the VM scheduler consumes
Hyrax Inventory to calculate hardware resources for indi-
vidual servers instead of a single lookup to obtain a cluster’s
homogeneous server type. The overhead of this lookup is
negligible as servers moving from offline to online state is

294 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

All Tickets (100%)

Diag in-
accurate
(2.7%)

Diag says unde-
gradable (27%)

Diag says degradable (73%)

Accurate
Diag

(24.3%)

Diag in-
accurate
(0.9%)

Accurate Diag
(72.1%)

Missing
location
(2.8%)

Diag has location
(69.3%)Possibly unnecessary

server repair ticket
(missed opportunity)

Legend

Server incorrectly restarted in degraded mode
(negative user experience, if not caught by certification testing)

Figure 11: Accuracy of automated fault diagnostics at Azure and
their impact on Hyrax.

rare compared to VM scheduling events.
Second, we extend filter rules (§2) to enforce Hyrax’s CPP,

i.e., which VM types can be placed on every server.
Third, we change the definition of a cluster’s “capacity

reserve”. The capacity reserve exists for multiple reasons,
including to have a target to migrate VMs to when a server
shows signs of failing soon. A key component of the capacity
reserve is to have some healthy empty servers (HES) that are
able to host any kind of VM, including full-server VMs that
use all of a server’s capacity. Degraded servers are not able to
host all full-server VMs. We thus exclude them from being
counted as HES.

Finally, we change a preference rule to optimize scheduling.
Since degraded servers cannot be counted as HES, we prefer
fully-healthy servers to become empty and stay empty. Our
change updates rules to prefer placing VMs on degraded
servers over healthy servers, provided no other rule takes
precedence. By doing this we increase HES counts which
allows placing more VMs into clusters.

6.4 Hyrax Diagnostics

Hyrax builds on an existing automated monitoring and diag-
nostics system. This system’s output is targeted at humans
and includes information on which component type is faulty
and its location. To use this system, we add an interpreter
that maps diagnostic results to valid Hyrax component path-
ways. As part of this design, we analyzed four years of repair
ticket logs at Azure. This analysis shows the accuracy of
the diagnostic system and how Hyrax handles inaccurate or
incomplete diagnoses. Specifically, we rely on notes from
human technicians, who worked on the tickets in our history
of repair logs. These notes indicate whether the diagnosis was
correct, including whether the right component was identified.

At a high level, we find that diagnostic accuracy is high.
For example, across all tickets in 2021, 96.4% accurately
identify the component type at fault. For a more detailed
view, Figure 11 shows a breakdown of all diagnoses made in
2021, outlining the different scenarios that arise and how they

impact Hyrax’s operation.
We make two interesting observations: First, diagnostic

accuracy is lower for diagnoses pointing to an undegradable
component: 10% of tickets labelled with an undegradable
component are inaccurate (accounting for 2.7% of all tickets).
Fortunately, this type of misdiagnosis is relatively benign.
Hyrax will take the server offline (for potential later repair),
which is the intended behavior if the actual faulty component
is indeed undegradable. It is however a missed opportunity to
keep the server running in degraded mode if the true fault is
in a degradable component.

Second, diagnostic accuracy is very high for diagnoses
pointing to a degradable component: 98.8% of tickets labelled
as degradable do accurately identify the component type at
fault. Within these, some diagnoses are incomplete, where the
correct component type is specified, but location information
is missing (e.g. the diagnosis indicates a DIMM problem, but
does not specify a DIMM slot). More precisely, 3.8% of the
accurately diagnosed degradable tickets (corresponding to
2.8% of all tickets) are missing location information which
leads Hyrax to offline the server despite the fact that the faulty
component is degradable. These tickets thus also represent a
missed opportunity for degraded mode operation.

The last scenario we need to consider is the 1.2% of degrad-
able tickets that contain an inaccurate diagnosis pointing to
the wrong component type. These make up only 0.9% of all
tickets, but their impact on Hyrax is less obvious. In the best
case, Hyrax will try to deactivate the specified pathway and
certification testing (recall §4) fails since this is not the faulty
component. Failing certification testing with any degraded
component automatically triggers an investigation both by a
technician and by the Hyrax on-call team. In the worst case,
the server passes certification testing and returns to serve cus-
tomer VMs despite the fact that the true faulty component
has not been degraded or repaired. This can lead to negative
user experience as VMs may be scheduled on the server and
they may get interrupted if the server is offlined again. Such
repeat offlining of the same server also happens for techni-
cian repairs. In fact, our preliminary data indicates that the
rate at which repaired servers are offlined again is compa-
rable to such inaccurate decisions by Hyrax. This is likely
because technicians rely on the same automated diagnostics
and certification process as Hyrax.

We conclude by noting that diagnostic accuracy has con-
tinuously improved over the past years. Figure 12 shows the
breakdown of repair tickets for three different hardware gen-
erations (Gen 2-4) by year since deployment. We observe
that accuracy has improved from generation to generation,
and also that accuracy improves over time within a particular
hardware generation. Both the fraction of tickets with missing
location and tickets with inaccurate fault code have decreased
over the years. The reason is a concerted effort by the diag-
nostic team at Azure to add more coverage of various fault
codes as well as improvements based on technician feedback.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 295

0

25

50

75

100

0 1 2 3

0

25

50

75

100

0 1 2

0

25

50

75

100

0 1

Category

Degradable With Location

Degradable Without Location

Inaccurate or Unknown FaultCode

Undegradable

Generation 2 Generation 3

Generation 4

Years from Deployment

P
er

ce
nt

ag
e

of
 T

ic
ke

ts

Figure 12: The progression of the breakdown of repair tickets at
Azure by deployment year for three generations of servers.

7 Evaluation

7.1 Evaluation Setup
We use two types of setups in our evaluation of Hyrax. First,
we evaluate Hyrax on production servers to characterize its
performance and ability to mitigate faulty components. Our
evaluation focuses on 3rd-generation servers which have been
deployed for 2-3 years. Second, to measure cluster-level im-
pacts on repairs and VM scheduling over six years, we use
trace-driven large-scale cluster-level simulations.

7.1.1 Server experiments

We use production server hardware and synthetically inject
failures using a commercial memory error injector (MEI) that
interposes on the DDR memory bus [29]. We also perform
real failure tests by intercepting nodes after Diagnostics flags
a memory fault, but before a repair ticket is issued (§4).

We measure latency and bandwidth with Intel MLC [30]
from inside VMs on healthy and degraded servers. MLC
characterizes worst-case performance as it is more sensitive
to deteriorated latency and bandwidth than any real-world
application we’ve tested. We compare three implementations.

• Hyrax: Coloring approach based on 1GB hypervisor
page table entries (§4)

• Naïve: Hypervisor randomly allocates VM memory
among free pages

• Interleaving: 4kB-interleaving in hypervisor page tables
Our tests cover Intel servers from generations 3-5 and a

subsequent (not yet deployed) generation. We report measure-
ments from the 3rd generation as results from other gener-
ations are qualitatively the same. A typical 3rd-generation
server uses two Intel Skylake processors (96 threads total).
Each socket is equipped with six DDR4 channels with a
32GB and a 16GB DIMM per channel. Memory interleav-
ing is enabled across all ranks on the same socket; thus, the

OS/hypervisor sees two NUMA nodes. There are six data
SSDs using 960GB NVMe drives. The server runs Azure’s
production-grade hypervisor and software stack. VMs are
allocated with a 1GB page size.

7.1.2 Large-scale simulations

We replay VM, failure and repair ticket traces in a simulated
environment, using the Azure production VM scheduler code
base. The traces span 66 clusters that host general-purpose
VMs from regions in the US and Europe. With only 2-3 years
of real failure traces for 3rd-generation servers, we model
future failures with the help of 1st and 2nd-generation failure
traces. The simulator models Hyrax’s control plane compo-
nents (Figure 10) including Hyrax and all server states (Fig-
ure 6).

We compare two designs.
• Hyrax: Hyrax enables degraded server states and re-

pairs servers with undegradable components and above
thresholds (§4).

• AoN: All-or-Nothing repairs all hardware faults.
We simulate four possible repair schedules: issuing an imme-
diate repair ticket (IR) and scheduling batch repairs every 3,
6, or 12 months (3m, 6m, 12m). For IR, we sample actual
repair delays from Azure production datacenters. For batch
repairs, we assume a hypothetical schedule where repairs are
immediately effective at 3, 6, or 12 months. This batch re-
pair schedule is unlikely how batch repairs would actually
be implemented in practice. Instead, its purpose is to show a
hypothetical and simplified schedule that could also reduce
repair work, to highlight the impact of degraded mode oper-
ation. For each repair schedule, we compare the number of
repair tickets, repair trips, resource availability and impact on
arriving VMs under Hyrax and AoN.

We cross-validate the simulator for AoN relative to real-
world clusters with the same failures and VM workloads. Due
to the inherent randomness in placement decisions, repeated
runs have small deviations. Across runs on 10 clusters, simula-
tion of AoN and real-world metrics are within 0.25%. Overall,
our simulations required more than 80,000 CPU hours.

7.2 Correctness
In this section, we use production server measurements to
demonstrate that Hyrax can correctly deactivate component
paths and thereby avoid future faults on a path. Due to space
constraints, we focus on memory faults and omit qualitatively-
similar SSD experiments.
Synthetic failures. We measure memory error rates with the
MEI placed on a given DIMM slot and either activate all ranks
(no-Hyrax) or deactivate the corresponding slot (Hyrax). We
target the MEI to corrupt bits matching a single row address
and start a VM on the same CPU socket. The VM runs MLC
in the peak bandwidth setting. Under no-Hyrax, we observe

296 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

30

60

90

120
B
an

d
w

id
th

 [
G

B
/s

]
M

ea
su

re
d
 M

em
or

y

2 4 8 16 32

Healthy
(All DIMMs
enabled)

Naive
(A1, A2
deactivated)

Hyrax
(Page coloring
with A1, A2
deactivated)

Hyrax
Color 3

Hyrax
Color 3

Hyrax
Color 2

Hyrax
Color 1

Hyrax
Color 0

VM Core Count

Figure 13: Peak memory bandwidth of a healthy server, a Hyrax
server with page coloring, and a naïve implementation of degraded
servers with two DIMMs deactivated.

a high rate of correctable memory errors. There are bursts
of uncorrectable errors that lead to both VM and host crash-
ing within minutes. With Hyrax, there are no memory errors
throughout the duration of a 48 hour test; the VMs and the
host run without errors or crashes.

Real-world failures. We identify a server in a test cluster
that was diagnosed with a high rate of uncorrectable memory
errors on one DIMM. Diagnostics is able to boot its minimal
OS and reproduce these memory errors. Hyrax recognizes
that this server can be degraded and deactivates the correct
DIMM. Certification testing does not find any memory errors
and issues a “pass” that qualifies this server for hosting VMs.

7.3 Performance

In this section, we demonstrate that Hyrax can successfully
mitigate any VM performance impact of degraded mode oper-
ation. For space reasons, we focus on the more complex case
of memory performance (memory latency and bandwidth).

Server-level experiments. Figure 13 compares VM mem-
ory bandwidth of Hyrax and Naïve on a degraded server to
a healthy server. The degraded server has A1 and A2 deacti-
vated. Hyrax allocates the VM using colors 0-3, depending on
VM core count (§4). We find that memory bandwidth under
Hyrax is within 1% of the healthy server. In contrast, Naïve’s
performance is highly variable with mean bandwidth up to
36% lower and worst-case bandwidth up to 82% lower than
on the healthy server.

We also tested memory latency. In all three systems, and
across all experiments, the unloaded memory latency reported
by MLC for the degraded server remains within 5% of the
healthy server.

Large-scale page coloring simulations. The previous exper-
iment focused on a single VM in isolation for one particular
failure pattern. For a more complete view of VM performance
under Hyrax we use simulations that are driven by actual
traces of VM arrivals and departures to capture the effect of
VM churn and also simulate component deactivation based
on real failure traces to capture the rich set of failure patterns

VM aggregate bandwidth

<95% <99% <95% <99%

Memory
Allocation
Policy

Hyrax
(Page Coloring)

Page
Interleaving

Naive

0

1

2

3

4

VM Memory Bandwidth Relative to Healthy Server

P
er

ce
nt

ag
e

of
 V

M
s

>
5
0
%

>
5
0
%

>
7
0
%

>
7
0
%

Bandwidth on worst VM page

Figure 14: Hyrax almost always achieves the same VM memory
bandwidth on degraded nodes as VMs would on healthy servers.

that arises in practice. (The traces come from our cluster simu-
lations in §7.4). We play back these VM events in server-level
simulations of the three memory allocation policies: Hyrax
page coloring, page interleaving, and Naïve.

Figure 14 shows the percentage of VMs with less than
95% and 99% of the bandwidth of a healthy server, both for
VM aggregate bandwidth (left) and bandwidth of the VM’s
worst page (right). With Hyrax, fewer than 0.16% of VMs
see bandwidth on their worst page that is lower than 99% of
the worst-page bandwidth achieved on a healthy server. VM
aggregate bandwidth under Hyrax is even closer to that of a
healthy server.

Page interleaving also results in a low percentage of VMs
that achieve less than 95-99% of the aggregate memory band-
width of a healthy server. However, more than half of VMs
include at least one memory page with significantly lower
bandwidth. We also note that page interleaving increases a
VM’s page table by orders of magnitude. This leads to a high
rate of TLB misses and increased memory access latency. In
practice, we know that memory access latency is even more
important than bandwidth — internal production workloads
lose 5-15% of performance for small page sizes. Thus, inter-
leaving is not practical.

Naïve is compatible with large page sizes but more than
2% of VMs achieve less than 95% of the aggregate band-
width goal. This grows to 3.5% for a goal of 99% and above
50% when considering the worst page in a VM. While Naïve
performs well on average, tail performance matters at scale.

7.4 Large-scale Cluster Simulations

We turn to large-scale cluster simulations to characterize
Hyrax’s impact on repair tickets, repair trips, cluster resource
availability and user impact. We consider four different repair
modes: Azure’s process of immediately scheduling a repair
ticket (IR) and hypothetical repair batching policies with three
different intervals (3 months, 6 months, 12 months).

Repair tickets. We begin by measuring for each repair mode
the percentage of all hardware failures that result in a repair
ticket, i.e. the failures that require a technician to perform

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 297

0

25

50

75

100

IR 3m 6m 12
mR

ep
ai

re
d

H
W

 F
ai

lu
re

s
(%

) System AoN Hyrax

(a) Repair tickets.

25

50

75

100

IR 3m 6m 12
m

R
ep

ai
r

Tr
ip

s
C

ou
nt

s
R

at
io

 (
%

) System AoN Hyrax

(b) Repair trips.

0.0

2.5

5.0

7.5

10.0

IR 3m 6m 12
m

Lo
ss

 in
 A

va
ila

bl
e

C
or

e−
ho

ur
s

(%
)

System AoN Hyrax

(c) Lost available core-hours.

0.0

2.5

5.0

7.5

10.0

IR 3m 6m 12
m

R
es

ch
ed

ul
ed

 V
M

s
(%

)

System AoN Hyrax

(d) Rerouted VMs.

Figure 15: Results from a simulated deployment of Hyrax across two regions with 66 compute clusters and four repair schedules: immediate
repair tickets (IR) and batch repairs (3m, 6m, 12m). The figures compare key metrics under Hyrax with all-or-nothing server operation (AoN).

100.6

100

100.2

100.2

100.4

100.6

100.6

100.4

100.6

100.6

100.2 100.6

100.4

100.6

100.6

100.6

100.4

100.6

100.6

100.6

0

1

2

4

0 1 2 4 8
Disabled DIMM Count

D
is

ab
le

d
S

S
D

 C
ou

nt

(a) Available core-hours.

100.2

100

100.1

100.1

100.1

100.3

100.3

100

100.2

100.2

100.1 100.2

100.1

100.2

100.2

100.2

100

100.2

100.2

100.2

0

1

2

4

0 1 2 4 8
Disabled DIMM Count

D
is

ab
le

d
S

S
D

 C
ou

nt

(b) Available memory-hours.

43

98.6

85

83.6

64

50.3

48.8

56.4

42.6

41

84.1 49.3

57.7

43.9

42.4

41.6

56.3

42.5

41.4

40.9

0

1

2

4

0 1 2 4 8
Disabled DIMM Count

D
is

ab
le

d
S

S
D

 C
ou

nt

(c) Repair Tickets.

81.3

103.7

95.5

94.2

93.8

86.6

86

87

82.5

81.8

94.5 86.4

89.6

83.8

82

80.2

88.5

82.2

81.7

82

0

1

2

4

0 1 2 4 8
Disabled DIMM Count

D
is

ab
le

d
S

S
D

 C
ou

nt

(d) Rerouted VMs.

Figure 16: Ratio between Hyrax and AoN for different threshold settings with fixed batch repair interval (3m). Stranded availability is not
included when computing core-hours and memory-hours availability.

physical examinations and repairs. Figure 15a shows the re-
sults for Hyrax and AoN using boxplots, where each data
point in the distribution represented by the boxplot corre-
sponds to one of the 66 clusters.

We observe that Hyrax reduces the number of repair tickets
by more than a factor of 2 across all repair modes. Both mean
and median are consistently around 55% lower under Hyrax
than under AoN. A significant contributor to Hyrax’s effec-
tiveness is mini-batching. Specifically, under Hyrax, we find
that 56% of repair tickets contain more than one component,
compared to single-digit fractions for AoN.

Repair trips. We compare the number of repair trips required
under Hyrax and AoN, i.e. the number of times when a techni-
cian needs to travel to a cluster. Figure 15b shows the number
of repair trips normalized by the number of hardware failures.

We observe that Hyrax significantly reduces repair trips
under immediate repairs (IR). While under AoN every hard-
ware failure results in a repair trip, under Hyrax, on average
55% of these repair trips can be avoided by deactivating the
affected component.

Under batch repairs, the number of repair trips to a cluster
is upper-bounded to once every x months, where x is the repair
interval. Interestingly, Hyrax still provides improvements over
AoN, albeit smaller than for IR. For example, for a batch repair
interval of 3 months Hyrax reduces repair trips by around 20%
(mean and median across clusters). Every saved repair trip
results from a 3 month interval in which Hyrax was able to

handle all failures with component deactivation.

Lost available core-hours. This metric quantifies the impact
of the repair operating model on the availability of cluster
hardware resources. In particular, we consider the percentage
of a cluster’s total core-hours (i.e. number of cores in the
cluster multiplied by cluster lifetime) that are lost, i.e., a core
physically exists in the cluster, but is not available to run VMs
due to one of two reasons: (1) A server is offline for repairs;
(2) Due to resource fragmentation some of a server’s cores
cannot be allocated to VMs because of limited availability
of another resource (DIMMs or SSDs) [40]. Hyrax might
exacerbate resource fragmentation as it might deactivate mul-
tiple components of one type, making it harder to utilize the
remaining components.

Figure 15c shows that under a batch repair schedule Hyrax
significantly reduces the loss of available core-hours. Hyrax
keeps servers running (albeit with reduced capacity) after
degradable component failures, rather than taking the entire
server offline until the next scheduled batch repair. The im-
provement in the median lost core-hours of Hyrax over AoN
ranges from 38% for a 3m interval to 55% for a 12m interval.

Interestingly, we observe that Hyrax improves loss in avail-
able core-hours even in the IR repair schedule. The median
loss in core-hours is 9% lower under Hyrax than AoN. The
reason is that immediate repairs are not truly immediate - typ-
ical repair times are on the order of days, but can sometimes
take much longer, depending on component availability. In

298 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

contrast, deactivating components is consistently fast.

Rerouting of VMs. When a cluster’s available resources are
insufficient to host an arriving VM, the VM is rerouted to
a different cluster. Rerouting of VMs can negatively impact
user experience as it increases the time until a VM gets started.
Figure 15d shows the percentage of arriving VMs that are
being rerouted under Hyrax versus AoN.

Under IR, the fraction of VMs that get rerouted is very
small for both Hyrax and AoN. While it is identical (zero) in
the median for both policies, the mean is slightly lower (4%
reduction) under Hyrax as it decreases lost core hours in some
clusters with many failures.

When moving to batch repair schedules, Hyrax provides
clear improvements over AoN, ranging from an average 38%
reduction in rerouted VMs for 3 month batch repairs to an
average 64% reduction for 12 month batch repairs. These
improvements are a direct consequence of the reduced loss in
system capacity (core-hours) under Hyrax compared to AoN.

TCO impacts. Server repairs account for 9 to 12% of TCO
(§2), and Hyrax reduces repair tickets by an average of 55%
across the simulated clusters (§7.4). However, repairs fre-
quently involve multiple components as well as undiagnosed
failures, which extends repair times by about 15%. Thus,
Hyrax reduces technician time by about 48%, which trans-
lates to a 4.5 to 6% reduction in TCO.

Sensitivity to Hyrax’s deactivation thresholds. Our imple-
mentation of Hyrax chooses its deactivation threshold of two
per component type to reduce complexity. Figure 16 shows
how different choices of thresholds impact available core
hours, available memory hours, repair tickets and rerouted
VMs. The numbers in the figure represent the ratio of Hyrax
to AoN for a batch interval of 3m. Darker color shading cor-
responds to better results.

We observe that available system capacity (core-hours as
well as memory hours) does not improve/change significantly
beyond a threshold of one DIMM and one SSD. The reduction
in number of repair tickets and rerouted VMs under Hyrax
continues to increase as thresholds increase, however, returns
are diminishing past a threshold of two DIMMs and two SSDs.
One of the reasons is that it is very rare that more than two
DIMMs and/or more than two SSDs fail in the same server,
so these scenarios have little impact on key metrics.

In conclusion, increasing the thresholds beyond two per
component type provides very limited gains while increasing
system complexity, e.g. in handling servers with very low
performance due to a large number of degraded components.

Sensitivity to different regions. Figure 1 shows that Hyrax
performs similarly across the US and EU region.

Sensitivity to server generation. We also simulated a full
deployment of Hyrax on 4th-generation servers. Figure 12
shows that this generation has an overall lower percentage of
degradable components. Hyrax’s benefits are thus slightly less
pronounced on this server generation. However, as diagnostics

has improved over time for 2nd and 3rd-generation servers,
4th-generation servers may also improve in the future.

8 Related Work

Our work is the first work to explore degraded mode operation
in the context of VM compute servers and at the scale of a
cloud platform.

Datacenters that fail-in-place. Related to our work are the
general efforts toward lights-out data centers such as con-
tainerized datacenters [23, 65], underwater datacenters [10],
and zero-maintenance storage systems [49, 50]. In our evalu-
ation, AoN with high batch repair intervals (12m) represents
these approaches. Unfortunately, the loss in availability or
cost (hardware, power, space) to make up for this loss is pro-
hibitive without degraded mode.

Mechanisms to implement fail-in-place. We borrowed the
term degraded mode from RAID systems [51], where upon
failure of a drive, the system seamlessly continues to operate
until the failed drive is replaced, however at reduced capacity
and reduced performance.

There are many existing fault-tolerance approaches that use
component-internal redundancy [8, 25, 34, 44, 52, 55, 67, 68].
Hyrax targets the left-over failures not already covered by
these approaches. It can be viewed as taking degraded mode to
the extreme and applied to even combinations across different
devices. As such, Hyrax has different requirements that raises
novel challenges (§4).

Improving repairs and redundancy. Recent efforts for re-
ducing the reliance on human technicians in lights-out dat-
acenters explore the use of robots to replace hardware com-
ponents [56]. Currently, this technology is not sufficiently
capable, versatile and economical to be employed at scale.
Our work presents a solution that can be deployed immedi-
ately in today’s systems.

Finally, systems that require no or minimal repairs through-
out their lifetime are common in the context of embedded
systems, for example, as part of autonomous vehicles, air-
planes or satellites [6, 14, 47, 73]. However, these are special
purpose systems with specialized components and significant
redundancy. In contrast, we are exploring whether a cluster
based on commodity data center components can operate with
no or minimal repair throughout its lifetime through the use
of fail-in-place.

9 Deployment Experience and Discussion

Hyrax reduces repair tickets while maintaining cluster ca-
pacity, VM scheduling, and VM performance. We discuss
deployment experience and broader issues.

Deploying incrementally. Hyrax requires changes across
teams that have not previously interfaced, including hypervi-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 299

sor software engineers, hardware validation teams, and data-
center staffing. Such a large project requires years to achieve
visibility and alignment. During this process, we developed
variants of Hyrax that could be deployed incrementally and
fly largely under the radar. Our first increment focused on
deactivating a single SSD in clusters without impacts on VM
scheduling due to spare capacity and bandwidth. Further, we
shortcut offline state changes as we could pinpoint some SSD
failures without diagnostics. Our shortcut quickly migrated
VMs away, rebooted the server, and deactivated the faulty
SSD without leaving the online server state. Building in in-
crements increased visibility and buy-in across Azure which
facilitated far-reaching changes to VM scheduling and offline
server workflows. Overall, Hyrax demonstrates the feasibility
of overcoming ossification in large software stacks.

Reduced benefits due to non-optimized software paths.
The server state diagram in Figure 6 and the control plane
overview in Figure 10 are vastly simplified. In principle, a
degradable server should be able to return online within half
an hour (after a reboot). However, before Hyrax, repairs took
multiple days and sometimes even weeks, e.g., due to supply
chain issues. Thus, the duration of offline states and transitions
did not matter. Under Hyrax, returning to online has to wait
for these states, which takes multiple hours in production.

An early variant shortcuts the offline state and returned
servers to online within minutes. Unfortunately, the deploy-
ment scale of this variant is limited as few faults can be recog-
nized as degradable without deep diagnosis. The limited scale
of the shortcut variant and the slowness of Hyrax’s offline
implementation currently limits Hyrax’s ability to improve
cluster capacity. This is reflected in our simulations (§7).

The usefulness of simulations and quantitative data. We
tested significant parts of the production code for inventory
and state management in a mocked-up environment driven by
simulated failures. Our large-scale simulations also helped
convince engineering teams to help with large-scale changes.
For example, we initially faced significant skepticism towards
mini-batching. This was partly due to multiple past efforts
that had tried and failed to implement mini-batching. These
past efforts had cemented the idea that multiple components
failing at once is a very rare occurrence. Simulations showed
that Hyrax led to a high occurrence of mini-batched tickets.

Tailoring automated diagnostics for FIP. While our work
shows that FIP can work with existing diagnostics systems,
there is still room for improvement, including fine-grained
diagnostics to find individual faulty cores and to improve
locating other component paths (§6.4). We also find subtle
shortcomings in diagnostics systems due to their focus on
technician repairs. For example, current diagnostics systems
prefer not to issue a ticket when they cannot reproduce a fail-
ure and pinpoint a specific repair action. This is required due
to the high cost of false positives, i.e., calling a technician
and replacing a component when the underlying component

was not actually faulty. The flip side is a higher rate of false
negatives, which we observe as repeated failures on the same
server. Hyrax’s automation may open up a path towards im-
proving cloud reliability and availability. Specifically, a FIP
system could tolerate a higher rate of false positives (as they
lead to a negligible capacity impact), and in exchange achieve
lower false negative rates.

Interaction with class failures. An early practical concern
at Azure was how Hyrax interacts with the occurrence of
class failures, which is a recall of a large set of components of
similar types from the same manufacturing period. Over three
years, we found class failures affecting multiple PSU, DIMM,
and CPU models, and one SSD model. Class failures often
lead to an expectation of increased failure rates which may
affect availability. Thus, associated components are typically
proactively swapped out for new components. While class
failures cause only about 5% of repair tickets, they often
affect a large percentage of servers in the same cluster at
once. If the number of affected components in a server is
below Hyrax’s thresholds, degraded mode can be an effective
mitigation. However, deactivating many components at once
may negatively affect VM scheduling. Thus, when we look
back at three years of class failures, Hyrax would have only
been effective in mitigating one out of about a dozen of class
failures.

Implications for new datacenter environments. Our find-
ings affect how one might design a future datacenter. In short,
Hyrax reduces repair needs but does not obviate the need
for repairs entirely. Specifically, the capacity loss after 6 to
10 years of deployment without repairs exceeds the cost sav-
ings of most new datacenter designs. We thus expect to see
continued need for individual component replacement.

Hyrax’s reduction in the number of repairs may be suffi-
cient to offset the additional repair time introduced by some
designs, such as new cooling techniques [33,72]. Specifically,
we find that Hyrax enables datacenter designs that result in
repairs that take about twice as long. When repair times take
much longer, TCO will increase even with Hyrax. This might
be the case for some server and datacenter designs including
extremely dense servers [15–18,21,27,28,36], connector-less
server designs with soldered-on components [45], or datacen-
ters in hard-to-reach locations, such as sealed containers on
the ocean floor [10].

Acknowledgments

We thank our shepherd, Daniel Peek, and the anonymous
OSDI ’23 reviewers for their great comments. We thank our
many partner teams within Microsoft including Dirk Hof-
mann, Saptadeep Chanda, and Tom Harpel for their continued
support on understanding technician training, workflows, and
staffing; Rama Bhimanadhuni for his help on firmware; and
Manish Dalal for early feedback on interpreting diagnostics.

300 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura,
and Ricardo Bianchini. Providing slos for resource-
harvesting vms in cloud platforms. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 735–751, 2020. 2

[2] Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan
Tsafrir, and Assaf Schuster. viommu: Efficient iommu
emulation. In 2011 USENIX Annual Technical Confer-
ence (USENIX ATC 11). 2

[3] Backblaze. Hard drive data and stats. https://www.
backblaze.com/b2/hard-drive-test-data.html
accessed 6/26/2022, June 2022. 1

[4] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):1–154, 2013. 1, 1, 2, 2

[5] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE Micro, 23(2):22–28, 2003. 1

[6] John W Bennett, Glynn J Atkinson, Barrie C Mecrow,
and David J Atkinson. Fault-tolerant design considera-
tions and control strategies for aerospace drives. IEEE
Transactions on Industrial Electronics, 59(5):2049–
2058, 2011. 8

[7] Daniel S. Berger, Fiodar Kazhamiaka, Esha Choukse,
Íñigo Goiri, Celine Irvene, Pulkit A. Misra, Alok Kumb-
hare, Rodrigo Fonseca, and Ricardo Bianchini. Research
avenues towards net-zero cloud platforms. Workshop
on NetZero Carbon Computing, 2 2023. 1, 2, 2

[8] Stuart Allen Berke and Vadhiraj Sankaranarayanan. Sys-
tem and method for post-package repair across dram
banks and bank groups, August 2019. US Patent
10,395,750. 2, 5.1, 8

[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Communications of the ACM, 59(5):50–57, 2016. 2

[10] Ben Cutler, Spencer Fowers, Eric Peterson, and
Mike Shepperd. Project natick. OpenCompute
OCPREG19 track on Rack & Power / Advanced Cool-
ing https://natick.research.microsoft.com/
accessed 6/26/2022, October 2020. 8, 9

[11] Dell. Memory population rules for 3rd genera-
tion intel xeon scalable processors on poweredge
servers. https://www.delltechnologies.com/

asset/en-us/products/servers/industry-
market/whitepaper-memory-population-rules-
for-3rd-generation-intel-xeon-scalable-
processors-on-poweredge-servers.pdf accessed
11/26/2022, 2022. 5.2

[12] Catello Di Martino, Zbigniew Kalbarczyk, Ravis-
hankar K Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons learned from the analysis of
system failures at petascale: The case of blue waters. In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 610–621,
2014. 1

[13] Xiaoming Du and Cong Li. Combining error statistics
with failure prediction in memory page offlining. In
International Symposium on Memory Systems, pages
127–132, 2019. 5.1

[14] Elena Dubrova. Fault-tolerant design. Springer, 2013.
8

[15] E3NV. Ots immersion servers. https://www.e3nv.
com/immersion-servers accessed 6/26/2022, 2022. 9

[16] Wesley M Felter, Tom W Keller, Michael D Kistler,
Charles Lefurgy, Karthick Rajamani, Ramakrishnan Ra-
jamony, Freeman L Rawson, Bruce A Smith, and Eric
Van Hensbergen. On the performance and use of dense
servers. IBM Journal of Research and Development,
47(5.6):671–688, 2003. 9

[17] Gigabyte. Coolit liquid-cooled ready servers.
https://www.gigabyte.com/Industry-
Solutions/coolit-liquid-cooled-ready-
servers accessed 6/26/2022, 2022. 9

[18] GRC. Servers designed for immersion (sdi).
https://www.grcooling.com/servers-for-
immersion-cooling/ accessed 6/26/2022, 2022. 9

[19] Albert Greenberg, James Hamilton, David A Maltz, and
Parveen Patel. The cost of a cloud: research problems
in data center networks, 2008. 2

[20] Albert Greenberg and Dave Maltz. What goes into a
data center. SIGMETRICS 2009 Tutorial, 2009. 2

[21] Anthony Gutierrez, Michael Cieslak, Bharan Giridhar,
Ronald G Dreslinski, Luis Ceze, and Trevor Mudge. In-
tegrated 3d-stacked server designs for increasing physi-
cal density of key-value stores. In ACM ASPLOS, pages
485–498, 2014. 9

[22] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
David Dion, Esaias E Greeff, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean:vm allocation service at scale.
In USENIX OSDI, pages 845–861, 2020. 2

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 301

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://natick.research.microsoft.com/
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.e3nv.com/immersion-servers
https://www.e3nv.com/immersion-servers
https://www.gigabyte.com/Industry-Solutions/coolit-liquid-cooled-ready-servers
https://www.gigabyte.com/Industry-Solutions/coolit-liquid-cooled-ready-servers
https://www.gigabyte.com/Industry-Solutions/coolit-liquid-cooled-ready-servers
https://www.grcooling.com/servers-for-immersion-cooling/
https://www.grcooling.com/servers-for-immersion-cooling/

[23] James R. Hamilton. An architecture for modular data
centers. In Third Biennial Conference on Innovative
Data Systems Research, CIDR 2007, Asilomar, CA, USA,
January 7-10, 2007, Online Proceedings, pages 306–313.
www.cidrdb.org, 2007. 8

[24] Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama
Govindaraju, Parthasarathy Ranganathan, David E
Culler, and Amin Vahdat. Cores that don’t count. In Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems, pages 9–16, 2021. 1, 2

[25] Duwon Hong, Myungsuk Kim, Geonhee Cho, Dusol
Lee, and Jihong Kim. Guardederase: Extending ssd
lifetimes by protecting weak wordlines. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 133–146, 2022. 2, 8

[26] Amy Hood. Microsoft earnings release fy22 q4.
https://www.microsoft.com/en-us/Investor/
earnings/FY-2022-Q4/press-release-webcast
accessed 11/26/2022, 2022. 2

[27] Hypertec. Trident immersion servers. https:
//hypertec.com/ciara/immersion-servers/
accessed 6/26/2022, 2022. 9

[28] AVNET Integrated. Integrated rack with immersed,
liquid-cooled it. https://www.avnet.com/wps/
portal/integrated/resources/liquid-cooling/
accessed 6/26/2022, 2022. 9

[29] Intel. Memory error injection mei test card
and utility. https://designintools.intel.com/
MEI_Test_Card_and_Utility_p/stlgrn61.htm ac-
cessed 6/26/2022, 2017. 7.1.1

[30] Intel. Memory latency checker v3.9a.
https://www.intel.com/content/www/us/en/
developer/articles/tool/intelr-memory-
latency-checker.html accessed 6/26/2022, 2022.
5.2, 7.1.1

[31] Intel. Supported memory and memory popu-
lation rules for the intel server board family.
https://www.intel.com/content/www/us/
en/support/articles/000055509/server-
products/server-boards.html accessed
11/26/2022, 2022. 5.2

[32] Michael Isard. Autopilot: automatic data center man-
agement. ACM SIGOPS Operating Systems Review,
41(2):60–67, 2007. 1, 2, 2

[33] Majid Jalili, Ioannis Manousakis, Íñigo Goiri, Pulkit A
Misra, Ashish Raniwala, Husam Alissa, Bharath Ra-
makrishnan, Phillip Tuma, Christian Belady, Marcus
Fontoura, et al. Cost-efficient overclocking in

immersion-cooled datacenters. In ACM/IEEE 48th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 623–636, 2021. 1, 9

[34] Dae-Hyun Kim and Linda S Milor. Ecc-aspirin: An ecc-
assisted post-package repair scheme for aging errors in
drams. In IEEE VLSI Test Symposium, pages 1–6, 2016.
2, 8

[35] Andi Kleen. Mcelog bad page offlining. http://www.
mcelog.org/badpageofflining.html, 2021. 5.1

[36] Ravi Kollipara, Ming Li, Chuck Yuan, Hideki
Kusamitsu, and Toshiyasu Ito. Evaluation of high
density liquid crystal polymer based flex interconnect
for supporting greater than 1 tb/s of memory bandwidth.
In 2008 58th Electronic Components and Technology
Conference, pages 1132–1138, 2008. 9

[37] Alok Kumbhare, Reza Azimi, Ioannis Manousakis,
Anand Bonde, Felipe Vieira Frujeri, Nithish Ma-
halingam, Pulkit Misra, Seyyed Ahmad Javadi, Bianca
Schroeder, Marcus Fontoura, and Ricardo Bianchini.
Prediction-based power oversubscription in cloud plat-
forms. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 473–487, 2021. 2

[38] Lenovo. Balanced memory configurations with second-
generation intel xeon scalable processors. https:
//lenovopress.lenovo.com/lp1089.pdf accessed
11/26/2022, 2022. 5.2

[39] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy
Shapiro, Sagi Grimberg, Liran Liss, Muli Ben-Yehuda,
Nadav Amit, and Dan Tsafrir. Page fault support for
network controllers. In ASPLOS, pages 449–466, 2017.
2

[40] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 574–
587, 2023. 7.4

[41] Fan Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham
Vunnam, Amol Desai, and Sriram Sankar. Hardware
remediation at scale. In 2018 48th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Net-
works Workshops (DSN-W), pages 14–17. IEEE, 2018.
1, 2, 2

[42] Zitao Liu and Sangyeun Cho. Characterizing machines
and workloads on a google cluster. In International

302 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.microsoft.com/en-us/Investor/earnings/FY-2022-Q4/press-release-webcast
https://www.microsoft.com/en-us/Investor/earnings/FY-2022-Q4/press-release-webcast
https://hypertec.com/ciara/immersion-servers/
https://hypertec.com/ciara/immersion-servers/
https://www.avnet.com/wps/portal/integrated/resources/liquid-cooling/
https://www.avnet.com/wps/portal/integrated/resources/liquid-cooling/
https://designintools.intel.com/MEI_Test_Card_and_Utility_p/stlgrn61.htm
https://designintools.intel.com/MEI_Test_Card_and_Utility_p/stlgrn61.htm
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/support/articles/000055509/server-products/server-boards.html
https://www.intel.com/content/www/us/en/support/articles/000055509/server-products/server-boards.html
https://www.intel.com/content/www/us/en/support/articles/000055509/server-products/server-boards.html
http://www.mcelog.org/badpageofflining.html
http://www.mcelog.org/badpageofflining.html
https://lenovopress.lenovo.com/lp1089.pdf
https://lenovopress.lenovo.com/lp1089.pdf

Conference on Parallel Processing Workshops, pages
397–403, 2012. 1, 2

[43] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. A study of SSD reliability in large
scale enterprise storage deployments. In 18th USENIX
Conference on File and Storage Technologies (FAST
20), pages 137–149, Santa Clara, CA, February 2020.
USENIX Association. 1

[44] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. Reliability of ssds in enterprise stor-
age systems: A large-scale field study. ACM Transac-
tions on Storage (TOS), 17(1):1–27, 2021. 1, 2, 8

[45] Ioannis Manousakis, Sriram Sankar, Gregg McKnight,
Thu D Nguyen, and Ricardo Bianchini. Environmental
conditions and disk reliability in free-cooled datacen-
ters. In 14th USENIX conference on file and storage
technologies (FAST 16), pages 53–65, 2016. 9

[46] Pascale Minet, Eric Renault, Ines Khoufi, and Selma
Boumerdassi. Analyzing traces from a google data
center. In International Wireless Communications &
Mobile Computing Conference, pages 1167–1172, 2018.
1, 2

[47] Victor P. Nelson. Fault-tolerant computing: Fundamen-
tal concepts. Computer, 23(7):19–25, 1990. 8

[48] OpenCompute. Server/projectolympus. https://www.
opencompute.org/wiki/Server/ProjectOlympus
accessed 6/26/2022, November 2017. 1, 2

[49] Jehan-François Paris, Ahmed Amer, Darrell D. E. Long,
and Thomas J. E. Schwarz. Self-repairing disk arrays.
arXiv cs.DC 1501.00513, 2015. 8

[50] Jehan-François Paris, Darrell D.E. Long, and
S.J. Thomas Schwarz. Zero-maintenance disk arrays. In
2013 IEEE 19th Pacific Rim International Symposium
on Dependable Computing, pages 140–141, 2013. 8

[51] David A. Patterson, Garth Gibson, and Randy H. Katz.
A case for redundant arrays of inexpensive disks (raid).
In Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’88, page 109–116, New York, NY, USA, 1988. Associ-
ation for Computing Machinery. 8

[52] Borja Peleato, Haleh Tabrizi, Rajiv Agarwal, and Jef-
frey Ferreira. Ber-based wear leveling and bad block
management for nand flash. In 2015 IEEE International
Conference on Communications (ICC), pages 295–300,
2015. 2, 8

[53] Sundar Pichai and Ruth Porati. Alphabet an-
nounces fourth quarter and fiscal year 2022 results.

https://abc.xyz/investor/static/pdf/2022Q4_
alphabet_earnings_release.pdf?cache=9de1a6b
accessed 2/15/23, 2 2023. 2

[54] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure trends in a large disk drive population.
In USENIX FAST, 2007. 1

[55] Eric L Pope and Scott P Faasse. Post package repair for
mapping to a memory failure pattern, January 2020. US
Patent 10,546,649. 2, 5.1, 8

[56] Meghan Rimol. Gartner predicts half of cloud data
centers will deploy robots with ai capabilities by 2025.
https://www.gartner.com/en/newsroom/press-
releases/2021-11-01-gartner-predicts-half-
of-cloud-data-centers-will-deploy-robots-
with-ai-capabilties-by-2025 accessed 2/15/23,
2021. 8

[57] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. Dram errors in the wild: A large-scale field study.
Commun. ACM, 54(2):100–107, feb 2011. 1

[58] Fumiyoshi Shoji, Shuji Matsui, Mitsuo Okamoto, Fu-
michika Sueyasu, Toshiyuki Tsukamoto, Atsuya Uno,
and Keiji Yamamoto. Long term failure analysis of
10 peta-scale supercomputer. HPC in Asia Poster, ISC,
2015. 1

[59] Vilas Sridharan and Dean Liberty. A study of dram
failures in the field. In IEEE SC, pages 1–11, 2012. 1

[60] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu
Dong. coiommu: A virtual iommu with cooperative dma
buffer tracking for efficient memory management in di-
rect i/o. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 479–492, 2020. 2

[61] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the next generation. In
Proceedings of the fifteenth European conference on
computer systems, pages 1–14, 2020. 1, 2

[62] Kushagra Vaid. Datacenter power efficiency: Separating
fact from fiction. In Invited talk at the 2010 Workshop on
Power Aware Computing and Systems, volume 1, 2010.
2

[63] Remco Van Erp, Reza Soleimanzadeh, Luca Nela, Geor-
gios Kampitsis, and Elison Matioli. Co-designing elec-
tronics with microfluidics for more sustainable cooling.
Nature, 585(7824):211–216, 2020. 1

[64] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In ACM
EuroSys, pages 1–17, 2015. 1, 2

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 303

https://www.opencompute.org/wiki/Server/ProjectOlympus
https://www.opencompute.org/wiki/Server/ProjectOlympus
https://abc.xyz/investor/static/pdf/2022Q4_alphabet_earnings_release.pdf?cache=9de1a6b
https://abc.xyz/investor/static/pdf/2022Q4_alphabet_earnings_release.pdf?cache=9de1a6b
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025

[65] Kashi Venkatesh Vishwanath, Albert Greenberg, and
Daniel A. Reed. Modular data centers: How to de-
sign them? In Proceedings of the 1st ACM Workshop
on Large-Scale System and Application Performance,
LSAP ’09, page 3–10, New York, NY, USA, 2009. As-
sociation for Computing Machinery. 8

[66] Kashi Venkatesh Vishwanath and Nachiappan Nagap-
pan. Characterizing cloud computing hardware reliabil-
ity. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 193–204, 2010. 1, 2

[67] Osamu Wada, Toshimasa Namekawa, Hiroshi Ito, At-
sushi Nakayama, and Shuso Fujii. Post-packaging auto
repair techniques for fast row cycle embedded dram. In
2004 International Conferce on Test, pages 1016–1023.
IEEE, 2004. 2, 5.1, 8

[68] Chundong Wang and Weng-Fai Wong. Extending the
lifetime of nand flash memory by salvaging bad blocks.
In 2012 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 260–263, 2012. 2,
8

[69] Guosai Wang, Lifei Zhang, and Wei Xu. What can we
learn from four years of data center hardware failures?

In 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pages 25–
36, 2017. 1, 2, 2

[70] Paul Willmann, Scott Rixner, and Alan L Cox. Pro-
tection strategies for direct access to virtualized i/o de-
vices. In 2008 USENIX Annual Technical Conference
(USENIX ATC 08), 2008. 2

[71] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasser-
man. On the dma mapping problem in direct device
assignment. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference, pages 1–12, 2010. 2

[72] Yangfan Zhong. Experiences with immersion cooling
in alibaba datacenter. OpenCompute 2019 track
on Rack & Power / Advanced Cooling https://
www.youtube.com/watch?v=GMSLjr7Wlis&t=1067s
accessed 6/26/2022, October 2019. 1, 9

[73] Ali Zolghadri. A redundancy-based strategy for safety
management in a modern civil aircraft. Control Engi-
neering Practice, 8(5):545–554, 2000. 8

304 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.youtube.com/watch?v=GMSLjr7Wlis&t=1067s
https://www.youtube.com/watch?v=GMSLjr7Wlis&t=1067s

NCC: Natural Concurrency Control for Strictly Serializable
Datastores by Avoiding the Timestamp-Inversion Pitfall

Haonan Lu⋆, Shuai Mu†, Siddhartha Sen‡, Wyatt Lloyd⋄
⋆University at Buffalo, †Stony Brook University,

‡Microsoft Research, ⋄Princeton University

Abstract
Strictly serializable datastores greatly simplify application
development. However, existing techniques pay unnecessary
costs for naturally consistent transactions, which arrive at
servers in an order that is already strictly serializable. We ex-
ploit this natural arrival order by executing transactions with
minimal costs while optimistically assuming they are natu-
rally consistent, and then leverage a timestamp-based tech-
nique to efficiently verify if the execution is indeed consistent.
In the process of this design, we identify a fundamental pit-
fall in relying on timestamps to provide strict serializability
and name it the timestamp-inversion pitfall. We show that
timestamp inversion has affected several existing systems.

We present Natural Concurrency Control (NCC), a new con-
currency control technique that guarantees strict serializability
and ensures minimal costs—i.e., one-round latency, lock-free,
and non-blocking execution—in the common case by leverag-
ing natural consistency. NCC is enabled by three components:
non-blocking execution, decoupled response management,
and timestamp-based consistency checking. NCC avoids the
timestamp-inversion pitfall with response timing control and
proposes two optimization techniques, asynchrony-aware
timestamps and smart retry, to reduce false aborts. Moreover,
NCC designs a specialized protocol for read-only transactions,
which is the first to achieve optimal best-case performance
while guaranteeing strict serializability without relying on
synchronized clocks. Our evaluation shows NCC outperforms
state-of-the-art strictly serializable solutions by an order of
magnitude on many workloads.

1 Introduction
Strictly serializable datastores have been advocated by much
recent work [12, 18, 19, 33, 52, 58, 68] because they provide
the powerful abstraction of programming in a single-threaded,
transactionally isolated environment, which greatly simplifies
application development and prevents consistency anoma-
lies [8]. However, only a few concurrency control techniques
provide strict serializability and they are expensive.

Common techniques include distributed optimistic concur-
rency control (dOCC), distributed two-phase locking (d2PL),
and transaction reordering (TR). They incur high overheads
which manifest in extra rounds of messages, distributed lock
management, blocking, and excessive aborts. The validation
round in dOCC, required lock management in d2PL, blocking

during the exchange of ordering information in TR, and aborts
due to conflicts in dOCC and d2PL are examples of these four
overheads, respectively. These costs are paid to enforce the
two requirements of strict serializability: (1) ensuring there
is a total order by avoiding interleaving transactions, and (2)
ensuring the real-time ordering i.e., later-issued transactions
take effect after previously-finished ones. However, we find
these costs are unnecessary for many datacenter workloads
where transactions are executed within a datacenter and then
replicated within or across datacenters.

Many datacenter transactions do not interleave: e.g., many
of them are dominated by reads [12], and the interleaving of
reads returning the same value does not affect correctness.
Many of them are short [24, 27, 40, 52, 64, 71], and short
lifetimes reduce the likelihood of interleaving. Advances in
datacenter networking also reduce variance in delivery times
of concurrent requests [5,14,22], resulting in less interleaving.

In addition, many datacenter transactions arrive at servers
in an order that trivially satisfies their real-time order require-
ment. That is, a transaction arrives at all participant servers
after all previously committed transactions.

Because many transactions do not interleave and their ar-
rival order satisfies the real-time order constraints, intuitively,
simply executing their requests in the order servers receive
them (i.e., treating them as if they were non-transactional
simple operations) will naturally satisfy strict serializability.
We call these transactions naturally consistent.

Ideally, naturally consistent transactions can be safely exe-
cuted without any concurrency control, incurring zero costs.
However, existing techniques pay unnecessary overheads. For
instance, dOCC still requires extra rounds of messages for
validation, d2PL still acquires locks, and TR still blocks trans-
actions to exchange ordering information, even if validation al-
ways succeeds, locks are always available, and nothing needs
to be reordered. Therefore, this paper strives to make naturally
consistent transactions as cheap as possible.

In this paper, we present Natural Concurrency Control
(NCC), a new concurrency control technique that guaran-
tees strict serializability and ensures minimal costs—i.e., one-
round latency, lock-free, and non-blocking execution—in the
common case. NCC’s design insight is to execute naturally
consistent transactions in the order they arrive, as if they were
non-transactional operations, while guaranteeing correctness
without interfering with transaction execution.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 305

NCC is enabled by three components. Non-blocking execu-
tion ensures that servers execute transactions in a way that is
similar to executing non-transactional operations. Decoupled
response management separates the execution of requests
from the sending of their responses, ensuring that only correct
results are returned. Timestamp-based consistency checking
uses timestamps to verify transactions’ results, without inter-
fering with execution.

While designing the consistency-checking component, we
identified a correctness pitfall in timestamp-based, strictly
serializable techniques. Specifically, these techniques some-
times fail to guard against an execution order that is total
but incorrectly inverts the real-time ordering between trans-
actions, thus violating strict serializability. We call this the
timestamp-inversion pitfall. Timestamp inversion is subtle
because it can happen only if a transaction interleaves with a
set of non-conflicting transactions that have real-time order
relationships. The pitfall is fundamental as we find it affects
multiple prior systems (TAPIR [71] and DrTM [66]), which,
as a result, do not provide strict serializability as claimed.

NCC handles timestamp inversion through response timing
control (RTC), an integral part of decoupled response man-
agement, without interfering with non-blocking execution or
relying on synchronized clocks. NCC proposes two times-
tamp optimization techniques, asynchrony-aware timestamps
and smart retry, to reduce false aborts. Moreover, NCC de-
signs a specialized protocol for read-only transactions, which,
to the best of our knowledge, is the first to achieve optimal
performance [40] in the best case while ensuring strict serial-
izability, without relying on synchronized clocks.

We compare NCC with common strictly serializable tech-
niques: dOCC, d2PL, and TR, and two serializable proto-
cols, TAPIR [71] and MVTO [55]. We use three workloads:
Google-F1, Facebook-TAO, and TPC-C (§6). The Google-
F1 and Facebook-TAO workloads synthesize production-like
workloads for Google’s Spanner [12, 59] and Facebook’s
TAO [10], respectively. Both workloads are read-dominated.
TPC-C [63] consists of few-shot transactions that are write-
intensive. We further explore the workload space by varying
the write fractions in Google-F1. NCC significantly outper-
forms dOCC, d2PL, and TR with 2–10× lower latency and
2–20× higher throughput. NCC outperforms TAPIR with 2×
higher throughput and 2× lower latency, and closely matches
the performance of MVTO.

In summary, this work makes the following contributions:

• Identifies timestamp inversion, a fundamental correctness
pitfall in timestamp-based, strictly serializable concurrency
control techniques.

• Proposes NCC, a new concurrency control technique that
provides strict serializability and achieves minimal over-
head in the common case by exploiting natural consistency
in datacenter workloads.

• A strictly serializable read-only protocol with optimal best-

case performance that does not rely on synchronized clocks.
• An implementation and evaluation that shows NCC outper-

forms existing strictly serializable systems by an order of
magnitude and closely matches the performance of systems
that provide weaker consistency.

2 Background
This section provides the necessary background on transac-
tional datastores, strict serializability, and general techniques
for providing strict serializability.

2.1 Transactional Datastores
Transactional datastores are the back-end workhorse of many
web applications. They typically consist of two types of ma-
chines. Front-end client machines receive users’ requests, e.g.,
managing a web page, and execute these requests on behalf of
users by issuing transactions to the storage servers that store
the data. Servers are fault-tolerant, e.g., the system state is
made persistent on disks and replicated via replicated state
machines (RSM), like Paxos [30].

Transactions are managed by coordinators, which can be
co-located either with a server or the client. This paper adopts
the latter approach to avoid the delays caused by shipping
the transaction from the client to a server, while explicitly
handling client failures. The coordinator issues read/write
operations to relevant servers, called participants, following
the transaction’s logic, which can be one-shot, i.e., it knows a
priori which data to read/write and can send all requests in one
step, or multi-shot, i.e., it takes multiple steps as the data read
in one step determines which data to read/write in later steps.
The system executes transactions following a concurrency
control protocol, which ensures that transactions appear to
take effect in an order that satisfies the system’s consistency
requirements. The stronger the consistency provided by the
system, the easier it is to develop correct applications.

2.2 Strict Serializability
Strict serializability [23, 53], also known as external con-
sistency [21], is often considered the strongest consistency
model. It requires that (1) there exists a total order of transac-
tions, and (2) the total order must respect the real-time order,
which means if transaction tx1 ends before tx2 starts, then tx1
must appear before tx2 in the total order. As a result, trans-
actions appear to take effect one at a time in the order the
system receives them.

Formal definition. We use Real-time Serialization Graphs
(RSG) [1] to formalize the total order and real-time order
requirements. An RSG is a directed graph that captures the
order in which transactions take effect. Specifically, two re-
quests from different transactions have an execution edge
req1

exe−−→ req2 if any of the following happens: req1 creates
some data version vi and req2 reads vi; req1 reads some data
version v j and req2 creates v’s next version that is after v j; or

306 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

B

CL1

A

CL2

r1A
r2A

w2B

tx1
Exec Validate Commit

tx2 Exec Validate Abort

✓

✗

B0

A0

B1
w1B

(a) dOCC falsely aborts tx2

CL1

CL2

B0
0 0

B2
7 7

w4B

A

B
0 0
A0

4 8
A1

B1
3 6

A1
(4,10)

tx2
(t=2)

r2A

A1
(4,10)

tx3
(t=6)

r3A

A1
(4,10)

tx1
(t=10)

r1A 10

tx4
(t=5)

B3
9 9

w5B

done
(7,7)

tx5
(t=9)

done
(9,9)

(b) Timestamp refinement examples

CL1

CL2

0 4

B0
0 0

8
A0

B1
4 4
w1B

B2
8 8

w2B

A0
(0,4)

A0
(0,8) ✓

tx1
(t=4)

tx2
(t=8)

A

B
0 r1A

done
(8,8)

r2A

✓Async
Commit

Async
Commit

SG

SG

RTC

done
(4,4)

(c) NCC commits both tx1 and tx2

Figure 1: tx1 and tx2 are naturally consistent. dOCC incurs unnecessary validation costs, and tx2 could be falsely aborted
due to lock unavailability. NCC can commit both transactions with timestamp pre-assignment, refinement, and the
safeguard check (denoted by SG). These techniques are detailed in Section 5.1. Each version in NCC has a (tw, tr) pair
which is included in server responses. RTC means response timing control, detailed in Section 5.2.

req1 creates some data version vk and req2 creates v’s next
version that is after vk. Two transactions have an execution
edge tx1

exe−−→ tx2 if there exist req1 and req2 from tx1 and tx2,
respectively, such that req1

exe−−→ req2. A chain of execution
edges constructs a directed path between two transactions
(requests), denoted by tx1

exe7−→ tx2 (req1
exe7−→ req2), meaning

that tx1 (req1) “transitively” affects tx2 (req2) through some
intermediary transactions (requests). Two transactions have a
real-time edge tx1

rto−→ tx2 if there is a real-time ordering be-
tween tx1 and tx2, meaning that tx1 commits before tx2’s client
issues tx2’s first request. In an RSG, vertices are committed
transactions, connected by execution and real-time edges.

There exists a total order if and only if transactions do
not circularly affect each other. That is, the subgraph that
comprises all vertices and only execution edges is acyclic,
meaning that the following invariant holds:

Invariant 1: ∀tx1, tx2 (tx1
exe7−→ tx2 =⇒ ¬(tx2

exe7−→ tx1))

The (total) execution order respects the real-time order if and
only if the execution edges (paths) do not invert the real-time
edges, meaning that the following invariant holds:

Invariant 2: ∀tx1, tx2 (tx1
rto−→ tx2 =⇒ ¬(tx2

exe7−→ tx1))

These invariants correspond to the total order and real-time or-
der requirements, respectively. Therefore, a system is strictly
serializable if and only if for any execution it allows, both
invariants hold.

By enforcing a total order and the real-time order, strictly
serializable systems provide application programmers with
the powerful abstraction of programming in a single-threaded,
transactionally isolated environment, and thus they greatly
simplify application development and eliminate consistency
anomalies. For example, if an admin removes Alice from
a shared album and then notifies Bob of the change (via a
channel external to the system, e.g., a phone call), who then
uploads a photo he does not want Alice to see, then Alice
must not see Bob’s photo, since remove_Alice rto−→ new_photo.
Such guarantees cannot be enforced by weaker consistency
models, e.g., serializability, because they do not enforce the
real-time order that is external to the system.

2.3 dOCC, d2PL, & Transaction Reordering
Only a few techniques provide strict serializability. The com-
mon ones are dOCC, d2PL, and transaction reordering (TR).
dOCC and d2PL typically require three round trips, one for
each phase: execute, prepare, and commit. In the execute
phase, the coordinator reads the data from the servers while
writes are buffered locally. d2PL acquires read locks in this
phase while dOCC does not. In the prepare phase, the coordi-
nator sends prepare messages and the buffered writes to the
participant servers. d2PL locks all participants while dOCC
only locks the written data. dOCC must also validate that val-
ues read in the execute phase have not changed. If all requests
are successfully prepared, i.e., locks are available and/or val-
idation succeeds, the coordinator notifies the participants to
commit the transaction and apply the writes; otherwise, the
transaction is aborted and retried.

Transaction reordering typically requires two steps. In the
first step, the coordinator sends the requests to the servers,
which make requests wait while recording their arrival order
relative to those of concurrent transactions. This ordering in-
formation usually increases linearly in size with respect to
the number of concurrent transactions. In the second step,
the coordinator collects the ordering information from partici-
pants, sorts the requests to eliminate interleavings, and servers
execute the transactions in the sorted order.

These techniques are expensive, e.g., they require multiple
rounds of messages, locking, waiting, and aborts. We find that
these overheads are wasteful for most of the transactions in
many datacenter workloads, and this observation has inspired
our protocol design.

3 Design Insight & Overview
This section explains natural consistency, which inspires our
design, and overviews the key design components.

3.1 Exploiting Natural Consistency
For many datacenter transactions, simply executing their re-
quests in the order servers receive them, as if they were non-
transactional read/write operations, would naturally satisfy

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 307

User

Client
(Coordinator)

Tx Logic
Execute Phase

Commit Phase

Smart Retry
Safeguard

Decision

(RSM group)

Backup
Coordinator

Commit
Fail-over

Requests1 Execute2

Responses3

2
3

Commit/Abort4

Tx InfoX

Failure HandlingY

Results4

Read Write
Operations

UndecidedDecided
Responses

Server
(Participant)

Nonblocking
Execution

Resp Q (RTC)

(RSM group)

Server

Participant

(RSM group)

Commit/Abort4

Normal-case messages
Client-failure handling

Figure 2: An overview of system architecture and transaction execution. NCC follows two-phase commit and has three
design pillars: non-blocking execution, decoupled response management, and timestamp-based consistency checking.

strict serializability. In other words, they arrive at servers in
an order that is already strictly serializable. We call these
transactions naturally consistent. Key to natural consistency
is the arrival order of transaction requests.

Many requests in datacenter workloads arrive in an order
that is total, i.e., transactions do not circularly affect each
other, due to the following reasons. First, many requests in
real-world workloads are reads [10, 12], and reads do not
affect other reads. For instance, reads that return the same
value can be executed in any order, and thus servers can safely
execute them in their arrival order. Second, many transactions
are short, e.g., they are one-shot [24, 27, 40, 52, 64, 71] or
can be made one-shot using stored procedures [20, 34, 51,
60, 67], and thus their requests are less likely to interleave
with others’ requests. Third, advances in datacenter networks
reduce the variance of message delivery times [49,50,54], and
thus further reduces the likelihood of request interleaving.

In most cases, the (total) arrival order satisfies the real-time
order between transactions because a transaction that happens
later in real-time, i.e., it starts after another transaction has
been committed, must arrive at servers after the committed
transaction has arrived.

Ideally, the system would treat naturally consistent transac-
tions as non-transactional operations and execute them in the
order they arrive without any concurrency control, while still
guaranteeing strict serializability. This insight suggests room
for improvement in existing techniques. For instance, dOCC
still requires validation messages which are unnecessary when
transactions are naturally consistent. Further, during valida-
tion between prepare and commit, dOCC has a contention
window where it can cause other concurrent transactions to
abort. As shown in Figure 1a, such contention windows lead
to false aborts, where a transaction is aborted despite being
consistent. Our design aims to minimize costs for as many

naturally consistent transactions as possible.

3.2 Three Pillars of Design
Our design executes naturally consistent transactions in a
manner that closely resembles non-transactional operations.
This is made possible through three components.

Non-blocking execution. Assuming transactions are natu-
rally consistent, servers execute requests in the order they
arrive. Requests are executed “urgently” to completion with-
out acquiring locks, and their results are immediately made
visible to prevent blocking subsequent requests. As a result,
transactions are executed as cheaply as non-transactional op-
erations, without incurring contention windows.

Decoupled response management. Because not all transac-
tions are naturally consistent, servers must prevent returning
inconsistent results to clients and ensure there are no cascad-
ing aborts. This is achieved by decoupling requests’ responses
from their execution, with a response sent asynchronously
only once it is verified consistent. Inconsistent results are
discarded, and their requests are re-executed.

Timestamp-based consistency checking. We must check
consistency as efficiently as possible, without interfering with
server-side execution. We leverage timestamps to capture the
arrival order (thus the execution order) of requests and design
a client-side checker that verifies if requests were executed in
a total order, without incurring overheads such as messages
(as in dOCC and TR) or locks (as in dOCC and d2PL).

Figure 2 shows at a high level how these three pillars sup-
port our design, and depicts the life cycle of transactions:

➊ The user submits application requests to a client, which
translates the requests into transactions.

➋ The (client) coordinator sends operations to the par-

308 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ticipant servers, following the transaction’s logic. The
servers execute requests in their arrival order. Their
responses are inserted into a queue and sent asyn-
chronously. The responses include timestamps that cap-
ture requests’ execution order.

➌ Responses are sent to the client when it is safe, deter-
mined by response timing control (RTC).

➍ The safeguard checks if transactions were executed in
a total order by examining the timestamps in responses.
The coordinator sends commit/abort messages to the
servers and returns the results of committed transactions
to the user in parallel, without waiting for servers’ ac-
knowledgments. X and Y explicitly handle client fail-
ures by leveraging a server as a backup coordinator.

Limitations. First, our design leverages natural consistency,
which is observed in short (e.g., one or few shots) datacenter
transactions; while our design supports arbitrary-shot transac-
tions, many-shot long-lasting transactions that are more likely
to interleave might not benefit from our design. Second, the
timestamps associated with each request, including both reads
and writes, must be made persistent (e.g., written to disks)
and replicated for correctly handling failures, which could
lead to replication overhead, which we detail in Section 5.6.

An observation. Key to the correctness of our design is lever-
aging timestamps to verify a total order that respects the real-
time order. Yet, we identify a correctness pitfall in relying on
timestamps to ensure strict serializability.

4 Timestamp-Inversion Pitfall
We discover that timestamp-based techniques sometimes fail
to guard against a total order that violates the real-time order
in subtle cases. As a result, executing transactions in such a
total order inverts the real-time relationship between transac-
tions, which leads to a violation of strict serializability. We
call such violations the timestamp-inversion pitfall. Figure 3
shows a minimal construction of timestamp inversion using
three transactions. tx1 and tx2 are single-machine transactions
issued by different clients, and tx2 starts after tx1 finishes,
so there exists a real-time order tx1

rto−→ tx2 that strict seri-
alizability must enforce. tx3 is a multi-shard transaction by
a third client that interleaves with tx1 and tx2. tx1, tx2, and
tx3 have timestamps 10, 5, and 7, respectively.1 By following
these timestamps, the transactions are executed in a total or-
der denoted as tx2

exe−−→ tx3
exe−−→ tx1, which inverts the real-time

order tx1
rto−→ tx2 and thus violates strict serializability. Specif-

ically, the execution of these transactions violates Invariant 2,
subjecting them to consistency anomalies discussed in §2.2.

The timestamp-inversion pitfall is subtle because it happens
only if a transaction interleaves with a set of non-conflicting
transactions that have real-time ordering constraints. We find

1A timestamp is generated by either a loosely synchronized physical
clock [48] or a causal counter, e.g., a Lamport clock [28].

B

A

CL

tx3
Real time

tx1 tx2

II. Real-time diagram

tx3
Real time

tx1 tx2

III. Solution

I. Timestamp-inversion

tx1 (t=10)

tx2 (t=5)

tx3 (t=7)

Figure 3: A minimal example of timestamp inversion, a
real-time diagram shows the ordering of transactions, and
how NCC tackles the timestamp-inversion pitfall.

timestamp inversion to be fundamental as it has affected mul-
tiple different systems; we discuss two such systems below.
In addition, we find that there are several existing systems that
do not explicitly define their consistency model, but give a
strong indication of providing strict serializability—e.g., they
claim invariants that are equivalent to strict serializability, or
are built on or evaluated against strictly serializable protocols.
We find that these systems also fall into the pitfall.

Timestamp inversion affects several prior systems. The
minimal example in Figure 3 can be extended to variants of
timestamp inversion that affect different types of transactions
in real system designs, suggesting that this pitfall is general
and fundamental. For instance, we find two systems from
recent SOSPs fall into different variants of the pitfall, and
thus are not strictly serializable as claimed. We elaborate
below to help future work avoid timestamp inversion, and
provide the full counterexamples in a technical report [41].

TAPIR [71, 72] is an integrated protocol that co-designs
concurrency control and replication. Its concurrency control
is a variant of dOCC which validates writes using times-
tamps without acquiring locks, while reads are validated in
the traditional way. Because reads and writes are executed
in timestamp order but validated with separate mechanisms,
TAPIR’s read-write transactions may cause an inversion of
concurrent writes. For instance, if tx1, tx2, and tx3 in Figure 3
are read-write transactions, then all three transactions would
pass TAPIR’s validation, which results in the inversion of
tx1

rto−→ tx2. The effect of this inversion is perceivable to the
client via future reads. This variant of timestamp inversion re-
quires a detailed analysis of the possible executions, showing
that none of them are admissible by strict serializability [41].

DrTM [11,66] is a specialized design for modern datastores
equipped with hardware transactional memory and remote
direct memory access. DrTM uses timestamps to validate read
leases which are acquired before reading the data, a technique
equivalent to executing read requests in the timestamp order.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 309

Algorithm 5.1: Client (transaction coordinator) logic
1 Function EXECUTERWTRANSACTION(tx) :
2 results←{}; t_pairs←{} // server responses
3 t.clk← ASYNCHRONYAWARETS(tx); t.cid← clientID
4 for req in tx do

// send requests shot by shot,
// following tx’s logic

5 res, t_pair← NONBLOCKINGEXECUTE(req, t)
6 results← results ∪ res
7 t_pairs← t_pairs ∪ t_pair

// all shots done, tx’s logic complete
8 ok, t ′ ← SAFEGUARDCHECK(t_pairs)
9 if not ok then

10 ok← SMARTRETRY(tx, t ′) // §5.4

11 if ok then
12 ASYNCCOMMITORABORT(tx, “committed”)
13 return results

14 else
15 ASYNCCOMMITORABORT(tx, “aborted”)
16 go to 2 // abort, and retry from scratch

17

18 Function SAFEGUARDCHECK(t_pairs) :
19 tw_set←{}; tr_set←{}
20 for t_pair in t_pairs do
21 tw_set← tw_set ∪ t_pair.left
22 tr_set← tr_set ∪ t_pair.right

23 tw_max←max{tw_set}; tr_min←min{tr_set}
24 if tw_max≤ tr_min then

// t_pairs overlap, ∃ a snapshot
25 return true, tw_max

26 else
27 return false, tw_max

This makes DrTM’s read-only transactions subject to inver-
sion, e.g., when tx1, tx2, and tx3 in Figure 3 are read-write,
read-write, and read-only transactions, respectively.

The main contributions of TAPIR and DrTM still stand, just
with weaker consistency than claimed. Both teams conjecture
that they can fix the systems by using synchronized clocks
(e.g., TrueTime [12]) and adapting their designs to use these
clocks. Thus, it is likely that their contributions still stand
with strict serializability when synchronized clocks are used.
However, synchronized clocks require specialized infrastruc-
ture and are not generally available (§7). Therefore, NCC
is designed to avoid timestamp-inversion without relying on
synchronized clocks.

5 Natural Concurrency Control
This section presents the basic components of NCC, explains
how NCC avoids the timestamp-inversion pitfall, introduces
two timestamp optimization techniques and a specialized
algorithm for read-only transactions, and concludes with dis-
cussions of failure handling and correctness.

5.1 Protocol Basics
We build NCC on the three design pillars (§3.2) to minimize
the costs for naturally consistent transactions.

Pre-timestamping transactions. NCC processes a transac-
tion in two phases: execute and commit. Algorithm 5.1 shows
the client (coordinator)’s logic. The coordinator starts a trans-
action tx by pre-assigning it a timestamp t that consists of two
fields: clk which is the client’s physical time (Section 5.3 de-
tails how it is computed), and cid which is the client identifier.
t uniquely identifies tx (line 3). When two timestamps have
the same clk, NCC breaks the tie by comparing their cid. t is
included in all of tx’s requests that are sent to servers shot by
shot, following tx’s application logic (lines 4 and 5). These
timestamps accompany tx throughout its life cycle and will
be used to verify if the results are consistent.

Refining timestamps to match execution order. Algo-
rithm 5.2 details the server-side logic for request execution
and commitment. Each key stores a list of versions in the
order of the server creating them. A version has three fields:
value, a pair of timestamps (tw, tr), and status. value stores
the data; tw is the timestamp of the transaction that created
the version; tr is the highest timestamp of transactions that
read the version; and status indicates the state of the transac-
tion that created the version: either (initially) undecided, or
committed. An aborted version is removed from the datastore.

The server always executes a request against the most re-
cent version curr_ver, which is either undecided or committed
(line 35). Specifically, the server executes a write by creating a
new undecided version new_ver, which is now the most recent
version of the key, ordered after curr_ver (lines 39 and 40),
and executes a read by reading the value of curr_ver (line 44).
NCC’s basic protocol can work with a single-versioned data
store while multi-versioning is required only for smart retry,
a timestamp optimization technique (§5.4). The server refines
the most recent version’s timestamp pair to match the order in
which requests are executed. Specifically, a write request com-
putes new_ver’s tw as follows: its physical time field is no less
than that of the write’s timestamp t and that of curr_ver’s tr,
and its client identifier is the same as t’s (line 37); new_ver’s
tr is initialized to tw (line 38). Similarly, a read request updates
curr_ver’s tr if needed (line 43). Figure 1b shows examples of
how timestamps are refined. A version is associated with a tw
and a tr, e.g., A1 initially has a timestamp pair (4, 8). tx1–tx3
are single-key read transactions with pre-assigned timestamps
10, 2, and 6, respectively. They return the most recent version
of A, i.e., A1, update its tr if needed, and return A1’s timestamp
pair. tx4 and tx5 show how writes manage timestamps.

These (refined) timestamps match requests’ arrival order
and thus also match the execution order: on each key, a read
must have a timestamp greater than that of the write it sees,
i.e., a read is ordered after the most recent write, and a write
must have a timestamp greater than that of the most recent
read, i.e., a write is ordered after the most recent read (and
thus all previous writes).

Non-blocking execution and response queues. The server
executes requests in a non-blocking manner and decouples

310 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 5.2: Server execution and commitment
28 Multi-versioned data store:
29 DS[key][ver] // indexed by key, vers sorted by tw

// ver is either committed or undecided
30 Response queue:
31 resp_qs[key][resp_q] // resp queues for each key
32

33 Function NONBLOCKINGEXECUTE(req, t) :
34 resp← [] // response message
35 curr_ver← DS[req.key].most_recent
36 if req is write then
37 tw.clk←max{t.clk, curr_ver.tr.clk+1}; tw.cid← t.cid
38 tr ← tw
39 new_ver← [req.value, (tw, tr), “undecided”]
40 DS[req.key]← DS[req.key]+new_ver
41 resp← [“done”, (tw, tr)]

42 else
43 curr_ver.tr ←max{t, curr_ver.tr}
44 resp← [curr_ver.value, (curr_ver.tw, curr_ver.tr)]

45 resp_qs[req.key].enqueue(resp, req, t, “undecided”)
46 RESPTIMINGCONTROL(resp_qs[req.key]) // §5.2

47

48 Function ASYNCCOMMITORABORT(tx, decision) :
49 foreach ver created by tx do
50 if decision = “committed” then
51 ver.status← decision

52 else
53 DS.remove(ver)

54 foreach resp_q in resp_qs do
55 foreach resp in resp_q do
56 if resp.request ∈ tx then
57 resp.q_status← decision

58 RESPTIMINGCONTROL(resp_q) // §5.2

their execution from responses. Specifically, a write creates
a version and immediately makes it visible to subsequent
transactions; a read fetches the value of the most recent ver-
sion whose status could be undecided, without waiting for
it to commit; the server prepares the response (lines 34, 41,
and 44), inserts it into a response queue (lines 45 and 46),
which asynchronously sends the responses to clients when it
is safe. (Section 5.2 details response timing control, which
determines when sending a response is safe so timestamp
inversion and cascading aborts are prevented.) Unlike d2PL
and dOCC, which lock data for at least one round-trip time in
the execute and prepare phases (i.e., the contention window),
non-blocking execution ensures that a transaction never ex-
clusively owns the data without performing useful work. As a
result, the server never stalls, and CPUs are fully utilized to ex-
ecute requests. Moreover, non-blocking execution eliminates
the contention window and thus reduces false aborts.

Client-side safeguard. A server response includes the times-
tamp pair (tw, tr) of the most recent version, e.g., new_ver for
a write and curr_ver for a read. The returned (tw, tr) repre-
sents the time range in which the request is valid. That is,
a read must take effect after tw, which is the time when the

most recent write on the same key took effect, and no later
writes can take effect between tw and tr on the same key. A
write must have tw = tr, meaning that it takes effect exactly at
tw. When a transaction has completed its logic (i.e., all shots
are executed) and the client has received responses to all its
requests, the safeguard looks for a consistent snapshot that
intersects all (tw, tr) pairs in server responses by checking if
the (tw, tr) pairs overlap (lines 8, 18–27). This intersecting
snapshot identifies the transaction’s synchronization point,
i.e., all requests are valid at the intersecting timestamp.

Figure 1c shows an example where NCC executes the same
transactions in Figure 1a. The default versions A0 and B0 both
have a timestamp pair (0, 0). tx1 and tx2 are pre-assigned 4
and 8, respectively, and their requests arrive in the same order
as they were in Figure 1a. The safeguard enables NCC to
commit both transactions, i.e., tx1’s responses intersect at 4
while tx2’s intersect at 8, without unnecessary overhead such
as dOCC’s validation cost and false aborts.

When the client has decided to commit or abort the trans-
action, the protocol enters the commit phase by sending the
commit/abort messages to the servers. If the transaction is
committed, the server updates the status of the created ver-
sions from undecided to committed; otherwise, the versions
are deleted (lines 48–53). The client retries the aborted trans-
action. The client sends the results of the committed trans-
action to the user in parallel with the commit messages, i.e.,
asynchronous commit, without waiting for servers’ acknowl-
edgments (lines 11–16).

Supporting complex transaction logic. NCC supports trans-
actions accessing a key multiple times, e.g., read-modify-
writes and repeated reads/writes, by treating its requests to
the same key as a single logical request. For instance, if a
read-modify-write has its read and write requests executed
consecutively (i.e., they are not intersected by other writes),
then only the write response is checked by the safeguard, treat-
ing read-modify-write as one logical request; otherwise, it is
aborted if there are intersecting writes, e.g., when the most
recent version has a tw greater than that returned by the read
of this read-modify-write. The responses of these requests
are grouped together in the response queue, e.g., the write
response of a read-modify-write is inserted right after the
read response of the same read-modify-write. We explain the
details of handling complex logic in the technical report [41].

NCC achieves minimal costs by urgently executing transac-
tions in a non-blocking manner and by ensuring a total order
with the light-weight timestamp-based safeguard. Yet, in order
to provide strict serializability, NCC must enforce the real-
time order between transactions by handling the timestamp-
inversion pitfall, as we discuss next.

5.2 Response Timing Control
NCC avoids the timestamp-inversion pitfall by disentangling
the subtle interleaving between a set of non-conflicting trans-
actions that have real-time order dependencies (e.g., Figure 3),

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 311

without relying on synchronized clocks. Specifically, NCC
introduces response timing control (RTC), which controls the
sending time of responses. It is safe to send the response of a
request req1 when the following dependencies are satisfied:
D1 If req1 reads a version created by req0 of another trans-

action, then req1’s response is not returned until req0 is
committed or it is discarded if req0 is aborted (then req1
will be re-executed).

D2 If req1 is a write and there are reads that read the version
which immediately precedes the one created by req1,
then req1’s response is not returned until the reads are
committed/aborted.

D3 If req1 creates a version immediately after the version
created by req0 of another transaction, then req1’s re-
sponse is not returned until req0 is committed/aborted.

By enforcing these dependencies, NCC controls the send-
ing of responses so that the transactions which form the subtle
interleaving are forced to take effect in their real-time order.
For instance, in Figure 3, server A cannot send the response
of tx1 until tx3 has been committed (assuming at least one of
them writes to A). As a result, any transaction tx2 that begins
after tx1 receives its response, i.e., tx1

rto−→ tx2, must be exe-
cuted after tx1, and thus after tx3 as well: tx2’s execution on
each server is after it begins, which is after tx1 ends, which is
after tx1’s response is sent, which is after tx3 commits, which
is after tx3 executes on each server. This results in a total
order tx3

exe−−→ tx1
exe−−→ tx2, which respects the real-time order,

enforcing Invariant 2, as shown in Part III of Figure 3.
NCC implements RTC by managing response queues, inde-

pendently from request execution. NCC maintains one queue
per key. A queue item consists of four fields: response that
stores the response message of a request, the request itself,
ts which is the pre-assigned timestamp of the request, and
q_status that indicates the state of the request, which is ini-
tially undecided, and updated to either committed or aborted
when the server receives the commit/abort message for this
request (lines 54–57, Algorithm 5.2).

Managing response queues. Algorithm 5.3 details how
NCC manages the response queue of each key. This logic
is invoked every time the server finishes executing a request
(line 46) and receives a commit/response message (line 58).
NCC iterates over the queue items from the head (i.e., the
oldest response) until it finds the first response whose q_status
is undecided, which means all earlier requests on the same
key have been committed or aborted, i.e., this response has
satisfied the three dependencies (lines 60–62 and 71). The
server sends this response message to the client if it has not
done so (lines 72, 74–77). If this is a read response, then
the server sends all consecutive read responses that follow it
(lines 73 and 78–81), because all these read responses satisfy
the three dependencies. In other words, reads returning the
same value do not have dependencies between them. RTC is
effectively similar to locking the response queues, e.g., the

Algorithm 5.3: Response timing control
59 Function RESPTIMINGCONTROL(resp_q) :
60 head← resp_q.head() // the oldest response
61 while head.q_status ̸= “undecided” do

// find the first response we can send
62 resp_q.dequeue()
63 new_head← resp_q.head()
64 new_req← new_head.request; t← new_head.ts
65 while head.q_status = “aborted”
66 and head.request is write and new_req is read do

// handle reads seeing aborted writes
67 resp_q.dequeue() // discard read response

// re-execute the read locally
68 NONBLOCKINGEXECUTE(new_req, t)
69 new_head← resp_q.head()
70 new_req← new_head.request; t← new_head.ts

71 head← resp_q.head()

72 curr_item← head
73 repeated loop

// send dependency-satisfied responses
74 resp← curr_item.response
75 if resp.is_sent ̸= true then
76 sys_call.send(resp) // send to client
77 resp.is_sent← true

// send consecutive read responses
78 next_item← curr_item.next()
79 if curr_item.request is not read
80 or next_item.request is not read then
81 break repeated loop

82 curr_item← next_item

queue is “locked” when a response is sent and other responses
must wait, and is “unlocked” when the commit/abort message
for the request to which the sent response belongs is received.
However, RTC differs from lock-based mechanisms in that
it is decoupled from execution and does not introduce con-
tention windows, i.e., data objects are not locked.

Fixing reads locally. When the server receives an abort mes-
sage for a write request, it must invalidate the responses of any
reads that have fetched the value of the aborted write. This
is necessary to avoid returning invalid results to the client
and to prevent cascading aborts. Specifically, the server re-
moves the response of such a read from the response queue
and re-executes the read request, e.g., it fetches the current
most recent version, prepares a new response, and inserts the
new response to the tail of the queue (lines 65–68).

Avoiding indefinite waits. To avoid responses from circu-
larly waiting on dependencies across different keys, NCC
early aborts a request (thereby aborting the transaction to
which it belongs) if its pre-assigned timestamp is not the high-
est the server has seen and if its response cannot be sent
immediately, i.e., it is not the head of the queue. Specifically,
a write (read) is aborted if there is an undecided request (write
request) with a higher timestamp. Then, the server sends a spe-
cial response to the client without executing the request. The
special response includes a field early_abort which allows

312 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the client to bypass the safeguard and abort the transaction.
We omit the details from the pseudocode for clarity.

RTC is a general solution to timestamp inversion, with-
out the need for synchronized clocks. It does not incur more
aborts even when responses are not sent immediately, be-
cause response management is decoupled from request exe-
cution. That is, whether a transaction is committed or aborted
is solely based on timestamps, and RTC does not affect ei-
ther pre-assignment or refinement of timestamps. Yet, NCC’s
performance also depends on how well timestamps capture
the arrival order of (naturally consistent) transactions. That is,
timestamps that do not match transactions’ arrival order could
cause transactions to falsely abort even if they are naturally
consistent. Next, we will discuss optimization techniques that
enable timestamps to better match the arrival order.

5.3 Asynchrony-Aware Timestamps
NCC proposes two optimizations: a proactive approach that
controls how timestamps are generated before transactions
start, and a reactive approach that updates timestamps to
match the naturally consistent arrival order after requests are
executed. This subsection discusses the proactive approach.

The client pre-assigns the same timestamp to all requests
of a transaction; however, these requests may arrive at their
participant servers at different physical times, which could
result in a mismatch between timestamp and arrival order,
as shown in Figure 4a. Transactions tx1 and tx2 start around
the same time and thus are assigned close timestamps, e.g.,
t1 = 1004 and t2 = 1005, respectively (client IDs are omitted).
Because the latency between B and CL1 is greater than that
between B and CL2, tx1 may arrive at B later than tx2, but tx1
has a smaller timestamp. As a result, the safeguard may falsely
reject tx1, e.g., server B responds with a refined timestamp
pair (1006, 1006) which does not overlap with (1004, 1004),
the timestamp pair returned by server A. However, aborting
tx1 is unnecessary because tx1 and tx2 are naturally consistent.

To tackle this challenge, NCC generates timestamps while
accounting for the time difference, t∆, between when a request
is sent by the client and when the server starts executing the
request. Specifically, the client records the physical time tc
before sending the request to the server; the server records
the physical time ts before executing the request and piggy-
backs ts onto the response sent back to the client; and the
client calculates t∆ by finding the difference between tc and
ts, i.e., t∆ = ts− tc. By measuring the end-to-end time differ-
ence, t∆ effectively masks the impact of queuing delays and
clock skew. The client maintains a t∆ for each server it has
contacted. An asynchrony-aware timestamp is generated by
adding the client’s current physical time and the greatest t∆
among the servers this transaction will access. For instance,
given the values of t∆ shown in Figure 4a, CL1 assigns tx1
timestamp 1014 (i.e., 1004+ 10) and CL2 assigns tx2 1010
(i.e., 1005+5), and both transactions may successfully pass
their safeguard check, capturing natural consistency.

Algorithm 5.4: Smart retry
83 Function SMARTRETRY(tx, t ′) :
84 foreach ver accessed by tx do

// next version of the same key
85 next_ver← ver.next()
86 if next_ver.tw ≤ t ′ then
87 return false

88 if ver created by tx and ver.tw ̸= ver.tr then
89 return false

90 if ver created by tx then
91 ver.tw ← t ′; ver.tr ← t ′

92 else
93 ver.tr ← max{ver.tr, t ′}

94 return true

5.4 Smart Retry
NCC proposes a reactive approach to minimizing the perfor-
mance impact of the safeguard’s false rejects, which happen
when timestamps fail to identify the naturally consistent ar-
rival order, as shown in Figure 4b. Initially, version A0 has
a timestamp pair (0, 0), and B0 has (0, 5). The same trans-
actions tx1 and tx2 as those in Figure 1c access both keys.
Following NCC’s protocol, tx1’s responses contain the times-
tamp pairs (0, 4) and (6, 6) from A and B, respectively, which
will be rejected by the safeguard because they do not overlap.
However, aborting tx1 is unnecessary because tx1 and tx2 are
naturally consistent.

Instead, NCC tries to “reposition” a rejected transaction
with respect to the transactions before and after it to construct
a total order, instead of aborting and re-executing the rejected
transaction from scratch, which would waste all the work the
server has done for executing it. Specifically, NCC chooses a
timestamp that is nearest “in the future” and hopes the rejected
transaction can be re-committed at that time. This is possible
if the chosen time has not been taken by other transactions.

Algorithm 5.4 shows the pseudocode for smart retry. When
the transaction fails the safeguard check, NCC suggests a new
timestamp t ′, which is the maximum tw in the server responses.
The client then sends smart retry messages that include t ′ to
the participant servers, which then attempt to reposition the
transaction’s requests at t ′. The server can reposition a re-
quest if there has not been a newer version that was created
before t ′ (lines 85–87) and, if the request is a write, the ver-
sion it created has not been read by any transactions (lines 88
and 89). The server updates the timestamps of relevant ver-
sions if smart retry succeeds, e.g., the created version has a
new timestamp pair (t ′, t ′), and tr of the read version is up-
dated to t ′ if t ′ is greater (lines 90–93). (Our implementation
does not smart-retry the request that returned the maximum
tw, i.e., tw = t ′, because its smart retry always succeeds.) The
client commits the safeguard-rejected transaction if all its
smart retry requests succeed, and aborts and retries it from
scratch otherwise (lines 9 and 10, Algorithm 5.1).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 313

A
B

C

tx1
(clock=1004)

tx2
(clock=1005)

w1B
r1A w2B r2C

B
t2=1010 t1=1014

!! "#1 → % = 1
!! "#2 → " = 1

!! "#1 → (= 10
!! "#2 → (= 5

w2B w1B

CL1 CL2

(a) Asynchrony-aware timestamps

CL1

CL2

0 4

B0
0 5

8
A0

B1
6 6
w1B

B2
8 8

w2B

A0
(0,4)

A0
(0,8) ✓

tx1
(t=4)

tx2
(t=8)

A

B
0 r1A

done
(8,8)

r2A

Reject

Async
Commit

SG

SG

RTC

done
(6,6) ✗Async

Abort

(b) Safeguard false rejects

CL1

CL2

0

B0
0 5

8
A0

B1
6 6

A0
(0,8) ✓

tx1
(t=4)

tx2
(t=8)

A

B

done
(8,8)

Async
Commit

Reject
SG

SG

B2
8 8

RTC

SR
(t’=6)

A0@6?

B1@6?

SR
Okay ✓Async

Commit

(c) Smart retry reduces false rejects
Figure 4: Optimizations that match the timestamps with transactions’ arrival order. Asynchrony-aware timestamps
proactively controls the pre-assigned timestamps before execution. Smart retry reactively fixes the safeguard’s false
rejects after execution thus avoids aborting and re-executing transactions.

Not only does smart retry avoid false aborts, it also un-
leashes a higher degree of concurrency, as shown in Fig-
ure 4c. The servers have executed a newer transaction tx2
when tx1’s smart retry (SR) messages arrive, and both transac-
tions can be committed even if the messages interleave, e.g.,
tx1’s smart retry succeeds and tx2 passes its safeguard check,
because tx2’s pre-assigned timestamps have left enough room
for repositioning tx1’s requests. In contrast, validation-based
techniques would unnecessarily abort tx1 (considering SR
as dOCC’s validation messages) due to the presence of the
conflicting transaction tx2.

Garbage collection. Old versions are temporarily stored and
garbage collected as soon as they are no longer needed by
undecided transactions for smart retry. Only the most recent
versions are used to serve new transactions.

5.5 Read-Only Transactions
NCC designs a specialized read-only transaction protocol
for read-dominated workloads [10, 12, 26, 40, 44]. Similar
to existing works, NCC optimizes read-only transactions by
eliminating their commit phase because they do not modify
the system state and have nothing to commit. By eliminat-
ing commit messages, read-only transactions achieve optimal
performance in the best case, i.e., one round of non-blocking
messages with constant metadata [40, 42, 43].

Eliminating commit messages brings a new challenge
to response timing control: write responses can no longer
track their dependencies on preceding read-only transactions,
as they do not know if and when those reads are commit-
ted/aborted. To tackle this challenge, NCC aborts a read-only
transaction if it could possibly cause the subtle interleaving
that leads to timestamp inversion. In other words, NCC com-
mits a read-only transaction if its requests arrive in a naturally
consistent order and no intervening writes have been executed
since the last time the client accessed these servers.

Specifically, each client tracks tro which is the tw of the
version created by the most recent write on a server, and the
client maintains a map of tro for each server this client has con-
tacted. A read-only transaction is identified by a Boolean field

IS_READ_ONLY. The client sends each of its requests to the
participant server together with the pre-assigned timestamp
(as in the basic protocol) and the tro of the server. To execute a
read request, the server checks the version at tro. If the version
is still the most recent, the server continues to execute the read
following the basic protocol, e.g., it fetches the most recent
version, refines its tr if needed, and returns its timestamp pair;
otherwise, the server sends a special response that contains a
field ro_abort immediately without executing the request. If
any of the responses contain ro_abort, the client aborts this
read-only transaction; otherwise, the client continues with the
safeguard check and, if needed, smart retry, after which the
client does not send any commit/abort messages.

This protocol pays more aborts in the worst case in ex-
change for reduced message overhead in the normal case, a
trade-off that is worthwhile for read-dominated workloads
where writes are few so aborts are rare, and read-only transac-
tions are many so the savings in message cost are significant.
This protocol also expedites the sending of responses for read-
write transactions because read-only transactions do not insert
responses into the response queue, i.e., a write response de-
pends only on the reads of preceding read-write transactions
in Dependency D2, not those of read-only transactions.

5.6 Failure Handling
Tolerating server failures. NCC assumes servers never fail
as their state is typically made persistent on disks and repli-
cated via state machine replication such as Paxos [29]. All
state changes incurred by a transaction in the execute phase
(e.g., tw and tr of each request) must be written to the disk
and replicated for correctness. For instance, after a request
is executed, the server inserts its response into the response
queue and, in parallel, writes the state changes to the disk
and replicates the request to other replicas. Its response is
sent back to the client when it is allowed by response timing
control and when its replication is finished. Commit/abort and
smart retry messages are also made persistent and replicated.
This simple scheme ensures correctness but incurs high over-
head. We plan to investigate possible optimizations in future
work, e.g., NCC could defer disk writes and replication to the

314 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

last shot of a transaction where all state changes are made
persistent and replicated once and for all, without having to
replicate each request separately. Server replication inevitably
increases latency but does not introduce more aborts, because
whether a transaction is committed or aborted is solely based
on its timestamps, which are decided during request execution
and before replication starts.

Tolerating client failures. NCC must handle client failures
explicitly because clients are not replicated in most systems
and NCC co-locates coordinators with clients. NCC adopts
an approach similar to that in Sinfonia [4] and RIFL [31].
We briefly explain it as follows. For a transaction tx, one
of the storage servers tx accesses is selected as the backup
coordinator, and the other servers are cohorts. In the last
shot of the transaction logic, which is identified by a field
IS_LAST_SHOT in the requests, the client notifies the backup
coordinator of the identities of the complete set of cohorts.
Cohorts always know which server is the backup coordinator.
When the client crashes, e.g., is unresponsive for a certain
amount of time, the backup coordinator reconstructs the final
state of tx by querying the cohorts for how they executed tx,
and commits/aborts tx following the same safeguard and smart
retry logic. Because computation is deterministic, the backup
coordinator always makes the same commit/abort decision
as the client would if the client did not fail. To tolerate one
client failure, NCC needs one backup coordinator which is a
storage server replicated in a usual way.

5.7 Correctness
This section provides proof intuition for why NCC is safe
and live. At a high level, NCC guarantees a total order, the
real-time order, and liveness, with the mechanisms (M1) the
safeguard, (M2) non-blocking execution with response timing
control, and (M3) early aborts, respectively. We provide a
formal proof of correctness in a technical report [41].

NCC is safe. We prove that NCC guarantees strict serial-
izability by demonstrating that both Invariants 1 and 2 are
upheld. These two invariants correspond to the total order and
real-time order requirements, respectively.

Intuitively, NCC commits all requests of a transaction
at the same synchronization point, which is the intersec-
tion of all (tw, tr) pairs in responses, and the synchroniza-
tion points of all committed transactions construct a total
order. Specifically, we prove that the safeguard enforces In-
variant 1, by contradiction. Assume both tx1 and txn are
committed, and tx1

exe7−→ txn
exe7−→ tx1. Without loss of gen-

erality, there must exist a chain of transactions such that
tx1

exe−−→ tx2
exe−−→ . . . exe−−→ txn

exe−−→ tx1. Then, each transaction
may have two requests, req and req′, such that req′1

exe−−→ req2,
req′2

exe−−→ req3, . . . , req′n−1
exe−−→ reqn, req′n

exe−−→ req1. Consider
their returned timestamps, we can derive the following:

1 t ′r1 ≤ tw2, t ′r2 ≤ tw3, . . . , t ′rn ≤ tw1, by NCC’s protocol.

2 tw1 ≤ t ′r1, tw2 ≤ t ′r2, . . . , twn ≤ t ′rn, because all transactions

are committed and by the safeguard logic.

3 tw1≤ t ′r1≤ tw2≤ t ′r2≤ . . .≤ twn≤ t ′rn≤ tw1, by 1 and 2 .

4 t ′r1 = tw2 = t ′r2 = tw3 = . . .= twn = t ′rn = tw1, by 3 .

5 req′i is a write and reqi is a read, i ∈ [1, n], by 4 , NCC’s
protocol, and tx1

exe−−→ tx2
exe−−→ . . . exe−−→ txn

exe−−→ tx1.

6 tw2 = t ′w1 and tw1 = t ′wn, by 5 and NCC’s protocol.

7 t ′w1 = t ′wn, by 4 and 6 , which contradicts that writes
from different transactions must have distinct tw because
timestamps are unique. Therefore, Invariant 1 holds.

We prove that NCC enforces Invariant 2 by considering two
cases while assuming tx1

rto−→ tx2. In case 1, tx1 and tx2 access
some common data items. Then, we must have tx1

exe7−→ tx2,
because NCC executes requests in their arrival order. Then,
it must be true that ¬(tx2

exe7−→ tx1), by Invariant 1. In case 2,
tx1 and tx2 access disjoint data sets, and we prove the claim
by contradiction. Assume tx2

exe7−→ tx1, then there must exist
req2 and req1 in tx2 and tx1, respectively, such that req2

exe7−→
req1. req1’s response is not returned until req2 is committed
or aborted, by applying response timing control transitively
(§5.2). Then, req2 is issued before req1’s client receives req1’s
response because a request, e.g., req2, can be committed or
aborted only after it is issued and executed. Thus, we can
derive ¬(tx1

rto−→ tx2) because tx2 has at least one request, e.g.,
req2, which starts before tx1 receives all its responses. This
means tx2 starts before tx1 is committed, which contradicts
our assumption tx1

rto−→ tx2. Therefore, Invariant 2 must hold.

NCC is live. NCC’s non-blocking execution guarantees that
requests always run to completion, i.e., execution never stalls
(§5.1). Blocking can happen only to the sending of responses
due to response timing control, and NCC avoids circular wait-
ing with early aborts (§5.2). Thus, NCC guarantees that trans-
actions finish eventually.

NCC’s specialized read-only transaction protocol and opti-
mization techniques such as asynchrony-aware timestamps
and smart retry do not affect correctness, because transactions
are protected by the three mechanisms (i.e., M1, M2, and M3
summarized at the beginning of this subsection) regardless of
whether optimizations or the specialized protocol are used.

6 Evaluation
This section answers the following questions:

1. How well does NCC perform, compared to common
strictly serializable techniques dOCC, d2PL, and TR?

2. How well does NCC perform, compared to state-of-the-
art serializable (weaker consistency) techniques?

3. How well does NCC recover from client failures?

Implementation. We developed NCC on Janus’s frame-
work [52]. We improved the framework by making it support
multi-shot transactions, optimizing its baselines, and adding
more benchmarks. NCC’s core protocols have ∼3 K lines of
C++ code. We also show the results of NCC-RW, a version

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 315

Workload Write fraction Assoc-to-obj # keys/RO # keys/RW Value size # cols/key Zipfian

Google-F1 0.3% [0.3%–30%] — 1–10 1–10 1.6KB±119B 10 0.8

Facebook-TAO 0.2% 9.5 : 1 1–1K 1 1–4KB 1–1K 0.8

TPC-C
New-Order Payment Delivery Order-Status Stock-Level Dist/WH WH/svr

44% 44% 4% 4% 4% 10 8

Figure 5: Workload parameters. RO and RW mean read-only and read-write transactions, respectively. TPC-C has a
scaling factor of 10 districts per warehouse and 8 warehouses per server.

Workload Contention # shots Characteristics NCC takeaway

Facebook-TAO Low 1 Read-dominated Performance-optimal reads by the RO protocol

Google-F1 Low 1 Read-dominated Performance-optimal reads by the RO protocol

TPC-C Medium→High Multi-shot Write-intensive Leverages the natural arrival order, minimizes false aborts

Google-WF Low→High 1 Write-intensive Leverages the natural arrival order, minimizes false aborts

Figure 6: Facebook-TAO and Google-F1 have low contention. TPC-C and Google-WF (varying write fractions) are
write-intensive. TPC-C Payment and Order-Status are multi-shot.

without the read-only transaction protocol, i.e., all transac-
tions are executed as read-write transactions.

Baselines. The evaluation includes three strict serializable
baselines (dOCC, d2PL, and Janus) and two serializable base-
lines (MVTO and TAPIR). We chose d2PL and dOCC be-
cause they are the most common strictly serializable tech-
niques. We chose Janus because it is the only open-source
TR-based strictly serializable system we could find. We chose
MVTO because it has the highest best-case performance
among all (weaker) serializable techniques, presenting a per-
formance upper bound. We chose TAPIR because it utilizes
timestamp-based concurrency control.

Our evaluation focuses on concurrency control and assumes
servers never fail. Janus and TAPIR are unified designs of the
concurrency control and replication layers, so we disabled
their replication and only compare with their concurrency con-
trol protocols, shown as Janus-CC and TAPIR-CC, to make
the comparisons fair. We compare with two variants of d2PL.
d2PL-no-wait aborts a transaction if the lock is not available.
d2PL-wound-wait makes the transaction wait if it has a larger
timestamp and aborts the lock-holding transaction otherwise.
All baselines are fully optimized: we co-locate coordinators
with clients (even if baselines cannot handle client failures),
combine the execute and prepare phases for d2PL-no-wait
and TAPIR-CC, and enable asynchronous commitment, i.e.,
the client replies to the user without waiting for the acknowl-
edgments of commit messages.

6.1 Workloads and Experimental Setup
We evaluate NCC under three workloads that cover both read-
dominated “simpler” transactions and many-write more “com-
plex” transactions. Google-F1 and Facebook-TAO synthesize
real-world applications and capture the former: they are one-
shot and read-heavy. TPC-C has multi-shot transactions and

is write-intensive, capturing the latter. We also vary write
fractions in Google-F1 to further explore the latter. Table 5
shows the workload parameters.

Google-F1 parameters were published in F1 [59] and
Spanner [12]. Facebook-TAO parameters were published in
TAO [10]. TPC-C’s New-Order, Payment, and Delivery are
read-write transactions. Its Order-Status and Stock-Level are
read-only. Janus’s original implementation of TPC-C is one-
shot, so we modified it to make Payment and Order-Status
multi-shot, to demonstrate NCC is compatible with multi-shot
transactions and evaluate its performance beyond one-shot
transactions (though they are still relatively short).

Experimental setting. We use Microsoft Azure [47]. Each
machine has 4 CPUs (8 cores), 16GB memory, and a 1Gbps
network interface. We use 8 machines as servers and 16–
32 machines as clients that generate open-loop requests to
saturate the servers. (The open-loop clients back off when
the system is overloaded to mitigate queuing delays.) Google-
F1 and Facebook-TAO have 1M keys, with the popular keys
randomly distributed to balance load. We run 3 trials for
each test and 60 seconds for each trial. Experiments are CPU-
bound (i.e., handling network interrupts).

6.2 Result Overview

NCC outperforms strictly serializable protocols dOCC, d2PL,
and TR (Janus-CC) by 80%–20× higher throughput and 2–
10× lower latency under various workloads (Figure 7) and
write fractions (Figure 8a). NCC outperforms and closely
matches serializable systems, TAPIR-CC and MVTO, respec-
tively (Figure 8b). NCC recovers from client failures with
minimal performance impact (Figure 8c). Please note that Fig-
ure 7 and Figure 8b have log-scale axes. Figure 6 summarizes
the takeaway of performance improvements.

316 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 1

 10

 100

1K

 0 50 100 150 200 250

O.P.

R
e
ad

 L
at

e
n
cy

 (
m

s)
 L

o
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
NCC-RW

(a) Google-F1 Workload

 1

 10

 100

1K

 0 20 40 60 80 100 120

O.P.

R
e
ad

 L
at

e
n
cy

 (
m

s)
 L

o
g

Throughput (K Txn/s)

d2PL-wound-wait
d2PL-no-wait

dOCC

NCC
NCC-RW

(b) Facebook-TAO Workload

 1

 10

 100

1K

 100 1K 10K

N
-O

 L
at

e
n
cy

 (
m

s)
 L

o
g

Throughput (New-Order/s) Log

d2PL-wound-wait
d2PL-no-wait

NCC-RW

NCC
dOCC

Janus-CC

(c) TPC-C Workload

Figure 7: NCC achieves much lower latency under read-dominated workloads with its specialized read-only transaction
algorithm, 50% lower latency under write-intensive workload, and at least 80% higher throughput across workloads.

6.3 Latency vs. Throughput Experiments
Figure 7 shows NCC’s overall performance is strictly bet-
ter than the baselines, i.e., higher throughput with the same
latency and lower latency with the same throughput.

Google-F1 and Facebook-TAO. Figure 7a shows the results
under Google-F1. X-axis is the system throughput, and y-axis
shows the median read latency in log scale. A horizontal line
(O.P.) marks the operating point with reasonably low latency
(< 10ms). At the operating point, NCC has a 2–4× higher
throughput than dOCC and d2PL. We omit the results for
Janus-CC to make the graph clearer as we found that Janus-
CC’s performance is incomparable (consistently worse) with
other baselines, because Janus-CC is designed for highly con-
tended workloads by relying on heavy dependency tracking,
which is more costly under low contention.

NCC has better performance because Google-F1 and
Facebook-TAO have many naturally consistent transactions
due to the prevalence of reads. NCC enables low overhead
by leveraging natural consistency. In particular, its read-only
transaction protocol executes the dominating reads with the
minimum costs (Figure 6). For instance, at the operating point,
NCC has about 99% of the transactions that passed their safe-
guard check and finished in one round trip. 99.1% of the
transactions did not delay their responses, i.e., the real-time
order dependencies were already satisfied when they arrived.
That is, 99% of the transactions were finished by NCC within
a single RTT without any delays. For the 1% of the trans-
actions that did not pass the safeguard check initially, 70%
of them passed the smart retry. Only 0.2% of the transac-
tions were aborted and retried from scratch. All of them were
committed eventually.

As a result, NCC can finish most transactions with one
round of messages (for the read-only ones) and a latency of
one RTT (for both read-only and read-write) while dOCC
and d2PL-wound-wait require three rounds of messages and
a latency of two RTTs (asynchronous commitment saves one
RTT). NCC has much higher throughput than d2PL-no-wait
due to its novel read-only protocol which requires one round
of messages, while d2PL-no-wait requires two. The fewer
messages of NCC translate to lower latency under medium

and high load due to lower queuing delay. d2PL-no-wait
performs similar to NCC-RW because NCC-RW executes
read-only transactions by following its read-write protocol.
However, NCC-RW outperforms d2PL-no-wait under higher
load because conflicts cause d2PL-no-wait to abort more fre-
quently, while NCC-RW has fewer false aborts by leveraging
the natural arrival order. This is more obvious in the Facebook-
TAO results shown in Figure 7b, because Facebook-TAO has
larger read transactions that are more likely to conflict with
writes. The results of Facebook-TAO show similar takeaways.

TPC-C. Each experiment ran all five types of TPC-C transac-
tions, and Figure 7c shows the latency and throughput (both
in log scale) of New-Order while the throughput of the other
four types is proportional. NCC and NCC-RW have ∼20×
higher peak throughput with∼10× lower latency compared to
dOCC. dOCC and d2PL-no-wait have many false aborts when
load increases due to conflicting writes. NCC and NCC-RW
can execute most naturally consistent transactions with low
costs, even if they conflict. For instance, NCC-RW has more
than 80% of the transactions passing the safeguard check and
fewer than 10% of the transactions being aborted and retried
from scratch. NCC-RW has a 50% higher peak throughput
than d2PL-wound-wait because NCC-RW requires only two
rounds of messages, while d2PL-wound-wait requires three.
NCC-RW has higher peak throughput than NCC because
TPC-C has very few read-only transactions, which are also
more likely to abort in NCC due to conflicting writes. Janus-
CC’s performance benefits mostly come from unifying the
transaction and replication layers and are less significant in
a single-datacenter setting, especially after we made some
TPC-C transactions multi-shot.

6.4 Additional Experiments
We show more experiments with Google-F1. We chose
Google-F1 because it has both read-write and read-only trans-
actions, while Facebook-TAO only has read-only transactions
and non-transactional writes.

Varying write fractions. Figure 8a shows the throughput
while increasing the write fraction. Each system is run at
∼75% load according to Figure 7a. The y-axis is the through-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 317

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3

N
o
rm

al
iz
e
d
 T

h
ro

u
g
h
p
u
t

Write Fraction

d2PL-wound-wait
d2PL-no-wait

NCC-RW

NCC
dOCC

(a) Varying Write Fractions

 1

 10

 100

1K

 0 50 100 150 200 250 300

O.P.

R
e
ad

 L
at

e
n
cy

 (
m

s)
 L

o
g

Throughput (K Txn/s)

TAPIR-CC
MVTO

NCC
NCC-RW

(b) Weaker Serializability

 100

 125

 150

 175

 200

 4 6 8 10 12 14 16 18 20 22 24

Fail

T
h
ro

u
g
h
p
u
t
(K

 T
xn

/s
)

Time (seconds)

timeout = 1 sec
timeout = 3 sec

(c) Failure Recovery
Figure 8: NCC’s performance with different write fractions (Google-WF), compared to serializable protocols (TAPIR-CC
and MVTO), and under failures for the Google-F1 workload.

put normalized to the maximum throughput of each system
during the experiment. The higher the write fraction, the more
conflicts in the system. The results show that NCC-RW is
most resilient to conflicts because NCC-RW can exploit more
concurrency in those conflicting but naturally consistent trans-
actions, i.e., NCC has fewer aborts. In contrast, other protocols
may falsely abort transactions due to failed validation (dOCC)
or lock unavailability (d2PL variants). NCC’s read-only trans-
actions are more likely to abort when writes increase because
frequent writes cause the client to have stale knowledge of
the most recently executed writes on each server; as a result,
NCC must abort the reads to avoid timestamp inversion.

Comparing with serializable systems. Figure 8b compares
NCC with MVTO and TAPIR-CC, which provide serializabil-
ity, under Google-F1. NCC outperforms TAPIR-CC because
NCC has fewer messages with its read-only transaction pro-
tocol. MVTO and NCC have similar performance under low
and medium load because they have the same number of
messages and RTTs. Under high load, MVTO outperforms
NCC when many read-only transactions in NCC are aborted:
MVTO never aborts reads because it is allowed to read stale
versions, whereas NCC must read the most recent version and
handle timestamp inversion. In this sense, MVTO presents
a performance upper bound for strictly serializable systems,
and NCC closely matches the upper bound.

Failure recovery. Figure 8c shows how well NCC-RW han-
dles client failures under Google-F1. We inject failures 10
seconds into the experiment by forcing all clients to stop send-
ing the commit messages of ongoing transactions while they
continue issuing new transactions. Undelivered commit mes-
sages cause servers to delay the responses of later transactions
due to response timing control, until the recovery mechanism
is triggered after a timeout. We show two timeout values, 1
and 3 seconds. NCC-RW recovers quickly after failures are
detected, thus client failures have a limited impact on through-
put. In realistic settings, failures on one or a few clients would
have a negligible impact because uncommitted reads do not
block other reads. Similarly, NCC is minimally impacted by
client failures because its read-only transactions do not send
commit messages and thus never delay later writes.

7 Related Work
NCC proposes a new strictly serializable distributed protocol.
This section places it in the context of existing strictly serial-
izable techniques, single-machine concurrency control, and
techniques that provide weaker consistency. At a high-level,
NCC provides better performance, addresses a different prob-
lem setting, and provides stronger guarantees, compared to
these categories of work, respectively.

General strictly serializable protocols. As discussed in Sec-
tion 2.3, existing general strictly serializable protocols are
d2PL, dOCC, TR, or their variants, suffering extra costs when
transactions are naturally consistent. For instance, Spanner’s
read-write transactions [12], Sinfonia [4], and Carousel [68]
are variants of d2PL that must acquire locks. FaRM [15],
FaRMv2 [58], RIFL [31] are variants of dOCC that suffer
extra validation costs, even if they use timestamp-based tech-
niques to reduce validation aborts. AOCC [2] is a variant of
dOCC and operates in a data-shipping environment, e.g., data
can move from servers to client caches, which is different
from NCC which works in a function-shipping environment,
i.e., data resides only on servers. Rococo [51] and its de-
scendant Janus [52] reorder transactions to minimize aborts.
Granola [13] requires an all-to-all exchange of timestamps
between servers, incurring extra messages and RTTs. Our
evaluation shows that NCC outperforms these techniques
for real-world workloads where natural consistency is preva-
lent. When transactions are not naturally consistent, however,
these techniques could outperform NCC. Figure 9 summa-
rizes performance and consistency properties of NCC and
some representative distributed systems.

Special strictly serializable techniques. In addition to the
general techniques discussed above, there are several inter-
esting research directions that use specialized techniques to
provide strict serializability. Some work utilizes a central-
ized sequencer to enforce strict serializability [6, 19, 33, 36,
45, 56, 62, 73]. Because all transactions must contact the se-
quencer before execution (e.g., Eris [33]), in addition to the
extra latency, the sequencer can be a single point of failure
and scalability bottleneck. Scaling out sequencers incurs ex-
tra costs, e.g., Calvin [62] requires all-to-all messages among

318 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

System Consistency Technique Latency (RTT) Lock-free Non-blocking False aborts
NCC Strict Ser. NC+TS 1 Yes Yes Low
Spanner [12] Strict Ser. d2PL+TrueTime RO: 1, RW: 2 RO: Yes, RW: No No RO: None, RW: Med
d2PL-NoWait Strict Ser. d2PL 1 No No High
AOCC [2] Strict Ser. dOCC 2 Yes No High
Janus [52] Strict Ser. TR 2 Yes No None
dOCC Strict Ser. dOCC 2 No No High
d2PL-WoundWait Strict Ser. d2PL 2 No No Med
FaRMv2 [58] Strict Ser. dOCC 2 No No Med
TAPIR [72] Ser. dOCC+TS 1 Yes No Med
DrTM [66] Ser. RO: TS, RW: d2PL RO: 2, RW: 3 RO: Yes, RW: No No Med
TO [7] Ser. TS 1 Yes No Med
MVTO [55] Ser. TS 1 Yes No Low

Figure 9: The consistency and best-case performance of representative distributed protocols for naturally consistent
workloads, processing one-shot transactions with possible optimizations considered. NC means natural consistency, and
TS means timestamp-based technique. NCC has the lowest performance costs while providing strict serializability.

sequencers for each transaction (epoch). Some ensure strict
serializability by moving all data a transaction accesses to
the same machine, e.g., LEAP [35]. Some rely on program
analysis and are application-dependent, e.g., the homeostasis
protocol [57]. Some rely on extensive gossip messages for
liveness, which lower throughput and increase latency, e.g.,
Ocean Vista [18] whose latency of a transaction cannot be
lower than the gossiping delay of the slowest server even if
this server is not accessed by the transaction. General tech-
niques such as NCC do not have the above limitations.

Strictly serializable read-only transaction protocols. To
the best of our knowledge, the only existing strictly serializ-
able read-only transaction protocol that has optimal best-case
performance is Spanner [12]. Spanner ensures strict serial-
izability by using d2PL for read-write transactions and by
using synchronized clocks (TrueTime) for read-only transac-
tions. TrueTime must be accurately bounded for correctness
and those bounds need to be small to achieve good perfor-
mance, which are achieved by Google’s infrastructure using
special hardware, e.g., GPS and atomic clocks [9] that are not
generally available. For instance, CockroachDB [61], which
began as an external Spanner clone, chose not to support
strict serializability because it does not have access to such
infrastructure [25]. In contrast, NCC’s read-only transactions
achieve optimal best-case performance and provide strict seri-
alizability, without requiring synchronized clocks.

Single-machine concurrency control. Concurrency control
for single-machine databases is different from the distributed
setting on which this paper focuses. First, some techniques
are not feasible in a distributed setting. For instance, Silo [64]
relies on atomic instructions, and MVTL [3] relies on shared
lock state, which are challenging across machines. Second,
most techniques, e.g., Silo [64] and TicToc [69], follow a
multi-phase design and would be expensive if made dis-
tributed, e.g., they need distributed lock management and one
round of inter-machine messages for each phase, which would

be unnecessary costs for naturally consistent transactions.
Their designs, however, are feasible and highly performant
for the single-machine setting they target.

Protocols for weaker consistency. Many systems trade
strong consistency for better performance. For instance, some
settle for restricted transaction APIs, e.g., read-only and/or
write-only transactions [16, 37, 38]. Some choose to support
weaker consistency models, e.g., causal consistency and se-
rializability [17, 32, 38, 39, 46, 61, 65, 70]. In contrast, NCC
provides stronger consistency and supports general transac-
tions, greatly simplifying application development.

8 Conclusion
Strictly serializable datastores are advocated by recent work
because they greatly simplify application development. This
paper presents NCC, a new design that provides strict seri-
alizability with minimal overhead by leveraging natural con-
sistency in datacenter workloads. NCC identifies and over-
comes timestamp inversion, a fundamental correctness pitfall
in timestamp-based concurrency control techniques. NCC sig-
nificantly outperforms existing strictly serializable techniques
and closely matches the performance of serializable systems.

Acknowledgments. We gratefully thank our shepherd, Atul
Adya, for his invaluable feedback that significantly improved
this work. We thank the anonymous reviewers for their careful
reading of our paper and their many insightful comments and
suggestions. This work was supported by the National Science
Foundation under grant CNS 1824130, 2130590, 2238768
as well as a gift from Microsoft Research. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Availability. Code and experimental scripts are available at
https://github.com/nyu-news/janus/tree/ncc. More
details on NCC are in the technical report [41].

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 319

https://github.com/nyu-news/janus/tree/ncc

References
[1] Atul Adya. Weak consistency: a generalized theory and

optimistic implementations for distributed transactions.
PhD thesis, Massachusetts Institute of Technology, De-
partment of Electrical Engineering and Computer Sci-
ence, 1999.

[2] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient optimistic concurrency control
using loosely synchronized clocks. ACM SIGMOD
Record, 24(2):23–34, 1995.

[3] Marcos K Aguilera, Tudor David, Rachid Guerraoui, and
Junxiong Wang. Locking timestamps versus locking ob-
jects. In ACM Symposium on Principles of Distributed
Computing (PODC), 2018.

[4] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Al-
istair Veitch, and Christos Karamanolis. Sinfonia: A
new paradigm for building scalable distributed systems.
In ACM Symposium on Operating System Principles
(SOSP), 2007.

[5] InfiniBand Trade Association. Infiniband architecture
specification, release 1.0, october 2000. http://www.
infinibandta.org/, 2000.

[6] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D Davis.
CORFU: A shared log design for flash clusters. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012.

[7] Philip A Bernstein and Nathan Goodman. Concurrency
control in distributed database systems. ACM Comput-
ing Surveys (CSUR), 13(2):185–221, 1981.

[8] Google Cloud Blog. Why you should pick strong con-
sistency, whenever possible. https://cloud.google.
com/blog/products/databases/why-you-should-
pick-strong-consistency-whenever-possible,
2018.

[9] Eric Brewer. Spanner, TrueTime and the CAP theorem.
Technical report, Google Research, 2017.

[10] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In USENIX Annual Technical Con-
ference (ATC), Jun 2013.

[11] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi,
Yanzhe Chen, Zhaoguo Wang, Binyu Zang, and Haib-
ing Guan. Fast in-memory transaction processing using

RDMA and HTM. ACM Transactions on Computer
Systems (TOCS), 35(1):1–37, 2017.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, JJ Furman andSanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[13] James Cowling and Barbara Liskov. Granola: Low-
overhead distributed transaction coordination. In
USENIX Annual Technical Conference (ATC), Jun 2012.

[14] DPDK. DPDK. http://dpdk.org/, 2020.

[15] Aleksandar Dragojevic, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In ACM Symposium on
Operating System Principles (SOSP), Oct 2015.

[16] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy
Zwaenepoel. Orbe: Scalable causal consistency using
dependency matrices and physical clocks. In ACM Sym-
posium on Cloud Computing (SoCC), 2013.

[17] Amazon DynamoDB. Amazon DynamoDB :: Fast and
flexible NoSQL database service for any scale. http:
//aws.amazon.com/dynamodb/, 2021.

[18] Hua Fan and Wojciech Golab. Ocean Vista: Gossip-
based visibility control for speedy geo-distributed trans-
actions. Proceedings of the VLDB Endowment (PVLDB),
12(11):1471–1484, 2019.

[19] FaunaDB. FaunaDB :: The data API for your
client-serverless applications. https://fauna.com/,
2021.

[20] Hector Garcia-Molina and Kenneth Salem. Main mem-
ory database systems: An overview. IEEE Transac-
tions on knowledge and data engineering, 4(6):509–516,
1992.

[21] David K. Gifford. Information storage in a decentral-
ized computer system. PhD thesis, Stanford University,
Department of Electrical Engineering, 1981.

[22] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can

320 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.infinibandta.org/
http://www.infinibandta.org/
https://cloud.google.com/blog/products/databases/why-you-should-pick-strong-consistency-whenever-possible
https://cloud.google.com/blog/products/databases/why-you-should-pick-strong-consistency-whenever-possible
https://cloud.google.com/blog/products/databases/why-you-should-pick-strong-consistency-whenever-possible
http://dpdk.org/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
https://fauna.com/

JUMP them! In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015.

[23] Maurice P. Herlihy and Jeannette M. Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[24] Robert Kallman, Hideaki Kimura, Jonathan Natkins, An-
drew Pavlo, Alexander Rasin, Stanley Zdonik, Evan PC
Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: A
high-performance, distributed main memory transaction
processing system. Proceedings of the VLDB Endow-
ment (PVLDB), 1(2):1496–1499, 2008.

[25] Spencer Kimball and Irfan Sharif. Living without
atomic clocks. https://www.cockroachlabs.com/
blog/living-without-atomic-clocks/, 2021.

[26] Kishori M Konwar, Wyatt Lloyd, Haonan Lu, and Nancy
Lynch. SNOW revisited: Understanding when ideal read
transactions are possible. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2021.

[27] Tim Kraska, Gene Pang, Michael J Franklin, Samuel
Madden, and Alan Fekete. MDCC: Multi-data center
consistency. In ACM SIGOPS European Conference on
Computer Systems (EuroSys), 2013.

[28] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
(CACM), 21(7), 1978.

[29] Leslie Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems (TOCS), 16(2):133–169,
1998.

[30] Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, 2001.

[31] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushitay, and John Ousterhout. Implementing lineariz-
ability at large scale and low latency. In ACM Sympo-
sium on Operating System Principles (SOSP), 2015.

[32] Justin Levandoski, David Lomet, Sudipta Sengupta,
Ryan Stutsman, and Rui Wang. High performance trans-
actions in deuteronomy. In Conference on Innovative
Data Systems Research (CIDR), 2015.

[33] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In ACM Symposium on
Operating System Principles (SOSP), 2017.

[34] Kai Li and Jeffrey F Naughton. Multiprocessor main
memory transaction processing. In Proceedings Inter-
national Symposium on Databases in Parallel and Dis-
tributed Systems, pages 177–178. IEEE Computer Soci-
ety, 1988.

[35] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi,
Kian-Lee Tan, and Zhengkui Wang. Towards a non-2PC
transaction management in distributed database systems.
In ACM International Conference on Management of
Data (SIGMOD), 2016.

[36] Yu-Shan Lin, Shao-Kan Pi, Meng-Kai Liao, Ching
Tsai, Aaron Elmore, and Shan-Hung Wu. MgCrab:
Transaction crabbing for live migration in deterministic
database systems. Proceedings of the VLDB Endowment
(PVLDB), 12(5):597–610, 2019.

[37] Wyatt Lloyd, Michael J. Freedman, Michael Kamin-
sky, and David G. Andersen. Don’t settle for eventual:
Scalable causal consistency for wide-area storage with
COPS. In ACM Symposium on Operating System Prin-
ciples (SOSP), 2011.

[38] Wyatt Lloyd, Michael J. Freedman, Michael Kamin-
sky, and David G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2013.

[39] David Lomet, Alan Fekete, Rui Wang, and Peter Ward.
Multi-version concurrency via timestamp range conflict
management. In IEEE International Conference on
Data Engineering (ICDE), 2012.

[40] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai
Mu, and Wyatt Lloyd. The SNOW theorem and latency-
optimal read-only transactions. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[41] Haonan Lu, Shuai Mu, Siddhartha Sen, and Wyatt Lloyd.
NCC: Natural concurrency control for strictly serial-
izable datastores by avoiding the timestamp-inversion
pitfall (extended version). https://arxiv.org/abs/
2305.14270, 2023.

[42] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd.
Performance-optimal read-only transactions. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[43] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd.
Performance-optimal read-only transactions (extended
version). Technical report, TR-005-20 v1, Princeton
University, Department of Computer Science, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 321

https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://arxiv.org/abs/2305.14270
https://arxiv.org/abs/2305.14270

[44] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux,
Jim Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Ku-
mar, and Wyatt Lloyd. Existential consistency: Measur-
ing and understanding consistency at Facebook. In ACM
Symposium on Operating System Principles (SOSP), Oct
2015.

[45] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Mad-
den. Aria: A fast and practical deterministic OLTP
database. Proceedings of the VLDB Endowment
(PVLDB), 13(12):2047–2060, 2020.

[46] Hatem A Mahmoud, Vaibhav Arora, Faisal Nawab, Di-
vyakant Agrawal, and Amr El Abbadi. MaaT: Effec-
tive and scalable coordination of distributed transactions
in the cloud. Proceedings of the VLDB Endowment
(PVLDB), 7(5):329–340, 2014.

[47] Microsoft. Microsoft Azure :: New challenges need
agile solutions. Invent with purpose. https://azure.
microsoft.com/en-us/, 2020.

[48] David Mills. RFC1305: Network Time Protocol (Version
3) Specification, Implementation. RFC Editor, 1992.

[49] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: RTT-based congestion control for the
datacenter. ACM SIGCOMM Computer Communication
Review, 45(4):537–550, 2015.

[50] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
ACM Special Interest Group on Data Communication
(SIGCOMM), 2018.

[51] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2014.

[52] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang
Li. Consolidating concurrency control and consensus
for commits under conflicts. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

[53] Christos H. Papadimitriou. The serializability of con-
current database updates. Journal of the ACM, 26(4),
1979.

[54] Costin Raiciu and Gianni Antichi. NDP: Rethinking dat-
acenter networks and stacks two years after. ACM SIG-
COMM Computer Communication Review, 49(5):112–
114, 2019.

[55] David P Reed. Implementing atomic actions on decen-
tralized data. ACM Transactions on Computer Systems
(TOCS), 1(1):3–23, 1983.

[56] Kun Ren, Dennis Li, and Daniel J Abadi. SLOG:
Serializable, low-latency, geo-replicated transactions.
Proceedings of the VLDB Endowment (PVLDB),
12(11):1747–1761, 2019.

[57] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hos-
sein Hojjat, Christoph Koch, Nate Foster, and Johannes
Gehrke. The homeostasis protocol: Avoiding transac-
tion coordination through program analysis. In ACM
International Conference on Management of Data (SIG-
MOD), 2015.

[58] Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Dragoje-
vić, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. In ACM
International Conference on Management of Data (SIG-
MOD), 2019.

[59] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle
Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte.
F1: A distributed SQL database that scales. Proceedings
of the VLDB Endowment (PVLDB), 2013.

[60] Michael Stonebraker, Samuel Madden, Daniel J Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The end of an architectural era: It’s time for a complete
rewrite. In Making Databases Work: the Pragmatic Wis-
dom of Michael Stonebraker, pages 463–489. Associa-
tion for Computing Machinery and Morgan & Claypool,
2018.

[61] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. CockroachDB: The
resilient geo-distributed SQL database. In ACM Interna-
tional Conference on Management of Data (SIGMOD),
2020.

[62] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast distributed transactions for partitioned
database systems. In ACM International Conference
on Management of Data (SIGMOD), 2012.

[63] TPC. TPC-C: An on-line transaction processing bench-
mark. http://www.tpc.org/tpcc/, 2020.

322 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
http://www.tpc.org/tpcc/

[64] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In ACM Symposium on
Operating System Principles (SOSP), 2013.

[65] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang,
Zhenhan Gong, and Binyu Zang. Unifying timestamp
with transaction ordering for MVCC with decentralized
scalar timestamp. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2021.

[66] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In ACM Symposium on Oper-
ating System Principles (SOSP), 2015.

[67] Arthur Whitney, Dennis Shasha, and Stevan Apter. High
volume transaction processing without concurrency con-
trol, two phase commit, SQL or C++, 1997.

[68] Xinan Yan, Linguan Yang, Hongbo Zhang, Xi-
ayue Charles Lin, Bernard Wong, Kenneth Salem, and
Tim Brecht. Carousel: Low-latency transaction process-
ing for globally-distributed data. In ACM International
Conference on Management of Data (SIGMOD), 2018.

[69] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. TicToc: Time traveling optimistic con-
currency control. In ACM International Conference on
Management of Data (SIGMOD), 2016.

[70] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez,
Larry Rudolph, and Srinivas Devadas. Sundial: Harmo-
nizing concurrency control and caching in a distributed
OLTP database management system. Proceedings of the
VLDB Endowment (PVLDB), 11(10):1289–1302, 2018.

[71] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Build-
ing consistent transactions with inconsistent replication.
In ACM Symposium on Operating System Principles
(SOSP), 2015.

[72] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Building con-
sistent transactions with inconsistent replication. ACM
Transactions on Computer Systems (TOCS), 35(4):1–37,
2018.

[73] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Nama-
sivayam, Alex Miller, Evan Tschannen, Steve Ather-
ton, Andrew J Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David
Scherer, Alec Grieser, Young Liu, Alvin Moore, Bhaskar
Muppana, Xiaoge Su, and Vishesh Yadav. Founda-
tionDB: A distributed unbundled transactional key value
store. In ACM International Conference on Manage-
ment of Data (SIGMOD), 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 323

Conveyor: One-Tool-Fits-All Continuous Software Deployment at Meta

Boris Grubic1, Yang Wang1,2, Tyler Petrochko1, Ran Yaniv1, Brad Jones1, David Callies1,

Matt Clarke-Lauer1, Dan Kelley1, Soteris Demetriou1,3, Kenny Yu1, and Chunqiang Tang1

1Meta Platforms, 2The Ohio State University, 3Imperial College London

Abstract

We present Conveyor, Meta’s software deployment tool,

along with the valuable data obtained from managing over

30,000 deployment pipelines that deploy all kinds of services

at Meta across millions of machines. We describe a wide

range of deployment scenarios that Conveyor supports to

achieve universal coverage. At Meta, out of all the deploy-

ment pipelines for services deployed via containers, 97% of

them employ fully automated deployments without manual

intervention: 55% utilize continuous deployment, instantly

deploying every code change to production after passing au-

tomated tests, and the remaining 42% are automatically de-

ployed on a fixed schedule (mostly daily or weekly) without

manual validation. We highlight several distinguishing fea-

tures of Conveyor, including safe in-place updates to reduce

hardware costs, analysis of code dependencies to prevent

faulty releases, and the capability to deploy complex ML

models at scale.

1 Introduction

“Release early, release often” [1, 32] is central to Meta’s engi-

neering culture. For example, Meta’s largest service, Front-

FaaS, which is a serverless function-as-a-service platform,

runs on more than half a million machines and has tens of

thousands of developers making changes to its code base,

with thousands of code commits every workday. Despite this

extremely dynamic environment, it continuously releases a

new version into production every three hours [33].

Although the concept of frequent software releases is well-

established, previous studies have primarily relied on limited

surveys or analyses [7, 20, 23, 25, 38–41, 48]. In contrast,

we leverage our nine years of direct experience in develop-

ing Meta’s deployment tool called Conveyor and the wealth

of data obtained from managing over 30,000 deployment

pipelines to answer the following questions: 1) What is the

adoption rate of deployment automation, and what is im-

portant in driving the adoption? 2) What is special about

deployment safety at hyperscale? 3) What distinguishes the

deployment of ML models from traditional service executa-

bles? We summarize our answers to these questions below.

1.1 Adoption of Deployment Automation

Universal adoption. We strongly argue for universal adop-

tion of a single deployment tool within an organization to

support all kinds of services, both small and large. At Meta,

0.1% and 1% of the largest services consume 40% and 80%

of the total fleet capacity, respectively. Similarly, Google

reported that “the top 1% of jobs consume over 99% of all

resources [47].” These largest services often require the most

complex deployment features, and neglecting them would

lead to fragmentation and difficulties in managing the site.

For example, due to FrontFaaS’s demanding requirements,

it used to have its own complex deployment tool written in

over 30,000 lines of code. This kind of fragmentation compli-

cates the operation of our site. In the event of a site outage,

very few people know how to safely revert a specific service’s

problematic release.

Furthermore, the impact of a deployment tool on site relia-

bility necessitates many advanced features to ensure the safety

of deployments, as outlined in §1.2. While it may be tempt-

ing to develop a new custom tool to address specific needs

that are currently unsupported by the standard tool, Meta’s

experience has consistently shown that these custom tools,

owned by individual product teams, have seldom reached the

level of maturity required to provide the essential, advanced

deployment-safety features. Consequently, without any ex-

ceptions, these custom tools have always been assimilated

back into the standard tool as it evolves and matures.

Over the past nine years, Conveyor has achieved universal

adoption at Meta, and the key to its success lies in its ability to

support a wide range of deployment scenarios while ensuring

the safety of deployments (§3).

Fully automated deployments. After addressing numerous

challenges along the way, the adoption rate of continuous

deployment [39] at Meta has greatly exceeded our initial ex-

pectations. With continuous deployment, every time a code

change is committed to the code repository, it automatically

goes through a series of tests. If it passes those tests, it is

deployed to production immediately, without manual inter-

vention. Currently, out of all Meta’s deployment pipelines

for services deployed via containers, 97% employ fully auto-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 325

mated deployments: 55% utilize continuous deployment and

the remaining 42% automatically deploy on a fixed schedule

(mostly daily or weekly) without manual validation.

In contrast, in early 2018, 47% of services at Meta were

deployed manually without using any automation tool, 41%

utilized an automation tool but still required manual valida-

tion, and only 12% were deployed through full automation.

The significant increase in fully automated deployments, from

12% to 97%, has greatly reduced developer toil and improved

productivity. Moreover, in early 2017, 20% of our fleet’s RPC

traffic [37] were generated by executables that had not been

updated within 30 days. Currently, this number has dropped

to around 1%. Up-to-date code brings many benefits, such as

faster iteration speed and the timely implementation of bug

fixes and security fixes.

To automate deployments, bugs and deployment failures

must be embraced as a norm. Instead of introducing manual

validations to prevent failures, automated guardrails such as

testing and health checks should be implemented to detect

release failures early and contain their adverse effects. Specif-

ically, although 5.4% of our deployments fail, deployments

are still highly reliable as the majority of those failed deploy-

ments are caught during early deployment phases with little

to no production impact. The high reliability of automated de-

ployments is evidenced by the fact that only 0.92% of finished

deployments are manually reverted or patched by developers.

1.2 Deployment Safety at Hyperscale

Making in-place updates safe. Due to its strong safety guar-

antees, the approach of mirroring update, which keeps the

existing deployment intact and uses a separate set of contain-

ers to deploy a new version of the software, is widely used

in the industry [2, 11], as it can easily redirect traffic back to

the old deployment if the new deployment encounters issues.

However, the cost of keeping spare hardware for a second

deployment is prohibitive for our hyperscale services. At

Meta, we exclusively utilize in-place updates for all services,

which directly update containers in the existing deployment,

eliminating the need for a separate deployment.

Updating a service in place requires precise controls over

container updates and health checks to ensure safety. To en-

able such controls, we have enhanced our cluster manager [45]

to allow updating a specific subset of a job’s containers to

a new version while keeping the remaining containers on

the old version, as opposed to the traditional approach that

requires updating a job’s all containers as a whole [22].

Furthermore, for complex services like sharded databases,

it is essential for the service itself, rather than the cluster man-

ager, to determine when to update each container, because the

service knows best about its own requirements such as shard

replica safety. Our cluster manager’s TaskControl interface

enables this, whereas existing cluster managers disallow it.

Finally, we have enhanced our monitoring system to con-

duct health checks on “moving targets,” i.e., a dynamically

changing subset of a job’s tasks. This subset evolves as the de-

ployment progresses, in contrast to traditional health checks

that always target a fixed set of tasks, i.e., all tasks in the job.

Overall, these precise-control features enable Conveyor to

perform in-place updates safely while eliminating the extra

hardware costs associated with the mirroring approach.

Handling complex code dependencies. Pioneered by hy-

perscalers such as Google, monorepo [9], which stores the

code for an organization’s many projects in a single reposi-

tory, has become increasingly popular due to benefits such as

improved code reuse. However, increased code reuse leads

to more complex code dependencies, such as a service X

transitively depending on shared code at a depth of over 10

layers. In such cases, when a bug is introduced to some de-

pendent code, the owner of service X might not even know

that service X is affected. Our data show that about 14% of

the to-be-deployed executables are affected by known bugs in

dependent code and should not be deployed into production.

Conveyor’s Bad Package Detector automatically enforces this

(§3.2), but existing deployment tools do not support it.

1.3 ML Model Deployment

Traditional deployment tools [3, 18, 42, 46] exclusively focus

on the deployment of service executables. Even if they evolve

to achieve universal coverage for service executables, in the

era of rapid proliferation of ML applications, they still leave a

significant gap by not addressing the deployment of ML mod-

els. Conveyor has been specifically enhanced to address this

need and currently about 44% of its pipelines are for model

deployments. To support ML models, Conveyor coordinates

deployment pipelines for models that share the same infer-

ence executable, synchronizes the deployment of different

shards of a partitioned large model, and implements phased

in-place updates of models through the configuration manage-

ment system [44], in contrast to the traditional approach of

updating executables via the cluster manager. Dedicated ML

platforms such as AWS SageMaker can deploy models using

the mirroring approach [35, 36], but they do not support the

advanced model-deployment features mentioned above.

Contributions. We make several contributions in this paper.

• We believe this paper is the most comprehensive report

to date on deployment scenarios, operational experience,

and production data related to software deployment.

• We demonstrate the feasibility of achieving aggressive

goals for software deployment, such as frequent and auto-

mated deployment without manual validation, and using

a single deployment tool to provide universal coverage

for datacenter services, ML models, application configu-

rations, host-level daemons, and mobile apps.

• We present novel techniques that ensure the safety of in-

place updates, prevent faulty releases through analysis of

code dependencies, and safely deploy ML models.

326 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Overview of Software Deployment at Meta

To provide context for the discussions in later sections, this

section gives an overview of Meta’s software deployment

culture and deployment ecosystem.

2.1 Deployment Culture

At Meta, we mandate frequent software deployments for mul-

tiple reasons. First, frequent releases enhance developer pro-

ductivity. Engineers at Meta heavily rely on A/B test results

of new product features to guide their development. This

necessitates frequently deploying and testing new code with

real users. Second, frequent releases reduce the complexity of

troubleshooting in production because each release contains

fewer code changes. Finally, frequent releases ensure timely

deployment of bug fixes and security fixes. Consider a widely

publicized site outage in 2014 [29]. Two months before the

outage, the issue that later caused the outage was identified

and the bug fix was already committed to the code repository.

Unfortunately, no new deployment took place for two months.

In general, preventing human mistakes in software deploy-

ments at the scale of thousands of engineers is unachievable

without utilizing automation tools like Conveyor.

Meta’s Push4Push program enforces regular deployments

through tickets. Service owners get a ticket if their services

are not updated within certain days (42 days for low-traffic

services and 30 days for high-traffic services), and it escalates

to managers at 63 days. In practice, Push4Push results in 96%

of services deploying weekly or more frequently.

2.2 Deployment Ecosystem

Meta’s private cloud comprises multiple datacenter regions.

Each region has its own instance of cluster manager called

Twine [45], which manages machines and containers. During

a deployment, Conveyor instructs Twine to update containers.

Meta’s datacenter software is structured as many microser-

vices [21]. A service comprises one or multiple jobs. A job

comprises one or more tasks, and a task is mapped to a Linux

container. Typically, a service is deployed to multiple regions

for resilience, running one job for each region where it is

deployed, and each of those jobs is managed by a different

Twine instance.

Figure 1 presents an overview of the software deployment

ecosystem at Meta. Developers define the update procedure

for their services by specifying a deployment pipeline, which

is a directed acyclic graph (DAG) comprising a set of input

artifacts and a set of actions. A simple pipeline is shown at the

top of Figure 1, while a more complex example is provided

in Figure 3. An action represents an operation to be executed

and takes a set of artifacts as input and potentially generates

a new set of artifacts. Examples of artifacts include source

code and compiled executables. Once all the input artifacts

of a pipeline are ready, the pipeline will be executed, creating

a release. A release is one execution of a pipeline.

Conveyor

Twine

(cluster mgr)

Health Check Service

(HCS)

Configerator

(Config Mgmt System)

Code

(artifact)

Build

(action)

Deploy

(action)

Image

(artifact)

Service-specific

TaskController

Twine

Monitoring DataJob

Old task

Updated task

Legend

Conveyor executes deployment pipelines

A service comprising two jobs

Figure 1: Software deployment ecosystem at Meta. The two

Twine instances manage jobs in different datacenter regions.

The deploy action drives Twine to update containers and

is typically the most complex part of a pipeline. To prevent

a bug from instantly impacting all tasks within a job, the

deploy action updates tasks in phases. Each phase updates

a subset of tasks, checks their health, and proceeds to the

next phase only if no issues are detected. To check service

health, Twine and the service itself can log various health

signals, such as CPU utilization and user engagement metrics.

The Health Check Service (HCS) is responsible for checking

these health signals for anomalies based on user-defined rules.

For example, it can detect if user engagement drops below a

certain threshold. Collecting health signals often requires a

waiting period to gather monitoring data, known as the bake

time. Therefore, a deploy action typically includes several

phases, each with an update period and a bake period, and

such information is defined in a deployment plan.

In addition to driving Twine to deploy service executables,

Conveyor can also drive Configerator [44], our configuration

management system, to implement phased deployments of

ML models and configuration files (§3.3). Moreover, a ser-

vice with special requirements can optionally provide its own

TaskController to advise Twine on which tasks are safe to

update together, as explained in the example below.

2.3 Component Interaction by Example

We illustrate the interaction between various components in

Figure 1 through the example of deploying a new software

version for a sharded key-value store (KVStore). The KV-

Store is deployed across two regions, denoted as X and Y ,

with each region running a separate job consisting of six tasks.

These jobs and tasks are labeled as JobX = [X1, · · · ,X6] and

JobY = [Y 1, · · · ,Y 6]. These 12 tasks collectively host 500

data shards, each of which has three replicas that are poten-

tially distributed across regions.

According to the KVStore’s quorum protocol, if a shard

loses two out of its three replicas, it becomes unavailable.

Thus, concurrently updating any two specific tasks carries

the risk of rendering certain shards unavailable. Since Con-

veyor and Twine are unaware of the application-level shard

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 327

Conveyor TwineX TaskControllerHealth Check Service

Request = [X1, X2, X3]

Approved = [X1, X3]

Finished = [X1, X3], Request = [X2]

Approved = [X2]

Finished = [X2]

Update 3 tasks

Updated 3 tasks

Bake

time
Check health on

[X1, X2, X3]

Health OK

Check health on

[X1, X2, X3]

Health OK…

Figure 2: Phase 1 of updating the KVStore.

placement [24], they cannot determine whether it is safe to

update any two specific tasks together. To ensure shard avail-

ability, the KVStore provides its own custom TaskController

to advise Twine on which tasks are safe to update together.

The deploy action of the KVStore consists of two phases:

1) updating three tasks of JobX , and 2) updating the remaining

three tasks of JobX and all six tasks of JobY (see §6.5.2 for

alternative setups). In phase 1, Conveyor instructs TwineX ,

the Twine instance in region X , to update three tasks of JobX ,

as depicted in Figure 2. TwineX chooses to update tasks

X1, X2, and X3 and communicates this intent to the TaskCon-

troller by sending request= [X1,X2,X3]. The TaskController

responds with a subset of tasks that can be safely updated to-

gether. For example, the TaskController may find that the

shard replicas hosted by X1 and X3 do not overlap but further

including X2 would result in some shard losing more than

one replica. Therefore, it responds with approved = [X1,X3].
Consequently, TwineX executes the updates for X1 and X3

and then notifies the TaskController. The TaskController sub-

sequently responds with the next batch of tasks that are now

safe to be updated, in this example, approved = [X2].

Once all tasks in phase 1 of the deploy action are updated,

Twine notifies Conveyor. Next, during the configured bake

time, Conveyor periodically invokes the Health Check Ser-

vice to access the health of X1, X2, and X3 (instead of all

tasks in JobX), by comparing the error rate, latency, and user

engagement metric of those tasks before and after the update.

If the health checks pass, Conveyor proceeds to phase 2

of the deploy action by instructing TwineX to update the

remaining 3 tasks of JobX and instructing TwineY to update

all 6 tasks of JobY . The process is similar to that in phase 1.

This example highlights a key principle in our design: sepa-

ration of concerns. Conveyor orchestrates the execution of the

deployment plan supplied by the service owner without wor-

rying about how tasks are updated. A custom TaskController

usually has a simple implementation since it only needs to

determine which tasks can be safely updated together based

on the application constraints. The complexity of actually up-

dating tasks and managing their lifecycle is handled by Twine

without the involvement of Conveyor or TaskController.

3 Deployment Scenarios and Solutions

To achieve universal coverage, Conveyor supports a wide

range of deployment scenarios. This section presents these

scenarios and the corresponding solutions in Conveyor.

3.1 Enabling In-place Updates

The software deployment approach affects hardware costs.

The in-place update approach restarts an existing task on the

same machine to run the new executable. In contrast, the

mirroring approach, which is also called Red-Black [43] or

Blue-Green [2] deployment, first starts a new job with the

new executable, often on other machines, gradually redirects

the traffic from the old job to the new job, and finally shuts

down the old job. Although this approach is safer as the traffic

can be quickly redirected back to the old job if the update

fails, it needs extra hardware to run both the old and new

jobs in parallel. Consider the example of deploying Front-

FaaS to 500K machines every three hours. A naive mirroring

approach would require 500K extra machines, which is unac-

ceptable. One optimization is to divide it into many small jobs

and utilize mirroring to update one small job at a time. How-

ever, this approach would result in the loss of quick rollback

capability and complicate job autoscaling [16, 34]. Although

further optimizations might be possible, the resulting solution

would not necessarily be cheaper, simpler, or more generic

than in-place updates.

Despite the benefits of hardware savings, the in-place up-

date approach lacks widespread support from existing deploy-

ment tools due to the difficulty of ensuring deployment safety.

Below, we present how we have made in-place updates safe

and practical by co-designing our deployment tool (Conveyor)

and our cluster manager (Twine [45]).

Collaborative control between Conveyor and Twine. As

discussed in §2.2, during each phase of the deploy action,

Conveyor instructs Twine to update a specific number or per-

centage of tasks, denoted as Nbig and then waits for a period

of time to collect comprehensive health signals before moving

on to the next phase. Twine, however, does not update Nbig

tasks all at once. Instead, it updates only Nsmall tasks in one

batch, where Nsmall is much smaller than Nbig, to avoid losing

too many tasks simultaneously. Twine then checks the live-

ness of each task before proceeding to update the next Nsmall

tasks. Similar to other cluster managers [22], Twine’s liveness

check is rudimentary and only verifies that an individual task

is running properly. However, it is unable to detect subtle

issues such as the new code’s memory regression compared to

the old code, which is handled by Conveyor’s comprehensive

health checks (§3.2).

The collaborative control between Conveyor and Twine en-

ables fast and safe deployments by assigning the most suitable

functions to the right layers. Let’s consider some alternative

designs. If Conveyor instructs Twine to update Nsmall tasks

instead of Nbig tasks, and then waits for a period of time to

collect comprehensive health signals, the deployment speed

328 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

would be too slow. On the other hand, if Twine updates Nbig

tasks instead of Nsmall tasks in one batch, the service might

lose too much capacity and become overloaded. Finally, elim-

inating Twine’s rudimentary task liveness check would mean

a destructive bug could affect Nbig tasks instead of just Nsmall

tasks before being detected.

Unlike the close collaboration between Conveyor and

Twine, in the widely used open-source setup of Spinnaker [42]

(deployment tool) instructing Kubernetes [22] (cluster man-

ager) to update containers, Spinnaker cannot control the size

of each phase, Nbig, which defaults to the size of the entire

job. This is because Kubernetes disallows partial-job updates.

This simplistic approach is not suitable for in-place updates,

because, when the comprehensive health checks detect a bug,

it is likely that all tasks of the job have already been updated.

Pluggable TaskControl. In the task-update protocol de-

scribed above, most services can use a per-service constant

Nsmall and have no constraints on the specific tasks to be up-

dated. However, the sharded key-value store described in §2.3

provides an example of services that require more precise con-

trol of Nsmall and the specific tasks to be updated. Figure 2

further illustrates how such a service can implement a custom

TaskController to ensure safe in-place updates. TaskControl,

in general, enables services to have precise control over task

updates for various reasons, not limited to data shard availabil-

ity. For example, FrontFaaS utilizes TaskControl to maximize

its deployment speed (§4). Further details on TaskControl can

be found in our previous work [24, 45].

Hardware failure and planned maintenance. When mul-

tiple tasks undergo in-place updates simultaneously, there is

a risk of reducing the available capacity of a service to an

unhealthy level. Merely controlling the update speed through

the deployment pipeline is insufficient since certain tasks may

be in an unhealthy state due to machine failures or planned

maintenance, which Conveyor is unaware of. To tackle this

issue, the service owner can inform Twine of a budget that

indicates the maximum number or percentage of tasks that

can be offline for any reason, such as task update, hardware

failure, or planned maintenance. If the budget is projected to

be exceeded, Twine pauses task updates.

Zero downtime hotswap. Our routing service in edge dat-

acenters forwards user-facing traffic to our datacenters and

holds live HTTPS connections to user devices. Naively restart-

ing a task for an update would cause user-facing errors. Twine

provides a same-host hotswap feature to solve this problem.

It first starts a new task on the same machine, which binds to

the same TCP ports as the old task. Then the new task and

the old task cooperate with each other to hand over the live

connections from the old task to the new task with the help

of eBPF [14]. One limitation of hotswap is that it requires

the container to be configured with sufficient memory to start

two tasks, which is the reason why it is not used universally.

Summary. All of the aforementioned deployment scenar-

ios with in-place updates cannot be properly implemented

without support from the cluster manager. We believe this is

a key reason why existing deployment tools primarily use the

mirroring approach, since the cluster managers they rely on

do not provide the necessary functions for in-place updates.

3.2 Deployment Safety

To enable continuous deployment, we accept bugs and de-

ployment failures as a norm and rely on automated guardrails

such as testing and health checks to detect release failures

early and mitigate their adverse effects. In this section, we

describe techniques that help Conveyor deploy safely.

Moving-target health checks. After each deployment phase,

Conveyor invokes the Health Check Service (HCS) to eval-

uate the health of the service. Multiple health checks can

be associated with a job, and each health check specifies a

data source such as a time series database for monitoring

data [31], a metric, data transformations (e.g., calculating

specific percentiles), and a decision threshold. The metrics

encompass system metrics (CPU, memory, crashes), RPC

metrics (connections, errors), and application-level business

metrics. The thresholds can be absolute (e.g., fail if CPU

utilization exceeds 90%), A/B comparative (e.g., fail if the

new task’s CPU utilization exceeds that of the task that still

has not been updated by 10%), or time-based (e.g., fail if

the CPU utilization increases by 10% since the deployment

started). By default, a failed health check triggers Conveyor

to revert the release.

In contrast to traditional monitoring systems that track the

health of an entire job, in-place updates require the HCS to

track “moving targets”, i.e., a dynamic subset of tasks that

change throughout different deployment phases. Achieving

this level of precision and adaptability necessitates a seamless

integration between Conveyor, Twine, and HCS. Specifically,

Twine assigns unique identifiers to tasks, enabling differentia-

tion between the old and new tasks. The monitoring data for

tasks is tagged with these identifiers. Depending on the cur-

rent deployment phase, Conveyor dynamically instructs HCS

to perform health checks on tasks with specific identifiers.

Code dependency analysis to prevent faulty releases.

A monorepo [9] stores the code for an organization’s many

projects in a single repository, promoting code reuse but also

leading to increased code dependencies. For instance, the Ser-

viceRouter [37] library is compiled into nearly every service

in Meta, and it may rely on a high-performance data structure

library, which in turn may rely on a profiling library, and so

on. In a monorepo setup, whenever a new version of a library

is committed, any services that depend on the library will be

automatically compiled with the new version. Consequently,

the owner of a service may not even be aware that their service

is affected by a bug in a shared library. To tackle this issue,

Conveyor offers the Bad Package Detector (BPD). If library

developers discover a bug in the library, they can report it to

Conveyor. The BPD then utilizes a code dependency graph,

which is provided by our build system [10], to identify and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 329

cancel the releases of all service executables that were built

with the problematic version of the library.

Accurate code dependency analysis poses a challenge for

the BPD as it requires finding the right balance between false

negatives and false positives. Achieving perfect coverage

would entail considering all possible direct and indirect de-

pendencies of a service, which is often impractical. To strike

a balance, the BPD currently tracks 14 levels of dependency.

Our production data reveals that about 14% of to-be-deployed

executables are invalidated by the BPD. This highlights the

importance of handling bugs in dependent code.

Comprehensive testing. Conveyor supports various types of

tests in deployment pipelines. The PerfTest tool records and

replays production traffic to perform A/B testing between old

and new code, while the IntegrTest [28] tool sets up inter-

dependent services and tests their interactions. Additionally,

IntegrTest can perform randomized fuzzing tests. Canary

updates a small number of production tasks with new code

and collects health signals, enabling direct testing in produc-

tion. Multiple canaries can be executed in parallel to test

different code variations. Even if a release’s deploy action is

not chosen for final execution (e.g., a release’s deploy action,

while waiting to start on Monday at 9 AM, gets superseded by

a newer release), it is still valuable to execute the test actions

to detect bugs as early as possible.

Summary. While other deployment tools also support test-

ing and health checks, they lack some key capabilities. In

contrast to HCS’ ability to track “moving targets,” traditional

health checks rely on alarms defined for an entire job, which is

insufficient to support in-place updates. Moreover, bug depen-

dency analysis is not supported by existing deployment tools.

Finally, we are not aware of any other large-scale adoption of

record and replay as a generic platform for performance tests.

3.3 ML Model Deployment

Deployments of ML models for inference have emerged as

an important issue, given the rapidly increasing number of

ML applications. While existing deployment tools gener-

ally do not handle model deployments, Conveyor has been

specifically enhanced to address this need and currently about

44% of its pipelines are for model deployments. Below, we

describe Conveyor’s support for model deployments.

Deployment via configuration change. In Conveyor’s first

implementation for model deployments, model update and

executable update share the same pipeline, requiring Twine to

restart the container. However, as model updates may occur

more frequently than updates to inference executables, fre-

quent container restart results in a frequent loss of expensive

GPU capacity for request serving. Moreover, since a model

often contains gigabytes (GBs) of data, the time required to

load GBs of data during the restart can be lengthy.

To solve this problem, some inference services utilize two

orthogonal pipelines. One pipeline deploys the inference ex-

ecutable through Twine, while the other deploys the model

data through Configerator [44], Meta’s configuration man-

agement system. To track model updates, all tasks serving a

model subscribe to a configuration that specifies the current

version of the model to be served. When a new version of the

model becomes available, instead of exposing it to all tasks

simultaneously, Conveyor instructs Configerator to incremen-

tally expose the new version to tasks in phases, following the

deployment pipeline. Configerator utilizes a data-distribution

tree to notify the tasks in a scalable manner. Once the tasks

receive the notification of a new model version, they utilize

Owl [15], a peer-to-peer data-distribution system, to fetch the

new model. While still serving live requests, a task merges

the new model into the old model piece by piece without

consuming additional memory as it never keeps full copies of

both models in memory simultaneously. Overall, Conveyor

ensures safe deployments of models through phased releases,

which are meticulously managed via configuration changes.

Conveyor’s ability to perform phased deployments of

generic configuration changes extends beyond its use in ML

model updates. Conveyor pipelines are widely utilized to

ensure safe deployments of various configuration changes.

Lockstep deployment of interdependent services. Some

of our ML models are too large to fit in one machine’s mem-

ory, so they are partitioned into interdependent shards, each

including multiple replicas for fault tolerance and throughput.

Each shard is mapped to a different job, and typically the first

shard serves as the aggregator to combine results from other

shards. However, updating different shards independently

may cause compatibility issues, because combining outputs

from different versions of the shards will produce incorrect

results. To ensure compatibility, replicas of the first shard

are configured to only receive outputs from replicas of other

shards of the same version. This design requires Conveyor to

perform a lockstep deployment of different shards to avoid

capacity loss during deployment. For instance, 5% of each

shard’s replicas are updated at the same time and 5% of the

client traffic is directed to the new version, before proceeding

to update 10% of each shard’s replicas, and so forth.

Parent-child pipelines. Meta’s ML inference system serves

tens of thousands of ML models using about 10 different

inference executables. Each model, along with its inference

executable, is deployed via a separate pipeline. Since many

models share the same inference executable, updating one

executable may cause thousands of pipelines to initiate a new

release at the same time. This not only causes a load spike

on Conveyor and Twine, but also increases the risk of an

undetected bug in the inference executable impacting many

models simultaneously.

While existing deployment tools manage each pipeline in

isolation, Conveyor coordinates releases across pipelines that

share common artifacts by setting up a parent-child relation-

ship between them. Specifically, each inference executable is

managed by a parent pipeline, which includes sophisticated

testing but no deploy action, while the pipelines for models

330 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

served by the executable act as its child pipelines and in-

clude the deploy action. When updating an ML model with-

out modifying the executable, only the corresponding child

pipeline is executed, without involving the parent pipeline.

However, when updating the executable, the parent pipeline

is executed first. If successful, all the corresponding child

pipelines are then executed with randomized delays to avoid

starting them at the same time and overloading the system.

Moreover, it can be configured in such a way that a subset of

child pipelines for less important models is executed first to

help detect issues with the executable.

3.4 Advanced Features for Universal Adoption

To achieve universal adoption, Conveyor must support ad-

vanced use cases. We describe them in this section.

DAG pipelines. Conveyor initially modeled deployment

pipelines as a sequence of sequential stages, such as

build→test→deploy. However, this pattern has not gener-

alized to complex services like FrontFaaS, which may build,

test, and deploy two different versions in parallel (§4). The

sequential pipeline is overly restrictive in that it requires test-

ing for both versions to finish before the deployment for any

version can start. Therefore, we have improved Conveyor

by modeling its pipelines as directed acyclic graphs (DAGs).

These DAGs support conditions, branching, and mutual ex-

clusion groups. Since multiple releases of a pipeline may be

executed in parallel, Conveyor allows users to define actions

as a mutual exclusion group, meaning that concurrent releases

should not execute these actions in parallel. For example, if

a pipeline includes a load-test action and a deploy action,

they may be put in an exclusion group so that a deploy action

in one release will not accidentally fail its health check due

to a load-test from another concurrent release.

Mutable artifacts. Conveyor initially mandated one build

action at the beginning of a pipeline, resulting in an immutable

artifact, the executable, to be used throughout the pipeline.

However, this simple model does not fit well with complex

deployment scenarios. One example is feedback-directed op-

timization (FDO) [12], which involves profiling executables

in production and using the profiling data to guide recompi-

lation of the code, resulting in an updated artifact, the new

executable. Therefore, Conveyor has been extended to sup-

port mutable artifacts and allow multiple builds within one

pipeline. To perform FDO, for example, the pipeline can first

build the baseline executable, deploy it to a small number

of tasks that receive production traffic, and collect profiles.

It then builds the executable again using FDO and finally

deploys the optimized executable to all tasks.

CLI and daemon deployment. Every machine in our fleet

runs a set of CLI tools and daemons that provide utility

functions. As these host-level executables are not managed

by Twine, Conveyor provides a deploy action type called

Slowroll to manage them. Due to the massive scale of deploy-

ing these executables to every machine, Slowroll adopts a

pull model instead of Twine’s push model. In the pull model,

each machine periodically downloads the new version of the

software being deployed. These deployments can take a long

time to finish. For example, due to the massive scale of

deploying a specific daemon to every machine, its pipeline

has 43 phases and a deployment can take more than a week.

Moreover, some CLI tools are infrequently used, requiring

a significantly longer “bake time” (e.g., 8 hours) to collect

health signals.

3.5 Software Backward Compatibility

Despite backward compatibility being a generic requirement

for software deployment, it is largely left for services to handle

because it often involves application-specific logic.

API backward compatibility. During a deployment, the

new and old versions of a service will coexist for a while.

When the API of a service needs to be changed, a common

practice at Meta is to support both the old and new APIs and

gradually switch clients to invoke the new API. Once all

clients are migrated to the new API, the code for the old API

can be deleted. This is called N-1 compatibility, meaning

that in addition to the current version N of the API, it also

supports version N-1 but not version N-2 or older.

Database backward compatibility. When a service update

involves data migration from one database to another or an

upgrade of the database schema, extra care is needed. For

example, when switching from an old database to a new

database, a common strategy is to perform double writes:

the service writes new data to both databases but always

reads data from the old database, while a background process

migrates old data from the old database to the new database.

This strategy simplifies the rollback process as it only requires

deleting the new database and redeploying the old code.

3.6 Summary of Distinguishing Features

While Conveyor and Twine provide many features to achieve

universal adoption, we consider that the following features

distinguish Conveyor and Twine from existing tools most.

1. In-place updates allow us to minimize hardware costs,

which is important while operating at hyperscale.

2. TaskControl provides flexibility for services to precisely

control the speed and sequence of their task updates.

3. The ability to update a subset of tasks and perform health

checks on moving targets enables Conveyor to exert fine-

grained control over tasks, enabling in-place updates.

4. In a monorepo [9] setup, it is important to perform code

dependency analysis to prevent faulty releases.

5. Features to support ML model deployments have grown

to become a first-class citizen in Conveyor.

6. Conveyor provides a one-tool-fits-all solution for safe de-

ployments of various artifacts, such as service executables,

ML models, and application configurations.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 331

Package Sanity
Check

Build Container Load Test
Filter

Deploy Check and
Prefetch

For employee traffic only

Stable PHP Runtime

Latest Experimental PHP Runtime

2% Prod 98% Prod

Artifact Standard action Custom action

(same as the stable runtime pipeline above)

… …

Figure 3: Simplified deployment pipeline for FrontFaaS.

Existing deployment tools lack these features. Without them,

Conveyor would not have achieved universal adoption.

Conveyor is designed to be a generic and extensible deploy-

ment tool, and does not burden itself with every feature needed

by every service. Its extensible architecture allows services

to easily implement their own TaskControllers, actions, and

new types of artifacts. Moreover, sometimes it is preferable

to consider a service redesign to leverage Conveyor’s stan-

dard functions. For instance, Meta’s ML inference platform

initially hosted multiple ML models as separate processes

within a single container, and requested Conveyor to provide

the feature of using independent pipelines to update different

processes within the same container. Since this feature is

complex and not needed by other services, we did not support

it in Conveyor and the ML inference platform was ultimately

redesigned to adopt the one-model-per-container approach.

4 Case Study of FrontFaaS

To illustrate the end-to-end usage of Conveyor, we present a

case study of FrontFaaS, a serverless Function-as-a-Service

(FaaS) platform for PHP functions. It differs from other

serverless platforms such as AWS Lambda [5] in several

ways: 1) it only hosts synchronous functions that clients di-

rectly invoke, while event-driven asynchronous functions are

hosted by another platform; and 2) for efficiency, a single

PHP runtime process can execute multiple functions con-

currently. Since FrontFaaS is serverless, developers simply

commit function code without worrying about code deploy-

ment or server provisioning. Each year, tens of thousands

of developers commit serverless function code to FrontFaaS,

with thousands of code commits each workday. Currently,

FrontFaaS runs on over half a million machines and makes

a new release every three hours to deploy the code of all

functions together [33]. Through FrontFaaS, Meta develop-

ers create PHP functions that are servicing traffic from end

users when they visit Meta web pages. Note that many Meta

employees are end users of Meta products as well, and their

traffic is often used for testing purposes as discussed next.

Figure 3 shows a simplified deployment pipeline for Front-

FaaS. To enable phased deployments, the machines hosting

FrontFaaS are partitioned into three pools: one for servicing

employee traffic, one for servicing 2% of production traffic,

and one for servicing the remaining production traffic. Ac-

cordingly, the deployment pipeline is divided into three major

phases, one for each machine pool. A release proceeds to the

next machine pool only if the deployment to the prior pool

succeeds. Each pool is split into two sub-pools: one process-

ing a small amount of traffic with an experimental version of

the PHP runtime [30] and one processing the remaining traffic

with a stable version. If the experimental version outperforms

the stable version, it will become the new stable version.

The first step in the deployment pipeline is a custom

sanity-check action that performs a FrontFaaS specific

logic to ensure that there are no deployment-blocking alerts.

Then, a standard build action is used to build the container

image. Independent of specific releases, load tests always con-

tinuously run on certain machines to gather performance data

and build capacity models. The custom load-test-filter

action excludes machines that are scheduled to be load-tested

from being monitored by health checks, to avoid load-test

induced false alarms during health checks. The pipeline then

uses a standard deploy action to update tasks and run health

checks. Finally, a custom check-and-prefetch action runs

the sanity check again while asking Twine [45] to prefetch

FrontFaaS’ container image on machines that will be updated

soon. This prefetch reduces the overall duration of each re-

lease by 5-30%.

Since FrontFaaS continuously deploys every three hours

across more than half a million machines, fast deployment

is an important requirement. Within a deploy action, Front-

FaaS relies on two techniques to accelerate a deployment.

First, it implements a custom TaskController that controls the

rate at which tasks are updated based on the CPU utilization

of FrontFaaS jobs. It tries to concurrently update as many

tasks as possible, as long as the temporary loss of those tasks

does not cause other FrontFaaS tasks to handle too much traf-

fic and become overloaded. During off-peak hours, updates

can be applied to many tasks in large batches, while during

peak hours when traffic is high, the Task Controller applies

updates in smaller batches to prevent overload. Thanks to this

optimization, deployments during off-peak hours are approxi-

mately three times faster than those during peak hours.

The second technique to accelerate a deployment is to

update tasks and perform health checks in parallel, but the

short health-check time requires FrontFaaS to have highly

accurate health checks. FrontFaaS primarily relies on three

health-check metrics: 1) the number of fatal errors, 2) the

number of unavailable tasks, and 3) the write rate of error

logs. Every minute during a deploy action, these metrics are

averaged over the previous three minutes and compared to the

average during a three-minute period before the deployment

began. If any datacenter region experiences an increase in

these metrics above a certain threshold, Conveyor pauses all

updates in that region. If too many jobs are paused, Conveyor

considers the deployment a failure and initiates a rollback.

332 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DatabaseRelease
Creator

1

Backend
Artifact Finder

Mobile Artifact
Finder

Configuration
Artifact Finder ……

2

3

Run
Scheduler

Run
Manager

4 5

Deploy

Build

Test

……

6

Action Services

Conveyor Core

7

Artifact Finders

Figure 4: Conveyor Architecture.

Overall, FrontFaaS achieves fast and safe deployment at hy-

perscale by utilizing TaskControl and multiple custom actions

made possible by Conveyor’s extensible architecture.

5 Design and Implementation of Conveyor

In this section, we briefly summarize Conveyor’s design and

implementation.

5.1 Conveyor Design

Figure 4 depicts the architecture of Conveyor. Conveyor com-

prises several stateless services that share a database. The

database stores user-defined pipelines, metadata, as well as

the last step executed for each release and action. To ac-

commodate the high throughput due to tens of thousands of

pipelines, the database is partitioned into many shards.

For robustness and scalability, all components of Conveyor

adhere to the worker-pool paradigm. They store the IDs

of pipelines, releases, and action runs in a queue. Multiple

workers then periodically scan the queue, identify the required

operations, and execute them. The number of workers can

be scaled up or down based on the load. The execution of a

pipeline involves the following steps.

Create release (Steps 1-3 in Figure 4). Each pipeline ac-

cepts a set of input artifacts. The Release Creator periodically

scans for new input artifacts (Step 1) by invoking Artifact

Finders (Step 2). When new artifacts are discovered, Con-

veyor creates a “release object” in the database, thereby trig-

gering the execution of the pipeline (Step 3). We provide

seven standard Artifact Finders, and allow users to implement

custom Artifact Finders. All Artifact Finders implement a

single method, getArtifacts(), which returns a set of dis-

covered artifacts. For example, one Artifact Finder identifies

latest commits that successfully passed unit tests, while an-

other identifies executables that have been already built and

marked with a specific tag.

Schedule (Step 4 in Figure 4). The Run Scheduler schedules

the execution of releases and actions by periodically scanning

through all releases and stepping through each action in each

release’s corresponding pipeline. When the input artifacts

for an action exist and all preceding actions have success-

fully completed, the Run Scheduler schedules the action for

execution.

Because Conveyor allows for multiple active releases de-

rived from one deployment pipeline, the Run Scheduler must

coordinate actions across these releases. Some actions, like

canary, permit concurrent execution on multiple releases,

while others, like the deploy action, only allow execution on

a single release at a time. Therefore, the Run Scheduler must

determine which active release executes the deploy action.

Consider a case where a pipeline deploys to production on

every Monday at 10 AM. If multiple code changes have oc-

curred since the last deployment, two releases might be ready

to run the deploy action on Monday at 10 AM. In this case,

the Run Scheduler will cancel the older release.

Run actions (Steps 5-7 in Figure 4). The Run Scheduler

determines when an action should be executed and notifies the

Run Manager accordingly (Step 5). The Run Manager then

initiates the execution of the action by invoking a service that

implements the action’s logic (Step 6). When executing an ac-

tion, the Run Manager first invokes the action’s startRun()

method and then periodically calls its getRunProgress()

method to track the progress. The outcome of the action is

recorded back to the database (Step 7).

Conveyor offers several standard actions, including the

build action for compiling source code and running cor-

responding unit tests, various testing actions, the pkg ac-

tion for tagging executables for easy naming and access, the

deploy action for deploying the new version to production,

the CustomScript action for running any user-defined script

(e.g., to shift traffic before a deploy action starts), and the

ManualPick action for pausing a pipeline and awaiting the

service owner’s decision. Conveyor’s extensible architecture

allows users to create custom actions by implementing the

startRun() and getRunProgress() methods.

5.2 Implementation of the Deploy Action

Since the deploy action is the most complex part of Conveyor,

we describe it in more detail below. Like a sub-pipeline within

the greater Conveyor pipeline, the deploy action’s deploy-

ment plan specifies the number of phases, which jobs and

tasks to update in each phase, the baking time after each

phase, and the success criteria. Conveyor supports both per-

centage and task-count based configuration when specifying

the success criteria and the tasks to be updated.

A few widely used deployment plans are commonly em-

ployed. For small services or services that prioritize deploy-

ment speed, a common plan is to request Twine to update

all of their tasks in a single phase. Therefore, the number of

tasks to update in a phase, Nbig, as described in §3.1, equals

the total number of tasks in the job. However, please recall

from §3.1 that Twine is still configured to update only Nsmall

tasks at a time to avoid losing too many tasks simultaneously.

For services that prioritize safety, their jobs are often updated

region by region, as our services are always designed to toler-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 333

ate the loss of a whole region. To balance safety and speed,

a common strategy is to update an exponentially increasing

number of tasks in each phase (e.g., 1% of tasks in the first

phase, 10% in the second, and 100% in the last), assuming

that a bug is likely to be revealed in the early phases.

For services requiring high deployment speed, Conveyor

can update tasks and perform health checks in parallel. As

described in §3.1, during a deployment phase, Conveyor by

default requests Twine to update a group of Nbig tasks, waits

for the updates to finish, and then periodically performs health

checks during the bake time. The whole process can take a

long period of time. With the parallel approach, Conveyor

submits the request for Twine to update Nbig tasks and then

immediately performs health checks while the update is still

in progress. This approach saves the wait time but necessitates

the service to have highly accurate health checks due to the

short health-check time.

Finally, users have the option to deploy to environments

that are not managed by Twine by implementing custom de-

ployment types. For instance, we maintain a pull-based de-

ployment type for CLI tools and Linux daemons running on

bare-metal machines (§3.4). Furthermore, users have created

over 20 custom deployment types for various non-standard

deployment targets, such as VMs in public clouds, application

configurations, and serverless stream-processing functions.

To implement a custom deployment type, a user needs

to build a service that implements a few methods. When

initiating a new deploy action, the fetchDeployUnits()

method is invoked, returning a list of deploy units. Each de-

ploy unit represents a group of tasks to be updated. Then the

executeUpdates()method is called to update a set of deploy

units with a specific set of artifacts for deployment. Finally,

the deploy action periodically calls the trackUpdates()

and runHealthChecks() methods until all updates are com-

pleted. If any health checks fail, the deploy action fails early.

5.3 Availability, Reliability, and Recoverability

Currently, Conveyor is implemented in 360K lines of Rust

code, including test code and utility tools, and its components

run on several hundred machines. Conveyor is not the per-

formance bottleneck in software deployment, as other tools

that Conveyor relies on, such as Twine, often perform more

extensive work than Conveyor itself.

For high availability, both the database used by Conveyor

and each Conveyor component are replicated across multiple

datacenter regions. However, it is not necessary to replicate

every Conveyor component in every region. Conceptually,

one global setup of Conveyor manages the deployments of all

services across all regions. A Conveyor component in region

X can communicate with the Twine instance in region Y to

remotely drive the deployment of services in region Y .

Presently, Conveyor’s service level objective (SLO) is to

ensure that less than 0.5% of deployments fail due to issues in

Conveyor or any of its dependencies, such as Twine, Health

Check Service, build service, and Configerator. Conveyor

consistently meets or exceeds this SLO.

The circular dependency between Conveyor and Twine

poses challenges to their recoverability. Conveyor consists

of a set of services that are deployed via Conveyor itself and

hosted inside containers managed by Twine. Similarly, Twine

is also implemented as a set of services that are deployed via

Conveyor and hosted inside containers managed by Twine

itself. When Conveyor or Twine fails, the entire ecosystem

cannot update itself. To address this issue, we have designed

them to be self-recoverable whenever possible and have in-

troduced manual recovery tools for worst-case scenarios. In

the event that Conveyor fails and cannot deploy bug fixes for

itself, direct commands can be issued to Twine to start new

jobs for Conveyor with the proper bug fixes.

To set up Twine to manage itself, we have implemented a

two-layer deployment approach. The top layer consists of two

independent instances of Twine, and under normal conditions,

one instance can manage and update the other. These top-

layer instances are responsible for managing and updating

the numerous Twine instances in the bottom layer, which in

turn manage and update user jobs. As long as at least one of

the top-layer’s Twine instances is functioning properly, all

Twine instances can be updated normally. In the event that

both top-layer Twine instances experience malfunctions, we

have a dedicated tool that can be used to directly bootstrap a

top-layer Twine instance and initiate the recovery process.

5.4 Lessons from Conveyor’s Evolution

Over the course of nine years, Conveyor has undergone sig-

nificant evolution, progressing from v1 to v2, and eventually

to v3. Each subsequent version represents a complete system

rewrite that incorporates the valuable lessons we have learned.

As a CLI tool, Conveyor v1 enables service owners to

manually initiate phased in-place updates of services. Service

owners could define the rollout phases and health checks.

The Health Check Service (HCS) was developed along with

Conveyor from the very beginning. Despite Conveyor v1

being relatively simple, about 12% of services adopted it,

demonstrating a strong need for a standard deployment tool.

The biggest change from Conveyor v1 to v2 was to make

it a long-running service so that it could automatically start

deployments on a pre-configured schedule without manual

intervention. We also introduced a more complete pipeline

model, where a pipeline consisted of a sequence of phases,

each comprising a set of actions. Several enhancements were

implemented, including support for the Bad Package Detector

(BPD), parent-child pipelines, and pull-based deployments.

To boost adoption, Conveyor and Twine were made extensible

by providing various interfaces for custom integrations, such

as TaskControl, custom actions, and custom artifact finders.

As a result of these features and the company-wide Push4Push

program, about 94% of services adopted Conveyor.

334 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The remaining 6% of services that did not adopt Conveyor

were the largest and most complex ones, requiring more ad-

vanced features. Furthermore, the rapid adoption of Conveyor

exposed its limitations in terms of performance and relia-

bility. As a result, Conveyor v3 was introduced as another

complete rewrite, this time switching from Python to Rust.

The data model evolved from a sequential pipeline to a DAG.

Additional features were implemented, including lockstep

deployment, mutable artifacts to support feedback-directed

optimization (FDO), deployment of mobile apps and appli-

cation configurations, and better support for ML models and

FrontFaaS. These enhancements helped Conveyor achieve

universal adoption.

One ongoing evolution of Conveyor v3 is to enhance its

real-time responsiveness. In Conveyor’s current architecture,

the latest state of each release is stored in a database, and

a group of Conveyor workers periodically poll the database

to identify actions that are ready for execution. We chose

this periodic polling design for its robustness. However, the

deployment of ML models and application configurations now

requires faster execution of pipelines that cannot be supported

by the polling method. Therefore, in Conveyor’s new design,

the completion of one action will immediately trigger the

execution of the next action without any delay. However, we

will still maintain the polling mechanism as a reliable fallback

to safeguard against any transient failures.

6 Evaluation in Production

In this section, we use production data to help answer the

following questions:

1. Has Conveyor achieved universal coverage?

2. Do developers trust fully automated deployments?

3. Are Conveyor’s deployment-safety mechanisms effective?

4. How often do deployments fail and why do they fail?

5. What are the observed patterns in pipeline setup, and what

are the best-practice recommendations for pipeline setup?

Using three weeks of data from April to May 2023, we stud-

ied all deployment pipelines, which amounted to more than

30,000 pipelines. We divide them into four categories:

• Regular services: 24.4% of the pipelines deploy tra-

ditional non-ML services through containers managed by

Twine [45]. This category serves as the primary point of

comparison with other deployment tools, as those tools may

not support the other categories listed below.

• Large services: 0.45% of the pipelines deploy the

largest services that consume 80% of our fleet’s total capac-

ity, with each of them using at least 7,700 servers. These

large services are a subset of regular services.

• ML models: 44.4% of the pipelines deploy ML models,

predominantly through Twine, with some utilizing Config-

erator [44] to control when a task consumes a new model.

• Other pipelines: The remaining 31.1% of pipelines are

used for various purposes, such as running tests without per-

forming an actual deployment. The data we report for this

category will only include those with at least one deploy

action, which amounts to 6.7% of all pipelines. These

pipelines deploy artifacts that are not managed by Twine,

such as CLIs, daemons, configurations, and mobile apps.

6.1 Universal Coverage

It is challenging to precisely calculate the percentage of ser-

vices that should utilize Conveyor but do not use it, primarily

due to the presence of experimental services that will never

be deployed in production. Interviewing the owners of tens

of thousands of services to determine this percentage would

be impractical. Instead, we focus on calculating the coverage

for all 195 largest services. These services tend to be

complex, making the adoption of Conveyor more challenging

compared to other services.

Conveyor achieves 100% coverage for these large services,

with the following caveats: 1) One of them is an ML training

job, where software updates during its training run are inten-

tionally avoided. 2) Five of them are short-lived experimental

services that do not need automated deployments as they will

not be deployed into production. Overall, the advanced fea-

tures described in §3 enable Conveyor to achieve universal

coverage, even for the most complex services.

6.2 Trust in Fully Automated Deployments

To understand whether developers trust fully automated de-

ployments, we classify pipelines into five categories based on

their release schedules: 1) Continuous deployment, which is

executed immediately whenever the input artifacts are ready;

2) Daily, which is executed at least once every working day

at a fixed time, such as 9AM; 3) Weekly, which is executed at

least once each week; 4) Biweekly/monthly, which is executed

biweekly or monthly; 5) ManualPick, which may automati-

cally execute early actions such as small-scale deployments,

but requires human confirmation before executing the final

stage of large-scale deploy actions.

Table 1 shows that among regular services, 54.6%

adopt continuous deployments, and in total 96.5% adopt fully

automated deployments without manual validation. These

results indicate that with the guardrails provided by testing,

health checks, and automated revert of faulty releases, devel-

opers release often and trust fully automated deployments.

Although only 71.8% of large services adopt fully au-

tomated deployments, it already demonstrates a high degree

of trust in deployment automation, considering that they are

complex and hyperscale services serving billions of users.

Continuous Daily Weekly Biweekly/Monthly ManualPick

Regular 54.6% 24.8% 16.8% 0.4% 3.5%

Large 16.0% 16.8% 37.4% 1.5% 28.2%

ML 99.9% 0.0% 0.0% 0.0% 0.0%

Other 48.5% 26.3% 19.0% 0.3% 5.9%

Table 1: Classification of pipelines based on their schedules.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 335

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

Task updates

FrontFaaS Request Rate
Ta

s
k
 u

p
d
a
te

s
 (

%
)

F
ro

n
tF

a
a
S
 R

e
q
u
e
s
t

R
a
te

Time (hours)

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 5 10 15 20

C
P
U

 U
ti

li
z
a
ti

o
n
 (

%
)

Time (hours)

Figure 5: TaskControl slows down the deployment speed for

FrontFaaS during peak hours.

One main reason for the remaining ones using manual valida-

tions is that they have highly complex health checks, making

it difficult to achieve both a low false positive rate and a

low false negative rate simultaneously, regardless of how the

decision threshold for health checks is set.

Although the deployments of some services are already

fully automated, they still prefer deployments on a fixed sched-

ule (daily or weekly) over continuous deployment for several

reasons. First, a failed deployment of a complex service may

cause a partial outage in production, which can take hours

to mitigate. Therefore, it is preferred to start the deployment

at a fixed time in the morning to ensure that incident mitiga-

tion does not extend into the night. Second, although almost

all services are fault-tolerant against task updates, they may

experience degraded SLOs during a task update. For exam-

ple, updating a ZooKeeper ensemble will trigger a leader

re-election and result in delays in responding to client re-

quests. These services prefer to avoid degraded SLOs caused

by frequent deployments of every single code change.

6.3 Deployment Safety at Hyperscale

To ensure the safety of in-place updates, Twine’s TaskControl

API allows services with special needs to exert precise control

over their task updates. For example, FrontFaaS’ custom

TaskController dynamically adjusts the deployment speed in

order to safely and continuously deploy every three hours

across more than half a million machines. Figure 5 illustrates

what happens in a region that runs over 10,000 FrontFaaS

tasks. The top figure shows the normalized request rate for

FrontFaaS, along with the percentage of updates to FrontFaaS

tasks in that region. The bottom figure shows the average

CPU utilization of those FrontFaaS tasks. During the site’s

peak hours, which occur between hours 8 and 15, FrontFaaS’

TaskController instructs Twine to reduce the number of task

updates in order to prevent the temporary loss of too many

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

C
u
m

m
u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 (

%
)

Number of cancelled executables (logscale)

Figure 6: CDF of the number of executables canceled by the

Bad Packet Detector (BPD) per reported bug.

Regular services Large services ML models Other pipelines

Successful 27.5% 15.4% 33.7% 38.0%

Failed 13.8% 20.9% 5.2% 4.2%

Canceled 58.7% 63.7% 61.1% 57.8%

Table 2: Breakdown of the end states of releases.

tasks and avoid overloading the system. Consequently, it takes

longer to complete a release during these peak hours. Despite

the fluctuating load on the site and the load spikes caused

by task updates (see the bottom figure), the overall CPU

utilization remains below 75%. Without TaskControl, this

level of application-specific adaptation and precise control is

hard to achieve with other deployment tools.

To ensure the safe deployment of services that share a

monorepo [9], which often entails complex code dependen-

cies, developers can report bugs to Conveyor. The Bad Pack-

age Detector (BPD) automatically identifies the affected exe-

cutables scheduled for deployment and cancels their releases.

While only approximately one such bug is reported to Con-

veyor per day, their impact tends to be widespread. Figure 6

illustrates the number of executables affected by these bugs.

Around 15% of these bugs impact over 10,000 executables.

Certain bugs, such as those found in Meta’s RPC library [37],

have the potential to impact every service. Due to the broad

impact of these bugs, the BPD cancels approximately 14%

of all executables scheduled for deployment. This extensive

impact highlights the need for automated code dependency

tracking in a monorepo to ensure deployment safety.

6.4 Deployment Failures

To understand how often deployments fail and why they fail,

we analyze the failure data of releases and deploy actions.

6.4.1 Release Failures

Over the three weeks of our evaluation, Conveyor generated

millions of releases. Table 2 summarizes the end states of

these releases. Release cancellations commonly occur when

a new release supersedes an old release that was not yet de-

ployed. While most releases are canceled, they are still highly

valuable as they facilitate the execution of builds and tests,

aiding in the early detection of bugs.

336 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

B
uild

D
eploy

C
anary

IntegrTest

C
ustom

Script

PerfTest

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 7: Breakdown of release failures by action types.

Although the release failure rate seems high, it actually in-

dicates the effectiveness of deployment automation. Let’s con-

sider a simple pipeline consisting of build→test→deploy.

If a release fails during the build or test action, it means

that the problem is detected early, preventing a faulty release

from reaching production. This is precisely why, despite the

high failure rate, developers maintain a high level of trust in

deployment automation (§6.2).

We show the breakdown of release failures by action types

in Figure 7. As an example, the value of “40%” for the

“regular” bar in the build category does not mean that 40%

of builds fail for regular services. Instead, it means

that out of all failed releases for regular services, 40% of

them failed while executing the build action. The value of

the “ML” bar in the deploy category is 93.6%, but we cap it

at 50% to make other bars more visible.

Figure 7 shows that, except ML models, the majority of

release failures are detected by standard builds and tests

(canary, IntegrTest, and PerfTest). Note that builds

involve running unit tests and will fail if any tests do not pass.

For ML models, the setup of parent-child pipelines between

inference executables and models (§3.3) helps reduce failed

releases. During the three weeks, nine failures occurred in the

parent pipelines. Among them, eight were detected by unit

tests, and one was detected by PerfTest. These failed parent

pipelines did not trigger the execution of the corresponding

child pipelines. Otherwise, the number of failed child pipeline

releases would have increased by about 50%.

6.4.2 Failures in Deploy Actions

Failures in deploy actions occur at the important stage of

updating tasks and could lead to user-visible errors. The

failure rates of deploy actions vary across pipeline types:

regular services (5.4%), large services (6.2%), ML

models (14.3%), and other pipelines (1.1%). In all cases,

health check failure is the top reason for deploy failures, fol-

lowed by update timeout, which is typically caused by too

many unhealthy tasks during a deployment.

Figure 8 presents the breakdown of health check failures.

While system-level metrics, such as CPU, memory, crashes,

and RPC errors, can help identify many problems, “AppSpe-

cific” metrics still play a significant role. Frequently used such

metrics include the increase in the number of specific errors

 0

 10

 20

 30

 40

 50

 60

R
PC

C
PU

M
em

ory

C
rash

SuccessR
ate

Latency

A
ppSpecific

P
er

te
n
ta

g
e

(%
)

regular
large
ML

other

Figure 8: Breakdown of health check failures.

Regular services Large services ML models Other pipelines

False negative 0.92% 3.14% 0.012% 0.12%

False positive 11.5% 41.3% 0.0025% 17.4%

Table 3: False positives and false negatives of health checks.

returned to users, increase in the number of retries, decrease

in correctness metrics, or changes in user engagement.

Developers often need to make a tradeoff between false

positives and false negatives when using health checks to

detect bugs because health anomalies can also be caused by

other factors such as hardware failures or changes in workload.

To approximate the rate of false negatives (i.e., bugs not being

detected), we calculate the percentage of releases that finished

successfully but were later reverted or patched by developers.

However, since developers sometimes patch or revert a release

for purposes other than fixing bugs (e.g., to do a quick test),

these numbers should be viewed as an upper bound for false

negatives. To approximate the rate of false positives (i.e.,

health anomalies in the absence of a bug), we calculate the

percentage of deploy actions that reported health anomalies

but were allowed to proceed by a human.

As shown in Table 3, except for ML models, the occur-

rence of false positives is significantly higher than that of

false negatives. Notably, the rate of false positives for large

services reaches as high as 41.3%. This is because health

checks for large services are typically more intricate, and

developers tend to use stringent health check thresholds to

ensure release safety. When faced with health anomalies, they

prefer to rely on manual investigations to determine whether

to proceed with a release or not.

Figure 9 further presents the point at which a deploy action

fails. The progress metric is calculated as the number of

tasks that are supposed to be updated till the end of the failed

phase divided by the total number of tasks to be updated in

all phases. We exclude single-phase deploy actions from

this figure, since their progress is either 0 or 1. Figure 9

reveals a bimodal pattern, where failures occur either very

early or very late. While many bugs can be detected when

only a small subset of tasks is updated, some bugs, such as

subtle performance regression, can only be detected after they

are deployed at scale. These kinds of bugs pose the most

challenging problem for software deployment.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 337

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

regular

large

ML

other

C
u
m

m
u
la

ti
v
e

d
is

tr
ib

u
ti

o
n
 (

%
)

The progress of failed deploy actions (%)

Figure 9: The progress of failed deploy actions.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10+

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 10: Number of actions per pipeline.

6.5 Pipeline Patterns & Recommendations

In this section, we analyze various aspects of pipeline statis-

tics to gain a better understanding of how pipelines are used in

production. Based on our findings, we provide best practices

for pipeline design in §6.5.4.

6.5.1 Pipeline Configuration

Figure 10 shows that the average number of actions per

pipeline varies: regular services (3.5), large services

(12.2), ML models (2.0), and other pipelines (4.0). As

expected, large services have much deeper pipelines. For

ML models, all child pipelines (§3.3) use a uniform setup

with two actions: build and deploy. The parent pipelines for

inference executables have more actions such as PerfTest,

but since the number of child pipelines is about 1,000 times

larger than that of parent pipelines, the statistics here mainly

represent those of child pipelines.

We further examine the popularity of different types of ac-

tions, represented as the percentage of pipelines that include

at least one corresponding action type. As shown in Fig-

ure 11, build and deploy are the two most popular actions,

as expected. We observe two distinguishing characteristics of

large services. First, they are more likely to include tests

(canary, IntegrTest, and PerfTest). Second, they rely

more on human decisions (i.e., ManualPick) to determine

whether to proceed.

6.5.2 Deploy Action Configuration & Runtime Statistics

To balance safety and speed, a deploy action often consists of

multiple phases, each updating a subset of tasks. We observe

a few popular patterns in the setup of deploy actions: 1) the

“super linear” pattern, which updates a small percentage of

 0

 20

 40

 60

 80

 100

B
uild

D
eploy

C
anary

IntegrTest

Pkg
C
ustom

Script

M
anualPick

PerfTest

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 11: Percentage of pipelines that use a specific action.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

single

super_linear

region_by_region

single_parallel

m
isc

linear

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 12: Breakdown of different deploy patterns.

tasks in the first phase and updates a higher percentage in later

phases; 2) the “single” pattern, which updates all tasks in one

phase; 3) the “single parallel” pattern, which uses one phase

but updates multiple jobs in parallel; 4) the “region-by-region”

pattern, which updates one region’s jobs per phase; and 5)

the “linear” pattern, which updates the same percentage of

tasks in each phase. By definition, these patterns are not

exclusive. For example, a region-by-region pattern could be

linear as well. To separate them, we use the following rule:

single parallel > single > region-by-region > linear > super

linear. It means that, if a deploy action meets more than one

definition, we categorize it as the first one in the chain.

As shown in Figure 12, the setups are very diverse. Among

regular services, simple ones prefer the single pattern

and complex ones prefer the super linear pattern to bal-

ance safety and speed. Large services employ various

misc patterns, with a concrete example shown in §6.5.3. ML

models mostly use the super linear pattern. Among other

pipelines, simple ones prefer the single pattern and com-

plex ones prefer the region-by-region pattern for safety.

The execution time of deploy actions has a long-tail effect:

for regular services, its P50 is 2.3K seconds and P99 is

86K seconds; for large services, its P50 is 2.0K seconds

and P99 is 186K seconds (52 hours); for ML models, its

P50 is 2.9K seconds and P99 is 9.8K seconds; for other

pipelines, its P50 is 0.33K seconds and P99 is 15K seconds.

We will elaborate on the long deploy time in §6.5.3.

Table 4 further decomposes deploy action’s execution time

into four components: task update, bake, preprocessing, and

postprocessing. Recall that the bake time is the time after all

updates in a phase have been completed, during which Con-

338 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Regular services Large services ML models Other pipelines

Task update 21.2% 45.1% 39.2% 31.4%

Bake 31.7% 25.1% 58.1% 29.6%

Preprocessing 18.7% 2.9% 1.9% 5.4%

Postprocessing 28.4% 27.0% 0.9% 33.6%

Table 4: Time spent in different stages of deploy actions.

veyor periodically checks the health of the updated portion of

a service. Preprocessing and postprocessing refer to custom

operations performed before and after updating a subset of

tasks, respectively. Examples include redirecting traffic and

conducting end-to-end tests. Overall, Table 4 shows that op-

erations other than task updates consume the majority of the

time, emphasizing the importance of holistic optimization of

the pipeline setup when deployment speed is a concern.

6.5.3 Real-world Example of Long Deploy Time

Large services that prioritize deployment safety may require

multiple days to complete their deploy actions. To illustrate

this, we present a real-world example of a foundational stor-

age service at Meta that operates in every datacenter region.

Its deploy action is configured to make progress on work-

days from 9AM to 6PM without manual intervention. If the

execution of the deploy action does not finish by 6PM, it will

pause and continue on the next workday at 9AM.

Its deployment follows the super linear pattern for a few

regions and then switches to the region-by-region pattern for

the remaining regions. With over 20 phases in total, each

of the early phases has a bake time of one hour, while the

remaining phases have a bake time of 10 minutes. On average,

task updates per phase take about 25 minutes. Taking into

account the bake time, the early phases run for about 85

minutes each, while the remaining phases run for about 35

minutes each. Considering the total number of phases and

their duration, the deploy action typically completes the early

phases within one day and then resumes the next workday at

9AM. If everything goes smoothly, the deployment finishes

on the second day. However, transient issues may cause it to

retry and delay the completion time until the third day.

6.5.4 Recommendations for Pipeline Design

We recommend the following best practices for pipeline de-

sign. In general, we recommend using the super linear pat-

tern as a starting point, as it provides a good balance between

speed and safety. Moreover, we recommend including a phase

in the middle of the pipeline to update all tasks within a region

as opposed to never updating any whole region until the last

phase. This is important because many services have regional

dependencies, and certain issues, such as performance regres-

sions, may only become noticeable when the code runs at

the scale of a full region. Finally, we recommend schedul-

ing deployments for the mornings of Monday to Thursday,

so that developers have a full work day to troubleshoot any

deployment issues. They may adopt continuous deployment

after health checks and tests have matured.

7 Related work

There is a rich set of deployment tools, such as Spinnaker [42],

AWS CodeDeploy [3], AWS CodePipeline [4], Azure De-

ployment Manager [46], Azure Pipeline [6], Google Cloud

Build [17], Google Cloud Deploy [18], and CircleCI [13].

Cluster manager is also a well-studied topic. Examples in-

clude Kubernetes [22] and YARN [49] from open source,

Borg [47, 50] from Google, and Protean [19] from Azure.

Section 3 discussed advanced features that distinguish Con-

veyor and Twine from existing systems.

A number of prior works have studied and surveyed pos-

sible problems in software deployment [20, 23, 38, 41, 51],

mostly based on open-source projects or individual case stud-

ies. As described in §3, the scale and diversity of the services

at Meta have introduced many new challenges, such as in-

place updates, handling complex code dependencies, fast

deployment of large services like FrontFaaS, and deployment

of complex ML models. Dedicated ML platforms such as

AWS SageMaker can deploy models using the mirroring ap-

proach [35, 36], but they do not support in-place updates or

the advanced model-deployment features described in §3.3.

Multiple works have focused on individual problems dur-

ing deployment. For example, Gandalf tries to locate the

problematic deployment after failures are detected [26]. Ze-

braConf tries to detect configuration updates that may cause

compatibility issues [27]. Boyer et. al. [8] propose a declar-

ative approach to update services, instead of the imperative

approach used by most deployment tools, including Conveyor.

8 Conclusion

We presented the deployment scenarios, operational experi-

ence, and production data related to software deployment at

Meta, along with the design and implementation of Conveyor.

We demonstrated the feasibility of frequent and fully auto-

mated deployments supported by a single deployment tool for

all services. Additionally, we presented novel techniques for

in-place updates, analysis of code dependencies to prevent

faulty releases, and the safe deployment of ML models.

Acknowledgments

This paper presents nine years of work by past and cur-

rent members of several teams at Meta, including Conveyor,

Twine, Health Check Service, Configuration Management,

Release Engineering, and Inference Platform. In particu-

lar, we would like to call out the current members of the

Conveyor team who are not on the author list: Alex Rock,

Arvind Gautam, Brian Fitzpatrick, Eddy Li, Haydn Kennedy,

Jared Bosco, Jimmy Zeng, Marcos Pertierra Arrojo, Marija

Trifkovic, Matthew Boardman, Rudy Pikulik, Mike Belov,

Matthew Almond, Nippun Goel, Shawn Cui, and Martin Re-

ichhoff. We thank Hui Lei, all reviewers, and especially our

shepherds, Ding Yuan and Malte Schwarzkopf, for their in-

sightful comments.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 339

References

[1] Release early, release often. https://en.wikipedia.

org/wiki/Release_early,_release_often.

[2] Blue/Green Deployments. https://docs.aws.

amazon.com/whitepapers/latest/overview-

deployment-options/bluegreen-deployments.

html.

[3] AWS CodeDeploy. https://aws.amazon.com/

codedeploy/.

[4] AWS CodePipeline. https://aws.amazon.com/

codepipeline/.

[5] AWS Lambda. https://aws.amazon.com/lambda/.

[6] Azure Pipeline. https://azure.microsoft.com/

en-us/products/devops/pipelines/.

[7] Len Bass, Ingo Weber, and Liming Zhu. DevOps:

A Software Architect’s Perspective. Addison-Wesley

Professional, 2015.

[8] Fabienne Boyer, Nol de Palma, Xinxiu Tao, and Xavier

Etchevers. A Declarative Approach for Updating Dis-

tributed Microservices. In Proceedings of the 40th In-

ternational Conference on Software Engineering: Com-

panion Proceeedings, ICSE ’18, page 392–393, 2018.

[9] Nicolas Brousse. The Issue of Monorepo and Polyrepo

In Large Enterprises. In Companion Proceedings of the

3rd International Conference on the Art, Science, and

Engineering of Programming, pages 1–4, 2019.

[10] Buck2. https://buck2.build/.

[11] Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin,

Justin Reynolds, Chris Sanden, Lars Wander, and Rob

Zienert. Continuous Delivery with Spinnaker. https:

//spinnaker.io/docs/concepts/ebook/.

[12] Dehao Chen, David Xinliang Li, and Tipp Moseley.

AutoFDO: Automatic Feedback-Directed Optimization

for Warehouse-Scale Applications. In Proceedings of

the 2016 International Symposium on Code Generation

and Optimization, pages 12–23, 2016.

[13] CircleCI. https://circleci.com/.

[14] eBPF. https://ebpf.io/.

[15] Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex

Boyko, Francois Richard, Eric Sun, Wendy Tobagus,

Nick Wolchko, and Fang Zhou. Owl: Scale and Flexi-

bility in Distribution of Hot Content. In 16th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 22), pages 1–15, Carlsbad, CA, July

2022. USENIX Association.

[16] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan,

and Michael A. Kozuch. AutoScale: Dynamic, Ro-

bust Capacity Management for Multi-Tier Data Centers.

ACM Trans. Comput. Syst., 30(4), November 2012.

[17] Google Cloud Build. https://cloud.google.com/

build.

[18] Google Cloud Deploy. https://cloud.google.com/

deploy.

[19] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek

Pan, Esaias E Greeff, David Dion, Star Dorminey,

Shailesh Joshi, Yang Chen, Mark Russinovich, and

Thomas Moscibroda. Protean: VM Allocation Service

at Scale. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 845–

861. USENIX Association, 2020.

[20] Jez Humble and David Farley. Continuous delivery:

reliable software releases through build, test, and de-

ployment automation. Pearson Education, 2010.

[21] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan.

Lifting the veil on Meta’s microservice architecture:

Analyses of topology and request workflows. In Pro-

ceedings of the 2023 USENIX Annual Technical Confer-

ence. USENIX, 2023.

[22] Kubernetes. https://kubernetes.io/.

[23] Eero Laukkanen, Juha Itkonen, and Casper Lassenius.

Problems, causes and solutions when adopting continu-

ous delivery—A systematic literature review. Informa-

tion and Software Technology, 82:55–79, 2017.

[24] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,

Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun

Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-

araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,

and Chunqiang Tang. Shard Manager: A Generic Shard

Management Framework for Geo-Distributed Applica-

tions. In Proceedings of the ACM SIGOPS 28th Sympo-

sium on Operating Systems Principles, SOSP ’21, page

553–569, 2021.

[25] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Miloji-

cic, and Paulo Meirelles. A Survey of DevOps Concepts

and Challenges. ACM Computing Surveys (CSUR),

52(6):1–35, 2019.

[26] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng

Huang, Pankaj Singh, Xinsheng Yang, Qingwei Lin,

Youjiang Wu, Sebastien Levy, and Murali Chintalap-

ati. Gandalf: An Intelligent, End-to-End Analytics Ser-

vice for Safe Deployment in Cloud-Scale Infrastructure.

In Proceedings of the 17th Usenix Conference on Net-

worked Systems Design and Implementation, NSDI’20,

page 389–402, 2020.

340 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/Release_early,_release_often
https://en.wikipedia.org/wiki/Release_early,_release_often
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/devops/pipelines/
https://azure.microsoft.com/en-us/products/devops/pipelines/
https://buck2.build/
https://spinnaker.io/docs/concepts/ebook/
https://spinnaker.io/docs/concepts/ebook/
https://circleci.com/
https://ebpf.io/
https://cloud.google.com/build
https://cloud.google.com/build
https://cloud.google.com/deploy
https://cloud.google.com/deploy
https://kubernetes.io/

[27] Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang

Wang. Finding Heterogeneous-Unsafe Configuration

Parameters in Cloud Systems. In Proceedings of the

Sixteenth European Conference on Computer Systems,

EuroSys ’21, page 410–425, 2021.

[28] Paul Marinescu. Autonomous testing of services at

scale. https://engineering.fb.com/2021/10/20/

developer-tools/autonomous-testing/, 2021.

[29] Caroline Moss. Facebook Went Down

And People Started Calling The Cops, 2014.

https://www.businessinsider.com/call-cops-

when-facebook-is-down-2014-8.

[30] Guilherme Ottoni. HHVM JIT: A Profile-guided,

Region-based Compiler for PHP and Hack. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

pages 151–165, 2018.

[31] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul

Cavallaro, Qi Huang, Justin Meza, and Kaushik Veer-

araghavan. Gorilla: A Fast, Scalable, in-Memory Time

Series Database. Proc. VLDB Endow., 8(12):1816–

1827, August 2015.

[32] Eric Raymond. The Cathedral and the Bazaar. Knowl-

edge, Technology & Policy, 12(3):23–49, 1999.

[33] Chuck Rossi. Rapid release at massive scale.

https://engineering.fb.com/2017/08/31/web/

rapid-release-at-massive-scale/, 2017.

[34] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,

Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-

mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,

Steven Hand, and John Wilkes. Autopilot: Workload

Autoscaling at Google. In Proceedings of the Fifteenth

European Conference on Computer Systems, EuroSys

’20. Association for Computing Machinery, 2020.

[35] Amazon SageMaker. https://aws.amazon.com/pm/

sagemaker.

[36] Amazon SageMaker UpdateEndpoint. https:

//docs.aws.amazon.com/sagemaker/latest/

APIReference/API_UpdateEndpoint.html.

[37] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max

Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios

Skarlatos, Hitesh Khandelwal, and Chunqiang Tang.

ServiceRouter: a Scalable and Minimal Cost Service

Mesh. In Proceedings of the 17th USENIX Sympo-

sium on Operating Systems Design and Implementation,

2023.

[38] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie

Williams, Kent Beck, and Michael Stumm. Continu-

ous Deployment at Facebook and OANDA. In 2016

IEEE/ACM 38th International Conference on Software

Engineering Companion (ICSE-C), pages 21–30. IEEE,

2016.

[39] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Za-

hedi, and Liming Zhu. Beyond Continuous Delivery:

An Empirical Investigation of Continuous Deployment

Challenges. In 2017 ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measure-

ment (ESEM), pages 111–120. IEEE, 2017.

[40] Mojtaba Shahin, Muhammad Ali Babar, and Liming

Zhu. Continuous Integration, Delivery and Deployment:

A Systematic Review on Approaches, Tools, Challenges

and Practices. IEEE Access, 5:3909–3943, 2017.

[41] Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali

Babar, and Liming Zhu. An Empirical Study of Archi-

tecting for Continuous Delivery and Deployment. Em-

pirical Software Engineering, 24(3):1061–1108, 2019.

[42] Spinnaker. https://spinnaker.io/.

[43] Spinnaker rollout strategy for Kubernetes. https:

//spinnaker.io/docs/guides/user/kubernetes-

v2/rollout-strategies/.

[44] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holis-

tic Configuration Management at Facebook. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles, pages 328–343, 2015.

[45] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,

Jonathan Kaldor, Scott Michelson, Thawan Kooburat,

Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long

Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-

nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas

Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-

navi Venkatesan, and Peter Zhang. Twine: A Uni-

fied Cluster Management System for Shared Infrastruc-

ture. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 787–803.

USENIX Association, 2020.

[46] David Tepper. Introducing Azure Deployment Manager.

https://learn.microsoft.com/en-us/archive/

msdn-magazine/2019/august/azure-devops-

introducing-azure-deployment-manager.

[47] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E

Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-

Balter, and John Wilkes. Borg: the Next Generation. In

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 341

https://engineering.fb.com/2021/10/20/developer-tools/autonomous-testing/
https://engineering.fb.com/2021/10/20/developer-tools/autonomous-testing/
https://www.businessinsider.com/call-cops-when-facebook-is-down-2014-8
https://www.businessinsider.com/call-cops-when-facebook-is-down-2014-8
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://aws.amazon.com/pm/sagemaker
https://aws.amazon.com/pm/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://spinnaker.io/
https://spinnaker.io/docs/guides/user/kubernetes-v2/rollout-strategies/
https://spinnaker.io/docs/guides/user/kubernetes-v2/rollout-strategies/
https://spinnaker.io/docs/guides/user/kubernetes-v2/rollout-strategies/
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager

Proceedings of the Fifteenth European Conference on

Computer Systems, pages 1–14, 2020.

[48] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar

Devanbu, and Vladimir Filkov. Quality and Produc-

tivity Outcomes Relating to Continuous Integration in

GitHub. In Proceedings of the 2015 10th joint meeting

on foundations of software engineering, pages 805–816,

2015.

[49] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-

glas, Sharad Agarwal, Mahadev Konar, Robert Evans,

Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. Apache Hadoop YARN: Yet Another Re-

source Negotiator. In Proceedings of the 4th annual

Symposium on Cloud Computing, 2013.

[50] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at Google with Borg. In

Proceedings of the European Conference on Computer

Systems (EuroSys), 2015.

[51] Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and

Vladimir Filkov. One Size Does Not Fit All: An Em-

pirical Study of Containerized Continuous Deployment

Workflows. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engi-

neering, pages 295–306, 2018.

342 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Chardonnay: Fast and General Datacenter Transactions for On-Disk
Databases

Tamer Eldeeb
Columbia University

Xincheng Xie
Columbia University

Philip A. Bernstein
Microsoft Research

Asaf Cidon
Columbia University

Junfeng Yang
Columbia University

Abstract

Distributed on-disk database systems could either use an
expensive commit protocol like two-phase commit (2PC)
to guarantee atomicity, and suffer from slow distributed
transactions, or forgo 2PC, which lead to weaker se-
mantics, limitations to the programming model, or con-
strained scalability, making the system less general. We
argue this compromise is no longer necessary within
modern datacenters. Low latency 2PC (∼150 µs on
Azure for 2PC over Paxos) can be achieved using low-
latency storage for the relatively small transaction logs,
fast RPCs, and careful protocol design. With fast 2PC,
the data contention bottleneck for many transactions
shifts from 2PC to reading the data itself from the rel-
atively slow storage while holding transaction locks.

We present Chardonnay, a scalable, on-disk, multi-
versioned transactional key-value store optimized for
single datacenter deployments with fast 2PC. Chardon-
nay has a general interface supporting point reads, scans,
and writes within multi-step strictly serializable ACID
transactions. The key mechanism underlying Chardon-
nay’s design is strongly consistent snapshot reads on
commodity hardware, using a novel lock-free read proto-
col. Chardonnay uses this protocol to cheaply determine
the read-write sets of queries, enabling Chardonnay to
transparently prefetch data needed for a transaction prior
to the execution of the transaction and the acquisition of
locks. This enables Chardonnay to achieve fast transac-
tions by minimizing contention, and avoids aborts due to
deadlocks by ordering lock requests.

1 Introduction

The holy grail of distributed databases is to provide an
abstraction of a single-server database that can run SQL
ACID transactions at high performance while maintain-
ing high availability. Recent work [27, 33, 47, 52, 57,
69, 81, 82, 84] shows that ACID distributed transactions

with strong isolation and consistency semantics can be
made efficient and scalable within in-memory database
systems. However, keeping all data in memory can be
prohibitively expensive, especially for large applications,
as DRAM’s cost per GB is over 10–50× more expensive
than regular (e.g., TLC or QLC) NAND SSD [34].

Therefore, due to their significantly lower cost, many
applications use distributed databases [11, 12, 29, 74],
which store their data on disk-based storage engines such
as RocksDB [8, 32, 58] or LevelDB [7]. The classic ar-
chitecture for such systems [65], popularized by System
R* [59], is to shard the data horizontally across a collec-
tion of shared-nothing machines, and use a distributed
commit protocol such as two-phase commit (2PC) [48]
to ensure atomicity of distributed ACID transactions.
Unfortunately, distributed transactions in these systems
have significant performance limitations [17, 30, 42, 52,
57, 76, 81].

Due to these challenges, many scale-out on-disk sys-
tems avoid providing any multi-key ACID transaction
support at all [26, 31], or limit it to local transactions ac-
cessing keys within a single machine or partition [23,61].
Other systems offer support for distributed transactions,
but forgo 2PC and sacrifice generality in one or more
ways, e.g., by offering weaker semantics [16, 54, 78, 79],
restricting the programming model [76], or employing
an architecture that limits system scalability [13, 49, 87].
Nevertheless, due to strong developer demand [14],
many popular SQL DBMSes now support general dis-
tributed ACID transactions [11, 29, 74], despite being a
lot slower than local transactions. Table 1 shows the
trade-offs made by various popular on-disk systems.

We argue that this compromise between performance
and generality is no longer necessary within the modern
datacenter. The high performance penalty of 2PC his-
torically has been due to the high latency of RPCs and
flushing log entries to disk. Fortunately, neither is the
case any more. Modern datacenter networks are fast [22],
and systems such as eRPC [46] have demonstrated that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 343

System Serializabile Linearizable General API Distributed TX High Contention

Spanner [29] Slow X
Calvin [76] X Fast

FoundationDB [87] Fast X
Hyder [21] X N/A X

Aurora (Multi-Master) [78] X X N/A Partitionable Workloads
Chardonnay Fast

Table 1: Comparison of representative on-disk distributed database systems.

RPCs can run at single-digit µs latency within the data-
center even without using RDMA. Additionally, storage
devices based on low-latency SLC NAND [10] or 3DX-
point [1] also provide single-digit µs latencies [6, 9, 10],
making them ideal for persisting database logs.1 Further-
more, many recent frameworks [45, 66, 83, 85, 86] fully
or partially bypass the Linux I/O software stack, further
boosting I/O performance.

This leads us to revisit the assumption that 2PC is the
primary bottleneck inherent in scale-out on-disk database
system designs. However, using a fast 2PC protocol re-
veals new bottlenecks. As we show in §4, even eliminat-
ing the entire latency of the commit protocol is not suffi-
cient to achieve good performance for high-contention
workloads, because transactions frequently hold locks
while fetching cold items from storage. Therefore, the
data contention bottleneck shifts to reading the data from
disk, since reading data from a typical SSD can be orders
of magnitude slower than the network.

We present Chardonnay, a distributed multi-version
transactional key-value store that is deliberately tai-
lored for this new era of fast 2PC. Chardonnay is de-
signed for single-datacenter deployments, since cross-
datacenter 2PC latency would be high. It supports point
and range reads, as well as writes, within classical multi-
step strictly serializable ACID transactions, making it
suitable as the storage engine for a SQL database (e.g.,
similar to CockroachDB [74]). Chardonnay uses the
classic shared-nothing architecture2 and uses strict two-
phase locking (2PL) [37] to guarantee strict serializabil-
ity [43] for read-write transactions, as well as 2PC to en-
sure atomicity for distributed transactions.

The core insight of Chardonnay is that fast RPCs
enable strictly serializable lock-free snapshot queries
within the datacenter in a general fashion, i.e., without
using specialized clocks, limiting scalability, or weaken-
ing the performance and semantics of read-write trans-
actions. Low-latency, high-throughput RPCs are key
to allow all committing transactions in Chardonnay to

1It is of course possible to store the entire database on such devices,
but they cost significantly more than commodity SSDs.

2Which, we posit, has aged like fine wine.

cheaply read a counter, called the epoch, that serves as
a global serialization point. The system increments the
epoch periodically, independent of transactions, so un-
like designs with a centralized sequencer [18, 87], main-
taining the epoch can be distributed and highly scalable.
The main challenge is that unlike systems with a sin-
gle global log or coordinator, Chardonnay uses one log
per partition, so it cannot enforce global epoch order-
ing of commits. Instead, we co-design the snapshot read
and commit protocols to guarantee their equivalence to
epoch ordering (§6). The idea is rather simple: Snapshot
queries may block waiting for write locks to be released
(once) for correctness, but they do not acquire any locks,
so they do not contend with the read-write transactions.

Beyond the direct benefit of efficient, lock-free read-
only queries, this enables two important benefits, as
Chardonnay leverages this snapshot read protocol to op-
timize the execution of read-write transactions. First,
Chardonnay runs the user’s transaction in a dry run mode
using the snapshot protocol to (approximately) compute
and prefetch the transaction’s read set, which in the vast
majority of cases allows Chardonnay to shift the work
of reading cold data from storage outside of the con-
tention period of the transaction. Second, since read and
write sets can be efficiently computed using the snapshot
protocol, Chardonnay also uses them to plan the locking
scheduling in a manner that avoids deadlock aborts.

At the systems and design level, our main contribu-
tion is Chardonnay, the first (to our knowledge) on-disk
system that achieves high performance for both low and
high-contention workloads, without sacrificing strong
semantics, restricting the programming model, or lim-
iting scalability. The novel mechanisms introduced in
Chardonnay are:

1. Novel lock-free snaphsot read protocol: Chardon-
nay uses fast RPCs to guarantee strict serializabil-
ity without relying on specialized hardware, synchro-
nized clocks, making assumptions about clock skew,
or limiting scalability.

2. Automatic prefetching: Chardonnay leverages the
snapshot protocol to do a “dry run” of the query,
which loads and pins all the keys accessed by the

344 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

transaction to main memory. This allows Chardon-
nay to avoid waiting for data read from slow stor-
age while holding locks. Unlike similar schemes
introduced by prior work [3, 75, 76], Chardonnay’s
prefetching mechanism works for scans, and neither
requires changes to the user code, nor incurs signifi-
cant additional latency or contention.

3. Lightweight deadlock avoidance: By computing
read and write sets in advance, Chardonnay avoids
deadlocks by determining the lock acquisition order.

Collectively, these techniques enable Chardonnay to
have excellent performance under high contention. In-
deed, as we show in §9, Chardonnay’s throughput under
extremely high contention is only 15% lower than under
extremely low contention. In contrast, the throughput
of a baseline System R*-style system (even utilizing fast
2PC) drops by over 85%. The dry run phase adds over-
head which is largely wasteful for low contention work-
loads, but we consider this a worthwhile trade-off, and
we allow disabling dry runs on a per transaction basis.

A general takeaway is that within on-disk systems,
the availability of fast datacenter RPCs makes distributed
and multi-core system designs look increasingly similar.
Some of our ideas (epoch-based versioning) are inspired
by multi-core database systems [77]. This unlocks the
potential for adopting additional insights from multi-core
single-node systems in a distributed setting. The flow
of ideas can also go in the other direction: while dis-
tributed transactions were our primary motivation when
designing Chardonnay, the challenge of high contention
is not unique to distributed transactions, and in fact many
single-node database systems run with low isolation pre-
cisely to mitigate this issue [15]. Our results show that
Chardonnay’s techniques can be useful for them too.

2 Background

This section discusses transaction semantics and commit
protocol performance in distributed database systems.

2.1 Strict Serializability

Strict Serializability [43] (also known as External Con-
sistency [29]) is considered the gold standard of dis-
tributed transaction semantics. It is the combination of
the following two properties [69]:

• Serializability: every execution is equivalent to
some serial ordering of committed transactions.

• Linearizability: if transaction A commits before
transaction B starts, then A should precede B in the
equivalent serial ordering.

2.2 2PC Recap
Two-phase commit (2PC) is a classic commit protocol
with many variants [48]. The basic flow works as fol-
lows: after a transaction finishes execution on multiple
participant servers or shards, a coordinator starts the first
phase by issuing Prepare RPCs to all participant. Each
participant can vote yes or no in response to the RPC,
where a yes vote is a promise by the participant that it
will not unilaterally abort the transaction and will be able
to (eventually) commit the transaction when asked. Be-
fore voting yes to a Prepare RPC, the participant typi-
cally persists all of the transactions writes to a durable
log so it can recover from any failures. If any partici-
pant votes no (or never responds due to failures or time-
outs), the coordinator aborts the transaction. Otherwise,
it logs the decision to commit to durable storage and then
runs the second phase of the protocol by issuing Commit
RPCs to the participants so they can apply the transaction
and release locks. A well known problem of 2PC is that
it is blocking [20, 70], wherein the failure of the coordi-
nator at inopportune moments prevents the participants
from making progress. This can be addressed by repli-
cating the coordinator state for availability [17, 29, 40].

2.3 The Penalty of 2PC
2PC traditionally incurs a significant performance over-
head for two main reasons. First, it requires at least two
network round trips and two synchronous log writes to
persistent storage per transaction [41, 57], which incurs
network and storage I/O overhead, as well as CPU us-
age by the TCP/IP stack [81]. For example, typical 2PC
commit latency within a single datacenter in systems like
Spanner is in the double digit milliseconds [29], which
puts a hard upper bound of less than 100 TPS on transac-
tions that update a write-hot record. Second, the coordi-
nation necessary to guarantee isolation can significantly
decrease concurrency, leading to performance degrada-
tion, as well as high abort rates [15]. This increased con-
tention due to 2PC is particularly harmful for short trans-
actions common in OLTP workloads, due to the high la-
tency of the commit protocol relative to the time it takes
to execute the transaction logic [76]. The impact of con-
tention is evident in locking-based concurrency control
schemes such as 2PL, but optimistic concurrency con-
trol (OCC) schemes are also not immune, and can in fact
perform worse under high contention [41, 51, 82].

3 Requirements

We now define Chardonnay’s stated objective, fast and
general transactions for on-disk databases, in more de-
tail. Fast encompasses the following requirements: First,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 345

latency for short OLTP transactions should be low (hun-
dreds of µs) regardless of whether it is single partition
or cross-partition; hence the performance penalty of dis-
tributed transactions should be relatively small. Sec-
ond, the system needs to support long-running read-only
queries efficiently, without impacting OLTP read-write
transactions. Finally, the system should be able to main-
tain high throughput for both low and high contention
workloads. General means providing a general, unre-
stricted programming model and API (e.g. capable of
supporting a full SQL layer) and the highest level of se-
mantics (i.e. strict serializability) without imposing over-
all scalability limits or using specialized hardware.

4 Measuring Contention Footprint

Data contention is a major issue for traditional on-disk
shared-nothing distributed database designs. Most real-
world workloads have low contention most of the time,
but occasionally a small number of extremely hot data
items appear, significantly degrading overall through-
put [39, 76]. Other workloads are characterised by high
skew such that a small portion of the database receives
a majority of the load. For example, half of the NYSE
trades happen on 1% of the symbols, and breaking news
can cause a sharp spike in trades on a small group of
symbols [68]. Indeed, data contention is a bottleneck
that hinders truly scalable transaction processing, even
in RDMA-enabled in-memory distributed database sys-
tems [82], and on multi-core single-node systems [62].

Following the terminology of Calvin [76], we define
a transaction’s contention footprint as the total duration
from the instant the transaction acquires its first lock until
it releases its last lock. In this section we use YCSB [28]
to study the contention footprint of simple, single oper-
ation transactions in System R*-style systems. To this
end, we built two simple baseline systems based on the
System R* architecture on top of RocksDB, using its
transaction and 2PC support in our experiments:

• Baseline-Slow. The client invokes database func-
tions using (slow) gRPC [5]. Both the write-ahead
log (WAL) and the database are placed on a directly
attached SSD.

• Baseline-Fast. Uses (fast) eRPC (with FlatBuffers
[4] for serialization format) instead of gRPC, and
the WAL is put on an emulated fast NVMe device.

Our baseline implementations ignore crucial practical
considerations (such as replicating coordinator state for
high availability to deal with the well-known 2PC block-
ing problem), and transactions more complicated than a
single read or write. Therefore, our results underestimate
the contention footprint. Nevertheless, they are instruc-
tive. All our experiments run on Microsoft Azure VMs.
The entire key universe is assigned to a single shard. We

Baseline-Slow (10%)
Baseline-Slow (100%)

Baseline-Fast (10%)
Baseline-Fast (100%)

Chardonnay (10%)
0

200

400

600

800

1000

1200

mi
cro

se
co

nd
s

Read
Write
2PC

Figure 1: Contention footprint of YCSB read (left
bar) and write (right bar) transactions. % repre-
sent the proportion of the data in DRAM. Chardon-
nay achieves a similar contention footprint to fully in-
memory (“Baseline-Fast 100%”) with only 10% of its
data in DRAM.

run YCSB-A with 50% point reads and 50% point writes
with uniform random distribution. All experiments use
one client with 5 threads, which runs on a dedicated VM
in the same Azure region as the server. To control the
amount of DRAM used by the system, we disable the OS
page cache and vary the size of the block cache, which is
RocksDB’s read cache. We run a full 2PC at the end
of each transaction, including in the case of reads, to
measure transaction overhead, even though technically
2PC is not needed since there is only one shard. Read
transactions release locks during the Prepare phase, so
the Commit phase does not contribute to their contention
footprint. For durability, Calls to Prepare and Commit
always wait for the write to be flushed to storage.

We show how the average latency of read and write
operations each contribute to the contention footprint in
Figure 1. On Baseline-Slow, the bulk of the contention
footprint comes from running 2PC. On Baseline-Fast,
the latency of 2PC is significantly lower due to the fast
RPC library and fast log storage. The yellow bars show
that the contention footprint of read transactions is much
higher when only 10% of the dataset is in main-memory,
since the majority of reads have to fetch data from SSD
storage. Write transactions (red bars) are not much af-
fected by the available DRAM, since writes are buffered
in-memory (at the server) until the Prepare phase where
they get written to the WAL.

We deduce two takeaways from this simple exper-
iment. First, with a modern RPC library, fast intra-
datacenter network, and small amount of fast NVMe
storage, distributed databases can significantly reduce
2PC latency. Second, once the latency of 2PC is reduced,
the data contention bottleneck becomes reading the data
needed by the transaction from the relatively slow SSD.

346 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 2: Transaction Lifetime in Chardonnay.

5 Architecture

Chardonnay has four main components:
1. Epoch Service. Responsible for maintaining and

updating a single, monotonically increasing counter
called the epoch. The epoch service exposes only
one RPC to its clients, which returns the latest
epoch. Reading the epoch serves as a global se-
rialization point for all committing transactions.
The epoch is used to assign transaction timestamps
at commit time and is essential for our lock-free
strongly consistent snapshot reads (§6). The epoch
is only read, not incremented, by each transaction.

2. KV Service. The core service that stores the user
key-value data. It uses a replicated shared-nothing
range-sharded architecture similar to other modern
System R*-style systems [11, 29, 74].

3. Transaction State Store. Responsible for author-
itatively storing the transaction coordinator state in
a replicated, highly-available manner so that client
failures do not cause transaction blocking. We
chose to store the transaction state separately from
the user’s key-value data to enable 2PC latency op-
timizations, which we describe in appendix A.1.

4. Client Library. Applications link this library to ac-
cess Chardonnay. It is the 2PC coordinator, and pro-
vides APIs (Figure 3) for executing transactions.

Figure 2 illustrates how the components interact dur-
ing the lifetime of a transaction. The basic flow of a
read-write transaction is almost the same as in a classic
shared-nothing System R*-style system, except we add
step 3b to read the epoch in parallel to the Prepare phase.

5.1 Epoch Service
The epoch service is a Multi-Paxos replicated state ma-
chine maintaining a single counter, the epoch. One
replica is designated leader. It increments the epoch at a
fixed configurable time interval (e.g., 10 ms) by append-
ing an entry to the Paxos log so it is durably replicated.

It exposes one RPC, read-epoch, which returns the value
of the epoch. The system maintains the invariant:
Monotonic Epoch Invariant: If a read-epoch call re-
turns a value e, then all subsequent read-epoch calls must
return a value greater than or equal to e.

We cannot rely on simply reading the value from the
leader replica, since a leader might lose its status without
realizing it for a while. It is possible to run the client
RPCs through the Paxos state machine. However, since
each committing transaction reads the epoch, this would
be too costly. Instead, we consider the epoch updated
when it is applied to the state of a majority of replicas,
not just when it is appended to the log. The client sends
read RPCs to all replicas and considers the current epoch
value to be the one returned by a majority of the replicas.
If no value has a majority, the client retries the read.

There is a trade-off in choosing the epoch advancing
interval. It needs to be long enough compared to typical
transaction duration that the value is usually read from
the CPU caches of replicas, and without requiring retries
due to no value having a majority. On the other hand, if
it is too long, it adds to linearizable snapshot read-only
transaction latency, as we explain in §6. We find that
advancing the epoch once every 10 milliseconds works
well in our experiments.

A single core can support tens of thousands of clients
and serve up to millions of eRPC calls per second [46].
Furthermore, the client library batches multiple read-
epoch calls from multiple concurrent transactions into a
single RPC. Since each RPC does very little work (reads
a word from main memory that is usually cached), we
expect this design to be sufficient for all practical pur-
poses. Nonetheless, in the interest of generality we show
how to scale-out the epoch service in appendix A.3.

5.2 KV Service

The key universe is partitioned into disjoint contiguous
subsets called ranges. Each range is assigned to a num-
ber of range servers (e.g., three) and is comprised of a
database and a WAL that is implemented via Paxos. The
WAL is placed on a fast NVMe device for low latency,
while the database is stored on commodity SSD storage.
One of the range replicas is designated as a leader, which
holds a leader lease. It maintains a lock table to im-
plement two-phase locking, using existing range locking
techniques [50, 55]. All reads and writes go through the
leader.

To simplify the description in this paper we will as-
sume the ranges and replica-to-server assignments are
static, although in practice ranges need to be moved, split
and merged to balance load effectively. This can be ac-
complished using well-known techniques [23,26,29,74],
which we leave for future work.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 347

5.2.1 Leader Selection and Disjointedness

Each range should have a designated leader replica that
holds the leader lease. The leader selection is piggy-
backed on the Paxos log implementation, i.e., a replica
attempting to acquire the leader lease does so by append-
ing a lease acquisition entry to the Paxos log. This log
entry includes, among other information, the identity of
the replica that is the lease holder, an epoch interval enti-
tling the replica to leadership status as long as the epoch
(maintained by the epoch service) falls within this inter-
val, and leader sequence number, which is incremented
whenever a new replica becomes the leader (but not when
an existing leader renews its lease). The leader returns
the sequence number to the client on every request, so the
client can detect leadership changes and abort the trans-
action if the transaction observes two different leaders
for the same range. When a leader is renewing its lease
or a new leader is taking over, they read the epoch from
the epoch service and set the upper interval ahead of the
current value (by 100 in our prototype); it is important
that the upper end is not too far ahead of the epoch, be-
cause this would effectively prevent other replicas from
taking over if the leader goes down, until the true epoch
catches up.

To prevent two replicas from acquiring leases with
overlapping epoch intervals, a lease acquisition entry by
a replica includes a copy of the lease believed to be the
most recent. Other replicas will reject a replica’s attempt
to get the lease if they are aware of a more recent lease
having been granted. This guarantees that at any point in
time there is at most one leader for any range, and that
only one range leader can successfully prepare transac-
tions for an epoch. We call this the Leader Disjointed-
ness invariant. In §5.4 we explain how we use it to vali-
date transaction locks, and later in §6 we describe its role
in the correctness of our lock-free snapshot reads.

5.3 Transaction State Store

The transaction state store is responsible for storing the
state of active transactions in the system in a fault-
tolerant, replicated manner, to mitigate 2PC blocking.

Each transaction can be in one of the following states:
Started, Committed, Aborted, and Done. Note that being
Prepared is not of concern here. We use the well-known
presumed abort optimization [59], meaning that the ser-
vice replies Aborted to a participant’s inquiry about the
state of a transaction unknown to the service. Being in
Done state means that all transaction participant ranges
have learned about the commit outcome of the transac-
tion so that the service can safely forget about it.

The service is hash-partitioned by transaction id. Each
partition is assigned to (typically) three servers. We do

Figure 3: Simplified Chardonnay Client API

not need a per partition log to order transactions, since
transactions are already ordered by 2PL. Instead, within a
partition, each transaction state is represented as its own
Multi-Paxos replicated log, which can have at most 3 en-
tries. Position 0 always contains the Started entry, po-
sition 1 can either contain Committed or Aborted, and
position 2 is to record Done state. This unusual design
is key to a 2PC latency optimization that we describe in
appendix A.1.

Recall that the client in Chardonnay acts as the 2PC
coordinator. If the client crashes after starting the Pre-
pare phase and before completing the transaction, the
participant ranges need to determine whether to commit
or abort. A KV Service range leader will attempt to put
an Abort entry in the transaction state log (in position 1).
If it succeeds, it can safely abort the transaction. The
transaction state store is the source of truth regarding a
transaction outcome. If the KV range leader successfully
installs an abort decision for the transaction with the TX
state store, a slow client cannot then succeed in commit-
ting it at a later point. Alternatively, after running the
Paxos state machine, the KV range could learn that the
client already put a Commit entry in that log position, in
which case it can safely apply the transaction.

5.4 Client
The client provides an interface for users to access
the database, and also acts as the 2PC coordinator in
Chardonnay. After the transaction finishes execution, the
client reads the epoch from the epoch service in paral-
lel to issuing Prepare RPCs to participant range leaders.
Each leader that accepts the Prepare request responds
with a Prepared message that includes the epoch inter-
val on its lease. The client then checks that the epoch it
read falls within the lease’s epoch interval of every par-
ticipant, and if not, aborts the transaction. This is neces-
sary to maintain the leader disjointedness invariant. If all
the participants prepare successfully and the lease valida-
tions pass, the client then calls the transaction state store

348 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to record the transaction’s commit durably. The Commit
record includes the participant ranges and the value of the
epoch. Finally, the client calls the participant range lead-
ers to notify them of the commit so they can record it lo-
cally and release all the locks. Transactions in Chardon-
nay must wait until the transaction Commit is recorded
before releasing any locks, for the correctness of snap-
shot reads (§6). This implies that even read locks for
successfully prepared transactions have to survive leader
changes and thus must be logged in the WAL during the
Prepare phase.

Many, if not most transactions only touch keys within
a single range, so they do not need 2PC. First, the client
reads the epoch. Then, it sends a Commit message to
the leader, which checks that the epoch falls within the
lease’s epoch interval. If so, the leader appends to the
WAL and if successful, returns success. If not, it aborts.

6 Snapshots

This section describes Chardonnay’s multi-versioning
and snapshot read protocols. Snapshot reads are essential
to efficiently support read-only queries. They also un-
derpin the techniques described in subsequent sections.
Queries have to be declared as read-only from the start;
a transaction that starts normally without this declaration
but only performs reads is treated as a read-write trans-
action by the system, and does not utilize the lock-free
snapshot read algorithm.

6.1 Versioning

Each user record has a key k and one or more versions
stored in the database. The key for each version is the
pair ⟨k, VID⟩, where VID (version ID) is determined as
follows. Its prefix is the value of the epoch that the client
reads in parallel to running the Prepare phase of 2PC.
A counter (starting from 1) is appended to the epoch to
distinguish writes by different transactions in the same
epoch. A transaction chooses a single suffix that makes
its VID greater than that of the existing VIDs in its write
set. Deletes need to have versions as well, so they appear
as tombstones. For convenience, the system also stores
an unversioned record with just the key k which holds the
latest value and is updated in place.

6.2 Read Algorithm

Epoch Ordering Property: There exists an equiva-
lent ordering to the transaction ordering enforced by
Chardonnay’s strict 2PL such that for all pairs of com-
mitted transactions, T1 with an epoch e1, and T2 with an
epoch e2, if e1 < e2, then T1 precedes T2.

We present a proof sketch of this property in ap-
pendix A.2. The epoch ordering property ensures that
epoch boundaries are consistent points in the serial or-
der and appropriate for serializable snapshot reads, i.e., a
transaction can get a consistent snapshot as of the begin-
ning of the current epoch ec by ensuring it observes the
effects of all committed transactions that have a lower
epoch. Suppose all the transactions with an epoch e
< ec have committed. Reading a user key k as of the
start of epoch ec translates to reading the value of key
⟨k, VID⟩ such that VID is the largest value < ⟨ec, 0⟩ in
the database. Hence, the snapshot read algorithm would
simply work by reading the epoch ec, then reading the
appropriate key versions.

The main challenge is ensuring that the snapshot is
complete, i.e., no more transactions will be committing
with an epoch below ec. Any transaction that has not
started to prepare is guaranteed to have an epoch of at
least ec, by the monotonic epoch invariant.

The problem is prepared (or preparing) transactions
that are not yet known to have committed. Fortunately,
any such transaction that could possibly commit writes
must already be holding write locks at the current range
leader. More formally, the transaction must be holding
write locks on any replica whose leader lease’s epoch
interval upper end is above ec. To see why this holds,
suppose a transaction T with an epoch eT < ec has com-
pleted the Prepare phase but not the Commit phase. Re-
call from §5.4 that the client acting as T’s coordinator re-
ceives the epoch range of the lease from the range leader
it used to perform the Prepare, and checks whether eT
falls within that epoch range. If it did not, then the client
aborts the transaction so it cannot possibly commit. Oth-
erwise, recall that transactions do not release any locks
until the commit phase, including across leader changes.
Therefore, it must be that the locks are held on the leader
whose lease’s epoch range contains ec (and by the leader
disjointedness invariant, there can be at most one such
replica), and any subsequent leader replica. A similar ar-
gument shows why the same holds for transactions that
started but have not finished the Prepare phase. Hence,
the read algorithm first reads the current epoch ec (once
per transaction), ensures it is below the upper end of the
leader’s epoch interval, and waits for the current holders
of write locks (if any) on its read set to release these locks
before executing the reads. The read is not attempting
to acquire locks, so it does not contend with read-write
transactions.

The algorithm as described so far does not guarantee
linearizability, because a transaction T would not observe
the effects of transactions in epoch ec that committed be-
fore T started. If desired, ensuring linearizability is easy
at the cost of some latency; after T starts, it waits for the
epoch to advance once and then use the new epoch.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 349

6.3 Garbage Collection

Chardonnay must periodically remove old record ver-
sions to avoid running out of space. Chardonnay uses the
lower end of its range leader lease’s epoch interval to de-
termine which versions are no longer needed and can be
garbage collected. There is a background job running on
each range replica that removes versioned records (other
than the newest version of a record) whose epoch is less
than a delta from the lower end of the epoch interval.
A snapshot read must validate that its epoch value lies
within that delta from the lower end of the interval after
executing its reads, to avoid reading an incomplete snap-
shot due to versions being deleted. In our experiments
we configure the delta to be 6000, so that versions are
kept at least for roughly one minute before they are GC’d.
Additionally, since snapshot reads only happen at epoch
boundaries, when a new version of a record is inserted,
if it has the same epoch as the previous version then that
previous version is immediately deleted. This optimiza-
tion significantly reduces the number of versions main-
tained for records that are updated very frequently (i.e.
highly-contended records).

7 Prefetching

Our experiments in §4 show that with fast 2PC, reading
from slow storage becomes a primary cause of a transac-
tion’s contention footprint. Hot contended records will
typically be cached in the database’s memory. However,
this does not fully address the issue because a transaction
might access hot records along with other cold records
that are not good candidates for caching. There are sev-
eral well-known techniques to work around this prob-
lem [20]. For example, the programmer could manually
prefetch records before executing the transaction. An-
other technique is to ensure hot records are the last to be
accessed. This is beneficial because it minimizes the ex-
ecution time during which access to the hot record causes
a conflict. Unfortunately, these are are not always appli-
cable, and they push a lot of complexity to programmers.

We could require the programmers to label their
queries with the read set. Then the system can prefetch
the records (i.e., key-value pairs) identified by those keys
to memory before executing the transaction and pin them
until the transaction finishes, so that no time is spent
reading from slow storage while locks are held. How-
ever, this scheme restricts the programming model, and is
incapable of supporting dependent queries, that is, ones
whose read set cannot be determined prior to executing
the query [76]. This contradicts Chardonnay’s goal of a
general programming model (e.g., supporting SQL).

Instead, Chardonnay transparently uses the client’s
code to first execute the query in a lock-free, dry run

mode to load the read set to memory, then executes nor-
mally with 2PL.

It is of course possible for the read set to change by
the time the actual transaction executes. One reason is
that only the values of one or more records change due
to a write by another transaction. Chardonnay handle
this correctly and with no performance penalty, by re-
flecting the changes in its prefetching buffer (§7.3). The
other possibility, in the case of dependent queries, is that
the set of keys itself changes, so the transaction has to
read some keys that had not been prefetched and pinned.
This does not pose a correctness problem but may cause
a transaction to read additional data from disk while it is
holding the locks, and thereby increasing its contention
footprint. Fortunately, prior work has shown this seldom
happens in real-world workloads [76]; dependent queries
are commonly ones that must read from a secondary in-
dex to identify their full read and write sets. Since sec-
ondary indices are fairly expensive to modify, they are
seldom kept on fields whose values are updated very fre-
quently. One example of such transactions is the “Pay-
ment” transaction of the TPC-C benchmark. Since the
TPC-C benchmark workload never modifies the index on
which Payment transactions’ read and write sets may de-
pend [76], the set of keys read by a Payment transaction
never changes between the dry run and the execution.

One additional benefit of strongly consistent dry run
queries is that if the application logic aborts the transac-
tion on its own, there is no need to perform the actual ex-
ecution. On the other hand, using dry run queries has two
main disadvantages. First, it adds to the query latency, al-
though this additional latency does not contribute to the
contention footprint. Second, it requires executing the
transaction logic twice before committing. While OLTP
read-write transactions tend to be small, this could still
be wasteful if the transaction is compute-intensive, par-
ticularly in low contention cases. The user can disable
dry run queries by using a different API. In the future,
we plan to explore automatically deciding when to do
prefetching based on the characteristics of the workload.

7.1 API
The API shown in Figure 3 is more suited to user-
interactive transactions (e.g., a user executing a multi-
statement SQL transaction at a console, examining in-
termediate results before writing more queries). To use
prefetching, a slightly different API is used to start the
transaction where the caller passes a function that exe-
cutes the transaction logic, i.e.,

<typename T>

T run(std::function< T(Transaction*) > query)

Within the function, the code can freely call the read,
scan, or write APIs using the transaction object that gets

350 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

passed. There are essentially no restrictions on the code
inside the function, even though in practice it would have
no side effects beyond the transaction’s writes to the
database itself. This does not add any unusual restric-
tions; any transaction might have to abort, and side ef-
fects outside of the transaction cannot be rolled back.

7.2 Semantics
The dry run query runs under snapshot isolation using
our snapshot read mechanism that we described in §6,
and can be configured to be strictly serializable if de-
sired. Running under a lower isolation level such as read
committed [19] could be problematic because it exposes
the programmer’s code to anomalies that would not hap-
pen in the serializable execution. This might cause the
client’s code to abort the transaction, prematurely end-
ing prefetching, or worse, crash. Therefore, we do not
use a lower isolation level because prefetching should be
transparent to the user.

7.3 Design
Each range leader maintains a prefetching buffer to store
a transaction’s read set’s records in main memory. The
prefetching buffer tracks which records are in main mem-
ory and allows transactions to request pinning keys. Any
committed write to a pinned record updates the value in
the buffer, so that it becomes a write-through consistent
cache for pinned records, and any transaction that needs
to read a pinned key can just get its value from the cache
and not have to go to the database.

To efficiently support range-queries, the prefetching
buffer tracks key ranges not just individual keys; if a
key range is pinned to the buffer, and a new transaction
inserts (or deletes) a record whose key falls within that
range, that new record is pinned too. Hence, a transac-
tion that sees a range is pinned to the buffer can satisfy a
range read from the cache without going to the database.

When a transaction is running in dry run mode, it reads
the committed, snapshot value from the database with-
out acquiring any locks, requests pinning the key (or key
range), and then returns the committed value to the client
to continue executing the query. In most cases both the
snapshot and latest versions can be read using a single
IO, so this does not typically increase the IO overhead.
Writes made by the dry run query never make it to the
KV Service, and are discarded at the client after the dry
run. After the dry run completes, the client library reruns
the transaction in normal mode. When that transaction
finishes (i.e. commits or aborts), the keys are unpinned
and become eligible for eviction.

It is possible that a request to pin a record cannot be
satisfied because the range leader has run out of mem-

ory. In this case the dry run query could be delayed until
memory frees up, or just be aborted. This serves as effec-
tive admission control prior to acquiring any locks. Some
care is needed to avoid a potential live-lock situation, but
in the worst case transactions can skip prefetching.

7.4 Handling Resource Contention
Dry run queries execute most of the transaction logic
in Chardonnay, so that when the actual transaction ex-
ecutes it only needs to perform minimal work. However,
if we are not careful, the activity from dry run queries
and other background tasks such as garbage collection
and compaction can compete with transactions for re-
sources on the machines running the KV-service ranges.
As a side effect, this could slow down the lock-acquiring
transaction and increase data contention. Therefore, we
dedicate resources on each machine to transactions to en-
sure they are insulated from lower-priority activity that
does not hold locks.

8 Deadlock Avoidance

Since Chardonnay uses 2PL, it has to deal with the prob-
lem of deadlocks. An easy solution is transaction time-
outs, since they are needed anyway to deal with various
possible failures. Unfortunately, a deadlocked transac-
tion would be holding locks for the entire timeout du-
ration before these locks are released. Another popular
choice is a deadlock prevention scheme such as Wait-
Die or Wound-Wait [64], but they can be too conservative
(i.e., aborting transactions that are not deadlocked) which
can become problematic under high contention. A more
common choice in practice is deadlock detection [63] via
detecting cycles in the wait-for graph [38,72] and break-
ing the cycle by choosing a transaction to abort. This
requires significant overhead for maintaining the global
wait-for graph state, and potentially frequent aborts.

By making all transactions acquire their locks in the
same order, we can prevent deadlocks. In Chardonnay,
the read and write sets of the transaction are (approxi-
mately) computed by dry run queries, prior to acquiring
any locks. We acquire the locks in ascending key order
prior to actually executing the transaction. A naive im-
plementation of this idea would require adding |read set
∪ write set| round-trips to the contention footprint to ac-
quire the locks. Instead, the client uses an approach sim-
ilar to RPC Chains [71], which cuts the round-trips re-
quired roughly in half compared to the naive approach.
The client in Chardonnay sends one RPC to the first
range from which it needs keys. The range acquires all
the local locks, performs all the necessary local reads,
and then forwards the request to the next range. The
client immediately sends an RPC to the last range in the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 351

0.00001 0.001 0.1 1
Contention Index

0

5000

10000

15000

20000

Th
rou

gh
pu

t (
TP

S)

Chardonnay
Prefetching-only
Baseline

(a) 10% Distributed Transactions.

0.00001 0.001 0.1 1
Contention Index

0

2500

5000

7500

10000

12500

15000

17500

Th
rou

gh
pu

t (
TP

S)

Chardonnay
Prefetching-only
Baseline

(b) 100% Distributed Transactions.

Figure 4: Contention Microbenchmark Throughput Results

request, which holds the RPC until the request arrives.
After finishing its local work, the last range replies to the
client’s RPC with all the read results. When this is done,
the client runs the transaction logic. If the transaction
invokes a read for a key or key range (that the client al-
ready has), the client returns it immediately since it has
the lock on the data (and will detect and abort the trans-
action if that lock is lost before commit). If transaction’s
read or write set changes between the dry run and actual
transaction, the client cannot serve the reads from its lo-
cal cache and has to send the read requests to the ranges.
We fall back to Wound-Wait for these locks.

If most transactions are likely to perform multiple
read operations involving multiple network round-trips
and reads from slow storage, then a developer might be
tempted to parallelize those accesses, if possible, to re-
duce the contention footprint. Whether this is done with
parallel threads or asynchronous APIs, it adds complex-
ity to the programming model. Our scheme gets the same
benefit without this complexity. On the other hand, the
scheme can actually increase a transaction’s contention
footprint, because lock acquisition has to be serialized.
There is no overhead for the common case of transac-
tions accessing a single range. We allow the programmer
to disable ordered lock acquisition per transaction. In the
future, we plan to adaptively apply the technique.

9 Evaluation

In this section we study how Chardonnay performs un-
der contention (§9.1), its scalability (9.2), and its snap-
shot read performance (§9.3). To evaluate contention, we
use a benchmark used by Calvin [76], which is inspired
by TPC-C’s New-Order transaction. For scalability ex-
periments, we use the standard TPC-C benchmark, and
for read latency we use YCSB [28]. In all experiments
the KV service range leaders use Standard L8s v2 Azure

VMs, which provide 8 vCPU cores and 64GB of memory
and support accelerated networking necessary for eRPC.
We place the database on directly-attached SSD for high
IOPS. For the WAL, we emulate NVMe on DRAM via
RAMdisk, since it is not currently offered on Azure. We
advance the epoch every 10ms. All results are 10 minute
averages unless otherwise stated.

9.1 Contention Microbenchmark

We use a benchmark introduced in Calvin [76] to eval-
uate Chardonnay’s performance under high contention.
Each transaction in the benchmark reads 10 records, per-
forms a constraint check on the result, and if the check
passes, updates a counter in each record. The records in
each KV-service range are divided into two disjoint sets:
cold and hot. Each transaction can either be local or dis-
tributed. A local transaction accesses 9 records chosen at
random from the cold set in the target range, and 1 record
chosen at random from the hot set. A distributed trans-
action is similar, except it accesses 8 cold records and an
additional hot record in a different range. The number of
cold records in each range is much larger than available
memory so cold records will be mostly served from disk.
The number of hot records is determined by a parameter
called the contention index, which is set to be the inverse
of the number of hot records and represents the probabil-
ity that two transactions accessing the same range will
conflict. Hence, a contention index of 0.01 means that
there are 100 hot records per range, while a contention
index of 1 means that there is 1 hot record (which is ac-
cessed by all transactions touching that range). The con-
tention index controls the degree of parallelism within
each range (e.g., a contention index of 1 means that all
transactions within a range are serialized).

We wrote each transaction using simple, synchronous
APIs. This means that all reads are executed sequentially.

352 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

This is not a requirement, but it highlights the additional
benefits of Chardonnay’s dry run and deadlock avoidance
schemes, which move sequential operations outside of
the contention footprint. The ordering of the reads done
by each transaction is random, so there is variance in the
time hot records spend under lock.

Setup. We use 6 ranges, and each range leader is as-
signed its own VM. We evaluate the following configu-
rations of Chardonnay:

• Baseline. All transactions run without dry-run
queries, so they do not perform prefetching or or-
dered lock acquisition. This is essentially a classic
shared-nothing system architecture with a fast 2PC
implementation, and Wound-Wait for deadlocks.

• Prefetching-only. Transactions run with dry-run
queries, but only do prefetching and not ordered
lock acquisition.

• Chardonnay. All transactions perform prefetching
and ordered lock acquisition.

Initially, we planned to compare against Cock-
roachDB [74] as a representative for a modern shared-
nothing system. However, we realized that retrofitting
the system with eRPC would be a very significant en-
gineering effort. Running the (full SQL) system un-
changed on the same experimental setup yielded low
throughput (TPS per node is 90% less than Chardonnay).
Hence, we use our baseline configuration for apples-to-
apples comparison, as it is a good representative of the
shared-nothing architecture.

We plot the throughput and abort rates under different
values of contention index in Figures 4 and 5.

Analysis. As expected, under low contention, the dry
run queries in Chardonnay are mostly wasteful and con-
sequently the baseline configuration has slightly better
throughput. Notably, full Chardonnay performs better
than prefetching-only even under low contention. This
is because ordered lock acquisition issues Lock & Read
requests in a batched, efficient manner, as opposed to
sequentially issuing an RPC per read during the trans-
action execution in the prefetching-only configuration.
This further supports our intuition that Chardonnay’s or-
dered lock acquisition scheme enables writing the trans-
actions in a simple, synchronous manner without a sig-
nificant performance penalty. As contention increases,
the overall throughput becomes constrained by the con-
tention footprint, and in particular, the length of time
locks on hot records also increases. The baseline con-
figuration has the sharpest drop in throughput, since it
has to issue multiple RPCs and reads from slow stor-
age while holding locks. The full Chardonnay config-
uration performs best under high contention and has zero
aborts. Prefetching-only fares much better than baseline,

even though it suffers a significant drop in throughput
due to increased deadlock avoidance abort rates under
contention, as well as increased contention footprint due
to RPCs.

In the 10% distributed transactions case, transactions
essentially never deadlock since they can only conflict on
one record in the vast majority of cases. Yet, the Wound-
Wait deadlock avoidance scheme is too conservative and
results in many unnecessary aborts as contention in-
creases; see Figure 5. Note that because the base configu-
ration’s transactions have a much larger contention foot-
print, even a relatively modest 0.001 contention index is
affected by these superfluous aborts. A less conserva-
tive scheme such as deadlock detection would not suffer
from this, at the cost of taking much longer to resolve the
deadlock when an actual one appears. In Chardonnay, we
largely avoid deadlock aborts and only use Wound-Wait
as a fall-back mechanism, as discussed in §8.

One interesting property of Chardonnay is that dis-
tributed transactions are not dramatically more expensive
than local transactions. The peak throughput under low
contention with 100% distributed transactions is roughly
22% lower than with only 10% distributed transactions.
This makes the importance of reducing cross-partition
transactions less significant, thus relieving database ad-
ministrators and developers from the requirement to con-
tinually re-partition the application data to minimize
cross-partition transactions [30, 35, 36, 60, 73]. The big
difference in throughput between 10% and 100% ratio
of distributed transactions under higher contention index
values is largely because each transaction in the 100%
distributed case accesses two items from the hot set, not
because the transaction is distributed. This is in part be-
cause 2PC is highly optimized in Chardonnay, but also
because non-distributed transactions have to go through
a phase of reading the epoch before committing. Our re-
sults for the 10% distributed case show that the benefits
of Chardonnay are not limited to distributed transactions.

9.2 Scalability
The scalability of the System R*-style shared-nothing ar-
chitecture is well established [80], but Chardonnay intro-
duces the read-epoch operation during each transaction’s
2PC. Therefore, we need to ensure that the epoch service
can keep up with an increasing scale.

TPC-C New-Order. Similar to prior work [76], we
limited our TPC-C implementation to the New Order
transaction, which is the bulk of the TPC-C workload
including almost all distributed transactions that require
high isolation. We would expect similar results if we
were to run the full TPC-C benchmark. We assign each
KV service range leader to a dedicated VM and have it

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 353

0.00001 0.001 0.01 0.1 1
Contention Index

0

10

20

30

40

50
Ab

or
t R

at
e (

%
)

Baseline
Prefetching-only
Chardonnay

Figure 5: Abort rates for 10% distributed tx micro-
benchmark. Chardonnay’s deadlock aborts are 0%.

host 10 warehouses. We limit the overall throughput to
2500 TPS per node, since we aim to evaluate the scal-
ability of the system rather than the raw per-node peak
throughput. The clients run on dedicated VMs, separate
from Chardonnay nodes. (Recall that in Chardonnay, the
execution of the transaction logic happens on the client.)
We plot the results in Figure 6, which show stable 2PC
latency as the system scales linearly.

Comparison with Calvin. Chardonnay is able to reach
similar New-Order throughput scale as reported by
Calvin [76], without Calvin’s significant programming
model restrictions (described in §10). Calvin’s reported
single-datacenter latency is much higher than Chardon-
nay (∼100ms), but the comparison is not meaningful
since it does not use fast RPC and storage. However, with
10ms epoch duration as in our setup, we expect Calvin
adds 5ms to the median latency since it groups transac-
tions into batches at the start of each epoch. Therefore,
even with fast RPC and storage, we expect Calvin’s me-
dian latency to be higher than Chardonnay’s P99 latency.

Epoch microbenchmark. To test the limits of the
Epoch service, we wrote a micro-benchmark where each
thread simulates a Chardonnay client node running 2PC.
We run 30 client nodes with 8 threads each, where each
thread is issuing 5000 read-epoch calls per second for a
total of 1,200,000 calls per second. The median latency
is below 60 µs, which is less than the median for the full
Prepare phase. Since read-epoch runs in parallel to Pre-
pare, this does not increase the overall 2PC latency.

9.3 Snapshot Read Latency
We use YCSB with 50% write and 50% read to eval-
uate snapshot read latency, using a setup similar to §4.
Read operations run with snapshot isolation for this pur-

5 10 15 25 50 100 200
Number of Nodes

0

100

200

300

400

500

Th
rou

gh
pu

t (
KT

PS
)

0

500

1000

1500

2000

2500

3000

3500

4000

La
ten

cy
 (m

icr
os

ec
on

ds
)

TX - P50
TX - P99
2PC - P50
2PC - P99

Figure 6: TPC-C New-Order transaction results.

pose. The dataset fits in DRAM since our focus is mea-
suring protocol overhead, not IO latency. When running
with a uniform distribution of keys, the median latency
of reads is roughly 220 µs. On the other hand, when run-
ning with Zipfian 0.99 distribution it increases to nearly
355 µs. This is because most reads in the Zipfian case are
going to write-hot records and hence almost always have
to wait for locks to be released before they can execute.
We also run the read operations with strict serializability.
The median latency of the read operations increases by
∼5ms since they need to wait for the epoch to advance.

9.4 Range Reads

We devise a simple experiment to demonstrate Chardon-
nay’s effectiveness for range reads. The experiment in-
volves a single range that contains 100 records. There
are two client threads, one is a writer thread that is con-
tinuously deleting and then re-inserting a random record
in the range, and the other is a reader that is executing a
range query to read all records. Even though the reader
thread is not doing any writes, its range read query is not
declared as read-only so that it runs as a read-write trans-
action, not as a snapshot read. We compare the number
of insert operations per second in Chardonnay and the
baseline from §9.1. The results are in Table 2. Without
prefetching, the baseline has to execute the range read
against the database each time while holding the lock on
the entire range, resulting in a longer contention period
and thus slowing down the writer.

10 Related Work

Shared-nothing. Spanner [29], and CockroachDB [74]
are prominent modern examples of systems that uti-
lize shared-nothing architecture, both primarily target-
ing inter-datacenter operations with globally-distributed
workloads. Spanner uses specialized hardware to

354 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Chardonnay Baseline

Insert TPS 914 197

Table 2: Range Read Results.

achieve clock synchronization guarantees that are nec-
essary for its external consistency support. Many design
choices in the system make it hard to support fast transac-
tions within the datacenter. For instance, Spanner guar-
antees correctness of readers by introducing a delay for
writers during the commit protocol until the clock un-
certainty interval has passed, which can add many mil-
liseconds to a transaction’s contention footprint. In con-
trast, Chardonnay guarantees correctness by having read-
ers potentially wait for write locks so that the contention
footprint for writers does not have to increase. Cock-
roachDB is a system with similar emphasis on global
distribution. It does not guarantee external consistency to
avoid requiring specialized clocks, and instead provides
the weaker single-key linearizability (which still relies on
bounded clock skew). Its concurrency control protocol
has optimistic components optimized for low contention.
Shared Disk. Shared-disk [13] is another classic DBMS
architecture [25, 44] that has become popular in re-
cent years in systems such as Amazon Aurora [78, 79],
Socrates [13], and Google’s AlloyDB [2]. These sys-
tems are single-master, in which only one node actively
writes the database, limiting scalability. Aurora also has
a multi-master mode which does not offer serializabil-
ity, and works well for partitionable workloads with lit-
tle cross-partition activity. In contrast, Chardonnay can
horizontally scale both reads and writes with strict seri-
alizability and supports fast cross-partition transactions.
Shared Log. Hyder [21] and Tango [18] scale-out com-
pute without partitioning by utilizing a shared log that
is accessed by all compute nodes. Appending to and re-
playing the log can be a bottleneck limiting scalability.
Deterministic Systems. Deterministic execution has
been explored as an alternative to distributed commit
in systems such as Calvin [76] and Aria [56]. A ma-
jor benefit of using determinism is eliminating transac-
tion aborts due to deadlocks [63], which Chardonnay
largely achieves using its lock ordering scheme. Deter-
ministic execution databases typically have to restrict the
programming model to one-shot transactions. They also
group incoming transactions into batches before execut-
ing them, which can add tens of milliseconds to latency.

Another significant limitation of most deterministic
database systems is they require knowing a transaction’s
read and write set upfront [75, 76]. To support depen-
dent queries, a programmer can precede a transaction
with a lower isolation reconnaissance query to compute

its read/write sets (e.g., OLLP [75, 76]). However, com-
pared to dry run queries in Chardonnay, reconnaissance
queries require changes to the client transaction code and
run at low isolation level, exposing the code to anomalies
that do not appear in the real execution. Furthermore, if
the read or write set of the transaction changes between
running the reconnaissance query and actual transaction,
the transaction must abort. Fauna [3], a DBMS based on
Calvin’s design, eliminates the need for manual recon-
naissance queries at the cost of adding a round of Raft
consensus to the transaction’s contention footprint, and
using OCC, degrading performance under contention.
Snapper [53] is a transaction library for single-node sys-
tems based on the Actor model, which enables determin-
istic execution for transactions that can be labeled with
their read and write sets, while simultaneously support-
ing non-deterministic execution for transactions where
this is not possible.

The Calvin paper proposes using the read set to
prefetch data prior to sequencing the transaction.
Prefetching in Calvin requires precisely estimating I/O
latency [76]. It also happens after the reconnaissance
query, adding to query latency. Notably, Calvin’s de-
signers do not discuss range reads. Presumably even if
a transaction’s entire readset is in memory, it still needs
to run the range query against the database to ensure no
other transaction has inserted or deleted records within
that range.
Distributed epoch-based commit. Coco [57] is an in-
memory system that applies epoch-based group commit
in a distributed setting. It uses a centralized coordina-
tor to synchronously commit transactions in epoch or-
der. This requires adding many milliseconds of latency
to read-write transactions. In contrast, Chardonnay is an
on-disk system that guarantees the equivalence to epoch
ordering, but transactions commit out of epoch order for
low latency.

11 Conclusions

This paper presents Chardonnay, a scale-out, general-
purpose, multi-versioned, on-disk transactional key-
value store optimized for single datacenter deployments
with fast 2PC. Chardonnay takes advantage of fast RPCs
to support strictly serializable snapshot reads without re-
lying on specialized clocks or assumptions about max-
imum clock skew. Chardonnay achieves high perfor-
mance for high contention workloads by automatically
and transparently loading and pinning data from slow
storage to main memory prior to acquiring any locks, and
avoids deadlocks by ordering its lock requests. We be-
lieve that the design principles of Chardonnay can also
be applied in other settings, such as multi-core single-
node systems for high contention workloads.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 355

Figure 7: Recording Transaction State.

12 Acknowledgments

We thank our shepherd, Marc Shapiro, and the anony-
mous reviewers for their many useful comments and sug-
gestions. We also thank Ryan Stutsman, Irene Zhang
and Kyle Raftogianis for their feedback on earlier drafts
of this work. This work was supported in part by a
GE/DARPA grant, a CAIT grant, NSF awards CNS
2106530, CNS 2104292 and CNS 2143868, and gifts
from JP Morgan, DiDi, and Accenture.

A Appendix

A.1 Optimizing 2PC
Pipelined WAL. Since RPCs and log writes are cheap
in our system and low latency is paramount, we do not
batch multiple operations into a single WAL entry. In-
stead, each operation (e.g., a transaction’s Prepare) has
its own WAL entry (hence runs its own instance of the
Paxos state-machine). Furthermore, appends to the WAL
are pipelined [67] (i.e., we do not wait for the previ-
ous entries to be completely written and applied before
starting a new one). Log entries are still applied to the
database in log order for correctness, however. Note that
a Prepare must go through the range leader, which drives
appending it to the log. The long-lived leader design al-
lows the leader to complete a log append using one RPC
in the common case. Hence the latency of a Prepare op-
eration is roughly the sum of the latencies of two RPCs
and one NVMe write.

Client-driven Commit. As mentioned earlier, we use
Paxos to replicate the state of each transaction in the
transaction state store. However, to minimize the number
of required round-trips, we do not designate any of the
replicas as a leader. Leaders in Paxos are an optimiza-
tion used in part to avoid the dueling proposers problem.
Since we carefully designed the state of each transaction
to be an independent Multi-Paxos log, the client is the
only proposer in the vast majority of cases. So requir-
ing it to go through a leader to run the Paxos protocol to
commit (or abort) the transaction adds the latency of a su-

perfluous RPC to the Commit operation (which happens
under transaction locks). Furthermore, the client utilizes
a variant of the well-known technique of chaining Paxos
instances together [24]. As illustrated in Figure 7, when
performing the RPC to run the second (Accept) phase of
Paxos to append log entry 0 (i.e., recording transaction
start), the client simultaneously runs the first (Propose)
phase of Paxos entry number 1 (i.e., reserving the right
to propose the value of proposal number 0). Thus, it in-
curs the latency of only one RPC to append the decision.

A.2 Proof Sketch of Epoch Ordering
We show that if e1 < e2, then T1 cannot have a depen-
dency or anti-dependency on T2. Given that, we can show
that the transaction dependency DAG has no edges that
go from a transaction with a higher to a lower epoch.

We proceed by contradiction by assuming this is false.
This implies that there is (transitively) a read-write or
write-write conflict between T1 and T2, and T2 was or-
dered first. Therefore, T2 released a lock and sometime
later T1 acquired a lock. However, since e1 < e2, the
monotonic epoch invariant implies T1 finished execution
(and acquired all its locks) before T2 did so, a contradic-
tion as transactions do not release any locks until com-
mit. Hence, T1 precedes T2 in the equivalent order.

A.3 Scaling the Epoch Service
Here we discuss briefly how to scale-out the epoch ser-
vice while maintaining the correctness of our snapshot
reads. The basic idea is introduce intermediary epoch
publishers between the epoch service and its clients.
Each publisher maintains a single counter (the epoch)
and is Paxos replicated for high availability, much like
the epoch service itself. However, the publishers do not
advance the counter themselves. Instead, when the epoch
is advanced by the epoch service, it issues RPCs to each
publisher to advance their epoch value. The epoch ser-
vice does not advance the epoch again before it updates
all the publishers (each of which is highly available).
Each client is assigned to one of the publishers, and uses
the same procedure to read the epoch from that publisher
exactly as it would from the epoch service itself.

This design requires slightly weakening the monotonic
epoch invariant, since it is possible for a client to read a
value of the epoch that is one less than the true epoch.
Furthermore, when a client is assigning an epoch to a
transaction, it needs to ensure the epoch is at least as high
as that of any record in its read and write sets, even if the
version it reads from the publisher is lower. Lineariz-
ability of snapshot reads can be ensured at the cost of
additional latency, by waiting for the epoch to advance
twice instead of just once.

356 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] 3D Xpoint: A Breakthrough in Non-Volatile Memory Tech-

nology. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-micron-3d-

xpoint-webcast.html, 2023.

[2] AlloyDB for PostgreSQL. https://cloud.google.com/
alloydb, 2023.

[3] Fauna. https://fauna.com/, 2023.

[4] FlatBuffers. https://google.github.io/flatbuffers/,
2023.

[5] gRPC. https://grpc.io/, 2023.

[6] Intel® OptaneTM SSD DC P5800X Series. https:

//ark.intel.com/content/www/us/en/ark/products/
201859/intel-optane-ssd-dc-p5800x-series-1-6tb-

2-5in-pcie-x4-3d-xpoint.html, 2023.

[7] LevelDB. https://leveldb.org/, 2023.

[8] RocksDB. A persistent key-value store for fast storage environ-
ments. https://rocksdb.org/, 2023.

[9] Toshiba memory introduces XL-FLASH storage class mem-
ory solution. https://business.kioxia.com/en-us/news/
2019/memory-20190805-1.html, 2023.

[10] Ultra-Low Latency with Samsung Z-NAND SSD. https://

www.samsung.com/semiconductor/global.semi.static/
Ultra-Low Latency with Samsung Z-NAND SSD-0.pdf,
2023.

[11] yugabyteDB. https://yugabyte.com/, 2023.

[12] ZippyDB: Facebook’s key value store. https://

engineering.fb.com/2021/08/06/core-data/zippydb/,
2023.

[13] ANTONOPOULOS, P., BUDOVSKI, A., DIACONU, C., HER-
NANDEZ SAENZ, A., HU, J., KODAVALLA, H., KOSSMANN,
D., LINGAM, S., MINHAS, U. F., PRAKASH, N., PUROHIT,
V., QU, H., RAVELLA, C. S., REISTETER, K., SHROTRI, S.,
TANG, D., AND WAKADE, V. Socrates: The new sql server in
the cloud. In Proceedings of the 2019 International Conference
on Management of Data (New York, NY, USA, 2019), SIGMOD
’19, Association for Computing Machinery, p. 1743–1756.

[14] BACON, D. F., BALES, N., BRUNO, N., COOPER, B. F., DICK-
INSON, A., FIKES, A., FRASER, C., GUBAREV, A., JOSHI,
M., KOGAN, E., LLOYD, A., MELNIK, S., RAO, R., SHUE,
D., TAYLOR, C., VAN DER HOLST, M., AND WOODFORD, D.
Spanner: Becoming a sql system. In Proceedings of the 2017
ACM International Conference on Management of Data (New
York, NY, USA, 2017), SIGMOD ’17, Association for Comput-
ing Machinery, p. 331–343.

[15] BAILIS, P., DAVIDSON, A., FEKETE, A., GHODSI, A.,
HELLERSTEIN, J. M., AND STOICA, I. Highly available trans-
actions: Virtues and limitations. Proc. VLDB Endow. 7, 3 (nov
2013), 181–192.

[16] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M.,
AND STOICA, I. HAT, not CAP: Towards highly available trans-
actions. In 14th Workshop on Hot Topics in Operating Systems
(HotOS XIV) (Santa Ana Pueblo, NM, May 2013), USENIX As-
sociation.

[17] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J. J., KHOR-
LIN, A., LARSON, J., LEON, J.-M., LI, Y., LLOYD, A., AND
YUSHPRAKH, V. Megastore: Providing scalable, highly avail-
able storage for interactive services. In Conference on Innovative
Data Systems Research (CIDR 2011) (2011).

[18] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU, M.,
PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO, S., ZOU, T.,
AND ZUCK, A. Tango: Distributed data structures over a shared
log. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2013),
SOSP ’13, Association for Computing Machinery, p. 325–340.

[19] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J.,
O’NEIL, E., AND O’NEIL, P. A critique of ansi sql isolation
levels. SIGMOD ’95, Association for Computing Machinery,
p. 1–10.

[20] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[21] BERNSTEIN, P. A., REID, C. W., AND DAS, S. Hyder - a
transactional record manager for shared flash. In CIDR (2011),
www.cidrdb.org, pp. 9–20.

[22] BINNIG, C., CROTTY, A., GALAKATOS, A., KRASKA, T., AND
ZAMANIAN, E. The end of slow networks: It’s time for a re-
design. Proc. VLDB Endow. 9, 7 (mar 2016), 528–539.

[23] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N.,
SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S.,
WU, J., SIMITCI, H., HARIDAS, J., UDDARAJU, C., KHATRI,
H., EDWARDS, A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U., BHARDWAJ, D.,
DAYANAND, S., ADUSUMILLI, A., MCNETT, M., SANKARAN,
S., MANIVANNAN, K., AND RIGAS, L. Windows azure storage:
A highly available cloud storage service with strong consistency.
In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2011), SOSP ’11,
Association for Computing Machinery, p. 143–157.

[24] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos
made live - an engineering perspective (2006 invited talk). In
Proceedings of the 26th Annual ACM Symposium on Principles
of Distributed Computing (2007).

[25] CHANDRASEKARAN, S., AND BAMFORD, R. Shared cache - the
future of parallel databases. In Proceedings 19th International
Conference on Data Engineering (Cat. No.03CH37405) (2003),
pp. 840–850.

[26] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on Op-
erating Systems Design and Implementation - Volume 7 (USA,
2006), OSDI ’06, USENIX Association, p. 15.

[27] CHEN, Y., YU, X., KOUTRIS, P., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., AND SHU, J. Plor: General transac-
tions with predictable, low tail latency. In Proceedings of the
2022 International Conference on Management of Data (New
York, NY, USA, 2022), SIGMOD ’22, Association for Comput-
ing Machinery, p. 19–33.

[28] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM Symposium on Cloud Com-
puting (New York, NY, USA, 2010), SoCC ’10, Association for
Computing Machinery, p. 143–154.

[29] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E.,
LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D.,
QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK,
M., TAYLOR, C., WANG, R., AND WOODFORD, D. Span-
ner: Google’s globally distributed database. ACM Trans. Comput.
Syst. 31, 3 (aug 2013).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 357

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://cloud.google.com/alloydb
https://cloud.google.com/alloydb
https://fauna.com/
https://google.github.io/flatbuffers/
https://grpc.io/
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://leveldb.org/
https://rocksdb.org/
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://business.kioxia.com/en-us/news/2019/memory-20190805-1.html
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://yugabyte.com/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/

[30] CURINO, C., JONES, E., ZHANG, Y., AND MADDEN, S.
Schism: A workload-driven approach to database replication and
partitioning. Proc. VLDB Endow. 3, 1–2 (sep 2010), 48–57.

[31] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAP-
ATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN,
S., VOSSHALL, P., AND VOGELS, W. Dynamo: Amazon’s
highly available key-value store. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles (New
York, NY, USA, 2007), SOSP ’07, Association for Computing
Machinery, p. 205–220.

[32] DONG, S., KRYCZKA, A., JIN, Y., AND STUMM, M. Evolution
of development priorities in key-value stores serving large-scale
applications: The RocksDB experience. In 19th USENIX Con-
ference on File and Storage Technologies (FAST 21) (Feb. 2021),
USENIX Association, pp. 33–49.

[33] DRAGOJEVIC, A., NARAYANAN, D., NIGHTINGALE, E., REN-
ZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No compromises: distributed transactions with consistency,
availability, and performance. In Symposium on Operating Sys-
tems Principles (SOSP’15) (October 2015), ACM – Association
for Computing Machinery.

[34] EISENMAN, A., CIDON, A., PERGAMENT, E., HAIMOVICH,
O., STUTSMAN, R., ALIZADEH, M., AND KATTI, S. Flashield:
a hybrid key-value cache that controls flash write amplification.
In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19) (Boston, MA, Feb. 2019), USENIX
Association, pp. 65–78.

[35] ELDEEB, T., CHEN, Z., CIDON, A., AND YANG, J. Neuroshard:
Towards automatic multi-objective sharding with deep reinforce-
ment learning. In Proceedings of the Fifth International Work-
shop on Exploiting Artificial Intelligence Techniques for Data
Management (New York, NY, USA, 2022), aiDM ’22, Associ-
ation for Computing Machinery.

[36] ELMORE, A. J., ARORA, V., TAFT, R., PAVLO, A., AGRAWAL,
D., AND EL ABBADI, A. Squall: Fine-grained live reconfigura-
tion for partitioned main memory databases. In Proceedings of
the 2015 ACM SIGMOD International Conference on Manage-
ment of Data (2015), pp. 299–313.

[37] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER,
I. L. The notions of consistency and predicate locks in a database
system. Commun. ACM 19, 11 (nov 1976), 624–633.

[38] GRAY, J. Notes on data base operating systems. In Advanced
Course: Operating Systems (1978).

[39] GUO, Z., WU, K., YAN, C., AND YU, X. Releasing locks
as early as you can: Reducing contention of hotspots by vi-
olating two-phase locking. In Proceedings of the 2021 Inter-
national Conference on Management of Data (New York, NY,
USA, 2021), SIGMOD ’21, Association for Computing Machin-
ery, p. 658–670.

[40] GUO, Z., ZENG, X., WU, K., HWANG, W., REN, Z., YU, X.,
BALAKRISHNAN, M., AND BERNSTEIN, P. A. Cornus: Atomic
commit for a cloud DBMS with storage disaggregation. Proc.
VLDB Endow. 16, 2 (2022), 379–392.

[41] HARDING, R., VAN AKEN, D., PAVLO, A., AND STONE-
BRAKER, M. An evaluation of distributed concurrency control.
Proc. VLDB Endow. 10, 5 (jan 2017), 553–564.

[42] HELLAND, P. Life beyond distributed transactions: an apostate’s
opinion. In Conference on Innovative Data Systems Research
(CIDR 2007) (2007).

[43] HERLIHY, M. P., AND WING, J. M. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (jul 1990), 463–492.

[44] JOSTEN, J. W., MOHAN, C., NARANG, I., AND TENG, J. Z.
Db2’s use of the coupling facility for data sharing. IBM Systems
Journal 36, 2 (1997), 327–351.

[45] KAFFES, K., CHONG, T., HUMPHRIES, J. T., BELAY, A.,
MAZIÈRES, D., AND KOZYRAKIS, C. Shinjuku: Preemptive
scheduling for µsecond-scale tail latency. In Proceedings of the
16th USENIX Conference on Networked Systems Design and
Implementation (USA, 2019), NSDI’19, USENIX Association,
p. 345–359.

[46] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. Datacen-
ter RPCs can be general and fast. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19)
(Boston, MA, Feb. 2019), USENIX Association, pp. 1–16.

[47] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. FaSST:
Fast, scalable and simple distributed transactions with Two-Sided
(RDMA) datagram RPCs. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16) (Savannah,
GA, Nov. 2016), USENIX Association, pp. 185–201.

[48] LAMPSON, B. W., AND LOMET, D. B. A new presumed commit
optimization for two phase commit. In Proceedings of the 19th
International Conference on Very Large Data Bases (San Fran-
cisco, CA, USA, 1993), VLDB ’93, Morgan Kaufmann Publish-
ers Inc., p. 630–640.

[49] LEVANDOSKI, J., LOMET, D., SENGUPTA, S., STUTSMAN, R.,
AND WANG, R. High performance transactions in deuteron-
omy. In Conference on Innovative Data Systems Research (CIDR
2015) (January 2015).

[50] LEVANDOSKI, J., LOMET, D., SENGUPTA, S., STUTSMAN,
R., AND WANG, R. Multi-version range concurrency control in
deuteronomy. Proc. VLDB Endow. 8, 13 (sep 2015), 2146–2157.

[51] LIM, H., KAMINSKY, M., AND ANDERSEN, D. G. Cicada: De-
pendably fast multi-core in-memory transactions. In Proceedings
of the 2017 ACM International Conference on Management of
Data (New York, NY, USA, 2017), SIGMOD ’17, Association
for Computing Machinery, p. 21–35.

[52] LIN, Q., CHANG, P., CHEN, G., OOI, B. C., TAN, K.-L., AND
WANG, Z. Towards a non-2pc transaction management in dis-
tributed database systems. In Proceedings of the 2016 Inter-
national Conference on Management of Data (New York, NY,
USA, 2016), SIGMOD ’16, Association for Computing Machin-
ery, p. 1659–1674.

[53] LIU, Y., SU, L., SHAH, V., ZHOU, Y., AND VAZ SALLES,
M. A. Hybrid deterministic and nondeterministic execution of
transactions in actor systems. SIGMOD ’22, Association for
Computing Machinery, p. 65–78.

[54] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND ANDER-
SEN, D. G. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2011), SOSP ’11, Association for Computing
Machinery, p. 401–416.

[55] LOMET, D. B., AND MOKBEL, M. F. Locking key ranges with
unbundled transaction services. Proc. VLDB Endow. 2 (2009),
265–276.

[56] LU, Y., YU, X., CAO, L., AND MADDEN, S. Aria: A fast and
practical deterministic oltp database. Proc. VLDB Endow. 13, 12
(jul 2020), 2047–2060.

[57] LU, Y., YU, X., CAO, L., AND MADDEN, S. Epoch-based com-
mit and replication in distributed oltp databases. Proc. VLDB En-
dow. 14, 5 (jan 2021), 743–756.

[58] MATSUNOBU, Y., DONG, S., AND LEE, H. Myrocks: Lsm-tree
database storage engine serving facebook’s social graph. Proc.
VLDB Endow. 13, 12 (aug 2020), 3217–3230.

358 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[59] MOHAN, C., LINDSAY, B., AND OBERMARCK, R. Transaction
management in the r* distributed database management system.
ACM Trans. Database Syst. 11, 4 (dec 1986), 378–396.

[60] QUAMAR, A., KUMAR, K. A., AND DESHPANDE, A. Sword:
Scalable workload-aware data placement for transactional work-
loads. In Proceedings of the 16th International Conference on
Extending Database Technology (2013), EDBT ’13, p. 430–441.

[61] RAO, J., SHEKITA, E. J., AND TATA, S. Using paxos to build a
scalable, consistent, and highly available datastore. Proc. VLDB
Endow. 4, 4 (jan 2011), 243–254.

[62] REN, K., FALEIRO, J. M., AND ABADI, D. J. Design princi-
ples for scaling multi-core oltp under high contention. In Pro-
ceedings of the 2016 International Conference on Management
of Data (New York, NY, USA, 2016), SIGMOD ’16, Association
for Computing Machinery, p. 1583–1598.

[63] REN, K., THOMSON, A., AND ABADI, D. J. An evaluation of
the advantages and disadvantages of deterministic database sys-
tems. Proc. VLDB Endow. 7, 10 (jun 2014), 821–832.

[64] ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWIS, P. M.
System level concurrency control for distributed database sys-
tems. ACM Trans. Database Syst. 3, 2 (jun 1978), 178–198.

[65] ROTHNIE, J. B., BERNSTEIN, P. A., FOX, S., GOODMAN,
N., HAMMER, M., LANDERS, T. A., REEVE, C., SHIPMAN,
D. W., AND WONG, E. Introduction to a system for distributed
databases (sdd-1). ACM Trans. Database Syst. 5, 1 (mar 1980),
1–17.

[66] RUMBLE, S. M., ONGARO, D., STUTSMAN, R., ROSENBLUM,
M., AND OUSTERHOUT, J. K. It’s time for low latency. In
13th Workshop on Hot Topics in Operating Systems (HotOS XIII)
(Napa, CA, May 2011), USENIX Association.

[67] SANTOS, N., AND SCHIPER, A. Optimizing paxos with batching
and pipelining. Theoretical Computer Science 496 (2013), 170–
183. Distributed Computing and Networking (ICDCN 2012).

[68] SERAFINI, M., TAFT, R., ELMORE, A. J., PAVLO, A., ABOUL-
NAGA, A., AND STONEBRAKER, M. Clay: Fine-grained adap-
tive partitioning for general database schemas. Proc. VLDB En-
dow. 10, 4 (nov 2016), 445–456.

[69] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIĆ, A., NARAYANAN, D., AND
CASTRO, M. Fast general distributed transactions with opacity.
In Proceedings of the 2019 International Conference on Man-
agement of Data (New York, NY, USA, 2019), SIGMOD ’19,
Association for Computing Machinery, p. 433–448.

[70] SKEEN, D. Nonblocking commit protocols. In Proceedings of
the 1981 ACM SIGMOD International Conference on Manage-
ment of Data (New York, NY, USA, 1981), SIGMOD ’81, Asso-
ciation for Computing Machinery, p. 133–142.

[71] SONG, Y. J., AGUILERA, M. K., KOTLA, R., AND MALKHI,
D. Rpc chains: Efficient client-server communication in geodis-
tributed systems. In 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’09) (April 2009),
USENIX.

[72] STONEBRAKER, M. Concurrency control and consistency of
multiple copies of data in distributed ingres. IEEE Transactions
on Software Engineering SE-5, 3 (1979), 188–194.

[73] TAFT, R., MANSOUR, E., SERAFINI, M., DUGGAN, J., EL-
MORE, A. J., ABOULNAGA, A., PAVLO, A., AND STONE-
BRAKER, M. E-store: Fine-grained elastic partitioning for
distributed transaction processing systems. Proceedings of the
VLDB Endowment 8, 3 (2014), 245–256.

[74] TAFT, R., SHARIF, I., MATEI, A., VANBENSCHOTEN, N.,
LEWIS, J., GRIEGER, T., NIEMI, K., WOODS, A., BIRZIN,

A., POSS, R., BARDEA, P., RANADE, A., DARNELL, B.,
GRUNEIR, B., JAFFRAY, J., ZHANG, L., AND MATTIS, P. Cock-
roachdb: The resilient geo-distributed sql database. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2020), SIGMOD
’20, Association for Computing Machinery, p. 1493–1509.

[75] THOMSON, A., AND ABADI, D. J. The case for determinism in
database systems. Proc. VLDB Endow. 3, 1–2 (sep 2010), 70–80.

[76] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K., SHAO,
P., AND ABADI, D. J. Calvin: Fast distributed transactions
for partitioned database systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2012), SIGMOD ’12, Association
for Computing Machinery, p. 1–12.

[77] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN,
S. Speedy transactions in multicore in-memory databases. In
Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles (New York, NY, USA, 2013), SOSP ’13,
Association for Computing Machinery, p. 18–32.

[78] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADESAM, M.,
GUPTA, K., MITTAL, R., KRISHNAMURTHY, S., MAURICE,
S., KHARATISHVILI, T., AND BAO, X. Amazon aurora: De-
sign considerations for high throughput cloud-native relational
databases. In SIGMOD 2017 (2017).

[79] VERBITSKI, A., GUPTA, A., SAHA, D., COREY, J., GUPTA,
K. K., BRAHMADESAM, M., MITTAL, R., KRISHNAMURTHY,
S., MAURICE, S., KHARATISHVILI, T., AND BAO, X. Ama-
zon aurora: On avoiding distributed consensus for i/os, commits,
and membership changes. Proceedings of the 2018 International
Conference on Management of Data (2018).

[80] YANG, Z., YANG, C., HAN, F., ZHUANG, M., YANG, B.,
YANG, Z., CHENG, X., ZHAO, Y., SHI, W., XI, H., YU, H.,
LIU, B., PAN, Y., YIN, B., CHEN, J., AND XU, Q. Oceanbase:
A 707 million tpmc distributed relational database system. Proc.
VLDB Endow. 15, 12 (2022), 3385–3397.

[81] ZAMANIAN, E., BINNIG, C., HARRIS, T., AND KRASKA, T.
The end of a myth: Distributed transactions can scale. Proc.
VLDB Endow. 10, 6 (feb 2017), 685–696.

[82] ZAMANIAN, E., SHUN, J., BINNIG, C., AND KRASKA, T.
Chiller: Contention-centric transaction execution and data par-
titioning for modern networks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2020), SIGMOD ’20, Association
for Computing Machinery, p. 511–526.

[83] ZHANG, I., RAYBUCK, A., PATEL, P., OLYNYK, K., NELSON,
J., LEIJA, O. S. N., MARTINEZ, A., LIU, J., SIMPSON, A. K.,
JAYAKAR, S., ET AL. The demikernel datapath OS architecture
for microsecond-scale datacenter systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles
(2021), pp. 195–211.

[84] ZHANG, M., HUA, Y., ZUO, P., AND LIU, L. FORD: Fast one-
sided RDMA-based distributed transactions for disaggregated
persistent memory. In 20th USENIX Conference on File and
Storage Technologies (FAST 22) (Santa Clara, CA, Feb. 2022),
USENIX Association, pp. 51–68.

[85] ZHONG, Y., LI, H., WU, Y. J., ZARKADAS, I., TAO,
J., MESTERHAZY, E., MAKRIS, M., YANG, J., TAI, A.,
STUTSMAN, R., AND CIDON, A. XRP: In-Kernel storage func-
tions with eBPF. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22) (Carlsbad, CA, July
2022), USENIX Association.

[86] ZHONG, Y., WANG, H., WU, Y. J., CIDON, A., STUTSMAN,
R., TAI, A., AND YANG, J. Bpf for storage: An exokernel-
inspired approach. In Proceedings of the Workshop on Hot Topics

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 359

in Operating Systems (New York, NY, USA, 2021), HotOS ’21,
Association for Computing Machinery, p. 128–135.

[87] ZHOU, J., XU, M., SHRAER, A., NAMASIVAYAM, B., MILLER,
A., TSCHANNEN, E., ATHERTON, S., BEAMON, A. J., SEARS,
R., LEACH, J., ROSENTHAL, D., DONG, X., WILSON, W.,
COLLINS, B., SCHERER, D., GRIESER, A., LIU, Y., MOORE,
A., MUPPANA, B., SU, X., AND YADAV, V. Foundationdb: A
distributed unbundled transactional key value store. In SIGMOD
’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021 (2021), ACM, pp. 2653–2666.

360 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ScaleDB: A Scalable, Asynchronous In-Memory Database

Syed Akbar Mehdi
The University of Texas at Austin★

Deukyeon Hwang
University ofWashington

Simon Peter
University ofWashington

Lorenzo Alvisi
Cornell University

Abstract

ScaleDB is a serializable in-memory transactional database
that achieves excellent scalability on multi-core machines
by asynchronously updating range indexes. We find that
asynchronous range index updates can significantly improve
database scalability by applying updates in batches, reducing
contention on critical sections. To avoid stale reads, ScaleDB
uses small hash indexlets to hold delayed updates. We use in-
dexlets to design ACC, an asynchronous concurrency control
protocol providing serializability. With ACC, it is possible
to delay range index updates without adverse performance
effects on transaction execution in the common case. ACC
delivers scalable serializable isolation for transactions, with
high throughput and low abort rate. Evaluation on a dual-
socket server with 36 cores shows that ScaleDB achieves 9.5×
better query throughput than Peloton on the YCSB bench-
mark and 1.8× better transaction throughput than Cicada on
the TPC-C benchmark.

1 Introduction

In-memory databases [5, 10, 15, 21, 23, 42] are becoming in-
creasingly popular: they perform well under a wide range
of workloads and support requirements, such as real-time
constraints, that are challenging for their disk-based counter-
parts [16]. They also, however, face scalability demands that
sharding can only partially address: many real-world work-
loads have skewed access distributions [30, 47, 50, 68, 75], and
the frequent hotspots they generate in individual shards re-
quire database solutions that can scale on multi-core servers.

Unfortunately,despiteyearsof research, scaling in-memory
databases on multi-core architectures remains challenging.
Existing work [62, 73, 79] eliminates the bottleneck on a
shared timestamp in the concurrency control protocol. Other
work [37, 38, 60, 63, 77] has focused on improving the scal-
ability of indexing structures in isolation from the database
architecture. Nonetheless, current databases scale poorly on
multi-core architectures (§3.1). In particular, shared range-
index structures (e.g., B+ trees) continue to be amain source of
contention [77], and the high cost of updates to these indexes,
evenbyunrelated transactions, is amajor factor limiting scala-
bility [62]. As fast storage via solid-state drives and persistent
memory becomes the norm, contention on these structures
is intensifying.

★Currently at Google. Work done during PhD at UT Austin.

We believe that continuing to scale with these application
and hardware trends requires a fresh approach. Our main
observation, supported by recentwork in file systems [34, 35],
is that contention on shared data structures is often not funda-
mental, but simply an artifact of a particular system architec-
ture. In particular, we find that contention caused by synchro-
nous updates to sorted range-index structures is unnecessary
in the common case. Our analysis (§3.2) shows that it is pos-
sible to delay many common range-index updates, without
compromisingon strong consistencyguarantees or latency re-
quirements for transactions. Delayed updatesmay be batched
to reduce contention on shared range-index structures.

These observations leadus topropose adecoupleddatabase
design, centered around minimizing unnecessary contention
among unrelated transactions. Our main technique is to de-
couple committing a transaction from updating the affected
range indexes:weupdate range indexesasynchronously,while
using scalable hash-based indexlets to track writes of recently
committed transactions. Based on this asynchronous archi-
tecture, we design asynchronous concurrency control (ACC),
a novel concurrency control protocol that provides serializ-
ability for concurrent transactions without compromising
scalability, commit latency, or throughput. ACC is an opti-
mistic concurrency control protocol that builds on indexlets
to provide phantomlets for scalable phantom1 detection [32].
ACC uses locks in indexlets, rather than in range indexes, to
provide scalable atomic transaction commit.

WepresentScaleDB, a scalablemulti-core in-memory trans-
actional database based on asynchronous concurrency con-
trol. By decoupling transaction execution from range index
updates, ScaleDB can focus on improving the scalability of the
former in isolation from the latter and without undesirable
performance tradeoffs. By avoiding unnecessary contention
on shared data structures in the common case, ScaleDB deliv-
ers scalable serializable isolation for ACID transactions, with
high throughput, low commit latency, and low abort rate.

We make the following contributions:
• An analysis of the range index scalability bottleneck and
of asynchronous range-index updates as a way to alleviate
that bottleneck for unrelated transactions (§3).

1Phantom anomalies arisewhen insertions or deletions by other concurrently
committing transactions cause two identical range scans in the same
transaction to return a different set of rows.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 361

• The design (§4) and implementation (§5) of ScaleDB, a scal-
able in-memory database that decouples range index man-
agement from transaction execution to allowasynchronous
update of range indexes in the common case.

• Asynchronous concurrency control (ACC), a novel concur-
rency control protocol that provides serializability in an
asynchronous database (§4.2). ACC uses phantomlets to
scalably detect phantoms in range scans and provides scal-
able locks in indexlets to atomically commit transactions.

• A performance evaluation of ScaleDB on a dual-socket
server with 36 cores, which shows that ScaleDB scales bet-
ter than Cicada and Peloton. At scale, ScaleDB achieves
9.5× better query throughput than Peloton on the YCSB
benchmark and 1.8× better transaction throughput than
Cicada with shared indexes on the TPC-C benchmark.

2 Background

Modern relational databases face challenging scalability de-
mands. In addition to serving as backends for large-scale web
applications [11, 17, 25, 31], they are offered as a service in
public clouds [1, 4, 74], andmust support applications that can
be simultaneously write and read intensive; require both low
transaction commit latency and high transactional through-
put; and, increasingly, run analytical queries (on data from
sources such as sensors, real-time analytics, and machine
learning [19, 27]) that require maintaining a large number of
indexes on every write.
In-memory databases are particularly suited to handle

these diverse workload requirements, and their adoption is
further facilitated by high-capacity non-volatile and disag-
gregated memories, as they allow for more data to be held in
memory, with access latencies comparable to DRAM [53, 72].
Just as newmemory technologies are shifting performance
bottlenecks away from storage and towards multi-core CPU
contention, such diverse workload requirements raise the bar
for in-memory database scalability.
2.1 PriorWork

Existingefforts to improve thescalabilityof in-memorydatabases
have focused on three bottlenecks: (𝑖) range index structures;
andserializable transaction isolation forboth (𝑖𝑖) low-contention
workloads and (𝑖𝑖𝑖) high-contention workloads (i.e., transac-
tionswith dependencies). Thework on range index structures
has happened in isolation from the rest. This observation is
key to the case for ScaleDB (§3).
Range index structures. Range indexes are an efficient
method for data retrieval. In addition to providing exact-
match lookup of database records in logarithmic time, they
alsoallowfast scansof records in sortedorder.Despitedecades
of work [37, 38, 48, 59–61, 63, 65], scalability of range indexes
under concurrent accesses remains elusive. This is primarily
due to the hierarchical nature of these data structures. For
instance, in a B+tree index, inserting or deleting a new record
can requiremodifying a chain of internal nodes all theway up

to the root. Performing such modifications atomically while
supporting concurrent access frommultiple threads requires
synchronization [45, 77].
One approach to synchronization uses locks [48, 59, 65].

Recent optimizations [37, 38, 63] remove shared cache line
contention between readers trying to acquire a lock per node,
bymaking them optimistic. However, readersmust read a ver-
sion number per node to verify their optimistic assumption,
whichcancausecontentionwithwriters trying to increment it.
Similarly,writers still contendoncache lines, trying toacquire
spinlocks on individual tree nodes. Frequently accessed nodes
such as the root of a B+tree or the index node at the end of the
range (for append workloads) become hotspots of contention.
An alternative are lock-free data structures [46, 49, 61]:

they use atomic operations and multi-versioning to avoid
lock contention on critical sections. Yet, as recent work [45]
points out, their theoretical guarantees are “mostly irrelevant
to performance and scalability on multi-core hardware”, as
they cannot avoid contention on global memory locations.
A recent study [77] evaluated state-of-the-art range in-

dexes [46, 48, 60, 61, 63] on the YCSB [40] benchmark and
showed that none of these indexes scale well. Even on a read-
heavyworkloadwith only 5% inserts, these indexes only scale
up to 12×when increasing cores by 20×. On an insert-only
workload with threads appending new inserts to the end of
a range, their scalability collapses when going from a sin-
gle NUMA node (20 cores) to two NUMA nodes (40 cores),
with throughput dropping between 50% to 66%. The limited
scalability of range indexes has been reported in previous
work [62] and we expand on this analysis in §3.1.

Serializability for low-contentionworkloads. The use of
a shared timestamp for ordering transactions [33, 57] made
timestamp allocation a principal bottleneck to the scalabil-
ity of concurrency control [78]. Even when updated using
atomic hardware primitives, a shared timestamp can force un-
related transactions to contend and results in excessive cache
coherence communication. Recent work eliminates the times-
tamp bottleneck, but incurs high transaction commit latency
due to either a high abort rate [62, 79] or batching in group
commits [73].

AnapproachproposedbytheH-storeproject [54,70]avoids
coordination by partitioning the database and accessing each
partition from a single thread. This approach scales well for
applications whose databases can be cleanly partitioned and
where most transactions only access a single partition. How-
ever, many applications do not fit this profile and can expe-
rience worse performance [69].

Serializability with dependencies. Much work has fo-
cused on scaling serializable ordering on contended trans-
actional workloads [42, 44, 51, 55, 56, 58, 62, 66, 67, 76]. Se-
rializability requires respecting data dependencies among
transactions reading and writing the same database record.

362 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

SSN Name Zipcode
111 Bob 90210
222 Abe 10000
333 Abe 90210

222

111 222 333

90210

<10000, 222> <90210, 333> <90210, 111>

Primary Index on PERSON (SSN) Secondary Index on PERSON (Zipcode)

StateZipcode
CA90210
NY10000

10000 90210

Bob

<Abe, 222> <Abe, 333> <Bob, 111>

Primary Index on ZIPCODE (Zipcode)

Secondary Index on PERSON (Name)

Table PERSON

Table ZIPCODE

Figure 1. Simple database layout with range indexes. Tables are represented by primary indexes. Records are stored sorted by primary index
key. Schema information is stored in a catalog (not shown). Arrows are pointers.

0

2

4

6

8

10

12

14

16

18

20

0 4 8 12 16 20 24 28 32 36

G
oo

dp
ut

 S
ca

la
bi

lit
y

Number of Threads
Partitioned Indexes Shared Indexes

(a)Goodput.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36

Ab
or

t R
at

e
(%

)

Number of Threads

Partitioned Indexes Shared Indexes

(b)Abort rate.

Figure 2. Cicada scalability on TPC-C (𝐶𝑤ℎ=𝑡ℎ𝑑) with partitioned and shared indexes.

Benchmark Read Range Database size
Txns Scans

TPC-C 8% 7.83% 10 warehouses
SEATS 45% 23% 100K customers
Epinions 50% 100% 200K users

Table 1. Benchmark details.

Though such dependencies are ultimately a barrier to scala-
bility, various techniques can reduce their impact, including
multi-versioning [44, 58, 62], static analysis [66, 76], exploit-
ing commutativity in some workloads [51] and backoff [62].
These techniques are complementary to ourwork,which is fo-
cused onmechanism contention, i.e., on contention that arises
between unrelated transactions as an artifact of how the data-
base implements certain mechanisms (e.g., range indexes),
rather than from fundamental requirements of its isolation
guarantees.

3 The Case for ScaleDB

ScaleDB’smaincontribution lies in recognizing that removing
the indexing bottleneck requires looking beyond range index
structures; instead, it is necessary to understand and correct
the architectural design decisions that make range indexes
a hotspot of contention in today’s in-memory databases.

Range index background. To understand the significance
andstructureof range indexes, considerFigure1,whichshows
a simple database with two tables. Tables are implemented
as collections of indexes and include one primary index and
zero or more secondary indexes. For example, table PERSON

has primary index SSN and two secondary indexes, Name and
Zipcode. Table records are stored on the heap and pointed to
by the table’s primary index.
Range indexes have many uses. A primary range index

allows quick retrieval of a table’s records by primary key for
both point and range queries. Primary keys within a table
must often be unique and an index can enforce this uniqueness
constraint efficiently. Secondary indexes are also used exten-
sively. They support analytical queries [39] and helpmaintain
the consistency of the database by serving as foreign keys, i.e.,
columns of a table that refer to a primary key of another table.
For example, a foreign key constraint on the Zipcode column
in the PERSON table implies that deleting the 90210 zipcode
from the ZIPCODE table requires deleting all records with the
90210 zipcode from the PERSON table. The secondary index
on the Zipcode columnmakes this operation efficient—in the
Figure, the root node of the corresponding secondary tree
points directly to the range of all SSNs in the 90210 zipcode;
we can use these values as keys to traverse the primary index
of the PERSON table.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 363

Range indexes can limit scalability because concurrent
updates to the same index, even if caused by unrelated trans-
actions, can lead to contention. For instance, inserting or
deleting a single record in a B+-tree (Figure 1) may alter its
leaf node structure (a leaf nodemay split, ormay coalescewith
another leaf node), requiring the atomic update of potentially
many internal nodes, all the way to the root.

3.1 Database Scalability Analysis

To explore the limits of database scalability, we evaluate Ci-
cada [62], a state-of-the-art scalable in-memory database.
Cicada was shown to be more scalable than several other
databases [42, 55, 56, 73, 79]. However, as we show next, it
still incurs range index mechanism contention.

We run TPC-C [22], a standard OLTP benchmark simulat-
ing purchase transactions on a configurable number of inde-
pendentwarehouses.Weuseamachinewith twoCPUsockets,
each with an 18-core Intel Xeon Gold 6154 CPU.We increase
the number of transaction processing server threads from 1
to 36 and use as many warehouses as threads for each data
point. This configuration (𝐶𝑤ℎ=𝑡ℎ𝑑) has very low contention,
since threads (almost always) run queries on their own ware-
houses, thus avoiding contention on the same records with
other threads. Therefore,𝐶𝑤ℎ=𝑡ℎ𝑑 allows us to isolate and un-
derstand the scalability impact of mechanism contention on
range indexes.
Figure 2a shows Cicada’s goodput scalability relative to

a single core. Cicada stops scaling beyond 24 cores on the
canonical TPC-C workload, with indexes shared between be-
tween threads. To show that scalability is limited by range
index mechanism contention, we also evaluate a configura-
tion where 8 out of the 9 TPC-C tables, and their associated
indexes, are partitioned by warehouse id2. This configuration
scales well for 𝐶𝑤ℎ=𝑡ℎ𝑑 , but it does not generalize to more
skewed workloads.

Figure 2b shows thatCicada’s poor scalability on the shared
index configuration is due to an increasingly high abort rate.
To reduce multi-core contention on the same index nodes
by multiple threads, Cicada uses multi-version concurrency
control (MVCC) for both its records and indexes; if an index
node needs to be modified, Cicada creates a new version in
thread local memory and installs it into the index on success-
ful transaction commit. However, to enforce serializability,
transactions that perform a range scan must, at commit time,
validate that no new record matching the range predicate
was inserted since the scan (i.e.,must avoid phantoms). For
this purpose, at transaction commit, Cicada validates all in-
dex nodes whose key range intersected with the range scan
predicate; if this validation fails, the transaction aborts. Thus,
range index contention manifests in Cicada as a higher rate
of transaction aborts instead of contention on index nodes.

2The default configuration of the Cicada prototype

3.2 When Can Range Indexes Scale?

The previous analysis demonstrates that scalability in state-
of-the-art databases is primarily limited by contention on
range indexes. A key contributor to this contention is that the
updates to range indexes, that take place once a transaction
commits, are performed synchronously. Of course, all indexes,
whether range or hash, must, on a query, return the most
recently committed record corresponding to an index key,
but range indexes have an additional obligation: they must
ensure that range scans issued immediately after a transac-
tion commits will not miss any record inserted or updated by
that transaction. It is to discharge this obligation that records
are inserted synchronously into all primary and secondary
indexes – which not only requires sorting these records with
respect to all records already in the table, but also creates
contention on the internal nodes of a range index among
otherwise non-conflicting transactions.

Our design is then motivated by a simple question: can this
obligation be met without triggering a synchronous cascade of
updates over shared data structures? Tomove towards an an-
swer, we run an experiment to measure the latency between
the last time a record is written (inserted or updated) and
when it is read as part of a range scan (W-to-RS latency).

We use three transactional application benchmarks (Ta-
ble 1) from the OLTP-bench [43] suite, designed to evaluate
modern cloud database workloads. These benchmarks range
frommoderately write-heavy (Epinions) to very write-heavy
(TPC-C), and the percentage of read queries involving a range
scan varies from a single digit to 100%.We ran these bench-
marks on a MySQL 8.0 instance running on a 20 core (40
hardware threads) Intel Xeon machine, with as many clients
as needed to saturate throughput. We emulate an in-memory
database by setting the MySQL in-memory buffer pool to a
large-enough size, so that in all three cases the entire database
fits in memory and we are never disk-bound.

Figure 3a shows the cumulative distribution of theW-to-RS
latency. For Epinions and Seats, we use a single curve each to
characterize the behavior of all their range scans: we find that
the 5th percentileW-to-RS latency is above 500ms and theme-
dian isbetween8and85seconds.We insteadreport the latency
of each range scan in TPC-C separately, since they behave
quite differently: DelivSumOrderAmt, a range scan on a pri-
mary index, responsible for 3% of all TPC-C read queries, has
amedianW-to-RS latency of 1ms; the other two TPC-C range
scans are on secondary indexes and their median W-to-RS
latencies are orders ofmagnitude higher. Epinions and SEATS
also show lowerW-to-RS latency for range scans of primary
indexes, though with a much smaller (2× to 5×) gap. The low
W-to-RS latency of DelivSumOrderAmt is due to the TPC-C
Delivery transaction, which contains an update followed by
a read on the same range in the Orderline table. We discuss
in §4.2.3 how ScaleDB’s design avoids unnecessary aborts in
such situations and therefore performs well on TPC-C (§6).

364 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9
Latency (log10(us))

Epinions SEATS
TPC-C (DelivSumOrderAmt) TPC-C (CustByName)
TPC-C (DelivGetOrderId)

(a)Write to range scan (W-to-RS) latency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5
log10 (num rows)

Epinions SEATS TPC-C

(b) Records returned by range scan.

Figure 3. Range scan property distributions of three application benchmarks.

Figure 3b shows the distribution of the number of records
read by range scans in each benchmark. For all benchmarks
and all range scans, the median number of records read was
at most 6, while the 99th percentile was at most 26 records.
Epinions had two range scans in read-only transactions that
read thousands of records. However these range scans com-
prised only 0.068% of all read queries in Epinions and had a
medianW-to-RS latency of at least 66 seconds.
For brevity, we omit a similar analysis for point queries,

but their behavior was mixed. For instance, in TPC-C, four
point queries had median Write-to-Point-Query (W-to-PQ)
latencies ranging from 350`s to 21ms. These point queries
– from the NewOrder and Payment read-write transactions,
which together comprise 90% of the benchmark – read heav-
ily updated records in the District andWarehouse tables. At
the other extreme, two point queries in TPC-C had median
W-to-PQ latencies of 4 and 15 seconds.
Conclusion. The overall picture that emerges from this anal-
ysis is the following:
1. While point queries often read recently written records,

for range queries that is the exception rather than the rule.
This holds especially true for secondary indexes.

2. In the vast majority of cases, the number of records that a
range query reads (especially as part of read-write trans-
actions) is small.

3. Large range scans rarely happen and, when they do, they
are usually within a read-only transaction.
These findings suggest an opportunity to fundamentally

rethink how to maintain range indexes within in-memory
databases. If, in the common case, synchronous updates to
range indexes are not necessary to produce consistent range
scans, it may be possible to design new scalable data struc-
tures that can synchronously store record updates and hold
them temporarily, until they are asynchronously applied to
the range indexes. Of course, range scans should be always
consistent, not just in the common case, and the mechanisms

needed to enforce this guarantee should themselves be scal-
able. These are the opportunities and challenges that shape
the design of ScaleDB.

Why are asynchronous range index updates scalable?
Asynchronously updating range indexes offers a host of op-
portunities that we seek to exploit. Accumulating a number
of updates, so they can be applied as a batch to the range
index, is more efficient than applying individual updates, as
it avoids repeated walks of the index tree (e.g. inserts to the
same B+ tree leaf node). Given the cache contention arising
from concurrent walks of the range index, batched updates
benefitCPUcache locality and improveperformance isolation
among CPU cores. They also incur less overhead for repeated
lock operations, since they allowus to acquire locks only once
for several updates. We can facilitate this process by sorting
accumulated updates before applying them to the range in-
dex, outside of a critical section. Finally, for skewed access
distributions that update the same record repeatedly within a
short time span, only the last update in the batch needs to be
applied to the range index, reducing the overallwork required.
We will see in §4.1 that asynchronous updates are scalable,
while relieving the underlying range index structure of fine-
grained locking, multi-versioning, and lock-free techniques.
This simplifies serializability, as we will see in §4.2.

4 ScaleDBDesign

The foundation of ScaleDB’s design, building on the analysis
in §3, is that range indexes are asynchronously updated to
provide scalability. But how can this asynchronous architec-
ture provide scalable transaction processing? And how can
serializable isolation be guaranteed when range indexes are
no longer kept synchronously consistent?

Scalable transaction processing with indexlets. To asyn-
chronously update range indexes, we need a temporary store
for writes that can be scalably maintained and flushed with

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 365

minimal overhead. We tackle this problem with a new data
structure: hash-based indexlets that temporarily and syn-
chronously record all range index writes. Indexlets leverage
the flat structure of hash indexes to avoid contention among
updates to unrelated records. A common issue with hash in-
dexes is rehashing – resizing the hash index when it is at
capacity [14]. Database hash indexes require rehashing, as
their size cannot be known a-priori. Instead, indexlets only
hold updates temporarily and are periodically merged by
ScaleDB into range indexes. Thus, rehashing can be avoided
by bounding the maximum number of delayed writes held in
an indexlet based on theW-to-RS latency andwrite rate to the
underlying table.We describe indexlets and how to efficiently
size and scalably merge them in §4.1.

Serializability with asynchronous range index updates.
We design asynchronous concurrency control (ACC), a concur-
rency control protocol that provides serializability in an asyn-
chronous database architecure. ACC integrates optimistic
concurrency control (OCC) [57, 73] with asynchronous range
index updates. Both are optimistic approaches: just as OCC
assumes thatmost transactions donot contend, asynchronous
range indexupdatesassumethatmostW-to-RS latenciesallow
us to leave range indexes temporarily stalewithout negatively
affecting goodput.
Since recent writes are held in indexlets, asynchronously

enforcing serializability with good performance requires first
checking indexlets on any point read, and, for range scans, ef-
ficiently detecting the small number of instances when a scan
has accessed a stale portion of a range index. This check is nec-
essary toavoidphantoms [32], aswell as toensure that transac-
tions read themost recent value of eachkey returnedbya scan.

ACC’s technique for avoiding phantoms relies on phantom
indicators, which leverageACC’s asynchronous design to scal-
ably indicate the existence of a phantom to range-scanning
transactions. Using the leaf nodes of the range index as par-
titions of its keyspace, writing transactions can produce a
unique phantom indicator for each range covered by a leaf
node. Each leaf node evolves through a series of version
changes that happen whenever a merge to a range index
affects that leaf node. Phantom indicators, uniquely derived
from leaf nodes and their current version, are inserted by
transactions into phantom detection indexlets (or phantom-
lets). Maintained for each range index, phantomlets allow
range scanning transactions to scalably detect phantoms at
commit time. We detail ACC and phantomlets in §4.2.

Durability. To provide durability, ScaleDB uses write-ahead
redo logging. Transactions receive a globally-ordered times-
tamp from a system-wide clock, a hardware feature that in-
dustry trends and experimental evidence (§5.4) indicate will
remain in future servers. As a result, threads can scalably log
their transactions without coordination at commit timewhile
pushing the overhead of merging logs to recovery.

345 Jon 54875123 Sam 90210111 Bob 90210 222 Abe 10000

333 Abe 90210

Phantomlet222 444

111 123 222 345

Primary Key (PK) Range Index

Indexlet

Periodic
Merging

T1

T2

T3 PK Range
Scan

Write

PK
Point
Read

SK Range Scan

Secondary Key (SK) Range Indexes
Phantomlet

……

Figure 4.Asynchronous range index update for the PERSON table.

Example. To see how it all fits together, consider the exam-
ple in Figure 4. Transaction𝑇1 does a range scan by zipcode,
which is executed on the appropriate secondary range index.
Concurrently,𝑇2 inserts the recordwith SSN 333 into the PER-
SON table and does a point read for an SSN from the same
table.𝑇3 does a range scan by SSN, which is executed on the
primary range index.
Instead of synchronously updating the range indexes and

potentially contending with other transactions, ScaleDB in-
serts𝑇2’snewrecord,using itsprimarykey (SSN), in the table’s
indexlet and marks it as valid (filled circle). It does this atom-
ically by acquiring a write lock on the indexlet entry. This
may cause true contention if concurrent transactions access
the same key, but it does not cause mechanism contention.
𝑇2 also does a point read for an SSN. To do so, it first checks
the indexlet for the latest version of the record, temporarily
holding a read lock on the record’s indexlet entry. It is not
found there (empty circle), so𝑇2 next reads from the primary
range index. Range indexes have been read-only, and thus
scalable, for this execution.
Periodically, the contents of the indexlet are merged into

the underlying primary and secondary range indexes. The
indexes are concurrent, so conflicting accesses by reading and
merging threads are synchronized. We discuss the details of
ScaleDB’s concurrent range index in §5.3. Because merging is
periodic, it occurs in a coordinated and concentrated fashion
when compared with synchronous range index updates.

Range-scanning transactions consult phantomlets to de-
tect phantoms due to newly inserted records. They do this for
each range index leaf node traversed as part of the range scan.
To aid phantom detection, each writing transaction indicates
once per version for a leaf node that it has inserted records.
Here, 𝑇2 inserts a phantom indicator for the [222,345] leaf
node into the phantomlet, indicating a possible later merge
of the key with SSN 333 into that range index node. Upon a
merge, not all updates might fit in the [222,345] node and the

366 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

structure of the range index might be altered during a merge.
However, phantom indication is only required for unmerged
records. We discard phantom indicators when the indicated
records are merged. A reading transaction scanning just the
[111, 123] node does not abort, as there are no phantoms
indicated for this node.

4.1 Asynchronous Range Index Updates

To update range indexes asynchronously, we record delayed
writes in indexlets for the duration of a per-indexlet and per-
threadmerge epoch. At the end of an epoch, a thread merges
its writes from the indexlet into the associated range indexes,
and starts a new epoch. For a given indexlet and thread, the
merge epoch ends as soon as either (𝑖) the thread has filled
a maximum batch size of entries in the indexlet; or (𝑖𝑖) a max-
imum epoch duration has been reached. Both batch size and
maximum epoch duration are configured separately for ev-
ery indexlet, and each thread decides independently for each
indexlet when it has reached the end of its merge epoch.

Indexlets. ScaleDB uses hash-table-based indexlets with
open addressing [41] to synchronously and scalably absorb
concurrent, committed writes that affect range indexes. Thus,
indexlets are associated with tables that have range indexes.
For each such table, ScaleDB creates an indexlet, indexed by
the table’s primary key. If there is no primary key, ScaleDB
creates an implicit primary key (a common practice [12]).
The per-table indexlet naturally covers writes that affect sec-
ondary indexes, as secondary indexes refer to the primary
index (as shown in Figure 1).

Recorded writes include insertions, updates, and deletions.
Insertions and updates affecting a range index are simply
recorded in the corresponding indexlet, and the record is up-
dated on the heap (in per-thread arenas to avoid contention
onmemory allocation). Special care is required to ensure that
deletes are handled consistently. Indexlets mark a record as
deleted instead of deleting its key from the indexlet. This ap-
proachhas twobenefits: it ensures that a later read of the same
key finds the deleted record in the indexlet rather than finding
an older version in a range index; and it allows coalescing a
key deletion followed immediately by an insert of the same
key, without merging the delete into the range indexes.

Merge epoch. Each thread independently decides when its
merge epoch ends, after which it merges the keys and record
references into the table’s range indexes. A thread can occupy
a maximum batch size of 𝑏𝑖 entries in any given indexlet 𝑖
before it has to merge them into the range indexes. Too small
a 𝑏𝑖 causes contention similar to synchronous merging into
range indexes.Too largea𝑏𝑖 results in stale range scans,which
can lead to transaction aborts. We use 𝑏𝑖 = Expected write
rate(𝑡𝑎𝑏𝑙𝑒𝑖) ×W-to-RS latency(𝑡𝑎𝑏𝑙𝑒𝑖).
During quiescent periods for write transactions, threads

maynot reach theirmaximumbatch size quickly enough, leav-
ing range indexes stale for too long. To avoid this, we cap the

length of the merge epoch of each indexlet separately, based
on theW-to-RS latencyof that indexlet’s table: thus, a thread’s
merge epoch ends when it either reaches its maximum batch
size or its maximummerge epoch length.

To make hash collisions rare, the size of indexlet 𝑖 is set to
𝑠𝑖 =4×#𝑡×𝑏𝑖 , where #𝑡 denotes the number of threads. Given
that each entry in an indexlet only occupies a single cache
line, this results in modest memory consumption even for
tables with a high write rate (§6.3).

Asynchronousmerging. Each threadkeepsa list of indexlet
entries where it performed a write. At the end of its merge
epoch, it sorts this list in primary range index key order (§3.2),
and then iterates through the list, atomically merging each
individual record. Merging involves updating the range index
and removing the record from the indexlet, while holding a
per-entry lock, thus ensuring atomicity for each key’s merge.
Each lock is released as soon as the key is merged into the
primary index.

If secondary indexes exist, the merging thread additionally
retains private copies of each record reference in thread-local
storage. After the primary range index is merged, the thread
then merges each secondary index, using these copies.
After merging each range index (primary or secondary),

the merging thread also decrements any phantom indicators
that it had inserted into the corresponding phantomlet during
the concluded merge epoch (§4.2.1).

4.2 Asynchronous Concurrency Control

We design asynchronous concurrency control (ACC), a con-
currency control protocol that provides serializability within
anasynchronousdatabase.ACC is basedonoptimistic concur-
rency control (OCC), which it integrates with asynchronous
range index updates. To do so, ACCuses two novel constructs:
phantom indicators (§4.2.1) and locks in indexlets for atomic
commit of transactional writes (§4.2.2).
OCCminimizes transaction contention by optimistically

executing transactional reads and atomically publishing a
transaction’s writes at the end of its execution. To do so, OCC
transactions execute in three phases—read, validation, and
commit. During the read phase, reads are done optimistically,
without holding locks, and are tracked in a transaction’s pri-
vate read set; writes instead are buffered in a privatewrite set.
The validation phase ensures that transactions may commit
atomically. To do so, the database acquires locks on all values
identified in the write set and then validates that collected
values in the read set have not been altered by concurrently
executing transactions. If the reads are validated, the commit
phase commits the transaction’s writes and releases its locks.
Otherwise, the transaction aborts (releasing locks as well).
ACC extends the OCC phases and integrates them with

asynchronous range index updates. During the read phase,
point reads search the indexlet first, and, if they miss, search
the primary range index. The same process is followed for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 367

LockUniqueInsert(333) T1

123 Sam 90210111 Bob 90210 222 Abe 10000

222 444

111 123 222

Primary Key (PK) Range Index

……

T2
Indexlet

Range Scan SSN >= 222
LockInsHashTbl(<0x4ff, 13>)

<0x4ff, 13>

Validating
Reads

Range Read Set
<0x4ff, 13>

Phantomlet

(a) Before validating successfully,𝑇1 acquires locks for atomically
inserting the record with SSN=333 into leaf index node [222,] and
its phantom indicator <0x4ff, 13>. Concurrently,𝑇2 does a range
scan for SSN≥ 222, during its read phase.

123 Sam 90210111 Bob 90210 222 Abe 10000

Phantomlet222 444

111 123 222

Primary Key (PK) Range Index

……

T2

Indexlet

<0x4ff, 13>

333 Abe 90210

<0x4ff, 13> 1

Step 1.
Get current
phantom
indicators for
SSN >= 222.
Compare with
Range Read Set

Range Read Set
<0x4ff, 13>

Step 2.
Check existence of
phantom indicators in
Range Read Set

Write locks

(b) 𝑇2 detects phantom indicator <0x4ff, 13> corresponding to
[222,] while validating the range scan SSN ≥ 222. It will abort:
𝑇1 committed earlier, but 𝑇2’s range scan missed the record with
SSN=333, inserted by𝑇1 in the indexlet.

Figure 5.Asynchronous phantom detection example.

updates and deletes, during the validation phase, allowing
existing records to be brought into the primary indexlet first,
before being updated in place. This guarantees that point
queries always read the latest value of a record. On the other
hand, range scans (from primary or secondary indexes) are
executed directly on the range indexes, but need to check for
phantoms at commit.

4.2.1 PhantomDetection

Phantomdetection isdifficult inadatabasewithasynchronously
updated range indexes, as phantoms may occur in indexlets,
which do not support efficient range lookup. ACC’s technique
for detecting phantoms leverages the leaf nodes of a range
index which undergo coarse-grained version changes due
to asynchronous merges by different threads. To track these
changes, each leaf node 𝑙maintains a versionnumber𝑣𝑙 which
is incremented only when an insert or delete is merged into
that node. If 𝑙 splits due to an insert, then half of its keys
are moved to a sibling leaf node𝑚 with 𝑣𝑚 = 0 while 𝑣𝑙 is
incremented.

To detect phantoms, ScaleDB uses a phantomlet per range
index to perform a scalable variant of index node valida-
tion [73]. Phantomlets use the indexlet architecture (§4.1),
but do not need merging. Inserting transactions atomically
insert phantom indicators into phantomlets at transaction
commit, indicating that they have inserted a phantom into a
corresponding range index leaf node. The phantom indicator
is composed of the concatenation of a leaf node 𝑙 ’s memory
address𝑀𝑙 and version 𝑣𝑙 .
At commit time, for each inserted key 𝑘 , the inserting

transaction asks the range index for the phantom indicator
<𝑀𝑙 , 𝑣𝑙 > of the leaf node 𝑙 that currently covers the range in-
tersectingwith𝑘 . If thephantomindicatordoesnot exist in the

phantomlet, it is inserted. If the transaction validates, it atom-
ically increments the value of the phantom indicator (initially
0). This is accomplished by lockingphantom indicators as part
of locking the transaction’s write set (using LockInsHashTbl
or LockRUDHashTbl on the phantomlets, see §4.2.2).
Threads keep track of the phantom indicators they have

inserted and decrement their values at the end of their merge
epoch. The last thread which decrements the value to 0, re-
moves it from the phantomlet.
When validating a range scan, a reading transaction can

use the same phantom indicator to check whether a phantom
was inserted in a range covered by the leaf node at the version
it read. To do so, ACC splits OCC’s read set into two parts
and extends themwith additional information. For each point
read, the key of a record 𝑟 is stored along with a copy 𝑡𝑃𝑆𝑟 of
the record’s current commit timestamp 𝑡𝑟 (§4.3) in a point read
set. Storing the commit timestamp allows efficiently verifying
whether the record changed, later duringvalidation. For every
range scan,ACCstores the keys of the scan results in the point
read set, but also stores in a range read set, a phantom indicator
for each range index leaf node encountered during the scan.
Finally, it stores the range scan predicate in the range read set.
Read set validation happens differently for the point read

set and the range read set:
• For the point read set, ACC reads from the indexlet and (if
not found) searches in the primary range index. If the key
of record 𝑟 is not found in either index or 𝑡𝑃𝑆𝑟 ≠𝑡𝑟 (𝑟 received
a write), the transaction is aborted. An optimization here is
to only abort if 𝑡𝑟 < 𝑡𝑇 , where 𝑡𝑇 is the timestamp allocated
by this committing transaction (§4.3).

• For each range scan, ACC asks the range index for the cur-
rent list 𝑐 of phantom indicators that match the range scan
predicate. If 𝑐 is different in length than the original list 𝑜

368 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

stored in the range read set, it aborts. If not, then there is still
the chance that phantoms were inserted, but they have not
been merged yet or they were merged but did not result in
leaf node splits. ACC goes through each corresponding pair
of phantom indicators in 𝑐 and 𝑜 , at the same index in the
lists, verifying that the pair is identical, and that performing
a LockFreeRdHashTbl (§5.2) for this phantom indicator on
the phantomlet returns nothing. If any of these checks fail,
it aborts.

Figure 5 shows a simple example illustrating asynchronous
phantom detection.

4.2.2 Atomic Commit

ACC holds locks on keys between the validation and commit
phases, in order to atomically publish a transaction’s writes.
Since ScaleDB writes are asynchronous, ACC locks need to
cover records referenced by indexlets. Indexlets never rehash,
allowing ACC to hold locks directly in indexlet entries as a
way to hold locks on records.

To build transactions, ACC uses two types of locks on
records: LockUniqueInsert is used to atomically insert a record
with uniqueness constraints, while LockUpdDel is used to
atomically update or delete an existing record. These locks
are acquired on a transaction’s write set at the start of the
validation phase, and released either at transaction abort or
at the end of the commit phase.

Unique insertion. To lock for the unique atomic insert of
a record, ACC performs two steps:
1. ACC searches for a duplicate record in the indexlet and, if

not present, acquires a lock on an empty indexlet entry for
the record to be inserted. This step is done atomically by
calling LockInsHashTbl, provided by the indexlet.
LockInsHashTbl acquires per-entry spinlocks along the
hash probe path. If it finds an empty entry, it sets 𝑒𝑖𝑛𝑠 , the
future location of the record being inserted, to that en-
try’s index. If the entry is not a search terminator (§5.1), it
continues the search for a duplicate record, until the probe
lands on a search terminator. If a duplicate is found, all spin-
locksare releasedand the transaction is aborted.Otherwise,
LockInsHashTbl is successful. In that case, it releases any
acquired spinlocks on entries after 𝑒𝑖𝑛𝑠 in the probe path.
Spinlocks on 𝑒𝑖𝑛𝑠 and entries before it in the probe path
are held until LockUniqueInsert is released: this allows
atomically inserting a record and updating search termi-
nation metadata (see §5.1) at transaction commit. With a
properly sized indexlet, probe lengths are short and there
is negligible mechanism contention for unique inserts.

2. ACC searches the primary range index to make sure that
the key has not already been inserted there.
If either step fails, the transaction aborts. If both succeed, a

lock for unique insert has been acquired. Our open addressing
scheme probes indexlet entries in a deterministic order for

False 1 333
False 0 222
True 0

Spin
lock Empty OC Key Ref

…
…

… … … … …
…
…

1

57

58

59

T2
LockUniqueInsert(111)

345 Jon 54875123 Sam 90210111 Bob 90210 222 Abe 10000

Phantomlet222 444

111 123 222 345

Primary Key (PK) Range Index

……

333 Abe 90210

Indexlet

T1
LockUniqueInsert(111)

Step 1.
LockInsHashTbl(111)

Step 1.
LockInsHashTbl(111)

Step 2.
Search for 111

eins = 59

Figure 6. LockUniqueInsert Example.

each record. Hence, contending transactions attempting to
insert the same record are serialized.

Figure 6 shows an example illustrating LockUniqueInsert.
Transactions𝑇1 and𝑇2, on different threads, are in their val-
idation phase. They are concurrently trying to acquire Lock-
UniqueInsert for a record with primary key (on SSN) 111.𝑇1
acquires LockInsHashTbl in step 1. Its hash probe starts at en-
try 57 in the indexlet, which is currently occupied by a record
with key 333—inserted by a recently committed transaction.
Subsequently, another transaction brought the record with
key 222 into the indexlet, for an update; it was inserted into
entry 58due to collisionwithkey 333.𝑇1’s hashprobe acquires
spinlocks along its probepath, until it landsonentry 59,which
is both empty and a search terminator: thus, successfully ac-
quiring LockInsHashTbl for key 111. Here, overflow counts
(OC in the figure, see §5.1) are used to terminate searches
(when OC = 0).

In step 2,𝑇1 searches the primary range index for key 111,
to ensure uniqueness; since it finds the record, it will abort.
If𝑇1 had been able to commit, it would have incremented the
OC for entries 57 and 58 and inserted the new record (with key
111) into 𝑒𝑖𝑛𝑠 = 59, before releasing the spinlocks. Meanwhile,
𝑇2 gets serialized behind𝑇1 (on entry 57’s spinlock), trying to
acquire LockInsHashTbl. It will eventually abort as well.
Update and deletion. To acquire a LockUpdDel, ACC per-
forms two steps:
1. It searches the indexlet for the record and, if found, locks

the entry. This step is done atomically by calling LockRUD-
HashTbl, provided by the indexlet.
LockRUDHashTbl is simpler than LockInsHashTbl, since it
doesnotneed toatomically enforceuniquenessormaintain
the metadata for search termination. It acquires per-entry
spinlocks along the hash probe path, but releases each spin-
lock as it moves to lock the next entry in the path. A probe
can endwhen it either finds the record or lands on a search
terminator entry.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 369

In addition to its use in the first step of LockUpdDel, Lock-
RUDHashTbl is also used to atomically search the indexlet
for point queries, during the read phase of the transaction.

2. If the record was not found in the indexlet, ACC acquires
LockInsHashTbl for the record, fetches the record from
the range index, inserts a reference to the record in 𝑒𝑖𝑛𝑠
and then downgrades the lock to LockRUDHashTbl, which
involves releasing the spinlocks on the entries before 𝑒𝑖𝑛𝑠
in the probe path.
For range updates or deletes, we search the range indexes

directly and acquire LockUpdDel for every key satisfying
the predicate. If there is not enough space in the indexlet, the
transaction aborts. In this rare case, the indexlet ismerged and
temporarily disabled to retry the transaction synchronously,
re-enabling the indexlet after the transaction commits.

4.2.3 Repairing Stale Range Scans

During the read phase, ACC can repair stale scans before re-
turning them, to reduce the chance of a later transaction abort.
This is typically done for scans used in a later update or delete
query. For instance, the TPC-C Delivery transaction has a
range scan that returns the earliest order within a district in
the NEW-ORDER table and then deletes that order in the next
query. This transaction can abort, even for a single thread,
if the scan is done on the range index, but the earliest order
returned by the scan has already been marked deleted in the
indexlet in a previous Delivery transaction.

ACCrepairs such scans, prior to returning them, by looking
up each key in the indexlet to check if it has been updated or
deleted. If so, it repairs the scan to return the latest version.
To avoid paying this cost for all range scans, the client can
explicitly set this option in the query for scans that will be
updated or deleted.
ACC also maintains a per-thread per-table index of the

keys which were inserted by each thread during its current
merge epoch. When returning a range scan, ACC repairs it
by merging any records returned by running the same scan
on the local index as well. This avoids spurious aborts by the
phantom detection algorithm (§4.2.1), due to keys that were
inserted by the same thread in a prior transaction and are
waiting to be merged into the range indexes.

4.3 Durability

ScaleDB achieves durability using write-ahead logging to a
redo log. Each worker thread writes to its own separate log,
without coordinating with any other worker thread. To en-
sure that transactions do not read values that have not been
made durable, a thread only releases write locks and replies
back to the client once it has logged the transaction to its
redo log. Each redo log entry contains the new values of the
keys written by the transaction𝑇 as well as a commit times-
tamp 𝑡𝑇 assigned to it during the validation phase, after all the
locks have been acquired by ACC. This timestamp, unique for
each transaction, is derived from a scalable system-wide clock

(§5.4) and is consistent with𝑇 ’s place in the serializable or-
der. During recovery, ScaleDB first merges all the per-thread
transaction logs in timestamp order, and then replays them.

To see why ScaleDB is recoverable despite uncoordinated
logging, consider the example of three transactions𝑇1

𝑤𝑤−−−→
𝑇2

𝑟𝑤−−→𝑇3, each of them running on a separate thread.𝑇1 writes
𝑥1=42 and𝑇2 read-modify-writes that value to 𝑥2=52, thus
creating both a write-after-write dependency (ww) and read-
after-write (wr) dependency with𝑇1. Next,𝑇2 reads 𝑦1 = 33;
later𝑇3 read-modify-writes it to𝑦2=36, creating awrite-after-
read (rw) dependency between𝑇2 and𝑇3.
Because ScaleDB only releases write locks after the log

entry has been made durable, if𝑇1 is not logged, then𝑇2 will
either read 𝑥0 or it will wait for𝑇1’s write lock to be released
to read 𝑥1. Thus, after a crash, if𝑇2 read 𝑥1 and is logged, then
𝑇1 must be logged as well. This argument extends transitively
to a chain of such direct dependencies.

The second possibility is that after a crash𝑇2 is not logged,
but both𝑇1 and𝑇3 are. In this case, ScaleDB must not have
committed𝑇2 and replied back to the client. Thus, it will re-
cover only𝑇1 and𝑇3, in order, which is fine. Notice that, if, in
fact𝑇2 does get successfully logged, ScaleDB’s system-wide
timestamps allow correctly ordering𝑇2 and𝑇3’s log entries
at recovery, despite the fact that there was no direct commu-
nication among them.

4.4 Correctness

Using ACC, ScaleDB guarantees serializability [28], with the
additional guarantee that the equivalent serial order is one
where transactions are ordered by their commit timestamps.
ACC derives its correctness guarantees in part from the guar-
anteesprovidedby the locks anddata structures it buildsupon,
aswell as its descendence fromOCC,which guarantees serial-
izability [73]. The key difference from OCC is that ACCmust
deal with ScaleDB’s asynchronous updates to range indexes.
Our proof of correctness [64] shows that ACC’s atomic com-
mit and phantom detection protocols provide serializability
in this scenario.

5 Implementation

We implement ScaleDB by modifying the Peloton [18] in-
memory SQL database, written in C++.We replace the stor-
age back-end, while retaining the code for networking, SQL
parsing, query planning and query optimization.

5.1 Indexlet and Phantomlet Hash Table

Our indexlet and phantomlet implementations build on a
simple open-addressing [41] hash table which uses linear
probing for resolving collisions. We considered more sophis-
ticated open-addressing schemes like Cuckoo hashing [2, 7]
but found that the ability to hold transactional locks would
have been complicated by displacement of keys and the fact
that the cuckoo hashing probe path is an undirected graph
with a possible cycle, which could have caused deadlocks.

370 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Also recall that our hash table does not need to rehash: thus
we can avoid mechanism contention on maintaining a count
of occupied entries in the entire hash table.

One issue with using an open addressing hash table is how
to ensure that searches terminate correctly after merging.
When removing a record 𝑟 from an indexlet entry, we cannot
simply mark the entry as empty, because then any records
displaced by 𝑟 would not be found on a subsequent lookup
(the search would terminate at 𝑟). Tombstones, which are tra-
ditionally used in open addressing tables, have the problem of
accumulating and making search probes ever longer. Instead,
we used a schemeused by the recent non-concurrent F14 hash
table [29, 36]. Each entry maintains an overflow count, that is
incrementedwhenever an insert probe finds the entry already
occupied. When removing a record reference at the end of a
merge epoch, we atomically decrement the overflow counts
on its probe path, before marking it as free. Similarly, when
inserting a record reference, we atomically increment the
overflow counts on its probe path. An entry whose overflow
count is zero is a search terminator (§4.2.2).

5.2 Lock-Free Reads

To avoid reader contention on the same indexlet or phantom-
let entries, ScaleDB provides LockFreeRdHashTbl (based on
seqlocks [3]). To implement these,we add a versionnumber to
the per-entry spinlocks in the indexlet or phantomlet hash ta-
bles. Writers (doing inserts, updates or deletes) increment the
version number after acquiring the spinlock but before any
writes.At spinlock release, theversionnumber is incremented
again. Readers do not acquire the spinlocks but instead read
the version number, before and after they perform the read. If
the version number changed during the read or it is initially
odd in value, then there was interference from a concurrent
writer and the reader retries.

The limitation of this design is that it cannot be used if
the data being read has internal pointers; otherwise, writers
could invalidate pointers that a reader had already followed.
To solve this,we canuseRead-Copy-Update (RCU) [24] for im-
plementing LockFreeRdHashTbl [73]. However, RCU can add
significant complexity to the design; e.g., it requires garbage
collection of previous versions of the data, after ensuring that
no readers are actively reading it.
Our current prototype does not implement RCU. Instead,

we only use LockFreeRdHashTbl for use-caseswhere the data
does not have internal pointers; e.g., during the ACC valida-
tion phase, we use it to atomically search phantomlets, thus
avoiding mechanism coordination between threads search-
ing for phantom indicators for the same leaf node version of
a range index. We also use LockFreeRdHashTbl to validate
point reads in indexlets with fixed-length keys. If the data has
internal pointers, we instead use LockRUDHashTbl (§4.2.2).

5.3 Concurrent Range Index

Our range index implementation is a B+ tree with optimistic
latch coupling (OLC) [60], used in a recent study [77] that com-
pared the scalability of state-of-the-art range indexes. In the
OLC tree, reads do not acquire the per-node spinlocks when
traversing the tree. Instead, they validate a per-node version
number by reading it before and after reading the node’s con-
tents. If the two versions are not the same, they restart their
traversal.Writers intially traverse like readers, but restart and
acquire spinlocks along the path if they detect interference
from another writer or if nodes need modification.

5.4 System-wide Synchronized Clock

For scalable durability, ScaleDB assigns timestamps to trans-
actions derived from a system-wide synchronized clock. Syn-
chronized hardware clocks are available on modern multi-
core processors, such as the timestamp counter (TSC) on
recent Intel x86 processors, which runs at a constant rate.
Intel has indicated [52] that “this is the architectural behavior
moving forward” and that “the OS may use invariant TSC for
wall clock timer service”. As a result Linux uses the TSC as the
clock source on x86 across multiple CPU sockets, after run-
ning boot-time tests to ensure synchronization [8, 9]. Recent
work [34, 35] onmulti-core filesystems has used it for scalable
ordering across cores. Finally, virtual machines also provide
synchronized virtual TSCs by either using the underlying
hardware (fast) or emulating it if not synchronized (slow) and
even across migrations [20, 26].

On architectures where a system-wide TSC is not available,
it is possible to use a dedicated timing thread [71] for handing
out timestamps. This approach requires a core dedicated to
the timing thread, which continuously increments a local
variable and then stores the value to a global time variable.
A thread requiring a global timestamp simply reads the time
variable. On the Intel Skylake architecuture, such a timing
thread increments the local variable every 0.87 cycles which
is actually 15% faster than the TSC [71], but requires a core.

6 Evaluation

Our evaluation aims to understand how ScaleDB performs in
terms of throughput scalability of committed transactions on
various workloads, including YCSB and TPC-C, and how the
various ideas in the design of ScaleDB contribute to perfor-
mance. Our comparison baselines are Peloton, upon which
ScaleDB is built, and Cicada.

Our evaluation answers the following questions:
1. What is the query scalability of ScaleDB when compared

to Peloton (§6.1)?We use YCSB to answer this question.
2. How does ScaleDB scalability compare to Cicada when

guaranteeing serializability for transactions (§6.2)? Is the
transaction abort rate affected?We evaluate TPC-C.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 371

3. Is the ScaleDB asynchronous architecture a scalable design
(§6.3)?We evaluate the scalability of indexlets (phantom-
lets) and system-wide timestamps given that these mecha-
nisms are necessary for a scalable, asynchronous database.

Testbed. All machines in the evaluation have 2×18-core In-
tel Xeon Gold 6154 CPUs with 36 cores. 192GB of memory is
divided across two NUMA nodes. Each machine has a Mel-
lanox ConnectX-5 NIC, operating at 100Gb/s. For networked
benchmarks, we run a single database server and 4 client ma-
chines. Each client machine runs as many processes of the
OLTPbenchmark suite [13] as needed to saturate the database
server. Accordingly, all experiments report peak throughput.

6.1 Asynchronous Index Update

We evaluate ScaleDB’s scalability of asynchronous updates to
a single range index and compare to Peloton. For this purpose,
we use the Yahoo! Cloud Serving Benchmark (YCSB) [40]
read-insert workload. To generate enough load, we access the
database from 4 networked YCSB benchmark clientmachines.
The YCSB benchmark defines a single table with an integer
primary key and 10 string columns, each of size 100 bytes.
Peloton uses the lock-free Bw-Tree [77] as the underlying
primary range index on the integer key.
All experiments use 36 server threads, with each thread

pinned to a separate core. We show scalability by increasing
the number of client terminals sending operations to the data-
base server. For ScaleDB, we set the maximummerge epoch
duration to 100 ms and the maximum batch size per thread to
1,000 entries. Prior to running each experiment, we load the
table with 1 million records. We use a Zipfian distribution for
readswith\ =0.99 to simulate a skewedworkload. For inserts,
each client thread adds new records sequentially within its
own interval of the primary key space, starting after the al-
ready inserted 1million records, to avoid uniqueness conflicts.

Mechanism contention. Figure 7a shows terminal scala-
bility for two points of read-insert intensity. The read-insert
workload has only mechanism contention—reads and inserts
are to disjoint keys. For 95% reads, both ScaleDB and Peloton
scale with similar performance until all server cores are sat-
urated. This is not surprising. Peloton’s range index scales
well when a workload is read-intensive. For a write-intensive
workload with 50% inserts, Peloton’s throughput collapses,
while ScaleDBmaintains 9.5× Peloton’s throughput at scale.

To detail this effect, we examine the sensitivity of both sys-
tems to increasing write intensity by varying the fraction of
inserts in the workload, fixing the number of terminals to 160.
Figure 7b shows that Peloton’s throughput quickly collapses
with increasing write intensity (knee-point at 20% inserts),
while ScaleDB’s throughput gradually declines. ScaleDB loses
46% of its peak throughput when the workload is write-only.

6.2 Serializability

We now evaluate asynchronous scalability with serializable
transactions on the TPC-C benchmark, which has multiple
tables and several primary and secondary range indexes. We
compare with the Cicada [62] database. Cicada’s prototype
does not have a network layer and it uses a TPC-C imple-
mentation linked with the database binary, calling directly
into the Cicada function call API as opposed to sending SQL
calls across the network. For a fairer comparison, we do the
same for ScaleDB. Cicada’s prototype also pre-allocates all
of its memory using huge pages. Recent work from Huang
et al. [51] has recommended avoiding this strategy since it
“changes system dynamics significantly—for instance, pre-
allocated indexes never change size”. Further, Huang et al.
show that Cicada, with pre-allocation, experiences a perfor-
mance collapse at high core counts due to memory exhaus-
tion, whichwe observed aswell. Therefore, wemodify Cicada
to instead use jemalloc [6], which is what ScaleDB uses for
memory allocation. Finally, Cicada simplifies multi-column
keys by reducing them to 64-bit integers (using assumptions
about the maximum range of each column). Thus, all key
comparisons in Cicada are between single 64-bit integers,
while ScaleDB stores and compares multi-column keys (with
possibly varying column types). Hence, the baseline perfor-
mance in this evaluation is biased against ScaleDB.We report
self-normalized scalability, in addition to raw transactional
throughput (Figure 8), for a more complete picture.

TPC-C does not run range scans on theWAREHOUSE, DIS-
TRICT and ITEM tables. Cicada uses hash indexes for these
tables and we do the same for ScaleDB. For the other tables,
ScaleDB’s maximum per-thread batch sizes are calculated
using the method outlined in §4.1. The New-Order and De-
livery transactions exert a very small W-to-RS latency on the
NEW-ORDER table, requiring this table’s maximum batch
size to be set to 0 (i.e., synchronous merging into the range
index). The remaining tables have a batch size of 2,048.

Figure 8 shows the TPC-C evaluation. The setup for these
experiments is the same as that of Figure 2. ScaleDB does
not have a partitioned index configuration, so all results for
ScaleDB use shared indexes. On the canonical TPC-C bench-
mark (Figure 8a), ScaleDB scales 22.3× on 36 cores (relative to
its single core throughput), which is significantly better than
Cicada’s scalability (with shared indexes) of 6.4×. At scale,
ScaleDB’s raw throughput is 1.8× higher than Cicada.
Partitioned indexes show the upper bound for Cicada’s

scalability. ScaleDB, with shared indexes, achieves better self-
normalized scalability than Cicada with partitioned indexes
(Cicada scales only 20× over 36 cores). At scale, ScaleDB’s raw
throughput is 60% of Cicada. Of course, Cicada’s partitioned
indexes do not generalize to skewed workloads.
We also evaluate a workload (NewOrd-Deliv, Figure 8b)

consisting of TPC-C transactions New-Order and Delivery in
equal proportions. On thismore index-contended benchmark,

372 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

50

100

150

200

250

300

350

400

450

500

0 40 80 120 160

Th
ou

sa
nd

s o
f o

ps
 p

er
 s

ec

Number of Client Terminals

Scaledb-95-5 Peloton-95-5 Scaledb-50-50 Peloton-50-50

(a) Throughput.

0

100

200

300

400

500

600

0 20 40 60 80 100

Th
ou

sa
nd

s o
f o

ps
 p

er
 s

ec

Write Percentage
ScaleDB Peloton

(b)Write sensitivity.

Figure 7. YCSB read-insert workload. 95-5 is 95% reads and 5% inserts. 50-50 is 50% reads and 50% inserts.

0

500

1000

1500

2000

2500

1 2 4 8 12 16 20 24 28 32 36

k
Tr

an
sa

ct
io

n
s/

s

Number of Threads

ScaleDB Cicada (Partitioned Idxes) Cicada (Shared Idxes)

(a) TPC-C.

0

500

1000

1500

2000

2500

0 4 8 12 16 20 24 28 32 36

k
Tr

an
sa

ct
io

n
s/

s

Number of Threads

ScaleDB Cicada(Partitioned Idxes) Cicada(Shared Idxes)

(b)NewOrd-Deliv.

Figure 8. ScaleDB vs Cicada goodput scalability on the TPC-C benchmark. Goodput counts only committed transactions.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4 8 12 16 20 24 28 32 36

P
e

rc
e

n
t

Tx
n

s
A

b
o

rt
e

d

Number of Threads

Overall Delivery StockLevel

(a) TPC-C.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4 8 12 16 20 24 28 32 36

Pe
rc

en
t T

xn
s A

bo
rt

ed

Number of Threads

Overall Delivery New-Order

(b)NewOrd-Deliv.

Figure 9. ScaleDB abort rate.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 373

0

20

40

60

80

100

120

140

160

0 4 8 12 16 20 24 28 32 36

M
ill

io
ns

 o
f o

pe
ra

tio
ns

 p
er

 se
co

nd

Number of threads

Indexlet Libcuckoo BWTree

(a) Indexlet.

0
4
8

12
16
20
24
28
32
36
40

0 4 8 12 16 20 24 28 32 36

Re
la

tiv
e

Sp
ee

du
p

Number of Threads

atomic_inc rdtscp timing_thread

(b) System-wide timestamps.

Figure 10. ScaleDBmechanism scalability.

ScaleDBmaintains its scalability, while Cicada’s scalability
is severely impacted. ScaleDB scales 24× over 36 cores, com-
pared to only 1.6× for Cicada with shared indexes. ScaleDB’s
throughput is 4.3× higher than Cicada. With partitioned in-
dexes, Cicada scales 15.5×, still worse than ScaleDB using
shared indexes. At scale, ScaleDB (with shared indexes) pro-
vides 48% of Cicada’s throughput (with partitioned indexes).

Given ScaleDB’s asynchronous design and the fact that
transactions can do stale reads from range indexes in between
batch merges, an important concern is how the abort rate
behaves with an increasing number of threads. Figures 9a
and 9b show this evaluation. On the canonical TPC-C bench-
mark, only the Delivery and StockLevel transactions have a
non-negligible abort rate. The Delivery abort rate stabilizes
at 3.5% around 20 cores (for both workloads), which implies
that ScaleDB continues scaling even beyond 36 cores. The
Stock-Level abort rate stays under 1%, even for 36 cores.

We also evaluated sensitivity of the abort rate to batch size,
but found that our workloads were not very sensitive to even
significant variations around the initial batch size—calculated
according to the expected write rate for the corresponding
table (§4.1). Accordingly, we omit those results for brevity.

6.3 ScaleDBMechanisms

Indexlets. We evaluate the scalability of indexlets against
libcuckoo [7], an optimized concurrent hash table, and the
BwTree [61, 77], a recent, lock-free range index structure.
This evaluation is performed on a microbenchmark (included
with libcuckoo) with a 50% read and 50% insert workload
consisting of 64-bit integer keys and values. As Figure 10a
shows, indexlets achieve nearly 5×libcuckoo and 25×BwTree
throughput at 36 cores. Open addressing in indexlets provides
better scalability than cuckoo hashing and the flat structure
of hash tables scales better than tree indexes.

Memory Overhead. Indexlets have lowmemory overhead.
Each indexlet entry only contains the primary key, a refer-
ence to the actual database row, and a small amount of meta-
data (e.g., a spinlock). For primary keys composed of integer
columns, such as those in TPC-C tables, an indexlet entry can
fit within a cache line (i.e. 64 bytes). As a result, the maximum
size of an indexlet in our benchmarks was ∼60MB, even for
tables (e.g. the TPC-C Orderline table) which absorbed mil-
lions of record inserts per second at peak. For phantomlets,
the memory overhead is even more modest, as their entry
count is sized according to the expected number of leaf index
nodes used for inserts per epoch. Accordingly, the maximum
size of phantomlets in our benchmarks was lower than 1MB.

System-wide timestamps. We evaluate the TSC and tim-
ing thread approach (§5) and compare with an atomic incre-
ment as a global timestamp. As Figure 10b shows, both timing
thread and TSC approaches scale linearly to 36 cores, while
the atomic increment does not scale beyond 4 cores.

7 Conclusion

ScaleDB is an asynchronous in-memory database that pro-
vides scalability and serializability for ACID transactions.
ScaleDB asynchronously updates range indexes by temporar-
ily holding writes in indexlets that are merged periodically
into range indexes. ScaleDB uses asynchronous consistency
control (ACC) to provide transaction serializability. ACC ex-
tends OCCwith asynchronous phantom detection via phan-
tomlets and atomic transcation commit using locks in in-
dexlets, rather than range indexes. For durability, ScaleDB
uses system-wide time stamp counters for scalable redo log-
ging. ScaleDB achieves 9.5× better query throughput than
Peloton on the YCSB benchmark and 1.8× better transaction
throughput than Cicada on the TPC-C benchmark.

Acknowledgments. We thank the anonymous reviewers
and our shepherd, Murat Demirbas, for their feedback. This
work was supported by NSF grant 2227066.

374 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Azure SQL database: Managed, intelligent SQL in the cloud.

https://azure.microsoft.com/en-us/services/sql-database/.
[2] Cuckoo Hashing. https://web.stanford.edu/class/archive/cs/cs166/

cs166.1146/lectures/13/Small13.pdf.
[3] Driver porting: mutual exclusion with seqlocks. https:

//lwn.net/Articles/22818.
[4] Google Cloud Spanner. https://cloud.google.com/spanner/.
[5] HyPer – A Hybrid OLTP&OLAP High Performance DBMS.

https://hyper-db.de/.
[6] jemalloc. https://jemalloc.net/.
[7] libcuckoo. https://github.com/efficient/libcuckoo.
[8] Linux TSC Cross Socket Reliability. https://github.com/torvalds/linux/

blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/
cpu/intel.c#L249.

[9] Linux TSC Synchronization. https://github.com/torvalds/linux/blob/
master/arch/x86/kernel/tsc_sync.c.

[10] MemSQL. https://www.memsql.com/.
[11] MyRocks: A space- and write-optimized MySQL database.

https://engineering.fb.com/core-data/myrocks-a-space-and-
write-optimized-mysql-database/.

[12] MySQL 8.0 Reference Manual: Clustered and Secondary Indexes.
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html.

[13] OLTP-Bench. https://github.com/oltpbenchmark/oltpbench.
[14] Resizing Hash Tables. https://courses.csail.mit.edu/6.006/spring11/

rec/rec07.pdf.
[15] SAP HANA. https://www.sap.com/products/hana.html.
[16] The Forrester WaveTM: In-Memory Databases, Q1 2017.

http://www.oracle.com/us/corporate/analystreports/forrester-
imdb-wave-2017-3616348.pdf.

[17] The Infrastructure Behind Twitter: Scale. https://blog.twitter.com/
engineering/en_us/topics/infrastructure/2017/the-infrastructure-
behind-twitter-scale.html.

[18] The Peloton self-driving SQL database management system.
https://github.com/cmu-db/peloton.

[19] Time-series data: Why (and how) to use a relational database instead of
NoSQL. https://www.timescale.com/blog/time-series-data-why-and-
how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/.

[20] Timekeeping in VMware Virtual Machines. https://www.vmware.
com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
Timekeeping-In-VirtualMachines.pdf.

[21] TimesTen: Fastest OLTP database, ultra high availability, elastic
scalability. https://www.oracle.com/database/technologies/related/
timesten.html.

[22] TPC-C Benchmark. http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf.

[23] VoltDB. https://www.voltdb.com/.
[24] What is RCU, Fundamentally? https://lwn.net/Articles/262464/.
[25] Why Uber Engineering Switched from Postgres to MySQL.

https://www.uber.com/blog/postgres-to-mysql-migration/.
[26] Xen TSC (time stamp counter) and timekeeping discussion.

http://xenbits.xen.org/docs/4.13-testing/man/xen-tscmode.7.html.
[27] Firas Abuzaid, Peter Bailis, Jialin Ding, Edward Gan, Samuel Madden,

Deepak Narayanan, Kexin Rong, and Sahaana Suri. Macrobase:
Prioritizing attention in fast data. ACM Trans. Database Syst.,
43(4):15:1–15:45, December 2018.

[28] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions. PhD thesis, MIT, 1999.

[29] O. Amble and D. E. Knuth. Ordered hash tables. The Computer Journal,
17(2):135–142, 01 1974.

[30] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’12, pages 53–64, 2012.
[31] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, AdamDick-

inson, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi,
EugeneKogan,AlexanderLloyd,SergeyMelnik,RajeshRao,DavidShue,
Christopher Taylor,Marcel van derHolst, andDaleWoodford. Spanner:
Becoming a SQL system. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 331–343, 2017.

[32] Hal Berenson, Phil Bernstein, Jim Gray, JimMelton, Elizabeth O’Neil,
and Patrick O’Neil. A critique of ANSI SQL isolation levels. SIGMOD
Rec., 24(2):1–10, May 1995.

[33] Philip A. Bernstein and Nathan Goodman. Multiversion concur-
rency control—theory and algorithms. ACM Trans. Database Syst.,
8(4):465–483, December 1983.

[34] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek,
and Nickolai Zeldovich. Scaling a file system to many cores using
an operation log. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 69–86, 2017.

[35] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. OpLog: a library for scaling update-heavy data structures.
Technical Report MIT-CSAIL-TR-2014-019, MIT, September 2014.

[36] Nathan Bronson and Xiao Shi. Open-sourcing F14 for faster, more
memory-efficient hash tables. https://engineering.fb.com/developer-
tools/f14/.

[37] NathanG. Bronson, Jared Casper, HassanChafi, and Kunle Olukotun. A
practical concurrent binary search tree. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 257–268, 2010.

[38] SangK.Cha, SangyongHwang,KihongKim, andKeunjooKwon. Cache-
conscious concurrency control of main-memory indexes on shared-
memorymultiprocessor systems. InProceedings of the 27th International
Conference on Very Large Data Bases, VLDB ’01, pages 181–190, 2001.

[39] Biswapesh Chattopadhyay, Sagar Mittal, Roee Ebenstein, Nikita
Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony Xu, Luis Perez,
Farhad Shahmohammadi, Tran Bui, Neil McKay, Priyam Dutta, Selcuk
Aya, Vera Lychagina, Brett Elliott, Weiran Liu, Ott Tinn, Andrew
Mccormick, Aniket Mokashi, and David Lomax. Procella: unifying
serving and analytical data at YouTube. Proceedings of the VLDB
Endowment, 12:2022–2034, August 2019.

[40] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143–154, 2010.

[41] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, chapter 11. The MIT Press, 3rd
edition, 2009.

[42] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton:
SQL Server’s memory-optimized OLTP engine. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1243–1254, 2013.

[43] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudre-Mauroux. OLTP-Bench:Anextensible testbed for benchmarking
relational databases. Proc. VLDB Endow., 7(4):277–288, December 2013.

[44] JoseM. Faleiro andDaniel J. Abadi. Rethinking serializablemultiversion
concurrency control. Proc. VLDB Endow., 8(11):1190–1201, July 2015.

[45] Jose M. Faleiro and Daniel J. Abadi. Latch-free synchronization in
database systems: Silver bullet or fool’s gold? In 8th Biennial Conference
on Innovative Data Systems Research, CIDR ’17, pages 9–21, 2017.

[46] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip
lists. In Proceedings of the 23rd Annual ACM Symposium on Principles
of Distributed Computing, PODC ’04, pages 50–59, 2004.

[47] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald,
Boris Grot, and Vijay Nagarajan. Scale-out ccNUMA: Exploiting skew
with strongly consistent caching. In Proceedings of the 13th EuroSys

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 375

https://azure.microsoft.com/en-us/services/sql-database/
https://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Small13.pdf
https://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/13/Small13.pdf
https://lwn.net/Articles/22818
https://lwn.net/Articles/22818
https://cloud.google.com/spanner/
https://hyper-db.de/
https://jemalloc.net/
https://github.com/efficient/libcuckoo
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/c2131f7e73c9e9365613e323d65c7b9e5b910f56/arch/x86/kernel/cpu/intel.c#L249
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/master/arch/x86/kernel/tsc_sync.c
https://www.memsql.com/
https://engineering.fb.com/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://engineering.fb.com/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://dev.mysql.com/doc/refman/8.0/en/innodb-index-types.html
https://github.com/oltpbenchmark/oltpbench
https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
https://courses.csail.mit.edu/6.006/spring11/rec/rec07.pdf
https://www.sap.com/products/hana.html
http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf
http://www.oracle.com/us/corporate/analystreports/forrester-imdb-wave-2017-3616348.pdf
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://github.com/cmu-db/peloton
https://www.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://www.timescale.com/blog/time-series-data-why-and-how-to-use-a-relational-database-instead-of-nosql-d0cd6975e87c/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
https://www.oracle.com/database/technologies/related/timesten.html
https://www.oracle.com/database/technologies/related/timesten.html
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.voltdb.com/
https://lwn.net/Articles/262464/
https://www.uber.com/blog/postgres-to-mysql-migration/
http://xenbits.xen.org/docs/4.13-testing/man/xen-tscmode.7.html
https://engineering.fb.com/developer-tools/f14/
https://engineering.fb.com/developer-tools/f14/

Conference, EuroSys ’18, 2018.
[48] Goetz Graefe. A survey of B-tree locking techniques. ACM Trans.

Database Syst., 35(3):16:1–16:26, July 2010.
[49] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple

optimistic skiplist algorithm. In Proceedings of the 14th International
Conference on Structural Information and Communication Complexity,
SIROCCO’07, pages 124–138, 2007.

[50] QiHuang,HelgaGudmundsdottir, YmirVigfusson,DanielA. Freedman,
Ken Birman, and Robbert van Renesse. Characterizing load imbalance
in real-world networked caches. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, HotNets-XIII, pages 1–7, 2014.

[51] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba
Shrira. Opportunities for Optimism in Contended Main-MemoryMul-
ticore Transactions. Proc. VLDB Endow., 13(5):629–642, January 2020.

[52] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, volume 3B, chapter 17, pages 17–41. November 2018.

[53] Joseph Izraelevitz, Jian Yang, LuZhang, JunoKim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. Basic performance
measurements of the Intel Optane DC persistent memory module.
http://arxiv.org/abs/1903.05714, 2019.

[54] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-
store. Proceedings of the VLDBEndowment, 1(2):1496–1499, August 2008.

[55] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis
Pandis. ERMIA: Fast memory-optimized database system for hetero-
geneous workloads. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, pages 1675–1687, 2016.

[56] Hideaki Kimura. FOEDUS: OLTP engine for a thousand cores and
NVRAM. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 691–706, 2015.

[57] H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Trans. Database Syst., 6(2):213–226, June 1981.

[58] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,
JigneshM. Patel, and Mike Zwilling. High-performance concurrency
control mechanisms for main-memory databases. Proc. VLDB Endow.,
5(4):298–309, December 2011.

[59] Philip L. Lehman and S. Bing Yao. Efficient locking for concurrent
operations on B-trees. ACM Trans. Database Syst., 6(4):650–670,
December 1981.

[60] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
The ART of practical synchronization. In Proceedings of the 12th
InternationalWorkshop onDataManagement onNewHardware, DaMoN
’16, pages 3:1–3:8, 2016.

[61] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The
Bw-Tree: A B-tree for new hardware platforms. In Proceedings of
the 2013 IEEE International Conference on Data Engineering, ICDE ’13,
pages 302–313, 2013.

[62] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions. In Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, pages 21–35, 2017.

[63] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
7th ACM European Conference on Computer Systems, EuroSys ’12, pages
183–196, 2012.

[64] Syed Akbar Mehdi. Scalability through Asynchrony in Transactional
Storage Systems. PhD thesis, The University of Texas at Austin, 2022.

Appendix 2.
[65] C. Mohan and Frank Levine. ARIES/IM: An efficient and high

concurrency index management method using write-ahead logging.
In Proceedings of the 1992 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’92, pages 371–380, 1992.

[66] Shuai Mu, Sebastian Angel, and Dennis Shasha. Deferred runtime
pipelining for contentious multicore software transactions. In
Proceedings of the 14th EuroSys Conference 2019, EuroSys ’19, 2019.

[67] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast
serializable multi-version concurrency control for main-memory
database systems. In Proceedings of the 2015 ACMSIGMOD International
Conference on Management of Data, SIGMOD ’15, pages 677–689, 2015.

[68] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. An analysis of load imbalance in scale-out data serving.
SIGMETRICS Perform. Eval. Rev., 44(1):367–368, June 2016.

[69] Andrew Pavlo. What are we doing with our lives? Nobody cares about
our concurrency control research. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD ’17, page 3, 2017.

[70] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware
automatic database partitioning in shared-nothing, parallel OLTP
systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 61–72, 2012.

[71] Michael Schwarz, SamuelWeiser, Daniel Gruss, Clementine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks, 2017. https://arxiv.org/abs/1702.08719.

[72] Debendra Das Sharma. Compute Express Link®: An open industry-
standard interconnect enabling heterogeneous data-centric computing.
In 2022 IEEE Symposium on High-Performance Interconnects, HOTI ’22,
pages 5–12, 2022.

[73] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In
Proceedings of the 24th ACMSymposium onOperating Systems Principles,
SOSP ’13, pages 18–32, 2013.

[74] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey,
Kamal Gupta, Murali Brahmadesam, Raman Mittal, Sailesh Krish-
namurthy, Sandor Maurice, Tengiz Kharatishvilli, and Xiaofeng Bao.
Amazon Aurora: On avoiding distributed consensus for I/Os, commits,
and membership changes. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages 789–796, 2018.

[75] Stavros Volos, Djordje Jevdjic, Babak Falsafi, and Boris Grot. Fat caches
for scale-out servers. IEEE Micro, 37(2):90–103, March 2017.

[76] ZhaoguoWang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang
Li. Scaling multicore databases via constrained parallel execution. In
Proceedings of the 2016 International Conference onManagement of Data,
SIGMOD ’16, pages 1643–1658, 2016.

[77] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. Building a Bw-Tree
takes more than just buzz words. In Proceedings of the 2018 ACM
International Conference on Management of Data, SIGMOD ’18, pages
473–488, 2018.

[78] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas,
and Michael Stonebraker. Staring into the abyss: An evaluation of
concurrency control with one thousand cores. Proc. VLDB Endow.,
8(3):209–220, November 2014.

[79] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas.
TicToc: Time traveling optimistic concurrency control. In Proceedings
of the 2016 International Conference on Management of Data, SIGMOD
’16, pages 1629–1642, 2016.

376 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://arxiv.org/abs/1903.05714
https://arxiv.org/abs/1702.08719

VBASE: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity

Qianxi Zhang1 Shuotao Xu1 Qi Chen1, ∗ Guoxin Sui1 Jiadong Xie1, 2 Zhizhen Cai1, 3

Yaoqi Chen1, 3 Yinxuan He1, 4 Yuqing Yang1 Fan Yang1 Mao Yang1 Lidong Zhou1
1Microsoft Research Asia 2East China Normal University

3University of Science and Technology of China 4Renmin University of China

Abstract
Approximate similarity queries on high-dimensional vec-

tor indices have become the cornerstone for many critical
online services. An increasing need for more sophisticated
vector queries requires integrating vector search systems with
relational databases. However, high-dimensional vector in-
dices do not exhibit monotonicity, a critical property of con-
ventional indices. The lack of monotonicity forces existing
vector systems to rely on monotonicity-preserving tentative
indices, set up temporarily for a target vector’s TopK near-
est neighbors, to facilitate queries. This leads to suboptimal
performance due to the difficulty to predict the optimal K.

This paper presents VBASE, a system that efficiently sup-
ports complex queries of both approximate similarity search
and relational operators. VBASE identifies a common prop-
erty, relaxed monotonicity, to unify two seemingly incom-
patible systems. This common property allows VBASE to
circumvent the constraints of a TopK-only interface to achieve
significantly higher efficiency, while provably preserving the
semantics of TopK-based solutions. Evaluation results show
VBASE offers up to three orders-of-magnitude higher per-
formance than state-of-the-art vector systems on complex
online vector queries. VBASE further enables analytical simi-
larity queries that previous vector systems do not, and shows
7,000× speedup with 99.9% accuracy of exact queries.

1 Introduction

Recent advances in deep learning (embedding) models
map almost all types of data (e.g., images, videos, docu-
ments) into high-dimension vectors [60, 66, 88]. Queries on
high-dimensional vectors enable complex semantic-analysis
that was previously difficult if not impossible, thus they be-
come the cornerstone for many important online services
like search [25, 51], eCommerce [54], and recommenda-
tion systems [49, 53, 56, 84]. The “online” nature of these

∗Corresponding author.

services requires vector search to complete in millisec-
onds [31, 36, 42, 64]. Such a strict latency conflicts with the
inherently high cost of exact search algorithm [28], which
forces end-users to settle on approximate query results on
high-dimensional vectors. With emerging new vector search
applications, queries on vectors become increasingly more
complex, which often involve hybrid search on both scalar
and vector data (§2.1). This naturally motivates an integration
of vector search systems and relational databases.

Vector search and database systems differ in their ways of
using the index, a critical structure to speed up queries. An
important property of conventional indices like B-tree [22] is
monotonicity. This property ensures that a query can traverse
the data-set guided by an index monotonically along a certain
direction. This often avoids total data scan, therefore enables
efficient query execution. However, it is prohibitively expen-
sive for high-dimensional vector indices [5, 25, 43, 55, 57, 85]
to preserve monotonicity, because of the curse of dimension-
ality [28]. Instead, they are often organized as a graph or
cluster-based irregular structure, which follows monotonic-
ity approximately. Traversing such vector indices does not
guarantee a strict monotonic order in terms of distances to a
target vector, but it enables a system to efficiently determine
when it is unlikely for new traversals to reach closer vectors
to a target than the current K ones. Therefore, modern vector
indices only support approximate TopK, i.e., to find K nearest
neighbors approximately. A TopK query traverses a vector
index for a sufficiently large number of steps, until it deter-
mines that a neighbor closer than the current K nearest ones
is unlikely to be found.

To integrate vector search and database systems , existing
vector database systems [76, 80, 86] choose to conform with
strict monotonicity. To support similarity queries other than
TopK, they first leverage TopK to collect K vectors, and sort
the K vectors according to distances to a target vector, which
sets up a temporary index preserving monotonicity. Complex
relational operators can therefore execute on the temporary
index in the traditional way. Consider the following vector
search query, “find X number of products most similar to an

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 377

image but under a certain price”. A database planner would
first run a vector search operator on the vector attribute of
image embedding to find K nearest tuples, then apply a filter
operator on the price attribute. But it is impossible to predict
exactly how many tuples will pass the filter operator, which
could be much less than K. Therefore this practice has the
inherent difficulty of identifying the optimal K that produces
exact X results. As a result, it resorts to either a setting of a
conservatively large K or a trial-and-error of many Ks, which
both lead to suboptimal query performance.

In this paper, we present VBASE, a new system capable
of efficiently serving complex online queries that involve
both approximate similarity search and relational operators on
scalar and vector data-sets. VBASE identifies Relaxed Mono-
tonicity as the common property abstracted from the two
seemingly different systems: vector search systems and rela-
tional databases. Relaxed monotonicity requires index traver-
sals to only follows monotonicity approximately. We observe
that state-of-the-art vector indices all follow relaxed mono-
tonicity property in a two-phase pattern: an index traversal
first locates the nearest region to a target vector approximately,
and then moves away from the target region progressively in
an approximate way. Based on the observation, we formally
define Relaxed Monotonicity property, which abstracts the
core index traversal pattern that most existing vector indices
already have (§3.1). Relaxed monotonicity can be viewed as a
generalized form of monotonicity, thus it is also applicable
to conventional scalar indices, such as B-trees. Therefore, Re-
laxed Monotonicity can serve as the common foundation of
vector search and database systems.

With relaxed monotonicity, VBASE builds a unified query
execution engine to support a wide range of queries both
on scalar and vector data, including queries across multiple
heterogeneous indices. VBASE’s unified engine is based on a
Next interface, instead of TopK, to support traversal in both
vector and scalar indices. Meanwhile, the engine allows the
derivation of a generalized termination condition from relaxed
monotonicity to stop a query’s execution timely.

A unique characteristic of VBASE is that its relaxed-
monotonicity-based query execution engine can provably
achieve equivalent query results to those produced by TopK-
only solutions of the optimal K̃ (§3.3) This powerful prop-
erty allows VBASE to circumvent the constraints of a TopK-
only interface to achieve significantly higher efficiency, while
preserving the semantics of TopK-based queries. In particu-
lar, based on the derived generalized termination condition,
VBASE is able to detect the K̃ during index traversal without
an prediction of K̃. This allows VBASE to achieve similar per-
formance to the well-optimized TopK vector search. For more
complex queries than TopK searches, VBASE can achieve
up to three order-of-magnitude lower average and tail query
latency over state-of-the-art systems under similar result ac-
curacy (i.e., same or even better recalls).

Moreover, with relaxed monotonicity, VBASE can even

Table 1: Online Similarity Query Support for Vectors

S1 S2 S3 S4

ANN systems [25, 43, 46] ! 7 7 7

AnalyticDB-V [80] ! ! 7∗ 7∗

PASE [86] ! ! 7∗ 7∗

PostgreSQL [12] 7∗ 7∗ 7∗ 7∗

Milvus [76] ! ! ! 7

Elasticsearch [4] ! ! 7� 7

∗: Some systems can support these queries through exhaustive linear
scan, but this cannot meet the requirements of online services.
�: Only support one inverted index and one vector index.

support approximate query types that previous systems do
not, and show superior query performance and accuracy. For
example, VBASE can finish a join-based vector query in 16
seconds with 99.9%+ recall rate, which is 7000× faster than
a brute-force table scan.
In summary, we make the following contributions:
1. VBASE identifies and defines formally “Relaxed Mono-

tonicity”, a property that reveals, for the first time, the core
of well-designed vector indices and why they work effec-
tively in practice.

2. VBASE builds a Unified Database Engine based on
relaxed monotonicity, which enables powerful complex
queries leveraging both vector and scalar data indices.

3. We prove that VBASE’s unified engine produces equiv-
alent results to TopK-only methods using vector indices,
with a much more efficient execution plan than that of
TopK-only methods.

4. We implement VBASE based on PostgreSQL with 2000
lines of additional code, and show an end-to-end evaluation
of eight complex SQL queries on a hybrid one million
recipe data-sets [59] with both vector and scalar attributes.

We plan to make VBASE open-source to satisfy the emerg-
ing important vector analytic applications in the era of AI.

2 Background

2.1 Emerging Online Vector Queries
Vector has become a key form of data representation in the AI
era. Deep learning has enabled a growing number of vector-
centric online applications, including embedding-based re-
trieval [25,87], face recognition [69], code retrieval [37], ques-
tion answering [52, 63], Google Multisearch [7], Facebook
near-exact duplicates detection [6], etc. More recently, AI ap-
plications have leveraged ChatGPT’s retrieval plugin [10] to
convert their proprietary knowledge, personal documents, and
chat contexts into vectors. This enables the retrieval of rele-
vant vectors with price, category, location, or time constraints
to construct prompts in the chat.

Traditional applications also benefit from vectors empow-
ered by AI. For example, search engine turns web documents
into both bag-of-words sparse vectors and deep learning em-

378 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bedding dense vectors to improve the relevance of search
results. And recommendation systems turn images, videos,
and descriptions of items into different vectors. Combined
with scalar data like item price and category, these vectors are
used to enhance recommendation experiences.

All these call for a general system to run sophisticated
vector and scalar queries efficiently. In summary, these vector
scenarios can be categorized into the following types.
S1: Single-vector TopK. embedding-based retrieval [25], rec-
ommendation [87], and question answering [52, 63] essen-
tially search a vector data-set for the K closest vectors, given
a query vector. Such queries can be naturally expressed by a
TopK operator on a single-vector column.
S2: Single-vector TopK plus scalar attribute filtering. There
are also requirements to find TopK results under certain scalar
attribute constraints. Google Multisearch [7] belongs to this
category. It allows users to provide additional text hints during
a similarity image search.
S3: Multi-column TopK. Some vector analytics require in-
tersecting results of multiple TopK searches over different
vector attributes. For example, image-recipe retrieval [68] is
a recipe search on multi-modal data attributes of both (vector-
ized) ingredient keywords and a sample dish image. Recent
work [70,83] shows that multi-column TopK search can boost
result quality in applications such as question-answering.
S4: Vector similarity filter. Similarity filtering is a typical
vector analytics scenario. For example, face recognition [69]
and Facebook’s near-exact duplicates detection [6] search
for similar images (given an image) from a data-set with a
similarity threshold. To support such applications, one could
use vector filtering based on distance similarity between two
images, i.e., distance-based range query.

All these vector query types have a strict latency require-
ment (e.g. milliseconds). Unfortunately, no existing systems
can support all these online similarity queries comprehen-
sively and efficiently (see Table 1).

2.2 The Division Between Databases and Vec-
tor Search Systems

Although databases can express the above queries through
relational algebra, the division in the semantics between vec-
tor and conventional database indices makes it difficult to
provide a unified system that efficiently runs various types of
sophisticated online vector queries as shown in Table 1.
Relational database. A relational database is one of the most
prominent tools to run sophisticated queries [16,24,29,40]. In
order to meet the low-latency “online” requirement, indices
are widely adopted by databases to expedite query executions,
such as B-tree [22], B+-tree [75] and more. These indices
demonstrate monotonicity, a property that allows a query to
traverse an index monotonically along a certain direction, e.g.,
in a descending or ascending order.

One of the most important types of online queries in the
context of emerging vector scenarios is TopK query (§2.1).
And a conventional database index can speed up TopK by
traversing the index in the ascending or descending order and
terminating the query as soon as it collects K results. This
optimization applies to many TopK variants, such as TopK +
filtering, and multiple-column TopK queries [33].

However, the effectiveness of such optimization relies on
the assumption of monotonicity, which high-dimensional vec-
tor indices do not follow. We elaborate next.
Approximate vector search. The recent eruption of AI mod-
els has been generating a large and growing amount of
high-dimensional vector data. For better learning represen-
tation, a vector can have hundreds of dimensions [60, 66, 88].
Due to the curse of dimensionality [28], no solutions can
complete a high-dimensional vector query in sub-linear time.
To address “online” scenarios, modern vector search sys-
tems resort to approximation to lower query latency dra-
matically (milliseconds) while maintaining a relatively high
result accuracy (90%+ recall). These systems are often re-
ferred as approximate nearest neighbor search (ANNS) sys-
tems [5, 25, 43, 55, 57, 85].

Like relational databases, vector indices are adopted to
facilitate approximate vector search. Representative vector
indices are either organized as partitions (clustering-based [5,
17, 19, 25, 44, 45, 48, 90], hash-based [30, 41, 79, 81, 85]),
high-dimensional tree-based [23, 57, 62, 78]), or neighbor-
hood graphs [32, 39, 43, 55, 58, 77]. The difficulty of locating
a vector in the high-dimensional space forces these vector
indices to optimize for approximate TopK. In a TopK query,
index traversal is guided by a query vector q approximately to-
wards the nearest neighbors tortuously based on the distance
between q and some anchor points (e.g. cluster centroids, or
sampled graph vertices). During the traversal, the direction to
q may change dramatically, thus the process does not guaran-
tee to approach q in every traversal step and the vector index
traversal is not monotonic.

The lack of monotonicity in vector indices bars database
systems from directly using vector indices to expedite queries,
which is the primary source of the division between databases
and vector search systems.
TopK-based solutions to eliminate the division. Because
vector indices are optimized for TopK, ANNS systems expose
only a TopK interface. To close the monotonicity gap between
databases and vector search systems, the current practice is to
use ANNS TopK interface to create tentative indices based on
K vectors sorted according to the distance to the target vector.
Such tentative indices preserve monotonicity, which enables
fast vector query processing in databases [76, 80, 86].

However, TopK-based tentative index solutions are unsatis-
factory. It is difficult, if not impossible, to predictthe right size
of K̃ for the tentative index for queries, where a subsequent
relational operator with a filter constraint can collect just the
right number of results. This limitation universally applies

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 379

to TopK + filter queries, vector similarity filter queries, and
more. Thus TopK-based tentative indices inevitably lead to
choosing a conservatively very large K [80,86] or performing
trial-and-error with different sizes of K [76], both incurring
excessive data accesses and computations.

3 VBASE Design

3.1 Relaxed Monotonicity
Unlike conventional scalar indices, high-dimensional vector
indices are designed for approximate TopK and do not fol-
low monotonicity. Figure 1 shows the TopK traversal pat-
terns of two popular vector indices, FAISS IVVFlat [5] and
HNSW [89] . As illustrated, vector index traversal does not
comply with monotonicity, the distance towards the target
vector oscillates unpredictably as the traversal progresses. A
lack of monotonicity in these vector indices bars relational
databases from directly using them to expedite queries (§2.2).

(a) FAISS IVFFlat (b) HNSW
Figure 1: Traversal patterns of two vector indices.

The Two-phase Vector Index Traversal Pattern. Neverthe-
less, Figure 1 reveals a two-phase index traversal pattern for
both vector indices. In the first phase, the index traversal ap-
proaches the target vector region approximately in spite of
large oscillations in vector distances. In the second phase, the
index traversal stabilizes and steadily departs from the target
vector region in an approximate way.

This two-phase traversal pattern is common in most vector
indices we examine. We believe that the essence of well-
designed vector indices is an effective data-structure that em-
bodies this traversal pattern implicitly. Thus a TopK search
query could terminate early when it enters the second phase as
further traversals are unlikely to identify more similar vectors.
The Formal Definition of Relaxed Monotonicity. Based on
the two-phase traversal pattern, we can formally define Re-
laxed Monotonicity which identifies if a vector index traversal
has entered the second phase. The definition is built upon the
intuition of how a vector TopK search is executed internally.

Figure 2 shows such an intuition by illustrating the process
of a general vector search for a query vector q. The dashed ar-
row in the figure shows an index traversal path with respect to
q. Following the two-phase pattern, the query first approaches
the neighborhood of q gradually. In a high-dimensional space,
the neighborhood of q is defined by a neighbor sphere cen-
tered around q, illustrated as a circle in Figure 2. Afterward,

𝑞

𝑅!

Neighbor sphere of a target vector 𝑞 with a radius 𝑅! ,
which contains 𝐸 nearest vectors to 𝑞.

Traversal window with 𝑤 previous vectors

𝑀!
":Median distance of vectors to 𝑞

in traversal window

Travers
al path

Figure 2: An Illustration of Relaxed Monotonicity’s intuition.
A vector query q discovers q’s neighborhood with E nearest
vectors along the progression of a traversal path.

the index traversal leaves the sphere and enters phase two,
where the query can terminate in this phase.

Figure 2 suggests that, to determine whether it enters phase
two, a query needs to understand Rq, the radius of the neigh-
bor sphere centered around q, and whether Ms

q, the distance
between the query’s current index traversal position (denoted
as traversal step s) and q, is greater than Rq, i.e., it is traversing
beyond the neighborhood of q.

Formally, Rq, the radius of q’s neighborhood, is defined as:

Rq = Max(TopE({Distance(q,v j)| j ∈ [1,s−1]})), (1)

where TopE denotes the E nearest neighbors of q observed
during the traversal, supposing that the traversal has reached
step s so far. For a K nearest vector search query, it requires
E ≥ K in order to produce sufficient final results. In Figure 2,
the E vectors within the circle are the nearest neighbors of q
of all the s vectors visited so far. During an index traversal,
the sphere’s radius Rq would gradually decrease during phase
1, and becomes stable during phase 2.

Given the definition of Rq, the system needs to define Ms
q,

the distance measurement between the target vector q and
the current index traversal position, denoted as traversal step
s. Ms

q is then used to determine whether the traversal enters
phase 2, i.e., leaving the neighbor sphere.

Mathematically, Ms
q is defined as the median distance to

q of all vectors traversed in the most recent w steps, i.e., the
traversal window.

Ms
q = Median({Distance(q,vi)|i ∈ [s−w+1,s]}), (2)

where Distance(q,vi) denotes the distance between q and
vector vi, traversed in the past traversal window. Note that we
use median instead of mean to disregard any outlier vectors
in the traversal window, which has exceedingly large or small
distances to q than others. For example, the two outlier vectors
in the leftmost and rightmost positions in the traversal window
shown in Figure 2.

Taking Eq.1 and Eq.2 together, we define Relaxed Mono-
tonicity as:

Definition 1 Relaxed Monotonicity

∃s,Mt
q ≥ Rq,∀t ≥ s. (3)

380 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

In other words, Def. 1 determines that a vector index fol-
lows relaxed monotonicity if there exists a certain index traver-
sal step s, where all traversal steps t after step s transcends
into a region (Mt

s as the region’s distance to q) that is outside
q’s neighborhood sphere, defined by q’s E nearest neighbors.
Importance of Relaxed Monotonicity. Relaxed monotonicity
is the key for the database to circumvent the inefficient con-
straint of TopK-only interfaces, and to generate an efficient
execution with on-the-fly early termination. When subsequent
database operators following the vector index scan can deter-
mine that vector index traversal has entered the second phase,
one would know that we are veering away from the target
vector steadily. In such cases, we could early terminate the
query if sufficient results have been collected, because new
tuples with closer vector attributes are unlikely to be found.
Generality of Relaxed Monotonicity. All mainstream vector
indices listed in ANN Benchmarks [2] perform vector search
using four general components: 1) index traversal to navigate
the vector data-set; 2) termination check to detect query termi-
nation signal; 3) monotonicity check to determine if a query
enters Phase 2; and 4) priority queue for keeping K nearest
vectors so far. Often in ANNS indices, monotonicity check is
a necessary condition for the termination check.

Although vector indices implement these four components
in different ways, their monotonicity check satisfies Def. 1.
For example, Figure 1 shows that index traversal patterns of
IVFFlat and HNSW follow relaxed monotonicity obviously.
And Def. 1’s parameters, i.e., the traversal window w and the
neighborhood of q Rq, are able to capture the internal char-
acteristics of index traversal patterns of these popular vector
indices as well as conventional indices. Next, we elaborate on
the setting of these parameters for representative indices.
• Graph-based Vector Indices, such as HNSW [89], fol-

low the two-phase pattern using graph data-structures. In
the first phase in Figure 1b, HNSW quickly navigates the
traversal to the neighborhood of q through hierarchical
coarse-grained to fine-grained navigating graphs. When
it reaches the fine-grained graph, the traversal enters the
second phase where it has found the neighborhood of q and
departs away. Vector search using a graph-based index use
best-first (BF) graph traversal from a fixed starting point.
BF search maintains a sorted candidate queue with the size
e f . This queue essentially represents the neighborhood
sphere in Eq. 1 with e f vectors. Therefore E equals e f
for HNSW. BF traversal explores the graph through the
vectors in the candidate queue and expands the exploration
by visiting their neighbors. If a neighbor is unvisited and
its distance to the target vector q is smaller than the farthest
vector in the sorted queue (i.e. Rq), the traversal replaces
the farthest vector with the new one and resorts the queue.
Because the traversal only compares the traversed vector
itself with Rq, the traversal window w in Eq. 2 equals one.

• Partition-based Vector Indices, such as FAISS IVF-
Flat [5] and SPANN [25], divide vectors into multiple clus-

ters where nearby vectors are conglomerated. During the
traversal in the first phase in Figure 1a, IVFFlat traverses
over the centroids to identify the m closest clusters, and then
in the second phase it goes over the vectors in m clusters
and terminates when all vectors in m clusters are traversed,
which indicates Eq. 3 of Relaxed Monotonicity has been
satisfied after the vector search visits m clusters. With this
observation, E in Eq. 1 is set to K of the TopK query, and
the traversal window w in Eq. 2 is set to the number of total
vectors in m clusters.
• Scalar Indices, such as B-Tree, follow strict monotonicity.

It is a special case of relaxed monotonicity, where w and E
are both set to 1 and Eq.3 is always true.
Note that it is our observation that well-designed indices

should satisfy Relaxed Monotonicity. VBASE abstracts and
formalizes this property that most indices already preserve,
and encapsulates it with mathematical terms such as E and w
in Eq. 1 and 2. It is the responsibility of individual indices to
guarantee relaxed monotonicity by tuning the corresponding
hyperparameters like e f and m, which can be transformed to
E and w, as discussed above.

3.2 Unified Query Execution Engine
With relaxed monotonicity, VBASE builds a unified query
execution engine modeled after a traditional database engine
with minimum changes. VBASE’s unified engine is built on
Volcano Model (i.e. Iterator Model) [35], where 1) a relational
operator in a given query produces a stream of tuples itera-
tively that are consumed by downstream operators, and 2) the
iterative execution stops if a termination condition is met.
Iterative Execution Model. VBASE fully complies with the
Volcano Model. It reuses the traditional Open, Next, and
Close interfaces to leverage index traversal so that no change
is required for conventional indices. For vector indices that
traditionally expose TopK interfaces only, VBASE performs a
simple adaptation to expose their internal index traversal pro-
cess, to conform to VBASE’s Next interface. We will discuss
the details of implementing Next for vector indices in §4.2.
Generalized Termination Condition Check. VBASE modi-
fies the termination condition based on relaxed monotonicity.
In particular, VBASE extends the original termination condi-
tion with relaxed monotonicity check. In addition to the orig-
inal query termination condition, VBASE performs relaxed
monotonicity check by inspecting Eq. 3. Because VBASE
requires a vector index guarantees Relaxed Monotonicity, an
inspection of Eq. 3 could be reduced to Ms

q > Rq, where re-
laxed monotonicity checks beyond step s are all assumed to
be true.

The query execution would only stop if both the original
termination condition and relaxed monotonicity check were
passed. Please note for the traditional index, the relaxed mono-
tonicity check is always true, which reduces to the termination
check of the convention iterative model.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 381

Next, we describe how VBASE’s termination conditions
work for TopK and distance-based ranger filter, two operators
used by vector queries.
• OrderBywith limit: In traditional databases, TopK is usu-

ally expressed by an OrderBy operator with limit K. The
traditional TopK query terminates immediately once K re-
sults have been collected, because all indexed tuples are or-
dered. For an approximate TopK query on vectors, VBASE
need to check if the relaxed monotonicity check (i.e., re-
duced Eq.3) is passed, in addition to collecting K vectors.
When relaxed monotonicity check is true, the index traver-
sal has entered phase 2 (§3.1), which indicates it is veering
away from the target vector steadily. And we can terminate
the query after collecting K nearest vectors, because it is
unlikely to find new vectors closer than the collected ones.

• Range filter: Distance-based range filter returns tuples
whose values or distances to a target are within a range R.
For a conventional query, the query stops when a tuple be-
ing traversed goes beyond range R, because monotonicity
guarantees we have visited all tuples within R. For a vector
query, the execution only stops if both a vector along the
traversal path exceeds distance R and the relaxed mono-
tonicity check is passed, which indicates we are in a stable
phase (phase two) moving away from a target vector.

Advantages of a Unified Engine. The unified engine en-
ables VBASE to preserve full compatibility with traditional
databases and supports all the vector query types discussed
in §2.1. It also creates new optimization opportunities for
vector queries. For example, instead of filtering after TopK,
VBASE can perform filtering during index traversal with flex-
ible termination conditions (for TopK or range query). This
optimization is one of the key reasons VBASE outperforms
TopK-based solutions (§5.3). Moreover, the unified engine
allows the incorporation of a refined NRA algorithm [33],
which can significantly improve the performance of multi-
column vector query (§4.4).

Interestingly, VBASE’s unified engine also supports vector
Join. Although not an online query, vector Join is useful in
scenarios such as document auto-tagging [26, 72], where a
small labeled (tagged) document set is used to identify a tag
for each document in a large unlabeled document set by find-
ing the document pair with the closest document embeddings
(vectors). This can be thought of as running a Join operator
on a document table and a label table with a distance-based
match, which can be achieved in VBASE by an index join
based on a range filter. Because such a Join can only be
achieved by a full table scan in existing solutions, VBASE
can outperform the baseline by over 7000× (§5.3).

3.3 Result Equivalence
In this section we demonstrate a powerful property of
VBASE’s unified query execution engine based on Relaxed
Monotonicity, that it produces the equivalent results as a TopK

method based on a tentative monotonicity-preserving index
with the optimal K̃. The optimal K̃ is the minimal K′ for the
index traversal to satisfy K results in a TopK query. As K′ is
the minimal satisfactory value, the query latency is minimized.
We rely on the quality of individual indices to ensure recalls.

Next, we formally prove the result equivalence for
TopK+filter and range filer [20] queries, which are major types
of similarity searches supported by existing TopK-based vec-
tor systems (Table 1). The proof also reveals the reason of
VBASE’s superior performance.

Index Traversal

Relaxed
Monotonicity

Check
Priority
Queue

Termination
Check

Filter

Limit

TopK Interface

Output
(K)

Vector Index

Index
Scan

Index Traversal

Vector Index

Index
 Scan

Relaxed
Monotonicity

Check

Filter

 OrderBy
with Limit

Termination
Check

Output
(K)

Priority
Queue

TopK-based Systems VBase

Limit_K(Filter(Limit_K′(Sort(R1))))

Filter(Limit_K′(Sort(R1)))

Limit_K′(Sort(R1))

Limit_K′(Sort(R1))

R1

Iterative Traversal

Limit_K(Sort(Filter(R2)))

Filter(R2)

R2

R2

Figure 3: Result Equivalence

TopK +filter. To find K vectors matching the filter, a TopK-
based system first collects K′ vectors by calling TopK (K′)
and sorts the collected K′ vectors. To achieve this, the system
needs to traverse R1 vectors through the underlying vector in-
dex. The query then runs on the sorted K′ vectors by applying
the filter and the K limit operators, producing the final results,
denoted as r1. Eq.4 formulates the above process, illustrated
on the left in Figure 3.

r1 = Limit_K(Filter(Limit_K′(Sort(R1)))). (4)

We define f ilter_selectivity as the ratio of the output set
on the input set of the filter operator. Eq. 4 can then be trans-
formed to:

r1 =Limit_K′′(Filter(Sort(R1))),

where K′′ = min(K,K′× f ilter_selectivity).
(5)

Assuming the TopK-based system can predict the optimal K̃,
i.e., K′= K̃ =K/ f ilter_selectivity, execution will get exactly
K results, and Eq. 5 reduces to Eq. 6

r1 = Limit_K(Filter(Sort(R1))). (6)

In comparison, VBASE traverses R2 vectors via the same
vector index as the TopK-based system, and gets results r2.
Eq. 7 formulates this process, shown on the right of Figure 3.

r2 = Limit_K(Sort(Filter(R2))). (7)

382 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We show in §3.2 and §4 that TopK-based systems and
VBASE use the same vector index, follow the same index
traversal algorithm, and are based on the same relaxed mono-
tonicity check to terminate queries. Therefore both systems
traverse the exact same set of tuples, i.e., R1 = R2. 1. Because
R1 = R2 and Filter and Sort are commutative, from Eq. 6 and
7 we conclude r1 = r2. Q.E.D.

It is difficult for a TopK-based solution to predict K′ to
get both correct results and high query efficiency. If K′×
f ilter_selectivity < K in Eq.5, the system cannot get enough
results, leading to poor accuracy. If K′× f ilter_selectivity >
K in Eq. 5, the result is accurate at the expense of splurg-
ing extra index traversal. Some TopK-based system [76]
performs trial-and-error with many values of K′ until K′×
f ilter_selectivity≥ K, which results in excessive duplicated
data access and processing. In contrast, VBASE determines
K̃ × f ilter_selectivity = K on-the-fly, therefore achieving
both high query accuracy and performance.
Range Filter Query. A range filter query based on TopK can
be formulated as

r1 = Filter(Limit_K′(Sort(R1))), (8)

Where R1 stands for the traversed vectors by the underly-
ing TopK primitive. Similar to Eq.4 vs. Eq.5, Eq. 8 can be
transformed to

r1 =Limit_K′′(Filter((Sort(R1)))),

where K′′ = K′× f ilter_selectivity.
(9)

Under the assumption of optimal K̃, assuming the query
produces T vectors, we have K̃ = K′ = T/ f ilter_selectivity.
Based on K̃, Therefore,

r1 = Limit_T (Filter(Sort(R1))) = Filter(Sort(R1)). (10)

In comparison, VBASE traverses R2 vectors via the same
index and gets results r2, which can be formulated as

r2 = Filter(R2). (11)

Since the traversal algorithm and the termination condition
are exactly the same as the TopK-based solution, both sys-
tems visit the same set of vectors, i.e., R1 = R2. As the filter
conditions are not sensitive to order, r1 = r2. Q.E.D.

4 VBASE Implementation

4.1 Relaxed Monotonicity Check
We implement a common relaxed monotonicity check for all
vector indices based on Definition 1 in §3.1. Specifically, we
implement two queues to track the current traversal state: 1)

1We assume vector index traversal is deterministic, true for most vector
search systems.

a priority queue with size E called smallestQueue, to keep
the visited nearest neighbors of a target vector q during the
traversal; 2) recentQueue of size w to track the most recent
traversal window. When a new vector v is visited via index
traversal, smallestQueue and recentQueue are updated ac-
cordingly. And the relaxed monotonicity check is performed
by calculating the current traversal state according to Eq.(3)
based on vectors in smallestQueue and recentQueue.

Note that E and w are sensitive to data distribution and spe-
cific indexing algorithms. Increasing them tends to improve
query accuracy at the expense of longer latency. In practice,
they can be tuned to trade off query accuracy and latency.

4.2 Query Execution Engine
VBASE’s unified query engine is implemented based on Post-
greSQL, with minor extensions to modules regarding index
traversal and termination conditions.
Vector index integration. Existing high-dimensional vector
indices only expose TopK interface and keep the index traver-
sal and relaxed monotonicity check internally to the system.
VBASE re-architects the vector indices systems by exposing
the internal index traversal algorithms with Open, Next, and
Close interfaces, which can then be integrated into Volcano
Model seamlessly.

VBASE has incorporated several state-of-the-art vector in-
dices, including HNSW [89], IVFFlat [5] and SPANN [25],
where SPANN is shown effective for billion-scale vector data-
sets. Next, we introduce the integration of HNSW and IVF-
Flat, a graph-based index and a partition-based index, respec-
tively. Other algorithms can be integrated in a similar way.

HNSW [89] is a graph-based vector index consisting of hi-
erarchical neighborhood graphs where the upper-layer graph
keeps coarse-grained samples of the lower-layer graph. A
query traverses the graphs from upper-layer to lower-layer
following the best-first manner. The approximate nearest point
found in the upper-layer graph is the entry point of the lower-
layer graph. In VBASE, we remove the implementation re-
garding TopK, e.g., a priority queue to record the top k results,
and only keep states necessary to carry on the index traver-
sal algorithm. The relevant states include a bitmap to record
previously visited vectors, the current vector being visited,
and the candidate vectors to be visited next. These states will
be kept during the query life cycle. To initiate a query on
a vector index, VBASE calls Open to search on high-layer
graphs. During query execution, each call to Next will return
the current closest unvisited node, records it, and expands its
neighbors into candidate vectors in the state. The state will be
cleared in Close function. Overall, we modify less than 200
lines of code to integrate HNSW.

IVFFlat [5] is a partition-based index, which clusters vec-
tors into lists and chooses the centroid as the representative of
each list. In the Open interface used to initiate index traversal,
VBASE sorts all the lists from near to far based on the dis-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 383

tance between the target vector and the centroids. Upon calls
to Next, the vectors in the corresponding nearest lists are read
one by one. The query execution state in a partition-based
index includes sorted lists and the current read position, which
will be destroyed by a Close.
Index scan operator. We add a new “vector index” type using
the index extension interface in PostgreSQL [12] to imple-
ment index scan. It forwards function calls to Next to the
underlying vector index within the iterative interface. We
use array to store high-dimensional vectors in the table and
record their tuple addresses in the table as the vectors’ meta-
data in the index. Once a vector is read from the underlying
vector index, its metadata will also be returned so that VBASE
can find the corresponding tuple in the main table.

Note that the relaxed monotonicity check described in §4.1
is implemented in the index scan operator so that multiple
indices do not need to duplicate the implementation.
OrderBy with limit. VBASE implement TopK using
OrderBy with limit plus an index scan operator. The system
uses a priority queue to keep the candidate results. The TopK
query terminates once the index traversal passes the relaxed
monotonicity check in the upstream index scan operator and
K vectors have been filled in the priority queue.

Note that vector indices are used for similarity queries, i.e.
search closest vectors to the target vector. If a user would
like to query the farthest TopK results from the target vector,
the distance calculation method needs to be reversed before
creating the indices.
Range filter and Join. VBASE implements an efficient
range filter by concatenating it with an index scan opera-
tor. Only vectors passing the distance filter condition can
be returned to the subsequent operators. The index traversal
stops when the distance between the current vector to the
target vector is larger than the filter constraint and the relaxed
monotonicity check is passed in the index scan operator.

With the support of distance filter, VBASE can even support
Join on high-dimensional vectors, which previous vector sys-
tems cannot support efficiently. Semantic-based join has been
widely used in document auto-tagging [26,72], which assigns
one or multiple labels for each unseen document by finding
the closest label embeddings to a document embedding. Previ-
ous systems can only support Join by brute-force table scan.
VBASE executes a Join by nested-loop with index search,
which outperforms existing systems by 7000× faster with
0.999 recall accuracy in our experiment.
More complex queries. The combination of the above opera-
tors can be used to support more complex queries efficiently.

4.3 Query Planning

Complex queries often require effective cost estimation on
various query plans. In general, it includes vector algebra
computation (e.g., distance calculation), selectivity estimation

in case the query contains filters, and index scan cost.
Vector computation. Traditional databases estimate the cost
of scalar data computation using a constant value t, e.g.,
t = 0.0025. But vector computation is more expensive, it in-
volves the calculation of the distance between vectors, which
is proportional to the number of dimensions. Thus VBASE
models the cost of vector computation tv as:

tv(dim) = t · c ·dim,

where t is a predefined value representing the cost of scalar
operation, c is the coefficient related to SIMD optimizations
for vector computation, and dim denotes vector dimension.
Selectivity estimation. If a query contains a filter, the query
should estimate selectivity, the ratio of tuples that will pass the
filter. VBASE relies on sampling-based methods to measure
the distribution of high-dimensional vectors [67, 82]. Specif-
ically, VBASE uniformly samples vector data at a ratio and
stores the sampled vectors in the metadata of the database.
Given a query q, it applies the filter on the sampled data to
estimate the selectivity Sel on the full vector data-set.

Selsample(q)≈ Sel f ull_data(q).

In our experiments, setting the sample rate to 0.001 can pro-
duce a good estimation with q-error < 1.1 in most cases while
incurring only a tiny extra latency (<1ms). More details will
be presented in §5.5.
Index scan cost estimation. This includes start-up cost and
traversal cost. The start-up cost is the cost to locate the region
nearby the target vector before returning vector data; Traversal
cost represents the cost to iterate over the matched tuples
through the index. For each index traversal step, the cost
Cstep includes tIO, the IO cost to fetch the index data from
disk, and tv(dim), the cost to calculate the distance: Cstep =
tv(dim)+ tIO. For partition-based indices like IVFFlat and
SPANN, the index scan cost Cp is:

Cp =Nc×Cstep +max(dSel(q)N/Npe,m)×Np×Cstep,

where N is the table size, Nc is the number of centroids, Np is
the average number of data per partition, and m is the number
of partitions the index traversal algorithm requires to traverse
for relaxed monotonicity check.

The scan cost, Cg, of graph-based indices like HNSW is:

Cg = Nstart ×Cstep +max(Sel(q)N,NE)×Riter×Cstep,

where Nstart is the number of steps to traverse upper-layer
graphs in Open function of HNSW, NE is the number of steps
to satisfy relaxed monotonicity check, and Riter is the average
times of distance function called per step to reach next point.
Nstart , NE and Riter are dependent on the hyper-parameters
of the index and the distribution of data, which can be au-
tomatically estimated by sampling, and this process can be
embedded into databases’ Analyze routine.

384 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.4 Multi-Column Scan Optimization
To support multi-column vector queries, TopK-based systems
can only perform multi-column scan based on the multiple
sets of sorted vectors collected by TopK. For example, Milvus
performs NRA algorithm [33] for multi-column scan based on
TopK. It doubles K and re-executes the query if the previous
results are insufficient. Every attempt to a larger K is an
independent traversal over the underlying vector index. This
introduces excessive vector access and computation.

In contrast, VBASE implements NRA algorithm [33] na-
tively based on the index scan operator, thus avoiding the
repetitive execution of NRA. The NRA algorithm traverses
each vector index in a round-robin manner. We observe that
round-robin might not be an efficient choice. In the vector
search scenario, different vector indices can return results of
different quality, especially when the ranking function is sum-
mation with unequal weights from different indices. Figure
4 shows the results of such a case, where the round-robin
method will unnecessarily traverse excessive low-quality vec-
tors (i.e., dots in Figure 4).

Figure 4: Index traversal pattern for a 2-index vector query
on Recipe1M. The total score is a summation of two vectors’
distance with a weight ratio of 1:2. Lower score means closer
to the target vector. Blue dots and red triangles represent the
total scores of entities using index1 and index2.

This observation leads us to a new index scan algorithm
that scans through high-quality indices more frequently, i.e.,
triangles in Figure 4, so that the query can terminate earlier
with even more accurate results. Such a non-uniform traversal
manner may trap in local optima. In Figure 4, a greedy algo-
rithm may prefer to visit index2 only. But the figure shows
that index1 does have good quality vectors occasionally.

To balance exploration and exploitation, we use both local
and global information to guide the index traversal (See Fig-
ure 5). Our approach divides the traversal process into several
rounds and adds a traversal decision module. It maintains
a local priority queue to store the last round’s results. This
local information helps us identify which index is more likely
to return better results so we can visit it more in the next
round. To avoid being trapped in local optima, the decision
module also stores the average score of all traversed entities
for each index (i.e., avgi for indexi) and updates them each
round. Based on this global information, We additionally tra-

Vector Index
(1)

Vector Index
(2)

Vector Index
(m)

……

Traversal Decision Module

next return

Average
Score

Generator

Local
Priority Queue

next return next return

Termination
Check

Global Priority Queue

Results with total score

YesNo Pop TopK from global
priority queue

Figure 5: Overview of multi-column traversal optimization,
assuming there are m indices.

verse each index Wi =

n2× 1/avgi
m
∑

j=1
1/avg j

 times in this round

where n2 is a hyper-parameter. Therefore, the high-quality
index (with low avgi) will be traversed more times while we
can still ensure traversing the low-quality index (with high
avgi) at least once in each round. Table 7 in §5.3 highlights
the benefit of this approach.

5 VBASE Evaluation

In this section, we evaluate VBASE in comparison with other
state-of-the-art vector search systems and vector-enabled
databases based on TopK, and demonstrate VBASE has supe-
rior performance and accuracy on vector similarity queries.

5.1 Evaluation Benchmark
A lack of a comprehensive relational benchmark for com-
plex vector applications necessitates us to create a vector
benchmark to compare VBASE with various vector-similarity-
enabled systems. The use of approximate vector processing
also needs the benchmark to define new evaluation metrics.
Vector-scalar relational data-set. Because current vector
search [2,3] and database benchmarks [13,14] have either vec-
tor or scalar data-sets but not both, we extend Recipe1M [68]
to generate vector and scalar hybrid data-sets. Recipe1M data-
set is a collection of more than 1 million recipes, each con-
taining ingredients, cooking instructions, and a set of images
of the finished dish.

Our evaluation data-set is organized as two tables: Recipe
Table and Tag Table. Their schemas are shown in Table 2 and
3, respectively.

Table 2: Schema of Recipe Table
Column Name Data Type Example
recipe_id identifier 1
images list of strings [“data/images/1/0.jpg” , · · ·]
description text [ingredients] + [instruction]
images_embedding vector [0.0421,0.0296, · · · ,0.0273]
description_embedding vector [0.0056,0.0487, · · · ,0.0034]
popularity integer 300

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 385

Table 3: Schema of Tag Table
Column Name Data Type Example
id identifier 1
tag_name text “salad”
tag_vector vector [0.0137,0.0421, · · · ,0.0183]

Recipe Table stores 330,922 recipes from Recipe1M2. As
shown in Table 2, Recipe Table inherits recipe_id and recipe
images URIs from Recipe1M as two attributes. We merge
Recipe1M’s ingredients and instructions as a single string
attribute called description.

In addition to the original data from Recipe1M, Recipe
Table has two vector attributes, images_embedding and de-
scription_embedding. They are two 1,024-dimensional vector
embeddings of recipe images and descriptions based on the
cross-modal embedding model from [68]. We also extend the
recipe item with an additional scalar attribute: popularity, a
random integer in the range [0,10000].

Tag Table samples 10,000 recipes from Recipe1M, and
assigns of tags for them. As shown in Table 3, Tag Table has
scalar attributes of id and tag_name. Attribute tag_name is
a set of strings of manually assigned tags (e.g. dessert, main
course, salad, pizza, etc), and id is a unique integer assigned to
the tag set. Each Tag Table row also has a tag_vector, which
is a 1,024-dimensional images_embedding of a recipe using
the same embedding model of the Recipe Table.
Vector similarity queries in SQL. We designed 7 SQL queries
to emulate various vector online application scenarios (§2.1).
In particular, we also designed Q8 which runs an analytic join
query based on vector similarity match. These 8 relational
queries cover most SQL operators of Projection, Index
Scan, Sort with Limit, Filter, Join, which are impor-
tant for online queries over vector and scalar data-set.

• Q1: Single-Vector TopK.

SELECT rec ipe_ id FROM Recipe
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) LIMIT 50;

• Q2: Single-Vector TopK + Numeric Filter.

SELECT rec ipe_ id FROM Recipe
WHERE p o p u l a r i t y <= ${p_popularity}
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) LIMIT 50;

• Q3: Single-Vector TopK + String Filter.

SELECT rec ipe_ id FROM Recipe
WHERE d e s c r i p t i o n NOT LIKE "%${p_ingredient}%"
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) LIMIT 50;

• Q4: Multi-Column TopK.
SELECT rec ipe_ id FROM Recipe
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) + WEIGHT * INNER_PRODUCT(
descr ipt ion_embedding , ${p_description_embedding})

LIMIT 50;

2We remove those in the 1 Million recipes that miss any of the ingredients,
cooking instructions, and related images.

• Q5: Multi-Column TopK + Numeric Filter.

SELECT rec ipe_ id FROM Recipe
WHERE p o p u l a r i t y <= ${p_popularity}
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) + WEIGHT * INNER_PRODUCT(
descr ipt ion_embedding , ${p_description_embedding})

LIMIT 50;

• Q6: Multi-Column TopK + String Filter.

SELECT rec ipe_ id FROM Recipe
WHERE d e s c r i p t i o n NOT LIKE "%${p_ingredient}%"
ORDER BY INNER_PRODUCT(images_embedding ,

${p_images_embedding}) + WEIGHT * INNER_PRODUCT(
descr ipt ion_embedding , ${p_description_embedding})

LIMIT 50;

• Q7: Vector Range Filter.

SELECT rec ipe_ id FROM Recipe
WHERE INNER_PRODUCT(images_embedding , ${p_images_embedding})

<= ${D} ;

• Q8: Join.

SELECT Recipe . rec ipe_ id , Tag . tag_name
FROM Recipe JOIN Tag
ON INNER_PRODUCT(Recipe . images_embedding , Tag . tag_vec tor)

<= ${D} ;

We ran these 8 queries on VBASE and compared them with
query processing in other systems. For each query, we gen-
erated 10,000 substitution parameters to cover various query
conditions. In particular, we set K to 50 for TopK queries
as in the experiment of Milvus [76]. We also designed the
numeric filtering constraints to cover both high and low fil-
tering selectivities. p_popularity is incremented from 1 to
10000. p_ingredient is sampled from ingredients keywords in
Recipe1M. WEIGHT is 1. D is 0.1 in Q7 and 0.01 in Q8.
Evaluation metrics. Vector query executions are approximate,
hence we evaluate both query accuracy and performance in
terms of recall and latency, respectively. Recall is a new met-
ric to conventional database evaluations. It evaluates query
accuracy against the ground truth. Recall has been widely
used in approximate vector search systems [2,3,76,86]. They
only evaluate recall because for TopK queries, recall and pre-
cision are the same as long as a system returns K results.
For other queries with range filter constraints, precision will
always be 1 if the system obeys the constraints. Therefore,
we use recall to represent query accuracy. For each query, we
calculate the average recall of the query results of all substi-
tution parameters. For each query in Q1-Q7, we measure the
average, median, 99th percentile latency from the execution
results of all substitution parameters. For Q8, we execute it 3
times and measure the average execution time.

5.2 Experiment Setup

Evaluation platform. All evaluations run on an Azure
VM,Standard_F64s_v2 [1], with 64 v-CPUs and 128 GiB
memory running Linux Ubuntu 20.04 LTS. All queries run
individually to avoid interference from other queries.

386 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Baseline systems. We compare VBASE with the state-of-the-
art vector search and database systems that support vector
similarity queries.
Vector search baselines: We choose Milvus [76] and Elastic-
search [4] as our vector search baselines. Since they do not
support SQL interface, we hand code our benchmark queries.
We also implement Iterative Merging algorithm as claimed
in Milvus paper [76] to enable multi-column TopK queries,
although unavailable in its open-source code [8]. For Elas-
ticsearch we use the version implemented by Open Distro
(version 1.13) [9], which supports HNSW index.
Database baselines: For databases, we use the open-source
PASE [11, 86] that implements the TopK-only solutions using
tentative indices, and extended its maximum dimension sup-
port from 512 to 1024. We also run queries on PostgreSQL
(version 13) [12] as a baseline to show the performance of
traditional databases in performing vector similarity queries.
Common index settings. VBASE and baseline systems all
use HNSW [89] with the same vector index settings (M =
16,e f _construction = 200,e f _search = 64). HNSW is the
only vector index supported by PASE, Milvus, and Elastic-
search in common. Since HNSW index is kept in memory
when it is used, in order to better compare the performance
results of the index-based execution process without being
affected by the caching strategy of the main table adopted by
different systems, we also save the main table data in memory.
All the database baselines and VBASE also created a B-tree
index on popularity column to expedite numeric filtering.

5.3 Evaluation Results

Overview. Table 4 summarizes the overall evaluation results.
We can see that each baseline system based on approximate
vector indices (except PostgreSQL) can only process some of
the 8 queries, while VBASE can process all of them.

Although PostgreSQL can process all queries and produce
exact results, it uses a brutal force scan with a much higher
query latency than the rest of the systems. The 1000× lower
performance of PostgreSQL than other approximate systems
makes it irrelevant to address the low-latency “online” sce-
narios. We run queries on PostgreSQL mostly to get ground
truth to calculate the query result accuracy of other systems.

VBASE’s query performance on TopK (Q1) is similar to or
better than baseline systems because they essentially run the
same algorithm in different implementations. For queries that
are more complex than Q1, VBASE outperforms all baseline
systems by 100×−1000× because VBASE can determine
the optimal K̃ on-the-fly and others have to try different Ks to
get sufficient results. While VBASE produces superior query
performance, it can also achieve high recall similar to or even
higher than approximate queries on baseline systems.

Next, we discuss each query’s evaluation result in detail.
Q1 – Single vector TopK. Q1 is a TopK query without any

filters. All approximate systems including VBASE in our eval-
uation run the same algorithm and produce identical results,
therefore having the exact same recalls.

Nevertheless, we can see variations in Q1 latency from
different systems. The reasons for performance variations
are two-fold. The first reason is that these systems are im-
plemented in different languages (Milvus/Elasticsearch vs.
PASE/VBASE). For example, Milvus are implemented in
GoLang and C++, and Elasticsearch is implemented in Java
and C++. In comparison, PASE and VBASE are written in
C. In general, we can see implementation in C outperforms
other high-level language implementations by 2−10×.

The second reason for performance variation (PASE vs.
VBASE) is that VBASE needs to fetch slightly more tuples
than PASE. Although following the same algorithms and
traversing the same amount of vectors in the index, VBASE
follows an Iterator Model, which fetches every corresponding
tuple from the main table during index traversal. PASE’s
implementation visits vectors in the index and only fetches
the K tuples after getting TopK vectors in the index. As a
result, VBASE performs slightly worse, 2.8% slower than
PASE in terms of average and 99 percentile latency.
Q2-3 – Single vector TopK with scalar filter. Q2 and Q3 are
vector similarity queries with filtering on scalar attributes. Q2
and Q3 differ in their filter predicates, where Q2 uses numeric
filtering on the integer attribute popularity, and Q3 runs string
filtering based on a regular expression. All baselines support
Q2 and Q3, with an exception of Milvus for Q3 because it
does not support string data type.

All approximate baselines run a single shot of K′. Based on
different guesses of K′s, baseline systems produce different
results. Elasticsearch undershot K for Q2 and Q3, therefore
cannot produce sufficient results and has low query accu-
racy. Even though Elasticsearch has fewer data traversals than
the rest of the approximate systems with higher accuracy, its
query latency is still the worst, possibly due to system ineffi-
ciency like in Q1. PASE and Milvus overshot K and produce
high result accuracy like VBASE, but they have longer query
latency because they traverse more data than VBASE.

Q3 has a fixed filter selectivity of around 0.9. For Q2 we
have 10,000 queries of different parameters with uniform dis-
tribution of filter selectivity from 0 to 1. We compared the eval-
uation results of two best approximate systems VBASE and
PASE for Q2, under three representative f ilter_selectivity
values (0.03, 0.3, 0.9) from low to high (Table 5). We found
that different filter selectivities result in different optimal K̃s:
the lower the selectivity, the more data a system needs to
examine, therefore larger K̃. Because K̃ is dynamic, PASE’s
static guess of K′ cannot produce constantly high recalls un-
der all filter selectivities. A conservatively large guess of
K′ = 10,000 can produce near-exact results by PASE, how-
ever, its query performance deteriorates dramatically. We also
present the average K̃ and standard deviation under different
filter selectivities in Table 5. K̃ varies for different filter se-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 387

Table 4: 8 Queries Result Overview (Latency: ms)

System
Q1:Single-Vector TopK Q2:Single-Vector TopK+Numeric Filter Q3:Single-Vector TopK+String Filter Q4:Multi-Column TopK

Recall Latency Recall Latency Recall Latency Recall Latency
average median 99th average median 99th average median 99th average median 99th

PostgreSQL 1 2,980.1 3,021.7 3,133.6 1 1,108.3 1,124.1 2,286.2 1 4,322.2 3529.3 9,953.0 1 5,610.0 5,604.7 5,769.8
PASE 0.9949 4.8 3.5 5.1 0.9987 29.3 28.7 61.7 0.9982 13.2 10.7 17.9 - - - -
Milvus 0.9949 9.4 9 12.7 0.9919 33.7 23.9 121.4 - - - - 0.9041 6,696.4 8,349.3 9,299.0

Elasticsearch 0.9949 43.1 41.8 48.9 0.5010 97.9 98.1 118.1 0.8378 79.9 90.0 100.9 - - - -
VBase 0.9949 4.9 3.9 5.3 0.9989 11.7 6.3 51.7 0.9983 7.9 6.7 10.4 0.9696 19.8 18.4 46.4

System
Q5:Multi-Column TopK+Numeric Filter Q6:Multi-Column TopK+String Filter Q7:Vector Range Filter Q8:Join

Recall Latency Recall Latency Recall Latency Recall Latency
average median 99th average median 99th average median 99th average median 99th

PostgreSQL 1 1,192.9 1,234.4 2,343.6 1 6,543.2 5,996.3 16,734.6 1 8,244.9 8,212.6 8,641.6 1 129,051,273.9 - -
PASE - - - - - - - - - - - - - - - -
Milvus 0.9691 12,637.9 5,617.4 36,887.9 - - - - - - - - - - - -

Elasticsearch - - - - - - - - - - - - - - - -
VBase 0.9805 35.8 24.9 160.7 0.9626 21.6 18.3 64.8 0.9840 10.8 2.2 168.9 0.9992 16,335.9 -1 -1

1 We have only run one query parameter for Q8, so average, median and 99th percentile latency are the same.

Figure 6: 99th Percentile Query Latency (ms)

lectivities. Even under the same selectivity, it also varies for
different queries and the standard deviation is very large.

VBASE can always produce the best query performance
with high recalls since it can determine K̃ on the fly.

Q4-6 – Multi-column TopK. Only Milvus and VBASE sup-
port Q4-6, which are TopK queries over multiple vector in-
dices. Q5,6 adds scalar filtering to Q4 just like in Q2,3, and
Milvus cannot support string filter conditions in Q6. Milvus
tries different K′ to produce a sufficiently large intersection of
multiple TopK results from different indices. Milvus’s perfor-
mance is worse than PostgreSQL which uses sequential table
scan, because it cannot finish after several rounds of TopK
guesses and accumulates a large number of random reads.
In comparison, VBASE determines the optimal K̃ per each
vector index based on relaxed monotonicity. Consequently,
VBASE outperforms Milvus by 200−300× in terms of query
latencies for Q4-6, and produces higher recalls (96%+).

We also experimented multi-column TopK queries with 4
kinds of weights in the ranking function, with different index-
iteration algorithms as introduced in §4.4 (see Table 7). When
the difference in weights is large (1:10), the greedy algorithm
produces the best performance with high recalls. This is be-
cause the greedy approach identifies low-quality indices (i.e.
ones with low-ranking weights) quickly, and avoids traversing
them as much as possible. However, when weight differenti-
ation decreases, the greedy algorithm can easily get trapped
in local optima. This shortcoming of the greedy method is
self-evident for a weight ratio of 1:1, where we can see greedy
strategy extracts the highest number of entities while produc-
ing the lowest recall. In contrast, VBASE shows higher recalls
in all situations by dynamically determining a better strategy

to switch among different indices while outperforming by 5%
lower latency than the round-robin approach.
Q7 – Vector range filter. Table 4 shows that only VBASE
supports Q7. PASE does not support Q7 by default. We add
a Order By distance clause with a hand-tuned “limit K” to
force PASE to use its approximate vector index. This way it
simulates the results of Q7. Like in Q2, it is difficult to set an
appropriate K′ for PASE ahead of time as shown in Table 6.
We also present the average K̃ and standard deviation, which
also shows K̃ changes dramatically for different queries. E.g.,
sometimes K is required to be 2300+ for optimality. VBASE
can achieve a great trade-off between query latency and recalls
because its execution engine can determine K̃ on-the-fly based
on relaxed monotonicity.

On average Q7 only returns a small number of results that
fit within the range. However, a small percentage of Q7s
produce up to 10,000 results, which incurs high query costs
in VBASE. Therefore we can see that, in VBASE, Q7’s 99th
percentile latency is much higher than the average (168.9ms
vs 10.8ms) while the median is much smaller than the average.
Q8 – Join. PostgreSQL performs nested-loop join on table
scan to get accurate results. In Q8, VBASE is 7,900x faster
with recall=0.9992. Other systems cannot run this query due
to the lack of a unified query engine.

5.4 VBASE with SPANN

Table 8 shows the evaluation results for VBASE with
SPANN [25]. We run VBASE with SPANN on Azure VM
Standard_L16s_v3 with NVMe disks. SPANN is a partition-
based ANNS index that uses external memory, i.e. disks. As

388 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 5: Vector Search with Scalar Filter (Latency: ms)

System

Selectivity = 0.03 Selectivity = 0.3 Selectivity = 0.9
avg(K̃) = 1,772,σ = 224.16 avg(K̃) = 291,σ = 59.65 avg(K̃) = 188,σ = 50.33

Recall
Latency

Recall
Latency

Recall
Latency

average median 99th average median 99th average median 99th
PASE(K′ = 100) 0.0567 5.1 5.1 6.3 0.5844 5.9 5.9 9.1 0.9947 5.5 5.7 10.4

PASE(K′ = 1,000) 0.5885 21.5 21.2 30.8 0.9998 15.4 15.0 21.5 1 10.1 10.0 16.3
PASE(K′ = 10,000) 1 62.8 62.5 78.7 1 48.9 49.3 61.1 1 41.8 41.7 53.1

VBASE 0.9987 34.5 34.0 44.8 0.9966 7.6 7.0 8.5 0.9990 5.7 5.3 7.2

Table 6: Range Filter (Latency: ms)

System
avg(K̃) = 590,σ = 1758.48

Recall
Latency

average median 99th
PASE(K′ = 100) 0.7103 7.3 6.9 8.8

PASE(K′ = 1,000) 0.9387 44.3 43.6 54.7
PASE(K′ = 10,000) 0.9991 392.1 390.5 484.9

VBASE 0.9840 10.8 2.2 168.9

Table 7: Multi-Column TopK Comparison (Latency: ms)
Weight1 Algorithm NumOfScans2 Latency Recall

1 : 1
Round-Robin 651.93 20.91 0.9715
Greedy3 699.02 21.70 0.9313
VBASE 638.56 20.56 0.9705

1 : 2
Round-Robin 617.22 20.25 0.9802
Greedy3 612.51 19.94 0.9655
VBASE 593.99 19.78 0.9818

1 : 5
Round-Robin 463.39 16.93 0.9946
Greedy3 372.96 14.90 0.9949
VBASE 409.31 15.69 0.9961

1 : 10
Round-Robin 363.47 14.81 0.9981
Greedy3 274.86 12.69 0.9985
VBASE 311.66 13.97 0.9987

1 The weight ratio of two distances (1 : x) in the ranking function.
2 The average number of times we scan the two vector indices.
3 In the greedy method, we first traverse each index 20 times and we find

the index with the lowest average distance. Then, we extract candidates
from this index only.

a result, query latencies on VBase with SPANN are gener-
ally higher than those for HNSW which are in-memory. This
shows that VBASE can support both partition-based vector
indices as well as graph-based ones. In addition VBASE can
integrate indices stored both in memory and on disk seemly.

5.5 Cost Estimation

Selectivity estimation accuracy. We evaluate the accuracy of
the selectivity estimation for vector range filter in terms of
q-error [61]:

Qerr = max(
Selesti

Selreal
,

Selreal

Selesti
).

As demonstrated in Figure 7, estimation based on sampling
can provide a q-error less than 1.1 for most cases. When se-
lectivity is lowest at 0.05, our samples cannot provide a high

Table 8: Queries on VBASE with SPANN (Latency: ms)

Queries Recall Latency
average median 99th

Q1 0.9911 9.4 9.2 11.6
Q2 0.9214 10.7 9.3 44.9
Q3 0.9847 9.7 9.4 11.8
Q4 0.9481 32.2 28.7 68.2
Q5 0.9757 87.4 55.9 519.7
Q6 0.9516 40.1 32.1 126.2
Q7 0.9923 17.8 9.3 283.5
Q8 0.9638 87,729.3 -1 -1

1 We have only run one query parameter for Q8.

resolution, therefore its q-error increases up to 1.27. Increas-
ing the sampling rate in cost estimation can reduce q-error
further, but this increases selectivity estimation time for query
planning, which is infeasible for online queries. In our ex-
periments, such estimation accuracy is sufficient to support a
good query plan strategy.

In comparison, systems like PASE [11] don’t provide an
estimation for selectivity and PASE sets the default value of
selectivity estimation to 0.5.

Figure 7: Q-error in different selectivity. Default estimated
selectivity=0.5

Query Planning. We evaluate the efficacy of query planning
using the following query.

SELECT recipe_id FROM Recipe WHERE
INNER_PRODUCT(q, images_embedding) < ${r}
AND popularity < ${p};

↪→

↪→

The vector range filter and the scalar filter can be accelerated
via vector index or B-tree. Our experiments show that VBASE
can correctly choose the best execution plan under different
selectivities, because our estimations of selectivity, vector
computation, and index scan cost are accurate enough for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 389

VBASE to construct good plans by reusing PostgreSQL’s
built-in mechanism.

Figure 8a shows execution times of different planning
strategies for varying scalar selectivities and a fixed vector
filter selectivity. The default strategy estimates selectivity as
0.5 as PASE does. The result demonstrates that VBASE can
produce execution plans that closely match the ground truth
of the best choice of index scan strategies. When scalar selec-
tivity is less than 0.18, VBASE predicts accurately that the
cost of execution via B-tree index is smaller than vector index
traversal, and chooses to run it. Likewise, if scalar selectivity
is over 0.18, VBASE correctly chooses vector index traversal.

On the other hand, experiments in Figure 8b vary vector
filter selectivities and fix scalar filter selectivity. Like in Fig-
ure 8a, the result shows VBASE can create the high efficacy
of query planning based on highly accurate cost estimation.

In comparison, systems like PASE do not provide an ac-
curate estimation for selectivity. And they do not tune cost
estimation for vector computation and vector index traver-
sal either. The inaccurate estimation causes PASE to always
execute queries via B-tree index in this experiment.

(a) (b)

Figure 8: Query execution time with different estimation.
We fixed range filter selectivity=0.13 in (a), and scalar filter
selectivity=0.90 in (b)

6 Related Works

Similarity Query in Databases. Several works [20,21,71,73,
74] have explored extending database systems to support accu-
rate similarity query of low-dimensional vector data, in which
K-NN(TopK) and range filter query are well described. R-
Tree [38], KD-Tree [34], M-Tree [27], Slim-Trees [47] can be
used in these works as indices for low-dimensional data. [20]
proposes to include similarity queries to SQL and run them
on SIREN [21]. [71] presents similarity Join and similarity
Group-by operators. The similarity Group-by operator for
high-dimensional vector is actually equivalent to the cluster-
ing operation, which has been well-studied by [15, 18, 50, 65].
However, all of these works are about clustering data on the
main table instead of the vector indices.
Vector Indices. Vector indices support approximate nearest
neighbor search efficiently on high-dimensional vector by
TopK interface. They can be divided into two categories:
graph-based approach and partition-based approach. The

partition-based approach divides the whole vector space into
many sub-spaces, and uses some metric (e.g. a centroid, a
hash value or a divisional plane) to represent all vectors that
belong to a sub-space. During the traverse, it navigates a query
to its approximate nearest sub-spaces step by step based on
distances between the query and the representative metric
of sub-spaces. Representative partition-based approaches in-
clude clustering-based solutions [5, 17, 19, 25, 44, 45, 48, 90],
hash-based solutions [30, 41, 79, 81, 85], and tree-based solu-
tions [23, 57, 62, 78]. The graph-based approach represents
each vector as a vertex, each connected to its nearest vectors
(i.e. neighbors) by edges in a graph. There are also some
shortcut edges connecting to distant vector vertices, which
can speed up the graph traversals. Using this neighborhood
graph, index traversal can be guided by a query approximately
towards its closest neighbors step by step from a fixed starting
point [32, 39, 43, 55, 58, 77]. TopK interface in vector indices
has limited query expressiveness.
Vector Databases based on TopK. AnalyticDB-V [80],
PASE [86], Milvus [76], and Elasticsearch [4] support com-
plex vector queries based on the original TopK interface in vec-
tor indices. AnalyticDB-V [80] and PASE [86] integrate vec-
tor indices into the database engine to support SQL interface
for similarity queries. Elasticsearch [4] is a distributed full-
text search engine, providing approximate nearest neighbor
search based on HNSW [89]. AnalyticDB-V [80], PASE [86],
and Elasticsearch [4] begin to support vector search plus scalar
attribute filtering. Milvus [76] is a data management system
to efficiently manage large-scale vector data, which can ad-
ditionally support multi-column TopK queries by iteratively
speculating the K with a growing value. In contrast, VBASE
does not rely on a tentative index collected by TopK.

7 Conclusion

This paper presents VBASE, a vector database that integrates
high-dimensional vector indices into PostgreSQL, a relational
database to facilitate complex approximate similarity queries.
Unlike conventional approaches that leverage TopK to collect
the target vector’s K nearest neighbors where a conventional
index is constructed for query execution, VBASE builds on
relaxed monotonicity, a common foundation between conven-
tional and high-dimensional indices. This common founda-
tion allows VBASE to build a unified query execution engine
that produces query results equivalent to those produced by
TopK-based solutions with the optimal K̃. As a result, VBASE
significantly outperforms state-of-the-art vector systems on
complex vector queries.

8 Acknowledgement

We would like to thank our shepherd Marco Serafini and the
anonymous reviewers for their insightful comments.

390 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Azure vm fsv2-series. https://
learn.microsoft.com/en-us/azure/virtual-
machines/fsv2-series.

[2] Benchmarking nearest neighbors. http://ann-
benchmarks.com/.

[3] Billion-scale anns benchmarks. https://big-ann-
benchmarks.com/.

[4] Elasticsearch. https://www.elastic.co/.

[5] Facebook faiss. https://github.com/
facebookresearch/faiss.

[6] Facebook simsearchnet. https://ai.facebook.com/
blog/using-ai-to-detect-covid-19-
misinformation-and-exploitative-content/.

[7] Google multisearch. https://blog.google/
products/search/multisearch/.

[8] Milvus. https://github.com/milvus-io/milvus.

[9] Open distro. https://github.com/opendistro-
for-elasticsearch/.

[10] Openai chatgpt retrieval plugin. https://github.com/
openai/chatgpt-retrieval-plugin.

[11] Pase. https://github.com/forrest-2007/PASE.

[12] postgresql. https://www.postgresql.org/.

[13] The TPC-C benchmark. http://www.tpc.org/tpcc/.

[14] The TPC-H benchmark. http://www.tpc.org/tpch/.

[15] Saurabh Arora and Inderveer Chana. A survey of clus-
tering techniques for big data analysis. In 2014 5th
International Conference - Confluence The Next Gen-
eration Information Technology Summit (Confluence),
pages 59–65, 2014.

[16] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin,
K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu,
I. L. Traiger, B. W. Wade, and V. Watson. System r:
Relational approach to database management. ACM
Trans. Database Syst., 1(2):97–137, jun 1976.

[17] Artem Babenko and Victor Lempitsky. The inverted
multi-index. IEEE transactions on pattern analysis and
machine intelligence, 37(6):1247–1260, 2014.

[18] B. Hari Babu, N. Subhash Chandra, and T. V. Gopal.
Clustering algorithms for high dimensional data – a
survey of issues and existing approaches. 2012.

[19] Dmitry Baranchuk, Artem Babenko, and Yury Malkov.
Revisiting the inverted indices for billion-scale approxi-
mate nearest neighbors. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 202–
216, 2018.

[20] M. C. N. Barioni, H. L. Razente, A. J. M. Traina, and
C. Traina. Seamlessly integrating similarity queries in
sql. Softw. Pract. Exper., 39(4):355–384, mar 2009.

[21] Maria Camila N. Barioni, Humberto Razente, Agma
Traina, and Caetano Traina. Siren: A similarity retrieval
engine for complex data. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
VLDB ’06, page 1155–1158. VLDB Endowment, 2006.

[22] Rudolf Bayer and Edward McCreight. Organization and
maintenance of large ordered indices. In Proceedings of
the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control, pages 107–141,
1970.

[23] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[24] Donald D. Chamberlin. Early history of sql. IEEE
Annals of the History of Computing, 34(4):78–82, 2012.

[25] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li,
Chuanjie Liu, Zengzhong Li, Mao Yang, and Jingdong
Wang. Spann: Highly-efficient billion-scale approx-
imate nearest neighborhood search. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 5199–5212. Cur-
ran Associates, Inc., 2021.

[26] Sheng Chen, Akshay Soni, Aasish Pappu, and Yashar
Mehdad. Doctag2vec: An embedding based multi-label
learning approach for document tagging. arXiv preprint
arXiv:1707.04596, 2017.

[27] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-
tree: An efficient access method for similarity search in
metric spaces. International conference on very large
data bases (VLDB), 08 2001.

[28] Kenneth L Clarkson. An algorithm for approximate
closest-point queries. In Proceedings of the tenth annual
symposium on Computational geometry, pages 160–164,
1994.

[29] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, jun 1970.

[30] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S. Mirrokni. Locality-sensitive hashing scheme

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 391

https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/fsv2-series
http://ann-benchmarks.com/
http://ann-benchmarks.com/
https://big-ann-benchmarks.com/
https://big-ann-benchmarks.com/
https://www.elastic.co/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content/
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content/
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content/
https://blog.google/products/search/multisearch/
https://blog.google/products/search/multisearch/
https://github.com/milvus-io/milvus
https://github.com/opendistro-for-elasticsearch/
https://github.com/opendistro-for-elasticsearch/
https://github.com/openai/chatgpt-retrieval-plugin
https://github.com/openai/chatgpt-retrieval-plugin
https://github.com/forrest-2007/PASE
https://www.postgresql.org/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geom-
etry, SCG ’04, pages 253–262, 2004.

[31] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[32] Wei Dong, Moses Charikar, and Kai Li. Efficient k-
nearest neighbor graph construction for generic similar-
ity measures. In Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyder-
abad, India, March 28 - April 1, 2011, pages 577–586,
2011.

[33] Ronald Fagin, Amnon Lotem, and Moni Naor. Opti-
mal aggregation algorithms for middleware. In Peter
Buneman, editor, Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 21-23, 2001, Santa Barbara,
California, USA. ACM, 2001.

[34] Jerome H. Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans.
Math. Softw., 3(3):209–226, sep 1977.

[35] G. Graefe. Volcano an extensible and parallel query
evaluation system. IEEE Trans. on Knowl. and Data
Eng., 6(1):120–135, feb 1994.

[36] Wayne D Gray and Deborah A Boehm-Davis. Mil-
liseconds matter: An introduction to microstrategies and
to their use in describing and predicting interactive be-
havior. Journal of experimental psychology: applied,
6(4):322, 2000.

[37] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. Unixcoder: Unified cross-modal
pre-training for code representation. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
7212–7225, 2022.

[38] Antonin Guttman. R-trees: A dynamic index structure
for spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’84, page 47–57, New York, NY, USA,
1984. Association for Computing Machinery.

[39] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi,
and Hong Zhang. Fast approximate nearest-neighbor
search with k-nearest neighbor graph. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pages 1312–1317, 2011.

[40] G. D. Held, M. R. Stonebraker, and E. Wong. Ingres:
A relational data base system. In Proceedings of the
May 19-22, 1975, National Computer Conference and
Exposition, AFIPS ’75, page 409–416, New York, NY,
USA, 1975. Association for Computing Machinery.

[41] P. Jain, B. Kulis, and K. Grauman. Fast image search for
learned metrics. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8, June 2008.

[42] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai
Menache, Mikhail Rybalkin, and Chenyu Yan. Speeding
up distributed request-response workflows. ACM SIG-
COMM Computer Communication Review, 43(4):219–
230, 2013.

[43] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vard-
han Simhadri, Ravishankar Krishnawamy, and Rohan
Kadekodi. Diskann: Fast accurate billion-point nearest
neighbor search on a single node. Advances in Neural
Information Processing Systems, 32, 2019.

[44] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelli-
gence, 33(1):117–128, 2010.

[45] Hervé Jégou, Romain Tavenard, Matthijs Douze, and
Laurent Amsaleg. Searching in one billion vectors: re-
rank with source coding. In 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 861–864. IEEE, 2011.

[46] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. IEEE Trans. Big Data,
7(3):535–547, 2021.

[47] Caetano Jr, Agma Traina, Bernhard Seeger, and Christos
Faloutsos. Slim-trees: High performance metric trees
minimizing overlap between nodes. 03 2000.

[48] Yannis Kalantidis and Yannis Avrithis. Locally op-
timized product quantization for approximate nearest
neighbor search. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2321–2328, 2014.

[49] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt.
Efficient retrieval of recommendations in a matrix fac-
torization framework. In Proceedings of the 21st ACM
international conference on Information and knowledge
management, pages 535–544, 2012.

[50] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek.
Clustering high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation clus-
tering. ACM Trans. Knowl. Discov. Data, 3(1), mar
2009.

392 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[51] Brian Kulis and Kristen Grauman. Kernelized locality-
sensitive hashing for scalable image search. In 2009
IEEE 12th International Conference on Computer Vi-
sion, pages 2130–2137, 2009.

[52] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. Natural questions: a benchmark for question
answering research. Transactions of the Association for
Computational Linguistics, 7:453–466, 2019.

[53] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos
Mamoulis. Fexipro: fast and exact inner product re-
trieval in recommender systems. In Proceedings of the
2017 ACM International Conference on Management of
Data, pages 835–850, 2017.

[54] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen,
Zhenyuan Ni, Ning Wang, and Yuan Chen. The de-
sign and implementation of a real time visual search
system on JD e-commerce platform. In Proceedings of
the 19th International Middleware Conference, Middle-
ware Industrial Track 2018, Rennes, France, December
10-14, 2018, pages 9–16. ACM, 2018.

[55] Jie Ren. Minjia Zhang. Dong Li. Hm-ann: Efficient
billion-point nearest neighbor search on heterogeneous
memory. In Advances in Neural Information Processing
Systems, 2020.

[56] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, En-
hong Chen, and Xing Xie. Lightrec: A memory and
search-efficient recommender system. In Proceedings
of The Web Conference 2020, pages 695–705, 2020.

[57] Ting Liu, Andrew W Moore, Alexander Gray, and
Ke Yang. An investigation of practical approximate
nearest neighbor algorithms. Advances in Neural Infor-
mation Processing Systems 17 [Neural Information Pro-
cessing Systems, {NIPS} 2004, December 13-18, 2004,
Vancouver, British Columbia, Canada], pages 825–832,
2004.

[58] Yu A Malkov and Dmitry A Yashunin. Efficient and
robust approximate nearest neighbor search using hier-
archical navigable small world graphs. arXiv preprint
arXiv:1603.09320, 2016.

[59] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Anto-
nio Torralba. Recipe1m+: A dataset for learning cross-
modal embeddings for cooking recipes and food images.
IEEE transactions on pattern analysis and machine in-
telligence, 43(1):187–203, 2019.

[60] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
Howto100m: Learning a text-video embedding by
watching hundred million narrated video clips. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2630–2640, 2019.

[61] Guido Moerkotte, Thomas Neumann, and Gabriele
Steidl. Preventing bad plans by bounding the impact
of cardinality estimation errors. Proc. VLDB Endow.,
2(1):982–993, aug 2009.

[62] Marius Muja and David G. Lowe. Scalable Near-
est Neighbour Algorithms for High Dimensional Data.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(11):2227–2240, 2014.

[63] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng. Ms
marco: A human generated machine reading compre-
hension dataset. In CoCo@ NIPS, 2016.

[64] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 385–398, 2013.

[65] Divya Pandove, Shivan Goel, and Rinkl Rani. System-
atic review of clustering high-dimensional and large
datasets. ACM Trans. Knowl. Discov. Data, 12(2), jan
2018.

[66] Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien
Mairal, Florent Perronin, and Cordelia Schmid. Local
convolutional features with unsupervised training for im-
age retrieval. In Proceedings of the IEEE international
conference on computer vision, pages 91–99, 2015.

[67] Jianbin Qin, Wei Wang, Chuan Xiao, and Ying Zhang.
Similarity query processing for high-dimensional data.
Proc. VLDB Endow., 13(12):3437–3440, sep 2020.

[68] Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier
Marin, Ferda Ofli, Ingmar Weber, and Antonio Torralba.
Learning cross-modal embeddings for cooking recipes
and food images. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3020–
3028, 2017.

[69] Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recogni-
tion and clustering. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
815–823, 2015.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 393

[70] Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. Real-time
open-domain question answering with dense-sparse
phrase index. arXiv preprint arXiv:1906.05807, 2019.

[71] Yasin N. Silva, Walid G. Aref, Per-Ake Larson,
Spencer S. Pearson, and Mohamed H. Ali. Similarity
queries: Their conceptual evaluation, transformations,
and processing. The VLDB Journal, 22(3):395–420, jun
2013.

[72] Yukihiro Tagami. Annexml: Approximate nearest neigh-
bor search for extreme multi-label classification. In
Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 455–464, 2017.

[73] Caetano Traina, Andre Moriyama, Guilherme Rocha,
Robson Cordeiro, Cristina D. A. Ciferri, and Agma
Traina. The similarql framework: Similarity queries in
plain sql. In Proceedings of the 34th ACM/SIGAPP Sym-
posium on Applied Computing, SAC ’19, page 468–471,
New York, NY, USA, 2019. Association for Computing
Machinery.

[74] Caetano Traina, Agma J. M. Traina, Marcos R. Vieira,
Adriano S. Arantes, and Christos Faloutsos. Effi-
cient processing of complex similarity queries in rdbms
through query rewriting. In Proceedings of the 15th
ACM International Conference on Information and
Knowledge Management, CIKM ’06, page 4–13, New
York, NY, USA, 2006. Association for Computing Ma-
chinery.

[75] Robert E. Wagner. Indexing design considerations. IBM
Systems Journal, 12(4):351–367, 1973.

[76] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin,
Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo,
Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-
built vector data management system. In Proceedings
of the 2021 International Conference on Management
of Data, pages 2614–2627, 2021.

[77] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu,
Rui Gan, and Shipeng Li. Scalable k-nn graph con-
struction for visual descriptors. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 1106–1113. IEEE, 2012.

[78] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang
Zeng, Hongbin Zha, and Xian Sheng Hua. Trinary-
projection trees for approximate nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(2):388–403, 2014.

[79] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe,
and Heng Tao Shen. A survey on learning to hash.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):769–790, 2018.

[80] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou,
Chaoqun Zhan, Feifei Li, and Yuanzhe Cai. Analyticdb-
v: A hybrid analytical engine towards query fusion for
structured and unstructured data. Proceedings of the
VLDB Endowment, 13(12):3152–3165, 2020.

[81] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral
hashing. In Advances in neural information processing
systems, pages 1753–1760, 2009.

[82] Xian Wu, Moses Charikar, and Vishnu Natchu. Local
density estimation in high dimensions. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 5296–5305. PMLR, 10–15 Jul 2018.

[83] Xiang Wu, Ruiqi Guo, David Simcha, Dave Dopson, and
Sanjiv Kumar. Efficient inner product approximation in
hybrid spaces. ArXiv, abs/1903.08690, 2019.

[84] Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang,
Yingxia Shao, Defu Lian, Chaozhuo Li, Hao Sun, Denvy
Deng, Liangjie Zhang, et al. Progressively optimized
bi-granular document representation for scalable embed-
ding based retrieval. In Proceedings of the ACM Web
Conference 2022, pages 286–296, 2022.

[85] Hao Xu, Jingdong Wang, Zhu Li, Gang Zeng, Shipeng
Li, and Nenghai Yu. Complementary hashing for ap-
proximate nearest neighbor search. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages
1631–1638. IEEE, 2011.

[86] Wen Yang, Tao Li, Gai Fang, and Hong Wei. Pase:
Postgresql ultra-high-dimensional approximate nearest
neighbor search extension. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data, pages 2241–2253, 2020.

[87] Ian En-Hsu Yen, Satyen Kale, Felix Yu, Daniel
Holtmann-Rice, Sanjiv Kumar, and Pradeep Ravikumar.
Loss decomposition for fast learning in large output
spaces. In International Conference on Machine Learn-
ing, pages 5640–5649. PMLR, 2018.

[88] Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang,
Haotian Zhang, and Jimmy Lin. Applying bert to doc-
ument retrieval with birch. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 19–24, 2019.

394 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[89] Malkov. D A Yashunin. Yu A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages
824–836, 2018.

[90] Ting Zhang, Chao Du, and Jingdong Wang. Composite
quantization for approximate nearest neighbor search.
In Proceedings of the 31th International Conference on
Machine Learning (ICML), volume 32, pages 838–846,
2014.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 395

Detecting Transactional Bugs in Database Engines via
Graph-Based Oracle Construction

Zu-Ming Jiang
ETH Zurich

Si Liu
ETH Zurich

Manuel Rigger
National University of Singapore

Zhendong Su
ETH Zurich

Abstract
Transactions are an important feature of database manage-

ment systems (DBMSs), as they provide the ACID guaran-
tees for a sequence of database operations. Consequently,
approaches have been proposed to automatically find transac-
tional bugs in DBMSs. However, they cannot handle complex
operations and predicates common in real-world database
queries, and thus miss bugs.

This paper introduces a general, effective technique for
finding transactional bugs in DBMSs that supports complex
SQL queries and predicates. At the conceptual level, we ad-
dress the test-oracle problem by constructing semantically-
equivalent test cases based on fine-grained statement-level
dependencies in transactions. At the technical level, we intro-
duce (1) statement-dependency graphs to describe depen-
dencies among SQL statements in transactions, (2) SQL-
level instrumentation to capture possible statement-level
dependencies, and (3) transactional oracle construction to
generate semantically-equivalent test cases using statement-
dependency graphs. We also establish the correctness of our
approach in generating semantically-equivalent test cases. We
have realized our technique as a tool, TxCheck, and evaluated
it on three widely-used and well-tested DBMSs, namely TiDB,
MySQL, and MariaDB. In total, TxCheck found 56 unique
bugs, 52 of which have been confirmed and 18 already fixed.
We believe that TxCheck can help solidify DBMSs’ support
for transactions thanks to its generality and effectiveness.

1 Introduction

Database management systems (DBMSs) store and manage
data and are crucial for many applications. A key feature of
DBMSs is their support for transactions, where a sequence
of SQL statements are executed as a single unit, and various
properties (i.e., atomicity, consistency, isolation, and durabil-
ity) are guaranteed. For example, if some transactions are
concurrently executed at the Serializability isolation level,
uncommitted operations by other transactions will be invis-
ible, and the transaction execution results must be equal to

the results when these transactions are executed in a serial or-
der. Benefiting from these properties, transactions have been
applied in many critical applications. However, transaction im-
plementations usually involve complex logic (e.g., two-phase
locking [7, 45] and multiversion concurrency control [8, 32]),
and thus bugs are easily introduced. In this paper, we refer to
the bugs in the transaction support of DBMSs as transactional
bugs. Such bugs are critical because they can paralyze their
client applications or, even worse, silently trigger incorrect
behaviors in critical operations of client applications.

To improve the reliability and correctness of transaction
processing in DBMSs, several approaches [4, 9, 11, 17, 44]
have been proposed to test transaction support. These ap-
proaches use specific operation patterns to capture the viola-
tions of transactional rules. For example, ELLE [4] encodes
transaction execution histories1 by only appending to a con-
ceptual list data structure. It builds transaction-dependency
graphs based on the histories, and reports bugs if the graphs
violate the desired isolation guarantees. Limited by specific
test-case patterns, these approaches use only simple opera-
tions (e.g., ELLE appends list with constant values), while
many deep bugs may only be triggered by complex opera-
tions [21]. Moreover, existing approaches [4,9, 17,44] cannot
handle predicates (e.g., the condition expressions in WHERE
clauses) in general. For example, ELLE cannot encode predi-
cate operations in its list data structure. However, predicates
are ubiquitous in real-world transactions as they rely on com-
mon features such as WHERE clauses or JOINs. Their lack of
predicate support makes existing approaches miss many real
bugs. In addition, transactional bugs may be independent of
isolation levels (e.g., incorrect results returned by one trans-
action), while existing approaches focus on testing isolation
levels, thus missing bugs.

Figure 1(a) shows a confirmed bug in MySQL at the Re-
peatable Read isolation level. The bug-triggering test case
involves two tables and two interleaved transactions. The
statement T1.S3 is executed immediately after T1.S2. The-

1A history records transactional requests to and responses from a database.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 397

T0.S0> start transaction;
T0.S1> update t0 set vkey = 162; --- (1, 20) -> (1, 162)
T0.S2> select * from t1; --- (2, 43, 8), (3, 43, 53)
T1.S0> start transaction;
T1.S1> select * from t0; --- (1, 20)
T0.S3> commit;
T1.S2> select * from t1 --- (2, 43, 8)

where t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63

where t1.c0 <= (select min(vkey) from t0);
--- (2, 43, 8) -> (2, 63, 8)
--- (3, 43, 53) -> (3, 63, 53)

T1.S4> commit;

Transactions

pkey vkey

1 20

Table t0

pkey vkey c0

2 43 8

3 43 53

Table t1

S0> select * from t1; --- T0.S2
S1> select * from t0; --- T1.S1
S2> select * from t1; --- T1.S2

where t1.c0 <= (select min(vkey) from t0);
S3> update t1 set vkey = 63 --- T1.S3

where t1.c0 <= (select min(vkey) from t0);
--- (2, 43, 8) -> (2, 63, 8)

S4> update t0 set vkey = 162; --- T0.S1

Execution results
comparison

Not equivalent

(a) Bug-triggering test case

(b) Reordered test case

Semantically Equivalent

Figure 1: A MySQL bug found by TxCheck under the Re-
peatable Read isolation level.

oretically, T1.S3 should fetch exactly those records subse-
quently updated by T1.S2, because they use the same predi-
cate (i.e., the same expression in their WHERE clause), and no
other operations are executed between them. However, T1.S2
fetches only the row (2, 43, 8), while T1.S3 updates rows
(2, 43, 8) and (2, 43, 53) due to its incorrect predicate match-
ing. Existing approaches cannot find this bug for two reasons.
First, the test case uses an aggregate function (i.e., min())
and a subquery (i.e., the SELECT in the UPDATE statement),
which make the test case complex and not follow the test-case
patterns of existing approaches (e.g., ELLE can append only
constant values instead of min() values). Second, the test case
uses predicates, for which existing approaches lack support.

Figure 1(b) shows a test case generated by our approach,
which is equivalent to the one shown in Figure 1(a). The three
SELECT statements (i.e., S0, S1, and S2) are moved before
the two UPDATE statements (i.e., S3 and S4), because all these
SELECT statements are oblivious to the effects of the UPDATE
statements. As T1.S3 is executed immediately after T1.S2,
the database state visible for T1.S2 and T1.S3 should be
consistent. Therefore, we keep the statements of T1.S2 and
T1.S3 adjacent (i.e., S2 and S3). The reordered test case is
executed without using transactions, and its execution results

should be the same as the original one, because the reordering
does not change any expected behavior of each statement. In
this case, the bug in MySQL breaks the equivalence.

Our insight is to generate semantically-equivalent test cases
that are not wrapped as transactions, but produce the same
execution results, by properly reordering the statements. Then,
we can validate whether their equivalence indeed holds. Any
discrepancy indicates a bug in the target DBMS. While for
the aforementioned test case, it is intuitive that reordering the
statements will not affect the execution results of follow-up
test cases, we must reason, in general, about the dependen-
cies of statements. To this end, we first propose statement-
dependency graphs, a novel concept to describe the depen-
dencies among executed statements, which provide finer-
grained dependency information than transaction-dependency
graphs [1, 17, 44]. This facilitates finding more bugs (as will
be discussed in Section 5.3). To extract statement dependen-
cies, we propose SQL-level instrumentation. Specifically, we
insert additional statements to collect the execution results
of each target statement in transactions. Based on the col-
lected results, we can track the operation effects—including
the effects of predicate operations—of each statement, and
thus infer all possible statement dependencies. To generate
semantically-equivalent test cases, we propose transactional
oracle construction. Specifically, we topologically sort the
acyclic statement-dependency graphs, whose sorted statement
sequences are proved to be semantically equivalent to the
original one. To guarantee the acyclicity of graphs, we itera-
tively delete statements in cycles before sorting. We execute
the sorted statement sequences without transactions and com-
pare their results to those from the corresponding transaction
executions. Any difference reveals a bug in the tested DBMS.

We realized this approach as a practical tool called
TxCheck. We evaluate TxCheck on three popular and ex-
tensively tested DBMSs, namely TiDB [46], MySQL [30],
and MariaDB [29]. In total, TxCheck found 56 unique bugs,
including 23 in TiDB, 18 in MySQL, and 15 in MariaDB.
Among them, 52 bugs have been confirmed, 18 fixed, and 8
assigned CVE IDs; 30 are triggered in transaction executions.
These results collectively demonstrate that TxCheck can find
latent transactional bugs in mature production DBMSs.

Overall, we make the following contributions:
• At the conceptual level, we address the test-oracle problem

of DBMS transaction testing by constructing semantically-
equivalent test cases.

• At the technical level, we propose (1) statement-dependency
graphs, which describe the dependencies among statements
in executed transactions, (2) SQL-level instrumentation,
which can capture all possible statement dependencies in-
cluding the predicate-related dependencies, and (3) trans-
actional oracle construction, which refines test cases and
generates semantically-equivalent test cases for validation.
We formally prove the correctness of our approach.

398 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• At the practical level, we implement our approach into a
tool, TxCheck, and evaluate it on three widely-used DBMSs
(i.e., TiDB, MySQL, and MariaDB). In total, TxCheck
finds 56 unique bugs, most of which cannot be identi-
fied by existing approaches. TxCheck is open-sourced at
https://github.com/JZuming/TxCheck.

2 Background

Transactions in DBMSs. A database transaction refers to a
series of operations, for which DBMSs must guarantee atom-
icity, consistency, isolation, and durability (i.e., ACID) [49].
This paper focuses on relational database management sys-
tems (RDBMSs), where a transaction typically consists of
a group of SQL (i.e., Structured Query Language) state-
ments. Each statement performs read operations (e.g., SELECT
statements) or write operations (e.g., INSERT, DELETE, and
UPDATE statements). SQL statements commonly involve pred-
icates (e.g., WHERE clauses) for choosing desired rows that
satisfy the requirements.

Dependency Graphs. Adya et al. [1, 2] propose transaction
dependencies, which can be classified into two categories,
namely item dependencies and predicate dependencies. Item
dependencies describe the relationship among transactions
on specific items (i.e., rows in tables) they read from or write
to. For example, transaction T j item-read-depends on Ti if
T j reads an item version xi that is written by Ti. A predicate
dependency describes the relationship between two transac-
tions constructed from the associated predicate operations.
For example, transaction T j directly predicate-read-depends
on Ti if an item version xi that is written by Ti is used for
predicate matching of T j.

Based on these dependencies, Adya et al. propose a
transaction-dependency graph, called Direct Serialization
Graph (DSG). DSGs can be used to formalize the expected
behaviors of DBMSs under different isolation levels. For ex-
ample, Serializability (PL-3) proscribes any directed cycle in
a DSG, while Repeatable Read (PL-2.99) any directed cycles
that dismiss certain predicate dependencies. Bailis et al. [5,6]
further extend DSGs to define several other isolation levels.

Existing Approaches. Both transaction-focused testing and
verification approaches [4, 9, 11, 17, 44] have utilized depen-
dency graphs. They typically use specific operation patterns
to capture transaction dependencies. For example, to reduce
the search space of possible transaction orders, COBRA [44]
exploits the read-modify-write (RMW) patterns where a trans-
action reads from a key before writing to it. By restricting its
writes to list-specific operations like “append”, ELLE [4] can
naturally infer the transaction order from a list of values read.

While existing approaches [4, 9, 17, 44] such as ELLE have
been successful in detecting a wide range of important bugs,
they are limited in finding deep transactional bugs for two

main reasons. First, these approaches can use only simple
operations (e.g., writing key-value pairs) following their re-
stricted operation patterns. However, many deep DBMS bugs
can only be triggered by complex operations [21]. Second,
existing approaches lack support for predicate operations in
general. In contrast to read/write operations whose effects
are explicitly reflected in the final execution results, the ef-
fects of predicate operations are implicit and difficult to track,
because they are typically reflected in the intermediate pro-
cesses (e.g., choosing a set of items that satisfy the predicate
conditions for subsequent read/write operations). However,
predicates are commonly used in real-world transactions and
involved in sophisticated features of DBMSs like predicate
optimization [23]. Existing approaches do not consider pred-
icate operations in their test cases, thus missing many bugs
with respect to the transaction support of DBMSs. In addi-
tion, existing approaches focus on testing isolation guarantees
while many transactional bugs are not necessarily related to
database isolation.

3 Approach

In this section, we present a novel approach for addressing the
challenges of testing transaction support in DBMSs, as illus-
trated in Figure 2. Our core idea is to extract the dependencies
among statements in transactions and construct semantically-
equivalent test cases according to the extracted dependency
information. The constructed test cases are used as oracles
to validate the original transaction executions by checking
whether all statements in the test cases produce the same
results. To realize this idea, we first define statement depen-
dencies and propose a new concept, statement-dependency
graphs, which describes the dependencies among statements
in transactions. To derive statement-dependency graphs, we
capture dependency information from specific transaction
executions. Then, we generate semantically-equivalent test
cases based on the captured information.

Dependency Capturing. To capture statement dependencies,
we propose SQL-level instrumentation, which inserts SQL
statements to collect execution information of each original
statement in transactions. Using SQL to achieve this makes
this approach a black-box technique that is applicable even for
DBMS where testers lack access to the source code. Specifi-
cally, we instrument in two steps, item-tracking instrumenta-
tion and version-set-tracking instrumentation, which capture
item dependencies and predicate dependencies, respectively.
Statement-dependency graphs are built based on the outputs
from the inserted and the original statements.

Oracle Construction. We propose transactional oracle con-
struction to construct semantically-equivalent test cases. We
first iteratively remove statements involved in cycles to make
the statement-dependency graph acyclic, which is the precon-
dition of the construction. Then, we perform topological sort-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 399

https://github.com/JZuming/TxCheck
https://github.com/JZuming/TxCheck

Item-tracking
instrumentation

Version-set-tracking
instrumentation

② SQL-level Instrumentation
Instrumented test case

Txn 0

Transaction Execution

Txn 1

Txn 2

Record

Statement
output

Build

Statement-dependency
graph

③ Building Statement-Dependency Graph

Refine the test case
Execute the test case again

Rebuild the graph

Graph Decycling

Output

Refined
test case

Databases SQL statements for
each transaction

Topological
Sorting

① Random Generation

Execution without transactions

Acyclic graph Semantically Equivalent
Test Case

Transaction
execution results

Execution results comparison
Equivalent

Not equivalent

④ Transactional Oracle Construction

Figure 2: Approach overview.

ing on the acyclic graph to construct semantically-equivalent
test cases. We execute these test cases without transactions
and compare their execution results to those from the cor-
responding transaction executions. We prove that, for any
correct DBMS, these results should be identical, thus any
difference indicates an actual DBMS bug.

3.1 Statement-Dependency Graph

To construct semantically-equivalent test cases by reordering
statements, we need to identify the dependencies between
statements. We define seven kinds of statement dependen-
cies, referring to transaction dependencies defined by Adya
et al. [1, 2]. Each kind of statement dependency is shown
in Figure 3. Specifically, we define three kinds of statement
dependencies, shown in Figure 3(a)–(c), to model the relation-
ship of two statements that read or write the same items. Three
other kinds of dependencies, shown in Figure 3(d)–(f), are
used to represent the dependencies established by predicate
operations. The last one, direct stmt-value-write dependency
shown in Figure 3(g), is used to model the event that the new
value of an item installed by a statement is determined by the
value of another item that is installed by another statement.
The formal definitions (Definition 2–8) for these statement
dependencies are given in Appendix A. Note that we do not
count statement orders as dependencies, because when two
statements access different data, the statements’ execution
order will not affect their results.

In contrast to the dependencies defined by Adya et al. [1,2],
which describe the relationship between transactions, our def-
initions model the relationship between statements to provide
finer-grained dependency information. Statement dependen-
cies enable us to analyze the effects of each statement, which
is needed for generating semantically-equivalent test cases
accordingly, while transaction dependencies lack sufficient

information related to statements. Next, we further propose
statement-dependency graphs, SDG, to model the executions
of test cases at the statement level.

Definition 1 (Statement-Dependency Graph)
We define the statement-dependency graph constructed based
on a statement execution history H, denoted as SDG(H), as fol-
lows. SDG(H) is a directed graph, whose nodes represent the
statements in committed transactions, and whose (directed)
edges represent the dependencies between these committed
statements. In particular, if statement S j depends on statement
Si, there is a direct edge from Si to S j.

Note that statement-dependency graphs consider only state-
ments in committed transactions. The statements in aborted
transactions are dismissed because these statements concep-
tually do not affect the manipulated databases and other com-
mitted transactions. Figure 4 shows the statement-dependency
graph for the test case in Figure 1(a). Statement-dependency
graphs contain all dependency information related to state-
ments and reflect the execution results of test cases at the
statement level, which is the basis for generating semantically-
equivalent test cases.

3.2 SQL-Level Instrumentation
To build statement-dependency graphs, we extract statement
dependencies from transaction executions. In contrast to exist-
ing work, we aim to support test cases whose statements use
predicates, without involving too many restrictions on test-
case patterns. This section presents SQL-level instrumenta-
tion, a novel technique for extracting statement dependencies
from transaction executions involving predicates.

The basic idea of SQL-level instrumentation is to insert
statements to output the handled items before and after the
operations performed by target statements. To realize this

400 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t; --- (0, 1)

(a) Direct stmt-item-read dependency

is dependent on

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> update t set value = 2; --- (0, 1) -> (0,2)

(b) Direct stmt-item-write dependency

is dependent on
Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t; --- (0, 0)

(c) Direct stmt-item-anti dependency

is dependent on

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t where value = 0; --- empty

(d) Direct stmt-predicate-read dependency

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> update t set value = 2 where value = 0; --- change nothing

(e) Direct stmt-predicate-write dependency

is dependent on

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> select * from t where value = 1; --- empty

(f) Direct stmt-predicate-anti dependency

Table t (id, value): (0,0)

Si> update t set value = 1; --- (0,0) -> (0,1)
…
Sj> insert into t values (1, (select min(value) from t)); --- insert (1, 1)

(g) Direct stmt-value-write dependency

is dependent on

is dependent on is dependent on

Figure 3: Examples for each kind of statement dependency.

item-anti
T1.S1

item-anti

T0.S2T1.S2

T0.S1

T1.S3

Figure 4: Statement-dependency graph for Figure 1(a).

idea, SQL-level instrumentation requires tables in manipu-
lated databases to contain at least two columns. We name
these two columns as PrimaryKey column and VersionKey
column, respectively. The column PrimaryKey is used to iden-
tify different items, and should not change after the items are
inserted. The column VersionKey is used to identify different
versions of each item, and should be assigned a new value
different from any earlier values when the item is updated
by statements. Besides these two, tables may have additional
columns whose properties are unrestricted.

The statements in test cases should also follow these restric-
tions. Specifically, the statement performing write operations
(e.g., UPDATE and INSERT) should change the VersionKey of
the handled items to a new value, and each item updated by
the same statement has the same VersionKey. The statement
performing read operations (e.g., SELECT) should at least out-
put the PrimaryKey and VersionKey of the items. Except for
the PrimaryKey and VersionKey of items, we eschew imposing
any additional restrictions for the generated statements.

SQL-level instrumentation operates in two phases: (1) item-
tracking instrumentation, and (2) version-set-tracking instru-
mentation. Figure 5 shows how each phase instruments the
test case in Figure 1. In item-tracking instrumentation, we
insert a Before-Write Read (BWR) statement before each state-
ment performing write operations (e.g., see T0.S1.BWR and
T1.S3.BWR in Figure 5). BWR statements are designed to
output the items that will be written and thus use the same
predicates as the target statements. BWR statements can work
only under isolation levels that satisfy Assumption 3, which

T0.S0> start transaction;
T0.S1.BWR> select * from t0;
T0.S1> update t0 set vkey = 162;
T0.S1.AWR> select * from t0 where vkey =162;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2> select * from t1 where

t1.c0 <= (select min(vkey) from t0);
T1.S3.BWR> select * from t1 where

t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63 where

t1.c0 <= (select min(vkey) from t0);
T1.S3.AWR> select * from t1 where vkey = 63;
T1.S4> commit;

T0.S0> start transaction;
T0.S1> update t0 set vkey = 162;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2> select * from t1 where

t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63 where

t1.c0 <= (select min(vkey) from t0);
T1.S4> commit;

Item-Tracking Instrumentation

T0.S0> start transaction;
T0.S1.VSR0> select * from t0;
T0.S1.BWR> select * from t0;
T0.S1> update t0 set vkey = 162;
T0.S1.AWR> select * from t0 where vkey =162;
T0.S2.VSR0> select * from t1;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1.VSR0> select * from t0;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2.VSR0> select * from t0;
T1.S2.VSR1> select * from t1;
T1.S2> select * from t1 where t1.c0 <= (select min(vkey) from t0);
T1.S3.VSR0> select * from t0;
T1.S3.VSR1> select * from t1;
T1.S3.BWR> select * from t1 where t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63 where t1.c0 <= (select min(vkey) from t0);
T1.S3.AWR> select * from t1 where vkey = 63;
T1.S4> commit;

Version-Set-Tracking Instrumentation

Original Test Case

Figure 5: SQL-level instrumentation for Figure 1(a).

is discussed subsequently. We insert an After-Write Read
(AWR) statement after each statement performing write opera-
tions (e.g., see T0.S1.AWR and T1.S3.AWR in Figure 5). AWR
statements are used to output the new values of the items pro-
cessed by target statements. To do so, AWR statements select
items whose VersionKeys are equal to the assigned values in
the target statements. In version-set-tracking instrumentation,
we insert some Version-Set Read (VSR) statements before
each statement (e.g., see T0.S1.VSR0 and T0.S2.VSR0 in
Figure 5). To output the item versions referenced by target
statements, VSR statements output all items in the tables ref-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 401

T0.S0> start transaction;
T0.S1.VSR0> select * from t0; --- (1, 20)
T0.S1.BWR> select * from t0; --- (1, 20)
T0.S1> update t0 set vkey = 162;
T0.S1.AWR> select * from t0 where vkey =162; --- (1, 162)
T0.S2.VSR0> select * from t1; --- (2, 43, 8), (3, 43, 58)
T0.S2> select * from t1; --- (2, 43, 8), (3, 43, 58)
T1.S0> start transaction;
T1.S1.VSR0> select * from t0; --- (1, 20)
T1.S1> select * from t0; --- (1, 20)
T0.S3> commit;
T1.S2.VSR0> select * from t0; --- (1, 20)
T1.S2.VSR1> select * from t1; --- (2, 43, 8), (3, 43, 58)
T1.S2> select * from t1 where t1.c0 <= (select min(vkey) from t0); --- (2, 43, 8)
T1.S3.VSR0> select * from t0; --- (1, 20)
T1.S3.VSR1> select * from t1; --- (2, 43, 8), (3, 43, 58)
T1.S3.BWR> select * from t1 where t1.c0 <= (select min(vkey) from t0); --- (2, 43, 8)
T1.S3> update t1 set vkey = 63 where t1.c0 <= (select min(vkey) from t0);
T1.S3.AWR> select * from t1 where vkey = 63; --- (2, 63, 8), (2, 63, 53)
T1.S4> commit;

Instrumented test case

item-anti

item-anti

T1.S1

T0.S2T1.S2

T0.S1

T1.S3
Statement-dependency graph

Figure 6: Inferring statement-dependency graphs for Figure 1.

erenced by the target statements.
Using the inserted BWR, AWR, and VSR statements, we

can collect the execution information of each statement in
transactions, and thus can infer possible statement dependen-
cies. Figure 6 shows how the inserted statements are used
to infer statement dependencies for the test case in Figure 1.
To check whether statements T1.S3 and T0.S2 have depen-
dencies between each other, we analyze the outputs of the
corresponding statements and their inserted statements. The
output of T0.S2 and the output of BWR of T1.S3 have an
overlapping part (i.e., item (2, 43, 8)), which means T0.S2
reads an item that has not been updated by T1.S3. Therefore,
T0.S2 is (stmt-item-anti) depended on T1.S3. The outputs of
BWR of T0.S1 and VSRs of T1.S3 also have an overlapping
part (i.e., item (1, 20)), which means that T0.S1 will update
an item that has been referenced by the predicates of T1.S3.
Therefore, T1.S3 is (stmt-predicate-anti) depended on T0.S1.
Other dependencies can be inferred similarly.

We prove that each statement dependency proposed in Sec-
tion 3.1 can be inferred based on the outputs of statements
under certain assumptions. The detailed proof (Lemma 1–7) is
presented in Appendix B. The assumptions are shown below:

Assumption 1 No synchronization issues happen during the
execution of transactions.

Assumption 2 Statements can use item versions only in the
tables that they have referenced.

Assumption 3 For any two transactions, Ti and T j, it is pro-
hibited that Ti item-anti-depends on T j for the item x while
T j item-write-depends on Ti for the same item x.

Supported Isolation Levels

PL-1
Read Uncommitted

PL-2
Read Committed

PL-2L
Monotonic View

PL-CS
Cursor Stability

PL-2+
Consistent View

PL-MSR
Monotonic Snapshot Reads

PL-2.99
Repeatable Read

PL-FCV
Forward Consistent View

PL-SI
Snapshot Isolation

PL-SS
Strict Serializability

PL-3
Full Serializability

Figure 7: Isolation-level hierarchy defined by Adya et al. [1,2]
and isolation levels supported by our approach.

These assumptions generally hold when we test DBMSs
deployed locally (i.e., without synchronization issues) with
a proper isolation guarantee, which can be satisfied by the
isolation levels equal to or stronger than Cursor Stability (PL-
CS) or Monotonic View (PL-2L), according to Adya et al.’s
definitions [1, 2]. Figure 7 shows the supported isolation lev-
els. Specifically, Assumptions 1 and 2 are independent of
isolation levels. In a transaction dependency graph, Cursor
Stability prohibits cycles with an anti-dependency and one or
more write-dependency edges such that all edges are related
to one specific object. Assumption 3 prohibits cycles with
exactly one anti-dependency edge and one write-dependency
edge such that both edges are related to one specific object.
Therefore, Cursor Stability satisfies Assumption 3. Monotonic
View disallows cycles containing exactly one anti-dependency
edge from one transaction to another transaction. It satisfies
Assumption 3, because the phenomenon prohibited by As-
sumption 3 contains cycles with exactly one anti-dependency
edge between transactions.

SQL-level instrumentation can accurately capture item de-
pendencies without any false positives or negatives, but it may
capture spurious predicate or value dependencies, according
to Lemma 1–7. Such inaccuracies may be introduced by VSR
statements; VSR statements output all items in the tables ref-
erenced by target statements. However, target statements may
use only a part of the items in the tables to perform their pred-
icate matching and value capturing, depending on the specific
implementations of the DBMS. Therefore, VSR statements
may output items that are not referenced by target statements.
If these incorrectly outputted items match the outputs of other
statements, spurious dependencies are captured. Therefore,
the statement-dependency graph built by SQL-level instru-
mentation is a super graph of the actual statement-dependency
graph. This issue does not affect the correctness of our testing
approach (see Section 3.3 for the detailed discussion).

We further discuss the time complexity of using SQL-level
instrumentation to infer dependencies. Suppose the database
contains n items, and the test case contains m statements. In

402 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the worst case, each BWR or AWR statement can output n
items, and the VSR statements of each target statement can
output, in total, n items. If the target statement is a read state-
ment, it can output at most n items. When both two target
statements are write statements, we need to check 6n items
(i.e., outputs of BWR, AWR, and VSR statements of each target
statement), while we need only check 5n items when one of
the target statements is a read statement (i.e., outputs of BWR,
AWR, and VSR statements of the write statement and outputs
of the read statement and its VSR statements). Therefore, in
the worst case, we may check whether two target statements
have dependencies in O(6n) time using hash tables. To con-
firm the dependencies among m statements, we should check
m(m− 1) dependencies, and thus the worst-case time com-
plexity of the entire process is O(6n·m(m−1)), i.e., O(m2n).

Existing work proves that checking histories in isolation
levels is a polynomial-time (e.g., Read Committed) or even
NP-complete problem (e.g., Serializability and Snapshot Iso-
lation) [9, 33]. ELLE [4] can recover histories in O(m·p),
where m is the number of operations, and p is the number of
concurrent processes. However, ELLE restricts their test cases
whose write operations can only append and cannot handle
histories involving predicates. In contrast, SQL-level instru-
mentation can recover histories involving predicates and only
requires test cases to maintain PrimaryKey and VersionKey
for each item, within O(m2n) time.

3.3 Transactional Oracle Construction
The statement-dependency graphs enable us to construct
semantically-equivalent test cases. Our intuition is that if there
is a reordered statement sequence whose statements follow the
same dependency order in the statement dependency graph,
the reordered statement sequence should produce the same
results as the original one. To effectively test DBMSs’ trans-
action support, we execute the reordered statements without
transactions, which provides an oracle for validating the orig-
inal test cases by checking whether each statement in the test
cases produces the same results. To formalize our intuition,
we first introduce a theorem based on statement-dependency
graphs. The theorem is given below, and the details of its
proof can be found in Appendix C.

Theorem 1 SDG(H) is the statement-dependency graph
built according to execution history H, S(SDG(H)) is the
statement sequence generated by performing topological sort-
ing on SDG(H), and History(S(SDG(H)) is the history of the
sorted statement sequence executed without transactions. If
SDG(H) is acyclic, History(S(SDG(H))) and H give the same
results for each statement in S(SDG(H)).

Theorem 1 suggests a high-level method for constructing
semantically-equivalent test cases. Theorem 1 is not con-
strained to any specific isolation level and thus can apply at
various isolation levels. Moreover, Theorem 1 can tolerate the

No cycle

(1) SQL-level
Instrumentation

(3) Build SDG

(5) Have cycles
Randomly select

one node in the cycles

(6) Remove the
corresponding statement

(7) Output the refined test case,
the acyclic graph, and the execution results

Txn 0

Txn 1

Txn 2(2) Transactional
execution

Figure 8: The process of refining test cases, whose SDG even-
tually becomes acyclic.

spurious predicate dependencies that stem from SQL-level
instrumentation. Suppose G is the actual statement depen-
dency graph and G′ is G with additional spurious predicate
dependencies, i.e., G is a subgraph of G′. The semantically-
equivalent test case constructed from G′ will follow all the
dependencies in G′, thus following all the dependencies in G.
Hence, the constructed test case is also one of the topological
sorting results of G. That is, the test case constructed from G′

can also serve as an oracle.
Note that Theorem 1 has a precondition, i.e., the SDG(H)

should be acyclic. To satisfy this precondition, we perform
graph decycling to eliminate all cycles in the graph. Then, we
perform oracle checking to generate semantically-equivalent
test cases by topologically sorting acyclic graphs. We execute
these equivalent test cases without transactions and use their
results to validate transaction executions.

Graph Decycling. The overview of graph decycling is shown
in Figure 8. The idea is to break cycles in the graph by remov-
ing those statements involved in the cycles. Given a test case,
we first instrument it (Step (1) in Figure 8) and then execute
the instrumented test case using transactions (Step (2)). We
can infer the SDG using the collected information from instru-
mented statements (Step (3)). Then, we check whether there
is a cycle in the constructed SDG using depth-first search [39]
(Step (4)). If there is at least one cycle in the graph, we ran-
domly select one node in the cycles (Step (5)) and remove
the corresponding statement in the test case (Step (6)). We
re-execute the refined test case on the DBMS and start a new
round of test-case refinement. Note that the re-execution is
necessary, because a refined test case may result in the con-
struction of a significantly different SDG, which might also
contain new cycles. At the beginning of each round, the tested
DBMS is reset to its initial state. When no cycle is detected in
the SDG built from the refined test case, we output the refined

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 403

Algorithm 1: Oracle Checking
input : test_case, graph, t_results

1 Function OracleChecking(test_case, graph, t_results, DBMS):
2 oracle_test_case← OracleGen(test_case, graph);
3 DBMS← INITIAL_STATE;
4 o_results← ExecuteWithoutTxn(oracle_test_case, DBMS);
5 for each stmt in oracle_test_case do
6 t_stmt_results← GetStmtResults(stmt, t_results);
7 o_stmt_results← GetStmtResults(stmt, o_results);
8 if t_stmt_results ̸= o_stmt_results then
9 ReportBug();

10 return FALSE;
11 t_db← GetDBContent(t_results);
12 o_db← GetDBContent(o_results);
13 if t_db ̸= o_db then
14 ReportBug();
15 return FALSE;
16 return TRUE;
17 Function OracleGen(test_case, graph):
18 oracle_test_case← [];
19 tmp_graph← graph;
20 while HasNode(tmp_graph) = TRUE do
21 nodes← GetZeroIndegreeNodes(tmp_graph);
22 node← RandomlySelect(nodes);
23 stmt← GetStmtFromNode(node, test_case, graph);
24 PushToList(oracle_test_case, stmt);
25 RemoveNode(tmp_graph, node);
26 return oracle_test_case;

test case, its corresponding acyclic SDG, and its transaction
execution results (Step (7)). The graph decycling always con-
verges, because it cannot indefinitely remove statements from
the test case where the number of statements is finite.

Oracle Checking. Algorithm 1 shows the workflow of or-
acle checking. The inputs to this workflow are the refined
test case, the acyclic graph, and the transaction execution
results t_results from graph decycling. We first generate a
semantically-equivalent test case, that is, oracle_test_case,
using topological sorting (Line 2). Specifically, we initialize
oracle_test_case as an empty sequence and temp_graph as
graph (Line 18–19). In each round, we randomly select one
node whose in-degree—the number of edges directed into
the node—is zero and append the statement corresponding to
this node to the end of oracle_test_case (Line 21–24). Then,
we remove the node from temp_graph and delete the edges
incident to this node (Line 25). The loop terminates if all
nodes in temp_graph are removed (Line 20), and the process
returns the constructed oracle_test_case (Line 26). After ora-
cle_test_case is available, we initialize the target DBMS and
execute the statements in oracle_test_case in order without
transactions (Line 3–4). According to Theorem 1, for any cor-
rect DBMS implementation, test_case and oracle_test_case
should produce the same result. We first compare each state-
ment output (Line 5–10). If their outputs differ, we have found
a bug. If these comparisons succeed, we further check whether
the final database contents are the same (Line 11–15). If they
are different, a bug is also found.

Test case

Statement-dependency graph

Statement output:
T0.S2: (2, 43, 8), (3, 43, 53)
T1.S1: (1, 20)
T1.S2: (2, 43, 8)
Database:
t0: (1, 162)
t1: (2, 63, 8) (3, 63, 53)

Transaction execution results

Semantically equivalent test case

Execute without
transactions

Statement output:
S0: (2, 43, 8), (3, 43, 53)
S1: (1, 20)
S2: (2, 43, 8)
Database:
t0: (1, 162)
t1: (2, 63, 8) (3, 43, 53)

Non-transaction execution results

Difference in Database

Topological
sorting

T0.S0> start transaction;
T0.S1> update t0 set vkey = 162;
T0.S2> select * from t1;
T1.S0> start transaction;
T1.S1> select * from t0;
T0.S3> commit;
T1.S2> select * from t1

where t1.c0 <= (select min(vkey) from t0);
T1.S3> update t1 set vkey = 63

where t1.c0 <= (select min(vkey) from t0);
T1.S4> commit;

S0> select * from t1; --- T0.S2
S1> select * from t0; --- T1.S1
S2> select * from t1 --- T1.S2

where t1.c0 <= (select min(vkey) from t0);
S3> update t1 set vkey = 63 --- T1.S3

where t1.c0 <= (select min(vkey) from t0);
S4> update t0 set vkey = 162; --- T0.S1

item-anti
T1.S1

item-anti

T0.S2T1.S2

T0.S1

T1.S3

Figure 9: Oracle checking for the bug in Figure 1.

Figure 9 shows how we perform oracle checking on the
test case in Figure 1(a). We first perform topological sort-
ing on the acyclic statement-dependency graph. In the first
round, T1.S1, T1.S2, and T0.S2 have zero in-degree, so we
randomly pick one of them, for example, T0.S2. Then, T1.S1
and T1.S2 are picked. After T0.S2 and T1.S2 are removed
from the graph, the in-degree of T1.S3 becomes zero, and
T1.S3 is picked. Finally, T0.S1 is chosen as it is the only
node in the graph. Therefore, the sorted statement sequence
is [T0.S2, T1.S1, T1.S2, T1.S3, T0.S1]. Then, we execute
the statement sequence without transactions and record the
statement outputs and final database contents. These results
are compared to the results produced by the original test case.
We first check their statement outputs, which turn out to be the
same. Then, we check their final database contents. Because
their database contents are different on the value of one of the
rows in table t1, we have found a bug.

4 Implementation

Based on our approach, we realized a tool, TxCheck, on top
of SQLsmith [43]. The overall codebase consists of 14k lines
of C++ code, where we implemented our approach with 3.5k
lines (not including the code for supporting DBMSs).

Figure 10 shows the architecture of TxCheck. To test a
DBMS, TxCheck first randomly generates a test case, which
will be instrumented by SQL-level instrumentation. The in-
strumented test case is then refined by graph decycling to
eliminate cycles in its statement-dependency graph, and by
blocking scheduling to make sure that the instrumented state-
ments will not be reordered by the blocking mechanism of
the tested DBMS. TxCheck uses the refined test case and its
transaction execution results to construct an oracle, which is a
test case that is not wrapped as transactions (e.g., the test case
shown in Figure 1(b)), but should produce the same results

404 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Transactional
Oracle Construction

SQL-Level
Instrumentation

Test case

Non-transaction
execution results

Instrumented
Test case

Result
Comparison

Non-transaction
execution

Differ

Bug Report

Target DBMS

Transaction
execution

Blocking
Scheduling

Graph
Decycling

Test-Case
Generation

Refined test case

Transaction
execution results

Figure 10: Architecture of TxCheck.

as the refined test case, according to Theorem 1. TxCheck
then checks whether their results are indeed the same. If their
results differ, TxCheck reports a bug. The following describes
the implementation of TxCheck in detail.

Test-case Generation. TxCheck randomly generates a test
case consisting of multiple transactions, and randomly de-
termines the order in which the statements in these transac-
tions are executed. For example, in Figure 1(a), T0 and T1 are
the generated transactions, and [T0.S0, T0.S1, T0.S2, T1.S0,
T1.S1, T0.S3, T1.S2, T1.S3, T1.S4] is the execution order
for the statements in these transactions. The generated state-
ments follow the constraints described in Section 3.2. As
we do not restrict the statement format, TxCheck can apply
other approaches to implementing statement generation. In
this paper, we use SQLsmith [43] as the statement generator.

Transaction Execution. For each transaction in a test case,
TxCheck sets up a client session that is responsible for issu-
ing the statements of a transaction to which it is assigned. To
avoid introducing non-determinism from concurrent execu-
tions, TxCheck sends statements to the DBMS following the
order determined in the test-case generation. The order might
be updated by block scheduling. After sending a statement,
TxCheck sends the next statement only after the DBMS indi-
cates that its execution is completed or blocked. While some
concurrency bugs may be missed, sequential execution makes
it significantly easier to reproduce bugs, which is generally
appreciated by developers.

Non-transaction Execution. For each test case that is not
wrapped as transactions (e.g., the test case in Figure 1(b)),
TxCheck sets up only one client session for sequentially issu-
ing the statements in the test case.

Blocking Scheduling. When statements in different transac-
tions try to access the same data, a DBMS may block some of
these statements to schedule transaction execution, which can
disrupt the inserted statements of SQL-level instrumentation.
Figure 11(a) shows an example in MySQL using Repeatable
Read isolation level. T1.S1.BWR is the BWR statement of

T0.S0> start transaction;
T0.S1> update t0 set vkey = 1; --- (0, 0) -> (0, 1)
T1.S0> start transaction;
T1.S1.BWR> select * from t0 where vkey = 0; --- (0, 0)
T1.S1> update t0 set vkey = 2 where vkey = 0; --- blocked
T0.S2> commit;
--- T1.S1 is executed after T0.S2, it updates nothing
T1.S2> commit;

Inconsistent!

T0.S0> start transaction;
T0.S1> update t0 set vkey = 1; --- (0, 0) -> (0, 1)
T1.S0> start transaction;
T1.S1.BWR> select * from t0 where vkey = 0; --- (0, 0)
T0.S2> commit;
T1.S1> update t0 set vkey = 2 where vkey = 0; --- updates nothing
T1.S2> commit;

(a) Determined execution order

(b) Actual execution order

Table t0 (pkey, vkey): (0, 0)

T0.S0> start transaction;
T0.S1> update t0 set vkey = 1; --- (0, 0) -> (0, 1)
T1.S0> start transaction;
T0.S2> commit;
T1.S2> commit;

(c) The example after blocking scheduling

Figure 11: Example of MySQL blocking mechanism (in Re-
peatable Read) and blocking scheduling.

T1.S1. The DBMS executes T1.S1.BWR and outputs 1 row,
and then tries to execute T1.S1. T1.S1 is blocked, because it
tries to update the items that are being updated by T0.S1. The
DBMS continues to execute T0.S2. After T0.S2 is executed,
transaction T0 is finished, and then T1.S1 is executed automat-
ically by the DBMS. T1.S1 updates nothing because there
is no row whose vkey is 0. By design, T1.S1.BWR should
output the items that will be updated by T1.S1. However,
their results are inconsistent because T1.S1.BWR is executed
before T0 commits but T1.S1 is executed after T0 commits.
Figure 11(b) shows the actual execution order of the example.
T1.S1.BWR and T1.S1 are separated by the COMMIT of T0.

To address the issues caused by the blocking mechanism of
DBMSs, TxCheck adapts blocking scheduling, which makes
sure that the inserted statements and the target statements will
not be separated. TxCheck first executes statements accord-
ing to the determined execution order. It records the actual
statement execution order, which may be different from the
determined order because some statements may be blocked.
It checks whether there are situations where the inserted state-
ments and their corresponding target statements are executed
apart. It deletes the inserted statements and target statements
in such situations. For example in Figure 11, T1.S1.BWR and
T1.S1 are deleted. The refined test case is executed again
following the recorded execution order in the last round. In
the new execution, if all the target statements and correspond-
ing inserted statements are executed adjacently, the blocking
scheduling ends. Otherwise, it deletes statements according
to the newly recorded real execution order and executes the re-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 405

fined test case again. This process always converges, because
it cannot delete statements indefinitely. Figure 11(c) shows
the example refined by blocking scheduling.

DBMS Support. TxCheck can be easily adapted to test spe-
cific DBMSs. On average, we use 650 lines of code to support
one DBMS. Each tested DBMS should provide interfaces
to set up the DBMS, connect to the DBMS, shut down the
DBMS, send statements in transaction sessions, and obtain ex-
ecution results. In addition, if a DBMS can block statements
in transaction execution, TxCheck needs to be provided with
an interface for determining whether a statement is blocked.
Setting a timeout for statements is an alternative way to check
for blocking situations. However, it is inaccurate, because the
DBMS may just be executing a long-running statement.

Isolation Bug Detection. TxCheck can also find isolation
bugs, because statement dependencies can be easily con-
verted to transaction dependencies according to their defini-
tions. For example, if a statement Si in transaction Ti depends
on statement S j in transaction T j, Ti depends on T j. There-
fore, TxCheck can convert statement-dependency graphs to
transaction-dependency graphs. Then, TxCheck detects bugs
that violate their isolation levels according to graph restric-
tions [1, 2, 5, 6]. However, because TxCheck may infer spu-
rious predicate dependencies (Section 3.2), which introduce
false alarms of isolation bugs, we only consider item depen-
dency, which is accurate, in isolation bug detection.

Memory Bug Detection. As TxCheck involves both transac-
tion and non-transaction executions, memory bugs triggered
with or without transactions can be detected by TxCheck. We
use ASan [40] as its memory bug checker.

5 Evaluation

We have evaluated TxCheck on three DBMSs, namely
TiDB [46], MySQL [30], and MariaDB [29]. These DBMSs
are widely used by industry and extensively tested by DBMS
fuzzers [21, 22, 25, 35–37, 43, 53]. According to DB-Engines
Ranking [13], MySQL is the second most popular rela-
tional DBMS, MariaDB the 8th, and TiDB the 49th. The
GitHub repositories of TiDB, MySQL, and MariaDB have
been starred more than 32K, 8K, and 4K times, respectively,
demonstrating their popularity and maturity. We perform our
evaluation on Ubuntu 20.04 with a 64-core AMD Epyc 7742
CPU at 2.25G Hz and 256GB RAM.

We evaluated TxCheck on the latest available releases of
the targeted DBMSs. Specifically, for TiDB, we tested ver-
sions 5.4.0, 6.1.0, and 6.3.0, for MySQL, versions 8.0.28 and
8.0.30, and for MariaDB, versions 10.8.3 and 10.10.1. We
tested MySQL and MariaDB under Read Committed, Repeat-
able Read, and Serializability, respectively. We did not test
Read Uncommitted because it does not satisfy Assumption 3
(see Figure 7). TxCheck can be used to test Read Committed

Table 1: Numbers of bugs found by TxCheck and their status

DBMS Found Confirmed Known Fixed

TiDB 23 19 1 9
MySQL 18 18 1 3
MariaDB 15 15 4 1
Total 56 52 6 13

in MySQL (as also in MariaDB) because it supports consis-
tent nonlocking reads [31] (e.g., read operations of SELECT),
thus satisfying Assumption 3. We tested TiDB with its opti-
mistic transaction mode and Snapshot Isolation, which is the
only isolation level compatible with this mode [48]. We did
not test the pessimistic transaction mode of TiDB [47], which
does not satisfy Assumption 3.

We used TxCheck to continuously test the targeted DBMSs
for three months; we stopped and restarted TxCheck only
when we improved TxCheck with new SQL features. In gen-
eral, TxCheck was able to find new bugs within several days
after we implemented new features; however, certain bugs
took more time to trigger (e.g., one or two weeks).

5.1 Bug Detection
As shown in Table 1, TxCheck found 56 unique bugs, includ-
ing 23 in TiDB, 18 in MySQL, and 15 in MariaDB. Among
them, 52 bugs were confirmed, 18 fixed, and 6 known.

Bug Severity. Regarding the 23 bugs found in TiDB, two
were classified as Critical bugs, while 7 as Major bugs. The
other bugs found in TiDB were assigned low severity (e.g.,
Minor). In MariaDB, all the found bugs were classified as
Critical (9) or Major (6). Most of the bugs reported to the
MySQL developers are confidential due to security concerns,
so their severity is unavailable. 8 CVEs have been assigned
to these security-related bugs. Additionally, 4 bugs posted
publicly were classified as Severe. These results demonstrate
that TxCheck is practical and effective in detecting critical
bugs in production DBMSs.

Bug Classification. We classify the 56 bugs according to their
root causes. Table 2 shows the results. The class "Transaction"
includes the bugs found in transaction executions, and "Non-
transaction" the bugs triggered in non-transaction executions,
i.e., when the semantically-equivalent test cases are executed
(see Section 3.3). The column "Crash" shows the number of
bugs that crash DBMS servers, and "Oracle" refers to the bugs
that are identified by oracle checking.

In total, TxCheck found 30 bugs triggered in transaction
executions, which demonstrates TxCheck’s capability for find-
ing real transactional bugs in DBMSs. Among these bugs, 19
were identified by our oracle, and 11 crashed DBMS servers.
In addition, 26 bugs were identified in the non-transaction
executions, among which 23 crashed DBMS servers and 3

406 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: Classifying the detected bugs

DBMS
Transaction Non-transaction

Oracle Crash Oracle Crash

TiDB 11 4 1 7
MySQL 4 2 0 12
MariaDB 4 5 2 4
Total 19 11 3 23

Repeatable Read

Read Committed &
Serializability

5

1

MySQL

Read Committed

Repeatable Read
1

2

Serializability

6

MariaDB

Snapshot Isolation

15

TiDB

Figure 12: Venn diagrams showing the number of bugs found
at different isolation levels. Bugs associated with a smaller
circle of isolation level can also be found at larger circles of
isolation levels.

were identified by oracle checking. Note that several bugs
triggered in non-transaction executions make the execution
results incorrect and different from the ones in transaction
executions. This demonstrates that TxCheck can also detect
incorrect behaviors triggered in non-transaction executions.

Bugs at Different Isolation Levels. For the 30 transactional
bugs, Figure 12 shows the isolation levels where they are trig-
gered. All 15 TiDB bugs are identified at Snapshot Isolation,
which is the only tested isolation level in TiDB. In MySQL,
5 bugs can be found at all three tested isolation levels, while
1 only at Repeatable Read. In MariaDB, 6 bugs can be de-
tected at all three tested isolation levels, while 1 at both Read
Committed and Repeatable Read, and 2 only at Read Com-
mitted. Note that several transactional bugs are independent
of isolation guarantees, which can be effectively detected by
TxCheck at various levels.

5.2 Comparison with State of the Art
We demonstrate the advantages of our approach by (1) check-
ing whether TxCheck can find new transactional bugs that
cannot be found by the state of the art, and (2) discussing se-
lected interesting bugs to show the effectiveness of TxCheck.

For comparison, we analyze the bug-triggering test cases
of the 19 transactional bugs found by our oracle checking.
We reduce each test case to a minimal bug-inducing version
before analysis. Given that there exists no approach for finding
general transactional bugs, we select ELLE [4] as competing
tool (part of the prevalent testing framework Jepsen [18]). Elle
is the state-of-the-art black-box checker for finding isolation

Table 3: Feature analysis of the 19 bug-triggering test cases

ID DBMS
Features

ELLE
Complex Predicate

1 TiDB ✓ ✓ -
2 TiDB ✓ ✓ -
3 TiDB ✓ ✓ -
4 TiDB - - ✓
5 TiDB - - -
6 TiDB ✓ ✓ -
7 TiDB ✓ ✓ -
8 TiDB ✓ ✓ -
9 TiDB ✓ ✓ -

10 TiDB ✓ ✓ -
11 TiDB ✓ ✓ -
12 MySQL ✓ ✓ -
13 MySQL ✓ ✓ -
14 MySQL ✓ ✓ -
15 MySQL ✓ ✓ -
16 MariaDB ✓ ✓ -
17 MariaDB ✓ ✓ -
18 MariaDB ✓ ✓ -
19 MariaDB ✓ ✓ -

bugs, which are a specific kind of transactional bugs.
As shown in Table 3, among the 19 test cases, 17 use both

complex statements and predicates. ELLE cannot generate
such test cases, because (1) the complex statements do not
follow the test-case patterns of ELLE whose write operations
can only append; and (2) ELLE does not support predicates.
Figure 1 depicts one of such bugs triggered by complex state-
ments and predicates. Regarding the two bugs that do not
involve complex operations and predicates, ELLE can find
only one of them. We also analyze 11 transactional bugs that
crash DBMS servers and find that all of them involve com-
plex statements and predicates, for which ELLE lacks support.
In the following, we first illustrate the only bug that can be
found by both TxCheck and ELLE. Then, we discuss three
representative bugs that are missed by ELLE.

TiDB Bug: Isolation Violation. Figure 13 shows a bug-
triggering test case. ELLE can only detect this bug from the
56 bugs found by TxCheck as the corresponding test case
does not contain predicates or complex operations. This bug
triggers a prohibited phenomenon, G-SIb, in Snapshot Iso-
lation [1, 2] used by TiDB. G-SIb is an anomaly where the
transaction-dependency graph contains a cycle with exactly
one anti-dependency edge. To find this bug, TxCheck converts
the constructed statement-dependency graph to a transaction-
dependency graph (see Section 4) and checks whether there
is any prohibited phenomenon. This bug-finding process il-
lustrates that TxCheck can also find isolation bugs.

MySQL Bug: Aborted Transactions Have Effects. Fig-
ure 14 shows a test case with two interleaving transactions.
Transaction T1 inserts four items into table t0 and then roll-
backs. Transaction T0 updates the items that satisfy a complex

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 407

item-anti

T0.S0> start transaction;
T1.S0> start transaction;
T1.S1> select ref0.c0 from t0 as ref0

order by c0 desc; --- output 1 row
T0.S1> delete from t0; --- delete 1 row
T0.S2> commit;
T1.S2> select ref0.c0 from t0 as ref0

order by c0 desc; --- output 0 row
T1.S3> commit;

Test case

item-anti

item-read

Statement-dependency graph

Transaction-dependency
graph

G-SIb

T1.S1

T1.S2

T0.S1

T0 T1

Figure 13: A test case violates Snapshot Isolation in TiDB.

T0> start transaction;
T1> start transaction;
T1> insert into t0 values (141, 210000, …, 74),

…, (141, 213000, …, null);
T1> rollback;
T0> update t0 set vkey = 116

where t0.c5 not in (
select subq0.c0 as c0
from (select …) as subq0
where subq0.c0 < (select …)
order by c0 asc); --- update 39 rows

T0> commit;

update t0 set vkey = 116
where t0.c5 not in (

select subq0.c0 as c0
from (select …) as subq0
where subq0.c0 < (select …)
order by c0 asc); --- update 0 row

Test case Oracle

Figure 14: An aborted transaction affects the results of a
committed transaction in MySQL.

predicate (i.e., the WHERE clause of the UPDATE statement)
from table t0 and then commits. This test case is semantically-
equivalent to executing the UPDATE statement on the same
databases as the aborted transaction must not cause any visi-
ble side effects [1, 41]. However, MySQL produces different
results: one test case updates 39 rows while the other zero
rows. ELLE cannot find this bug as it involves predicates and
complex operations, for which ELLE lacks support.

TiDB Bug: Incorrect Transactional Calculation. As shown
in Figure 15, the test case contains only one transaction and
uses only simple operations without predicates. ELLE can gen-
erate such a test case, at least conceptually. However, ELLE
cannot find this bug, because it does not violate any isolation
specification rather than makes the DBMS return incorrect
results. TxCheck finds this bug by constructing semantically-
equivalent test cases.

MariaDB Bug: Crash Caused by Transactions. As shown
in Figure 16, the test case contains two interleaved trans-
actions. Transaction T1 first inserts a couple of items into
table t0. Then, transaction T0 executes a DELETE statement
with a complex WHERE clause as its predicate. The deletion
is blocked because its predicate matching references certain
items of table t0, which have just been updated by the INSERT
statement of T1. Only after T1 commits or aborts, can the
DELETE statement be unblocked. While the deletion of T0 is
blocked, transaction T1 executes a simple UPDATE statement,
which eventually crashes the MariaDB server. This bug is

T0> start transaction;
T0> update t_0 set c_0 = t_2.c_1;
T0> select count(c_2) from t_0;

--- output 39
T0> commit;

Test case

update t_0 set c_0 = t_2.c_1;
select count(c_2) from t_0;

--- output 36

Oracle

Figure 15: A test case makes TiDB return incorrect results.

T0> start transaction;
T1> start transaction;
T1> insert into t0 (vkey, pkey, c0) values

(89,188000,40), …, (97, 230000, 9);
T0> delete from t1 where exists (

select ref0.c0 from t2 as ref0
where t1.c0 not in (

select ref3.vkey as c0
from (t0 as ref2 left outer join t2 as ref3

on (ref2.vkey = ref3.vkey))
where ref3.pkey >= ref2.vkey)); --- blocked

T1> update t2 set vkey = 99; --- crash

Test case

Figure 16: Two transactions crash the MariaDB server.

due to a concurrency issue where one of the threads performs
complex operations that make the DBMS enter erroneous
states. ELLE cannot find this bug as it does not support such
complex operations involving predicates.

5.3 Design Choice Analysis

We had two considerations while designing our approach.
First, can we use existing transaction-dependency graphs,
e.g., Directed Serialization Graph (DSG) [1, 2], instead of
the proposed statement-dependency graphs? Second, when
performing topological sorting, TxCheck randomly selects
one node if there are multiple nodes with zero in-degree. Does
the random strategy affect the results?

Using Transaction-dependency Graphs. We argue that
using transaction-dependency graphs may miss bugs. A
transaction-dependency graph in some isolation levels may
have cycles as some transactions reference the items that
other transactions have referenced. To construct transactional
oracles, we must refine a test case to ensure the acyclicity
of the associated graph. However, a test case may have an
acyclic statement-dependency graph, but a cyclic transaction-
dependency graph. Such test cases are unable to be topologi-
cally sorted at the transaction level, and thus interesting test
cases may be discarded.

To demonstrate that using transaction-dependency graphs
may miss bugs, we check the transaction-dependency graphs
of the 19 transactional bugs found by our oracle checking.
We first check the graphs built on minimized test cases and
find that all the constructed transaction-dependency graphs
miss cycles. It is unsurprising as, when minimizing the test
cases, we delete all the unnecessary clauses and statements,

408 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: Analysis of transaction-dependency graphs

DBMS Test cases Txn-cycle

TiDB 11 3
MySQL 4 1
MariaDB 4 2
Total 19 6

item-anti

item-anti
item-anti

Statement-dependency graph Transaction-dependency graph

T1.S1
T0

T1
item-anti

T0.S2T1.S2

T0.S1

T1.S3

Figure 17: The statement-dependency and transaction-
dependency graphs of the test case in Figure 1.

which makes the test cases reference much fewer items than
the non-minimized ones. However, randomly generated test
cases inevitably contain many redundant parts [28, 34]. To
understand whether the test cases generated by TxCheck con-
tain cycles in transaction-dependency graphs, we check the
non-minimized test cases accordingly. Table 4 shows the re-
sults. The column Txn-cycle refers to the number of test cases
that have cycles in transaction-dependency graphs.

The results show that 6 bug-triggering test cases have cy-
cles in transaction-dependency graphs. If we use transaction-
dependency graphs instead of statement-dependency graphs,
these test cases are not suitable for constructing oracles as
topological sorting cannot be performed for cyclic graphs.
Hence, around one-third (6 out of 19) of the bugs would be
missed. The test case in Figure 1 exemplifies such a bug. Fig-
ure 17 presents its corresponding statement-dependency and
transaction-dependency graphs, respectively. The statement-
dependency graph does not have cycles, so topological sorting
can be performed at the statement level, which reveals the
bug. Topological sorting is infeasible at the transaction level
as the transaction-dependency graph is cyclic.

Random Topological Sorting. TxCheck topologically sorts
statement-dependency graphs to construct oracles. If
TxCheck encounters multiple nodes whose in-degrees are
zero during sorting, it randomly selects one of them. In this
way, TxCheck chooses only one of the topological sorting
results to construct the oracle. For any correct DBMS, all
the topological sorting results must be the same as the trans-
action execution results according to Theorem 1. However,
when bugs are triggered, the test cases executed with transac-
tions and some of the sorted test cases may produce the same,
yet incorrect results. If TxCheck, unfortunately, chooses such
sorted test cases, bugs may be overlooked.

Table 5: Analysis of topological sorting: ⋆ labels the test cases
that generate millions of topological sorting results, where we
randomly select 10k to check whether they can trigger bugs

ID DBMS Sort Trigger ID DBMS Sort Trigger

1 TiDB 1 1 (100%) 11 TiDB 1260 1224 (97%)
2 TiDB 32 32 (100%) 12 MySQL 6 6 (100%)
3 TiDB 12 12 (100%) 13 MySQL 1 1 (100%)
4 TiDB - - 14 MySQL 1 1 (100%)
5 TiDB 1 1 (100%) 15 MySQL 10k⋆ 10k (100%)
6 TiDB 6 6 (100%) 16 MariaDB 2 2 (100%)
7 TiDB 6 6 (100%) 17 MariaDB 1 1 (100%)
8 TiDB 30 30 (100%) 18 MariaDB 1 1 (100%)
9 TiDB 96 96 (100%) 19 MariaDB 10k⋆ 10k (100%)

10 TiDB 36 36 (100%)

We show that such missed bugs are rare in practice. Typi-
cally, transactional bugs affect the results of transaction exe-
cutions, while non-transaction executions of the topologically
sorted test cases would not be affected. Therefore, most sorted
test cases should execute correctly and can be used as oracles
to reveal bugs. To demonstrate this, we analyze the 19 trans-
actional bugs found by our oracle checking. The analyzed test
cases are not minimized as we intend to obtain results that
are close to those from the generated test cases in practice.
Table 5 shows the results. The column Sort shows the number
of all possible topological sorting results for the statement-
dependency graphs. The column Trigger refers to the number
of sorting results that successfully trigger the bugs.

Among the 19 test cases, the sorting results of 17 can stably
trigger the bugs with 100% success rates. Bug 4 is found
by checking transaction-dependency graphs, which do not
involve topological sorting, as discussed in Section 5.2. The
test case for bug 11 produces 1260 possible sorting results,
among which 1224 can trigger the bug. It indicates that missed
bugs can indeed happen with, however, a low probability (less
than 3%). Two bug-triggering test cases (bugs 15 and 19)
generate millions of sorting results. Both of them contain
dozens of statements and involve few dependencies. When
the dependency constraint is weak, the number of possible
topological sorting will explode (e.g., without any dependency,
12 statements can already amount to 12!, i.e., over 480 million,
sorting results). We randomly select 10K sorting results for
each test case and find that all of them can trigger the bugs.
These results show that randomly selecting one topological
sorting result for oracle checking is practical and effective.

6 Discussion

Test-case Generation. TxCheck generates databases and
transactions randomly for testing. Such random generation
may be inefficient to explore corner test cases and thus may
miss bugs. Fuzzing is a promising technique for generating
infrequently executed test cases [3, 10, 16, 19, 27], and has
been adopted in DBMS testing [21, 50, 53]. However, tradi-
tional fuzzing techniques cannot be directly utilized in DBMS

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 409

transaction testing. First, code coverage, which is commonly
used as the fuzzing feedback, is not well suited because it
cannot measure transaction interleavings. Second, random
mutations used by most fuzzers are ineffective for generating
transactions with complex data dependencies. One promis-
ing approach to addressing these challenges is to design new
coverage feedback and mutation strategies following work on
concurrency fuzzing [12, 20, 51].

Predicate Handling. It is challenging to recover transaction
histories involving predicates [4, 44], for which we provide
a possible solution. We instrument Version-Set Read (VSR)
statements to capture items referenced by predicates by count-
ing all items in the referenced tables. However, as discussed in
Section 3.2, this method may overcount the referenced items
because it is unnecessary that all items in the referenced tables
would be referenced. Therefore, TxCheck may build spurious
dependencies between statements. To mitigate this issue, one
may utilize domain-specific knowledge. For example, we can
customize VSR statements for each specific kind of statement
used in transactions by referring to the corresponding SQL
grammars and features.

Data-intensive Transaction. Existing work [21, 22, 35–37,
53] demonstrates that many DBMS bugs can be triggered
without using much data. We follow this insight; each
database generated by TxCheck generally contains 50-80
rows of data. However, some transactional bugs may hide in
code only reached when intensive data is processed. To find
such bugs, we plan to enable TxCheck to generate databases
with large amounts of data. However, as TxCheck needs
to reset database states after each test, its performance will
be significantly degraded when TxCheck resets complicated
databases. We plan to experiment with snapshot techniques to
help improve testing performance by following and adapting
existing work [24, 38].

7 Related Work

Transaction Testing. Transaction-testing approaches vali-
date the correct uses of transactions in applications [14, 15]
or the correct implementations of transaction support of
DBMSs [4, 9, 11, 17, 44]. AGENDA [14, 15] tests DB-based
applications that utilize transactions to perform certain tasks.
It generates test cases according to user-provided specifica-
tions. A bug is reported if the application incorrectly con-
structs transactions that violate the provided specifications.
The black-box isolation checkers ELLE [4], COBRA [44],
and POLYSI [17] examine whether the transaction support of
DBMSs functions correctly. ELLE generates transactions that
use “append” operations as writes and can naturally recover
their version order according to the list of values. COBRA
and POLYSI focus respectively on validating the Serializ-
ability and Snapshot Isolation guarantees of transactions in
DBMSs and develop several techniques (e.g., read-modify-

write transaction-based version order inferring, compact con-
straint encoding for SMT solving, and parallel hardware) to
enable fast dependency inference. Unlike existing checkers,
TxCheck focuses on testing the transaction support of DBMSs
while relaxing the constraints on test-case patterns and en-
abling complex transaction generation. Moreover, TxCheck
provides a practical solution to inferring predicate dependen-
cies, a challenging problem in DBMS transaction testing.

DBMS Testing. Automated testing approaches have been
proposed to find other types of bugs in DBMSs, such as logic
bugs [35–37, 52], security bugs [21, 43, 50, 53], and perfor-
mance bugs [22, 26]. SQLancer [42] is a well-known DBMS
testing tool for detecting logic bugs, which integrates several
approaches [35–37]. PQS [37] constructs queries that require
DBMSs to return target items from manipulated databases: a
logic bug is reported if the tested DBMS fails to return such
items. TLP [36] designs some patterns to partition an origi-
nal query into three separate queries, so that the union of the
separated queries’ results must be the same as the original
query’s result; otherwise, TLP reports a bug. Focusing on
memory bugs, both SQUIRREL [53] and DynSQL [21] can
generate more diverse test cases. SQUIRREL utilizes interme-
diate representations to model the structures of queries and
the dependencies between statements. This enables SQUIR-
REL to generate queries containing multiple statements. By
merging the query generation and query processing, DynSQL
incrementally generates complex and valid queries using the
state information of DBMSs. We also design TxCheck for
tackling the oracle problem. However, TxCheck focuses on
bugs triggered in transactional scenarios. In addition, with
moderate test-case pattern constraints, TxCheck can handle
complex test cases and expose deep transactional bugs.

8 Conclusion

We have presented a novel DBMS transaction testing ap-
proach, along with the practical tool TxCheck. Our approach
is based on statement-level dependency graphs and can gener-
ate semantically-equivalent test cases to validate the transac-
tion executions. TxCheck has found 56 unique bugs in three
widely-used DBMSs, among which 52 have been confirmed
and 18 fixed. Thanks to its generality and effectiveness, we
expect TxCheck to help developers design and implement
correct and reliable DBMS transaction support. Moreover,
our approach could be utilized to infer predicate-related de-
pendencies in recovering transaction histories.

Acknowledgments

We thank the anonymous OSDI reviewers and our shepherd,
Tianyin Xu, for their valuable feedback on earlier versions of
this paper. We also thank the DBMS developers for triaging
and fixing our reported bugs.

410 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Atul Adya. Weak consistency: a generalized theory
and optimistic implementations for distributed transac-
tions. PhD thesis, Massachusetts Institute of Technology,
1999.

[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Gen-
eralized isolation level definitions. In Proceedings of
the 16th International Conference on Data Engineering
(ICDE), pages 67–78, 2000.

[3] American fuzzy lop. https://github.com/google/
AFL.

[4] Peter Alvaro and Kyle Kingsbury. Elle: Inferring iso-
lation anomalies from experimental observations. In
Proceedings of the 46th International Conference on
Very Large Databases (VLDB), pages 268–280, 2020.

[5] Peter Bailis, Aaron Davidson, Alan D. Fekete, Ali Gh-
odsi, Joseph M. Hellerstein, and Ion Stoica. Highly
available transactions: Virtues and limitations. In Pro-
ceedings of the 39th International Conference on Very
Large Databases (VLDB), pages 181–192, 2013.

[6] Peter Bailis, Alan D. Fekete, Joseph M. Hellerstein, Ali
Ghodsi, and Ion Stoica. Scalable atomic visibility with
RAMP transactions. In Proceedings of the 2014 Interna-
tional Conference on Management of Data (SIGMOD),
pages 27–38, 2014.

[7] Claude Barthels, Ingo Müller, Konstantin Taranov, Gus-
tavo Alonso, and Torsten Hoefler. Strong consistency
is not hard to get: Two-phase locking and two-phase
commit on thousands of cores. In Proceedings of the
45th International Conference on Very Large Databases
(VLDB), pages 2325–2338, 2019.

[8] Philip A. Bernstein and Nathan Goodman. Multiver-
sion concurrency control - theory and algorithms. ACM
Transactions on Database Systems, 8(4):465–483, 1983.

[9] Ranadeep Biswas and Constantin Enea. On the complex-
ity of checking transactional consistency. In Proceed-
ings of the 2019 International Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pages 165:1–165:28, 2019.

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 23rd International Conference on
Computer and Communications Security (CCS), pages
1032–1043, 2016.

[11] Andrea Cerone, Giovanni Bernardi, and Alexey Gots-
man. A framework for transactional consistency models

with atomic visibility. In Proceedings of the 26th In-
ternational Conference on Concurrency Theory, pages
58–71, 2015.

[12] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui,
Cen Zhang, Yuekang Li, Haijun Wang, and Yang Liu.
MUZZ: thread-aware grey-box fuzzing for effective bug
hunting in multithreaded programs. In Proceedings
of the 29th USENIX Security Symposium, pages 2325–
2342, 2020.

[13] DB-Engines Ranking, Accessed in May, 2023. https:
//db-engines.com/en/ranking.

[14] Yuetang Deng, Phyllis G. Frankl, and David Chays. Test-
ing database transactions with AGENDA. In Proceed-
ings of the 27th International Conference on Software
Engineering (ICSE), pages 78–87, 2005.

[15] Yuetang Deng, Phyllis G. Frankl, and Zhongqiang Chen.
Testing database transaction concurrency. In Proceed-
ings of the 18th International Conference on Automated
Software Engineering (ASE), pages 184–195, 2003.

[16] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
data flow sensitive fuzzing. In Proceedings of the 29th
USENIX Security Symposium, pages 2577–2594, 2020.

[17] Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei,
David A. Basin, Haixiang Li, and Anqun Pan. Efficient
black-box checking of snapshot isolation in databases.
Proc. VLDB Endow., 16(6):1264–1276, 2023.

[18] Jepsen. https://jepsen.io/.

[19] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min
Hu. Fuzzing error handling code using context-sensitive
software fault injection. In Proceedings of the 29th
USENIX Security Symposium, pages 2595–2612, 2020.

[20] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In Proceedings of the 29th
Network and Distributed System Security Symposium
(NDSS), 2022.

[21] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. DynSQL:
Stateful fuzzing for database management systems with
complex and valid sql query generation. In Proceedings
of the 32nd USENIX Security Symposium.

[22] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and
Woonhak Kang. APOLLO: automatic detection and di-
agnosis of performance regressions in database systems.
In Proceedings of the 46th International Conference on
Very Large Data Bases (VLDB), pages 57–70, 2019.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 411

https://github.com/google/AFL
https://github.com/google/AFL
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://jepsen.io/

[23] Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua
Sagiv. Query optimization by predicate move-around.
In Proceedings of the 20th International Conference on
Very Large DataBases (VLDB), pages 96–107, 1994.

[24] Junqiang Li, Senyi Li, Gang Sun, Ting Chen, and Hong-
fang Yu. Snpsfuzzer: A fast greybox fuzzer for stateful
network protocols using snapshots. IEEE Transactions
on Information Forensics and Security, 17:2673–2687,
2022.

[25] libFuzzer - a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html.

[26] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso.
Testing dbms performance with mutations. arXiv
preprint arXiv:2105.10016, 2021.

[27] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: opti-
mized mutation scheduling for fuzzers. In Proceedings
of the 28th USENIX Security Symposium, pages 1949–
1966, 2019.

[28] David Maciver and Alastair F. Donaldson. Test-case
reduction via test-case generation: Insights from the hy-
pothesis reducer. In Robert Hirschfeld and Tobias Pape,
editors, Proceedings of the 34th European Conference
on Object-Oriented Programming (ECOOP), volume
166, pages 13:1–13:27, 2020.

[29] MariaDB. https://www.mariadb.org/.

[30] MySQL. https://www.mysql.com/.

[31] MySQL Transaction Isolation Levels.
https://dev.mysql.com/doc/refman/8.0/en
/innodb-transaction-isolation-levels.html.

[32] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast serializable multi-version concurrency control
for main-memory database systems. In Proceedings of
the 2015 International Conference on Management of
Data (SIGMOD), pages 677–689, 2015.

[33] Christos H Papadimitriou. The serializability of concur-
rent database updates. Journal of the Association for
Computing Machinery (JACM), 26(4):631–653, 1979.

[34] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case reduction
for C compiler bugs. In Proceedings of the 2012 Inter-
national Conference on Programming Language Design
and Implementation (PLDI), pages 335–346, 2012.

[35] Manuel Rigger and Zhendong Su. Detecting optimiza-
tion bugs in database engines via non-optimizing refer-
ence engine construction. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Soft-
ware Engineering (ESE/FSE), pages 1140–1152, 2020.

[36] Manuel Rigger and Zhendong Su. Finding bugs in
database systems via query partitioning. In Proceed-
ings of the 2020 International Conference on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA), pages 1–30, 2020.

[37] Manuel Rigger and Zhendong Su. Testing database
engines via pivoted query synthesis. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 667–682,
2020.

[38] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi,
Simon Wörner, and Thorsten Holz. Nyx: Greybox hy-
pervisor fuzzing using fast snapshots and affine types. In
Proceedings of the 30th USENIX Security Symposium,
pages 2597–2614, 2021.

[39] Robert Sedgewick and Kevin Wayne. Algorithms, 4th
Edition. Addison-Wesley, 2011.

[40] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC), pages
309–318, 2012.

[41] Avi Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts, Seventh Edition. McGraw-
Hill Book Company, 2020.

[42] SQLancer. https://github.com/sqlancer/sqla
ncer.

[43] SQLsmith: a random sql query generator. https://
github.com/anse1/sqlsmith.

[44] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael
Walfish. Cobra: Making transactional key-value stores
verifiably serializable. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 63–80, 2020.

[45] Alexander Thomasian. Two-phase locking performance
and its thrashing behavior. ACM Transactions on
Database Systems, 18(4):579–625, 1993.

[46] TiDB. https://www.pingcap.com/tidb/.

[47] Tidb pessimistic transaction mode. https:
//docs.pingcap.com/tidb/stable/pessimist
ic-transaction.

[48] Tidb transaction isolation levels. https:
//docs.pingcap.com/tidb/stable/transacti
on-isolation-levels.

412 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.mariadb.org/
https://www.mysql.com/
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://www.pingcap.com/tidb/
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/transaction-isolation-levels
https://docs.pingcap.com/tidb/stable/transaction-isolation-levels
https://docs.pingcap.com/tidb/stable/transaction-isolation-levels

[49] What is a Transaction? http://msdn.microsoft.c
om/en-us/library/aa366402(VS.85).aspx.

[50] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chi-
jin Zhou, Huafeng Zhang, and Yu Jiang. Industry prac-
tice of coverage-guided enterprise-level DBMS fuzzing.
In Proceedings of the 43rd International Conference on
Software Engineering: Software Engineering in Prac-
tice (ICSE SEIP), pages 328–337, 2021.

[51] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. KRACE: data race fuzzing for kernel file
systems. In Proceedings of the 2020 IEEE Symposium
on Security and Privacy, pages 1643–1660, 2020.

[52] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng
Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and
Jun Wei. Finding bugs in gremlin-based graph database
systems via randomized differential testing. In ISSTA’22,
pages 302–313. ACM, 2022.

[53] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang,
Wenke Lee, and Dinghao Wu. SQUIRREL: testing
database management systems with language validity
and coverage feedback. In Proceedings of the 2020
International Conference on Computer and Communi-
cations Security (CCS), pages 955–970, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 413

http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx

A Definition for statement dependencies

We define statement dependencies in the same fashion as for
the transaction dependencies defined by Adya et al. [1, 2].

Definition 2 (Directly stmt-item-read-depends)
Statement S j directly stmt-item-read-depends on statement
Si if Si installs an item version xi while S j reads xi.

Definition 3 (Directly stmt-item-write-depends)
Statement S j directly stmt-item-write-depends on statement
Si if Si installs an item version xi while S j installs x’s next
version (after xi) in the version order.

Definition 4 (Directly stmt-item-anti-depends)
Statement S j directly stmt-item-anti-depends on statement Si
if Si reads an item version xk while S j installs x’s next version
(after xk) in the version order.

Definition 5 (Directly stmt-predicate-read-depends)
Statement S j directly stmt-predicate-read-depends on state-
ment Si if S j performs an operation r j(P: Vset(P)) while Si
installs an item version xi that is included in Vset(P).

Definition 6 (Directly stmt-predicate-write-depends)
Statement S j directly stmt-predicate-write-depends on state-
ment Si if either (1) S j overwrites an operation wi(P: Vset(P))
performed by Si, or (2) S j executes an operation w j(Q:
Vset(Q)) while Si installs an item version xi that is included
in Vset(Q).

Definition 7 (Directly stmt-predicate-anti-depends)
Statement S j directly stmt-predicate-anti-depends on state-
ment Si if S j overwrites an operation ri(P: Vset(P)) performed
by Si.

Definition 8 (Directly stmt-value-write-depends)
Statement S j directly stmt-value-write-depends on statement
Si if either (1) Si executes an operation wvalue

i (E: Vset(E))
where xk is included while S j install x’s next version (after
xk) in version order, or (2) S j executes an operation wvalue

j (F:
Vset(F)) while Si installs xi that is included in Vset(F). Here,
statement Si performs wvalue

i (E: Vset(E)) if Si installs an item
version whose values are based on expression E and the sys-
tem (conceptually) reads all needed versions in Vset(E).

B Proof related to SQL-level instrumentation

Assumption 1 prohibits statements use old item versions while
the newer ones are conceptually available. This can happen
in distributed DBMSs when a new item version is produced
but not well-synchronized, and thus the old version is still
used in some machines. However, this work focuses on bugs
in database engines deployed in local machines. Therefore,
it is reasonable to assume that every item version is well-
synchronized. Assumption 2 ensures that the inserted VSR

statements can correctly work. Assumption 3 ensures that the
inserted BWR statements read the same item version used in
the target statements.

Lemma 1 Statement S j directly stmt-item-read-depends on
statement Si ⇔ outputs of the AWR statement of Si and out-
puts of S j have intersections.

Proof: (1) Statement S j directly stmt-item-read-depends on
statement Si ⇒ outputs of the AWR statement of Si and out-
puts of S j have intersections. Because Si directly write-read
depends on S j, there is an item x such that Si installs version
xi and S j reads xi. Si installs version xi, so xi must be included
in the output of AWR of S j. S j reads xi, so xi must be in the
output of S j. So the output of AWR of Si and the output of S j
have intersections.

(2) Statement S j directly stmt-item-read-depends on state-
ment Si ⇐ outputs of the AWR statement of Si and outputs
of S j have intersections. Suppose xk is one of the intersected
item versions. xk is in the output of AWR of Si, so xk must be
installed by Si because Si is the only one statement that can
assign the corresponding VersionKey value to xk that matches
the predicates of AWR of Si. xk is also in the output of S j, so
xk is read by S j. So Si installs an item version xk and S j reads
xk. Therefore, Si write-read depends on S j.

Combining (1) and (2), we prove Lemma 1.

Lemma 2 Statement S j directly stmt-item-write-depends
on statement Si ⇔ outputs of the AWR statement of Si and
outputs of the BWR statement of S j have intersections.

Proof: (1) Statement S j directly stmt-item-write-depends on
statement Si ⇒ outputs of the AWR statement of Si and out-
puts of the BWR statement of S j have intersections. Because
S j directly write-write depends on Si, Si installs a version xi
and S j installs x’s next version (after xi) in the version order.
Si installs a version xi, so xi must be in the output of AWR
of Si. Suppose xk is the version of item x that is used in the
predicate matching of S j. xk must satisfy the predicate of S j
because S j is going to install a new version for item x. As
BWR of S j uses the same predicate as S j, xk must be in the
output set of BWR of S j. Suppose S j is going to install x j,
there must be xk « x j. And x j is xi’s next version, so xk is xi,
or xk « xi.

We assume that xk « xi. (a) If Si and S j are in the same
transaction. xi must be installed before x j, which is installed
by S j, and xk « xi. Therefore, the BWR of S j must read version
xi instead of xk. Conflict. (b) If Si and S j are in different
transactions, Ti and T j. Because T j reads xk, and Ti installs
xi, which is after xk, Ti item-anti-depends on T j. Because Ti
installs xi, and T j installs x j that are after xi, T j item-write-
depends on Ti. Conflict with Assumption 3.

Combining (a) (b), we get xk « xi in conflict. So xk is xi.
So xi is in the output of BWR of S j. And xi is in the output of

414 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AWR of Si. The output of AWR of Si and the output of BWR
of S j have intersections.

(2) Statement S j directly stmt-item-write-depends on state-
ment Si ⇐ outputs of the AWR statement of Si and outputs
of the BWR statement of S j have intersections. Suppose xk
is one of the intersected item versions. xk is in the output of
AWR of Si, so xk must be installed by Si because Si is the only
one statement that can assign the corresponding VersionKey
value to xk that matches the predicates of AWR of Si. xk is in
the output of BWR of S j, so xk satisfies the predicate of BWR
of S j, and it satisfies the predicate of S j. Therefore, S j will
install a new version of x. So Si installs a version xk and S j
installs x’s next version (after xk) in the version order, which
means that S j directly write-write depends on Si.

Combining (1) and (2), we prove Lemma 2.

Lemma 3 Statement S j directly stmt-item-anti-depends on
statement Si ⇔ outputs of Si and outputs of the BWR state-
ment of S j have intersections.

Proof: (1) Statement S j directly stmt-item-anti-depends on
statement Si ⇒ outputs of Si and outputs of the BWR state-
ment of S j have intersections. Because Si directly stmt-item-
anti depends on S j, Si reads an item version xk and S j installs
x’s next version (after xk) in the version order. Suppose xh is
the version of item x that is used in the predicate matching
of S j. xh must satisfy the predicate of S j because S j is going
to install a new version for item x. As BWR of S j uses the
same predicate as S j, xh must be in the output of BWR of S j.
Suppose S j is going to install x j, there must be xh « x j. While
x j is xk’s next version, so xk is xh, or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si reads version xk, and
thus S j must use a version of x that is after xk or equal to xk
(Assumption 1). However, S j uses version xh, and xh « xk.
Conflict. (b) Si and S j are in different transactions, Ti and
T j. Suppose statement Sk of transaction Tk installs version
xk. If Tk is T j, Sk must before S j because S j installs xk’s next
version. So xk is visible to S j, and S j must use xk instead of xh
(xh « xk). Conflict. So Tk is not T j. Because T j reads xh, and
Tk installs xk that are after xh, so Tk item-anti-depends on T j.
And T j installs x j that are after xk, so T j item-write-depends
on Tk. Conflict with Assumption 3.

Combining (a) (b), we get xh « xk in conflict. So xk is xh.
So xk is in the output of BWR of S j. And xk is in the output
of Si, The output of Si and the output of BWR of S j have
intersections.

(2) Statement S j directly stmt-item-anti-depends on state-
ment Si ⇐ outputs of Si and outputs of the BWR statement
of S j have intersections. Suppose xk is one of the intersected
items. xk is in the output of BWR of S j, so xk satisfies the
predicate of BWR of S j, and thus it satisfies the predicate of
S j (S j and BWR of S j use same version of x). Therefore, S j
will install a version after xk. xk is in the output of Si, so xk is
read by Si. So Si reads a item version xk and S j installs x with

a version after xk in the version order. Therefore, Si directly
stmt-item-anti-depends on S j.

Combining (1) and (2), we prove Lemma 3.

Lemma 4 Statement S j directly stmt-predicate-read-
depends on statement Si ⇒ outputs of the AWR statement
of Si and outputs of one of the VSR statements of S j have
intersections.

Proof: Statement S j directly stmt-predicate-read-depends on
statement Si, which means that S j performs an operation r j(P:
Vset(P)), and there is an item version xi that is installed by
Si and xi ∈ Vset(P). Because xi is installed by Si, the xi must
be included in the output of AWR of Si. Because VSRs of S j
outputs all item versions in the referenced tables, according
to Assumption 2, all referenced item versions should be out-
putted by VSRs of S j. Because xi ∈ Vset(P), at least one of
the VSRs of S j outputs xi. So outputs of the AWR statement
of Si and outputs of one of the VSR statements of S j have
intersections. Proved.

Lemma 5 Statement S j directly stmt-predicate-write-
depends on statement Si ⇒ (1) outputs of one of the VSR
statements of Si and outputs of the BWR statement of S j have
intersections, or (2) outputs of the AWR statement of Si and
outputs of one of the VSR statements of S j have intersections.

Proof: If statement S j directly stmt-predicate-write-depends
on statement Si, according to Definition 6, it can be (1) S j
overwrites an operation wi(P: Vset(P)) performed by Si, or
(2) S j executes an operation w j(Q: Vset(Q)) while Si installs
an item version xi that is included in Vset(Q).

For case (1), S j overwrites operation wi(P: Vset(P)), which
means that Si performs an operation wi(P: Vset(P)), and there
exists xk ∈ Vset(P) that S j installs x’s next version (after xk).
Because xk ∈ Vset(P), xk must be in the output of one of the
VSRs of Si. Suppose xh is the version of x that is used in S j
for predicate matching. Because S j installs x’s next version
(after xk), xh must satisfy the predicate of S j because S j is
going to install a new version for item x. As BWR of S j uses
the same predicate as S j, xh must be in the output of BWR
of S j too. Suppose S j is going to install x j, there must be xh «
x j. And x j is xk’s next version, so xk is xh, or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si uses version xk, and thus
S j must use a version of x that is later than or equal to xk.
However, S j uses xh and xh « xk. Conflict. (b) Si and S j are
in different transactions, Ti and T j. Suppose statement Sk
of transaction Tk installs version xk. If Tk is T j, Sk must be
before S j because S j install xk’s next version. So xk is visible
to S j, so S j must use xk instead of xh as xh « xk. Conflict.
So Tk is not T j. Because T j reads xh (BWR of S j) while
Tk installs xk that are after xh, Tk item-anti-depends on T j.
Because T j installs x j that are after xk, T j item-write-depends
on Conflict with Assumption 3.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 415

Combining (a) (b), we get xh « xk in conflict. So xk is xh. So
xk is in the output of BWR of S j. And xk is in the output of one
of the VSRs of Si, the outputs of one of the VSR statements
of Si and the output of BWR of S j have intersections.

For case (2), S j executes an operation w j(Q: Vset(Q)) while
Si installs an item version xi that is included in Vset(Q). Be-
cause xi is installed by Si, the xi must be included in the output
of AWR of Si. Because xi ∈ Vset(Q), xi must be in the output
of one of the VSRs of S j. So the output of AWR of Si and the
output of one of the VSRs of S j have intersections.

Combining (1) and (2), we prove Lemma 5.

Lemma 6 Statement S j directly stmt-predicate-anti-depends
on statement Si⇒ outputs of one of the VSR statements of Si
and outputs of the BWR statement of S j have intersections.

Proof: Statement S j directly stmt-predicate-anti-depends on
statement Si, which means that Si performs an operation ri(P:
Vset(P)), and there exists xk ∈ Vset(P) that S j installs x’s next
version (after xk). Because xk ∈ Vset(P), xk must be in the
output of one of the VSRs of Si. Suppose xh is the version of
x that is used in S j for predicate matching. Because S j installs
x’s next version (after xk), xh must satisfy the predicate of S j
because S j is going to install a new version for item x. As
BWR of S j uses the same predicate as S j, xh must be in the
output of BWR of S j too. Suppose S j is going to install x j,
there must be xh « x j. And x j is xk’s next version, so xk is xh,
or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si uses version xk, and thus
S j must use a version of x that is later than or equal to xk.
However, S j uses xh and xh « xk. Conflict. (b) Si and S j are
in different transactions, Ti and T j. Suppose statement Sk
of transaction Tk installs version xk. If Tk is T j, Sk must be
before S j because S j install xk’s next version. So xk is visible
to S j, so S j must use xk instead of xh as xh « xk. Conflict.
So Tk is not T j. Because T j reads xh (BWR of S j) while
Tk installs xk that are after xh, Tk item-anti-depends on T j.
Because T j installs x j that are after xk, T j item-write-depends
on Conflict with Assumption 3.

Combining (a) (b), we get xh « xk in conflict. So xk is xh. So
xk is in the output of BWR of S j. And xk is in the output of one
of the VSRs of Si, the outputs of one of the VSR statements of
Si and the output of BWR of S j have intersections. Lemma 6
is proved.

Lemma 7 Statement S j directly stmt-value-write-depends
on statement Si⇒ (1) outputs of one of the VSR statements of
Si and outputs of the BWR statement of S j have overlapping
parts, or (2) outputs of the AWR statement of Si and outputs
of one of the VSR statements of S j have intersections.

Proof: If statement S j directly stmt-value-write-depends on
statement Si, according to Definition 8, it can be (1) Si exe-
cutes an operation wvalue

i (E: Vset(E)) where xk is included

while S j installs x’s next version (after xk) in version order,
or (2) S j executes an operation wvalue

j (F: Vset(F)) while Si
installs xi that is included in Vset(F).

For case (1), because xk ∈ Vset(E), xk must be in the output
of one of the VSRs of Si. Suppose xh is the version of x that is
used in S j for predicate matching. Because S j installs x’s next
version (after xk), xh must satisfy the predicate of S j because
S j is going to install a new version for item x. As BWR of
S j uses the same predicate as S j, xh must be in the output of
BWR of S j too. Suppose S j is going to install x j, there must
be xh « x j. And x j is xk’s next version, so xk is xh, or xh « xk.

We assume that xh « xk: (a) Si and S j are in the same
transaction. Si must be before S j. Si uses version xk, and thus
S j must use a version of x that is later than or equal to xk.
However, S j uses xh and xh « xk. Conflict. (b) Si and S j are
in different transactions, Ti and T j. Suppose statement Sk
of transaction Tk installs version xk. If Tk is T j, Sk must be
before S j because S j install xk’s next version. So xk is visible
to S j, so S j must use xk instead of xh as xh « xk. Conflict.
So Tk is not T j. Because T j reads xh (BWR of S j) while
Tk installs xk that are after xh, Tk item-anti-depends on T j.
Because T j installs x j that are after xk, T j item-write-depends
on Conflict with Assumption 3.

Combining (a) (b), we get xh « xk in conflict. So xk is xh. So
xk is in the output of BWR of S j. And xk is in the output of one
of the VSRs of Si, the outputs of one of the VSR statements
of Si and the output of BWR of S j have intersections.

For case (2), because xi is installed by Si, the xi must be
included in the output of AWR of Si. Because xi ∈ Vset(F), xi
must be in the output of one of the VSRs of S j. So the output
of AWR of Si and the output of one of the VSRs of S j have
intersections.

Combining (1) and (2), we prove Lemma 7.

C Proof for Theorem 1

Inductive proof: n is the number of statements in the
statement-dependency graph (SDG). [Tx1Sy1, Tx2Sy2, . . . ,
TxnSyn] is the statement sequence executed within transac-
tions. [Sz1, Sz2, . . . , Szn] is the statement sequence generated
by performing topological sorting on SDG.

when n = 1, obviously T1S1 and S1 give the same results.
Suppose n = k, its SDG Gk is acyclic, and [Tx1Sy1, Tx2Sy2,

. . . , TxkSyk] and [Sz1, Sz2, . . . , Szk] produce the same results.
When n = k + 1, we add a new statement at the end of the
transactional statement sequence. Therefore, the sequence
becomes [Tx1Sy1, Tx2Sy2, . . . , TxkSyk, Tx(k+1)Sy(k+1)]. We
need to prove that Theorem 1 holds for k+1 if the SDG is
acyclic.

Because Tx1Sy1, Tx2Sy2, . . . , and TxkSyk are executed be-
fore Tx(k+1)Sy(k+1), they are not affected by Tx(k+1)Sy(k+1),
and thus their execution results are the same as [Tx1Sy1,
Tx2Sy2, . . . , TxkSyk] in the k-length case. So Tx1Sy1, Tx2Sy2, . . .
, and TxkSyk still generate graph Gk. And then Tx(k+1)Sy(k+1)

416 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

is executed and produces some dependencies to some of the
executed statements. Therefore, Gk+1 is a super graph of Gk.
By performing topological sort, it generates several normal
execution sequences. Suppose [Sw1, Sw2, . . . , Swk, Sw(k+1)] is
one of the sequences. Taking out the new statement Sy(k+1)
from this sequence, we can get [Sz1, Sz2, . . . , Szk]. Because
we use topological sort, and Gk+1 is a super graph of Gk, [Sz1,
Sz2, . . . , Szk] follows the edges in Gk+1 and thus follows the
edges in Gk. Therefore, [Sz1, Sz2, . . . , Szk] must be one of the
topologically sorting results of k-length cases.

Now we consider the new statement Sy(k+1). Suppose [Sz1,
Sz2, . . . , Szp, Sy(k+1), Sz(p+1), ..., Szk] is one of the topologi-
cally sorting results of k+1-length cases. [Sz1, Sz2, . . . , Szk] is
the topologically sorting results of k-length cases.

Sy(k+1) will not affect the statements that are executed be-
fore it. Therefore, the Sz1, Sz2, . . . , Szp produce the same
results as they are in transaction execution (according to the
k-length case). — (Conclusion 1)

Now, we need to prove: (1) Sy(k+1) produce the same results
as Tx(k+1)Sy(k+1); and (2) Sz(p+1), ..., Szk are not affected by
Sy(k+1), that is, they will produce the same results as they
produce in transaction execution.
(1) Sy(k+1) produce the same results as Tx(k+1)Sy(k+1).
Proof: If Sy(k+1) and Tx(k+1)Sy(k+1) produce different results,
there must be at least one item x whose version xi is referenced
by Sy(k+1) and x j is referenced by Tx(k+1)Sy(k+1), and xi is
different from x j. There are only two possible cases:

(a) xi « x j. Suppose Tx jSy j installs item version x j, so
Tx(k+1)Sy(k+1) depends on Tx jSy j because Tx(k+1)Sy(k+1) ref-
erences the item version installed by Tx jSy j. Therefore, topo-
logical sorting will put Tx jSy j before Tx(k+1)Sy(k+1). Sup-
pose Sz j is the statement in sorted sequence corresponding
to Tx jSy j. Sz j is before Sy(k+1), so Sz j should produce the
same results as Tx jSy j according to Conclusion 1. So Sz j also
installs version x j. So Sy(k+1) must reference the version of
item x later than or equal to x j. However, Sy(k+1) reference
xi, and xi « x j. Conflict.

(b) xi » x j. Suppose xi is installed by Szi. Because Sy(k+1)
reference xi, Szi must be before Sy(k+1). According to Con-
clusion 1, Szi produces the same results as it is in transaction
execution. Suppose TxiSyi is the corresponding statement in
the transaction execution. TxiSyi installs item version xi while
Tx(k+1)Sy(k+1) reference x j that is older than xi, so TxiSyi de-
pends on Tx(k+1)Sy(k+1). Therefore, topological sorting will
put TxiSyi after Tx(k+1)Sy(k+1), i.e., Szi is after Sy(k+1), which
is in conflict with that Szi must be before Sy(k+1).

Combining (a) and (b), we can get that there is no item
that Sy(k+1) and Tx(k+1)Sy(k+1) reference its different ver-
sion. Therefore, Sy(k+1) can produce only the same results as
Tx(k+1)Sy(k+1).
(2) Sz(p+1), ..., Szk are not affected by Sy(k+1).
Proof: We assume at least one of the statements in Sz(p+1), ...,
Szk is affected by Sy(k+1). Suppose Szh is the closest statement
to Sy(k+1) among the statements that is affected by Sy(k+1).

That is, there is not any statement between Szh and Sy(k+1), or
statements between Szh and Sy(k+1) should not be affected by
Sy(k+1). Because Szh is affected, it must reference at least one
item version that is installed by Sy(k+1).

Suppose xi is one of the item versions that are installed
by Sy(k+1) and referenced by Szh. Sy(k+1) and Tx(k+1)Sy(k+1)
produce the same results, so Tx(k+1)Sy(k+1) also installs xi.
Suppose TxhSyh is the corresponding statement of Szh in the
transaction execution sequence. Because TxhSyh and Szh are
the same statement and thus use the same predicate, TxhSyh
must reference one of the versions of item x. Suppose the
item version is x j. x j must be different from xi as TxhSyh is
executed before Tx(k+1)Sy(k+1), which is the last statement in
transaction execution, and TxhSyh cannot reference an item
version that has not been installed yet. There are only two
possible cases:

(a) xi » x j. TxhSyh reference x j while Tx(k+1)Sy(k+1) in-
stalls xi, and xi » x j, so Tx(k+1)Sy(k+1) depends on TxhSyh.
According to the topological sort, Szh must be before Sy(k+1).
However, Szh is after Sy(k+1). Conflicts.

(b) xi « x j. Suppose x j is installed by Tx jSy j. Because
Tx jSy j installs x j and TxhSyh reference x j, TxhSyh depends
on Tx jSy j. Tx jSy j installs x j while Tx(k+1)Sy(k+1) installs
xi, and xi « x j, so Tx jSy j depends on Tx(k+1)Sy(k+1). So
Tx(k+1)Sy(k+1) « Tx jSy j « TxhSyh. According to topological
sorting, Sy(k+1) must be before Sz j, and Sz j must be before
Szh. Because Szh is the closest statement that is affected by
Sy(k+1), and Sz j is before Szh, Sz j is not affected by Sy(k+1).
So Sz j will also install x j. Therefore, Szh should use a version
later than or equal to x j. However, Szh references version xi
that is older than x j. Conflicts.

Combining (a) and (b), we can get that there is no state-
ment in [Sz(p+1), ..., Szk] that is affected by Sy(k+1). Therefore,
Sz(p+1), ..., Szk should produce the same results as they pro-
duce in transaction execution.

Combining (1) and (2), we can get that [Tx1Sy1, Tx2Sy2, . . .
, TxkSyk, Tx(k+1)Sy(k+1)] and its topological sorting produce
the same results. So for n = k + 1, the theorem still holds.
Therefore, Theorem 1 is proved.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 417

Take Out the TraChe:
Maximizing (Tra)nsactional Ca(che) Hit Rate

Audrey Cheng† David Chu† Terrance Li† Jason Chan†

Natacha Crooks† Joseph M. Hellerstein† Ion Stoica† Xiangyao Yu‡

†UC Berkeley ‡University of Wisconsin–Madison

Abstract

Most caching policies focus on increasing object hit rate
to improve overall system performance. However, these
algorithms are insufficient for transactional workloads. In
this work, we define a new metric, transactional hit rate, to
capture when caching reduces latency for transactions. We
present DeToX, a caching system that leverages transactional
dependencies to make eviction and prefetching decisions.
DeToX is able to significantly outperform single-object
alternatives on real-world workloads and popular OLTP
benchmarks, providing up to a 1.3x increase in transaction
hit rate and 3.4x improvement in cache efficiency.

1 Introduction

To improve latency at scale, application developers often layer
caching systems, such as Memcached [69] and Redis [2], over
standard data stores. These systems traditionally optimize for
object hit rate, or how often requested objects can be served
from cache. Consequently, current caching policies fail to cap-
ture the transactional nature of many application workloads.
On a production workload from Meta [26], we find that up to
90% of objects cached by least recently used (LRU) and least
frequently used (LFU), two popular caching algorithms, do
not have any impact on latency despite high object hit rates.
Existing policies fail to capture the all-or-nothing property of
transactions: all objects requested in parallel must be present
in cache, or there will be little performance improvement
because latency is dictated by the slowest access.

Accordingly, object hit rate is the wrong objective for
transactional workloads. Instead, we propose a new metric,
transactional hit rate, or how often objects requested in
parallel can all be served from cache. This metric precisely
captures when the cache reduces latency for transactions.

In this paper, we present DeToX, the first high-performance
caching system that optimizes for transactional hit rate. In
accordance with standard caching algorithms, DeToX assigns
scores to objects and evicts those with the lowest values.

As such, its policy is easily adaptable to existing caching
systems. To rank objects in the transactional context, DeToX
leverages the following insight: objects accessed in parallel
within the same transaction should be scored together since
they must all be cached to reduce transactional latency.

While scoring keys together might seem simple, the
structure of transactional workloads complicates matters.
Unlike previous work on caching for parallel jobs [11] and
web applications [7, 10, 18, 90, 91], transactions need to
be modeled as non-trivial directed acyclic graphs (DAGs)
of read and write operations [22, 94]. Crucially, some keys
within a transaction are accessed in parallel, but others are
not. Consequently, a transaction’s latency is determined by
its critical length, or the number of sequential accesses on
its longest, non-cached path (transactional hit rate captures
the reduction of critical length). Rather than considering all
keys in a transaction together, we must focus on caching the
groups of keys that reduce critical length.

Implementing a caching policy based on grouping presents
several significant challenges. (1) For an arbitrary transaction,
there can be an exponential number of groups, making
scoring prohibitively expensive. (2) Identifying groups
requires inferring transactional DAGs through static analysis,
which may not always be possible. (3) Objects that are
accessed by different transactions can belong to different
groups, which have varying latency benefits if cached, and
we need to capture these disparities.

We address each of these issues in DeToX. (1) To reduce the
overhead of an exponential number of groups, we introduce
the notion of interchangeable keys: if two keys can replace
each other in any group and still reduce critical length, then
they can be represented by the same group. Interchangeable
keys drastically curb the number of groups that need to be
scored. (2) When transactional DAGs are not accessible, we
propose a simplified policy that dynamically infers groups
based on which requests are executed in parallel (termed
levels). (3) Finally, we account for group membership when
scoring keys to ensure these values precisely reflect each
object’s contribution to transactional hits.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 419

a1

10a2

Frequency: 15
a3

5
Figure 1: GetLinkedAccounts transaction.

Moreover, while our approach is primarily targeted at
eviction, it also enables prefetching (Section 6). Our
prefetching policy tracks dependencies within transactions
to preemptively bring groups of items into the cache.

Our eviction and prefetching algorithms are implemented in
DeToX, which presents a key-value API that supports drivers
for Redis [2], Postgres [3], and TiKV [4]. We evaluate our sys-
tem on real-world workloads from TAOBench [26], a social
network benchmark that models Meta’s production work-
loads, as well as standard OLTP benchmarks (Epinions [37],
SmallBank [87], and TPC-C [33]). Compared to single-object
caching algorithms and systems, including ChronoCache [45],
GDSF [27], LIFE [11], LFU, and LRU, our algorithm can
achieve up to a 1.3x increase in transactional hit rate, leading
to a 3.4x improvement in cache efficiency (defined as the
least amount of cache space required to achieve a particular
transactional hit rate). For a Redis-Postgres setup, this
translates into 31% higher throughput and 30% lower latency.

Our transactional hit rate metric prioritizes latency and ex-
poses a new trade-off in caching enabled by the cloud’s elastic
resources: optimizing for latency versus reducing system load.
In contrast, single-object policies focus on maximizing object
hit rate to decrease load to the data store but do not always
improve transaction request times.

In summary, we make the following contributions:

• We define a new metric, transactional hit rate, to evaluate
the latency reduction of caching for transactions (Section 3).

• We provide the first formalization of transactional caching,
and we prove that the problem is NP-Hard (Section 3.4).

• We present a new caching system, DeToX, that leverages
transactional dependency information to optimize for
transactional hit rate and significantly improve performance
on popular workloads (Sections 4 – 8).

2 Motivation

In this section, we illustrate why single-object eviction
algorithms perform poorly for transactional workloads.
Specifically, we show that a well-known optimality result
in caching does not hold for transactions and that popular
caching algorithms achieve low transactional hit rates.

2.1 Object Hit Rate is Insufficient

Most existing cache eviction algorithms focus on maximizing
object hit rate, or the fraction of single object requests served
from cache. However, this approach fails to capture the

10 15 20 25 30
Cache Size Relative to Data Size (%)

40

60

80

100

H
it

Ra
te

(%
)

TAOBench Product Group 3
LRU-OHR
LFU-OHR
LRU-THR
LFU-THR

10 15 20 25 30
Cache Size Relative to Data Size (%)

80

90

100

“U
nh

el
pf

ul
”C

ac
he

d
Ke

ys
(%

) TAOBench Product Group 3
LRU
LFU

(a) (b)

51% diff.

Figure 2: Single-object policy performance.

inter-object dependencies within transactions. Consider
for example a simple transaction GetLinkedAccounts that
returns secondary bank accounts a2 and a3 linked with a
primary account a1 (Figure 1). This transaction must first
read a1 before accessing both secondary accounts a2 and a3
in parallel. Thus, a1, a2 and a3 are all on the longest path of
the transaction. If we cache a1, we can reduce the end-to-end
latency of the transaction. However, if we additionally cache
a2, the overall latency does not improve because we still need
to access a3 from disk. In fact, caching either a2 or a3 indi-
vidually does not improve performance; transaction latency
remains equal to the case in which neither key was cached. On
the other hand, caching both a2 and a3 does improve latency.

Transactions have an implicit all-or-nothing property on
groups of objects that traditional caching algorithms fail to
capture. This can lead popular eviction algorithms, such as
LRU and LFU, to make poor caching decisions. Consider a
situation in which, over all transactions, a2 is more frequently
accessed than a1 and a3. LFU and LRU would choose to evict
a1 and a3 over a2, resulting in no latency improvement for
this transaction. In this case, a “hot” (frequently accessed) key
a2 is requested in parallel alongside a “cold” (rarely accessed)
key a3. If all accesses of a2 are sent in parallel with requests
to different cold keys, there is no benefit to caching a2 un-
less all these cold keys are cached. In effect, cold keys can
“contaminate” (degrade the cacheability of) hot keys like a2.

Real-world workloads. This observation is not limited
to our simple example: we find that single-object eviction
algorithms also perform poorly for complex, real-world
workloads. Figure 2a illustrates that over 90% of cached keys
do not have any impact on latency (“unhelpful” keys) for
the Product Group 3 workload of TAOBench [26]. The root
cause is simple: these algorithms optimize for object hit rate
(OHR) rather than transactional hit rate (THR). As we see
in Figure 2b, LRU and LFU achieve high object hit rates but
up to 51% lower transactional hit rates. Transactions in this
workload access either a combination of hot keys and warm
keys, or hot keys and cold keys. Single-object algorithms,
which use only individual object features to score keys, retain
only hot keys but evict most warm keys and all cold keys. As
a result, they achieve few transactional hits. A transactionally-
aware policy would instead recognize that cold keys
contaminate their associated hot keys and prioritize retaining
only the hot and warm keys that are accessed together.

420 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

T Keys accessed Cache state Optimal cache state
1 a1,a2,a3 - -
2 a4,a5,a6 a1,a2,a3 a1,a2,a3
3 a4,a5,a7 a1,a4,a5 a1,a2,a3
4 a1,a2,a3 a1,a4,a5 a1,a2,a3

Figure 3: Non-optimality of Belady.

2.2 Optimality

Our observations also have theoretical implications. We find
that Belady [16], the offline, optimal eviction algorithm for
uniformly-sized objects does not make the best decisions
for maximizing transactional hit rate. This policy evicts keys
that are accessed furthest in the future but fails to take into
account whether these keys generate transactional hits.

We prove that Belady is not optimal even for the simplest
case of uniformly-sized transactions with uniformly-sized
objects (Figure 3). In this example, we have four transactions
with a cache size of 3. T1 and T4 access keys a1,a2,a3, while T2
accesses a4,a5,a6 and T3 accesses a4,a5,a7. Belady chooses
to first cache a1,a2,a3 and then replaces the last two keys
with a4,a5 since these keys give object hits (but no latency
reduction) for T3. However, keeping a2,a3 in the cache would
lead to a transactional hit (and latency improvement) for T4.

2.3 Towards a new approach

Our results highlight how single-object caching strategies
yield low transactional hit rates by storing many unhelpful
objects. Web caching algorithms suggest a way forward:
they acknowledge the need to cache multiple objects
together (e.g., page-level hit ratio) but only consider flat
dependencies [11, 91]. In contrast, transactions can have
complicated topologies with multiple levels of dependencies.

To develop a transactionally-aware caching system, we
must address three challenges: (1) formalizing caching
in the transactional context, including optimality analysis
(Section 3), (2) identifying which groups of objects lead
to transaction hits, given the potentially complex structure
of transactions (Section 4.1), and (3) scoring the individual
objects in these groups to determine which objects to store
in the cache (Section 4.2). In our design, we are careful to
emphasize compatibility with existing caching systems, such
as Memcached and Redis, so that our approach can be easily
implemented for greater applicability.

3 Transactional Caching

In this section, we formalize the transactional caching
problem. We define a new metric, transactional hit rate, to
capture the latency reduction of caching transactions.

1 id = SELECT cId FROM ACCOUNTS WHERE name = cName
2 s = SELECT savings FROM SAVINGS WHERE cId = id
3 c = SELECT checking FROM CHECKING WHERE cId = id
4 return s + c

Listing 1: Code for Figure 4. The dependencies for Lines 2
and 3 on the output of Line 1 are highlighted in red.

3.1 Transactions

Transactions consist of read and write requests that must
be applied atomically [22]. Some of these operations are
independent and can execute in parallel, while others are
dependent on the result of preceding operations. For instance,
a read operation may query a key determined by the return
value of a previous operation. As a result, these operations
must be run sequentially. In effect, transaction execution
can be captured by a DAG of operations. More formally, we
apply the notion of a logical dependency, generalizing the
model from Wu et al. [94]:
Definition 1 (Logical dependency). Given two operations t p
and t of a transaction, an operation t is logically dependent
on operation p if p determines the key or value accessed by t.

Traditionally, these dependencies are not captured by the
system, which observes only sequences of reads and writes.
In practice, these relationships can be captured statically
through program analysis or specified at run time by the
developer. Together, operations and logical dependencies
define a transaction execution graph:
Definition 2 (Transaction execution graph). For transaction
T , a transaction execution graph G=(V,E) is a DAG, where
each vertex in V represents a pair (x,X) of a read or write
operation to key x in table X, and each edge in E represents
a logical dependency between operations.

Each transaction execution graph corresponds to a
transaction type:
Definition 3 (Transaction type). Transactions of the same type
have identical execution graphs when only considering tables.

We infer transaction execution graphs and their resulting
types through static analysis, as done in prior work [36, 94].
Note that we only extract table accesses and graph structure;
the individual keys accessed by transactions are known
only at run time. As such, we make no assumptions about
the DAG structure and support general-purpose, interactive
transactions. For example, the SmallBank workload [87]
contains the transaction types: Amalgamate, Balance,
DepositChecking, SendPayment, TransactSavings, and
WriteCheck. For the Balance transaction (Listing 1), requests
to both the Savings (S) and Checkings (C) tables are
dependent on the result of the read to the Accounts table (A).
The corresponding execution graph consists of three nodes,
one for each operation, and logical dependencies r[A]→r[S]
and r[A]→r[C]. While the reads to S and C are independent

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 421

a

s c

(a) Cache state: {}

a

s c

(b) Cache state: {a}

a

s c

(c) Cache state: {c}
Figure 4: SmallBank Balance transactions.

and can be executed in parallel, they cannot proceed until
after the read to A finishes. At run time, a Balance transaction
that reads the keys a,s,c from the tables A,S,C respectively
can be mapped onto the same execution graph (Figure 4a).

3.2 Cache

The previous section presents the notion of a transaction, in-
cluding the logical dependencies that constrain its execution.
We now formalize how caching affects transactions, drawing
from Abrams et al. [48] for notation.
Definition 4 (Cache state). A cache state is a set of keys C
for which |C|≤n, where n is the capacity of the cache.

In line with prior work [29], we assume that the cache state
does not change for the duration of each transaction.

By assumption, objects are served with lower latency from
the cache than from the underlying data store. We make
the simplifying assumption that requests served from the
cache have zero latency for notational simplicity (we explore
the effects of varying cache latency in Section 8.6). Under
this model, transaction latency is defined by the number of
sequential, non-cached accesses. This corresponds to the
longest path in the transaction’s execution graph G, excluding
vertices with cached keys.

We formalize this notion as the critical length:
Definition 5 (Critical length). Given a transaction T with
transaction execution graph G, K number of keys, and cache
state C, the critical length is the length of the longest path
from any source vertex (no incoming edges) to any sink vertex
(no outgoing edges), excluding vertices corresponding to keys
in C. We define the function L :G×2K →N for which 2K is the
powerset of all keys, such that L(G,C) is the critical length.

Given a transaction T with execution graph G, L(G, {})
represents the length of the longest path in G when the
cache is empty. For example, Figure 4a has longest paths
{r[a],r[c]} and {r[a],r[s]} with critical length L(G,{}) = 2.
Caching key a (Figure 4b) would shorten the critical length to
L(G,{a})=1, as the longest paths are reduced to {r[c]} and
{r[s]}. However, caching key c (Figure 4c) does not change
the critical length, since {r[a], r[s]} remains the longest
path with L(G,{c})=2. Informally, we refer to each length
reduction as a transactional hit.

3.3 Transactional Hit Rate (THR)

Having defined the necessary formalisms for transaction la-
tency and caching, we can now introduce transactional hit rate.
Informally, this metric captures how much latency improves

when caching for transactions, much like how its single-object
counterpart, object hit rate, does so for individual requests.

We first present THR in the context of a single transaction:
Definition 6 (Individual transactional hit rate). Given
transaction T with execution graph G and cache state C, the
individual transactional hit rate is L(G,{})−L(G,C)

L(G,{}) .

The difference in critical length represents the reduction in
sequential, non-cached accesses after caching. We normalize
this difference by dividing by the total critical length. This
metric captures the impact of caching for the execution of a
single transaction (note that if the transaction execution graph
is a sequential list of dependent reads, then transactional hit
rate is equivalent to object hit rate). We easily extend this
definition to a sequence of transactions:
Definition 7 (Transactional hit rate). Given a sequence
of transactions T1, T2, ... , Tm with execution graphs
G1,G2, ... ,Gm and the respective cache states at the time
of execution C1, C2, ... , Cm, the transactional hit rate is
Σm

i=1(L(Gi,{})−L(Gi,Ci))

Σm
i=1L(Gi,{}) .

3.4 Optimality Analysis

Single-object caching is a well-studied problem and is known
to be NP-Hard in the general case [29]. We show that the
optimal transactional caching is NP-Hard through a reduction
from variable-sized caching of single objects (proof in
Appendix A). In summary, we reduce each variable-sized
object of size X to a transaction with X unit-sized operations.

4 Group Identification and Scoring

Designing an optimal caching policy is impractical for
transactional caching, since it would run in exponential
time. Unfortunately, traditional heuristics perform poorly
for transaction hit rate (Section 2) because they fail to
identify the keys that must be cached as a group in order to
yield a transactional hit. This notion of grouping is central
to developing a transactionally-aware caching policy. We
proceed in two steps: first, we identify which groups of
keys lead to transactional hits when cached together (group
identification). Next, we determine what scores should be
assigned to each key within a group (group scoring).

Figure 5 gives an overview of DeToX. Our system first ex-
tracts transaction execution graphs (Section 3) from applica-
tion code and identifies groups of table accesses (Section 4.1)
at compile time. The number of groups that DeToX needs to
consider can be reduced at compile time through the notion of
interchangeability (Section 5.1). DeToX then scores groups
based on key accesses at run time (Section 4.2). If application
code is not available, DeToX constructs approximate groups
at run time by using levels (Section 5.2).

422 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Application Code Extract Txn
Execution

Graph S3.1

Group Identification S4.1

Compile Time Run Time

Compress Groups S5.1

Application Requests

A

B C

D

a = SELECT A.a FROM A
b = SELECT B.b FROM B

WHERE B.a = a
c = SELECT C.c FROM C

WHERE C.a = a
d = SELECT D.d FROM D

WHERE D.c = c

{A} {C} {D}

{A,C} {A,D} {B,C,D} {A,B,C,D}

{A} {C or D}

{A,C or D} {B,C,D} {A,B,C,D}

Map Key
Accesses to

Groups

Scoring S4.2

Make Caching Decisions

Infer Levels
from Key

Accesses S5.2

Figure 5: Overview of DeToX (gray boxes). Blue edges on the right represent the path taken if application code is not available.

4.1 Group Identification

Intuitively, a group is a set of keys that reduces critical
length if cached together. Specifically, we define a complete
group as one from which we cannot remove any key without
increasing critical length. Completeness optimizes cache
efficiency by storing the minimal subset of keys necessary
to reduce latency. Formally:
Definition 8 (Complete group). Given a transaction T and
its execution graph G, a complete group is a subset of keys
g accessed in T such that ∀g′⊂g, L(G,g)<L(G,g′).

We identify complete groups of table accesses at compile
time, using the transaction execution graphs G extracted via
static analysis, as seen in Figure 5. A simple algorithm to
identify groups is to iterate through the powerset of possible
table accesses and compute their resulting reductions in
critical length. These table accesses are replaced at run time
with key accesses. The application passes along metadata
with requests to indicate the corresponding vertex in the
transaction execution graph of each key access.

Consider Figure 6a, which has a critical length of three
(serial accesses of a,c,d) and seven complete groups ({a},
{c}, {d}, {a,c}, {a,d}, {b,c,d}, {a,b,c,d}). Note that {c,d}
is not a complete group. If c and d are both cached, then the
critical length is two (serial accesses of a,b). However, only
caching c already yields the same critical length (accesses
to a,b,d). Similarly, {a,b} is not a complete group, because
it yields a critical length of two (serial accesses c,d), which
could also be achieved by just caching a.

In the worst case, the number of complete groups can be
exponential in the size of the transaction, even for simple
transaction topologies. Fortunately, many of these groups are,
in fact, equivalent. We describe this notion more precisely
in Section 5.1 and present an optimization that drastically
reduces the number of groups that need to be considered.

4.2 Scoring

Caching policies typically assign scores to keys and evict
keys with lower values. We adopt the same strategy by
mapping complete groups to individual key scores at run
time, as seen in Figure 5. This approach has two benefits:
(1) we can draw from prior work on single-object caching

Parameter Description

SCORE_G(group) Score of a group
Fgroup Set of all key frequencies in a group
Lgroup Transactional hits of a group
Sgroup Sum of key sizes in a group
SCORE_K(key) Score of a key
TSkey Sum of instance scores for a key
Fkey Frequency of a key
Aglobal Global aging factor

Table 1: Scoring parameters.

algorithms, and (2) we minimize implementation changes
needed for real-world caching systems.

4.2.1 Scoring a Group in a Single Transaction

We begin by assigning numerical scores to each group (group
scores) with higher values representing groups that are more
beneficial to cache. We draw inspiration from GDSF, a
high-performing web caching algorithm [27]. GDSF con-
siders three metrics to score keys: frequency (access count),
recency, and size. Specifically, GDSF uses the following
formula: SCOREGDSF(key)=Fkey/Skey+Aglobal , where Fkey is
frequency of the key, Skey is size of the key, and A is a global
recency factor (described in Section 4.2.3). GDSF gives equal
weight to each of these factors, and we follow this approach.
We leverage frequency and size to score each group as follows
(and incorporate recency into key scores in Section 4.2.3):

SCORE_G(group)=
min(Fgroup)×Lgroup

Sgroup

Fgroup is a list of all key frequencies in the group. Lgroup is the
number of transactional hits generated if this group is cached.
Sgroup is the sum of all key sizes in the group. All scoring
parameters can be found in Table 1. For the transactions
in Figure 6 (which will be used as running examples), the
group scores of each complete group for these transactions
are shown in Figures 6b and 6d. The transaction in Figure 6a
has keys a, b, c, d with frequencies of 1, 29, 99, and 50,
respectively and sizes of 1. The score of group {a,b,c,d} is
thus min(1,29,99,50)×3

4 =0.75.
Frequency (Fgroup). Keys within a complete group may vary

in frequency but must all be cached to yield a transactional

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 423

Figure 6: Example transactions and scores. Key sizes are 1, cache size is 3, and Aglobal starts at 0. The cache initially stores
{a,b,c}. a is evicted after T1, and d is evicted after T2, with Aglobal updated on each eviction.

hit. For example, if a high-frequency key x is only associated
with a group of keys {y_1, . . . , y_k} (each with much lower
frequency than x), then it is not beneficial to cache x. Essen-
tially, the key with the minimum frequency determines the
cacheability of the entire group. Thus, we take the minimum
of all key frequencies in calculating the group score. Consider
for instance the transaction in Figure 6c: key b is less
frequently accessed than key c and drives down the frequency
of the group {b,c} to min(Fgroup) = min(30,100) = 30. In
this example, b contaminates c.

Critical length reduction (Lgroup). This parameter captures
the reduction in critical length when caching a group
(Lgroup =L(G,{})−L(G,group)). Other factors being equal,
groups with greater reductions are better choices to cache
and should thus be assigned a higher score.

Size (Sgroup). Sgroup represents the cache space needed to
store the group. Since all keys in a group must be present in
cache to generate a transactional hit, THR is maximized by
retaining groups of smaller sizes (more groups can be cached).

Next, we describe how to go from group scores to key scores.

4.2.2 Scoring Across Groups in a Single Transaction

Mapping group scores to keys is challenging: for a given
transaction, a key can belong to multiple complete groups,
each with a separate group score (SCORE_G). In this section,
we focus on assigning scores to keys within a single
transaction; we assign each key an instance score (SCORE_I)
based on one of its group scores. We combine instance scores
across transactions in Section 4.2.3.

Our algorithm leverages the insight that out of all the keys
in a transaction, the highest-scoring complete group is the
most beneficial set of keys to cache. Thus, our protocol
first finds the complete group with the highest group score
SCORE_G and sets the instance score of all keys in that group
to SCORE_G. In Figure 6b, {c} has the highest group score
(SCORE_G=99), so c is assigned the instance score of 99. We
then score the remaining keys of the transaction assuming
that keys in the highest-scoring group will be cached.

In subsequent iterations, our algorithm finds the highest-
scoring complete group that is a superset of all keys that

have been assigned instance scores. In Figure 6b, having
scored c, the highest-scoring complete group that subsumes
c is {b,c,d}, with a group score of 19.3. The unscored keys
(b, d) are then assigned the score of this complete group
(19.3). Intuitively, this is the next set of keys that should be
retained assuming that the highest-scoring complete group
is already in cache. Our algorithm captures the fact that, once
c is cached, d should only be cached when b is cached. The
low score of b contaminates d but should not contaminate
c (since c by itself can lead to a transactional hit).

The iterative process described above is repeated until all
keys are scored. For our example, the next highest-scoring
complete group that is a superset of {b,c,d} is {a,b,c,d}, with
a group score of 0.75, which is assigned to key a, completing
the scoring protocol for Figure 6b. Note that all keys will even-
tually be scored by this algorithm, since they are all part of the
trivial complete group containing every key in the transaction.

4.2.3 Scoring Across Transactions

Finally, we describe how to integrate instance key scores
across multiple transactions into an aggregate value. This
final score will be used by the system to decide which keys
to evict from the cache. We adopt the following formula:

SCORE_K(key)=
TSkey

Fkey
+Aglobal

TSkey is the sum of all instance scores from Section 4.2.2
across all transactions accessing this key. Fkey is the frequency
of this key. Aglobal is the global aging factor.

Averaging instance scores. To combine instance key scores
into a single value for a given key, we take the running av-
erage of these scores. Each time a key is accessed, we add
its instance score to the total score TSkey and increment Fkey
before calculating a new aggregate score. Figure 6e gives the
key scores of a,b,c,d after the execution of the transaction
in Figure 6a, assuming that the aging factor is initialized to
0, key size is 1, and the previous TSkey values are 0, 30, 200,
and 70 respectively. For example, c has an instance score
of 99 (Figure 6b) for the transaction in Figure 6a, a previ-
ous TSkey of 200, and frequency of 99, giving SCORE_K(c)=

424 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

200+99
99 +0=3.02 in Figure 6e. Taking the average allows us

to account for contamination between different groups.

Recency. To account for shifts in object access distributions
over time, GDSF, along with other algorithms [8], uses an
aging factor to capture object recency. Since previously
popular objects can remain in the cache for extended periods
of time (due to their high frequencies) and prevent newly
popular objects from being stored, the scores of more recent
objects should be higher than those of older objects. Towards
this end, GDSF applies Aglobal , a global value that is added
to the score of a key upon each access to increase the scores
of more recently accessed objects and age older objects out
of cache. The value of Aglobal is updated each time an object
is evicted and set as that object’s score. Thus, the factor
increases monotonically and ensures that all accesses after
this eviction will have scores higher than the last evicted
key. In essence, this factor acts as a “reset” on key scores.
In Figure 6, a is evicted after the transaction in Figure 6a
executes, and Aglobal is set to a’s score (0.75). This value
is then added to SCORE_K for each key accessed in the
subsequent transaction (Figure 6c). For example, c has an
instance score of 15 (Figure 6d), a previous TSkey of 299,
frequency of 100, and Aglobal of 0.75, giving c an aggregate
key score of SCORE_K(c)= 299+15

100 +0.75=3.89 in Figure 6f.

5 Optimizations

While our current approach precisely captures the cacheability
of each group, it can be prohibitively expensive when the num-
ber of complete groups is exponential for some transaction
topologies. We address this problem in two ways. First, we
observe that many complete groups capture redundant infor-
mation and introduce interchangeable groups to avoid scoring
all complete groups, reducing run time overhead. Second, we
present a restricted form of grouping, levels, that dynamically
approximates groups at run time. This technique also enables
us to score keys when we do not have access to transaction
code (i.e., we do not know the transaction execution graphs).

5.1 Interchangeability

We find that the number of complete groups can be exponen-
tial with respect to transaction size, even for simple topologies.
For example, the TPC-C Order-Status transaction in Fig-
ure 7a has a depth of three, and the number of complete
groups for this transaction is exponential with respect to its
depth: {c}, {o}, {ol1,ol2}, {c,o}, {o,ol1,ol2}, {c,ol1,ol2},
{c,o,ol1,ol2} make up 23−1=7 complete groups.

We observe that transactions often contain complete groups
that differ by only a single key. For instance, for every group
in which c is present in Figure 7a, there exists an identical
group in which o replaces c (and vice-versa). In effect, these
keys can be “swapped” with each other and still produce a

c o

ol1

ol2

(a)

a b c d

e f g h

(b)

Figure 7: Transactions to demonstrate interchangeability.
Figure 7a is a TPC-C Order-Status transaction.

complete group. This interchangeability property is powerful:
if two keys can be exchanged in any complete group, then de-
ciding to cache one key over the other is entirely dependent on
the individual scores of these keys, as all other parameters are
shared. Consequently, we do not need to calculate the scores
of each their complete groups in order to score each key. Con-
sider the groups {c,ol1,ol2} and {o,ol1,ol2} for the TPC-C
Order-Status transaction in Figure 7a, assuming c has a
higher individual score than o. Since c and o are interchange-
able, we know that {c,ol1,ol2} must have a higher group score
than {o,ol1,ol2}, as all other parameters (the scores of ol1 and
ol2) are shared. Our scoring algorithm favors caching groups
with higher scores, so we can avoid calculating the score of
{o,ol1,ol2} at run time while determining the score for o.

We can further generalize the idea of interchangeability
to sets of keys that can also be “swapped” with each other.
Continuing the example above, the set of keys {ol1,ol2} is in-
terchangeable with {c}, because any complete group that con-
tains {ol1,ol2} will remain a complete group if {ol1,ol2} is
swapped with {c}. We call such sets interchangeable groups:
Definition 9 (Interchangeable groups). Let s1 and s2 be
distinct sets of keys in a transaction with execution graph G.
We define s1 and s2 to be interchangeable if
(1) ∀ complete groups g1 such that s1 ⊆ g1 and
s2 ∩ g1 = ∅, g′1 = g1 \ s1 ∪ s2 is also a complete group
and L(G,g1)=L(G,g′1), and
(2) ∀ complete groups g2 such that s2 ⊆ g2 and
s1 ∩ g2 = ∅, g′2 = g2 \ s2 ∪ s1 is also a complete group
and L(G,g2)=L(G,g′2).

Like complete groups, interchangeable groups of table ac-
cesses can be identified at compile time, as seen in Figure 5.
Key accesses are mapped to the vertices at run time. Compu-
tationally, interchangeability allows us to reduce the number
of complete groups that need to be scored. We compress the
representation of complete groups and reduce run time com-
plexity of the scoring algorithm as follows, using Figure 7b
as a running example:

• (Compile time) Find all interchangeable groups
of vertices from the set of complete groups. The com-
plete groups are: {a, e}, {b, f}, {c, g}, {d, h}, {a, e, b, f},
{c, g, b, f}, {d, h, b, f}, {a, e, c, g}, {a, e, d, h}, {c, g, d, h},
{a,e,b, f ,c,g}, {a,e,b, f ,d,h}, {a,e,c,g,d,h}, {c,g,b, f ,d,h},
{a,e,b, f ,c,g,d,h}. Consider replacing {a,e} with {d,h} in
any complete group; the resulting group is still complete.
Thus, {a,e} and {d,h} are interchangeable. Using the same

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 425

logic, we find that {a,e},{b, f},{c,g},{d,h} are all mutually
interchangeable.

• (Compile time) Compress complete groups. Denote
an access to any one of the mutually interchangeable
groups—{a, e},{b, f},{c,g},{d,h}—as [C]. For example,
{a,e,b, f ,d,h} becomes [C,C,C]. In this particular example,
all groups of size four can be written as [C,C], groups of size
six as [C,C,C], and groups of size eight as [C,C,C,C]. We call
these representations compressed groups.

• (Run time) Score compressed groups by replacing
vertices with individual keys in each group. Recall from
Section 4.2.2 that our instance scoring algorithm scores all
complete groups before greedily selecting the highest-scoring
ones. With interchangeability, we no longer need to score
all complete groups. Assume the minimum scores of the
following interchangeable groups are: {a, e} : 1, {b, f} :
10,{c,g} : 30,{d,h} : 50. Since we know that {a, e} and
{d,h} are interchangeable and that {d,h} has a higher score,
for any complete group containing {a, e}, there must be
another complete group containing {d,h} that has the same
(or higher) score. Applying this intuition, the highest-scoring
complete group corresponding to the compressed group [C,C]
must be composed of the highest and second-highest-scoring
interchangeable groups, {d,h} and {c,g} respectively.

In this example, interchangeability decreases the number of
groups that need to be considered at run time from fifteen
to four. Overall, interchangeability drastically reduces the
number of complete groups that must be scored, lowering run
time overhead.

5.2 Levels

For cases when we do not have access to transaction code,
we design a simplified protocol to dynamically infer groups.
We first define a level to be a set of keys in a transaction
that are sent to the data store in parallel; a similar definition
is used to group tasks to optimize caching for parallel
job execution [11]. In practice, many applications batch
parallel reads to the caching system, which often provides
an explicit API to support these requests [2]. We assume
that applications send requests as soon as their logical
dependencies are fulfilled. For instance, the transaction in
Figure 6a has levels {a}, {b,c}, and {d}. We have d as a
standalone level since it can only be requested once the level
containing both b and c has finished executing.

Levels produce identical results to our previous grouping
strategies for transactions in which all keys and groups are
interchangeable (e.g., Figures 7a and 7b). Many real-world
workloads are comprised of such transactions (including all
the ones we evaluate in Section 8). When transactions do not
have these properties, levels can miss out on performance
opportunities since they only capture a subset of all possi-
ble complete groups. For example, in Figure 6a, b and c are
always scored together under levels, lowering c’s score. To

maximize transactional hits, b should instead be scored with d
since both are colder keys, and c should be given a high score
because caching just this key is likely to lead to a transac-
tional hit. We measure the tradeoff between different grouping
strategies in Section 8.

6 Prefetching

Prefetching is a popular technique to reduce the client-
perceived latency of requests by caching items before they
are requested [10, 24, 44, 45, 90]. We revisit this strategy
in the context of transactions and design a new prefetching
algorithm that uses logical dependencies to minimize latency.

Our policy leverages conditional probabilities: once key a
is accessed, it may be very likely that key b will also be
requested in the same transaction. Consider for example
GetLinkedAccounts in Figure 1: the access to a primary
account is almost always followed by requests to the same
subsidiary accounts. Our prefetching algorithm tracks these
correlated accesses and preemptively brings dependent ob-
jects into the cache (a2 and a3 are requested alongside the
read to a1). Specifically, DeToX stores, for every request r,
sets of keys in subsequent accesses that are logically depen-
dent on r. DeToX also tracks the frequency of each set and
preemptively fetches in the most popular set into cache along-
side r. To bound memory overheads, we restrict the number of
dependency sets that can be stored per key and set a frequency
threshold below which we do not retain prefetching metadata.

7 Implementation

In this section, we describe our implementation of DeToX,
which consists of 7K lines of Java. We adopt a standard
two-tier architecture in which we layer a Redis (7.0) cache
on top of a data store (Postgres (12.10) and TiKV (5.4.3)
are supported). A shim layer routes requests, manages
concurrency control, and enables prefetching.

7.1 Shim Layer

All client requests are directed to our shim layer, which medi-
ates accesses to the cache and data store to support serializable
transactions. Read requests go first to Redis. In the absence of
a cache hit, the shim forwards the request to the data store and
updates the cache with the result. All writes are sent directly
to the data store. While our shim layer currently supports a
key-value API, we can convert SQL queries to this format, as
previous systems have done [34, 35, 47, 58–61, 65–67, 78, 81–
84, 92, 98]. We choose to implement a stand-alone shim layer
since there is limited open-source support for concurrency
control between caching systems and data stores [9, 43, 45,
46, 75, 76, 85, 88]. Furthermore, our shim layer allows us to

426 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

easily plug in different systems. We will explore integrating
transactional caching directly into systems in future work.

Concurrency control. We implement two-phase lock-
ing [22] with timeout-based deadlock detection in the shim
layer to ensure serializability. The system maintains the
following invariant: values in the cache will either 1) reflect
the value committed in the (serializable) data store or 2) be
protected by an exclusive write lock.

To achieve this, the shim acquires locks on individual ob-
jects before sending requests to either storage system. Writes
are buffered at the shim layer until commit. Once values are
committed in the data store, they are updated in the cache
before write locks are released. To handle crashes, we rely
on the data store as the source of truth, similar to previous
work [46, 75, 76], and we clear the cache after failures to pre-
vent stale reads. We view applying transaction caching to mul-
tiversioned systems as a promising avenue for future work.

Extracting transaction types and execution graphs. We
leverage prior work [36, 94] to obtain transaction execution
graphs with table accesses from application code. The
widespread adoption of JDBC-style drivers presents a com-
mon interface for extracting transactions across applications.

7.2 Eviction

Our eviction policy scores keys as a function of their groups
as well as their frequency, size, and recency. The latter three
are all features that are already available in Redis, which
natively supports LRU and LFU. We reuse these metrics to
minimize code changes when implementing our algorithm.
We make two primary modifications to Redis: we add (1)
a global aging factor that is updated during eviction (as
detailed in Section 4.2.3) and (2) support for scoring groups
of keys. Specifically, we modify the existing method Redis
provides for fetching multiple objects to delineate which
keys are accessed together. We update key scores only
after a transaction has completed so that we have sufficient
information to calculate all group scores. Our changes
involve less than 100 lines of code and suggest that DeToX
can be easily integrated into any caching system. We also
implement a trace-driven simulator in Python to evaluate the
offline Belady and Transactional Belady algorithms.

8 Evaluation

In this section, we evaluate DeToX against existing caching
policies on a range of different workloads. Specifically, we
aim to answer the following questions:
• How does DeToX compare to single-object algorithms in

terms of transactional hit rate and cache efficiency?
• What is the impact of our grouping techniques?
• What is the tradeoff between optimizing for object hit rate

and transactional hit rate?

8.1 Experimental Setup

We run our shim layer and Postgres on separate c5a.4xlarge
Amazon EC2 instances (16 CPUs, 32GB RAM) and use a
memory-optimized r5.4xlarge machine (16 CPUs, 128GB
RAM) for Redis. Clients run on c5a.16xlarge instances (64
CPUs, 128GB RAM). We host all machines in the same re-
gion with low network latency (0.2ms). For our experiments,
we report the average of three 5-minute runs with 60 seconds
of warm-up time. When an eviction is needed, we score 10
random samples and choose one to evict among these can-
didates. This strategy removes the overhead of maintaining
a sorted list of keys without degrading performance and is
popular in many caching systems [2, 79], including Redis.

Benchmarks. We evaluate DeToX against single-object
baselines as well as the policies developed in PACMan [11]
(their LFU-F is equivalent to our LFU; we evaluate their
LIFE algorithm) and ChronoCache [45], a state-of-the-art
prefetching system that leverages transactional dependen-
cies. We measure performance on a range of workloads.
TAOBench [26] is an open-source social network benchmark
based on Meta’s production traces. We run the Product
Group 1, 2, and 3 workloads, which represent distinct sets of
(anonymized) applications at Meta that share data and use the
same product infrastructure. All workloads are read-heavy
and skewed, typical of most social networks. They contain
point reads and writes (inserts, updates, and deletes) as well
as read-only and write-only transactions. All transactions
are “flat” (they contain no logical dependencies). Since
transaction code is not available for this benchmark, we use
levels to score groups for eviction. 1 We run experiments
with 100M objects for a total data size of around 1 TB.
Epinions [37] consists of nine transaction types that represent
behavior observed on a consumer reviews website. We run
the benchmark with 2M user and 1M items for a total data
size of roughly 1 TB. SmallBank [87] contains six types
of transactions that model a simple banking application.
We configure it to run with 500M (uniformly accessed)
accounts (total size of 1 TB). TPC-C [33], a standard OLTP
benchmark, simulates the business logic of e-commerce
suppliers with five types of transactions. We configure TPC-C
to run with 100 warehouses (total size of 8GB). In line with
prior transactional key-value stores [34, 81], we use a separate
table as a secondary index on the Order table to locate a
customer’s latest order in the Order-Status transaction,
and on the Customer table to look up customers by their last
names (for the Order-Status and Payment transactions).

8.2 Application Benchmark Results

We show THR over different cache sizes for all benchmark
workloads in Figures 8 and 10. We omit some throughput and

1TAOBench [26] chooses to model workloads using probability
distributions rather than fixed query types for adaptability.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 427

(a) Product Group 2 (b) Product Group 3 (c) Product Group 1

15102540557085100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

ChronoCache GDSF LFU LIFE LRU DeToX

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

100

Tx
na

lH
it

Ra
te

(%
)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

100

Tx
na

lH
it

Ra
te

(%
)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

100

Tx
na

lH
it

Ra
te

(%
)

Figure 8: TAOBench THR results.

(a) (b)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
1
2
3
4
5

Av
g.

La
te

nc
y

(m
s)

Figure 9: TAOBench PG2 results.

latency graphs for space but describe results in text. Since
all transactions in these workloads have symmetric structures,
there is no difference in performance between our various
grouping techniques. We detail the tradeoffs between these
optimizations in the next section.

TAOBench. DeToX obtains up to 76% higher transactional
hit rates on the TAOBench PG2 and PG3 workloads compared
to single-object caching algorithms (Figures 8a and 8b).
DeToX achieves this with better cache efficiency: at the 25%
cache size relative to data size (a common setup following the
“80-20 rule”), the protocol achieves an 88% transactional hit
rate while the best single-object algorithm requires 3.4x more
cache space to attain the same result on PG2. Results are
similar for PG3 for which the system requires a 2.2x smaller
cache. Throughput increases by 31% (from 18K txns/s to
24 txns/s) for PG2 and 30% for PG3 (from 31K txns/s to 40
txns/s), while latency decreases by 30% (4.6ms to 3.2ms) for
PG2 (Figure 9b) and 29% for PG3 (2.3ms to 1.6ms).

PG2 is read-dominant (>96%) with a mix of point reads,
short transactions (<10 operations), and larger read trans-
actions that span up to 40 keys. The point reads and shorter
transactions make up 60% of the workload and largely access
a small group of hot keys. Consequently, all algorithms
achieve a THR of over 45% for small cache sizes (10%
relative size). The longer read transactions follow one of two
patterns: transactions access either a combination of hot and
warm keys (25%), or hot and cold keys (11%). Transactions
from the first category are more beneficial to cache since
their keys are more frequently accessed and more likely to
lead to transactional hits. There is little benefit in caching
any of the keys in the second category since the cold keys
contaminate all the other ones.

Under DeToX, the cache initially chooses to cache keys that
belong to transactions in the first category. Thus, transactional
hit rate improves as the cache size increases from 10% to

40% (Figure 8a). Past this point, the cache begins to retain
more keys from transactions in the second category, but the
performance benefit is limited since these requests rarely lead
to transactional hits. In contrast, single-object algorithms use
only individual object features to score keys, so they retain hot
keys from transactions in both categories. Transactional hit
rate increases slowly up to the 55% cache size at which point
the cache becomes large enough to begin storing the warm
keys from the first transaction category. Since the TAOBench
workloads have no temporal patterns, GDSF and LFU provide
slightly higher hit rates compared to LRU for all cache sizes.
While LIFE uses levels, it performs poorly because it only
uses the size of levels to make eviction decisions.

Similarly, in PG3, DeToX achieves better cache efficiency
by not retaining contaminated keys. This workload has a
smaller portion of point reads and shorter transactions (50%),
so hit rates at smaller cache sizes are lower for all policies.
Longer read transactions span up to 60 items and also fall
into two categories. There are more transactions in the first
category (33% compared to 25% in Product Group 2), so
transactional hit rates grow more slowly with respect to cache
size since more warm keys need to be cached.

In contrast to the other workloads, PG1 (Figure 8c) consists
mainly of point reads and some short read transactions (of size
four or smaller), which together make up over 97% of all re-
quests. Our algorithm does not improve transactional hit rate
over single-object policies because most hits result from stan-
dalone requests and short read transactions to a set of highly
popular keys, which single-object algorithms already cache ef-
fectively. Throughput increases by 2% (from 82K txn/s to 84K
txn/s), and latency decreases by 2% (from 0.61ms to 0.60ms).

ChronoCache has similar hit rates to single-object algo-
rithms since there are no dependencies within transactions
for this benchmark; the results simply reflect its eviction
policy, LRU. The middleware layer, which does dependency

428 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Epinions (b) SmallBank (c) TPC-C

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

Tx
na

lH
it

Ra
te

(%
)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

Tx
na

lH
it

Ra
te

(%
)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

100

Tx
na

lH
it

Ra
te

(%
)

15102540557085100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

ChronoCache GDSF LFU LIFE LRU DeToX

Figure 10: OLTP benchmark THR results.

(a) (b)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

5

10

Av
g.

La
te

nc
y

(m
s)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

1e4

2e4

�
ro

ug
hp

ut
(tx

n/
s)

Figure 11: SmallBank results.

analysis at run time, quickly becomes the bottleneck.

Epinions. Epinions centers around user interactions and
item reviews. It contains five read-only transactions and four
update transactions. Users have both an n-to-m relationship
with items (i.e., representing user reviews and ratings of
items) and an n-to-m relationship with other users. There are
no logical dependencies in the transactions of this workload
(all operations can be parallelized).

DeToX provides up to 41% increase in transactional hit rate
(Figure 10a), translating into 29% improvement in throughput
(from 12K txn/s to 17K txn/s) and 25% decrease in latency
(from 6.9ms to 5.5ms). At the 25% cache size, DeToX is 1.6x
more efficient than the other algorithms. The transactions in
Epinions request some group of objects related to a particular
user or item (e.g., get all the reviews from one user), so our
policy is able to successfully capture the n-to-m relationships
in the data with its scoring mechanism. In contrast, the
single object policies focus on caching individually popular
keys without taking into account correlation between
accesses. Since there are no dependencies between or within
transactions for this workload, ChronoCache is unable to
successfully prefetch objects.

SmallBank. SmallBank consists of requests to the Accounts,
Checking, and Savings tables with six transaction types. Its
transactions are relatively small, involving four distinct keys
at most. Roughly two-thirds of operations are reads. Each cus-
tomer account is materialized as three separate entries in each
table and is accessed with a uniform distribution. There is high
correlation between accesses to a customer’s row in the Ac-
counts table and the customer’s rows in the other two tables.

Our algorithm provides up to a 1.3x increase in transactional
hit rate (Figure 10b). The absolute hit rates remain relatively
low for smaller cache sizes because of the uniform access dis-
tribution to customer accounts. Transactional hit rate increases
linearly for all algorithms since more cache space directly

results in more hits. DeToX is 1.6x more efficient than the
next best-performing algorithm at the 25% cache size.

We observe up to a 28% increase in throughput (from 12K
txn/s to 16K txn/s) and 26% decrease in latency (from 6.8ms
to 5.4ms) on this workload (Figures 11a and 11b). The long
tail in access patterns and short transactions of this workload
limit the benefits of our eviction algorithm over single-object
alternatives, which all have similar performance.

For this workload, around two-thirds of performance im-
provement can be attributed to prefetching. We compare our
eviction algorithm without prefetching (DeToX-E), LRU with
prefetching (LRU-P), and our full policy (DeToX). DeToX-E
increases throughput by 9%, LRU-P by 19%, and DeToX by
28% (graph omitted for space).

TPC-C. TPC-C is notably write-heavy and has transactions
that can span over 50 items. Its requests tend to fall into two
categories: either they access a small set of popular keys
(i.e., those in the Warehouse and District tables) or a larger
range of keys from a distribution with a long tail (Customer,
Item, Stock). Single-object caching algorithms are designed
to cache the former while the latter almost always results
in transactional misses. For instance, New-Order accesses
a key in each of the Warehouse, District, and Customer tables
before requesting 10 to 15 items from the Item and Stock
tables, which are chosen from a skewed distribution.

Consequently, TPC-C cannot benefit from transactional
caching: most transactions access a small set of hot keys that
are already in the cache (the object hit rate is >50% with
a 10% cache size in Figure 10c) along with a larger set of
cold keys that are unlikely to be cached and contaminate the
other keys (hit rate grows slowly as cache size increases).
Moreover, transactions tend to access keys in quick succes-
sion (e.g., once an order is placed, it is then processed, paid
for, and delivered), so recency is especially important in this
workload. All algorithms incorporate recency in some form,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 429

5 10 15
Transaction Size

10e0

10e1

10e2

Av
g.

La
te

nc
y

(m
s)

50 60
Transaction Size

10e0

10e1

10e2

Av
g.

La
te

nc
y

(m
s)

10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

20

40

60

80
Tx

na
lH

it
Ra

te
(%

)

5 10 15
Transaction Size

10e1

10e2

10e3

10e4

�
ro

ug
hp

ut
(tx

n/
s)

50 60
Transaction Size

10e1

10e2

10e3

10e4

�
ro

ug
hp

ut
(tx

n/
s)

50 60
Transaction Size

10e0

10e1

10e2

Av
g.

La
te

nc
y

(m
s)

LRU T-DeToX Complete Interchangeable Levels

5 10 15
Transaction Size

10e-3

10e-1

10e1

Gr
ou

p
Co

st
(m

s)

50 60
Transaction Size

10e-3

10e-1

10e1

Gr
ou

p
Co

st
(m

s)

(a) (b)

(c) (d)

Figure 12: (a),(b),(c). Microbench. 1 (d) Microbench. 2.

so performance is similar across these policies, with up to
9K txns/s and 27ms avg. latency. DeToX performs on par
with single-object policies.

8.3 The Need for Dependency Analysis

In this section, we investigate the relative merits of our
grouping optimizations. The dependency analysis required for
complete groups can impose overheads in two ways: (1) the
cost of updating the scores of each key in each group and (2)
metadata overhead associated with scoring. Interchangeability
can reduce the number of groups that need to be scored, lead-
ing to better performance. On the other hand, levels discount
unbalanced topologies while T-DeToX, a baseline that scores
all keys of a transaction together, ignores dependencies. These
simpler policies reduce overhead in some cases but restrict the
groups that keys can belong to, leading to worse performance.

Performance impact. Microbenchmark 1 intentionally
captures the worst-case scenario for grouping. We run a single
transaction type with the topology in Figure 6a, and we extend
the right branch of the graph for larger transaction sizes.
Each read uniformly accesses keys at random among 10M
objects. We measure throughput and latency as we increase
transaction size up to 60 (equivalent to the largest transactions
in the TAOBench workloads). Figures 12a and 12b show
that performance for complete groups decreases dramatically
as transaction size increases due to the exponential number
of complete groups: for a transaction of size 15, over 16K
groups have to be scored. Note that the bars for throughput
and latency are omitted for complete groups for transaction
sizes greater than 15 since these experiments did not finish in
reasonable amount of time. In contrast, performance degrada-
tion is minimal with interchangeable groups (<5% difference
compared to LRU at size 60). There are only a linear number
of groups that must be scored with respect to transaction
size since all keys in the right branch of this topology are
interchangeable. Finally, levels offer similar performance to

(a) (b)

10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

20

40

60

80

100

Tx
na

lH
it

Ra
te

(%
)

FXNF

Avg
Max
Median
Min (DeToX)

10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

20

40

60

80

100

Tx
na

lH
it

Ra
te

(%
)

FXNKS

Figure 13: Scoring heuristics

LRU. Each key can only belong to one level per transaction,
so larger transaction sizes do not increase overhead. The
run time CPU overhead of both interchangeable groups and
levels is within 5% of that of single-object algorithms for all
microbenchmarks and previous benchmark workloads.

Moreover, the one-off cost of finding complete and inter-
changeable groups at compile time remains low: transactions
of size 60 (with 100K+ groups due to worst-case topologies)
require less than five minutes to process (Figure 12c). All
benchmark workloads require less than 30 seconds for
dependency analysis.

While dependency analysis incurs a static cost, it can lead
to significant benefits compared to more basic forms of
grouping (levels and T-DeToX), which ignore some or all
dependency information. Microbenchmark 2 quantifies the
worst-case scenarios for levels and T-DeToX. We run a single
transaction type with the topology in Figure 6a in which the
keys in vertices a and c are hot keys chosen from a Zipfian
distribution while keys in b and d are cold keys chosen from
a uniform distribution over 10M objects. Using levels causes
keys in b and c to be scored together. However, keys in b are
rarely accessed, and contaminate keys in c. T-DeToX makes
even worse eviction decisions since it scores all keys in a, b,
c, and d together. Using complete and interchangeable groups
would instead cause keys in b and d to be scored together,
enabling the algorithm to capture the fact that caching c
individually reduces critical length. We find that complete
and interchangeable groups significantly outperform levels
(53% increase) and T-DeToX (139% increase) for THR
(Figure 12d). Complete and interchangeable groups offer
similar performance to LRU since these policies cache keys
in c, which are frequently accessed.

Memory overheads. Metadata overhead in DeToX is low.
Our algorithm stores two additional counters (total group
score, individual score) per key and a global aging factor
for eviction. While prefetching, DeToX stores dependency
sets. On TAOBench, additional metadata takes up less than
1% of the cache space. For workloads in which prefetching
is more prevalent, metadata overheads increase slightly. For
example, in SmallBank, additional metadata grows to 2%.
DeToX must store the dependency set associated with each
transaction (1.5 keys on average).

430 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) (b)

10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

20

40

60

80

100

O
bj

ec
tH

it
Ra

te
(%

)

TAOBench Product Group 3

Belady
GDSF
LFU
LRU
TXN Belady
DeToX

10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

20

40

60

80

100

Tx
na

lH
it

Ra
te

(%
)

TAOBench Product Group 3

Figure 14: Object (a) and transactional (b) hit rates.

8.4 Scoring Heuristics
We evaluate different heuristics for calculating instance
(FXNF) and aggregate scores (FXNKS). DeToX uses the min-
imum frequency of keys in a group for the instance score, and
averages instance scores to compute an aggregate score (Sec-
tion 4.2). We measure transactional hit rates for simple func-
tions (average, maximum, median, minimum) in Figure 13
for the PG3 workload (results are similar across workloads).

For assigning key instance scores, we find that, as expected,
Min provides the best performance (Figure 13a). Since
we only get a transactional hit if all keys of a group are
cached, the key with the smallest frequency should have
outsized impact on the group score. The other functions
discount this information and thus perform worse. However,
these functions still encode the all-or-nothing property of
transactions to some extent since they assign the same
instance scores to all keys in a particular group. As a result,
we still observe higher hit rates than single-object policies.

Average and Median are the most effective functions for
calculating aggregate key score (Figure 13b). Max yields
a lower hit rate since it assigns each key the score of its
highest-scoring group, but this may not be the most frequent
group that contains this key. Min provides markedly lower
performance (up to 64% lower hit rates). Each key is assigned
the score of its lowest-scoring group, so most scores converge
to the lowest group score (the smallest frequency of any key).
As a result, most scores are low and do not differ by much.

8.5 OHR versus THR
There is a tradeoff between optimizing for latency and for
system load. Figure 14 shows the OHR and THR of online
algorithms as well as Belady and Transactional Belady
(see Appendix A). As expected, Belady outperforms other
algorithms for object hit rate. Conversely, DeToX and
Transactional Belady give some of the lowest object hit rates.
However, these two algorithms significantly outperform the
other policies for transactional hit rate (and result in better
throughput and latency as shown in Section 8.2). While
we focus on PG3 here, we find similar results on the other
workloads (omitted due to lack of space).

The difference between OHR and THR illustrates a tradeoff
between reducing I/O bandwidth and optimizing for latency.

(c)

(a) (b)

15102540557085100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

ChronoCache GDSF LFU LIFE LRU DeToX

0 10 20 30 40
Cache Size Relative to Data Size (%)

0

1e4

3e4

5e4

�
ro

ug
hp

ut
(tx

n/
s)

0 10 20 30 40
Cache Size Relative to Data Size (%)

0

10

30

50

Av
g.

La
te

nc
y

(m
s)

0 2 4 6 8 10
Ratio of DB / Cache Latency

0

5

10

Tx
n

La
te

nc
y

(u
ni

t)

LRU DeToX

Figure 15: Network latency (a), (b) and simulation (c) results.

OHR prioritizes the absolute number of requests that can be
served from cache, minimizing requests to disk. In contrast,
THR focuses on the number of latency reductions for
transactions, leading to lower latency and higher throughput.
There are practical motivations for choosing THR as the
caching objective: with increasing elasticity from cloud
resources, applications often focus on latency optimization
for which large wins are possible with DeToX.

8.6 Transactional Hit Rate

Transactional hit rate is independent of system specifics; only
relative throughput and latency gains differ when cache / sys-
tem latency changes. We confirm this by (1) varying this ratio
(both experimentally and through simulation) and (2) eval-
uating DeToX with an alternative key-value store, TiKV [4].

Network latency. We inject latency between the shim layer
and data store to simulate scenarios in which the latter is
hosted in a remote cloud region. Figure 15 shows that the
performance improvement with DeToX grows as network
latency increases. With no additional network latency (0ms),
there is a 30% increase in throughput and 29% decrease in
latency between DeToX and the best single-object policy for
PG3. With a WAN delay of 10ms, there is a 61% increase
in throughput and 47% decrease in latency.

Simulation results. To illustrate the impact of cache and
data store request times, we provide results for the TAOBench
PG2 workload. At the 25% cache size, the THR for this
workload is around 90% for DeToX and 50% for the other
policies (Section 8.2). We vary request times for the cache
and the data store (DB), using arbitrary units to represent
latency. As we increase the ratio of DB to cache latency in
Figure 15c, we find that the difference in request latency
between LRU and DeToX increases from 0% to 65% as
request times to the data store lengthen.

Transactional key-value store. We confirm that both
the difference in transactional hit rate and gains in cache

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 431

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0
20
40
60
80

100

Tx
na

lH
it

Ra
te

(%
)

15102540557085100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

ChronoCache GDSF LFU LIFE LRU DeToX

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

2

4

Av
g.

La
te

nc
y

(m
s)

1 5 10 25 40 55 70 85 100
Cache Size Relative to Data Size (%)

0

1e4

2e4

3e4

�
ro

ug
hp

ut
(tx

n/
s)

Figure 16: TAOBench PG2 results on TiKV.

efficiency (3.4x) remains identical when executing atop TiKV,
demonstrating that these metrics are independent of the setup
chosen (Figure 16). In contrast, as TiKV exhibits higher
throughput and lower latency than Postgres, throughput and
latency gains fall to 19% and 15% respectively.

9 Related Work

Eviction. There is a wide range of research on single-object
caching policies that consider frequency [23, 40, 41, 53, 63],
recency [32, 42, 52, 70], the number of unique keys
between accesses [14, 50, 57, 64, 73], the variable sizes of
objects [5, 25], and combinations of these features [6, 7, 12,
13, 15, 18, 20, 28, 49, 51, 56, 77, 80, 99]. Some specialized
eviction policies optimize for flash storage [74], adapt to
changing workloads [17, 19, 21, 30, 31, 39, 89], or consider
network bandwidth and download time for proxy caches [93].
These previous efforts do not explicitly address how caching
should be optimized for parallel accesses in transactions.

PACMan [11] presents eviction algorithms targeted towards
job processing based on the all-or-nothing property: for
jobs that issue tasks in parallel, latency only improves if all
parallel tasks are cached. Similarly, existing literature on web
caching [7, 18, 91] focuses on maximizing the page hit rate
since latency is reduced only when all parts of a page are
cached. Transactional hits in DeToX are based on a similar
insight. However, DeToX addresses the issue of complex,
unbalanced dependency graphs and recognizes that keys can
be shared across many transactions.

Admission algorithms. In contrast to eviction algorithms,
admission policies decide what to allow into the cache by en-
forcing a threshold based on object scores. These algorithms
have often been applied alongside eviction policies [7, 21, 40,
52, 62]. While we focus on eviction and prefetching in this
paper, our grouping and scoring strategies can feasibly extend
to admission, which we will explore in future work.

Prefetching. Prefetching has been applied extensively
to web caching [10, 90]. Past work focuses on web page
analysis [38, 55, 68, 71, 86, 95, 96], which most stand-alone
caches do not support [2, 69]. Other research [24, 44, 45, 72]
centers around reducing the latency of query execution
using dependency analysis. These works assume that each
client issues queries sequentially, so any cache hit can

improve latency. Instead, DeToX caches in order to maximize
transactional hit rate. Furthermore, none of these systems
provide isolation guarantees or consider how eviction policies
should be modified to handle transactions.

Cache coherence. Previous work combining transactions
and caching focuses on maintaining isolation guarantees
for cache coherency [1, 54, 76, 97]. In contrast, we focus
on what objects to cache for performance. DeToX ensures
serializability while optimizing for transactional hit rate.

10 Conclusion

In this paper, we study the problem of transactional caching.
Standard caching policies fail to account for the all-or-nothing
property of transactions, resulting in inefficient choices for
which objects to retain in cache. In light of this issue, we
provide a formal framework to quantify the latency impact of
caching for transactions and introduce transactional hit rate as
the key metric for this setting. We then present DeToX, a novel
caching system targeting at transactional workloads. DeToX
maximizes transactional hit rate by centering its caching pol-
icy around scoring groups of keys together. We consider how
keys are accessed in parallel through complete groups and
introduce interchangeable keys as an optimization to reduce
the overhead of having to score many groups at run time. We
also describe levels as a technique for cases when transac-
tion code is not available. Our implementation is lightweight
and deployable on a range of existing caching systems and
data stores. DeToX improves THR by up to 1.3x and cache
efficiency by up to 3.4x. This work demonstrates that many ap-
plications can benefit measurably from transactional caching.

Acknowledgements

We thank Matt Burke, our anonymous reviewers, and our
shepherd Wyatt Lloyd for their insightful feedback as well as
Akshay Ravoor for his engineering contributions. This work
is supported by NSF CISE Expeditions Award CCF-1730628,
NSF GRFP Award DGE-1752814, a Meta Next-Generation
Infrastructure award, and gifts from Amazon, Astronomer,
Google, IBM, Intel, Lacework, Microsoft, Nexla, Samsung
SDS, and VMWare.

432 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Amazon elasticache, November 2021.

[2] Redis, February 2021.

[3] Postgresql, 2022.

[4] Tikv, 2022.

[5] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla,
Edward A. Fox, and Stephen Williams. Removal poli-
cies in network caches for world-wide web documents.
In Conference Proceedings on Applications, Technolo-
gies, Architectures, and Protocols for Computer Com-
munications, SIGCOMM ’96, page 293–305, New York,
NY, USA, 1996. Association for Computing Machinery.

[6] Marc Abrams, Charles R Standridge, Ghaleb Abdulla,
Stephen Williams, and Edward A Fox. Caching proxies:
Limitations and potentials. 1995.

[7] Charu Aggarwal, Joel L. Wolf, and Philip S. Yu.
Caching on the world wide web. 11(1):94–107, jan
1999.

[8] Jose Aguilar and Ernst L. Leiss. A web proxy cache
coherency and replacement approach. In Proceedings of
the First Asia-Pacific Conference on Web Intelligence:
Research and Development, WI ’01, page 75–84, Berlin,
Heidelberg, 2001. Springer-Verlag.

[9] Marcos K. Aguilera, Joshua B. Leners, and Michael Wal-
fish. Yesquel: Scalable sql storage for web applications.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 245–262, New York,
NY, USA, 2015. Association for Computing Machinery.

[10] Waleed Ali, Siti Mariyam Shamsuddin, Abdul Samad
Ismail, et al. A survey of web caching and prefetching.
Int. J. Advance. Soft Comput. Appl, 3(1):18–44, 2011.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula, Scott Shenker, and
Ion Stoica. Pacman: Coordinated memory caching for
parallel jobs. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’12, page 20, USA, 2012. USENIX Association.

[12] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating content management
techniques for web proxy caches. SIGMETRICS
Perform. Eval. Rev., 27(4):3–11, mar 2000.

[13] Hyokyung Bahn, Kern Koh, S.H. Noh, and S.M. Lyul.
Efficient replacement of nonuniform objects in web
caches. Computer, 35(6):65–73, 2002.

[14] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with adaptive replacement. In 3rd USENIX Conference
on File and Storage Technologies (FAST 04), San
Francisco, CA, March 2004. USENIX Association.

[15] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit den-
sity. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 389–403,
Renton, WA, April 2018. USENIX Association.

[16] L. A. Belady. A study of replacement algorithms for
a virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[17] Daniel S Berger. Towards lightweight and robust
machine learning for cdn caching. In Proceedings of
the 17th ACM Workshop on Hot Topics in Networks,
pages 134–140, 2018.

[18] Daniel S. Berger, Nathan Beckmann, and Mor Harchol-
Balter. Practical bounds on optimal caching with
variable object sizes. Proc. ACM Meas. Anal. Comput.
Syst., 2(2), jun 2018.

[19] Daniel S. Berger, Benjamin Berg, Timothy Zhu,
Siddhartha Sen, and Mor Harchol-Balter. RobinHood:
Tail latency aware caching – dynamic reallocation from
Cache-Rich to Cache-Poor. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 18), pages 195–212, Carlsbad, CA, October
2018. USENIX Association.

[20] Daniel S Berger, Sebastian Henningsen, Florin Ciucu,
and Jens B Schmitt. Maximizing cache hit ratios by
variance reduction. ACM SIGMETRICS Performance
Evaluation Review, 43(2):57–59, 2015.

[21] Daniel S. Berger, Ramesh K. Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the hot object
memory cache in a content delivery network. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 483–498, Boston,
MA, March 2017. USENIX Association.

[22] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[23] Aaron Blankstein, Siddhartha Sen, and Michael J.
Freedman. Hyperbolic caching: Flexible caching for
web applications. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 499–511, Santa
Clara, CA, July 2017. USENIX Association.

[24] Ivan T. Bowman and Kenneth Salem. Optimization
of query streams using semantic prefetching. In
Proceedings of the 2004 ACM SIGMOD international

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 433

conference on Management of data - SIGMOD '04.
ACM Press, 2004.

[25] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In USENIX Symposium on Internet
Technologies and Systems (USITS 97), 1997.

[26] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa
Lawande, Hamza Qadeer, Jason Chan, Harrison
Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan,
Nathan Bronson, Natacha Crooks, and Ion Stoica.
Taobench: An end-to-end benchmark for social network
workloads. Proceedings of the VLDB Endowment,
15(12):1965–1977, 2022.

[27] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories Palo Alto, CA, 1998.

[28] Ludmila Cherkasova and Gianfranco Ciardo. Role
of aging, frequency, and size in web cache replace-
ment policies. In International Conference on
High-Performance Computing and Networking, pages
114–123. Springer, 2001.

[29] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa
Makino, and Haifeng Xu. Caching is hard—even in the
fault model. Algorithmica, 63(4):781–794, March 2011.

[30] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Dynacache: Dynamic cloud caching.
In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

[31] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs
in web memory caches. In 13th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 16), pages 379–392, Santa Clara, CA, March
2016. USENIX Association.

[32] Fernando J Corbato. A paging experiment with the
multics system. Technical report, MASSACHUSETTS
INST OF TECH CAMBRIDGE PROJECT MAC, 1968.

[33] The Transaction Processing Performance Council.
Tpc-c, 2021.

[34] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In Pro-
ceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’18, page
727–743, USA, 2018. USENIX Association.

[35] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh
Gupta, Lorenzo Alvisi, and Allen Clement. TARDiS.

In Proceedings of the 2016 International Conference
on Management of Data. ACM, June 2016.

[36] Mohammad Dashti, Sachin Basil John, Amir Shaikhha,
and Christoph Koch. Transaction repair for multi-
version concurrency control. In Proceedings of the
2017 ACM International Conference on Management
of Data, SIGMOD ’17, page 235–250, New York, NY,
USA, 2017. Association for Computing Machinery.

[37] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudre-Mauroux. Oltp-bench: An exten-
sible testbed for benchmarking relational databases.
volume 7, pages 277–288. VLDB Endowment, 2013.

[38] Josep Domenech, Jose A. Gil, Julio Sahuquillo, and
Ana Pont. Using current web page structure to
improve prefetching performance. Comput. Netw.,
54(9):1404–1417, jun 2010.

[39] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In
Proceedings of the 19th International Middleware
Conference, pages 94–106, 2018.

[40] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM
Transactions on Storage (ToS), 13(4):1–31, 2017.

[41] Bin Fan, Hyeontaek Lim, David G. Andersen, and
Michael Kaminsky. Small cache, big effect: Provable
load balancing for randomly partitioned cluster services.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, New York, NY, USA, 2011.
Association for Computing Machinery.

[42] Nicolas Gast and Benny Van Houdt. Transient and
steady-state regime of a family of list-based cache
replacement algorithms. SIGMETRICS Perform. Eval.
Rev., 43(1):123–136, jun 2015.

[43] Shahram Ghandeharizadeh, Jason Yap, and Hieu
Nguyen. Strong consistency in cache augmented SQL
systems. In Proceedings of the 15th International
Middleware Conference on - Middleware '14. ACM
Press, 2014.

[44] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee,
Scott Foggo, and Anil Pacaci. Apollo: Learning query
correlations for predictive caching in geo-distributed
systems, 2018.

[45] Brad Glasbergen, Kyle Langendoen, Michael Abebe,
and Khuzaima Daudjee. Chronocache: Predictive and
adaptive mid-tier query result caching. In Proceedings
of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 2391–2406,
New York, NY, USA, 2020. Association for Computing
Machinery.

434 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[46] Priya Gupta, Nickolai Zeldovich, and Samuel Madden.
A trigger-based middleware cache for orms. In Proceed-
ings of the 12th International Middleware Conference,
Middleware ’11, page 320–339, Laxenburg, AUT, 2011.
International Federation for Information Processing.

[47] Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt
Lloyd. Regular sequential serializability and regular
sequential consistency. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems
Principles CD-ROM. ACM, October 2021.

[48] Saied Hosseini-Khayat. Investigation of Generalized
Caching. PhD thesis, USA, 1998. UMI Order No.
GAX98-07761.

[49] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou,
Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin
Wang. LAMA: Optimized locality-aware memory
allocation for key-value cache. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 57–69,
Santa Clara, CA, July 2015. USENIX Association.

[50] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-
pro: An effective improvement of the clock replacement.
In USENIX Annual Technical Conference, General
Track, pages 323–336, 2005.

[51] Shudong Jin and Azer Bestavros. Greedydual⋆ web
caching algorithm: exploiting the two sources of
temporal locality in web request streams. Computer
Communications, 24(2):174–183, 2001.

[52] Theodore Johnson and Dennis Shasha. 2q: A low over-
head high performance buffer management replacement
algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94,
page 439–450, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[53] George Karakostas and Dimitrios N Serpanos. Ex-
ploitation of different types of locality for web caches.
In Proceedings ISCC 2002 Seventh International
Symposium on Computers and Communications, pages
207–212. IEEE, 2002.

[54] Bryan Kate, Eddie Kohler, Michael S. Kester, Neha
Narula, Yandong Mao, and Robert Morris. Easy
freshness with pequod cache joins. In Proceedings of
the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, page 415–428,
USA, 2014. USENIX Association.

[55] Bin Lan, Stephane Bressan, Beng Chin Ooi, and
Kian-Lee Tan. Rule-assisted prefetching in web-server
caching. In Proceedings of the Ninth International Con-
ference on Information and Knowledge Management,

CIKM ’00, page 504–511, New York, NY, USA, 2000.
Association for Computing Machinery.

[56] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H
Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim.
On the existence of a spectrum of policies that subsumes
the least recently used (lru) and least frequently used
(lfu) policies. In Proceedings of the 1999 ACM SIGMET-
RICS international conference on Measurement and
modeling of computer systems, pages 134–143, 1999.

[57] Cong Li. Dlirs: Improving low inter-reference recency
set cache replacement policy with dynamics. In
Proceedings of the 11th ACM International Systems
and Storage Conference, pages 59–64, 2018.

[58] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris.
In Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, October 2017.

[59] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 313–328, Lombard, IL,
April 2013. USENIX Association.

[60] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai
Mu, and Wyatt Lloyd. The SNOW theorem and
Latency-Optimal Read-Only transactions. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 135–150, Savannah,
GA, November 2016. USENIX Association.

[61] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd.
Performance-Optimal Read-Only transactions. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 333–349. USENIX
Association, November 2020.

[62] Bruce M. Maggs and Ramesh K. Sitaraman. Algorith-
mic nuggets in content delivery. SIGCOMM Comput.
Commun. Rev., 45(3):52–66, jul 2015.

[63] Dhruv Matani, Ketan Shah, and Anirban Mitra. An o
(1) algorithm for implementing the lfu cache eviction
scheme. arXiv preprint arXiv:2110.11602, 2021.

[64] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03), San Francisco, CA, March 2003. USENIX
Association.

[65] Syed Akbar Mehdi, Cody Littley, Natacha Crooks,
Lorenzo Alvisi, Nathan Bronson, and Wyatt Lloyd. I
can’t believe it’s not causal! scalable causal consistency

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 435

with no slowdown cascades. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 453–468, Boston, MA, March 2017.
USENIX Association.

[66] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd,
and Jinyang Li. Extracting more concurrency from
distributed transactions. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 479–494, Broomfield, CO, October 2014.
USENIX Association.

[67] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li.
Consolidating concurrency control and consensus for
commits under conflicts. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16), pages 517–532, Savannah, GA, November
2016. USENIX Association.

[68] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A
data mining algorithm for generalized web prefetch-
ing. IEEE Transactions on Knowledge and Data
Engineering, 15(5):1155–1169, 2003.

[69] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In 10th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 13), pages 385–398, Lombard, IL, April 2013.
USENIX Association.

[70] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The lru-k page replacement algorithm
for database disk buffering. Acm Sigmod Record,
22(2):297–306, 1993.

[71] Venkata N. Padmanabhan and Jeffrey C. Mogul.
Using predictive prefetching to improve world wide
web latency. SIGCOMM Comput. Commun. Rev.,
26(3):22–36, jul 1996.

[72] Mark Palmer and Stanley B Zdonik. Fido: A cache
that learns to fetch. Brown University, Department of
Computer Science, 1991.

[73] Sejin Park and Chanik Park. Frd: A filtering based
buffer cache algorithm that considers both frequency
and reuse distance. In Proc. of the 33rd IEEE Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2017.

[74] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang,
Jin-soo Kim, and Joonwon Lee. Cflru: A replacement
algorithm for flash memory. In Proceedings of the 2006
International Conference on Compilers, Architecture

and Synthesis for Embedded Systems, CASES ’06, page
234–241, New York, NY, USA, 2006. Association for
Computing Machinery.

[75] Francisco Perez-Sorrosal, Marta Patiño Martinez,
Ricardo Jimenez-Peris, and Bettina Kemme. Elastic
si-cache: Consistent and scalable caching in multi-tier
architectures. The VLDB Journal, 20(6):841–865, dec
2011.

[76] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transactional
consistency and automatic management in an ap-
plication data cache. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, page 279–292, USA, 2010.
USENIX Association.

[77] Luigi Rizzo and Lorenzo Vicisano. Replacement
policies for a proxy cache. IEEE/ACM Transactions
on networking, 8(2):158–170, 2000.

[78] Weihai Shen, Ansh Khanna, Sebastian Angel, Sid-
dhartha Sen, and Shuai Mu. Rolis. In Proceedings of
the Seventeenth European Conference on Computer
Systems. ACM, March 2022.

[79] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt
Lloyd. Learning relaxed belady for content distribution
network caching. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 529–544, Santa Clara, CA, February 2020.
USENIX Association.

[80] David Starobinski and David Tse. Probabilistic
methods for web caching. Performance evaluation,
46(2-3):125–137, 2001.

[81] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo
Alvisi, and Chao Xie. Bringing modular concurrency
control to the next level. In Proceedings of the 2017
ACM International Conference on Management of Data,
SIGMOD ’17, page 283–297, New York, NY, USA,
2017. Association for Computing Machinery.

[82] Florian Suri-Payer, Matthew Burke, Zheng Wang,
Yunhao Zhang, Lorenzo Alvisi, and Natacha Crooks.
Basil. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles CD-ROM.
ACM, October 2021.

[83] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr. Sharma, Arvind Krishnamurthy, Dan R. K.
Ports, and Irene Zhang. Meerkat. In Proceedings of the
Fifteenth European Conference on Computer Systems.
ACM, April 2020.

436 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[84] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael
Walfish. Cobra: Making transactional Key-Value stores
verifiably serializable. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 63–80. USENIX Association, November
2020.

[85] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang,
Qianmian Yu, Binyu Zang, Haibing Guan, and Haibo
Chen. Ad hoc transactions in web applications: The
good, the bad, and the ugly. In Proceedings of the 2022
International Conference on Management of Data,
SIGMOD ’22, page 4–18, New York, NY, USA, 2022.
Association for Computing Machinery.

[86] Na Tang and V. Rao Vemuri. An artificial immune sys-
tem approach to document clustering. In Proceedings
of the 2005 ACM Symposium on Applied Computing,
SAC ’05, page 918–922, New York, NY, USA, 2005.
Association for Computing Machinery.

[87] The H-Store team. Smallbank benchmark, 2013.

[88] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant
Schoenebeck. Contention-aware lock scheduling
for transactional databases. Proc. VLDB Endow.,
11(5):648–662, jan 2018.

[89] Giuseppe Vietri, Liana V Rodriguez, Wendy A Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming
Zhao, and Giri Narasimhan. Driving cache replacement
with {ML-based}{LeCaR}. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage
18), 2018.

[90] Jia Wang. A survey of web caching schemes for
the internet. SIGCOMM Comput. Commun. Rev.,
29(5):36–46, oct 1999.

[91] Justin Wang, Benjamin Berg, Daniel S. Berger, and
Siddhartha Sen. Maximizing page-level cache hit ratios
in largeweb services. SIGMETRICS Perform. Eval.
Rev., 46(2):91–92, jan 2019.

[92] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo
Chen, and Jinyang Li. Scaling multicore databases via
constrained parallel execution. In Proceedings of the
2016 International Conference on Management of Data.
ACM, June 2016.

[93] Roland P. Wooster and Marc Abrams. Proxy caching
that estimates page load delays. Computer Networks
and ISDN Systems, 29(8-13):977–986, 1997.

[94] Yingjun Wu, Chee-Yong Chan, and Kian-Lee Tan.
Transaction healing: Scaling optimistic concurrency
control on multicores. In Proceedings of the 2016
International Conference on Management of Data,

SIGMOD ’16, page 1689–1704, New York, NY, USA,
2016. Association for Computing Machinery.

[95] Lifang Xu, Hongwei Mo, Kejun Wang, and Na Tang.
Document clustering based on modified artificial
immune network. In Guo-Ying Wang, James F. Peters,
Andrzej Skowron, and Yiyu Yao, editors, Rough Sets
and Knowledge Technology, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[96] Qiang Yang, Haining Henry Zhang, and Tianyi Li.
Mining web logs for prediction models in www caching
and prefetching. KDD ’01, page 473–478, New York,
NY, USA, 2001. Association for Computing Machinery.

[97] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez,
Larry Rudolph, and Srinivas Devadas. Sundial:
Harmonizing concurrency control and caching in a
distributed oltp database management system. Proc.
VLDB Endow., 11(10):1289–1302, jun 2018.

[98] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Building
consistent transactions with inconsistent replication.
volume 35, New York, NY, USA, December 2018.
Association for Computing Machinery.

[99] Yuanyuan Zhou, James Philbin, and Kai Li. The
Multi-Queue replacement algorithm for second level
buffer caches. In 2001 USENIX Annual Technical
Conference (USENIX ATC 01), Boston, MA, June 2001.
USENIX Association.

A Appendix

We prove the optimal offline transactional caching problem is
NP-Hard. We begin by providing intuition for how and why
traditional optimal offline caching policies fail to translate
to transactional caching.

A.1 Transactional Belady

We straightforwardly adapt Belady’s optimal caching pol-
icy [16] to the transactional context by defining Transactional
Belady, a caching policy that evicts keys that result in
transactional hits furthest in the future. While this extension
is intuitive, it does not offer optimal performance even for
flat, uniformly-sized transactions that access equally-sized
objects, as we prove below.

Consider the execution trace in Figure 17 with cache capac-
ity of 5. All transactions access three keys, either all from set
S1: {t,u,v,t ′,u′} or set S2: {x,y,z,x′,y′}. T1 and T2 access only
keys from the former group, while T3 and T4 access only keys
from the latter. T5 and T6 access keys from S1 and overlap
in v, while T7,T8,T9 overlap in x′,y,z from S2. Transactional

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 437

T Keys accessed Cache state Optimal cache state
1 t,u,v - -
2 t ′,u′,v t,u,v -
3 x,y,z t,u,v,t ′,u′ -
4 x′,y′,z t,u,v,t ′,u′ x,y,z
5 t,u,v t,u,v, t ′,u′ x,y,z,x′,y′

6 t ′,u′,v t,u, v,t ′,u′ x,y,z,x′,y′

7 x,y,z t,u,v,t ′,u′ x,y,z, x′,y′

8 x′,y,z t,u,v,t ′,u′ x, y,z,x′, y′

9 x′,y′,z t,u,v,t ′,u′ x,y, z,x′,y′

Figure 17: Non-optimality of Transactional Belady. Red keys
indicate ones that lead to transactional hits.

Belady evicts keys that yield a transactional hit furthest in the
future. After T3’s execution, the algorithm evicts x,y,z as they
would first yield a hit at T7 while the other keys would lead
a hit at T5 and T6. A similar reasoning leads the algorithm
to evict x′,y′,z′ after T4 executes. This strategy yields two
transactional hits (for T5 and T6). Unfortunately, evicting
x,y,z after T3 is the wrong decision. Keeping all keys of set
S2 in the cache yields three transactional hits T7, T8, T9. As a
result, Transactional Belady achieves only two transactional
hits, while an optimal caching policy would achieve three.

Transactional Belady does not account for shared keys
across transactions. It caches set S1, which is shared across
two transactions, instead of keys in set S2, which is shared
across three transactions. Belady assumes that a cache hit
closer in the future is always as valuable as a cache hit further
out. This assumption holds when a single cached object pro-
vides a single object hit but breaks down when keys are shared
across transactions. In these cases, an equal number of cached
objects can produce varying numbers of transactional hits.

A.2 Optimal Offline Transactional Caching is
NP-Hard

We demonstrate that the optimal offline transactional caching
problem (TxPolicy) is NP-Hard through a reduction from
the variable-sized caching problem, CACHING(FAULT,
OPTIONAL), introduced in [29].

We first provide intuition for our reduction. A page hit is only
possible if the entire page is present in the cache, regardless
of its size. The objective of CACHING(FAULT, OPTIONAL) is
to minimize the number of page faults, or the number of pages
accessed and missed. We convert each page of size X into a
transaction without dependencies that accesses X operations.
Therefore, there is only a transaction hit when the entire
transaction is in the cache. This transforms CACHING(FAULT,
OPTIONAL) into an easier version of TxPolicy with two sim-
plifying assumptions: (1) all transactions will use unique keys,
so that retaining a key in the cache from any single transaction
provides no benefit to any other transaction, and (2) there are
no logical dependencies. If an optimal offline transactional

caching policy exists, then through this reduction, we have
the optimal policy for CACHING(FAULT, OPTIONAL).

We now formally describe CACHING(FAULT, OPTIONAL)
from [29]. CACHING(FAULT, OPTIONAL) asks,

Given a set of pages p1,...,pk with sizes

SIZE(p1),...,SIZE(pk), request sequence r1,...,rm
∈ {p1,...,pk}, cache size C, and cost bound F , is
there a replacement policy that serves r1,...,rm with
cache size C and incurs a total fault cost at most F?

A fault is incurred when ri ̸∈Ci, where the FAULT parameter
states that each fault has cost 1. The OPTIONAL parameter
requires that ∀i>1, Ci⊆{Ci−1∪ri}; informally, the caching
policy does not have to admit the most recent page.

We formally define the offline transactional caching
problem, based on our formalisms from Section 3.
Definition 10 (Offline transactional caching policy). An
offline transactional caching policy is a function P that takes
a sequence of transactions T1,T2, ... ,Tm, cache size n, and
outputs a sequence of cache states C1,C2, ... ,Cm, with the
following restrictions:

1. C1=∅.
2. ∀i>1, Ci⊆{Ci−1∪Ti−1}.

TxPolicy asks,

Given a set of transactions T1, ... , Tm, cache
size C, is there an offline transactional caching
policy that serves T1,...,Tm with cache size C and
incurs at most F transactional misses? We define
transactional misses as the number of i where
Ti ̸⊆Ci, or the number of transactions that cannot
be served from cache.

Theorem 1. The optimal offline transactional caching
problem is NP-Hard.

Proof. We reduce CACHING(FAULT, OPTIONAL) to TxPol-
icy through the following polynomial-time reductions. Each
page pi is reduced to a transaction Ti. SIZE(pi) new tables
are created per transaction, each with only one key. Let X be
one such table. A read operation on the sole key of that table
x∈X is inserted into the transaction Ti. There are no logical
dependencies. Cache size C is preserved. The maximum fault
cost F is converted to the maximum number of transactional
misses. If there exists a policy solving the offline transactional
caching problem, run it with these parameters. Its output is
the output to the CACHING(FAULT, OPTIONAL) problem.
CACHING(FAULT, OPTIONAL) is NP-Hard; therefore, the
offline transactional caching problem is NP-Hard.

438 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

B Artifact Appendix

Abstract

DeToX is a transactional caching system that leverages in-
sights on transactional hit rate to improve caching perfor-
mance for transactional workloads. DeToX is implemented as
a shim layer that integrates with caching and database systems.
In addition to DeToX, the artifact contains several other imple-
mentations. First, there is a modified version of ChronoCache,
a middleware predictive query caching system, that measures
transactional hit rate, integrates with Redis, and supports sev-
eral benchmarks not available for the original system. There is
also a modified version of Redis that supports several eviction
algorithms, including DeToX’s eviction algorithm and LIFE
from the PACMan paper. Finally, there is a caching simulator
that takes transaction traces as input and outputs hit rates for
the offline Belady and Transactional Belady algorithms.

Scope

The artifact enables others to run DeToX directly. All code
used in the paper is made available.

Contents

The artifact consists of a Github repository hosted at
https://github.com/audreyccheng/detox. The repository is
structured as follows:

• /chronocache - the codebase for ChronoCache
• /oltpbench-chronocache - the benchmarks for ChronoCache
• /redis - the modified version of Redis supporting

transactional caching algorithms
• /simulator - the caching simulator for offline policies
• /sys - the transactional caching system

– /benchmarks - the benchmarks for running DeToX
– /src - the implementation of the DeToX shim layer

Hosting

The artifact is hosted at https://github.com/audreyccheng/
detox on the main branch at commit 604c9bd.

Requirements

The following packages are required to run the codebase.

• mvn 3.8.5
• build-essential
• Java 17

For specific installation guides for each system, please see
the Github repository.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 439

Replicating Persistent Memory Key-Value Stores
with Efficient RDMA Abstraction

Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu∗

Tsinghua University

Abstract

Combining persistent memory (PM) with RDMA is a
promising approach to performant replicated distributed
key-value stores (KVSs). However, existing replication ap-
proaches do not work well when applied to PM KVSs: 1)
Using RPC induces software queueing and execution at back-
ups, increasing request latency; 2) Using one-sided RDMA
WRITE causes many streams of small PM writes, leading to
severe device-level write amplification (DLWA) on PM.

In this paper, we propose Rowan, an efficient RDMA ab-
straction to handle replication writes in PM KVSs; it aggre-
gates concurrent remote writes from different servers, and
lands these writes to PM in a sequential (thus low DLWA)
and one-sided (thus low latency) manner. We realize Rowan
with off-the-shelf RDMA NICs. Further, we build Rowan-KV,
a log-structured PM KVS using Rowan for replication. Evalu-
ation shows that under write-intensive workloads, compared
with PM KVSs using RPC and RDMA WRITE for replication,
Rowan-KV boosts throughput by 1.22× and 1.39× as well as
lowers median PUT latency by 1.77× and 2.11×, respectively,
while largely eliminating DLWA.

1 Introduction
Replicated distributed key-value stores (KVSs) support many
applications by providing durability and high availability [28,
56, 76]. The recent commercialization of persistent memory
(PM), e.g., Intel’s Optane DIMMs, enables local storage with
extremely low latency (e.g., ∼100ns when persisting small
data [73]). When building replicated distributed KVSs with
such fast storage media, network and CPU will become de-
terminants of request latency, since replicating an object (i.e.,
key-value pair) involves multiple times of network communi-
cation and request queueing/execution.

RDMA, a widely-deployed network technology [34,37,53],
is promising to mitigate the network and CPU overhead. First,
RDMA delivers low latency (∼2µs) due to protocol-offload
RDMA NICs (RNICs) and kernel-bypass software. Second,
RDMA provides one-sided WRITE and READ, allowing remote
memory accesses without involvement of remote CPUs. Re-
cent work have leveraged WRITE to replicate data in DRAM
(i.e., WRITE-enabled replication) [17, 30, 31, 69]. This elimi-
nates software queueing/execution of backups in the critical

∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn)

path, thus significantly cutting the replication latency com-
pared with RPC-enabled replication.

Yet, in the context of PM KVSs, WRITE-enabled replication
approach does not work well: it induces severe device-level
write amplification (DLWA) on PM. Specifically, a KVS is
typically finely sharded for load balancing and fast recovery,
so every server acts as backups for many shards, receiving
numerous concurrent replication writes from many remote
threads; besides, these replication writes are typically small
(∼100B) due to prevalent tiny objects in real-world work-
loads [24, 52]. In WRITE-enabled replication approaches (e.g.,
FaRM [31]), each server allocates an exclusive backup log
for every remote thread, to accommodate remote WRITE from
primaries. When adopting WRITE-enabled replication to PM
KVSs, these backup logs generate a huge number of PM write
streams1, which contain lots of small-sized writes. These nu-
merous write streams lead to severe DLWA, since PM has
block access granularity at media level (e.g., 256B in Optane
DIMMs) and its hardware combining capacity is bounded.
In our experiments, with 128B RDMA WRITE, 144 remote
PM write streams cause 1.58× DLWA (§2.4). DLWA wastes
limited PM write bandwidth, shortens PM lifetime, and harms
PM’s persistence efficiency.

In this paper, we propose Rowan, an efficient RDMA ab-
straction to handle replication writes on PM KVSs. Rowan
can aggregate numerous concurrent remote writes from dif-
ferent servers, and land these writes to PM sequentially, so
as to largely eliminate DLWA. Besides, it is one-sided as
RDMA WRITE, enabling backup-passive replication with low
latency and high CPU efficiency. We realize Rowan with off-
the-shelf RNICs based on two observations: 1) RDMA SEND
is two-sided on the control path but one-sided on the data
path; 2) RNICs consume receive buffers in order. Thus, we let
a control thread at the receiver side push PM-resident buffers
into receive queues in increasing address order. Senders only
need to issue SEND for remote PM writes and wait for ACKs
generated by receiver-side RNICs. We leverage two RNIC
hardware features, shared receive queue (SRQ) [11] and multi-
packet receive queue (MP RQ) [7, 9], to merge writes from
different connections and support variable-sized writes, re-
spectively. We also streamline Rowan’s control path by min-
imizing the control thread’s tasks. A Rowan instance can

1A write stream is a group of writes targeting contiguous addresses, e.g.,
writes that perform log appending.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 441

achieve 54.5Mops/s for highly concurrent 64B remote PM
writes, with almost no DLWA.

Further, we build Rowan-KV, a PM KVS leveraging Rowan
for primary-backup replication. It adopts a log-structured
approach to manage both local PM writes and remote PM
writes. Specifically, each server maintains per-thread primary
logs and a single backup log on PM. For a PUT request, a
worker thread in servers generates a log entry containing
the targeted object; then, it persists the log entry into its lo-
cal primary log via CPU instructions and every backup’s
backup log via one-sided Rowan. For a GET request, the thread
searches DRAM-resident indexes which point to objects in
logs. In this way, Rowan-KV features high performance and
low DLWA: 1) Replication bypasses CPUs of backups, en-
suring low latency and saving CPU cycles for foreground
operations; 2) The number of PM write streams in a server
is small (i.e., n primary logs + 1 backup log, where n is lo-
cal thread count), enabling efficient write combining in PM
hardware and thus largely eliminating DLWA. Rowan-KV
also introduces a failover mechanism for fault tolerance and a
dynamic resharding mechanism for load balancing.

We evaluate Rowan-KV on Optane DIMMs under a clus-
ter of 14 machines (8 clients and 6 servers). Our evaluation
focuses on YCSB benchmarks [26] with object sizes from
three typical Facebook KVSs workloads [24] (i.e., ZippyDB,
UP2X and UDB). Compared with KVSs using RPC and
WRITE for replication, Rowan-KV boosts throughput by 1.22×
and 1.39×, lowers median PUT latency by 1.77× and 2.11×,
and lowers 99% latency by 1.26× and 2.06×, respectively,
under write-intensive workloads. In addition, the DLWA is
less than 1.032× in Rowan-KV, while 1.54× in the WRITE-
enabled KVSs. Under read-intensive workloads, they have
similar performance. We also compare Rowan-KV with two
software techniques mitigating DLWA, i.e., batching and log
sharing; Rowan-KV still outperforms them.

In summary, this paper makes the following contributions:
• It demonstrates that WRITE-enabled replication can lead to

severe device-level write amplification on PM KVSs.
• It introduces Rowan abstraction and Rowan-KV with goals

of low latency and low device-level write amplification.
• It uses experiments to confirm the efficacy of Rowan-KV.

2 Background and Motivation
In this section, we first provide the background on PM (§2.1)
and RDMA (§2.2). Then, we show that characteristics of
typical KVSs architecture and workloads together lead to
high fan-in small writes for replication (§2.3). Finally, with
experiments, we demonstrate that when handling these writes,
WRITE-enabled replication causes severe DLWA (§2.4).

2.1 Persistent Memory (PM)
PM is a new kind of storage device that sits on the memory
bus. Thus, PM is byte-addressable and can be accessed by
CPUs via load/store instructions. In this paper, we focus
on Intel’s Optane DIMM, the only available PM product.

Last Level Cache

XPBuffer

PM Media

PCIe Root Mem Ctrl
64B

256B

PCIe Txn

RNIC

CPU Cores

Optane DIMM

0x3040
0x0160
0x2000
0x2080
0x0120
0x2040
0x0080
0x0040

load/store

Write Combining

0x3040

0x2000
(192B)

0x0040
(256B)

Figure 1: Architecture of Optane DIMMs and RNICs.

PM performance. Optane DIMMs have unique performance
characteristics. In terms of bandwidth, an Optane DIMM of-
fers about 2GB/s for writes and 6GB/s for reads, which are
1/6 and 1/3 of DRAM, respectively. In terms of latency, com-
pared to DRAM, Optane DIMMs have similar write latency
but 3× higher read latency [73]. The limited write bandwidth
and high read latency of Optane DIMMs are the main design
considerations for many PM systems [20,25,48,49,59,67,74].
PM architecture. Figure 1 presents the architecture of Op-
tane DIMMs. The memory controller generates cache-line
granularity (i.e., 64B) read/write requests to Optane DIMMs,
but the internal PM media has a 256B access granularity (re-
ferred as XPLine in this paper). Such a granularity mismatch
will trigger read-modify-write events, thus leading to device-
level write amplification (DLWA). To mitigate DLWA, each
Optane DIMM features an XPBuffer [73], which performs
write combining for adjacent 64B writes, as shown in the right
part of Figure 1. Yang et al. estimated that the XPBuffer in an
Optane DIMM is approximately 16KB in size [73].
Persistent modes. There are two persistent modes for PM:
ADR and eADR [36]. In ADR mode, once a store reaches
the memory controller, it can survive power failure; but the
CPU cache is volatile, so programmers must explicitly flush
data from the CPU cache (using clwb or clflushopt instruc-
tions) or bypass the CPU cache (using ntstore instructions).
In eADR mode, the CPU cache also belongs to the persistence
domain: its data will be flushed to PM upon power failure.

2.2 Remote Direct Memory Access (RDMA)
RDMA is a network technology that offers high bandwidth
(e.g., 100 Gbps) and low latency (∼2µs).
Verb types. RDMA provides two types of verbs for network
communication: message verbs and memory verbs. Message
verbs, i.e., SEND and RECV, are the same as Linux socket inter-
faces: a SEND emits a message to a remote server that prepares
receive buffers via RECV. Memory verbs include WRITE, READ
and ATOMIC. These verbs can operate receivers’ memory with-
out involving receivers’ CPUs. Due to the one-sided feature,
memory verbs enjoy low latency and high CPU efficiency.
Queue pair. RDMA servers use queue pairs (QPs) for com-
munication. A QP contains a send queue (SQ) and a receive
queue (RQ). A server posts requests, including SEND, WRITE,
READ, and ATOMIC, to the send queue, and posts RECV to the
receive queue for accommodating incoming SEND messages.
A send/receive queue is associated with a completion queue

442 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

max shard size # of backup shards
(stored by one PM server)

CosmosDB 20GB [10] 200
DynamoDB 10GB [2] 400
FoundationDB 500MB [3] 8,400
Cassandra 100MB [1] 42,000
TiKV 96MB [38] 43,000

Table 1: A PM server hosts many backup shards for popular KVSs.
We assume 3-way replication and a typical configuration of PM
servers: 2 sockets, each with 3TB Optane DIMMs (6TB in total).

(CQ), which generates completion signals for posted verbs.
Remote persistence. When issuing a WRITE to remote PM,
to ensure the data persistence, we should take two extra ac-
tions. ¬ Since receiver-side RNICs return acknowledgements
before data in WRITE is DMA-ed to PM, we should send a
READ (1B in arbitrary addresses) to flush RNIC and PCIe
buffers at the receiver side [42]. These two verbs (i.e., WRITE
followed by READ) can be posted in one request according
to the ordering guarantee of RDMA [70]. We should dis-
able Data Direct I/O (DDIO) [5, 32], a technology of Intel
CPUs that lets RNICs directly DMA data to last level cache
(LLC). In ADR mode, disabling DDIO ensures that DMA-ed
data can reach persistence domain. In eADR mode, it avoids
PM write amplification resulting from LLC’s near-random
eviction (64B cache line vs. 256B XPLine) [42, 70].

2.3 High Fan-in Small Writes in KVSs
In KVSs, replication makes high fan-in small writes a domi-
nant access pattern due to the following two reasons.
1) Data sharding. Distributed storage systems (including
KVSs) typically split the entire data set into a large num-
ber of shards, and then distribute these shards across many
servers [16, 50]. Each shard has multiple replicas, with one
selected as primary and the others as backups. Data shard-
ing has two advantages. First, it can improve load balancing
and support dynamic data migration in a fine-grained manner.
Second, it can improve availability: when a server fails, since
replicas of its data are distributed to many servers, the system
can perform recovery and re-replication in parallel. For exam-
ple, FaRM [30] maps each server into 100 consistent hashing
rings by default; in Facebook’s RocksDB clusters, each server
typically hosts tens or hundreds of shards [29].

With data sharding, each server acts as backups for tens
or hundreds of shards, and their primaries are distributed to
many servers. This makes every server receive messages for
data replication, i.e., replication writes, from many primaries
residing in many other servers. We call it high fan-in writes.

To solidify the argument of high fan-in writes in KVSs,
we analyze five widely-used replicated KVSs. As shown in
Table 1, these KVSs all have a maximum shard size, from
tens of megabytes (i.e., Cassandra [1] and TiKV [38]) to
several gigabytes (i.e., DynamoDB [2] and CosmosDB [10]).
When we deploy these KVSs on servers having terabytes of
PM, each server will host a considerable number of backup
shards which ranges from 200 (CosmosDB) to 43,000 (TiKV),

generating high fan-in replication writes.
The degree of fan-in is even higher in systems equipped

with fast network hardware (e.g., RNIC) [30, 31, 44, 45, 61,
69]. To achieve multicore-scalable and squeeze out the raw
performance of NICs, these systems run multiple threads, each
independently processing requests using exclusive network
connections. For example, in DrTM+H [69], every worker
thread independently issues RDMA WRITE for replication.
With this threading model, the degree of fan-in increases from
the number of remote servers to the number of remote threads.
2) Numerous small-sized objects. Many important appli-
cations relying on KVSs generate numerous small objects,
whose size is much smaller than the access granularity of PM
media (e.g., 256B XPLine in Optane DIMMs). For example,
in ZippyDB, the largest KVS at Facebook [15], the average
size of objects is only 90.8B [24]. Moreover, the other two
typical KVSs at Facebook — UP2X (a KVS for AI services)
and UDB (a KVS for social graph) — have average object size
of 57.25B and 153.8B, respectively [24]. Twitter exhibits a
similar workload feature: the most common length of a tweet
is only 33 characters [14, 52]. This paper focuses on these
small objects because of their prevalence and importance.

When a KVS handles PUT requests (from clients) for these
small objects, primaries emit replication writes to associated
backups. These writes are small, since they typically only
contain replicated objects with tiny metadata [56]. These
writes are also high fan-in due to data sharding, as explained
before. As a result, we can conclude that high fan-in small
writes are a dominant access pattern in the cluster of KVSs.

2.4 DLWA from WRITE-enabled Replication
Recent research demonstrates that for in-memory DRAM sys-
tems, compared with RPCs, leveraging RDMA WRITE for
replication can obtain significant performance gain [17, 30,
31, 69]. In such WRITE-enabled replication, primaries issue
replication writes to backups’ logs via one-sided WRITE, and
only need to wait for acknowledgements (ACKs) from the
RNIC hardware of backups. This eliminates software queue-
ing/execution of backups in the critical path, thus enjoying
low latency (e.g., Mu [17] cuts the latency by 61%). Further,
the saved CPU cycles in backups can serve requests (e.g.,
GET) from clients, thus improving system throughput.

In systems using WRITE-enabled replication, to handle high
fan-in replication writes from many remote threads (recall
§2.3), each server maintains lots of backup logs, each accom-
modating WRITE from an individual remote thread (which
can act as primary) [31, 69]. For example, in FaRM’s evalua-
tion with 90 machines (each running 30 worker threads) [31],
there are thousands of backup logs (i.e., 89×30) in each server.
Yet, when we apply WRITE-enabled replication to PM KVSs,
these backup logs (which are placed in PM for durability) will
cause a huge number of PM write streams, which contain lots
of small writes, thus inducing severe DLWA. We conduct an
experiment to demonstrate it.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 443

Request Bandwidth Media Bandwidth

(a) 64B

2.48X

0

2

4

6

36 72 108 144

W
rit

e
Ba

nd
w

id
th

 (G
B/

s)

(b) 128B

1.58X

0

2

4

6

36 72 108 144

(c) 64B w/ local PM writes

2.49X

0

2

4

6

36 72 108 144

(d) 128B w/ local PM writes

1.70X

0

2

4

6

36 72 108 144
of Remote Write Streams (# of Remote Threads)

Figure 2: DLWA with varying remote write streams. DLWA = media bandwidth/request bandwidth. Threads access PM on a remote server;
each thread generates a remote write stream. In (c) and (d), 18 CPU cores in the remote server perform local sequential PM writes.

In the experiment, we launch a number of threads (on four
servers), each issuing sequential RDMA WRITE to an exclu-
sive PM-resident log in a remote server and thus generating a
PM write stream. We disable DDIO in the remote server and
post a READ after each WRITE to guarantee persistence. The
remote server is equipped with three 256GB Optane DIMMs
and a 100Gbps RNIC. We use ipmctl [8] to periodically
read hardware counters of Optane DIMMs, calculating re-
quest bandwidth and media bandwidth, which means write
bandwidth received from memory bus and write bandwidth
issued to PM media, respectively. Figure 2(a) and (b) show
results with 64B and 128B WRITE size (representing small
replication writes, §2.3), respectively. When remote write
stream count is lower than 90, DLWA is negligible. This is
because the XPBuffer on Optane DIMMs can combine ad-
jacent small writes from the same write streams into 256B
internal writes (§2.1). However, the capacity of combining is
bounded due to the limited size of XPBuffer. Consequently, as
the number of remote write streams continues to increase, se-
vere DLWA appears. Specifically, when remote write stream
count is 144, the DLWA is 2.48× and 1.58× in case of 64B
WRITE and 128B WRITE, respectively.

Next, we consider a more practical scenario where local
PM writes exist. In the remote server, we run 18 CPU cores,
each performing sequential 128B PM writes using ntstore.
We repeat the above experiment; Figure 2(c) and (d) show
the results. Without remote RDMA WRITE, local PM writes
can deliver high request bandwidth (i.e., available bandwidth).
As the remote write stream count increases, DLWA in Op-
tane DIMMs reaches 2.49× and 1.70× in case of 64B WRITE
and 128B WRITE, respectively. In addition, the available band-
width drops from 5.2GB/s to 2.1GB/s (60%) for 64B WRITE,
and from 5.4GB/s to 3.2GB/s (41%) for 128B WRITE.

DLWA on PM leads to three issues. First, it reduces avail-
able PM write bandwidth, thus degrading system performance.
The wasted bandwidth could also have been used for co-
located applications [33, 54, 55]. Second, it shortens the life-
time of PM which has limited write endurance [6]. Third,
severe DLWA consumes a considerable number of hardware
resources (e.g., XPBuffer), harming persistence efficiency.

To efficiently handle high fan-in small writes, we need a
new RDMA abstraction (rather than WRITE) for PM KVSs.
This abstraction should mitigate DLWA, while achieving bene-
fits of one-sided verbs — low latency and high CPU efficiency.

Optane DIMMs

96B

128B

32B
96B

128B

32B

~0x200
0x100

RNIC

ReceiverSender 3

Sender 2

Sender 1

Figure 3: An instance of Rowan abstraction.

3 Rowan Abstraction
We propose Rowan, a new RDMA abstraction to handle high
fan-in small writes in PM KVSs. In this section, we first de-
scribe Rowan’s semantic and characteristics. Then, we present
how to realize Rowan using off-the-shelf RNICs.

3.1 Rowan Semantic
Figure 3 presents a Rowan instance. A Rowan instance is
associated with one receiver and a set of senders. Senders
concurrently issue writes to the receiver which has registered
a large PM area. The receiver-side RNIC lands these writes to
the PM area sequentially, and finally returns ACKs to senders.

Rowan abstraction has the following advantages. First, by
translating concurrent remote small writes into a single write
stream, the XPBuffer in Optane DIMMs can easily combine
them into 256B XPLine writes, largely eliminating DLWA.
Second, since all the data operations are performed by the
receiver-side RNIC without involving receiver-side CPUs,
Rowan enjoys benefits of low latency and high CPU efficiency
like RDMA WRITE. In addition, compared with CPUs, RNIC
ASICs can deliver extremely high throughput.
Comparison with batching. Batching is also an approach
that can mitigate DLWA on PM: it opportunistically accumu-
lates multiple small writes at the sender side, and then emits
the batched writes to the receiver via one RDMA WRITE.
However, batching induces extra latency, sapping the benefits
of extremely low-latency hardware (i.e., RNICs and PM). In
contrast, Rowan does not delay any write and thus ensures low
latency: senders immediately issue writes and receiver-side
RNICs immediately land received writes to PM. In addition,
as we will show in §6, batching frequently fails to accumulate
enough small writes within a short time interval in KVSs,
and Rowan outperforms batching in both latency and through-
put. Our view of batching has been echoed by authors of
RAMCloud — “. . . batching requires some operations to be
delayed until a full batch has been collected, and this is not
acceptable in a low-latency system such as RAMCloud” [56].

444 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Rowan basic architecture

generate CE
<0x040, 64B>

SRQ

CQ

control thread

consume recv buf in order

post 64B recv buf

poll CQ

Receiver

RNIC

<0x080, 64B>

<0x120, 64B>

384B56B

Senders

(b) Rowan

generate CE

32B

<0x000000, 4MB>

MP SRQ

CQ

control thread

consume recv buf in order

post 4MB recv buf

Receiver

RNIC

56B 384B

<0x400000, 4MB>

0x000000
0x000040
0x000080

Senders

32B

address size

32B 56B 384B

recv buf

Figure 4: Realizing Rowan with off-the-shelf RNICs. (a) Rowan basic architecture using shared receive queue (SRQ). In this subfigure, the
32B write and 56B write are placed in the same XPLine. Yet, the 384B write fails to be received due to 64B receive buffers. (b) Rowan using
multi-packet shared receive queue (MP SRQ) with 64B stride. In this subfigure, three writes are placed in two XPLines of the first receive buffer.
We use a completion queue (CQ) ring to eliminate CQ polling in the control thread.

3.2 High-Performance Rowan
Rowan is conceptually simple but challenging to realize us-
ing off-the-shelf RNICs. We do not want to modify RNIC
hardware like StRoM [60] and PRISM [23], so as to enable
Rowan to be deployed immediately in datacenters today that
are equipped with RNICs. Before describing our solution, we
present a straightforward solution that has poor performance.
3.2.1 Straightforward Solution
A straightforward solution to realize Rowan abstraction is
combining RDMA WRITE and atomic verb FETCH_AND_ADD.
Specifically, there is a 64-bit sequencer stored in the receiver’s
memory. When performing a write, the sender first issues a
FETCH_AND_ADD to the sequencer, reserving a PM address;
then, it issues a WRITE to this address. This solution has two
limitations. First, it needs two round trips, increasing the la-
tency. Second, the poor performance of atomic verbs bot-
tlenecks throughput: even storing the sequencer in RNICs’
device memory [68], the throughput is less than 10Mops/s.
3.2.2 Our Solution
Counter-intuitively, we use RDMA SEND and RECV to realize
Rowan. This is based on our two observations.
• RDMA SEND is two-sided on the control path but one-

sided on the data path. In the control path, the receiver’s
CPUs prepare receive buffers via RECV; however, in the
data path, when handling SEND requests, the receiver-side
RNIC performs all tasks, including landing SEND’s data to
receive buffers and returning ACKs.

• In a receive queue, receive buffers are consumed in order.
Every time, the receiver-side RNIC pops the first buffer in
the associated receive queue and lands data to it.

Key idea. On the control path, CPUs push PM buffers into
the receive queue in increasing address order; on the data
path, the receiver-side RNIC consumes them in order.
Basic architecture. Figure 4(a) shows the basic architecture
of Rowan implementation. Rowan uses reliable connection
(RC) QPs to delegate transmission reliability to RNICs. We
create a shared receive queue (SRQ) [11] which is associated

with all QPs; thus, RNICs can land data of SEND from different
remote QPs to the same receive queue. In the receiver, we
reserve a dedicated thread, namely control thread, to perform
control-path tasks; the RNIC performs data-path tasks.

Specifically, the control thread splits the PM area into
fixed-sized (e.g., 64B in Figure 4)(a)) buffers, and posts these
buffers (using RECV) into the SRQ in increasing address or-
der. Senders encapsulate writes into SEND requests, and emit
them to the receiver; each SEND is followed by a READ for
persistence. When receiving a SEND (followed by a READ), the
receiver-side RNIC pops the first buffer in SRQ, DMAs the
SEND’s data into the buffer, generates a completion entry (CE)
to the SRQ’s CQ, and finally returns an ACK to the sender. In
this way, writes from different senders can be combined into
the same XPLines on PM, mitigating DLWA.
Handling variable-sized writes. When the size of a SEND’s
data is larger than the first buffer in the SRQ, the RNIC cannot
accommodate it and will trigger an error CE. For example, in
Figure 4(a), with 64B receive buffers, the 384B write cannot
be handled. If we use a buffer size larger than 256B for the
SRQ to support relatively large writes, small writes from
different senders will not be combined into the same XPLines,
destroying the benefits of Rowan abstraction.

Fortunately, current RNICs (e.g., ConnectX-4/5/6) support
a new type of RQ, called multi-packet receive queue [7, 9]
(MP RQ). In an MP RQ, each receive buffer can accommodate
multiple SEND requests. We need to define a stride (e.g., 64B)
for an MP RQ. When receiving a SEND, the RNIC appends
the data to the receive buffer that is being used, and the start
address is stride-aligned. If there is no enough space left, the
RNIC pops a new receive buffer from the MP RQ to use.

Figure 4 shows Rowan that uses MP SRQ, where we set
the stride to 64B and receive buffer size to 4MB. In the figure,
three writes are placed in two XPLines (i.e., 512B area) in the
first receive buffer, each having a 64B-aligned start address.
By using MP SRQ, Rowan can support variable-sized writes,
while combining small writes to mitigate DLWA.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 445

There are two points worth noting when using MP SRQ:
• In Rowan, the stride is a fixed value of 64B. We do not

choose a smaller value (e.g., 32B) for two reasons. First,
in the RNIC we use (i.e., ConnectX-5), the minimum sup-
ported stride value is 64B. Second, recent studies suggest
that senders should pad small writes to PCIe data word
(64B) granularity [70], to avoid expensive read-modify-
write operations on receivers’ PM. Thus, we assume the
incoming small writes are already 64B granularity.

• If a SEND is larger than maximum transmission unit (MTU),
it is comprised of multiple packets. The RNIC may land
these packets to non-contiguous addresses. We let the upper
applications (e.g., KVSs) to handle this case.

Minimizing control-path tasks. On Rowan’s data path, the
receiver-side RNIC can deliver extremely high throughput (>
50Mops/s). On the control path, for CPU efficiency, we only
want to use one control thread; thus, we minimize control-path
tasks to make them can be easily handled by one thread.

There are two tasks performed by the control thread: post-
ing receive buffers into the MP SRQ and polling the CQ
to consume CEs. For the former, since we use large receive
buffers (e.g., 4MB) by leveraging the multi-packet feature and
post a batch of receive buffers at a time, this task is lightweight.
For the latter, unfortunately, unlike other verbs, RECV can not
be marked as unsignaled, so every SEND will generate a CE at
the receiver side. The control thread cannot timely consume
these CEs (considering > 50Mops/s throughput), making the
CQ fill and thus causing QPs in an error state. We get inspira-
tion from eRPC [43] to address this problem. Like eRPC, we
create a CQ that forms a ring structure, so that the RNIC can
overwrite entries in the CQ ring in a round-robin manner. In
this way, the control thread does not need to poll the CQ.

4 Rowan-KV Design
We build Rowan-KV, a PM KVS that uses Rowan for primary-
backup replication. It has two main design goals.
• Low latency. Rowan-KV exploits one-sided Rowan to

eliminate software overhead at backups during replication.
• Low DLWA. Rowan-KV adopts a log-structured approach

to manage PM writes from both local CPUs and remote
CPUs. For the former, every thread appends data in its local
log. For the latter, Rowan merges replication writes into a
single backup log. Hence, Optane DIMMs only receive a
small number of write streams and can efficiently combine
adjacent small writes into XPLines, thus mitigating DLWA.

4.1 Overview
Figure 5 shows the architecture of Rowan-KV. Servers per-
sistently store objects (i.e., key-value pairs) in PM and use
RDMA for network communication. Rowan-KV divides the
entire data set into many shards and distributes them across
servers. Each shard is replicated for high availability: with
the replication factor of k, it has one server as primary and
k-1 servers as backups. Clients issue KV requests via RPCs.
Sharding mechanism. Rowan-KV hashes each object’s key

A

per-thread logs

per-shard hash indexes

D
RA

M
PM

B CD E F

backup log
RDMAServer 1

Shard ID Primary Backup
A, B, C 1 {2,3}

… … …
Clients

GET
PUT/DEL

Server 2 A B C

backup log per-thread logs

Server 3 A B C

backup log per-thread logs

CM

Figure 5: Architecture of Rowan-KV. The per-thread logs (t-logs)
and backup log (b-log) are divided into 4MB segments.

into a 64-bit number and lets a shard manage a continuous
range in the hashed keyspace. Shard distribution is maintained
by a configuration manager (CM) and is cached in servers and
clients. Rowan-KV uses a dynamic resharding mechanism to
mitigate load imbalancing from overloaded servers (§4.6).
Log-structured approach. Rowan-KV adopts a log-
structured approach, where each server has three components:
• Per-thread logs. Each server launches a number of worker

threads to handle requests from clients. Each worker thread
maintains a per-thread log (t-log) in PM, which stores ob-
jects of PUT/DEL requests. We do not allocate independent
logs for each shard, to reduce random PM writes.

• Backup log. Each server has a single backup log (b-log) in
PM, which receives replication writes from primaries using
a Rowan instance. By doing so, Rowan-KV can largely
eliminate DLWA from high fan-in small writes.

• Per-shard hash indexes. Each server builds a DRAM-
resident hash table for every shard it manages, to index
objects in t-logs or the b-log. Putting indexes in DRAM can
avoid random PM writes and expensive PM reads [22, 25].
The t-logs and b-log are divided into 4MB segments.

Handling KV requests. When issuing a KV request for an
object, the client sends an RPC to a worker thread residing in
the server that is the targeted shard’s primary.

For a PUT/DEL request, the worker thread generates a log
entry containing the object (only the object’s key for DEL),
and persistently appends the log entry to its local t-log us-
ing ntstore instructions (¬ in Figure 5). Then, the worker
thread issues replication write for every backup via one-sided
Rowan, persistently appending the log entry to every backup’s
b-log (). Upon receiving all ACKs from backups’ RNICs,
the worker thread updates the associated index to make the
object (in t-logs) visible (®), and finally returns a response to
the client. Rowan-KV has a strong durability guarantee: when
a client receives the response of a PUT/DEL request, its effects
have been persisted on all replicas.

For a GET request, the worker thread first locates the object
by searching the associated index (¶). Then, it copies the
object’s value from t-logs (·) and replies to the client.

446 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

control thread

committedworker threads

control thread

using for t-logs

using for b-log used

free clean threads

digest threads

using for gc

worker threads

primary path backup path gc path

Figure 6: Life cycle of segments.

Background operations. Rowan-KV uses three types of
threads to perform background operations.
• Control thread. One control thread performs control-path

tasks for the Rowan instance (§3). In Rowan-KV, it pushes
free segments to the b-log via RDMA RECV, and hands
used segments over to digest threads.

• Digest threads. There are multiple digest threads. They
digest used segments from the b-log. Specifically, they
parse log entries and update associated indexes.

• Clean threads. There are multiple clean threads. They
garbage collect stale objects in segments (from worker
threads or digest threads) to reclaim free PM space.

4.2 Log Metadata
In Rowan-KV, t-logs and b-log are comprised of multiple
segments, each storing a number of log entries. We describe
segment metadata and log entry metadata, respectively.
4.2.1 Segment Metadata
A segment’s metadata mainly includes its state. At any given
time, each segment is in one of four states:
• Free. The segment can be allocated to t-logs by worker

threads, the b-log by the control thread, or clean threads.
• Using. The segment is being used by t-logs, the b-log, or

clean threads; it has space to store new log entries.
• Used. It has no space to store new log entries, and some of

its log entries have not been persisted on all replicas.
• Committed. It has no space to store new log entries, and all

of its log entries have been persisted on all replicas.
In addition to the state, a segment has an extra metadata

called owner, indicating which type of thread allocates it (e.g.,
worker threads). Each server maintains a PM array called
segment meta table to record metadata for all its segments.

Figure 6 presents the life cycle of segments. The path for
primaries is simple: a worker thread allocates a free segment
for its t-log, and the segment becomes using state. Once the
segment has no space, it transitions into committed, since the
worker thread can easily ensure that all of the segment’s log en-
tries have been persisted on all replicas. The path for backups
is fairly complicated, where we should accurately distinguish
between used segments and committed segments (§4.3 and
§4.4). Such a distinguishment is essential for failover (§4.5).
4.2.2 Log Entry Metadata
A log entry contains the request type (i.e., PUT/DEL) and the
targeted object (only the object’s key for DEL). It also includes
three metadata fields:
• 32-bit checksum. The checksum covers the whole log en-

try. Checksums eliminate persistent tails for logs: upon

…A 64 2 0

checksum ver

0xaa

cnt seq

The 1st part (MTU size)

shard

PUT

type

A 64 2 1

checksum ver

0x11

cnt seq

The 2nd part (MTU size)

shard

PUT

type

Figure 7: A 2-MTU-sized log entry in the b-log.

recovery, we can identify the end of each log by calculat-
ing checksums. Besides, backups can use checksums to
independently check the integrity of log entries in the b-log.

• 48-bit version. Each shard has a version, namely shard ver-
sion, which is maintained by its primary. Upon a PUT/DEL
request, the worker thread atomically increments the associ-
ated shard version, and stores the obtained version into the
log entry. Upon recovery, the version allows us to identify
the most recent objects from multiple t-logs.

• 16-bit shard ID. It indicates which shard the targeted object
belongs to.

Handling larger-than-MTU log entries. For a log entry
that is larger than MTU, backup-side RNICs may divide it
into multiple packets and place them in non-contiguous ad-
dresses of the b-log (recall §3.2). To enable backups check
the integrity of such a log entry, we design a simple counter-
based metadata. Specifically, if a log entry is larger than MTU,
we logically divide it into multiple MTU-sized blocks, and
duplicate log entry metadata at the start of each block (each
checksum field protects the individual block). Besides, we add
two extra metadata to each block: 1) cnt: block count of the
log entry, and 2) seq: the sequence number of the block.

Figure 7 shows a 2-MTU-sized log entry in the b-log,
where its two blocks are not adjacent. The pair of 〈shard ID :
A,version : 64〉 uniquely identifies the log entry. When scan-
ning the two blocks (checksums match) with their cnt and
seq, backups can determine the log entry’s integrity.

4.3 Managing the Backup Log
The control thread manages the b-log by communicating with
the RNIC and digest threads. To minimize the communication
overhead, the control thread performs tasks in a batch manner.

Specifically, when the system starts up, the control thread
allocates a considerable number of free segments (e.g., 512)
for the b-log, and pushes them into Rowan’s MP SRQ via
RECV. Then, it enters into a loop: 1) identifies a batch of seg-
ments (e.g., 128) that is in used state; 2) hands these segments
over to digest threads; 3) allocates a batch of free segments
and pushes them into the b-log via one RECV call. Note that a
free segment transitions into the using state after it is allocated
by the control thread (recall backup path in Figure 6).
Identifying used segments. The control thread adopts a sim-
ple method to identify used segments in the b-log. For every
segment pushed into the b-log, its first 64 bits are set to zeros.
Meanwhile, the first 64 bits in a log entry include the request
type, which is non-zero. Thus, when the control thread finds
that a segment has non-zero first 64 bits, it can ensure that all
previous segments in the b-log (we call the set of segments S
here) have been allocated by the RNIC for accommodating

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 447

log entries. However, this does not mean that segments in
S are used, since maybe some DMA operations writing log
entries in S are outstanding. Hence, we wait 2ms for all these
DMA operations to complete, to guarantee that all segments
in S have transitioned into used state. At the primary side,
worker threads measure the time of each replication write: if
it is more than 1ms, worker threads retry the replication write.

4.4 Digest and Garbage Collection
Digest. Multiple digest threads process used segments in the
b-log in parallel. Each digest thread manages an exclusive set
of shards: it extracts log entries from used segments in order
and only processes shards it manages. For a log entry, digest
threads update the index of the associated shard. Besides,
digest threads identify committed segments, and hand these
segments over to clean threads.
Identifying committed segments. To help digest threads
identify committed segments in the b-log, primaries dissemi-
nate the information of log entries to backups. Specifically, for
a shard, worker threads in its primary maintain a CommitVer;
any log entry containing a version ≤ CommitVer has been per-
sisted on all replicas. Every 15ms, worker threads write the
〈shard ID, CommitVer〉 pair into backups’ b-logs via Rowan.

At the backup side, digest threads maintain an array
CommitVerArray, which contains associated CommitVer for
each shard. When encountering a 〈shard ID, CommitVer〉
during parsing segments of the b-log, digest threads up-
date CommitVerArray. Meanwhile, when processing a seg-
ment, digest threads generate an array MaxVerArray for it;
for each shard, this array records the maximum version that
digest threads have encountered in log entries. A used seg-
ment can transition into committed one, if its MaxVerArray ≤
CommitVerArray (i.e., for every shard, the maximum version
in MaxVerArray ≤ CommitVer in CommitVerArray).
Garbage collection. Multiple clean threads garbage collect
stale objects in committed segments. When memory utiliza-
tion of a committed segment, i.e., the percentage of valid
bytes, is lower than a pre-defined threshold (e.g., 75% in our
evaluation), a clean thread cleans it. Specifically, the clean
thread scans the committed segment and checks the liveness
of objects in log entries (by searching indexes). For live ob-
jects, the clean thread copies associated log entries to a using
segment and updates indexes. Finally, the committed segment
transitions into free state for future usages.

4.5 Failover
We adopt FaRM’s reconfiguration-style approach [31] to han-
dle failover but tailor it for Rowan-KV. A configuration in
Rowan-KV contains 1) 64-bit term, 2) membership, i.e., the
set of live servers, and 3) shard distribution. The configura-
tion is persistently stored in a Zookeeper instance [40], and is
cached in the CM, clients, and servers. Rowan-KV uses leases
to detect failures for servers and CM [31]. When the CM fails,
Rowan-KV activates a new CM using the same mechanism as
FaRM [31]. When a server fails, Rowan-KV performs failover

with the following three phases.
1) Generating and committing a new configuration. The
CM generates a new configuration, where the term is incre-
mented and the membership excludes the failed server. In the
new shard distribution, the CM reassigns shards managed by
the failed server to live servers, and promotes a backup to the
new primary for each shard losing its primary.

Then, the CM stores the new configuration in Zookeeper
and sends it to all servers. Servers cache the configuration,
destroy QPs used for communicating with the failed server,
and respond. From this point, servers block all requests from
clients. Once the CM receives all responses, after ensuring
that the lease for the failed server has expired, it sends a com-
mit message to all servers. Now, servers can unblock requests.
A server rejects requests containing terms that are lower than
the one it caches. Clients will fetch the new configuration
from CM upon receiving rejected responses.
2) Promoting backup to primary. When a backup of a
shard (we call the shard A here) is promoted to the new
primary, its worker threads block requests to A until digest
threads build indexes for all objects of A. The new primary
and backups should reach a consensus on the committed log
entries. Hence, the new primary and backups process using
and used segments in the b-log, collecting log entries belong-
ing to A. These collected log entries are gathered to the new
primary and then are scattered to backups. The new primary
and backups store these log entries into segments. In this way,
all replicas will own the same set of log entries for A. During
digest, the new primary constructs a valid shard version for A,
which is larger than versions in any A’s log entry.
3) Re-replication. The CM adds a new backup for the shard
having replicas in the failed server. The new backup performs
re-replication asynchronously. It first initializes an index for
the shard, and then sends a message to the primary. Upon
receiving the message, the primary traverses the shard’s index
and transmits associated log entries to the new backup.

4.6 Dynamic Resharding
Rowan-KV introduces a dynamic resharding mechanism to
migrate hotspot shards for improving load balancing.

CM detects overloaded servers and produces new shard
distribution. Specifically, for each shard, each worker thread
records the number of received requests during a fixed pe-
riod (i.e., 500ms), and sends the statistic data to CM. Since
Rowan is one-sided and thus backups are unaware of repli-
cation writes, we let worker threads in primaries record the
number of received replication writes for backup shards. CM
calculates the load of each server according to these statistics.
If a server has a load that is higher than the average load
by a threshold (i.e., 30%), CM determines that the server is
overloaded. CM produces a new shard distribution, where the
hottest shards in overloaded servers are moved to underloaded
servers, with a goal of making the load of every server within
5% of the average. Then, it saves a migration list in the config-

448 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

uration, which contains a triple 〈source server, target server,
shard ID〉 for each migration task. Finally, CM increments the
term, writes the new configuration (including the new shard
distribution) to Zookeeper, and sends it to all servers.

Next, we describe how Rowan-KV migrates a primary
shard from a source server to a target server (migrating a
backup shard is much easier since it does not serve client re-
quests). Upon receiving the new configuration, servers cache
it to local memory. From this point, the source server re-
jects client requests for the migrated shard. Clients will fetch
the new configuration from CM when receiving rejected re-
sponses, so subsequent requests to the migrated shard will
be sent to the target server. Then, the source server sends a
message to the target server; the message contains the shard
version of the migrated shard. Upon receiving both the mes-
sage and the new configuration, the targeted server starts to
serve requests for the migrated shard. In this way, Rowan-KV
guarantees that only one server can serve the shard at any
given time. Then, the process of data migration starts:
• In the source server, a migration thread requests free PM

segments from the target server via RPCs, traverses the
index of the migrated shard, and stores the associated log
entries to remote segments via RDMA WRITE.

• In the target server, a migration thread scans segments
written by the source server and installs log entries in the
shard’s index. Upon a PUT request to the migrated shard,
the target server handles it as normal. Upon a GET request,
the target server searches the index; if the corresponding
key is not found, the target server routes the GET request to
the source server since some objects have not been migrated
yet. Of note, the versions in log entries resolve the conflicts
between the migration thread and concurrent PUT requests.
The target server informs CM when it finishes data migra-

tion. Then, CM deletes the migration task from the migration
list and writes the new configuration to Zookeeper. Finally,
CM sends a message to the source server to inform it to free
the index of migrated shard; the associated log entries in the
source server will be removed by garbage collection.

If the migration is interrupted due to failures of the source/-
target server, the CM first rolls back the shard distribution in
the configuration to the state before migration. Then, the CM
deletes the associated task in the migration list and performs
the normal failover process. In addition, the CM informs the
target server (if alive) to release resources allocated for the
interrupted migration task (e.g., migration thread and index).

4.7 Cold Start
When the entire cluster experiences a power failure, Rowan-
KV can guarantee durability of data. Upon recovery, the CM
fetches the configuration from Zookeeper, and disseminates
it to all servers. Each server obtains the metadata for all its
segments via the segment meta table (recall §4.2.1). For a
shard, its primary extracts associated log entries from using
segments whose owner is worker threads; then, the primary

sends these log entries to backups, to make all replicas own
the same set of log entries. Each primary builds indexes for
shards it manages by processing segments, and constructs
valid shard versions. If two log entries have the same targeted
key, the one with the larger version is more recent. Finally,
Rowan-KV resumes unfinished migration tasks according to
the migration list stored in the configuration.

5 Implementation
We implement Rowan-KV in Linux hosts. Rowan-KV is a
fully user-space system: it uses libibverbs for RDMA opera-
tions and CPU memory instructions for accessing PM.

5.1 Threading Model
Rowan-KV binds each thread (i.e., worker threads, clean
threads, digest threads, and control thread) to an exclusive
CPU core. Rowan-KV follows two principles:
Minimizing inter-thread communication. First, each
worker thread handles both network I/O and KV logic; this
avoids request dispatch in systems that have dedicated threads
to poll network requests [56], thus enjoying high multicore
scalability. Second, a thread hands over segments to other
threads in a batch manner (§4.3) using thread-safe queues.
Avoiding thread blocking. To avoid blocking due to waiting
for network events, worker threads adopt a coroutine-like
approach to interleave work: after issuing Rowan operations
for a PUT, a worker thread saves the context of the PUT request
(e.g., the targeted key); then, it polls the RDMA completion
queue, getting new requests to execute. Upon receiving ACKs
from backups, the worker thread restores the PUT’s context
and continues the remaining logic. In this way, a worker thread
can concurrently handle multiple PUT requests.

5.2 Network Components
RPC. Rowan-KV uses an RPC framework for client-server
and inter-server communication (not include replication).
We build the RPC framework with RDMA SEND and RECV
verbs using unreliable datagram (UD) QPs. Specifically, each
worker thread creates a UD QP to receive requests and send
responses. When a client joins the Rowan-KV cluster, it estab-
lishes RPC connections with a worker thread in every server.
Like FaSST [44], our RPC framework currently does not
support messages larger than an MTU. To reduce CPU con-
sumption on PM reads: the RPC framework leverages RNICs’
scatter-gather DMA to gather RPC headers and PM-resident
objects, generating responses of GET requests.
Rowan. To realize Rowan, every worker thread builds a reli-
able connection (RC) QP with every remote control thread.

At the sender side, a worker thread uses the associated send
queue in QPs to issue Rowan operations. A Rowan operation
contains a SEND followed by a 1B READ for persistence (§3).
SEND and READ are sent in one ibv_post_send call. For a
worker thread, all its Rowan QPs and RPC QP share the same
CQ, so that it can be aware of Rowan ACKs and new RPC
messages by polling the CQ. We mark SEND as unsignaled to
eliminate a completion event. For READ, we store the context

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 449

id of the associated PUT request (§5.1) into the wr_id field, so
that worker threads can distinguish Rowan ACKs belonging
to different PUT requests when polling the CQ.

At the receiver side, a control thread manages all Rowan
QPs connected to remote worker threads; these QPs share
an MP SRQ. The control thread pushes PM segments to the
MP SRQ via RECV. We register PM to RNICs using physical
addresses [64], to remove virtual-to-physical translation tables
in RNICs and thus reduce cache thrash of RNICs.
Mitigating the impact of disabled DDIO. We disable
DDIO to ensure the RNICs can land data to PM (rather than
CPU cache). However, disabling DDIO will ¬ cause CPU
cache miss when handling RPCs and degrade performance
of DMA operations between RNICs and memory. For ¬,
worker threads poll multiple RPC messages at a time, and
issue prefetch instructions to them. For , for RDMA READ
used for persistence, we set its source address to RNICs’ de-
vice memory [4, 68], to eliminate a DMA write at senders.
We expect that DDIO does not need to be disabled, with next-
generation RNICs supporting RDMA flush extensions [12].

5.3 Storage Components
PM management. We configure Optane DIMMs in App-
Direct mode, which exposes PM as a range of physical mem-
ory. Rowan-KV splits the PM space into 4MB segments and
stores the segment meta table in a predefined PM area (recall
§4.2.1). A DRAM-resident free list records free segments, to
serve segment allocation. We add padding for each log entry,
making it 64B-aligned; it can ¬ avoid expensive PM read-
modify-writes on receiver-side RNICs [70] when performing
Rowan operations, and avoid slow repeated writes to the
same cache lines [25, 42] in logs.
DRAM indexes. Each per-shard index is implemented with a
concurrent bucket hash table [51]. The hash table is organized
into a bucket array, where each bucket contains multiple 64-
bit items. An item is composed of a 16-bit tag and a 48-bit
PM address: the tag is a part of a key’s hash value, to filter
out mismatched searches and thus reduce PM reads; the PM
address points to log entries. For a key, its targeted bucket is
calculated by hash(key) % sizeo f (bucket array). If the targeted
bucket is full when inserting a key, threads create a new free
bucket and link it to the targeted bucket, forming a bucket
chain. Indexes support conditional update to resolve conflicts
between threads: indexes omit an update if its log entry has
version that is smaller than the one indexes are pointing to.

6 Evaluation
6.1 Experimental Setup
Environment. We use 6 machines as servers and 8 machines
as clients. Each machine is equipped with the Intel Xeon Gold
6240M CPU (18 physical/36 logical cores), 96GB DRAM,
and one 100Gbps Mellanox ConnectX-5 RNIC. All machines
are connected to a 100Gbps Mellanox IB switch. Each server
machine owns three 256GB Optane DIMMs (ADR mode).

Unless otherwise specified, we run Rowan-KV on 6 servers.

In each server, we use 24 cores for worker threads, 5 cores
for digest threads, 6 cores for clean threads, and 1 core for
control thread. The control thread also manages leases, with a
lease time of 10ms. The CM and Zookeeper instance (3-way
replication) run on client machines. Each client machine runs
multiple client threads to issue requests to servers. We set the
replication factor to 3. Each server holds 48 shards.
Workloads. We evaluate Rowan-KV using YCSB [26] with
different PUT:GET ratios: Load A — 100% PUT (write-only);
A — 50% PUT and 50% GET (write-intensive); B — 5% PUT
and 95% GET (read-intensive); C — 100% GET (read-only).
Key distribution follows Zipfian with parameter 0.99 (default
parameter in YCSB). We populate 200 million objects into
KVSs before each experiment. We use three Facebook work-
loads [24] to generate object size: ZippyDB (for general data
store) — 90.8B average object size; UP2X (for AI/ML ser-
vices) — 57.25B average object size; UDB (for social graph)
— 153.8B average object size.
Comparing targets. We compare Rowan-KV with four
KVSs, each using a specific replication approach:
• RPC-KV. It uses RPC to perform replication. Each server

maintains per-thread b-logs, and primaries issue replication
writes via RPC. Upon receiving a replication RPC, the
worker thread appends the log entry into its local b-log.
• RWrite-KV. It uses FaRM’s approach [31] to perform

replication. Each worker thread has an exclusive remote
b-log at every remote server. During replication, the worker
thread issues WRITE for appending log entries to its b-logs
at backups. Each server stores (m−1)∗n b-logs, where m
is the number of servers and n is the worker thread count.

• Batch-KV. Batch-KV is a variant of RWrite-KV and uses
WRITE for replication. Each worker thread generates large-
sized WRITE requests to its remote b-logs by batching
log entries, to mitigate DLWA. To reduce latency, worker
threads immediately send batched log entries to backups
once 1) the total size is larger than an XPLine, i.e., 256B,
or 2) 5µs timeout is triggered.

• Share-KV. It is another variant of RWrite-KV and uses
WRITE for replication. Worker threads in a server share the
same remote b-log at a remote server, to reduce b-log count
and thus mitigate DLWA. Worker threads use local atomic
increment to obtain contiguous addresses in remote b-logs.
All systems are implemented in the same codebase (includ-

ing optimizations in §5), to allow us to focus on the effects of
replication approaches. By default, we disable DDIO to pro-
vide one-sided persistence. For RPC-KV, DDIO is enabled.
We compare Rowan-KV with two off-the-shelf KVSs in §6.7.

6.2 Rowan Performance
We repeat the experiment in §2.4, to show performance of
Rowan abstraction. Figure 8 presents the result of one Rowan
instance. Rowan can largely eliminate DLWA in case of nu-
merous concurrent remote small writes. The DLWA is less
than 1.029× when no local PM writes exist (Figure 8(a) and

450 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Request Bandwidth Media Bandwidth

(a) 64B

0

1

2

3

36 72 108 144

W
rit

e
Ba

nd
w

id
th

 (G
B/

s)

(b) 128B
2

3

4

5

36 72 108 144

(c) 64B w/ local
 PM writes

0

2

4

6

36 72 108 144

(d) 128B w/ local
 PM writes

0

2

4

6

36 72 108 144

RDMA write
Rowan

Th
ro

ug
hp

ut
 (M

op
s/

s)

20

40

60

(a) (b) (c) (d)
of Remote Threads

Figure 8: Rowan performance. DLWA = media bandwidth/request bandwidth. A number of threads issue 64B/128B writes to a remote server’s
PM via a Rowan instance. In (c) and (d), 18 CPU cores in the remote server perform local sequential PM writes.

(b)), and less than 1.056× when local PM writes exist (Fig-
ure 8(c) and (d))). This is because Rowan can merge remote
small writes into a single write stream, enabling efficient hard-
ware combining in Optane DIMMs’ XPBuffer.

Further, we report the peak throughput of Rowan and
RDMA WRITE under these four cases, as shown in the right-
most subfigure of Figure 8. When no local PM writes exist,
Rowan can deliver 54.5 Mops/s for 64B remote PM writes and
42.2 Mops/s for 128B one, outperforming WRITE by 1.44×
and 1.43×, respectively. When local PM writes appear, Rowan
outperforms WRITE by 1.85×/1.78× for 64B/128B writes.
Three causes make Rowan performant. First, Rowan largely
eliminates DLWA, improving the available PM bandwidth.
Second, on the data path of Rowan, all PM writes are per-
formed by the receiver-side RNIC, ensuring high throughput.
Finally, on the control path, by leveraging ring CQ and MP
SRQ, the control thread only performs very lightweight tasks,
so it does not become the bottleneck. Of note, the bottleneck
of Rowan performance is 6GB/s PM write bandwidth in Fig-
ure 8(b)-(c), but processing capacity of RNICs in Figure 8(a).
Rowan does not achieve 75Mops/s (a maximal message rate
that a 100Gbps RNIC can provide), since we disable DDIO
and send an extra RDMA READ for each Rowan operation.

6.3 Rowan-KV Performance
Figure 9 shows median latency and throughput (6 servers)
under YCSB workloads with ZippyDB object size. Since
Rowan-KV aims to accelerate replication, we report latency
of PUT and GET separately. We increase the load generated
by clients, and ensure that KVSs reach their peak throughput.
We make two observations.

First, under read-only workloads (Figure 9(d)), RPC-KV
has 5% higher throughput against other KVSs. This is because
for KVSs using WRITE or Rowan, DDIO is disabled, lowering
RPC performance. Such performance gap can be eliminated
with next-generation RNICs supporting RDMA flush exten-
sions [12]. Under read-intensive workloads (Figure 9(e) and
(f)), RPC-KV and Rowan-KV have the similar throughput,
since RPC-KV consumes CPU cycles of backups for 5% PUT
requests, offsetting the benefits of DDIO. Compared with
RPC-KV, Rowan-KV has 1.09× lower median PUT latency
due to elimination of backups’ software queueing, and 1.27×
higher median GET latency due to disabled DDIO.

Second, under write-only and write-intensive (i.e., 50%
PUT) workloads (Figure 9(a)-(c)), Rowan-KV has the high-
est throughput with the lowest median latency. We compare

 100% PUT
 PUT latency

(a)

Rowan-KV
RPC-KV

RWrite-KV
Batch-KV

Share-KV

0

5

10

15

20

25

25 50

 50% PUT
 PUT latency

(b)

0

5

10

15

20

25

25 50 75

 0% PUT
 GET latency

(d)

0

2

4

6

40 80 120

M
ed

ia
n

La
te

nc
y

(μ
s)

Throughout (Mops/s)

 50% PUT
 GET latency

(c)

0

2

4

6

8

25 50 75

 5% PUT
 PUT latency

(e)

0

5

10

15

20

40 80 120

 5% PUT
 GET latency

(f)

0

2

4

6

40 80 120

Figure 9: Median latency vs. throughput. ZippyDB object size. We
report PUT latency and GET latency separately.

Rowan-KV with the other four KVSs in turn.
With RPC-KV. Rowan-KV achieves peak throughput of
72.7/48.2Mops/s under write-intensive/write-only workloads,
outperforming RPC-KV by 1.22×/1.37×. This is because
Rowan-KV replicates log entries via one-sided Rowan, saving
CPU cycles that handle replication RPCs. The saved CPU cy-
cles can be used for primaries to handle RPCs from clients. At
the peak throughput of RPC-KV, Rowan-KV has 1.77×/1.61×
lower median PUT latency under write-intensive/write-only
workloads. This is because compared with RPCs, one-sided
Rowan eliminates backup-side software queueing/execution
on the critical path of replication. Avoiding replication RPCs
also makes Rowan-KV reduce median GET latency by 23%.
Figure 10 shows DLWA of write-only and write-intensive
workloads (6 servers). For Rowan-KV and RPC-KV, the
DLWA is less than 1.032×. This is because they generate
a small number of PM write streams: in each server, Rowan-
KV has 24 t-logs and 1 b-log; RPC-KV has 24 t-logs and
24 b-logs (recall we use 24 worker threads in experiments).
Optane DIMMs can efficiently combine adjacent small writes
of the same logs into XPLine writes, when write stream count
is not high (recall Figure 2(c) and (d)).

With RWrite-KV. Compared to RWrite-KV, Rowan-KV
yields 1.39×/1.61× higher throughput and 2.06×/2.1× lower
median PUT latency under write-intensive/write-only work-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 451

(b) 50% PUT

0

10

20

Rowan-KV

RPC-KV

RWrite-KV

Batch-KV

Share-KV

Request Bandwidth Media Bandwidth
(a) 100% PUT

0

10

20

Rowan-KV

RPC-KV

RWrite-KV

Batch-KV

Share-KV

W
rit

e
Ba

nd
w

id
th

 (G
B/

s)

Figure 10: DLWA (6 servers) at peak throughput.

loads. The main culprit of RWrite-KV’s low performance is
DLWA: as shown in Figure 10(a), it suffers 1.54× DLWA.

Latency (μs)

C
D

F Rowan-KV
RWrite-KV

6.6
μs

11.5μs

0

0.5

1.0

0 20 40

Figure 11: Latency CDF.

This is because RWrite-KV
owns lots of logs (i.e., 24×6
in experiments) in a server to
accommodate small writes, ex-
ceeding the combining capacity
of Optane DIMMs: a large num-
ber of write streams are equiva-
lent to random writes. In RWrite-
KV, Optane DIMMs trigger lots of read-modify-write events,
which squander a considerable number of hardware resources
(e.g., XPBuffer), degrading performance of PM accesses. To
demonstrate it, we measure the latency of remote persis-
tence operations of Rowan-KV and RWrite-KV under write-
intensive workloads. Figure 11 shows the latency distribution.
Remote persistence in RWrite-KV is slow (against Rowan-
KV), with 11.5µs median latency and 24µs 99% latency. Of
note, although RNICs are ideally capable of providing an RTT
of ∼2µs, the 6.6µs median latency of Rowan is reasonable,
since 1) we disable DDIO and each Rowan operation contains
a synchronous RDMA READ, and 2) the latency is measured
under high loads where RNICs suffer from DMA queueing.
With Batch-KV. Batch-KV boosts the throughput of RWrite-
KV by 1.23×/1.35× under write-intensive/write-only work-
loads, since it reduces the number of WRITE and mitigates
DLWA (by 12%) via batching. However, batching makes
Batch-KV suffer the highest PUT latency among all KVSs:
even under low loads, Batch-KV has more than 50% higher
PUT latency compared with Rowan-KV. In terms of through-
put, Rowan-KV outperforms Batch-KV by 1.13×/1.19× under
write-intensive/write-only workloads. This is because Batch-
KV still experiences DLWA: it frequently fails to accumulate
enough small writes within 5µs timeout for two reasons: 1)
All GET requests do not generate writes but consume CPU
time; 2) Only writes to the same destination can be batched;
yet, due to sharding of KVSs, for a server acting as primaries,
the backups of its shards are distributed to multiple servers,
greatly decreasing the batching opportunity. We also change
the timeout value to 20µs, and Batch-KV delivers 9% lower
throughput against Rowan-KV, with unacceptable latency.
With Share-KV. Share-KV reduces DLWA of RWrite-KV by
26%/22% under write-intensive/write-only workloads, since
it lets worker threads share the same b-logs. However, it still

Rowan-KV RPC-KV RWrite-KV Batch-KV Share-KV
UP2X 73.9Mops/s 61.5Mops/s 56.2Mops/s 70.3Mops/s 56.0Mops/s

UDB 62.5Mops/s 50.4Mops/s 49.9Mops/s 57.1Mops/s 50.6Mops/s

Table 2: Throughput under write-intensive workloads.

suffers sizable DLWA (1.28×∼1.39×), resulting in lower per-
formance against Rowan-KV. This is because although worker
threads in a Share-KV server generate contiguous remote ad-
dresses for WRITE, the asynchronous network makes receiver-
side RNICs receive and perform these writes in an out-of-
order manner. In contrast, for Rowan-KV, leveraging Rowan,
receiver-side RNICs decide destination addresses of writes.
Besides, Rowan can merge writes from different servers.
Tail latency. Under write-intensive workloads with 50Mops/s
throughput, Rowan-KV’s 99% latency is 20.5µs, which is
1.26×, 2.11×, 1.53×, and 1.87× lower than that of RPC-KV,
RWrite-KV, Batch-KV, and Share-KV, respectively.
Performance under uniform workloads. We evaluate
Rowan-KV using uniform key distribution. Rowan-KV de-
livers 67.86Mops/s and 108.19Mops/s in cases of 50% PUT
and 5% PUT, respectively, which are 6.6% and 15.5% slower
than throughput of Zipfian skewed workloads (see Figure 9).
Rowan-KV has higher performance under skewed workloads
for two reasons. First, in our cluster of 6 servers, due to
hash-based sharding, there is no observable load imbalanc-
ing across servers under skewed workloads. Second, threads
enjoy much better cache locality under skewed workloads.
Performance with UP2X/UDB object size. Due to space
limitations, here we only report the throughput under write-
intensive workloads, as shown in Table 2. Rowan-KV delivers
the highest throughput via powerful Rowan abstraction.

6.4 Sensitivity Analysis
We conduct experiments on sensitivity analysis using write-
intensive workloads and ZippyDB object size.
Impact of object size. We change object size to generate
varying log entry size. As shown in Figure 13(a), when log
entry size is an integer multiple of XPLine size (e.g., 256B),
all KVSs do not induce severe DLWA; thus, Rowan-KV and
KVSs using WRITE have the similar throughput. RPC-KV
consumes CPU cycles for replication RPCs, so it has 21%
lower throughput against Rowan-KV with 1024B log entries.
Impact of replication factor. Figure 13(b) presents through-
put with varying replication factor. As replication factor in-
creases, performance improvement between Rowan-KV and
other KVSs increases. This is because, with higher replica-
tion factors, RPC-KV needs to consume more CPU cycles to
handle a PUT request, and WRITE-enabled KVSs issue more
WRITE and thus induce more DLWA. In contrast, Rowan-KV
replicates objects in a one-sided manner and merges all re-
mote writes into a single b-log in a sequential manner.
Impact of worker thread count. Figure 13(c) presents
throughput with different worker thread counts. We make
two observations. First, when the number of threads is small
(i.e.,≤ 16), RPC-KV has the lowest throughput, since the CPU

452 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Rowan-KV RPC-KV RWrite-KV Batch-KV Share-KV

Log Entry Size (bytes)

(a)
0

20
40
60
80

64 128 256 512 1024
Replication Factor

(b)
0

20
40
60
80

2 3 4 5
of Worker Threads

(c)
20

40

60

80

8 12 16 20 24
of Optane DIMMs

(d)
0

20
40
60
80

1 2 3

Th
ro

ug
hp

ut
 (M

op
s/

s)

Figure 13: Sensitivity analysis. We use write-intensive workloads with ZippyDB object size.

Time (ms)

Th
ro

ug
hp

ut
 (

M
op

s/
s) kill commit-conf

finish-promotion

0
20
40
60
80

0 50 100 150 200 250 300

Figure 14: The timeline of failover.

is the bottleneck. Second, RWrite-KV and its variants yield
poor scalability. This is because 1) for RWrite-KV and Batch-
KV, the number of b-logs is proportional to thread count, and
2) for Share-KV, RNICs are more likely to receive and per-
form WRITE to b-logs in an out-of-order manner in case of
high thread count; thus, they suffer more severe DLWA with
higher thread count. DLWA harms PM performance (recall
Figure 11), thus stalling throughput. In contrast, Rowan-KV
exhibits superior throughput with different thread counts.
Impact of PM bandwidth. Figure 13(d) presents through-
put with different number of Optane DIMMs per server. In
case of one Optane DIMM, the PM bandwidth is bottleneck.
Thus, RWrite-KV (which has the most severe DLWA) is out-
performed by Rowan-KV, RPC-KV, Batch-KV, and Share-
KV by 1.61×, 1.18×, 1.05×, and 1.28×, respectively. In case
of three Optane DIMMs, CPU becomes the bottleneck and
limits throughput, and PM bandwidth is not saturated (see
Figure 10). Rowan-KV squeezes out CPU resources in two as-
pects: 1) it reduces CPU involvement via Rowan’s one-sided
semantic; 2) it largely eliminates DLWA, streamlining Optane
DIMMs’ internal operations and thus improving persistence
efficiency of worker threads.

6.5 Failover and Cold Start
Failover. We kill a server to test Rowan-KV’s failover mech-
anism. We use write-intensive workloads with ZippyDB ob-
jects and Rowan-KV runs for 50 seconds before the test. Fig-
ure 14 shows the timeline, where throughput is recorded
per 2ms. The server is killed at time 100ms (i.e., kill).
Rowan-KV uses 26ms to commit the new configuration (i.e.,
commit-config), which mainly includes detecting failure
(8ms), writing new configuration to Zookeeper (4.3ms), and
waiting for the failed server’s lease to expire (10ms). Then,
Rowan-KV consumes about 44ms to promote backups to pri-
maries (i.e., finish-promotion). At this point, Rowan-KV
can serve all requests from clients.
Cold start. We test cold start of a Rowan-KV instance, which
contains 10 billion ZippyDB objects and thus occupies about
3TB PM space (6 servers). The time of cold start is 49.6s.
Although cold start is slow, it is not common in datacenters.
Periodically checkpointing DRAM-resident indexes can ac-
celerate cold start, and we leave it for future work.

Time (s)

Th
ro

ug
hp

ut
 (

M
op

s/
s)

hotspot
detect-overload

finish-migration

0

50

100

0 1 2 3 4 5 6 7 8

Figure 15: The timeline of resharding.
6.6 Dynamic Resharding
In this experiment, we evaluate Rowan-KV’s dynamic re-
sharding mechanism. We use read-intensive workloads with
ZippyDB objects. Figure 15 presents the total throughput (6
servers) over time. At first, clients generate a uniform work-
load and each server has a similar CPU utilization (i.e., 90.2%
∼ 90.9%). At time 3s (i.e., hotspot), clients shift 80% re-
quests for server A to a shard residing on server B, to make
server B have a hotspot shard and overloaded. The throughput
drops by 33% due to load imbalancing. At this time, server
A and server B have a CPU utilization of 60.7% and 91% re-
spectively. The average CPU utilization of the other 4 servers
drops to 72.8%, since requests to overloaded server B suffer
from long queueing and thus the limited number of clients
cannot generate enough requests to other servers. CM detects
the overload after 660ms (i.e., detect-overload) and pro-
duces a migration task that migrates the hotspot shard from
server B to server A. The migration takes 1346ms and moves
about 1.1 million objects. The throughput increases as the
migration proceeds, since more GET requests to the hotspot
shard can be served by server A. Finally, the system achieves
a load-balanced state with steady throughput.

6.7 Comparison with Other Systems
We compare Rowan-KV with two state-of-the-art replicated
KVSs designed for RDMA networks:
• Clover [63]. Clover runs on disaggregated PM, where PM

servers do not have compute resources. Clients perform
GET operations via RDMA READ verbs, and perform PUT
operations (including replication) using a combination of
RDMA WRITE and ATOMIC.

• HermesKV [45]. It is a DRAM-resident KVS built on
Hermes [45], a broadcast-based replication protocol. Her-
mesKV uses RPC for all inter-server communication (in-
cluding replication). We modify the code to support PM:
we store objects in PM and issue ntstore instructions for
durability; indexes are in DRAM. In addition, we let clients
generate KV requests to HermesKV servers.

We use ZippyDB objects and 4KB objects to test KVSs under
small writes and large writes, respectively. The key distri-
bution follows Zipfian with parameter 0.99. The replication
factor is 3 and HermesKV runs with enabled DDIO.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 453

(b) 4KB Obj.

0

5

10

50% PUT 5% PUT

Rowan-KV Clover HermesKV

(a) ZippyDB

0

50

100

50% PUT 5% PUTTh
ro

ug
hp

ut
 (M

op
s/

s)

Figure 16: Comparison with Clover and HermesKV. (a) Throughput
with ZippyDB objects. (b) Throughput with 4KB objects.

Figure 16(a) shows the results of small writes (ZippyDB
objects). Under write-intensive workloads (i.e., 50% PUT),
Rowan-KV outperforms Clover and HermesKV by 24.5×
and 1.98×, respectively. Two reasons contribute to Clover’s
low throughput. First, due to the disaggregated architecture,
every operation in Clover needs multiple network commu-
nications. Second, Clover uses RDMA ATOMIC to resolve
conflicts between client threads, which leads to significant
performance degradation when contention appears [35]. Us-
ing RDMA ATOMIC on PM is also considered slow due to
its read-modify-write behavior [70]. HermesKV uses RPC
for replication which consumes CPU cycles at backups, so it
is outperformed by Rowan-KV which uses one-sided Rowan
for replication. We measure DLWA of these KVSs. Clover
has 1.86× DLWA and HermesKV has 2.95× DLWA, since
both of them generate a large number of random small writes
on PM: for a PUT operation, Clover performs copy-on-write
using WRITE and HermesKV performs in-place updates. In
contrast, Rowan-KV adopts the log-structured approach to
manage objects and exploits Rowan abstraction to minimize
the number of write streams; thus, DLWA of Rowan-KV is
less than 1.032×. Under read-intensive workloads (i.e., 5%
PUT), Rowan-KV and HermesKV have similar throughput,
which far exceeds that of Clover (about 5×).

Figure 16(b) reports the results of large writes (4KB ob-
jects). Under write-intensive workloads, Rowan-KV outper-
forms HermesKV by 1.42× and is bottlenecked by PM write
bandwidth. HermesKV can not approach the limitation of PM
write bandwidth, since its backups waste lots of CPU cycles
to copy/persist large objects from RPC buffers to PM. Un-
der read-intensive workloads, Rowan-KV and HermesKV are
bottlenecked by the network bandwidth (11GB/s per server),
which is much lower than PM read bandwidth (18GB/s).

7 Discussion
Although Intel killed Optane memory business for commer-
cial reasons in summer 2022, we believe that Rowan is still ap-
plicable to future byte-addressable storage devices. For exam-
ple, CXL storage devices (e.g., Samsung’s Memory-Semantic
SSD [13]), which are considered promising alternatives to
Optane DIMMs, share similarities with Optane DIMMs: 1)
limited write bandwidth; 2) byte interfaces with a block-level
internal access granularity (e.g., flash page). Thus, when many
remote threads concurrently access CXL storage devices with
small IO size, Rowan can still effectively mitigate DLWA and
thus boost system performance.

8 Related Work
PM KVSs. There are a host of works on PM KVSs, but most
of them are single-machine (except Clover [63]) . HiKV [71]
and Bullet [39] are designed before the availability of real PM
devices; both of them store objects into fine-grained PM hash
tables. However, real PM devices have block-level internal
access granularity (e.g., 256B in Optane DIMMs). To reduce
DLWA, recent PM KVSs, including FlatStore [25], Viper [22],
and Pacman [66], adopt log-structured approaches to manage
objects. Rowan-KV also uses log-structured approach for the
same reason, but focuses on distributed environments where
objects are sharded and replicated.
RDMA replication. RDMA replication can be categorized
into two groups, namely backup-active and backup-passive,
depending on whether backups consume CPUs on the critical
path of replication. Lots of systems [20, 21, 41, 45, 65] belong
to backup-active group, where backups’ CPUs need to process
messages during replication. For backup-passive group [17,
31, 46, 47, 57, 62, 69, 75], primaries only need to wait for
ACKs from the RNIC hardware of backups. For example,
Hyperloop [47] uses RDMA WAIT and WRITE verbs to realize
chain replication. Rowan-KV belongs to the backup-passive
group, so it features low latency and high CPU efficiency. Yet,
traditional backup-passive approaches can lead to DLWA on
PM KVSs, driving us to design the Rowan abstraction.
RDMA abstraction. Due to limited expressivity of RDMA
verbs, several works propose new RDMA abstractions [18,
19, 23, 27, 60, 72]. StRoM [60] and RMC [19] allow applica-
tions to define functions on NICs. Aguilera et al. [18] and
PRISM [23] propose several new RDMA verbs to support far
memory data structures and distributed systems. RedN [58]
makes RDMA Turing complete using self-modifying chains.
All above works (except RedN) require RNIC modification or
specialized hardware (e.g., SmartNICs). In contrast, Rowan
can be realized with off-the-shelf RNICs, leveraging RNIC
features such as SRQ and MP RQ. Besides, Rowan targets
handling high fan-in small PM writes.

9 Conclusion
This paper explored how to efficiently replicate PM KVSs
using RDMA. We showed that existing approaches using
RDMA WRITE cause severe device-level write amplification
(DLWA) on PM. To this end, we proposed Rowan, a one-sided
RDMA abstraction that can merge numerous remote writes
into a single stream. Based on Rowan, we built Rowan-KV,
a log-structured PM KVS; it outperforms RPC and RDMA
WRITE alternatives in throughput and latency under write-
intensive workloads, while achieving low DLWA.

Acknowledgements
We sincerely thank our shepherd Bernard Wong for helping
us improve the paper. We also thank the anonymous reviewers
for their feedback. This work is supported by the National
Natural Science Foundation of China (Grant No. 61832011,
62022051) and Alibaba Group through AIR Program.

454 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Apache Cassandra Data Partitioning. https:
//www.instaclustr.com/blog/cassandra-data-
partitioning/, 2022.

[2] Choosing the Right DynamoDB Partition Key.
https://aws.amazon.com/en/blogs/database/
choosing-the-right-dynamodb-partition-
key/, 2022.

[3] Data Distribution and Movement in FoundationDB.
https://github.com/apple/foundationdb/
wiki/Data-Distribution-and-Movement, 2022.

[4] Device Memory of RNICs. https://man7.org/
linux/man-pages/man3/ibv_alloc_dm.3.html,
2022.

[5] Intel Data Direct I/O Technology. https:
//www.intel.com/content/www/us/en/io/data-
direct-i-o-technology-brief.html, 2022.

[6] Intel Optane DC Persistent Memory Module (PMM).
https://www.storagereview.com/news/intel-
optane-dc-persistent-memory-module-pmm/,
2022.

[7] Introduce Verbs API for Multi-packet Work Re-
quest. https://marc.info/?l=linux-rdma&m=
151311334131294&w=2, 2022.

[8] ipmctl. https://github.com/intel/ipmctl, 2022.

[9] Multi-Packet RQ. https://docs.mellanox.com/
display/rdmacore50/Multi-Packet+RQ, 2022.

[10] Partitioning and horizontal scaling in Azure Cosmos
DB. https://docs.microsoft.com/en-us/azure/
cosmos-db/partitioning-overview, 2022.

[11] RDMA Aware Networks Programming User Man-
ual. https://www.mellanox.com/related-docs/
prod_software/RDMA_Aware_Programming_
user_manual.pdf, 2022.

[12] RDMA Verbs Extensions for Persistency and
Consistency. https://www.snia.org/sites/
default/files/SDC/2016/presentations/
persistent_memory/IdanBurstein_RDMA_
VERBs_Extensions.pdf, 2022.

[13] Samsung Electronics Unveils Far-Reaching, Next-
Generation Memory Solutions at Flash Memory Sum-
mit 2022. https://news.samsung.com/global/
samsung-electronics-unveils-far-reaching-
next-generation-memory-solutions-at-
flash-memory-summit-2022, 2022.

[14] Twitter’s doubling of character count from
140 to 280 had little impact on length of
tweets. https://techcrunch.com/2018/10/
30/twitters-doubling-of-character-count-
from-140-to-280-had-little-impact-on-
length-of-tweets/, 2022.

[15] ZippyDB: the Architecture of Facebook’s Strongly Con-
sistent Key-Value Store. https://www.infoq.com/
news/2021/09/facebook-zippydb/, 2022.

[16] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon,
Larry Kai, Alexander Shraer, Arif Merchant, and Kfir
Lev-Ari. Slicer: Auto-Sharding for Datacenter Appli-
cations. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
739–753, Savannah, GA, November 2016. USENIX As-
sociation.

[17] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond Consensus for Microsecond
Applications. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20),
pages 599–616. USENIX Association, November 2020.

[18] Marcos K. Aguilera, Kimberly Keeton, Stanko No-
vakovic, and Sharad Singhal. Designing Far Memory
Data Structures: Think Outside the Box. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS ’19, page 120–126, New York, NY, USA, 2019.
Association for Computing Machinery.

[19] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout,
Arvind Krishnamurthy, Aurojit Panda, Sylvia Rat-
nasamy, and Scott Shenker. Remote Memory Calls. In
Proceedings of the 19th ACM Workshop on Hot Topics
in Networks, HotNets ’20, page 38–44, New York, NY,
USA, 2020. Association for Computing Machinery.

[20] Thomas E. Anderson, Marco Canini, Jongyul Kim, De-
jan Kostić, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N. Schuh, and Emmett Witchel. Assise: Per-
formance and Availability via Client-local NVM in a
Distributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1011–1027. USENIX Association, November
2020.

[21] Jonathan Behrens, Sagar Jha, Ken Birman, and Edward
Tremel. RDMC: A Reliable RDMA Multicast for
Large Objects. In 2018 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 71–82, 2018.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 455

https://www.instaclustr.com/blog/cassandra-data-partitioning/
https://www.instaclustr.com/blog/cassandra-data-partitioning/
https://www.instaclustr.com/blog/cassandra-data-partitioning/
https://aws.amazon.com/en/blogs/database/choosing-the-right-dynamodb-partition-key/
https://aws.amazon.com/en/blogs/database/choosing-the-right-dynamodb-partition-key/
https://aws.amazon.com/en/blogs/database/choosing-the-right-dynamodb-partition-key/
https://github.com/apple/foundationdb/wiki/Data-Distribution-and-Movement
https://github.com/apple/foundationdb/wiki/Data-Distribution-and-Movement
https://man7.org/linux/man-pages/man3/ibv_alloc_dm.3.html
https://man7.org/linux/man-pages/man3/ibv_alloc_dm.3.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm/
https://www.storagereview.com/news/intel-optane-dc-persistent-memory-module-pmm/
https://marc.info/?l=linux-rdma&m=151311334131294&w=2
https://marc.info/?l=linux-rdma&m=151311334131294&w=2
https://github.com/intel/ipmctl
https://docs.mellanox.com/display/rdmacore50/Multi-Packet+RQ
https://docs.mellanox.com/display/rdmacore50/Multi-Packet+RQ
https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/IdanBurstein_RDMA_VERBs_Extensions.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/IdanBurstein_RDMA_VERBs_Extensions.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/IdanBurstein_RDMA_VERBs_Extensions.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/IdanBurstein_RDMA_VERBs_Extensions.pdf
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://news.samsung.com/global/samsung-electronics-unveils-far-reaching-next-generation-memory-solutions-at-flash-memory-summit-2022
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://www.infoq.com/news/2021/09/facebook-zippydb/
https://www.infoq.com/news/2021/09/facebook-zippydb/

[22] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.
Viper: An Efficient Hybrid PMem-DRAM Key-Value
Store. Proc. VLDB Endow., 14(9):1544–1556, May
2021.

[23] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan R. K. Ports. PRISM: Rethinking the RDMA
Interface for Distributed Systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 228–242, New York, NY,
USA, 2021. Association for Computing Machinery.

[24] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at
Facebook. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 209–223, Santa
Clara, CA, February 2020. USENIX Association.

[25] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20,
page 1077–1091, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[26] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[27] Alexandres Daglis, Dmitrii Ustiugov, Stanko Novaković,
Edouard Bugnion, Babak Falsafi, and Boris Grot.
SABRes: Atomic Object Reads for in-Memory Rack-
Scale Computing. In The 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-49.
IEEE Press, 2016.

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP ’07, page 205–220, New York, NY, USA,
2007. Association for Computing Machinery.

[29] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of Development Priorities in Key-
value Stores Serving Large-scale Applications: The
RocksDB Experience. In 19th USENIX Conference on

File and Storage Technologies (FAST 21), pages 33–49.
USENIX Association, February 2021.

[30] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, April 2014. USENIX Association.

[31] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings
of the 25th Symposium on Operating Systems Princi-
ples, SOSP ’15, page 54–70, New York, NY, USA, 2015.
Association for Computing Machinery.

[32] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire
Jr., and Dejan Kostić. Reexamining Direct Cache Ac-
cess to Optimize I/O Intensive Applications for Multi-
hundred-gigabit Networks. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 673–
689. USENIX Association, July 2020.

[33] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 281–297. USENIX Association, November
2020.

[34] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When Cloud Storage
Meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 519–533. USENIX Association, April 2021.

[35] Stewart Grant and Alex C Snoeren. In-network Con-
tention Resolution for Disaggregated Memory.

[36] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Un-
derstanding the Idiosyncrasies of Real Persistent Mem-
ory. Proc. VLDB Endow., 14(4):626–639, December
2020.

[37] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

456 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[38] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
TiDB: A Raft-Based HTAP Database. Proc. VLDB
Endow., 13(12):3072–3084, August 2020.

[39] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo
Seltzer, Tim Harris, and Steve Byan. Closing the Perfor-
mance Gap Between Volatile and Persistent Key-Value
Stores Using Cross-Referencing Logs. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
967–979, Boston, MA, July 2018. USENIX Association.

[40] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-Free Coordination
for Internet-Scale Systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Techni-
cal Conference, USENIXATC’10, page 11, USA, 2010.
USENIX Association.

[41] Sagar Jha, Jonathan Behrens, Theo Gkountouvas,
Matthew Milano, Weijia Song, Edward Tremel, Rob-
bert Van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast State Machine Replication for Cloud Ser-
vices. ACM Trans. Comput. Syst., 36(2), apr 2019.

[42] Anuj Kalia, David Andersen, and Michael Kaminsky.
Challenges and Solutions for Fast Remote Persistent
Memory Access. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, page 105–119,
New York, NY, USA, 2020. Association for Computing
Machinery.

[43] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1–16, Boston, MA,
February 2019. USENIX Association.

[44] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’16, page
185–201, USA, 2016. USENIX Association.

[45] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris
Grot, and Vijay Nagarajan. Hermes: A Fast, Fault-
Tolerant and Linearizable Replication Protocol. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, page 201–217,
New York, NY, USA, 2020. Association for Computing
Machinery.

[46] Mikhail Kazhamiaka, Babar Memon, Chathura
Kankanamge, Siddhartha Sahu, Sajjad Rizvi, Bernard
Wong, and Khuzaima Daudjee. Sift: Resource-Efficient
Consensus with RDMA. In Proceedings of the 15th
International Conference on Emerging Networking
Experiments And Technologies, CoNEXT ’19, page
260–271, New York, NY, USA, 2019. Association for
Computing Machinery.

[47] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Padhye,
Shachar Raindel, Steven Swanson, Vyas Sekar, and
Srinivasan Seshan. Hyperloop: Group-Based NIC-
Offloading to Accelerate Replicated Transactions in
Multi-Tenant Storage Systems. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, page 297–312,
New York, NY, USA, 2018. Association for Computing
Machinery.

[48] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun
Park, Young ri Choi, Alan Sussman, and Beomseok Nam.
ListDB: Union of Write-Ahead Logs and Persistent
SkipLists for Incremental Checkpointing on Persistent
Memory. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
161–177, Carlsbad, CA, July 2022. USENIX Associa-
tion.

[49] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu,
Sumit Kumar Monga, Hee Won Lee, Minsung Jang, Ajit
Mathew, and Changwoo Min. TIPS: Making Volatile
Index Structures Persistent with DRAM-NVMM Tier-
ing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 773–787. USENIX Associa-
tion, July 2021.

[50] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,
Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun
Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-
araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,
and Chunqiang Tang. Shard Manager: A Generic Shard
Management Framework for Geo-Distributed Applica-
tions. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, SOSP ’21, page
553–569, New York, NY, USA, 2021. Association for
Computing Machinery.

[51] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
In-Memory Key-Value storage. In 11th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 429–444, Seattle, WA, April 2014.
USENIX Association.

[52] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 457

Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching Billions of Tiny Objects on Flash. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 243–262,
New York, NY, USA, 2021. Association for Computing
Machinery.

[53] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srini-
vas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat
Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal,
et al. Deep learning training in facebook data centers:
Design of scale-up and scale-out systems. arXiv preprint
arXiv:2003.09518, 2020.

[54] Jinyoung Oh and Youngjin Kwon. Persistent Memory
Aware Performance Isolation with Dicio, page 97–105.
Association for Computing Machinery, New York, NY,
USA, 2021.

[55] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of the 16th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’19, page 361–377, USA, 2019. USENIX Associ-
ation.

[56] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen
Rumble, Ryan Stutsman, and Stephen Yang. The RAM-
Cloud Storage System. ACM Trans. Comput. Syst.,
33(3), aug 2015.

[57] Marius Poke and Torsten Hoefler. DARE: High-
Performance State Machine Replication on RDMA Net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC ’15, page 107–118, New York, NY,
USA, 2015. Association for Computing Machinery.

[58] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is Turing complete, we just did not know
it yet! In Proceedings of NSDI’22, Apr 2022.

[59] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,
Junru Li, and Youyou Lu. TH-DPMS: Design and Imple-
mentation of an RDMA-Enabled Distributed Persistent
Memory Storage System. ACM Trans. Storage, 16(4),
oct 2020.

[60] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[61] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr. Sharma, Arvind Krishnamurthy, Dan
R. K. Ports, and Irene Zhang. Meerkat: Multicore-
Scalable Replicated Transactions Following the
Zero-Coordination Principle. In Proceedings of the
Fifteenth European Conference on Computer Systems,
EuroSys ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

[62] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni
Cortes. Tailwind: Fast and Atomic RDMA-based Repli-
cation. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 851–863, Boston, MA, July
2018. USENIX Association.

[63] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating Persistent Memory and Controlling Them
Remotely: An Exploration of Passive Disaggregated
Key-Value Stores. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 33–48. USENIX
Association, July 2020.

[64] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 306–324, New York, NY, USA, 2017.
Association for Computing Machinery.

[65] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. APUS: Fast and Scalable Paxos on
RDMA. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC ’17, page 94–107, New York,
NY, USA, 2017. Association for Computing Machinery.

[66] Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji
Huang, and Jiwu Shu. Pacman: An Efficient Compaction
Approach for Log-Structured Key-Value Store on Per-
sistent Memory. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 773–788, Carls-
bad, CA, July 2022. USENIX Association.

[67] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
Black-Box Approach to NUMA-Aware Persistent Mem-
ory Indexes. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pages
93–111. USENIX Association, July 2021.

[68] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
Write-Optimized Distributed B+Tree Index on Disag-
gregated Memory. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD
’22, page 1033–1048, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[69] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid is Better. In Proceedings of the

458 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

13th USENIX Conference on Operating Systems Design
and Implementation, OSDI’18, page 233–251, USA,
2018. USENIX Association.

[70] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and
Binyu Zang. Characterizing and Optimizing Remote
Persistent Memory with RDMA and NVM. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 523–536. USENIX Association, July 2021.

[71] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.
HiKV: A Hybrid Index Key-Value Store for DRAM-
NVM Memory Systems. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’17, page 349–362, USA, 2017.
USENIX Association.

[72] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
FileMR: Rethinking RDMA Networking for Scalable
Persistent Memory. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 111–125, Santa Clara, CA, February 2020.
USENIX Association.

[73] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020. USENIX Association.

[74] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong
Jiang. ChameleonDB: A Key-Value Store for Optane
Persistent Memory. In Proceedings of the Sixteenth Eu-
ropean Conference on Computer Systems, EuroSys ’21,
page 194–209, New York, NY, USA, 2021. Association
for Computing Machinery.

[75] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and
Steven Swanson. Mojim: A Reliable and Highly-
Available Non-Volatile Memory System. In Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’15, page 3–18, New York, NY,
USA, 2015. Association for Computing Machinery.

[76] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Nama-
sivayam, Alex Miller, Evan Tschannen, Steve Ather-
ton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David
Scherer, Alec Grieser, Young Liu, Alvin Moore, Bhaskar
Muppana, Xiaoge Su, and Vishesh Yadav. Founda-
tionDB: A Distributed Unbundled Transactional Key
Value Store. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD/PODS
’21, page 2653–2666, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 459

eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

Jaehong Min1, Chenxingyu Zhao1, Ming Liu2, and Arvind Krishnamurthy1

1University of Washington
2University of Wisconsin-Madison

Abstract
Emerging Zoned Namespace (ZNS) SSDs, providing the

coarse-grained zone abstraction, hold the potential to signif-
icantly enhance the cost-efficiency of future storage infras-
tructure and mitigate performance unpredictability. However,
existing ZNS SSDs have a static zoned interface, making them
in-adaptable to workload runtime behavior, unscalable to un-
derlying hardware capabilities, and interfering with co-located
zones. Applications either under-provision the zone resources
yielding unsatisfied throughput, create over-provisioned zones
and incur costs, or experience unexpected I/O latencies.

We propose eZNS, an elastic-zoned namespace interface
that exposes an adaptive zone with predictable characteristics.
eZNS comprises two major components: a zone arbiter that
manages zone allocation and active resources on the control
plane, a hierarchical I/O scheduler with read congestion con-
trol, and write admission control on the data plane. Together,
eZNS enables the transparent use of a ZNS SSD and closes
the gap between application requirements and zone interface
properties. Our evaluations over RocksDB demonstrate that
eZNS outperforms a static zoned interface by 17.7% and
80.3% in throughput and tail latency, respectively, at most.

1 Introduction
The NVMe Zoned Namespace (ZNS) is a newly-introduced
storage interface and has received significant attention from
data center and enterprise storage vendors. By dividing the
SSD physical address space into logical zones, migrating
from device-side implicit garbage collection (GC) to host-
side explicit reclaim, and eradicating random write accesses,
a ZNS SSD significantly reduces device DRAM needs, re-
solves the write amplification (WAF) issue, minimizes costly
overprovisioning, and mitigates I/O interference. However,
the performance characteristics of the ZNS interface are not
well-understood. In particular, to build efficient I/O stacks
over it, we should be cognizant of (1) how the underlying
SSD exposes the zone interface and enforces its execution
restrictions; (2) what trade-offs the device’s internal mecha-
nisms make to balance between cost and performance. For

example, the device-enforced zone placement makes the ac-
tual I/O bandwidth capacity of a zone contingent on how a
ZNS SSD allocates zone blocks across channels/dies. Further,
a zone is not a performance-isolated domain, and one could
observe considerable I/O interference for inter-zone read and
write requests. Therefore, there is a strong need to understand
its idiosyncratic features and bring enough clarity to storage
applications.

We perform a detailed performance characterization of a
commodity ZNS SSD, investigate its device-internal mech-
anisms, and analyze the benefits and pitfalls under differ-
ent I/O profiles in both standalone and co-located scenarios.
Using carefully calibrated microbenchmarks, we examine
the interaction between zones and the underlying SSD from
three perspectives: zone striping, zone allocation, and zone
interference. We also compare with conventional SSDs when
necessary to investigate the peculiarity of a ZNS SSD. Our
experiments highlight the interface’s capabilities to mitigate
the burden on I/O spatial and temporal management, identify
constraints that would cause sub-optimal performance, and
provide guidance on overcoming the limitations.

We then propose eZNS, a new interface layer, which pro-
vides a device-agnostic zoned namespace to the host system,
mitigates inter-/intra-zone interference, and improves the de-
vice bandwidth by allocating active resources based on the ap-
plication workload profile. eZNS is transparent to upper-layer
applications and storage stacks. Specifically, eZNS comprises
two components: the zone arbiter on the control plane and a
tenant-cognizant I/O scheduler on the data plane. The zone
arbiter maintains the device shadow view that manages zone
allocations and realizes a dynamic resource allocation by a
zone ballooning mechanism. It allows serving applications
to max out the device capability by enabling the maximum
device parallelism given the workload profile and rebalancing
inactive bandwidth across namespaces. The I/O scheduler of
eZNS leverages the intrinsic characteristics of ZNS, where
there are no hardware-hidden internal bookkeeping opera-
tions. Read I/Os become more predictable, and one can di-
rectly harness this property to examine inter-zone interference.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 461

H
os

t I
nt

er
fa

ce

Lo
gi

c

NAND
Die #1

Embedded
Processor

DRAM/SRAM

Fl
as

h
C

ha
nn

el

C
on

tro
lle

r

Channel 1

Channel n

SSD Controller

NAND
Die#n

NAND
Die #1

NAND
Die#n

Page 1 …
Erase Block 1

Page n

Page 1 …
Erase Block n

Page n

……

Figure 1: The architecture of a conventional and ZNS SSD.

On the other hand, write I/Os share a performance domain
due to the write cache architecture of the SSD, causing global
congestion across all active zones. eZNS, therefore, applies
a local congestion control for reads and a global admission
control for writes. Our I/O schedulers mitigate the interfer-
ence independently but improve overall system performance
cooperatively. We demonstrate benefits in the evaluation (§5)
over micro-benchmarks and RocksDB.

2 Background and Motivation
This section reviews the basics of NAND-based SSDs, in-
troduces the ZNS SSD and its features, and discusses the
problems with the existing zoned interface.

2.1 NAND-based SSDs
A NAND-based SSD combines an array of flash memory
dies and is able to deliver a bandwidth of several GB/s. It
comprises four main architectural components (Figure 1):
(1) a host interface logic (HIL) that implements the proto-
col used to communicate with the host, such as SCSI [40]
and recent NVMe [29]; (2) an SSD controller, enclosing an
embedded processor and a flash channel controller, which is
responsible for the address translation and scheduling, as well
as flash memory management; (3) onboard DRAM, buffering
transmitted I/O data and metadata, storing the address transla-
tion table, and providing a write cache; (4) a multi-channel
subsystem that connects NAND dies via a high-bandwidth
interconnect. As shown in Figure 1, a NAND die consists of
hundreds of erase blocks, where each block contains hundreds
to thousands of pages. Each channel holds multiple dies to
increase I/O parallelism and bandwidth. Each page encloses
a fixed-sized data region and a metadata area that stores ECC
and other information. Flash memory supports three major
operations: read, program, and erase. The access granular-
ity of a read/program is a page, while the erase command is
performed in units of blocks. NAND flash memory has three
unique characteristics [1, 10, 12, 19, 26]: (1) no in-place up-
date, where the whole block must be erased before updating
any page in that block; (2) asymmetric performance between
reads and programs; (3) limited lifetime (endurance) – each
cell has a finite number of program/erase (P/E) cycles [22].

To effectively use the NAND flash and address its limita-
tions, SSDs employ a special mapping layer called the flash
translation layer (FTL). It provides three major functionali-
ties [13, 20, 33, 52]: (1) dynamically mapping logical blocks
addresses (LBA) to physical NAND pages addresses (PPA);
(2) implementing a garbage collection (GC) mechanism to

handle the no in-place update issue and asynchronously re-
claim invalid pages; (3) applying a wear-leveling technique to
evenly balance the usage (or aging property) of all blocks and
prolong the SSD lifespan. However, FTL brings in consid-
erable overheads. First, the translation table requires a large
amount of DRAM to store the mapping entries, e.g., 1GB for
1TB NAND capacity for 4KB data unit size. Second, when
serving a user I/O, the compounding effect of GC and wear-
leveling would trigger additional SSD internal writes (i.e.,
copying valid pages to erase the block) and lead to the WAF
(Write Amplification Factor) problem. Third, the FTL does
not employ performance isolation mechanisms and incurs sig-
nificant interference issues under mixed I/O profiles [28, 32].

2.2 Zoned Namespace SSDs
ZNS SSDs, a successor to Open-Channel (OC) SSDs [6, 9],
have recently been developed to overcome the aforemen-
tioned limitations of conventional SSDs. There are several
commodity ZNS SSDs from various vendors [34, 37, 38, 50].
A ZNS SSD applies the same architecture as a conventional
one (Figure 1) but exposes the zoned namespace interface. A
namespace is a separate logical block address space, like a
traditional disk partition, but managed by the NVMe device
controller rather than the host software. The device may con-
trol the internal block allocation of namespaces to optimize
the performance based on the device-specific architecture. In
ZNS SSD, the namespace comprises multiple zones instead
of blocks in the conventional one, and each namespace owns
dedicated active resources that are used to open and write a
zone.

A ZNS SSD divides the logical address space of names-
paces into fixed-sized zones, where each one is a collection
of erase blocks and must be written sequentially and reset
explicitly. ZNS SSDs present three benefits: (1) Maintain
coarse-grained mappings between zones and flash blocks and
apply wear-leveling at the zone granularity, requiring much
smaller internal DRAM; (2) Eliminate the device-side GC and
reclaim NAND blocks via explicit zone resets by host appli-
cations, which mitigates the WAF and log-on-log [51] issues
and minimizes the over-provisioning overhead; (3) Enable the
placement of opened zones across different device channels
and dies, providing isolated I/O bandwidth and eliminating
inter-zone write interference.

A zone has six states (i.e., empty, implicitly open, explicitly
open, closed, full, read only, and offline). State transitions are
triggered by either write I/Os or zone management commands
(i.e., RESET, OPEN, CLOSE, and FINISH). A zone must be
opened before issuing writes, but it is capable of serving reads
in any state except the offline state. closed and open (both
implicit and explicit) are active states that require the device
to maintain NAND metadata for incoming user write I/Os,
limiting the maximum number of active zones. SSDs employ
the write cache in DRAM to align the wide range of user I/O
sizes to the NAND program unit and comply with the NAND-

462 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

specific requirements (timings and program order). In case of
a sudden power-off failure, the device flushes uncommitted
data in the cache using batteries or capacitors as an emergency
power source [46, 54]. Since active zones must have a buffer
backed by energy devices for at least one NAND program
unit in the cache, the maximum number of active zones is also
constrained by the size of the write cache.

A zone provides three I/O commands: read, sequential
write, and append. The append works similarly to the name-
less write [53] but improves the host I/O efficiency rather than
the internal NAND page allocation. Compared with the nor-
mal write, a zone append command does not specify the LBA
in the I/O submission request, whilst the SSD will determine
it at processing time and return the address in the response.
Thus, user applications can submit multiple outstanding op-
erations simultaneously without violating the restriction of
sequential writes. Random writes are disallowed on ZNS
SSDs, and the zone is erased as a whole (via the RESET). A
ZNS SSD delegates the FTL and GC responsibilities to user
applications, where they are performed at the zone granularity,
thus eliminating traditional SSD overheads.

2.3 Small-zone and Large-zone ZNS SSDs
Zones can be classified into two types: physical zone and
logical zone. Physical zones are the smallest unit of zone
allocation and consist of one or more erasure blocks on a
single die. They are device-backed and offer fine-grained con-
trol over storage resources. In contrast, logical zones refer to
a striped zone region consisting of multiple physical zones.
They can be implemented by either the device firmware or
application and provide higher bandwidth through striping.
Large-zone ZNS SSDs provide coarse-grained large logical
zones with a fixed striping configuration that spans multiple
dies across all internal channels but offers limited flexibil-
ity for controlling device behavior from the host software.
This simplifies zone allocation but exposes a small number of
active zones available for allocation to applications (e.g., 14
zones [50]). As a result, large-zone SSDs are more suitable for
scenarios with small numbers of tenants, where the number of
active zones required is not high. In addition, the application-
agnostic fixed striping configuration does not adapt to work-
load profiles, resulting in low bandwidth utilization. Small-
zone ZNS SSDs operate under similar hardware constraints
but expose finer-grained physical zones. Each zone is con-
tained within a single die but sufficiently large to encompass
at least one erasure block. Small-zone SSDs provide greater
flexibility and much more active resources (e.g., 256 zones
in our testbed ZNS SSD) to support more I/O streams. In
addition to increased flexibility, small-zone SSDs reduce the
need for application-level garbage collection, especially while
managing large numbers of small objects. Recent studies also
corroborate some of these points. Specifically, Bae et al. [3]
advocate a zone to be as small as possible to reduce the inter-
ference caused by high zone-reclaiming latencies. ZNS+ [16]

0

4

8

12

16

20

0 50 100 150 200

Lo
gi

ca
l Z

on
e

(#
)

Time (s)

Zone w/ Write Activity

Figure 2: The number of zone with actual write activity when running
the fill-random workload over the RocksDB. The storage backend is
ZenFS. The maximum number of active zones is 16 (red line).

also prefers small zones as it minimizes the latency of COPY
operations performed frequently in its F2FS implementation.

2.4 The Problem: Lack of an Elastic Interface
The ZNS SSD brings in two key benefits. First, it exposes
controllable garbage collection to host applications, eliminat-
ing obtrusive I/O behaviors precipitated by device internal
bookkeeping I/Os. This also alleviates write amplification
and reduces flash over-provisioning. Second, it only allows
sequential writes within a zone and thereby mitigates cer-
tain I/O interference observed in a conventional SSD. Both
prior studies [3, 8, 16, 45] and our characterizations (§3) be-
low demonstrate these points. However, existing ZNS SSDs
have one significant drawback: the zoned interface is static
and inflexible. After a zone is allocated and initialized, its
maximum performance is fixed regardless of the underlying
device capability, its I/O configurations cannot adapt to run-
time workload characteristics, and cross-zone I/O interference
yields unpredictable I/O executions.

First, the performance profile of a zone-sized storage par-
tition hinges on physical zone placement and stripe config-
uration, which should align with application requirements.
Despite significant benefits from the flexibility of the user-
defined logical zone, application-managed zone configuration
would sustain sub-optimal performance due to the lack of
knowledge of other tenants sharing the device. In addition, it
imposes another burden on application developers, as with
OC SSDs.

Second, it is non-trivial to develop a complete application
profile that captures every aspect of I/O execution charac-
teristics, such as read/write block size and distribution, I/O
concurrency, and command interleaving degree. The existing
zoned interface fails to adapt to the changing workload be-
havior. Users have to over-provision the zone resources when
configuring a zone based on the worst-case estimation.

In Figure 2, it is shown that the RocksDB over ZenFS [7]
actively writes to only a fraction of the zones it maintains in
the active state. This leads to inefficient utilization of valu-
able active resources in the ZNS SSD. Similarly, file systems
like BtrFS [36] and F2FS [25] support ZNS SSDs but write
user data to only one zone at a time, resulting in suboptimal
utilization of the available active resources. This issue is fur-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 463

ther exacerbated when the device has multiple namespaces
serving different applications. In such cases, each application
only utilizes a fraction of the available bandwidth, wasting
valuable active resources in the ZNS SSD.

Third, a zone is not a completely performance-isolated
domain, and co-located zones interact with each other in a
non-deterministic fashion. Ideally, each tenant should receive
a weighted share based on the consolidation degree. Specifi-
cally, its housing application should achieve its targeted per-
formance when the SSD is under-utilized but receive a propor-
tional degradation when the SSD is over-subscribed. However,
unlike its predecessor OC SSD, ZNS SSDs manage zone al-
location and wear-leveling internally with no strong isolation
support and expose an opaque view to applications, yielding
unpredictable performance interference and I/O execution
unfairness. Such an issue could be mitigated in a conven-
tional SSD where FTL and GC blend and distribute blocks
across channels and dies uniformly regardless of the origi-
nal command flow, ensuring the attainment of the maximum
bandwidth and equal utilization of channel and die.

3 Performance Characterization of a ZNS SSD
This section characterizes a ZNS SSD with a focus on under-
standing why existing ZNS interfaces are static and inflexible.
We then discuss the possibilities of addressing the problem.

3.1 Experimental Setup

Device HW Parameters Specification
Capacity 3,816 GB

Channels # 16 Channels
NAND Dies # 128 Dies

NAND Page Size 16 KB
NAND Channel B/W ∼600 MB/s
Physical Zone Size 96 MB

Read B/W per Physical Zone ∼200 MB/s
Write B/W per Physical Zone ∼ 40 MB/s

Maximum Active Zones # 256

Table 1: The commodity ZNS SSD specification.

ZNS SSD and testbed. We use a commodity ZNS SSD for
characterization. Table 1 presents its hardware details. It has
40,704 physical zones, where each 96MB-size zone consists
of NAND erase blocks solely on a single die, and supports a
maximum of 256 open zones simultaneously. We then con-
figure various logical zones using such fine-granular units.
We also prepare a conventional SSD with an equivalent archi-
tecture for a fair comparison. Our server has two 2.50GHz
E5-2680v3 Xeon processors with 256GB DDR4 DRAM, and
both SSDs are connected to ×4 PCIe Gen3 slots directly.

Workloads and performance metrics. We use the Fio
benchmark tool [15] running on the SPDK framework [43]
to generate synthetic workloads. We report both per-IO aver-
age/tail latency as well as achieved bandwidth. We add a thin
layer to the SPDK to implement the logical zone concept and
realize different zone configurations. Given the ZNS protocol,
we regulate the write workloads to sequential accesses on a

Layer 5: SSD ch./die

Applications

Layer 4: Physical zone

Layer 3: Logical zone

Layer 2: Namespace

Layer 1: Tenant

NVMe driver
(a). Layered view (b). SW stack (c). I/O path

Host CPU

Controller CPU

Write Cache

NAND Flash

wrrd

Zone MappingZoned block
device layer

reset

Figure 3: System model, SW stack, and I/O path of a multi-tenant ZNS
SSD deployment. RD/WR=Read/Write. The write cache flushes data
to the NAND flash asynchronously. Zone resets are completed after
invalidating the mapping layer, where NAND blocks are erased lazily.

single logical zone in the following experiments, where read
workloads are issuing random I/Os unless specified.

3.2 System Model
We consider a typical system setup with a five-layered view
to facilitate the understanding of a multi-tenant ZNS SSD de-
ployment and dissect the I/O behavior (Figure 3-a). From the
top-down perspective, the first layer contains a few co-located
tenants, each running a storage application (e.g., blob store,
F2FS, and RocksDB). Next, a tenant exclusively owns one or
several namespaces based on the required capacity. A names-
pace provides independently configurable logical zones (layer
3), exposing a private logical block address space. By manip-
ulating the logical zone setup, a namespace can be configured
differently to meet the capacity and parallelism requirements.
Within a logical zone, reads happen everywhere, while writes
are only issued in an append-only manner. This is unique to a
ZNS SSD and in significant contrast to a conventional SSD,
which can be viewed as a fixed or statically configured SSD.

A logical zone comprises several physical zones (fourth
layer). The number of physical zones per logical zone is typi-
cally fixed within a namespace. The logical-to-physical zone
mapping can be arbitrary regardless of the request serving or-
der and device occupancy. However, the logical zone must not
share its physical zones with each other to conform with the
ZNS protocol. At the bottom layer, a physical zone is placed
on one channel/die following the device specification. The
zoned block device (ZBD) layer (Figure 3-b) is the central
component across the storage stack that abstracts away archi-
tectural details of a ZNS SSD. It provides three functionalities:
(1) interacting with the application on namespace/logical zone
management; (2) orchestrating the logical-to-physical zone
mapping in consideration of the application requirement; (3)
scheduling a sequence of I/O commands to maximize device
utilization and avoid head-of-line blocking. Figure 3-c shows
the IO path of read/write/reset requests. We carefully config-
ure each layer when designing characterization experiments.

3.3 Zone Striping
Since a logical zone is usually configured as an array of phys-
ical zones spatially, similar to RAID 0, one could apply the

464 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

4-zones 8-zones 16-zones 32-zones

B
a

n
d

w
id

th
 (

M
B

/s
)

Zone Configuration

4KB
8KB

16KB
32KB

64KB

Figure 4: Read bandwidth varying the stripe size
for different types of zones.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 6 8 10 12 14 16 20 24 32

B
a

n
d

w
id

th
 (

M
B

/s
)

Physical Zone Number (#)

2MB-RD-QD1
2MB-RD-QD2

4KB-RD-QD32
2MB-SEQ-WR

Figure 5: Read/Write bandwidth varying the
number of physical zones.

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16 32 64

B
a

n
d

w
id

th
 (

M
B

/s
)

Queue Depth (#)

4KB-2 OL.
4KB-4 OL.
4KB-8 OL.

128KB-2 OL.
128KB-4 OL.
128KB-8 OL.

Figure 6: Read bandwidth under three channel
overlapping (OL) allocations.

Stripe Size Avg. Lat(us) P99.9 Lat. (us) B/W (MB/s)
4KB 64 76 59
8KB 71 84 108
16KB 88 103 175
32KB 163 269 190
64KB 314 619 198

Table 2: Read I/O average/P99.9 latency and bandwidth varying the
stripe size on a physical zone.

striping technique to achieve higher throughput, especially for
large-sized I/Os. Zone striping segments data blocks across
multiple physical zones and access them concurrently. There
are two configuration parameters: (1) Stripe size is the small-
est data placement unit in a stripe, and (2) Stripe width defines
the number of physical zones in an active state and controls
the write bandwidth.

3.3.1 Basic Performance
When there are enough outstanding I/Os submitted to an SSD,
unsurprisingly, the optimal striping efficiency is achieved
when the stripe size matches the NAND operation unit (i.e.,
NAND page size). As shown in Table 2, the achieved per-die
bandwidth increases slowly after the 16KB stripe size. In
terms of latency, the access time reduction is non-linear for
sizes smaller than a NAND page (16KB). When the I/O size
is larger than 16KB, the average latency rises proportionally
to the I/O unit because each request has to access the die
multiple times sequentially. Next, we change the logical zone
setup and see the efficiency of different stripe sizes. We use
N-zones to refer to a logical zone configuration, where N is
the number of physical zones in a striping. As shown in Fig-
ure 4, when issuing 2MB reads (which generates enough I/O
to construct a full stripe I/O on each physical zone), for dif-
ferent zone configurations, the bandwidth over various stripe
sizes shows a similar result with the single-die performance.
On the other hand, a wider width that fully uses the stripe
size (stripe_size× stripe_width) achieves higher bandwidth.
For example, the 4KB stripe size in 8-zones achieves 37.3%
higher read bandwidth than the 8KB stripe size in 4-zones.
Note that the stripe size does not significantly affect the write
performance as one can coalesce stripes on the same physical
zone into a single device I/O and submit it at once. Instead,
the stripe width determines the maximum write bandwidth.

3.3.2 Challenge #1: Application-agnostic Striping
When deciding the optimal stripe size and width, one should
consider the application I/O profile dynamically, including

request type, size distribution, I/O size efficiency, and con-
currency. However, the existing zoned interface lacks such
support and hinges on users’ domain knowledge during con-
figuration. A large stripe may hurt performance if the size of
sequential user I/O is smaller than the size of a full stripe. On
the other hand, too small a stripe also hurts the I/O efficiency
of the device; a 4KB stripe with an 8-zone or wider width
significantly lags behind 8KB or larger stripes in Figure 4. A
wide stripe width sustains high performance per logical zone.
However, since the device has a limited amount of active re-
sources, it will instead limit the maximum number of active
logical zones and jeopardize application concurrency.

Observation: The use of logical zones with striping is
beneficial for the application, but zone striping should be an
adaptive configuration determined based on the total amount
of active zones and application profiles. A ZNS SSD has to
provide enough active logical zones to not only cope with ap-
plication concurrency but also max out the device bandwidth
by adjusting the stripe width dynamically. An ideal strip size
can be the NAND page size, but it also has to be adjusted to
the stripe width to provide a consistent full stripe size.

3.4 Zone Allocation and Placement
A ZNS SSD allocates physical zones across dies/channels,
mainly taking access parallelism and wear-leveling into con-
sideration. Upon an allocation request, the ZNS SSD traverses
the die array following a certain order, and then selects the
next available die to place each physical zone. Within a deter-
mined die, it chooses blocks with the least P/E cycles based
on opaque wear-leveling policies.

3.4.1 Basic Performance
Zone allocation should be locality-aware and parallelism-
aware. A larger-sized logical zone is expected to observe
higher read/write bandwidth because it spreads physical zones
across different channels and dies in a deterministic sequence
and achieves more I/O parallelism. The maximum perfor-
mance is obtained when I/Os access all channels and dies
without blocking. We configure the stripe size to 16KB and
increase the number of physical zones in a logical zone (N),
then measure the I/O bandwidth of a single logical zone under
four I/O profiles (Figure 5). The performance of 2MB reads
with queue depths 1 and 2 (i.e., 2MB-RD-QD1/2MB-RD-
QD2) keeps increasing until the number of physical zones
approaches 20. But they max out for different reasons. The

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 465

 0

 500

 1000

 1500

 2000

 2500

0 25 50 75 100 0

 200

 400

 600

 800

 1000

B
a

n
d

w
id

th
 (

M
B

/s
)

P
9

9
.9

 L
a

te
n

c
y
 (

u
s
)

Overlapped Ratio (%)

128KB-BW
4KB-BW

128KB-Lat
4KB-Lat

Figure 7: Bandwidth and tail latency varying
with the die overlapping ratio.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

200 400 600 800 1000 1200

P
9

9
.9

 L
a

te
n

c
y
 (

u
s
)

Write Bandwidth (MB/s)

ZNS-Read
ZNS-Write

Frag-Read
Frag-Write

Figure 8: Read tail latency varying the write
bandwidth (ZNS vs Conventional SSD)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

RR-No-Cong RR-Cong WW-No-Cong WW-Cong

B
a

n
d

w
id

th
 (

M
B

/s
)

Zone A Zone B

Figure 9: Bandwidth under RD-RD and WR-
WR congestion due to the die-collision.

QD2 case is bounded by the PCIe bandwidth (i.e., four Gen3
lanes or 3.2GB/s), whilst the QD1 scenario is simply limited
by the application as it cannot issue enough outstanding I/Os
at that queue depth. In terms of 4KB random read with 32
queue depth and 2MB sequential write, they sustain 80MB/s
read and 40MB/s program bandwidth per physical die, respec-
tively, requiring much more physical zones (∼ 40 and 80) to
utilize the channel or PCIe bandwidth fully.

3.4.2 Challenge #2: Device-agnostic Placement

An ideal allocation process should expose all of the inter-
nal I/O parallelism of a ZNS SSD to a tenant. However, the
existing mechanism is opaque to housed tenants, where the
global allocation pointer picks the next available die with-
out considering the application’s prior allocation history or
how it interacts with other tenants. This causes unbalanced
zone placement, hurts I/O parallelism, and jeopardizes perfor-
mance. We find two types of inefficient placements:

• Channel-overlapped placement: Concurrent zone allo-
cations might cause overlapped zone placements across
channels, limiting the maximum channel parallelism. Simi-
larly, synchronized allocation requests might prevent place-
ment alignment, again limiting the aggregated bandwidth.
Figure 6 presents 4KB and 128KB random read band-
width when increasing the QD for three inferior place-
ments, where 2/4/8 physical zones contend for the same
channel in a 16-zone configuration. Physical zones stay
across 16 different dies that limit the maximum bandwidth.
The 2-overlapped allocation outperforms the other two (i.e.,
4-overlapped/8-overlapped) by 1.7×/2.9× and 1.7×/2.5×
for 4KB and 128KB cases, respectively.

• Die-overlapped placement: An intra-namespace die over-
lapped placement limits the bandwidth and can be even
more detrimental because a die can only process one opera-
tion at a time. We configure such an experiment by placing
physical zones in the same die and gradually increasing
the overlapping ratio. Figure 7 reports the logical zone’s
sustained bandwidth and tail latency under two I/O profiles.
When no physical zones share the same die, it achieves
1,128MB/s and 2,051MB/s along with 317us and 284us
p99.9 tail latency for the 4KB random read and 128KB
sequential read cases, respectively. With full overlap, we
observe 47.2%/23.8% bandwidth drop and 87.1%/28.0%
tail latency increase. Such performance degradation hap-

pens even when the overlapping ratio is lower than 25%,
because both types of I/Os suffer from the head-of-line
blocking issue at the overlapped dies.

Observation: It is challenging to infer the zone’s physical
location without knowing the device’s internal specification.
One may run a profiling tool in the runtime to extract the rela-
tion among different zones [3]. However, it does not eliminate
the imprinted overlap at the allocation time. To maximize the
I/O parallelism, one could build a device abstraction layer
that (1) relies on a general allocation model of the device;
(2) maintains a shadow view of the underlying physical de-
vice; (3) profiles its placement balanced level across different
physical channels and dies.

3.5 I/O Execution under ZNS SSDs
A ZNS SSD eradicates background GC I/Os, thereby remov-
ing one form of performance non-determinism. Within a log-
ical zone, writes happen sequentially, but reads are issued
arbitrarily. When reads are congested, one would observe
latency spikes under die/channel contention. If considering
cross-zone cases, either intra or inter namespace, interfer-
ence would be more severe than a conventional SSD because
ZNS SSDs impose no physical resource partitions, and per
die/channel bandwidth is narrow.

3.5.1 Basic Performance
Irrespective of the NAND block layout of a logical zone,
its I/O access latency highly correlates with achieved band-
width because there are no device internal I/Os that consume
bandwidth and are hidden from user applications. To demon-
strate this, we prepare a conventional SSD having the same
hardware as the ZNS SSD and compare two SSDs under
the mixed read-write scenario. We configure a logical zone
for the ZNS SSD that spreads across all the channels and
dies (i.e., 128-zone configuration with 16KB stripe size) to
match the conventional one. The fragmented conventional
SSD is 70% filled and preconditioned with 128KB random
writes. Then we run eight read threads–where each issues
one 128KB read I/O to all the dies uniformly random–and
one write thread that performs sequential write at a fixed rate.
Figure 8 reports the read/write tail latency as we increase the
write bandwidth. More writes on a ZNS SSD leave less band-
width headroom for reads and cause the latency to increase.
However, for the fragmented conventional SSD, the internal
GC activities make even less bandwidth available to serve

466 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

reads due to write amplification. For example, when the write
bandwidth is 1,000MB/s, the p99.9 read and write latency of
the conventional SSD is 4.3× and 2.8× worse than the ZNS
one. In terms of the read throughput, the conventional SSD
shows 1.1× and 1.6× lower throughput than the ZNS SSD at
the 200MB/s and 1,000MB/s write bandwidth, respectively.

3.5.2 Challenge #3: Tenant-agnostic Scheduling

Existing zoned interfaces of ZNS SSDs provide little perfor-
mance isolation and fairness guarantees for the inter-zone
case, regardless of deployed workloads. One cannot overlook
the read interference on a die because (1) an arbitrary number
of zones can collide on a die, (2) the bandwidth of a single
die is poor, and hence the interference becomes severe even
under a very low load on the device, and (3) it causes a severe
head of line blocking problem and degrades the performance
of the logical zone. Since there is no internal GC in the ZNS
SSD, The I/O determinism [26] proposed for the conventional
SSD does not apply as well. Similar to conventional SSDs, the
write cache, shared among all NAND dies, is an indispensable
component of the ZNS SSD, buffering incoming writes and
flushing to the NAND dies in a batch. Host applications will
observe prompt write I/O completions when they are absorbed
by the cache but experience considerable latency spikes when
the cache overflows. This has not been an intractable issue
in conventional SSDs because the device firmware blends
all incoming write I/Os and constructs a single large flow
spanning entire NAND dies, maintaining the cache eviction
rate to the maximum device bandwidth. However, in the ZNS
SSD, a write I/O must be flushed out to the designated NAND
die with an inadequate program bandwidth, even with zone
striping. In this situation, a heavy writer exhausts the available
cache capacity and severely disturbs other short flows.

We set up two readers performing 128KB read I/O in dif-
ferent profiles: (1) queue depth 8 with a two-zone configura-
tion, and (2) queue depth 2 with an eight-zone configuration.
Figure 9 shows the interference between two readers in a die-
collision. The QD-8 reader easily obtains 97.2% of the total
bandwidth of collision dies. Note that the interference and
unfair bandwidth share also occurs in the conventional one,
but only when the device bandwidth is fully saturated [23,41].
We also demonstrate the write cache congestion in Figure 9.
We first populate 15 logical zones with a stripe width of 8, and
each physical zone is allocated to a dedicated die. The cumu-
lative write bandwidth of 15 zones maxes out the PCIe band-
width (3.2GB/s), and a single zone performs at ∼213.3MB/s.
In this case, a physical zone in the logical zone receives write
at a lower rate than the maximum bandwidth (∼26.7MB/s),
and the write cache does not overflow. Then, we add one
more writer with a narrow width of 2, which also runs on ded-
icated dies. Write I/Os towards the narrow zone are equally
fetched by the device, but it soon consumes all available cache
because of the scarce bandwidth (∼85MB/s) of underlying
physical zones. It degrades others’ bandwidth by 27.3% or

Device Shadow View

Zone Arbiter
Zone

Ballooning
Serial Zone Allocator

Resv.
Zones

(a). eZNS Overall

Local Overdrive

HAL

(b). Zone Ballooning

Zone 2

Spare Pool

De
vic

e Essential Pool

Spare

N
S1

Spare

N
S2

Zone 1

Global Overdrive

Zone 3

Reclaim

Essential Essential

Per-device AC

Zone I/O Scheduler

Read I/O Write I/O

Per-zone CC

Read I/O Write I/O
Zones (1…n) Zones (1…m)

Lending

Figure 10: eZNS System Architecture.

155MB/s, and the device even fails to max out the PCIe band-
width (∼2.4GB/s).

Observation: When using ZNS SSDs in a multi-tenant sce-
nario, one should first understand how different namespaces
and logical zones share the channels and NAND dies of the
underlying device, classify their relationships into competing
and cooperative types, and employ a congestion avoidance
scheme for the inter-zone scenario to achieve fairness. Since
there are no device bookkeeping operations, I/O latencies
represent the congestion level on colliding dies. In addition,
write cache congestion needs to be addressed globally. Thus,
a possible solution is to design (1) a global central arbiter that
decides the bandwidth share among all active zones; (2) a per-
zone I/O scheduler that orchestrates the read I/O submission
based on the congestion level.

4 eZNS: Enabling an Adaptive Zoned NS

This section describes the design and implementation of eZNS
that realizes a new and elastic zoned interface. We use the
gathered insights from our characterization experiments and
address the aforementioned issues.

4.1 eZNS Overview
eZNS stays atop the NVMe driver and provides raw block
accesses. eZNS exposes the v-zone interface that offers run-
time hardware adaptiveness, application elasticity, and tenant
awareness. We carefully design eZNS and spread its function-
alities across the control plane and data plane. As shown in
Figure 10, it mainly consists of two components. The first is
the zone arbiter that (1) maintains the device shadow view in
a hardware abstraction layer (HAL) and provides the basis
for other components, (2) performs serialized zone allocation
avoiding overlapped placement, and (3) dynamically scales
the zone hardware resources and I/O configurations via a
harvesting mechanism. The second is a tenant-cognizant I/O
scheduler, orchestrating read requests using a delay-based
congestion control mechanism and regulating writes through
a token-based admission control. In sum, eZNS addresses the
three issues discussed in §3.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 467

4.2 Hardware Contract and HAL
We develop eZNS based on the following hardware contract,
which are met by recent ZNS SSDs with small zones: (1) a
physical zone consists of one or more erasure blocks on a
single die; (2) the maximum number of active physical zones
is a multiple of the number of dies, and all dies hold the same
number of active zones when they are fully populated (i.e.,
the ZNS SSD evenly distributes physical zones over dies);
(3) the zone allocation mechanism follows the wear-leveling
requirements, indicating that consecutive allocated zones will
not overlap on a physical die until all the dies have been tra-
versed. We need to caveat that the last contract may not always
be followed in allocations if the device firmware enforces a
specific policy other than round-robin across dies. However,
considering the large number of chips and the wear-leveling
constraint, such cases are rare. Our mechanism doesn’t require
being cognizant of the two-dimensional geometric physical
view of SSD NAND dies and channels or maintaining an
exact zone-die mapping.

eZNS maintains a shadow device view, exposing the ap-
proximate data locality for zone allocation and I/O scheduling.
Our mechanism (or HAL layer) only hinges on three hard-
ware parameters from device specifications. The first one is
the maximum number of active zones (or MAR, maximum ac-
tive resources). This is based on an observation that the MAR
is generally in proportion to or a multiple of the number of
physical dies on the SSD. One could estimate the number of
active zones that a die could hold by deliberately controlling
the zone allocation order in an offline calibration experiment
(§3.4). The second parameter required is the NAND page size
used for striping configuration. For example, 16KB is a de
facto standard for most TLC NVMe drives and is well-known
for system developers. The SSD shows the best efficiency
when the stripe size is aligned with it (§3.3), and thereby, we
choose the stripe size as a multiple or factor of the NAND
page size that is closest to avoid inefficient stripe reads for
sequential workloads. These two parameters reflect the de-
vice’s capabilities. The third one is the physical zone size,
deciding how a logical zone and strip groups are constructed.
With such information, HAL provides a shadow view having
a consistent MAR (e.g., 16) and the size of a zone (e.g., 2GB)
regardless of the underlying device.

4.3 Serial Zone Allocator
eZNS develops a simple zone allocator that provides three
guarantees: (1) it ensures that each stripe group comprises
a list of consecutive and serial opened physical zones, fol-
lowing the firmware-enforced internal order; (2) there is no
die collision within a stripe group; (3) across stripe groups,
die collision could happen for writes only if available active
physical zones are fully populated across all the dies. Given
the above device model, the number of stripe groups colliding
on a die is Maximum # o f active zones

Die # at most. Channel collision
would not be an issue because its bandwidth is usually higher

SIZECAPACITY

WRITE POINTER

Unusable

Space

Unallocated

Space

Finished Stripe Group

(Overdrive Width=4)

essential spare

Opened

Stripe Group

Stripe Group

(Width=2)

S
tr

ip
e

Figure 11: Example of eZNS v-zone structure.

than the aggregated program bandwidth across dies.
Our allocator works as follows. It has a per-device request

queue, buffering OPEN commands (including implicit ones
followed by writes) from all logical zones. Our allocator
serves each logical zone request atomically. Since the com-
pletion of a zone OPEN command does not guarantee that the
zone is actually allocated on a physical die, we implement a
zone reservation mechanism during zone opens–flushing one
data block that enforces binding a die to the zone. Writes com-
plete immediately as the write cache of the device absorbs a
single block even in high load. To expedite this process, we
proactively maintain a certain amount of reserved zones in
serial order and provision them to an upcoming stripe group.
Upon completion of the allocation, we then update the allo-
cation history and write it into a reserved persistent region
(metadata block) following the block for reservation. Hence,
we preclude interleaved allocations from concurrently opened
logical zones to prevent channel-overlapped placement and fa-
cilitate allocation reordering to mitigate die overlaps (§3.4.2).

4.4 Zone Ballooning
v-zone, a specialized logical zone, can automatically scale its
I/O striping configuration and hardware resources to match
changing application requirements in a lightweight fashion.
Figure 11 illustrates an example of a v-zone structure. Similar
to a static logical zone, a v-zone contains a fixed number
of physical zones. However, unlike a static logical zone, it
divides physical zones into one or more stripe groups. When
v-zone is first opened or reaches the end of a previous stripe
group, it allocates a new stripe group. All physical zones in the
previous stripe group must be finished when the write pointer
reaches the end of the stripe group, allowing an active v-zone
to take active resources for only one stripe group. The number
of physical zones in a stripe group is determined at the time of
allocation according to the local overdrive mechanism, which
enables flexible zone striping. To comply with the standard
zone interface, v-zone has a size that is a power of 2, and its
capacity is the sum of user-available bytes in physical zones.

Similar to the virtualization memory ballooning tech-
nique [5, 39, 47], zone ballooning allows a v-zone to (1) ex-
pand its stripe width by leasing spares from others when other
namespaces are under low active resource usage; (2) return
them when it finishes the stripe group either by writing to the
end of the stripe group or explicitly issuing FINISH/RESET
commands from the application.

468 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.4.1 Initial Resource Provisioning
eZNS divides all the available and opened physical zones on
the ZNS SSD into two groups: essential and spare. The essen-
tial group contains a minimal number of active physical zones
that can max out the SSD write bandwidth (Nessential), whilst
the rest belong to the spare group (Nspare). Our initial resource
allocation follows the equal bandwidth partition principle. We
choose the write I/O bandwidth as the minimum guarantee
because writing resources (or active physical zones) of a ZNS
SSD are scarce. Assuming the number of namespaces that
a ZNS SSD holds is Nns and the maximum number of ac-
tive v-zones per namespace is MARlogical . A namespace takes
Nessential

Nns
exclusive active physical zones; when a v-zone in the

namespace opens a new stripe group, it receives Nessential
Nns×MARlogical

assured essential ones which is also the minimum stripe width.
In terms of spare zones, similarly, eZNS equally distributes
them to a namespace (Nspare

Nns
) during initialization. Both a v-

zone and a namespace will expand/shrink their capacity to
adapt to workload demands.

4.4.2 Local Overdrive: Zone Expanding
eZNS provisions available spares from the spare group of
its namespace to boost its write I/O capability. We realize
this via an internal local overdrive operation while opening a
new stripe group. The mechanism works as follows. First, it
estimates the resource usage of the namespace by analyzing
its previously opened v-zones, quantified as the exponentially
weighted moving average over the number of active v-zones
(NActiveZoneHistory). Second, it checks the remaining spares
from the spare group (NRemainingSpare) and reaps additional
spares based on NTotalSpare

NActiveZoneHistory
. Essentially, a v-zone will re-

ceive more (fewer) spares if it embodies writing activities but
the namespace only opens fewer (more) v-zones. Third, the
v-zone conflates the harvested spares with assured essential
ones for it to open the new stripe group, and the stripe width
is rounded down to the nearest power of two for efficient re-
source management. Note that the local overdrive operates in
a serial and best-effort fashion. Lastly, eZNS sets the baseline
stripe size to 32KB at the minimum width for the optimal I/O
efficiency of the device. It then reduces the stripe size for an
overdriven zone according to the stripe width, down to the
minimum block size of the device. For example, if the width
gets two times wider, the stripe size is reduced by half. We de-
termine the range of stripe sizes to optimize the performance
as aforementioned in §3.3. The reduced stripe size further
contributes to the I/O scheduler ensuring fairness (§4.5).

4.4.3 Global Overdrive: Namespace Expanding
Across the whole device, our zone ballooning mechanism
further reallocates spares across namespaces based on their
latest write activity. We realize this via another internal global
overdrive operation–lend spares from the spare group to each
other. Unlike local overdrive, global overdrive is triggered

based on the write intensity across the entire drive. Specifi-
cally, our arbiter monitors the past Nessential opened physical
zones across all active namespaces, computes their zone uti-
lization, and redistributes the remaining spares from inactive
namespaces to active ones. In the current design, we deter-
mine an inactive namespace as a namespace that has no allo-
cation history in the last Nessential physical zone allocations
of the device, and lent spares are equally distributed across
active namespaces. When an inactive namespace becomes
active again, eZNS marks the leased spares as recall spares
and leased namespaces release them to the global pool as soon
as they FINISH/RESET the stripe group in v-zones. eZNS
then returns them to the original namespace at the next global
overdrive operation.

4.4.4 Reclaim: Zone/Namespace Compaction
Generally, an overdriven v-zone after entering the FINISH
state will return spare zones. Therefore, spare zones circulate
as long as namespaces continue to write to v-zones. However,
when a namespace overdrives v-zones, which becomes inac-
tive without releasing them, the arbiter has to use a reclaim
operation to take back the spares to prevent resource leak-
age. To ensure no slowdown on the performance path, we
employ an asynchronous window-based monitoring scheme,
where the arbiter bookkeeps the status of each inactive names-
pace and continuously counts how long its status is in the
read-only state. If a namespace presents no write I/Os for
a certain amount of time, TReadOnly, the arbiter triggers the
reclaim procedure to proactively collect the spare zones. The
execution cost of reclaim depends on the configuration within
the opened stripe group. If there are committed writes on the
zone, reclaim will trigger a zone compaction and perform a
sequence of I/O reads/writes, i.e., finishing existing zones,
opening a new stripe group with shrunk width, and copying
data to the new one. Once the migration is done, the spare
zones can be returned to the global spare pool.

The zone reclaiming indeed brings GC-like overheads back
to the system. Thus, it is crucial that the system does not
trigger the operation in normal conditions. In eZNS, zone
reclaiming is only performed when namespaces have no write
activity for two cycles of global overdrive. This is likely to
happen infrequently, such as when an application undergoes a
significant change in its running state. Moreover, reclaiming
is triggered in a lazy fashion, executed in the background, and
regulated by the scheduler to limit its performance impact. As
a result, eZNS can avoid triggering zone reclaiming in normal
conditions, maintaining high performance and efficiency.

4.5 Zone I/O Scheduler
eZNS mindfully orchestrates I/O reads/writes with the goal of
providing equal read/write bandwidth shares among contend-
ing v-zones, maximizing the overall device utilization, and
mitigating superfluous head-of-line blocking when different
types of requests interleave. Our zone I/O scheduler com-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 469

prises two components: congestion-avoiding read scheduler
and cache-aware write admission control.

4.5.1 Congestion-avoid Read Scheduler
Our design is based on the observations that (1) ZNS SSDs
have no internal housekeeping operations; (2) write I/Os are
sequential and synchronous. Hence, the read latency is stable
and low until the die becomes congested, and it is thus possi-
ble to detect congestion directly via latency measurements.

eZNS introduces a hierarchical design that performs
weighted round-robin scheduling firstly across active names-
paces and then delay-based congestion control across each
intra-namespace v-zones. By conforming to the NVMe ar-
chitecture, we create per-namespace NVMe queue pairs and
offload the round-robin scheduling to the device. Then, we
employ a Swift-like [24] congestion control mechanism to
decide the bandwidth allocation for each stripe group in the
v-zone, where the delay is the device I/O command execution
latency. As shown in Algorithm 1, during the congestion-free
phase, upon a read I/O completion, we additively increase
(AI) the congestion window until it approaches the maximum
size (line 6). Since the congestion window (cwnd) is shared
in the stripe group, when set to the stripe width, it indicates
that there is one outstanding I/O per die in the sequential
case. The SSD can max out its per-die bandwidth with a few
outstanding I/Os. Thus, when the cwnd starts with the stripe
width, it quickly ramps up to the device bandwidth capacity.
Further, we limit the maximum congestion window (cwnd)
to 4× strip_width to minimize the software overheads when
handling excess concurrent I/Os and avoid a meaningless
rapid growth of cwnd that would imperil the efficiency of the
MD phase. When congestion happens, we reduce the conges-
tion window multiplicatively (line 4), whose ratio depends on
the latency degradation degree. All the physical zones within
a stripe group share the same congestion status. It is reason-
able because sequential read bandwidth will be capped by
the most congested physical zone. Random reads usually will
not trigger frequent cwnd decrements because the minimum
window size is large enough to absorb them. Our congestion
control works cooperatively with the reduced stripe size of
the overdrive and ensures a fair share of bandwidth regardless
of the width of the stripe group.

4.5.2 Cache-aware Write Admission Control
Due to the non-linear write latency and the shared architecture,
it is inappropriate to implement a local mechanism to mitigate
the problem. Unlike the read congestion case, write conges-
tion happens globally across all zones from all namespaces
(§3.5). Therefore, eZNS monitors the global write latency
and regulates writes using a token-based admission control
scheme. We generate tokens periodically (ALG 1 lines 14–
16) and admit write I/Os in a batch for each active v-zone to
ensure overflow rarely happens. This requires a latency moni-
tor to analyze the write cache eviction activity (ALG 1 lines
8–12). Here, we profile the block admission rate (defined as

Algorithm 1 Zone I/O Scheduler
1: procedure READ COMPLETION()
2: lat_thresh← 500us
3: if io_lat > lat_thresh then
4: cwnd = max(1,cwnd× lat_threash

2×io_lat)
5: else ▷ α = additive factor
6: cwnd = min(stripe_width×4,cwnd +α× io_count

cwnd)

7: procedure WRITE LATENCY MONITOR()
8: On t every 10ms
9: total_lat = ∑active_zone per_block_lat

10: total_ios = ∑active_zone num_ios
11: avg_lat(t) = total_lat

total_ios

12: block_admission_rate = avg_lat(t−1)+avg_lat(t)
2

13: procedure WRITE TOKEN GENERATOR()
14: On every 1ms
15: for pending write zones do
16: token += now−last_re f ill

block_admission_rate × stripe_width

the minimum delay between two consecutive write blocks)
and adjust the token generation rate based on its normalized
average latency. This is based on an empirical observation
that the latency of the write projects its capacity share in
the write cache. Hence, we equalize the latency for all write
zones and calculate available tokens using the average value.
Additionally, we update the available tokens based on the
elapsed time from the last token refill upon a write submis-
sion. By doing so, we expect that writes are self-clocked in
the congestion-less condition.

Note that (1) when read and write I/Os mix on a physical
die, the total aggregate bandwidth will drop due to the NAND
interference effect. However, our read scheduler and write
admission control require little coordination because both
modules only use the latency (gradient) as a signal to infer the
current bandwidth capacity; (2) we coalesce stripes for the
same physical zone within a user I/O and submit one write
I/O to the device in a batch, and thus, a small stripe size does
not degrade the write bandwidth.

5 Evaluation
We add a thin layer in the SPDK framework [43] to implement
eZNS and realize the v-zone concept. The primary reason for
choosing the SPDK approach was its ease of implementation
and integration into the software stack of a storage server ac-
cessible by remote clients. Moreover, the SPDK-based design
can also be used in a local system to serve virtual machines
through the SPDK vhost extension. This approach allows the
storage server to provide efficient and high-performance I/O
operations, while remaining compatible with existing soft-
ware stacks. We use the same test environment as in §3.1.
Non-SPDK applications require a standard ZNS block device
exposed via the kernel NVMe driver; thus, we set up eZNS
as a disaggregated storage device over RDMA (NVMe-over-
RDMA) and connect to it using the kernel NVMe driver.

Micro-benchmarks: We use FIO [15] to generate syn-

470 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

 2500

4 8 16

B
a

n
d

w
id

th
 (

M
B

/s
)

Active Zones #

Overdrived Zone
Static Zone

Figure 12: B/W comparison between an over-
drived and three statically configured zones.

0
500

1000
1500
2000
2500
3000
3500

0 10 20 30 40 50 60 70 80 90 100

Ba
nd

w
id

th
 (M

B/
s)

Time (s)

NS1 NS2 NS3 NS4

Figure 13: Performance variation of four names-
paces with global overdrive under 100s.

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90 100

U
se

d
Sp

ar
e

Zo
ne

s
(#

)

Time (s)

NS1 NS2 NS3 NS4

Figure 14: The number of used spare zones of
four namespaces under 100s.

 0

 500

 1000

 1500

 2000

Scenario1 Scenario2 Scenario3

B
a

n
d

w
id

th
 (

M
B

/s
)

ZoneA w/o CC
ZoneB w/o CC

ZoneA w/ CC
ZoneB w/ CC

(a) Read-Read Fairness. (128KB Read. Zone A with
QD-1, and Zone B with QD-32)

 0

 20

 40

 60

 80

 100

 120

Scenario1 Scenario2 Scenario3

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n
 (

%
)

ZoneA w/o AC
ZoneB w/o AC

ZoneA w/ AC
ZoneB w/ AC

(b) Write-Write Fairness. (Zone A for regular writers,
and Zone B for the busy writer)

 0

 50

 100

 150

 200

No-CC/AC CC-only AC-only CC+AC

B
a

n
d

w
id

th
 (

M
B

/s
)

ZoneA ZoneB ZoneC

(c) Read-Write Fairness. (Zone A for readers, Zone
B for the busy writer, and Zone C for regular writers)

Figure 15: Efficiency of eZNS on handling read-read, write-write, and read-write congestion. (CC=Congestion Control, AC=Admission Control)

thetic workloads and allocate a separate thread for each
worker when the workload writes to multiple namespaces
or zones. For read workloads, we first precondition the names-
pace by performing sequential writes for the entire range of
read I/O. Additionally, we perform a pre-calibration step to
determine the die allocations in case the evaluation requires a
die-level collision.

Ported Applications: We use RocksDB as a real-world
ZNS application, to evaluate the performance of eZNS We
run RocksDB over ZenFS [7] to enable the ZNS support. As
eZNS complies with the standard NVMe ZNS specification,
no modification is required for the application and ZenFS. We
initialize the DB instance with 500M entities of 20-byte keys
and 1,000-byte values.

Default v-zone Configuration: By default, eZNS creates
four namespaces (NS1–4), each of which is allocated 32 essen-
tial and 32 spare resources. Since each namespace provides a
maximum of 16 active zones, the minimum stripe width for
v-zone is 2 with a stripe size of 32KB. However, eZNS can
overdrive the width up to 16 with a stripe size of 4KB. For a
fair comparison, we prepare a static logical zone configured
with stripe width and size of 4 and 16KB, respectively; hence,
it also accesses full device capability when the application
populates enough active logical zones. Both a v-zone and
a static logical zone comprise 16 physical zones. Different
configurations are used for single-tenant evaluation (single
namespace) as specified in Section 5.3.

5.1 Zone Ballooning
We demonstrate the efficiency of zone ballooning when han-
dling large writes (i.e., 512KB I/O with a queue depth of one).
First, within a namespace, we compare the performance be-

tween a v-zone and a static logical zone, where the number
of writers is configured to 4, 8, and 16, respectively. Each
writer submits a write I/O to different zones. Our local over-
drive operation can reap more spare zones and lead to better
throughput. As shown in Figure 12, the v-zone outperforms
the static one by 2.0× under the 4-writer case as 4 static
logical zones enable only 16 physical zones while 4 v-zone
overdrive the width to 8 and expand to 32 physical zones. In
the 8-writer and 16-writer cases, v-zone reduces the overdrive
width accordingly and utilizes the same number of physical
zones (32 and 64, respectively) with the static logical zone.

To evaluate eZNS’s adaptiveness under dynamic workloads,
we set up overdriven zones from different namespaces. The
first three namespaces (NS1, NS2, and NS3) run two writers,
while the fourth namespace (NS4) runs eight. NS1, NS2, and
NS3 stop issuing writes at t=30s and resume the writing activ-
ity at t=80s. We measure the throughput and spare zone usage
of four zones for a 100s profiling window (Figures 13 and
14). When the other three zones become idle, the v-zone from
NS4 takes up to 3× more spare zones from other namespaces
using the global overdrive primitive and maxes out its write
bandwidth (∼2.3GB/s). It can then quickly release the harvest
zones when other zones start issuing writes again.

5.2 Zone I/O Fairness
We evaluate our I/O scheduler in various synthetic congestion
scenarios by placing competing zones in the same physical
die group. We compare the performance of all co-located
zones when enabling and disabling our mechanism. The zone
ballooning mechanism is turned off for all cases. We report
per-thread bandwidth in Figure 15.

Read-Read Fairness. We run a sequential read of 128KB

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 471

 0

 500

 1000

 1500

 2000

 2500

P50 P75 P99 P99.9P99.99

R
ea

d
La

te
nc

y
(u

s)

Percentile

Static-S
Static-L

eZNS

Throughput
 0

 50

 100

 150

 200

Th
ro

ug
hp

ut
 (

ko
ps

/s
ec

)

Static-S
Static-L

eZNS

Figure 16: readwhilewriting workload on a single
tenant configurations. Static has stripe width of
16. (S: 4KB stripe, L: 16KB stripe)

 0

 5000

 10000

 15000

 20000

P99 P99.9 P99.99

La
te

nc
y

(u
s)

Percentiles

A (Static)
A (eZNS)
B (Static)
B (eZNS)

C (Static)
C (eZNS)
D (Static)
D (eZNS)

Figure 17: Latency of db_bench workloads (2
overwrite, 2 randomread) on different names-
paces over eZNS and static zone.

 0

 20000

 40000

 60000

 80000

 100000

 120000

A B C D

Th
ro

ug
hp

ut
 (

op
s/

se
c)

Workloads

Static
eZNS

Figure 18: Throughput of db_bench workloads
(2 overwrite, 2 randomread) on different names-
paces over eZNS and static zone.

I/O size at two types of zones on co-located dies. To equally
load the physical dies, we populate more threads for lower-
width zones. For example, a zone with a width of 2 runs four
threads on each stripe group, while a zone with a width 8
has only one thread. As shown in Figure 15-a, in scenario
1, when disabling our congestion control mechanism, Zone
A (configured with stripe width 2 and stripe size 32KB, QD-
1) and Zone B (configured with stripe width 8 and stripe
size 8KB, QD-32), even holding the same sized full stripe,
achieve 76MB/s and 1287MB/s, respectively. This is because
the zone with the higher QD dominates on the competing
die. Our scheme effectively controls the per-zone window
size and ensures that each zone submits the same amount of
outstanding bytes. Hence, both Zone A and Zone B sustain
290MB/s. In scenarios 2 and 3, we change the Zone A stripe
configuration to <stripe width 4, stripe size 16KB, QD-1>
and <stripe width 8, stripe size 8KB, QD-1), and observe
similar behavior when turning off the read congestion logic.
In scenario 3, the congestion level on the die gets lowered as
Zone A only submits one 128KB I/O (which was 4 and 2 in
scenarios 1 and 2, respectively). Hence the read latency also
becomes below the threshold, and the I/O scheduler chooses
to max out the bandwidth.

Write-Write Fairness. We carefully create different write
congestion scenarios and see how our admission control oper-
ates. The workload used is a sequential write of 512KB size.
In the first scenario, we co-locate 16 regular write zones (Zone
A, where each has a striping width of 8 with 8KB stripe size
and submits write I/Os at 5ms intervals, sustaining 95MB/s
maximum throughput) with a busy writer (Zone B, that has
width 2 and 32KB stripe size, submits I/O without interval
delays, achieving 85MB/s at most). Figure 15-b reports the
bandwidth utilization of one regular zone (Zone A) and the
busy writer (Zone B). Our admission control mechanism lim-
its the write issuing rate of Zone B and gives more room at
the write cache to the regular zone (Zone A), leading to 35.7%
bandwidth improvement per thread. Next, we set up a highly-
congested case by changing 16 regular zones to busy writers
(scenario 2). As described in §4.5.2, our scheme equally dis-
tributes the write bandwidth share across competing zones,
and Zone B receives 56.8% of the total bandwidth of 2 physi-
cal zones. The last scenario is a collision-less one at the die
level where we eliminate the overlapping region among all the

write zones by populating active physical zones lesser than
the number of dies. Similarly, when enabling the admission
control, the bandwidth allocated for Zone B slightly decreases
(∼7.2%) to avoid cache congestion, and the overall device
bandwidth is increased by 24.7%.

Read-Write Fairness. We examine how our congestion
control mechanism coordinates with the admission control
when handling read/write mixed workloads. In this experi-
ment, we set up three types of zones: (1) ×16 regular readers
(Zone A), where each has a striping width of 2 and 32KB
stripe size, performing 128KB random read at queue depth
32, across all physical dies; (2) 1 busy writer (Zone B), whose
striping width is 2 with 32KB stripe size; (3) ×16 regular
writers (Zone C), which has a striping width of 8 and 32KB
stripe size each, submitting I/Os under 5ms interval. Both
B and C issue 512KB large writes. Figure 15-c reports their
per-thread bandwidth. When disabling our scheduler, each
reader achieves 199.6MB/s but writes are jeopardized signifi-
cantly, where Zone B and Zone C can only achieve 19.3% and
27.3% of their maximum bandwidth. As we gradually turn on
our mechanisms, the congestion control shrinks the window
size such that more bandwidth is allocated to the writes. Fur-
ther, the admission control then equally partitions bandwidth
among competing writing zones. As shown in the CC+AC
case, zone A, B, and C can sustain 71.6%, 57.5%, and 70.1%
of their maximum bandwidth capacity, respectively.

5.3 Application: RocksDB
To evaluate eZNS in a real-world scenario, we use RocksDB
[35] over the ZenFS storage backend. In addition to the built-
in utility in the RocksDB db_bench tool, we port YCSB work-
load generators [4] for the mixed workload evaluation.

Single-tenant performance. First, we evaluate the perfor-
mance of a single tenant using the readwhilewriting profile
of the db_bench, which runs one writer and multiple read-
ers. This workload profile demonstrates a read/write mixed
scenario. In the case of a single-tenant configuration, eZNS
creates a single namespace on the device and allocates 128
essential and 128 spare resources to it. Since only two stripe
widths, 8 and 16, are possible in this configuration, eZNS
sets the stripe size to 16KB for the width of 8 to avoid the
namespace running only on large stripe sizes. We compare
the performance of eZNS over two static configurations, both

472 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2000

 4000

 6000

 8000

 10000

P99 P99.9 P99.99

R
ea

d
La

te
nc

y
(u

s)

Percentiles

A (Static)
A (eZNS)
B (Static)
B (eZNS)

C (Static)
C (eZNS)
F (Static)
F (eZNS)

Figure 19: Read latency of YCSB workloads
(A/B/C/F) on different namespaces over eZNS
and static zone.

 0

 20000

 40000

 60000

 80000

 100000

 120000

A B C F

Th
ro

ug
hp

ut
 (

op
s/

se
c)

Workloads

Static
eZNS

Figure 20: Throughput of YCSB workloads
(A/B/C/F) on different namespaces over eZNS
and static zone.

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32

Av
g.

 R
ea

d
La

te
nc

y
(u

s)

I/O Depth

Direct
eZNS

Figure 21: Comparison of Avg. Read Latency
for 4KB I/Os at various depths between the host-
managed zone access and eZNS.

with a stripe width of 16, but with different stripe sizes of 4KB
and 16KB. Since there is only one namespace on the device,
eZNS always overdrives v-zones to the width of 16, which is
identical to the static configurations. Therefore, both the static
namespace and eZNS can exploit all available bandwidth on
the device. However, the I/O scheduler of eZNS helps mitigate
interferences between zones and improves overall application
performance. Figure 16 shows that eZNS improves the P99.9
and P99.99 read latency by 28.7% and 11.3% over the static
configurations with a stripe size of 16KB and 4KB, respec-
tively. Additionally, eZNS also improves the throughput by
11.5% and 2.5% with a stripe size of 4KB and 16KB.

Multi-tenant Performance. Next, we set up instances of
db_bench on four namespaces (A, B, C, and D), each with
a different workload profile. A and B perform the overwrite
profile, while C and D execute randomread concurrently. We
run the benchmark for 1,800sec and report the latency and
the throughput. Figure 17 shows that our I/O scheduler sig-
nificantly reduces P99.9 and P99.99 read (C/D) latency by
71.1% and 20.5%, respectively. In terms of throughput, eZNS
improves write (A/B) and read (C/D) throughput by 7.5%
and 17.7%, respectively. Furthermore, while the read latency
and throughput are improved, the write latency is either main-
tained at the same level or decreased compared to the static
configuration because eZNS moves the spare bandwidth from
read-only namespaces (C/D) to write-heavy ones (A/B).

Mixed YCSB Workloads. YCSB [14] is widely used to
benchmark realistic workloads. In our experiments, we run
YCSB workload profiles A, B, C, and F on each of the six
namespaces. We exclude YCSB workload profiles D and E be-
cause they increase the number of entities in the DB instance
during the benchmark. As YCSB-C (read-only) does not
submit any write I/Os during the benchmark, eZNS triggers
global overdrive and rebalances the bandwidth to the write-
most namespaces (A and F). Figure 19 shows that he I/O
scheduler improves the P99.9 read latency of read-intensive
workloads (YCSB B and C) and also the read-modify-write
one (YCSB F) by 79.1%, 80.3%, and 76.8%, respectively.
The throughput improvement from global overdrive is up to
10.9% for the write-most workload A in Figure 20.

5.4 Overhead analysis
End-to-end read latency overhead. Since eZNS serves as
an orchestration layer between the physical ZNS device and
the NVMe-over-Fabrics target, there may be some overhead
when the I/O load is very low. To measure this overhead, we
conducted a quantitative analysis using 4KB random read
I/Os and compared it with host-managed zone access, where
the host directly accesses the physical device without eZNS.
Figure 21 demonstrates that eZNS does not add a noticeable
latency overhead for I/O depths up to 8. As the I/O depth
goes over 16, up to 14.0% overhead is observed due to the I/O
scheduler delaying the I/O submission. However, the sched-
uler provides significant advantages in real-world scenarios
as shown in previous experiments.

Memory footprint. eZNS relies on in-memory data struc-
tures for managing v-zone metadata, including the logical-
to-physical mapping and scheduling statistics. Additionally,
it maintains a copy of the physical zone information to re-
duce unnecessary queries to the device, enabling faster zone
allocation and deallocation. In our current implementation,
the size of v-zone metadata is less than 1KB, and the size of
physical zone information is smaller than 64 bytes. For our
testbed SSD with four namespaces, each with 1TB of capac-
ity, v-zone metadata and physical zone information require
2MB and 2.5MB of memory, respectively. Compared to the
memory requirements of the page-mapping in conventional
SSDs, the memory usage of eZNS is negligible.

6 Related Work

Early ZNS Exploration. Researchers have made initial ef-
forts to understand the ZNS interface and integrate it into
the host storage stack. Theano Stavrinos et al. [44] argue
for a shift in research to the zone interface and discuss fu-
ture directions (e.g., applying application-level information
for zone management and I/O scheduling). Hojin Shin et
al. [42] develop a performance analysis tool for a ZNS SSD
and profile its parallelism, isolation, and predictability prop-
erties. Compared with our study, they didn’t investigate the
underlying device’s internal mechanisms when realizing the
zoned namespace interface and, thereby, are unable to corre-
late the observed performance with the ZNS SSD character-
istics. ZNS+ [16] enhances the existing interface with two

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 473

new architectural primitives to optimize LFS file systems.
With such support, the authors then propose copy-back-aware
block allocation and hybrid segment recycling techniques.
Hanyeoreum Bae et al. [3] prioritize I/O requests for less
congested zones using an interference map, whilst updates
incur significant overheads. Although revising the ZNS in-
terface and exposing the physical allocation of zones could
potentially eliminate this overhead, it may not be feasible for
existing devices due to vendors’ resistance to disclosing inter-
nal architecture and policies. eZNS uses a delay to determine
congestion and doesn’t require an allocation map. Further-
more, eZNS addresses such as read and write differences,
zone striping, and bandwidth provisioning issues that were
not discussed in their work. Minwoo Im et al. [18] improved
ZenFS on small-zone SSDs by introducing read/write paral-
lelism with a multi-threaded I/O engine and lifetime-based
zone management at the application level. However, it re-
quires adjusting the RocksDB parameters to match the device
capability instead of the workload-optimized parameters. This
can increase the complexity of parameter configuration, result-
ing in sub-optimal settings for the workload. eZNS maximizes
parallelism within the thin layer, regardless of the underly-
ing device and the application profile. It exploits the device’s
parallel I/O processing capability that can be executed on a
single thread.

Addressing Inefficiencies of Conventional SSDs. Early
SSD researches [2, 11, 17, 31] focused on internal parallelism
and tradeoffs between concurrency, locality, bandwidth, ca-
pacity, performance, and lifetime. Modern SSDs handle ran-
dom write patterns with page mapping FTL, write-cache,
and superblock concepts [49] that group blocks together. It
benefits from high parallelism that transforms writes into se-
quential NAND programming. However, multi-tenancy work-
loads cause interference and high write amplification factor
(WAF). ZNS SSDs eliminate garbage collection and fix WAF
to one, but require careful parallelism management across
zones to avoid degraded device utilization. In addition, future
QLC-based ZNS SSDs may have fewer active zones due to
a multi-pass programming algorithm [21]. eZNS addresses
these challenges by adjusting the parallelism of each logical
zone based on the number of namespace flows, providing
fully dynamic parallelism and maximizing device capability
while presenting an identical logical view to applications.

IODA [26] is an I/O deterministic flash array that uses the
I/O determinism feature and exploits data redundancy for a
strong latency predictability contract. SSDs can fail an I/O to
allow predictable I/Os through proactive data reconstruction.
We target the ZNS SSD, where there are no random I/Os,
and GCs are user-controlled. This opens up a different design
space. Although techniques addressing GC-related interfer-
ence are not beneficial to GC-free ZNS SSDs, others such as
Engurance Group(EG) and NVM Set can be useful to ensure
physically-isolated zone allocation. eZNS can take advantage
of the geometry hints via EG (or even finer-grained NVM

Sets). Unfortunately, there is no currently-available SSD that
supports both ZNS and EG, but it will be an interesting direc-
tion for future work.
Open-Channel SSDs. These drives have no mapping layer in
the controller and directly expose a set of physically contigu-
ous blocks to applications, and leave the data placement/wear-
leveling responsibilities to the host. Researchers have built
several domain-specific solutions using them. For example,
SDF [30] employs a hardware-software co-designed approach
that exposes flash channel details and delegates I/O control-
plane and data-plane tasks to host applications. LOCS [48]
further improves the throughput of an LSM-tree-based KV
store by optimizing the scheduling and dispatching policies,
considering the characteristics of access patterns of the Lev-
elDB. RAIL [27] designs a horizontal hot-cold separation
mechanism and divides dies into two groups, where user and
GC writes are scheduled to different dies, and the hot/cold
ratio is dynamically adjusted based on runtime monitoring.
By having full control over the device, one can implement a
deterministic v-zone using eZNS. Despite the potential archi-
tecture, it imposes too many responsibilities on the software
handling tasks that are offloadable to the device with no cost,
for example, wear-leveling, physical zone-to-die mapping, etc.
Another challenge arises when the system consists of hetero-
geneous devices resulting in the overhead of managing dif-
ferent H/W architectures (NAND chip capacity, channel/die
configuration, etc.).
eZNS as a firmware. One may implement eZNS solely in
the SSD using the controller and firmware. This approach
can exploit internal knowledge such as NAND specification,
Channel/Die structure, queue length on a die, etc. Thus, it may
control the interference better and outperform the software-
based implementation. However, completing eZNS in one
device is not future-proof, given the disaggregated systems
architecture in data centers. The software-based solution can
build an eZNS-based system spanning multiple devices en-
abling elastic capacity scaling, load-aware allocation, high
availability, and more.

7 Conclusion
This paper presents an in-depth study on understanding the
characteristics of a commodity ZNS SSD. Then, we propose
eZNS, realizing an elastic zoned view via v-zone, providing
a flexible zone scaling interface transparent to the applica-
tion that maxes out the device capability, and ensuring a fair
bandwidth share between zones. We demonstrate significant
performance and fairness improvements using eZNS over
various scenarios.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Mark Silberstein. This work was supported in part
by NSF grant CNS-2212193 and ACE, one of the seven cen-
ters in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

474 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,

John D. Davis, Mark Manasse, and Rina Panigrahy. De-
sign Tradeoffs for SSD Performance. In USENIX 2008
Annual Technical Conference, 2008.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for ssd performance. In USENIX An-
nual Technical Conference, volume 57. Boston, USA,
2008.

[3] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and
Myoungsoo Jung. What You Can’t Forget: Exploiting
Parallelism for Zoned Namespaces. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage and
File Systems, 2022.

[4] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. {SILK}: Preventing latency spikes in {Log-
Structured} merge {Key-Value} stores. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 753–766, 2019.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, 2003.

[6] Matias Bjørling. From open-channel ssds to zoned
namespaces. In Linux Storage and Filesystems Con-
ference (Vault 19), volume 1, 2019.

[7] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R Ganger,
and George Amvrosiadis. {ZNS}: Avoiding the block
interface tax for flash-based {SSDs}. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
689–703, 2021.

[8] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: Avoiding the Block
Interface Tax for Flash-based SSDs. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021.

[9] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
{LightNVM}: The linux {Open-Channel}{SSD} sub-
system. In 15th USENIX Conference on File and Stor-
age Technologies (FAST 17), pages 359–374, 2017.

[10] Feng Chen, Binbing Hou, and Rubao Lee. Internal
Parallelism of Flash Memory-Based Solid-State Drives.
ACM Trans. Storage, may 2016.

[11] Feng Chen, Binbing Hou, and Rubao Lee. Internal
parallelism of flash memory-based solid-state drives.
ACM Transactions on Storage (TOS), 12(3):1–39, 2016.

[12] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives.
In Proceedings of the Eleventh International Joint Con-
ference on Measurement and Modeling of Computer
Systems, 2009.

[13] Feng Chen, Tian Luo, and Xiaodong Zhang. {CAFTL}:
A {Content-Aware} flash translation layer enhancing the
lifespan of flash memory based solid state drives. In 9th
USENIX Conference on File and Storage Technologies
(FAST 11), 2011.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[15] Flexible I/O Tester (FIO). https://github.com/a
xboe/fio, 2022.

[16] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: Advanced Zoned Namespace In-
terface for Supporting In-Storage Zone Compaction. In
15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21), 2021.

[17] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and
Chao Ren. Exploring and exploiting the multilevel par-
allelism inside ssds for improved performance and en-
durance. IEEE Transactions on Computers, 62(6):1141–
1155, 2012.

[18] Minwoo Im, Kyungsu Kang, and Heonyoung Yeom. Ac-
celerating rocksdb for small-zone zns ssds by parallel
i/o mechanism. In Proceedings of the 23rd International
Middleware Conference Industrial Track, Middleware
Industrial Track ’22, page 15–21, New York, NY, USA,
2022. Association for Computing Machinery.

[19] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
Level Implications. In Proceedings of the ACM SIG-
METRICS/International Conference on Measurement
and Modeling of Computer Systems, 2013.

[20] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-
won Lee. A superblock-based flash translation layer for
nand flash memory. In Proceedings of the 6th ACM &
IEEE International conference on Embedded software,
pages 161–170, 2006.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 475

https://github.com/axboe/fio
https://github.com/axboe/fio

[21] Ali Khakifirooz, Sriram Balasubrahmanyam, Richard
Fastow, Kristopher H Gaewsky, Chang Wan Ha, Rezaul
Haque, Owen W Jungroth, Steven Law, Aliasgar S
Madraswala, Binh Ngo, et al. 30.2 a 1tb 4b/cell 144-
tier floating-gate 3d-nand flash memory with 40mb/s
program throughput and 13.8 gb/mm 2 bit density. In
2021 IEEE International Solid-State Circuits Confer-
ence (ISSCC), volume 64, pages 424–426. IEEE, 2021.

[22] Moosung Kim, Sung Won Yun, Jungjune Park,
Hyun Kook Park, Jungyu Lee, Yeong Seon Kim, Dae-
hoon Na, Sara Choi, Youngsun Song, Jonghoon Lee,
Hyunjun Yoon, Kangbin Lee, Byunghoon Jeong, San-
glok Kim, Junhong Park, Cheon An Lee, Jaeyun Lee,
Jisang Lee, Jin Young Chun, Joonsuc Jang, Younghwi
Yang, Seung Hyun Moon, Myunghoon Choi, Won-
tae Kim, Jungsoo Kim, Seokmin Yoon, Pansuk Kwak,
Myunghun Lee, Raehyun Song, Sunghoon Kim, Chi-
weon Yoon, Dongku Kang, Jin-Yub Lee, and Jaihyuk
Song. A 1tb 3b/cell 8th-generation 3d-nand flash mem-
ory with 164mb/s write throughput and a 2.4gb/s inter-
face. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC), volume 65, pages 136–137, 2022.

[23] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-
flex: Remote flash= local flash. ACM SIGARCH Com-
puter Architecture News, 45(1):345–359, 2017.

[24] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the dat-
acenter. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2020.

[25] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. {F2FS}: A new file system for flash
storage. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15), pages 273–286, 2015.

[26] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,
Gregory R. Ganger, and Haryadi S. Gunawi. IODA: A
Host/Device Co-Design for Strong Predictability Con-
tract on Modern Flash Storage. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021.

[27] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Chris-
tos Kozyrakis. RAIL: Predictable, Low Tail Latency for
NVMe Flash. ACM Trans. Storage, 18(1), 2022.

[28] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: Enabling multi-tenant storage disag-

gregation on smartnic jbofs. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21,
page 106–122, New York, NY, USA, 2021. Association
for Computing Machinery.

[29] The NVMe Base Specification. https://nvmexpre
ss.org/developers/nvme-specification/, 2022.

[30] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
Defined Flash for Web-Scale Internet Storage Systems.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2014.

[31] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho
Roh, Wonhee Cho, and Jin-Soo Kim. A reconfigurable
ftl (flash translation layer) architecture for nand flash-
based applications. ACM Transactions on Embedded
Computing Systems (TECS), 7(4):1–23, 2008.

[32] Stan Park and Kai Shen. FIOS: A Fair, Efficient Flash
I/O Scheduler. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, 2012.

[33] Roman Pletka, Ioannis Koltsidas, Nikolas Ioannou, Saša
Tomić, Nikolaos Papandreou, Thomas Parnell, Haralam-
pos Pozidis, Aaron Fry, and Tim Fisher. Management
of next-generation nand flash to achieve enterprise-level
endurance and latency targets. ACM Transactions on
Storage (TOS), 14(4):1–25, 2018.

[34] Radian Memory System RMS ZNS SSDs. https:
//www.radianmemory.com/zoned_namespaces/,
2022.

[35] RocksDB. http://rocksdb.org/, 2022.

[36] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):1–32, 2013.

[37] Samsung PM1731a ZNS SSDs. https:
//news.samsung.com/global/samsung-intro
duces-its-first-zns-ssd-with-maximized-use
r-capacity-and-enhanced-lifespan, 2022.

[38] Samsung PM1731a Review from STH.
https://www.servethehome.com/samsung-p
m1731a-ssd-with-zns-support/, 2022.

[39] Joel H Schopp, Keir Fraser, and Martine J Silbermann.
Resizing memory with balloons and hotplug. In Pro-
ceedings of the Linux Symposium, volume 2, pages 313–
319, 2006.

[40] The SCSI Protocol. https://en.wikipedia.org/w
iki/SCSI#cite_note-1, 2022.

476 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://www.radianmemory.com/zoned_namespaces/
https://www.radianmemory.com/zoned_namespaces/
http://rocksdb.org/
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://www.servethehome.com/samsung-pm1731a-ssd-with-zns-support/
https://www.servethehome.com/samsung-pm1731a-ssd-with-zns-support/
https://www.servethehome.com/samsung-pm1731a-ssd-with-zns-support/
https://en.wikipedia.org/wiki/SCSI#cite_note-1
https://en.wikipedia.org/wiki/SCSI#cite_note-1

[41] Kai Shen and Stan Park. {FlashFQ}: A fair queueing
{I/O} scheduler for {Flash-Based}{SSDs}. In 2013
USENIX Annual Technical Conference (USENIX ATC
13), pages 67–78, 2013.

[42] Hojin Shin, Myounghoon Oh, Gunhee Choi, and Jong-
moo Choi. Exploring Performance Characteristics of
ZNS SSDs: Observation and Implication. In 2020 9th
Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA), 2020.

[43] The Storage Performance Development Kit (SPDK).
https://spdk.io, 2022.

[44] Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett,
and Wyatt Lloyd. Don’t Be a Blockhead: Zoned Names-
paces Make Work on Conventional SSDs Obsolete. In
Proceedings of the Workshop on Hot Topics in Operat-
ing Systems, 2021.

[45] Nick Tehrany and Animesh Trivedi. Understanding
NVMe Zoned Namespace (ZNS) Flash SSD Storage
Devices, 2022.

[46] Hung-Wei Tseng, Laura Grupp, and Steven Swanson.
Understanding the impact of power loss on flash mem-
ory. In 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 35–40. IEEE, 2011.

[47] Carl A. Waldspurger. Memory Resource Management
in VMware ESX Server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, dec 2003.

[48] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree Based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
2014.

[49] Shunzhuo Wang, Fei Wu, Chengmo Yang, Jiaona Zhou,
Changsheng Xie, and Jiguang Wan. Was: Wear aware
superblock management for prolonging ssd lifetime. In
Proceedings of the 56th Annual Design Automation Con-
ference 2019, pages 1–6, 2019.

[50] Western Digital Ultrastar ZNS SSDs. https://www.
westerndigital.com/solutions/zns, 2022.

[51] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
and Swaminathan Sundararaman. Don’t Stack Your
Log On My Log. In 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads
(INFLOW 14), 2014.

[52] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao,
Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei Kuo.
Garbage collection and wear leveling for flash memory:

Past and future. In 2014 International Conference on
Smart Computing, pages 66–73. IEEE, 2014.

[53] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. De-indirection
for flash-based ssds with nameless writes. In FAST,
page 1, 2012.

[54] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the robustness of {SSDs} under
power fault. In 11th USENIX Conference on File and
Storage Technologies (FAST 13), pages 271–284, 2013.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 477

https://spdk.io
https://spdk.io
https://www.westerndigital.com/solutions/zns
https://www.westerndigital.com/solutions/zns

SEPH: Scalable, Efficient, and Predictable Hashing on Persistent Memory

Chao Wang, Junliang Hu, Tsun-Yu Yang, Yuhong Liang, and Ming-Chang Yang
The Chinese University of Hong Kong

Abstract
With the merits of high density, non-volatility, and DRAM-
scale latency/bandwidth, persistent memory (PM) brings hope
to high-performance storage systems, in which hashing-based
index structures receive great attention owing to the efficient
query performance. Though lots of efforts have been made
to rethink the hashing schemes for PM in recent years, nev-
ertheless, based on our investigation, none of them can hit
performance scalability, efficiency, and predictability with one
stone, seriously limiting their practicality to time-sensitive or
latency-critical applications. To this end, this paper presents
SEPH, a Scalable, Efficient, and Predictable Hashing for PM.
SEPH paves a new direction to build the hash table by in-
troducing the novel Level Segment (LS) structure, a key to
breaking the dilemma between efficiency and predictability
standing in front of the existing hashing schemes for PM. With
the LS-based hash table structure, SEPH further enables a
low-overhead split to greatly suppress the resizing-incurred
unpredictability, and develops a semi lock-free concurrency
control that requires a nearly-minimal amount of writes to
handle an item insertion for achieving ever-higher efficiency
and scalability while ensuring the correctness and crash con-
sistency. Compared to state-of-the-art hashing schemes, SEPH
demonstrates higher efficiency (up to 15.4× higher through-
put), better scalability (performance scales up to 48 threads),
and more reliable predictability (improving the tail latency by
up to 19.3×).

1 Introduction
Persistent memory (PM) offers storages systems the potentials
of large capacity, low latency, high throughput, and instant re-
covery [8,48]. The first commercial product of PM, i.e., Intel®
Optane™ DC Persistent Memory Module (DCPMM) [3], is
currently available on the market. As shown in Table 1, com-
pared with DRAM, Intel® Optane™ DCPMM delivers similar
write latency yet has about 2× sequential read latency and 3×
sequential read latency [20,21,45]; besides, the read and write
bandwidths of Intel® Optane™ DCPMM achieve nearly 1/3

Table 1: Performance Comparison between DRAM and PM
(i.e., Intel® Optane™ DCPMM 100 Series) [45].

DRAM PM PM/DRAM
Latency of Seq. Read (ns) 81 169 208.64%
Latency of Ran. Read (ns) 101 305 301.98%
Latency of Write (ns) 57 62 108.77%
Bandwidth of Read (GB/s) 105.6 37.6 35.61%
Bandwidth of Write (GB/s) 76.8 12.5 16.28%

and 1/6 of those of DRAM [20,21,26]. When compared with
SSD, Intel® Optane™ DCPMM is even much more superior
in every of these performance metrics [45]. Together with
the maximal 512 𝐺𝐵 capacity for a single module, Intel®
Optane™ DCPMM is especially attractive to in-memory
applications [43, 45].

Index structure is a vital component for high-performance
storage systems to offer efficient queries. To rapidly deploy
the well-developed indexes on PM, RECIPE [26] presents a
principled approach to convert concurrent DRAM indexes,
including tree-based and hashing-based indexes, into crash-
consistent indexes for PM. However, to better unleash the
full potentials of PM, more researches focus on developing
carefully-tailored indexes for PM. For example, a series of
researches develops tree-based indexes for PM especially,
like NV-tree [46], FAST&FAIR [19], wB+-Tree [9], LB+-
Trees [31],WORT [25],BzTree [5], and ROART [35]. However,
the search operation of tree-based indexes usually performs
in the complexity of 𝑂 (𝑙𝑜𝑔𝑁), where 𝑁 is the size of data
structure, because of the hierarchical structure of trees.

By contrast, hashing-based indexes can provide constant-
scale query time complexity due to the flat structures, so they
are widely adopted by in-memory systems [18, 23, 29, 47].
Hashing indexes can be generally categorized into two classes:
static and dynamic. Static hashing must estimate and allocate
sufficient space in advance, but it suffers from hash collisions,
overflows or under-utilization since the size of the hash table
is hard to estimate precisely in some applications like database
systems and file systems [36–38,40]. Dynamic hashing [24],
on the other hand, features in dynamically adjusting the size

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 479

of the hash table as needed by the resizing operation. In view
of this, many delicately-designed dynamic hashing schemes
are proposed for PM to achieve different optimizations, like
PFHT [12],Path Hashing [49],Level Hashing [50],CCEH [36],
Dash [33], and Clevel Hashing [10]. This work also focuses
on the dynamic hashing schemes for PM.

Thanks to all of these efforts, the existing dynamic hashing
schemes especially developed for PM have made remarkable
progress on improving the overall performance efficiency in
terms of mean throughput or mean latency. Nevertheless, sur-
prisingly less attention has been given to the performance pre-
dictability, a particularly important metric in situations where
the high-percentile performance would largely affect the qual-
ity of service (QoS) or the end-user experience [27,28,34]. In
view of this,we conduct intensive experiments on a 24-core/48-
thread CPU socket with six 128 GB Intel® Optane™ DCPMM
to examine the in-depth performance of PM hashing schemes
by utilizing different number of concurrent threads (ranging
from 1 to 48). Our results (presented in §2.2) disclose that the
representative hashing schemes for PM might 1) encounter
the dilemma of simultaneously maintaining high performance
efficiency and alleviating the resizing-incurred performance
unpredictability, and 2) fall short of exhibiting good perfor-
mance scalability under highly-concurrent queries due to
their excessive writes in handling insert operations. Both seri-
ously limit the practicality of existing PM hashing schemes to
time-sensitive or latency-critical applications.

Aiming at developing a more practicable dynamic hashing
scheme on PM, this paper present SEPH, a Scalable, Efficient,
and Predictable Hashing for PM, to hit “three birds” with one
stone. First of all, to break the dilemma between efficiency
and predictability, SEPH introduces a new structure called
level segment (LS) to build the hash table with a unique and
delicate indexing mechanism (i.e., level segment index and
sliding bucket index). Particularly, with the LS-based hash
table structure, SEPH mitigates the inefficiency in probing
items randomly, and embraces the incremental resizing (i.e.,
the split operation) to prevent other concurrent threads from
being blocked. Second, SEPH further enables a low-overhead
split operation to significantly suppress the resizing-incurred
performance unpredictability: It not only reduces the number
of KV items to be rehashed to one-third of an LS (i.e.,one-third
splitting) but even avoids the pointer dereference required to
rehash a KV item for most of the time (i.e., dereference-free
rehashing). Third, to achieve ever-higher efficiency and scala-
bility while ensuring the correctness and crash consistency,
SEPH devises a semi lock-free mechanism that requires a
“nearly-minimal” amount of writes to handle an insertion.
Our results show that SEPH performs better than the state-
of-the-art hashing schemes from three perspectives. First, for
efficiency, SEPH averagely achieves 2.12× higher through-
put than EH-based hashing schemes, and even deliver 15.4×
higher average throughput than level-based hashing schemes.
Second, in terms of scalability, as the number of threads in-

creases from 24 to 48, the performance of SEPH still scales up
noticeably whereas the other hashing schemes barely improve.
Third, SEPH provides more reliable predictability by achiev-
ing 11.4×∼19.3× lower tail latency. SEPH is implemented in
C++ and is available1 for public use.

The rest of this paper is organized as follows. §2 presents
the background and motivation regarding this work. Next, §3
introduces the design details ofSEPH. Finally,§4 demonstrates
the evaluations results and §5 concludes this work.

2 Background and Motivation
2.1 Hashing Schemes for Persistent Memory
Due to various structural designs, different hashing schemes
typically have their own way to perform the resizing operation,
an essential but expensive operation entailing extra reads and
writes to enlarge the hash table for accommodating more key-
value (KV) items. The existing hashing schemes, especially
developed for PM, can be generally categorized into two series:
1) Level-based hashing, a series that features a multi-level
structure to enable cost-efficient resizing, and 2) EH-based
hashing, a series that inherits the advantage of incremental
resizing from Extendible Hash (EH) [13].

...

...

...

Top
Level

Bottom
Level

Slot 0
Slot 1
Slot 2
Slot 3

Bucket

New
Top
Level

key

� Expand

�
Rehash

0

H2(key)

1 2N-12N-2

0 N-1

0 1 2 4N-3 4N-2 4N-1

H1(key)

Bucket Index

Directory

0011…0
0000…0

0011…1
0010…1

1101…0
free

1100…1
1110…1

0100…0
0111…0

0101…1
0111…1

1001…0
1101…0

1011…1
1100…1

Bucket
0

Hash(key) 11101110 … 1

Seg. 0

Segment Index

Bucket
1

Split

Seg. 1

(MSB)

Seg. 2 Seg. 3

00 01 10 11

Slot

(LSB)

(a) Level-based (Level Hashing) (b) EH-based (CCEH)

Figure 1: Two Series of Hashing Schemes for PM.

2.1.1 Level-based Hashing

LevelHashing. Since memory writes in PM typically consume
more time and energy than memory reads, the extra writes
entailed by the resizing operation might bring a negative
impact on PM in terms of both performance and endurance.
Because of this reason, Level Hashing [50] introduces a new
sharing-based two-level structure to enable a cost-efficient
resizing operation for PM.

As illustrated in Figure 1(a), Level Hashing organizes KV
items into two levels (i.e., top level and bottom level) of
Bucketized Cuckoo Hashing (BCH) [14] with every bottom-
level bucket shared by two consecutive top-level buckets, and
thus the total number of buckets in the bottom level is just a
half of that in the top level. Just like the design of BCH, Level
Hashing employs a pair of hash functions (denoted as H1 and
H2 in Figure 1(a)) so that any KV item can be associated with
two buckets (aka candidate buckets [50]) in each level and
can be placed in any slot of the candidate buckets. But in

1https://github.com/cuhk-mass/SEPH

480 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/cuhk-mass/SEPH

Level Hashing, only the top-level buckets are addressable by
hash functions while a bottom-level bucket is mainly served
as standby slots to keep conflicting KV items. That is, if a
hash collision occurs in a top-level bucket and all slots in that
bucket are used, the conflicting KV item can be stored in its
corresponding standby bucket in the bottom level.

When all possible candidate buckets are full, Level Hashing
cost-efficiently resizes the hash table as follows. As illustrated
in Figure 1(b), the hash table is firstly “expanded” by allocating
a new top level that is twice the size of the original top level
and is with all the contents cleared with zeroes (denoted as
1); then, all the KV items in the original bottom level are

“rehashed” into the newly allocated top level (denoted as 2);
finally, the newly allocated top level and the original top level
form a new sharing-based two-level structure. That is, with
the cost-efficient resizing operation, Level Hashing doubles
the total size of hash table but only rehashes and migrates KV
items in one-third of buckets of the original hash table.

Clevel Hashing. Although Level Hashing enables a cost-
efficient resizing operation, it must lock the entire hash table
structure and inevitably blocks the normal hash operations
(e.g., insert and search operations) from concurrent threads.
To address this issue, Clevel Hashing [10], a crash-consistent
and lock-free concurrent hash table is developed based on
Level Hashing. Specifically, to avoid blocking the concurrent
accesses during the resizing operation, in Clevel Hashing, the
thread that triggers the resizing operation only expands the
hash table for completing the insertion of KV item in the newly
allocated top level, while the remaining work of rehashing is
postponed and offloaded to dedicated background thread(s).
As a result, in Clevel Hashing, the hash table may consist of
more than two levels when it is under resizing.

2.1.2 EH-based Hashing

Another series of PM hashing schemes is evolved from Ex-
tendible Hashing (EH) [13], a widely-adopted hashing scheme
that features the incremental resizing operation, called split
operation, to avoid the full-table rehashing. Particularly, EH
organizes KV items in buckets of a fixed number of slots,
where a directory is maintained to index buckets based on
the hashed value of a key (hereafter called the hashed key for
simplicity). When a bucket overflows, EH performs the split
operation to resize the hash table in the granularity of bucket
rather than the entire hash table.

Cacheline-Conscious Extendible Hashing (CCEH). On the
basis of EH, CCEH [36] is developed to make effective use of
cachelines for better performance while guaranteeing failure-
atomicity for dynamic resizing. Specifically, CCEH proposes
to set the bucket size to the size of a cacheline (e.g., 64-byte)
for minimizing the number of cacheline accesses for visiting
a bucket. Besides, as shown in Figure 1(b), CCEH introduces
an intermediate granularity named segment, which consists
of a fixed number of buckets indexed by the same directory

entry, so that the directory can be greatly shrunk to have a
higher probability of being in the CPU cache. CCEH also
introduces a new way to associate KV items with segments
and buckets: The most significant bits of the hashed key are
used to locate a segment (denoted as segment index) while
the least significant bits are used to index a bucket within a
segment (denoted as bucket index). To further increase the
load factor, CCEH adopts linear probing [15] so that a KV
item can also be placed in the next few (e.g., four) buckets
following the indexed one (by the bucket index).

When all candidate buckets (i.e., the indexed bucket and
the following few that can be linearly probed) are all full
for a newly-inserted KV item, CCEH resizes its hash table
via the split operation (i.e., an incremental resizing operation
introduced by EH) as follows: First, as illustrated in Figure 1(b),
a new empty segment is dynamically allocated. Second, KV
items in the collided segment are either stayed or rehashed into
the newly allocated segment according to their segment and
bucket indexes. Finally, after all KV items are rehashed, the
directory is updated to ensure that the newly allocated segment
will be indexed properly by the corresponding directory entry.

Dynamic and Scalable Hashing (Dash). Dash [33] further
introduces several advancements to two classical hashing
schemes (i.e., Extendible Hashing (EH) [13] and Linear Hash-
ing (LH) [30])) and showcases its effectiveness on real PM
product (i.e., Intel Optane DCPMM [3]).

Dash for EH (Dash-EH) inherits most of designs from
CCEH [36] but aligns the bucket size with the XPLine size (i.e.,
256-byte) of Intel® Optane DCPMM for better locality [33].
Moreover, Dash-EH divides every bucket into a record region
(224-byte) and a metadata region (32-byte), where the former
maintains pointers to KV items for supporting variable-length
keys and values while the latter is dedicated to optimizing the
probing and load factor. On the one hand, for every KV item,
Dash-EH keeps the second least significant byte of the hashed
key as a fingerprint in the metadata region, so that the number
of pointer dereferences, required by probing or checking the
uniqueness of a KV item, can be thereby reduced; besides,
Dash-EH adopts an optimistic concurrency control to avoid
locking the entire segment when searching a KV item. On
the other hand, Dash-EH combines a variety of techniques
to increase the load factor, such as probing one more bucket,
balancing the load factor of candidate buckets, allowing one
movement among the indexed and linearly-probed buckets,
and adding a few (e.g., two or four) stash buckets into each
segment to accommodate conflicting KV items.

2.2 Motivation
Though the existing studies have made remarkable progress
on advancing the hashing schemes for PM, this section will
disclose that the existing two series of hashing schemes might
1) encounter the dilemma of achieving both high performance
efficiency and high performance predictability simultaneously

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 481

0

10

20

×106

7 14 28 0

10

20

×106

0 4 3 1 0

10

20

×106

19 39 79
0

10

20

N
um

.
of

R
eh

as
he

d
K

V
Ite

m
s

×106

14 29 57 13
0 25 50 75

Time (s)
(a) (Level-based) Level Hashing

0

10

20

R
ea

l-t
im

e
Th

ro
ug

hp
ut

(o
ps

)

×106

2.32

0 20 40
Time (s)

(b) (Level-based) Clevel Hashing

0

10

20

×106

4.61

0 10 20
Time (s)

(c) (EH-based) CCEH

0

10

20

×106

7.26

0 5 10
Time (s)

(d) (EH-based) Dash-EH

0

10

20

×106

15.75

Real-time Throughput Num. of Rehashed KV Items

Figure 2: Real-time Throughput and Resizing Overhead under Mixed Workload (i.e., 50% Insertion and 50% Search).

(see §2.2.1) and 2) fall short of exhibiting good performance
scalability under highly-concurrent queries (see §2.2.2). Both
seriously limit the practicality of existing PM hashing schemes
to time-sensitive or latency-critical applications.

2.2.1 Dilemma between Efficiency and Predictability

When examining the performance of PM hashing schemes,
most of the existing studies mainly focus on the overall per-
formance efficiency (i.e., the average performance) yet over-
look the performance predictability (i.e., the high-percentile
performance [27, 28, 34]), which is particularly crucial to
time-sensitive or latency-critical applications in practice.

To investigate both performance efficiency and performance
predictability of the existing two series of PM hashing schemes,
we conduct intensive experiments on a 24-core/48-thread CPU
socket with six 128 GB Intel® Optane™ DCPMM config-
ured as the App Direct mode. More detailed experimental
setups and implementation notes can be found in §4.1. Par-
ticularly, we preload each hashing scheme with 10 millions
of KV items, and then measure the real-time performance
of executing 200 millions of realistic mixed workloads with
48 concurrent threads, where the workloads consist of 50%
search and 50% insert operations generated by YCSB [11]
under the Zipf distribution with both key and value sizes set
to 16B. Figure 2 shows the real-time throughput (in terms of
operations per second) and the real-time resizing overhead
(in terms of the number of rehashed KV items) of the four
representative PM hashing schemes presented in §2.1. The
results reveal that the existing PM hashing schemes might
encounter the dilemma of achieving both high efficiency and
high predictability simultaneously based on the following two
key observations.
Observation 1: Compared with Level-based hashing schemes,
EH-based hashing schemes demonstrate the strength in perfor-
mance efficiency yet entail heavier resizing-incurred overhead
to degrade its performance predictability.

It can be firstly observed from Figure 2 that EH-based
hashing schemes demonstrate superior performance efficiency
(i.e., at least 57.48% faster in terms of average throughput)
than Level-based hashing schemes. The rationale behind
this can be attributed to how these hash schemes probe the
candidate buckets for a query. Specifically, EH-based hashing
schemes probe the candidates buckets by sequential accesses,
while Level-based hashing schemes entail one random access

for each of the candidate bucket (which is inherited from
BCH [14]). Given that the latency of random read is about
1.8× longer than that of sequential read on PM (according to
Table 1), it turns out that EH-based hashing schemes hold the
advantage in performance efficiency.

Nevertheless, since EH-based hashing schemes naturally
entail heavier resizing overhead (i.e., the number of rehashed
KV items) than Level-based hashing schemes, their perfor-
mance predictability can be affected more considerably. It can
be clearly observed that the real-time throughput of EH-based
hashing schemes gets degraded severely while KV items are
being rehashed at that time; additionally, the more KV items
are being rehashed, the lower throughput would suffer. More-
over, it is worth noting that, though Dash-EH utilizes a variety
of techniques to postpone split operations for higher load
factor, it may concentrate the occurrence of split operations
as an adverse effect, leaving the performance predictability
of Dash-EH unimproved or even degraded. As shown in Fig-
ures 2(c) and 2(d), when compared with CCEH, Dash-EH
achieves 2.16𝑋 higher average throughput but suffers 5.78%
lower worst throughput (i.e., the 100th percentile throughput).

Observation 2: Compared with EH-based hashing schemes,
Level-based hashing schemes entail lower resizing-incurred
overhead yet still fail to deliver good performance predictabil-
ity due to its low performance efficiency.

As revealed by Figure 2, thanks to the cost-efficient resizing,
Level-based hashing schemes greatly alleviate the total resiz-
ing overhead than EH-based hashing schemes. Cumulatively,
Level-based hashing schemes incur at least 55.45% less num-
ber of rehashed KV items than EH-based hashing schemes
after handling the same amount of insert operations. It is also
worthy to note that, to avoid locking the entire hash table and
blocking all the other concurrent requests during the resizing
(as Level Hashing does), Clevel Hashing advocates a lock-free
scheme and further postpones and offloads the rehashing of
KV items to dedicated background thread(s), which explains
why Clevel Hashing could incur even less number of rehashed
KV items than Level Hashing in the evaluation.

However, unfortunately, the effective reduction in the resiz-
ing overhead is insufficient in helping Level-based hashing
schemes with delivering good performance predictability. This
is because Level-based hashing schemes suffer much worse
performance efficiency, not only the average but also the
worst ones, when compared with EH-based hashing schemes.

482 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Specifically, even though the worst throughput (i.e., the 100th
percentile throughput) of Clevel Hashing seems to drop less
from its average throughput, it is still worse than that of CCEH
and Dash-EH by 47.95% and 44.87% respectively.

2.2.2 Limited Scalability
Apart from the efficiency and predictability, the performance
scalability is also an important indicator that reflects how
efficient a hashing scheme is in processing concurrent requests.
To this end, we repeat the experiments presented in Figure 2
with a different number of concurrent threads, ranging from 1
to 48, and show the measured average throughput of different
hashing schemes in Figure 3.
Observation 3: The existing PM hashing schemes fall short
of exhibiting good performance scalability under highly-
concurrent requests due to the excessive writes in handling
insert operations.

From Figure 3(a), it can be clearly observed that none of
the evaluated hashing schemes could scale up the average
throughput well from 24 concurrent threads. To find out the
potential bottleneck to achieve good performance scalability,
we further measure the total writes of PM media introduced by
different hashing schemes (by reading the hardware counters
of DCPMM [45]), since the write bandwidth is one of the
major weaknesses of PM (according to Table 1). The results
in Figure 3(b) identify that all the evaluated hashing schemes
introduce more than twice amount of writes than expected
(which was estimated by multiplying the number of insert
operations by the XPLine size (i.e., 256-byte)), except the
lock-free Clevel Hashing.

0 20 40
Num. of Threads

(a) Average Throughput S50% I50%

0

5

10

15

A
ve

ra
ge

Th
ro

ug
hp

ut
(o

ps
) ×106

(b) Total Bytes Written to PM

0

50

100

To
ta

lB
yt

es
W

rit
te

n
(B

) ×106

Level Clevel CCEH Dash Expected

Figure 3: Scalability of Existing PM Hashing Schemes under
Mixed Workload (i.e., 50% Insertion and 50% Search).

Based on our further investigation, such excessive amount
of writes can be attributed to different root causes about how
the PM hashing scheme handles an insertion. Specifically, for
every insert operation, lock-based hashing schemes (such as
Level Hashing, CCEH and Dash-EH) require one PM write to
lock and insert the KV item, and another PM write for unlock-
ing. As for a lock-free hashing scheme (like Clevel Hashing),
it always requires one additional flush to persist its metadata,
before every insertion, for the sake of crash consistency. In
addition, it allows multiple threads to concurrently expand
the hash table for the same level, but only one expansion
would succeed eventually. This results in that the other failed
expansions must waste PM writes to clear the memory space.

3 Design of SEPH
This section presents SEPH, a hashing on PM which can hit
the scalability, efficiency and predictability with one stone.
In this section, we first present a new structure called level
segment (LS), a key enabler to achieve both high efficiency and
predictability, and elaborate on how SEPH builds a hash table
based on LS (§3.1). Then, we show how LS can further enable
a low-overhead split to greatly suppress the performance
unpredictability caused by resizing (§3.2). Finally, we put
forward a semi lock-free concurrency control that requires a
nearly-minimal amount of writes to handle an insertion for
achieving ever-higher efficiency and scalability while ensuring
the correctness and crash consistency (§3.3).

3.1 Level Segment based Hash Table
To resolve the dilemma between efficiency and predictability
disclosed by §2.2.1, SEPH introduces a new structure called
level segment (LS) to build the hash table by combining the
respective strengths of the existing two series of PM hashing.
Specifically, as we are going to see in this section, LS learns
from EH-basedhashing to achieve better efficiency in two ways:
1) LS limits the number of buckets that need to be randomly
read for a query; and 2) LS enables the incremental resizing
(i.e., the split operation) to avoid the full-table rehashing.
Moreover, as we will elaborate in §3.2, LS further enables a
low-overhead split operation, which is inspired by the two-
level structure of Level-based hashing, to greatly harness the
performance unpredictability caused by resizing.

3.1.1 Structure

Physical Segment. To ease the dynamic memory allocation
of PM space, SEPH manages the PM space as fixed-sized
units called physical segment (PS), which can be regarded as
a “segment” in the EH-based hashing. To be more specific,
a PS in SEPH also comprises a fixed number (e.g., 2𝐵) of
buckets, each bucket also consists of a fixed number of slots,
and each slot can also accommodate one KV item. Besides, as
suggested by Dash [33], SEPH also aligns the bucket size with
the XPLine size (i.e., 256-byte) of Intel® Optane™ DCPMM
for achieving better locality.
Level Segment. To combine the respective strengths of the
existing two series of PM hashing, SEPH further organizes
PSs into a two-level structure called level segment (LS), which
is also the granularity for splitting. As depicted in Figure 4,
given one PS at lower level (e.g., PS 0) and two PSs at higher
level (e.g., PS 1 and PS 2), SEPH organizes the “left half”
of lower-level PS and one higher-level PS into a LS (e.g.,
LS 0 which is denoted by blue-shaded region) and organizes
the “right half” of the lower-level PS and another higher-
level PS into the second LS (e.g., LS 1 which is denoted
by green-shaded region). Moreover, within an LS, every two
physically-consecutive higher-level buckets share a lower-
level bucket, but SEPH gives higher priority to the lower-level

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 483

buckets for accommodating newly inserted KV items than the
higher-level buckets for the sake of concurrency control (see
§3.3). That is, only if all slots in a lower-level bucket of an LS
are fully occupied, will a new KV item be inserted into the
higher-level bucket of that LS. In view of this, when querying
a KV item in an LS, SEPH also searches the lower-level
candidate bucket before searching the higher-level candidate
bucket for better search efficiency.

!"#$#%& '()*+, -%$+.

= 012ℎ45647[9: ∶ 9: + = − 1]

A+B+" !+&C+%, -%$+.

= 012ℎ45647 0 ∶ 9:!"#!$%& − 1

23/9/2022

Level Segment 0 (LS 0) Level Segment 1 (LS 1)

Physical Segment 0 (PS 0)

Physical Segment 1 (PS 1) Physical Segment 2 (PS 2)

0 1Directory

Level 1

(L1)

Level 0

(L0)

Hash(key) = 01010...

000 001 010011100101101111

000 001 010 011100101101111

Bucket

(111)2

Slot 0

Slot 1

…

Slot S-1

Low-Overhead
Splitting

(see §3.2)

000 001 010 011100101101111

“Upward”

Figure 4: Level Segment based Hash Table of SEPH.

Upward Splitting. When the lower-level and higher-level
candidate buckets are both full to a new KV item, SEPH splits
that LS into two to enlarge the hash table in a copy-on-write
(CoW) fashion (i.e., by rehashing existing KV items into
newly allocated PSs). However, unlike the EH-based hashing
splits horizontally, SEPH splits an LS in an “upward” and
“low-overhead” fashion (see §3.2 for details). Consequently,
as SEPH keeps splitting LSs to accommodate more KV items,
the overall hash table will grow upwardly, since some LSs
are evolved from more times of upward splitting and thereby
reach higher levels than other LSs.
Residing Level. To precisely maintain which level a PS cur-
rently resides, SEPH associates every PS with an attribute
called residing level (RL). Taking the blue-shaded LS 0 de-
picted in Figure 4 as an example, the 𝑅𝐿s of its higher-level
PS and lower-level PS are 1 and 0, respectively.

3.1.2 Indexing

Level Segment Index. Like the EH-based hashing, SEPH also
maintains a directory and utilizes the most significant bits to
index an LS. Specifically, if the current highest residing level
among all PSs is 𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 , there must be 2𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 entries
in the directory, and SEPH utilizes the first 𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 most
significant bits of the hashed key as the level segment index.
Consider the example illustrated in Figure 4 where the current
highest residing level 𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 is 1. SEPH will associate the
given KV item, whose hashed key starts with “01010”, with
the LS indexed by the first directory entry (since the most
significant bit in the hashed key is “0”).
Sliding Bucket Index. However, to facilitate the low-overhead
split (introduced in §3.2), unlike the EH-based hashing that
utilizes the least significant bits to index a bucket, SEPH
introduces a unique sliding bucket indexing to index the
candidate bucket in a PS for a KV item. Specifically, suppose
𝑅𝐿 denotes the residing level of a PS comprising 2𝐵 buckets,

SEPH uses the 𝑅𝐿𝑡ℎ to (𝑅𝐿 +𝐵−1)𝑡ℎ of the most significant
bits in the hashed key (denoted as 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[𝑅𝐿 : 𝑅𝐿+𝐵−
1]) to locate the candidate bucket according to the residing
level 𝑅𝐿 of the PS.

Following the rule, SEPH can easily locate two candi-
date buckets (one in the lower-level PS and the other in the
higher-level PS) in an LS for any KV item. As the example
shown in Figure 4 where B is 3, given a hashed key starting
with “01010”, the candidate bucket at lower level PS (e.g.,
PS 0 at Level 0) is the third one (e.g., Buckets (010)2) since
𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[0 : 2] is “010”, and the candidate bucket at
higher level PS (i.e., PS 1 at Level 1) is the sixth one (i.e.,
Buckets (101)2) since 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[1 : 3] is “101”.

3.2 Low-Overhead Split
To suppress the resizing-incurred performance unpredictabil-
ity, SEPH proposes a low-overhead split operation, which
not only reduces the number of KV items to be rehashed to
one-third of an LS (i.e., one-third splitting in §3.2.1) but even
avoids the pointer dereference required to rehash a KV item for
most of the time (i.e., dereference-free rehashing in §3.2.2).

3.2.1 One-Third Splitting

With the novel Level Segment (LS) based hash table structure
and the unique indexing mechanism (presented in §3.1), SEPH
enables the one-third splitting, which only needs to rehash
“one-third” of the KV items upon splitting an LS (i.e., the
victim LS) into two new LSs as follows: 1 Two new PSs
are allocated at one level higher than the higher-level PS
of the victim LS to address the hash collision; 2 Only the
KV items in the lower-level buckets (i.e., one-third) of the
victim LS are rehashed into the two newly allocated PSs but
the two newly allocated PSs and the KV items stayed in the
original higher-level PS of the victim LS amazingly form
two new LSs at one level higher, thanks to the unique level
segment and sliding bucket indexes presented in §3.1; 3 The
corresponding directory entries are updated accordingly to
point to the two newly formed LSs; 4 The PM space occupied
by the lower-level buckets of the victim LS is safely released.

Figure 5 depicts an example that walks through the whole
process of the one-third splitting, where each PS is of 8 buckets
(i.e., 𝐵 equals 3). Suppose we are going to insert a new KV
item with the hashed key starting with “00011” into LS 0,
but the two candidate buckets (i.e., Bucket (000)2 of PS 0 and
Bucket (001)2 of PS 1) are both full. To address such hash
collision, SEPH splits LS 0 by rehashing only its lower-level
buckets into the two newly allocated PSs (i.e., PS 3 and PS 4)
at Level 2. That is, with the unique level segment index and
sliding bucket index, the KV items in Buckets (000)2 and
(001)2 of PS 0 are rehashed into the newly allocated PS 3
while the KV items in Buckets (010)2 and (011)2 of PS 0 are
rehashed into the newly allocated PS 4; however, there is no
need to rehash any KV items in PS 1 since the two newly

484 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

allocated PSs (i.e., PS 3 and PS 4), along with the existing
PS 1, amazingly form two new LSs (i.e., LS 2 and LS 3). At
last, the directory entries are accordingly modified to index
two newly formed LSs, and the “to-be-inserted KV item” can
be eventually inserted into Bucket (011)2 of PS 3 of the newly
formed LS 2.

LS 0

LS 2 (New) LS 3 (New)

LS 1

PS 0

PS 1 PS 2

PS 3 (New) PS 4 (New)

00 01 10 11

000 001 010 011100101101111

000 001 010 011100101101111000 001 010 011100101101111

L2

L1

L0

�Allocate two new PSs

� Rehash lower-level buckets

� Rehash
lower-level
buckets

� Modify directory entries

� Deallocate the lower-level buckets

LS 0 LS 1

Hash(key) = 00011...

Directory

000 001 010 011100101101111000 001 010 011100101101111

2022/9/23

Figure 5: An Illustrative Example of One-Third Splitting.

3.2.2 Dereference-Free Rehashing

To support variable-length keys and values, like many rep-
resentative PM hashing schemes (e.g., Clevel Hashing and
Dash), SEPH keeps the pointers to KV items in slots of buck-
ets. Consequently, to rehash a KV item (during the resize/split
operation), typically, the pointer needs to be first dereferenced
and a subsequent memory read is needed to get the content
of a KV item, resulting in a considerable amount of random
reads to degrade the performance on PM. In view of this,
SEPH further enables the dereference-free rehashing that
circumvents the pointer dereferences required to rehash KV
items for minimizing the overhead of one-third splitting.
Key Insight. The main purpose of dereferencing a pointer
during resizing is to locate the new candidate bucket a KV item
based on the re-calculated hashed key. It means that if the new
candidate bucket can be known by some means, a KV item
can be directly moved into the new candidate bucket without
dereferencing the pointer. Thanks to its unique sliding bucket
indexing, SEPH can simply infer the new candidate bucket if
the two subsequent bits, following the current sliding bucket
index of the hashed key, can be known. This is because, during
the one-third splitting, the KV items are always rehashed
from the lower-level buckets of the victim LS into a newly
allocated PS, which locates at two-level higher. To be more
specific, for any KV items stored in the lower-level buckets
of the victim LS residing at Level 𝑅𝐿, its current sliding
bucket index equals 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[𝑅𝐿 : 𝑅𝐿+𝐵−1]; since this
KV item will be rehashed into a new PS located at two-lever
higher (i.e., Level 𝑅𝐿 +2), its new sliding bucket index will
become 𝐻𝑎𝑠ℎ𝑒𝑑𝐾𝑒𝑦[𝑅𝐿 + 2 : 𝑅𝐿 + 𝐵 + 1]. In other words,
SEPH can infer the new candidate bucket for this KV item by
only requiring two extra bits, i.e., the (𝑅𝐿 + 𝐵)𝑡ℎ and (𝑅𝐿 +
𝐵 + 1)𝑡ℎ bits in its hashed key.
Bucket Index Foreseer. Based on this key insight, SEPH
proposes to maintain a small chunk of the hashed key, called

bucket index foreseer (or foreseer for simplicity), which con-
tains the required “two bits” for dereference-free rehashing,
along with the pointer to that KV item in the slot. In our
implementation, the size of the foreseer is set to 16 bits since
the modern 64-bit operating systems typically use 48 or fewer
bits of pointers. As shown in Figure 6, when inserting a new
KV item into a PS of 25 buckets residing at Level 0, SEPH
keeps not only the pointer to this KV item but also the first
two bytes of the hashed key (i.e., “00101010 10101101”) as
the foreseer in the 64-bit slot. Later, when this KV item needs
to be rehashed into a newly allocated PS at Level 2, since the
6𝑡ℎ and 7𝑡ℎ bits of the hashed key (i.e., “01”) are maintained
in the foreseer, SEPH can directly move this KV item into
Bucket (10101)2) in the new PS without dereferencing the
pointer (denoted by 1 in Figure 6).

Hash
(key) 001010101010110110100010 ... 00101010 10101101 1010010 …

MSB LSB

0 63

Hash(Key)

Bits used in FP: 5

00101010 10101101 1010010 …
MSB LSB

0 63

Hash(Key)

Bits used in FP: 7

Lazy split: normal

00101010 10101101 1010010 …
MSB LSB

0 63

Hash(Key)

Bits used in FP: 9

Lazy split: set stale state

00101010 10101101 1010010 …
MSB LSB

0 63

Hash(Key)

Bits used in FP: 1

Background FP Update

FP (16b) Stale (1b) PWMLock (1b) Offset (46b)
MSB LSB

Slot Foreseer (16b) S Pointer to KV Item (45b)
0 15
MSB LSB

16 17 63

0 8 16 24 63

Hash(key)

Slot Foreseer (16b) S Pointer to KV Item (47b)
0 15
MSB LSB

16 17 63

001010101010110110100010 ...

0 8 16 24 63
� Foresee the sliding bucket index for dereference-free rehashing

� Update the foreseer in the bg

S: Stale Flag

� Foresee the sliding bucket index for dereference-free rehashing

� Update in the background

2022/9/23

M D
18 19

M: Split Mark (§3.3)
D: Dirty Flag (§3.3)

Figure 6: An Running Example of Bucket Index Foreseer.

Nevertheless, with the growth of the hash table, the foreseer
might contain fewer and fewer “unused” bits and eventually
“fail to foresee” the new sliding bucket index during the
subsequent split operations. Thus, SEPH proposes to keep the
number of unused bits in the foreseer more than half (i.e., 8
bits) at most times by updating the foreseer in the background
(denoted by 2 in Figure 6). To this end, SEPH maintains
another bit called stale flag in the slot to indicate the staleness
of the foreseer. If the unused bits of the foreseer will be less
than half of its size after a dereferencte-free rehashing, SEPH
sets the stale flag to 1 and submits a job to a dedicated thread,
which can update the foreseer and reset the stale flag, via an
atomic operation without consistency issue, in the background.
Notably, if all the unused bits in a foreseer have really been used
up without being timely updated, SEPH alternatively updates
the foreseer right away in the foreground before rehashing the
KV item.

It is also worth mentioning that the foreseer can also be
utilized as the “tag” in Clevel Hashing [10] or “fingerprint”
in Dash [33] to avoid unnecessary dereferences of pointers
during bucket probing. This is because the foreseer will get
updated timely to contain bits, which are neither LS nor sliding
bucket indexes, so that it is particularly effective in telling
whether a KV item exists in a bucket.

3.3 Semi Lock-Free Concurrency Control
As discussed in §2.2.2, the existing PM hashing schemes
introduce an excessive amount of writes to handle an in-
sertion. This not only brings considerable degradation to
efficiency, but even largely limits the scalability especially
under highly-concurrent and insert-intensive scenarios. To

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 485

achieve ever-higher efficiency and scalability, SEPH proposes
a semi lock-free concurrency control that requires a nearly-
minimal amount of writes to handle an insertion. §3.3.1 and
§3.3.2 shall first introduce the design concept and the cor-
rectness challenges of the semi lock-free concurrency control,
respectively. Then, §3.3.3 elaborates on how to conduct dif-
ferent hash operations while guaranteeing the correctness and
crash consistency in depth.

3.3.1 Design Concept
Thanks to its atomicity, the compare-and-swap (CAS) primi-
tive [4] has been widely adopted by many existing lock-free
data structure and algorithm designs to allow concurrent oper-
ations without explicitly managing locks [22, 32, 39, 41]. The
CAS primitive “compares” the stored content of a word in
memory with a given value and, only if they match, “swaps”
the content of that word with the given value; meanwhile, a
Boolean value is returned to indicate whether the swap takes
place or not. Notably, the execution of the CAS primitive is
guaranteed to be atomic in the sense that the content of the
memory word is either completely swapped or stays unchanged
in an “all-or-nothing” fashion. Since SEPH sets the slot size
to the word size (e.g., 8 bytes) (see §3.2.2), we can also lever-
age the CAS primitive to realize lock-free operations for the
avoidance of excessive amounts of writes to PM due to the
lock manipulation. However, in view of the fact that the split
operation occurs relatively infrequent but could complicate
the correctness guarantee of other frequent hash operations
(i.e., insert/update/delete/search operations) [10], we propose
to prudently apply the lock only to the split operation. That is,
SEPH puts forward a semi lock-free concurrency control in
which only the (infrequent) split operation needs to acquire the
lock for splitting an LS, while other (frequent) hash operations
(i.e., insert/update/delete/search operations) are all lock-free
even when the involved LSs are under splitting.

3.3.2 Correctness Challenges
Guaranteeing the correctness of concurrent executions is
one of the most critical challenges when designing lock-
free data structures or algorithms. However, even though the
CAS primitive can guarantee the atomicity of manipulating
a slot, according to [10], performing hash operations in a
lock-free manner may still lead to two correctness problems,
i.e., duplicate items and loss of items.
1) Duplicate Items. The correctness problem of duplicate
items is that concurrent lock-free insertions may place mul-
tiple KV items with the same key into different slots of the
hash table. This may violate the correctness of subsequent
update/delete/search operations, since the update or delete
operation may only take place in one slot while the search
operation may access other duplicate slots that are unmodified.

2) Loss of Items. The correctness problem of loss of items
is that the modifications to the hash table (made by in-
sert/update/delete operations) may be lost when the hash

table is under resizing concurrently. This is possible since
the concurrent modifications may be left behind (i.e., not
rehashed) by the resizing, making those non-rehashed modifi-
cations “invisible” to the subsequent operations incorrectly.
3.3.3 Operation Details
Lock-Free Insert. In SEPH, the insertion operation is de-
signed to be lock-free for the avoidance of the concurrency
control overhead in manipulating locks. In order to address
the correctness problem of duplicate items (see §3.3.2) caused
by concurrent insertions, SEPH regulates the order of empty
slot allocation in the two candidate buckets to accommodate
newly inserted KV items based on the following two rules
of thumb: 1) The slots in the lower-level candidate bucket
must be first used up before using the slots in the high-level
candidate bucket. 2) In a candidate bucket, the slots must
always be allocated from the first one to the last one, where no
empty slots can exist before any allocated slots and no deleted
slots can be re-allocated. In summary, together with the two
rules and the atomicity of CAS primitive, SEPH guarantees
that concurrent insertions to the same LS will always compete
for not only the same candidate bucket (rule 1) but also for the
same empty slot in that bucket (rule 2) so that the correctness
problem of duplicate items can be nicely avoided.

Algorithm 1 elaborates the lock-free insert operation in
detail. First, it looks up the directory to find out the corre-
sponding LS for the to-be-inserted KV item (Line 2) and
performs a uniqueness check to ensure that in the two can-
didate buckets of that LS, there are no existing KV items
holding the same key as the to-be-inserted KV item (Lines 3–
9). Specifically, the uniqueness check employs the atomic
load instruction [2,10,17] to atomically fetch every allocated
slot one after the other for examination (Line 5) and rejects an
insertion request if its key matches the key of any allocated
slots in the LS (Lines 8–9). Please note that the atomic in-
structions will not always lead to direct accesses to PM, since
these requests can also be served in the cache [2].

Then, it starts to compete for the empty slot in the two can-
didate buckets based on our rules for the empty slot allocation
(Lines 10–21). That is, the lower-level bucket is used before
using the high-level bucket (rule 1) and the slots in a bucket
are allocated from the first one to the last one (rule 2), so that
all the concurrent insertions to the same LS will be regulated
to always compete for the same empty slot. Especially, the
CAS primitive is utilized to atomically check a slot is empty
(by comparing the content of slot with an “empty” value)
and fill in the slot (by swapping the content of slot with the
pointer to the to-be-inserted KV item) (Line 12). Thanks to
the atomicity of CAS primitive, even if there are concurrent
insertions competing for the same empty slot, only one thread
can successfully fill in it; then, the only “CAS-succeeded”
thread utilizes the clwb [2] and mfence instructions [2] to
persist the filled slot into PM [7, 10, 33, 36] (Lines 13–15).
Meanwhile, all the other “CAS-failed” concurrent threads
must check every slot they failed to fill in, since those slot(s)

486 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Lock-Free Insert
Input: 𝑘𝑣: the pointer to the to-be-inserted KV item
Output: the result of insertion (SUCCESS or FAIL)

1 retry:
2 Look up the directory to find out the 𝐿𝑆 for 𝑘𝑣;
// uniqueness check

3 for bucket in [𝐿𝑆− > 𝑃𝑆𝑙𝑜𝑤𝑒𝑟 , 𝐿𝑆− > 𝑃𝑆ℎ𝑖𝑔ℎ𝑒𝑟] do
4 foreach 𝑠𝑙𝑜𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡 do
5 𝑠𝑙𝑜𝑡′ ← Atomic Load(𝑠𝑙𝑜𝑡);
6 if 𝑠𝑙𝑜𝑡′ has a set split mark then
7 goto retry;
8 if 𝑘𝑣 and 𝑠𝑙𝑜𝑡′ have the same key then
9 return FAIL;
// CAS insert

10 for bucket in [𝐿𝑆− > 𝑃𝑆𝑙𝑜𝑤𝑒𝑟 , 𝐿𝑆− > 𝑃𝑆ℎ𝑖𝑔ℎ𝑒𝑟] do
11 foreach 𝑠𝑙𝑜𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡 do
12 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 ← CAS(&𝑠𝑙𝑜𝑡, 𝑒𝑚𝑝𝑡𝑦, 𝑘𝑣);
13 if 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 is successful then
14 Persist 𝑠𝑙𝑜𝑡 into PM;
15 return SUCCESS;
16 else
17 𝑠𝑙𝑜𝑡′ ← Atomic Load(𝑠𝑙𝑜𝑡);
18 if 𝑠𝑙𝑜𝑡′ has a set split mark then
19 goto retry;
20 if 𝑘𝑣 and 𝑠𝑙𝑜𝑡′ have the same key then
21 return FAIL;
// split (both cand. buckets are full)

22 Perform Lock-based One-Third Split() to split 𝐿𝑆;
23 goto retry;

may be inserted with KV items with the same key (Lines 16–
21). If so, the insertion must be rejected to avoid duplicate
items (Lines 20–21); otherwise, the CAS-failed thread(s) will
continue to compete for the next empty slot iteratively.

Finally, if all the slots in the two candidate buckets are used
up, the thread needs to trigger the one-third split operation (see
Algorithm 2) to split the LS (Line 22), followed by retrying
the insertion in a lock-free way (Line 23).

Lock-Based One-Third Split. In SEPH, the one-third split
operation is lock-based. That is, an LS could only be split by
one of the concurrent threads successfully. Even so, SEPH
may still be threatened by the correctness problem of loss
of items introduced in §3.3.2. Particularly, as the one-third
split operation is rehashing the KV items from the lower-level
PS of an LS into newly allocated PSs, some other concurrent
lock-free /deletion operations may be making changes to that
lower-level PS (since their lower-level candidate buckets are
still not full), leaving some of these modifications not rehashed
correctly. To resolve this correctness problem, SEPH devises a
lightweight mechanism that allows a split operation to timely
notify other concurrent lock-free operations of the rehashing
status of every slot. Specifically, SEPH reserves a one-bit
“split mark” in every slot, and the split mark will only be set
atomically once the split operation has started to process it. It
ensures that other concurrent lock-free operations can avoid

Algorithm 2: Lock-Based One-Third Split
Input: 𝐿𝑆: the LS that needs to be split

1 if Try Acquire Lock(𝐿𝑆) == SUCCESS then
2 Allocate two new PSs for one-third splitting;
3 foreach 𝑏𝑢𝑐𝑘𝑒𝑡 in 𝐿𝑆− > 𝑃𝑆𝑙𝑜𝑤𝑒𝑟 do
4 foreach 𝑠𝑙𝑜𝑡 in 𝑏𝑢𝑐𝑘𝑒𝑡 do
5 do // CAS Loop
6 𝑠𝑙𝑜𝑡′ ← Atomic Load(𝑠𝑙𝑜𝑡);
7 𝑠𝑙𝑜𝑡′𝑚← 𝑠𝑙𝑜𝑡′ | 𝑠𝑝𝑙𝑖𝑡 𝑚𝑎𝑟𝑘;
8 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 ← CAS(&𝑠𝑙𝑜𝑡, 𝑠𝑙𝑜𝑡′, 𝑠𝑙𝑜𝑡′𝑚);
9 while 𝑟𝑒𝑠𝑢𝑙𝑡𝐶𝐴𝑆 is not successful ;

10 if 𝑠𝑙𝑜𝑡 is not an empty or deleted slot then
11 Perform Dereference-Free Rehash() to

rehash 𝑠𝑙𝑜𝑡 into the two new PSs;
12 Persist the two new PSs into PM;
13 Form two new LSs and update the directory;

making changes to slots with a set split mark for the avoidance
of loss of items, since the “compare” of CAS primitive will
fail due to the set split mark bit.

As shown in Algorithm 2, the one-third split operation
in SEPH needs to first acquire the lock for splitting any LS
(Line 1), and only the thread successfully acquired the lock
can rehash KV items from the lower-level PS of the to-be-split
LS to the two newly allocated PSs (Lines 2–13). Especially,
for every slot (including empty slots), the split operation shall
first exploit the CAS loop [17] to ensure the split mark can
be successfully set even in the presence of the concurrent
operations (Lines 5–9). Then, the dereference-free rehashing
(see §3.2.2) is employed to rehash the KV item if it exists
(Lines 10–11). Finally, only after all the slots have been set
with the split mark and all the KV items have been successfully
rehashed and persisted into PM (Lines 12), should the directory
entry be updated to index the two newly formed LSs (Line 13).
It is the key step to ensure that no other concurrent operations
can access the slots in the two newly allocated PSs when
the splitting is still taking place. Notably, there is no need to
release the split lock after splitting, because the split LS would
become stale and any other concurrent threads should not split
it again. Besides, we adapt the epoch-based reclamation [16]
to recycle the stale PS only after no other concurrent lock-free
readers are using it [33].

With the split marks, the problem of loss of items can be
avoided as follows. Particularly, if the insertion ends with a
CAS success, it implies that the concurrent split operation
has not yet set the split mark for that slot and will rehash
the inserted KV item later. Otherwise, if the insertion ends
with a CAS failure because of a set split mark, it means that
a concurrent split operation has already started to process
this slot by first setting the split mark with the atomic CAS
primitive (i.e., Line 8 in Algorithm 2). Thus, SEPH shall retry
the entire insert operation to avoid leaving an insertion of KV
item behind the concurrent split operation (i.e., Lines 18–19
in Algorithm 1). It is also worthy to note that during the
uniqueness check, if a slot with a set split mark is found,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 487

SEPH shall also retry the entire insert operation to avoid
accessing stale KV items (i.e., Lines 6–7 in Algorithm 1);
in addition, both two candidate buckets shall be examined,
since the higher-level candidate bucket may have become the
lower-level candidate bucket due to concurrent splits.

Notably, the problem of duplicate items can also be avoided
even if an insertion ends with a CAS success but has time
overlap with a split operation to the same LS. Let’s first discuss
the situation that the insertion can successfully fill in a slot in
the “lower-level” candidate bucket of the LS. In this scenario,
the split operation must be not over yet (since the split mark
of this slot has not been set) and all the other concurrent
insertions with the same key must fail to compete for the
same slot in the same lower-level candidate bucket (thanks
to the atomicity of CAS primitive). Next, let’s discuss the
other situation where the insertion can successfully fill in a
slot in the “higher-level” candidate bucket (denoted as b) of
the LS (i.e., the corresponding lower-level candidate bucket
is already full). In this scenario, the split operation may still
be in the process or may have been completed by the time
that slot is filled in. Specifically, if the split operation is not
over yet, all the other concurrent insertions with the same key
must compete in the same higher-level candidate bucket b
but fail eventually. If the split operation is complete already,
all the other concurrent same-key insertions launched before
the split completion must compete in the same high-level
candidate bucket b but fail eventually; meanwhile, since the
higher-level candidate bucket b has become the lower-level
candidate bucket in the new LS after the split completion
(see §3.2.1), all the other concurrent same-key insertions with
the same key launched after the split completion shall first
compete in the same candidate bucket 𝑏 (based on the rule 1
of empty slot allocation) but fail eventually.
Lock-Free Update/Delete. With the help of CAS primitive,
in SEPH, the update and delete operations are also designed
to be lock-free. To locate the KV item for update or deletion
in the candidate buckets, the atomic load instruction is
utilized (similar to how the uniqueness check is performed
in the lock-free insertion). Then, if the slot with the desired
key can be found, SEPH takes advantage of the atomicity of
the CAS primitive to update the slot so that only one current
thread can successfully modify it at a time. However, if the
CAS primitive fails due to a set split mark in the slot, SEPH
shall retry the entire update/delete operation to avoid leaving
modifications to slots that have been processed by a concurrent
split operation for the avoidance of loss of items.

On the other hand, based on the rules of thumb for empty
slot allocation, no empty slots can exist before any allocated
slots and no deleted slots can be re-allocated. Thus, in SEPH,
the delete operation is realized in a way very similar to the
update operation. The only difference is that the deletion
replaces the desired slot with a “tombstone” instead of the
updated KV item. In our implementation, we consider a slot
that has all 1s for its pointer to KV item as a tombstone slot.

By doing so, a tombstone slot can be easily identified and
more importantly, we can still exploit the split mark and the
CAS primitive to avoid losing deletions in slots that have been
processed by a concurrent split operation (as how we avoid
losing updates).
Lock-Free Search. Since SEPH takes advantage of the atom-
icity of CAS primitive to modify a slot and utilizes the atomic
load instruction to atomically read a slot, the search oper-
ation can be easily realized as lock-free. However, to avoid
reading stale KV items, SEPH shall retry the search operation
if any slot with split mark is accessed (as what we do in the
uniqueness check of insertion).

3.3.4 Persistence for CAS
The compare-and-swap (CAS) atomic instruction [4] achieves
the synchronization in multithreading; however, since the
processor cache is typically volatile, a thread might access data
that have not been persisted yet, resulting in data inconsistency
in the presence of crashes. In our current implementation
of SEPH, we utilize the persistent single-word compare-and-
swap (PSwCAS) [42] primitive that can address this problem
by adding a dirty bit on each 8-byte word operated by the
CAS instruction. Specifically, the PSwCAS primitive requires
that 1) the CAS instruction always stores a word of data with
the dirty bit set; and 2) a thread must first persist the required
word into PM if the word is set with the dirty bit, followed by
clearing the dirty bit to mark the word as persistent.

Notably, the extended asynchronous DRAM refresh
(eADR),a new feature supported by Intel® Optane™ DCPMM
200 series and 3rd Xeon® Scalable processors, ensures that
CPU caches are also included in the power fail protected
domain [44]. That is, with the eADR technique, the CAS
primitive can be used directly with the data consistency guar-
antee even in the presence of crashes [1]. Thus, we envision
that SEPH shall be greatly benefited by the eADR feature to
deliver even superior performance.

3.3.5 Crash Consistency
No inconsistency will occur in SEPH against crashes for the
following reasons: 1) The insertion/update/deletion can be
done atomically and their crash consistency can be guaranteed
by the PSwCAS. 2) The split operation is protected by the
lock and is conducted in a copy-on-write (CoW) manner, so
the split operation is an all-or-nothing process; moreover, an
unfinished split operation (which is broke off by the occurrence
of crash) can also be identified (by examining the split locks
of LS) and correctly redone. 3) The crash consistency for the
directory can be secured by the directory recovery algorithm
proposed in CCEH [36].

4 Performance Evaluation
4.1 Experimental setup
Environment. All experiments are conducted on a 24-core/48-
thread Intel Xeon Platinum 8260 2.40 GHz CPU socket with

488 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

20

40
×106

21 84 0

20

40
×106

7 14 28 56 0

20

40
×106

6 3 0

20

40

R
ea

l-t
im

e
R

eh
as

hi
ng

(o
ps

)

×106

20 39 78 156

0

20

40
×106

519 39 78 155
0

20

40
×106

1429 57 115 3 0

20

40
×106

8 17 34 67

0 50 100
Time (s)

(a) PCLHT

0

10

20

R
ea

l-t
im

e
Th

ro
ug

hp
ut

(o
ps

)

×106

1.99

0 50 100 150
Time (s)

(b) (Level-based) Level Hashing

0

10

20

×106

1.27

0 25 50 75
Time (s)

(c) (Level-based) Clevel Hashing

0

10

20

×106

2.37

0 20 40
Time (s)

(d) (EH-based) CCEH

0

10

20

×106

4.54

0 20 40
Time (s)

(e) (EH-based) CCEH-C (Lock-Free)

0

10

20

×106

4.40

0 10 20
Time (s)

(f) (EH-based) Dash-EH

0

10

20

×106

9.25

0 5 10
Time (s)

(g) SEPH

0

10

20

×106

19.61
Real-time Throughput
Real-time Rehashing

Figure 7: Real-time Throughput and Resizing Overhead of Insertion.

six 32 GB DRAM and six 128 GB Intel® Optane™ DCPMM
100 series configured as the App Direct mode. The operating
system is 64-bit Ubuntu Server 22.04 with Linux kernel ver-
sion 5.15, and Persistent Memory Development Kit (PMDK)
version is 1.11. All the codes are implemented in C++ and
compiled using GCC 11.2 with all optimizations enabled.
Evaluated Hashing Schemes. We evaluate the following hash-
ing schemes especially developed for PM, and adopt parameter
settings suggested by their original papers for achieving the
best performance on Intel® Optane™ DCPMM 100 series.
• PCLHT: PCLHT is a search-optimized hashing scheme
adopting a linked list based cache-efficient hash table converted
by RECIPE [26].
• Level: Level Hashing [50] is the origin of Level-based
hashing schemes (see §2.1.1). It uses 128-byte buckets (i.e.,
two cachelines).
• Clevel: Clevel Hashing [10] is an extension of Level
Hashing with lock-free concurrency control (see §2.1.1). It
uses 64-byte buckets (i.e., one cacheline) and employs one
dedicated background thread to perform the resizing.
• CCEH/CCEH-C: CCEH [36] is developed based on Ex-
tendible Hashing (EH) [13] with effective use of cachelines
for better performance (see §2.1.2). It uses 16 KB segments
and 64-byte buckets (i.e., one cacheline) with a probing dis-
tance of 4. CCEH-C is a variant of CCEH that conducts the
split operation in a CoW way to support lock-free search [36].
• Dash: Dash-EH [33] is an enhanced version of CCEH [36]
with several technique advancements (see §2.1.2). It uses
16 KB segments and 256-byte buckets (i.e., an XPLine) with
two additional stash buckets.
• SEPH: This is our proposed hashing scheme. To compress
two PS pointers into one 8-byte word, we implement a segment
allocator that supports atomic aligned segment allocation and
crash consistency for SEPH. Besides, we set the size of a PS
to 16 KB (which is also the segment size of CCEH and Dash
used in the evaluation), and thus, the total size of an LS is
24 KB. Moreover, SEPH employs one dedicated background
thread to update the bucket index foreseer.

For the sake of fairness, since the more recent PM hashing
schemes (e.g.,Clevel Hashing,Dash, and our proposal) support
variable-length keys and values, all the evaluated hashing
schemes are unified to only keep the pointers to KV items
in slots. Besides, the length of a persistent pointer in PMDK
is 16 bytes (i.e., 8 bytes for the base address of a PM pool
and 8 bytes for the offset in pool), which cannot be operated
by the CAS atomic instruction. To resolve this issue, Clevel
Hashing [10] proposes to only maintain the offset in the PM
pool as an 8-byte persistent pointer, since the base address of a
PM pool will be fixed once the pool is mapped. We also apply
this offset-only pointer to all the evaluated hashing schemes.
Benchmark. For the micro-benchmarks used in §4.2, we first
warm up the hash table with 10 millions of KV items, followed
by executing a total number of 200 millions of operations
unless otherwise stated. Particularly, workloads composed of
a single type of operations are evaluated in §4.2.1∼§4.2.3
and workloads mixed with multiple types of operations are
used in §4.2.4, where all these workloads are generated by
YCSB [11] in Zipf distribution with 0.99 skewness. As for
the macro-benchmarks presented in §4.3, we use the real-
world workloads from YCSB [11]. Particularly, in the load
phase, we populate 64 millions of KV items, following Clevel
Hashing [10]; then, the standard YCSB workloads A, B, C, D,
and F are conducted with 48 threads. Notably, the standard
YCSB workload E is not evaluated since none of the hashing
schemes optimizes the range query performance. Besides, the
lengths of key and value are both set to 16 bytes since it is
widely used [6], and the KV items are pre-generated before
the testing as [33].

4.2 Micro Benchmark
4.2.1 Performance Efficiency and Predictability

To analyze the advantages of SEPH, we first focus on the
insertion performance. Figure 7 plots the real-time insertion
throughput of different hash tables under 48 threads. It can be
clearly observed that SEPH outperforms all the other schemes

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 489

in terms of performance efficiency. Specifically, SEPH outper-
forms Dash, CCEH, and CCEH-C by 2.12×, 4.31×, and 4.46×
for average insertion throughput respectively, and achieves at
least 8.27× higher average throughput compared with Level-
based hashing schemes and PCLHT.

As for the performance predictability, SEPH demonstrates
the most superior worst-case real-time throughput (i.e., the
minimal real-time throughput) than all the other evaluated
hashing schemes, as revealed by Figure 7. Specifically, the
minimal real-time throughput of SEPH is higher than that of
Clevel, CCEH, CCEH-C, and Dash by 9.34×,4.40×,4.74×
and 5.23× respectively, while PCLHT and Level Hashing
even suffer zero real-time throughput because their full-table
resizing are conducted in a blocking manner. Moreover, it is
also worth noting that the minimal real-time throughput of
SEPH is even higher than the maximal real-time throughput
of all the other evaluated hashing schemes by from 1.06× to
5.76×. This reveals that SEPH achieves remarkable perfor-
mance predictability by delivering an excellent worst-case
real-time throughput under the insertion-intensive workload.

The tail latency of different percentiles is another perspec-
tive to show the performance by reflecting the response time.
A design with good performance predictability requires a
low bound of the latency on high percentiles (i.e., tail la-
tency). Figure 8 shows the evaluation of the insertion latency
at different percentiles. In general, SEPH significantly cuts
down the 100th-percentile insertion latency compared with
PCLHT/Level-based hashing schemes (by 3∼ 4 orders of mag-
nitude) and is superior to all the EH-based hashing schemes
on every percentile of insertion latency. Especially, it can be
noticed that in contrast to EH-based hashing schemes (i.e.,
CCEH, CCEH-C and Dash) that have a sharp raising of in-
sertion latency at the 99.9th percentile, the insertion latency
of SEPH rises at the 99.99th percentile. The rationale behind
this is that SEPH triggers a less number of split operations
than EH-based hashing schemes, since the size of LS in SEPH
(i.e., 24 KB) is larger than the segment size (i.e., 16 KB) of
EH-based hashing schemes. Despite this, SEPH still achieves
9.75× ∼ 11.36× lower latency at both 99.99th and 99.999th
percentiles than EH-based hashing schemes; Also, the 100th-
percentile latency of SEPH is lower than that of EH-based
hashing schemes by from 3.62× to 5.86× because SEPH
offloads the directory doubling to the background thread.

50% 75% 90% 99% 99.9%
99.99%

99.999% 100%

104

106

108

1010

La
te

nc
y

(n
s)

PCLHT
Level
Clevel
CCEH

CCEH-C
Dash
SEPH

Figure 8: Latency at Different Percentiles.

Figures 9(a) and 9(b) further disclose the key reasons behind
the improvements in performance efficiency and predictability

achieved by SEPH. On the one hand, thanks to the one-third
splitting and the dereference-free rehashing, SEPH introduces
8.11∼ 43.78× less time for resizing than all the other evaluated
hashing schemes as shown in Figure 9(a). On the other
hand, Figure 9(b) validates the efficacy of the semi-lock-free
concurrency control in minimizing the PM writes. Specifically,
SEPH significantly reduces the PM writes by 2 ∼ 3.33× and
nearly approaches the expected, optimal amount of PM writes.

(a) Total Resizing Time (s)

0

1

2

3

4

5
×102

73 88

293

400
439

288

9

(b) Total Bytes Written to PM (B)

0

5

10

15

20

×1010

16

12

18
19 20

15

6

(c) Loadfactor

0.0

0.2

0.4

0.6

0.8

0.3

0.6
0.6

0.4 0.4

0.6
0.5

PCLHT Level Clevel CCEH CCEH-C Dash SEPH Expected

Figure 9: Resizing Time, Total Bytes Written, and Load Factor.

Load Factor. Figure 9(c) further depicts the result of average
load factors. Considering that Dash leverages non-trivial
memory PM (i.e., 12.5%) to store the metadata to improve
the performance, the calculation of the load factor of Dash
excludes this amount of memory. The average load factor of
Level Hashing and Dash are both up to 59% because they
adopt multiple optimizations such as one movement, balancing
load, stash buckets, etc. The average load factor of SEPH is
50%, which is because SEPH does not adopt the optimization
that improves the load factor at the expense of introducing
more operational overhead. On the other hand, our design
shows higher load factor compared to CCEH and CCEH-C
(both 39%) since SEPH can accommodate more KV items in
a bucket (i.e., 32 for SEPH).

4.2.2 Performance Breakdown
To investigate how the key techniques of SEPH introduced in
§3.2 and §3.3 contribute to the overall performance improve-
ment, Figure 10 shows the experiment results of inserting 200
millions of KV items using 48 threads on different variants of
SEPH (see Table 2 for their detailed configurations).

Table 2: Configuration of Different SEPH Variants.
SEPH

Variants
Semi

Lock-Free
One-Third
Splitting

Dereference-Free
Rehashing

SEPH-Base × × ×
SEPH-S ✓ × ×
SEPH-SO ✓ ✓ ×
SEPH-SOD ✓ ✓ ✓

First of all, SEPH-Base is considered as a baseline design
of SEPH which only keeps the level segment based hash
table of SEPH (presented in §3.1) but does not equip with
any low-overhead split techniques (proposed in §3.2) and
even adopts the lock-based scheme of Dash [33]. It can be
clearly observed from Figure 10(a) that compared with SEPH-
Base, SEPH-S (which adopts only the proposed semi lock-
free concurrency control) significantly lifts up the average

490 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and highest throughputs by 56.72% and 70.20% respectively.
The rationale behind this is that the proposed semi lock-free
concurrency control effectively avoids the PM writes required
to manipulate locks (as validated by Figure 10(b)), resulting
in better performance efficiency and scalability. Secondly,
compared with SEPH-S, SEPH-SO further demonstrates the
efficacy of the proposed one-third splitting in raising the worst-
case throughput by 71.46% and reducing the total resizing
time by 51.04% (as shown in Figure 10(c)). Finally, compared
with SEPH-SO, SEPH-SOD (i.e., the complete design of
SEPH) ultimately shows how the proposed dereference-free
rehashing can amazingly minimize the total resizing overhead
by 92.50%, resulting in a further improvement in the worst-
case throughput (i.e., performance predictability) by 55.85%.

Base S SO SOD

(a) Min/Avg/Max Throughput

0

10

20

Th
ro

ug
hp

ut
(o

ps
)

×106

Base S SO SOD

(b) Total Bytes Written to PM

0

5

10

15

20
×1010

15.9

6.1 5.7 5.7

Base S SO SOD

(c) Total Resizing Time (s)

0

100

200

300 275
241

118

9

Figure 10: Breakdown of Different SEPH Variants.

4.2.3 Performance Scalability
Insertion. Figure 11(a) shows the insertion throughput under
different number of threads. SEPH speeds up the insertion
performance by 2.2× under 48 threads and by 2× under the
other thread numbers compared with Dash. The main reason
is that the write bandwidth of PM is considered a common
bottleneck, and SEPH completes the insertions with less
consumption of write bandwidth. By contrast, PCLHT and
Level Hashing show poor scalability owing to the blocking
resizing, while the low scalability of Clevel Hashing is due
to the high consumption of read/write bandwidth for the full
lock-free design.

8 1624 48
Num. of Threads

(a) Insertion

0

10

20

A
ve

ra
ge

Th
ro

ug
hp

ut
(o

ps
) ×106

8 1624 48
Num. of Threads

(b) Update

0

10

20
×106

8 1624 48
Num. of Threads

(c) Deletion

0

10

20

×106

8 1624 48
Num. of Threads

(d) Search

0

20

40

×106

PCLHT Level Clevel CCEH CCEH-C Dash SEPH

Figure 11: Scalability.

Update and Deletion. Figures 11(b) and 11(c) present the
update and deletion performance of various hashing schemes
under different numbers of thread. Although SEPH shows
similar performance on update operations with Dash when the
number of the threads is less than 16, SEPH outperforms Dash

by 30% at 24 threads and 39% at 48 threads, demonstrating
higher performance scalability. This is because the lock-free
design of SEPH provides a more scalable update performance
by reducing a write for the lock to avoid hitting the limit of
the write bandwidth at lower concurrent scenarios. To test
the scalability of delete operations, we run 10 millions of
delete operations to delete all the pre-loaded 10 millions of
KV items. As shown in Figure 11(c), SEPH also surpasses all
the other designs at 48 threads in delivering high performance
scalability of deletion, thanks to the reduction in PM write
achieved by the semi lock-free concurrency control.
Search. As shown in Figure 11(d), Dash, SEPH and PCLHT
show good scalability on search performance, thanks to the
low-overhead search operations of these designs and the high
bandwidth of PM read (compared with write bandwidth). The
search throughput of SEPH is 9.1% lower than that of Dash
with 48 threads because SEPH needs to access two candidate
buckets by two random reads, yet Dash accesses two candidate
buckets by two sequential reads.

4.2.4 Mixed Workload
In order to evaluate the performance behavior of the differ-
ent hashing schemes under the realistic mixed workload, we
conduct the experiments with the mixed requests of differ-
ent search/insertion ratio generated by YCSB in the zipfian
distribution (0.99 skewness).

Figure 12 shows the real-time throughput of different hash-
ing schemes with different mixed workloads under 48 threads.
SEPH performs the mostly-highest and the least-fluctuated per-
formance in these workloads, which demonstrates SEPH can
achieve good performance efficiency and good performance
predictability at the same time under the evaluated workloads
mixed with different percentages of search operations (denoted
as “S”) and insert operations (denoted as “I”).

0 25 50
Time (s)

(a) S30% I70%

0

10

20

R
ea

l-t
im

e
Th

ro
ug

hp
ut

(o
ps

) ×106

0 25 50
Time (s)

(b) S50% I50%

0

10

20

×106

0 10 20
Time (s)

(c) S70% I30%

0

10

20

×106

PCLHT Level Clevel CCEH CCEH-C Dash SEPH

Figure 12: Real-Time Performance under YCSB Workloads
with Different Search/Insert Ratio (%).

Figure 13 shows the results of the scalability of the hash
tables under different mixed workloads. It can be observed
that SEPH delivers better performance scalability than any
other evaluated hashing schemes, even under the workload
mixed with a high percentage of insertions (i.e., 70% of
insert operations and 30% of search operations shown in
Figure 13(a)). This is because the proposed semi lock-free

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 491

concurrency control entails a nearly-minimal amount of PM
writes to handle an insertion operation.

8 16 24 48
Num. of Threads
(a) S30% I70%

0

10

20

A
ve

ra
ge

Th
ro

ug
hp

ut
(o

ps
) ×106

8 16 24 48
Num. of Threads
(b) S50% I50%

0

10

20

×106

8 16 24 48
Num. of Threads
(c) S70% I30%

0

10

20

30
×106

PCLHT Level Clevel CCEH CCEH-C Dash SEPH

Figure 13: Performance Scalability under YCSB Workloads
with Different Search/Insert Ratio (%).

4.3 Macro Benchmark
Figure 14 shows the performance results of executing the
standard YCSB workloads in terms of the minimal, average,
and maximal throughputs. First of all, under the workload
Load (100% insertion) shown in Figure 14(a), SEPH performs
2.63× ∼ 19.59× higher average throughput and at least 4.52×
higher minimal throughput than any other evaluated hashing
schemes. This demonstrates SEPH can deliver the most su-
perior performance efficiency and predictability under the
insertion-intensive workload, with the help of the proposed
low-overhead splitting and semi lock-free concurrency control.

However, under the workload C (100% search) shown in
Figure 14(d), the average throughput of SEPH is 12.83% lower
than that of Dash, since SEPH is not optimized for search
operations (as discussed in §4.2.3). But it is encouraging to see
that with the increasing of update operations, the performance
gap between the average throughputs of SEPH and Dash
reduces and even reverses, because the proposed semi lock-
free concurrency control avoids the PM writes to manipulate
locks for update operations. Particularly, under the workload
B (95% search & 5% update) and the workload F (95% search
& 5% read-modify-write (RMW)), the average throughput
of SEPH only falls behind that of Dash by 10.9% and 5.6%,
as shown in Figures 14(c) and 14(f), respectively. On the
contrary, under the workload A (50% search & 50% update),
the average throughput of SEPH overtakes that of Dash by
6.9% as in Figure 14(f).

More importantly, under the workload D (95% search & 5%
insertion) shown in Figure 14(e), even though SEPH does not
achieve the best average throughput (due to the high portion of
search operations) among all the evaluated hashing schemes,
SEPH demonstrates the best performance predictability (i.e.,
improving the minimal throughput by at least 39.50%). This
reveals the value of the proposed low-overhead splitting in
reducing the resizing overhead, even if there are only 5% of
insertions. Figure 15 further shows the operation latency of
the evaluated hashing schemes at different percentiles under
the workload D. It can be observed that SEPH outperforms

(a) Workload Load
I100%

0

1

2

A
ve

ra
ge

Th
ro

ug
hp

ut
(o

ps
)

×107

(b) Workload A
S50% U50%

0

1

2

×107

(c) Workload B
S95% U5%

0

2

4
×107

(d) Workload C
S100%

0

2

4

×107

(e) Workload D
S95% I5%

0

2

4

×107

(f) Workload F
S95% RMW5%

0

1

2

3

×107

PCLHT Level Clevel CCEH CCEH-C Dash SEPH

Figure 14: The Minimal, Average, and Maximal Throughputs
under Standard YCSB Workloads.

EH-based designs by at least 11× and 1.82× for the 99.999th
and 100th percentile latency respectively; additionally, SEPH
greatly surpasses Level-based designs and PCLHT by at least
2792× for the 100th percentile latency.

50% 75% 90% 99% 99.9%
99.99%

99.999% 100%

104

106

108

1010

La
te

nc
y

(n
s)

PCLHT
Level
Clevel
CCEH

CCEH-C
Dash
SEPH

Figure 15: Latency at Different Percentiles (Workload D).

5 Conclusion
This paper presents SEPH, a Scalable, Efficient, and
Predictable Hashing for PM. To break the dilemma between
efficiency and predictability, SEPH introduces a new struc-
ture called level segment (LS) to build the hash table with
a unique indexing mechanism. SEPH further enables a low-
overhead split operation to significantly suppress the resizing-
incurred performance unpredictability, and puts forward a
semi lock-free concurrency control that requires a nearly-
minimal amount of writes to handle an insertion operation for
achieving ever-higher efficiency and scalability while ensuring
the correctness and crash consistency. Our results reveal that
SEPH achieves higher efficiency, better scalability, and more
reliable predictability when compared with state-of-the-art
hashing schemes for PM.

Acknowledgements
We thank our shepherd, Ashvin Goel, and all the anonymous
reviewers for their valuable suggestions. This work is sup-
ported in part by The Research Grants Council of Hong Kong
SAR (Project Nos. CUHK14210320 and CUHK14208521).

492 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Extended asynchronous dram refresh (eadr),
https://www.intel.com/content/www/us/en/developer/
articles/technical/eadr-new-opportunities-for-
persistent-memory-applications.html.

[2] Intel corporation. intel 64 and ia-32 ar-
chitectures software developer’s manual,
https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

[3] Intel optane dc persistent memory module,
https://www.intel.com/content/www/us/en/products
/details/memory-storage/optane-dc-persistent-
memory.html, 2019.

[4] Intel architecture instruction set ex-
tensions programming reference,
https://www.intel.com/content/www/us/en/developer
/overview.html#gs.jevnd1, 2021.

[5] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas,
and Per-Ake Larson. Bztree: A high-performance latch-
free range index for non-volatile memory. Proceedings
of the VLDB Endowment, 11(5):553–565, 2018.

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[7] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr
Kuznetsov,Maged M. Michael, and Martin Vechev. Laws
of Order: Expensive Synchronization in Concurrent Al-
gorithms Cannot Be Eliminated, page 487–498. Associ-
ation for Computing Machinery, New York, NY, USA,
2011.

[8] Daniel Bittman, Darrell DE Long, Peter Alvaro, and
Ethan L Miller. Optimizing systems for byte-addressable
{NVM} by reducing bit flipping. In 17th {USENIX}
Conference on File and Storage Technologies ({FAST}
19), pages 17–30, 2019.

[9] Shimin Chen and Qin Jin. Persistent b+-trees in non-
volatile main memory. Proceedings of the VLDB En-
dowment, 8(7):786–797, 2015.

[10] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo.
Lock-free concurrent level hashing for persistent memory.
In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 799–812. USENIX Association, July
2020.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[12] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mo-
hammed G. Khatib, and Cristian Ungureanu. Revisiting
hash table design for phase change memory. In Proceed-
ings of the 3rd Workshop on Interactions of NVM/FLASH
with Operating Systems and Workloads, INFLOW ’15,
New York, NY, USA, 2015. Association for Computing
Machinery.

[13] Carla Schlatter Ellis. Extendible hashing for concurrent
operations and distributed data. In Proceedings of the
2nd ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems, pages 106–116, 1983.

[14] Bin Fan, David G Andersen, and Michael Kamin-
sky. Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing. In 10th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 13), pages 371–384, 2013.

[15] Philippe Flajolet, Patricio Poblete, and Alfredo Viola.
On the analysis of linear probing hashing. Algorithmica,
22(4):490–515, 1998.

[16] Keir Fraser. Practical lock-freedom. Technical report,
University of Cambridge, Computer Laboratory, 2004.

[17] H. Gao and W.H. Hesselink. A general lock-free al-
gorithm using compare-and-swap. Information and
Computation, 205(2):225–241, 2007.

[18] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. IEEE Trans. on Knowl. and Data
Eng., 4(6):509–516, dec 1992.

[19] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable transient inconsistency in
byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, Oakland, CA, February 2018. USENIX
Association.

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amir Saman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the intel optane DC persistent memory module. CoRR,
abs/1903.05714, 2019.

[21] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vĳay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 493

Symposium on Operating Systems Principles, SOSP ’19,
page 494–508, New York, NY, USA, 2019. Association
for Computing Machinery.

[22] Giorgos Kappes and Stergios V. Anastasiadis. A lock-
free relaxed concurrent queue for fast work distribution.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’21, page 454–456, New York, NY, USA, 2021.
Association for Computing Machinery.

[23] Onur Kocberber, Boris Grot, Javier Picorel, Babak Fal-
safi, Kevin Lim, and Parthasarathy Ranganathan. Meet
the walkers accelerating index traversals for in-memory
databases. In 2013 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages
468–479, 2013.

[24] Per-Ake Larson. Dynamic hash tables. Commun. ACM,
31(4):446–457, apr 1988.

[25] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write optimal radix tree
for persistent memory storage systems. In 15th USENIX
Conference on File and Storage Technologies (FAST
17), pages 257–270, Santa Clara, CA, February 2017.
USENIX Association.

[26] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vĳay Chidambaram. Recipe: Con-
verting concurrent dram indexes to persistent-memory
indexes. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 462–477,
New York, NY, USA, 2019. Association for Computing
Machinery.

[27] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,
Gregory R. Ganger, and Haryadi S. Gunawi. Loda: A
host/device co-design for strong predictability contract
on modern flash storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 263–279, New York, NY, USA,
2021. Association for Computing Machinery.

[28] Junkai Liang and Yunpeng Chai. Cruisedb: An lsm-tree
key-value store with both better tail throughput and tail
latency. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE), pages 1032–1043, 2021.

[29] Hyeontaek Lim, Michael Kaminsky, and David G. An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD
’17, page 21–35, New York, NY, USA, 2017. Association
for Computing Machinery.

[30] Witold Litwin. Linear hashing: A new tool for file and
table addressing. In Proceedings of the Sixth Interna-
tional Conference on Very Large Data Bases - Volume
6, VLDB ’80, page 212–223. VLDB Endowment, 1980.

[31] Jihang Liu, Shimin Chen, and Lujun Wang. Lb+trees:
Optimizing persistent index performance on 3dxpoint
memory. Proc. VLDB Endow., 13(7):1078–1090, March
2020.

[32] Yujie Liu and Michael Spear. A lock-free, array-based
priority queue. ACM SIGPLAN Notices, 47(8):323–324,
2012.

[33] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable hashing on persistent memory. Proc.
VLDB Endow., 13(8):1147–1161, April 2020.

[34] Chen Luo andMichael J. Carey. On performance stability
in lsm-based storage systems. Proc. VLDB Endow.,
13(4):449–462, dec 2019.

[35] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing
Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu.
{ROART}: Range-query optimized persistent {ART}.
In 19th {USENIX} Conference on File and Storage
Technologies ({FAST} 21), pages 1–16, 2021.

[36] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
pages 31–44, Boston, MA, February 2019. USENIX
Association.

[37] ORACLE. Architectural overview of the oracle zfs
storage appliance, https://www.oracle.com
/technetwork/server-storage/sun-unified-
storage/documentation/o14-001-architecture-
overviewzfsa-2099942.pdf, 2018.

[38] Swapnil Patil and Garth Gibson. Scale and concurrency
of giga+: File system directories with millions of files. In
9th USENIX Conference on File and Storage Technolo-
gies (FAST 11), San Jose, CA, February 2011. USENIX
Association.

[39] Yaqiong Peng and Zhiyu Hao. Fa-stack: A fast
array-based stack with wait-free progress guarantee.
IEEE Transactions on Parallel and Distributed Systems,
29(4):843–857, 2018.

[40] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk
file system for large computing clusters. In Proceedings
of the 1st USENIX Conference on File and Storage Tech-
nologies, FAST ’02, page 19–es, USA, 2002. USENIX
Association.

494 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[41] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
extensible hash tables. J. ACM, 53(3):379–405, may
2006.

[42] Tianzheng Wang, Justin Levandoski, and Per-Ake Lar-
son. Easy lock-free indexing in non-volatile memory.
In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 461–472, 2018.

[43] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michai-
lidis, Steven Swanson, and Jishen Zhao. Characterizing
and modeling non-volatile memory systems. In 2020
53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 496–508, 2020.

[44] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang,
and Hong Jiang. Characterizing the performance of intel
optane persistent memory: A close look at its on-dimm
buffering. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page
488–505, New York, NY, USA, 2022. Association for
Computing Machinery.

[45] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz,and Steve Swanson. An empirical guide to the
behavior and use of scalable persistent memory. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 169–182, Santa Clara, CA, February
2020. USENIX Association.

[46] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-
ing consistency cost for nvm-based single level systems.
In 13th USENIX Conference on File and Storage Tech-
nologies (FAST 15), pages 167–181, Santa Clara, CA,
February 2015. USENIX Association.

[47] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow., 8(3):209–220, nov
2014.

[48] Lu Zhang and Steven Swanson. Pangolin: A
fault-tolerant persistent memory programming library.
In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 897–912, 2019.

[49] Pengfei Zuo and Yu Hua. A write-friendly and cache-
optimized hashing scheme for non-volatile memory sys-
tems. IEEE Transactions on Parallel and Distributed
Systems, 29(5):985–998, 2018.

[50] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages

461–476, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 495

No Provisioned Concurrency: Fast RDMA-codesigned Remote Fork
for Serverless Computing

Xingda Wei1,2, Fangming Lu1, Tianxia Wang1, Jinyu Gu1, Yuhan Yang1, Rong Chen1,2, and Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

Abstract
Serverless platforms essentially face a tradeoff between con-
tainer startup time and provisioned concurrency (i.e., cached
instances), which is further exaggerated by the frequent need
for remote container initialization. This paper presents MITO-
SIS, an operating system primitive that provides fast remote
fork, which exploits a deep codesign of the OS kernel with
RDMA. By leveraging the fast remote read capability of
RDMA and partial state transfer across serverless contain-
ers, MITOSIS bridges the performance gap between local and
remote container initialization. MITOSIS is the first to fork
over 10,000 new containers from one instance across multiple
machines within a second, while allowing the new contain-
ers to efficiently transfer the pre-materialized states of the
forked one. We have implemented MITOSIS on Linux and in-
tegrated it with FN, a popular serverless platform. Under load
spikes in real-world serverless workloads, MITOSIS reduces
the function tail latency by 89% with orders of magnitude
lower memory usage. For serverless workflow that requires
state transfer, MITOSIS improves its execution time by 86%.

1 Introduction
Serverless computing is an emerging cloud computing
paradigm supported by major cloud providers, including
AWS Lambda [23], Azure Functions [91], Google Server-
less [44], Alibaba Serverless Application Engine [30] and
Huawei Cloud Functions [58]. One of its key promises is auto-
scaling—users only provide serverless functions, and server-
less platforms automatically allocate computing resources
(e.g., containers1) to execute them. Auto-scaling makes server-
less computing economical: the platform only bills when
functions are executed (no charge for idle time).

However, coldstart (i.e., launching a container from scratch
for each function) is a key challenge for fast auto-scaling, as
the start time (over 100 ms) can be orders of magnitude higher
than the execution time for ephemeral serverless functions [37,
94, 121]. Accelerating coldstart has become a hot topic in
both academia and industry [41, 122, 94, 17, 102, 37, 20].
Most of them resort to a form of ‘warmstart’ by provisioned

1We focus on executing serverless functions with containers in this paper,
which is widely adopted by existing platforms [122, 123, 54, 64].

Figure 1. The timelines of call frequency (top) and sufficient re-
source provisioning (bottom) for two serverless functions in a real-
world trace from Azure Functions [102].

concurrency, e.g., launching a container from a cached one.
However, they require non-trivial resources when scaling
functions to a distributed setting, e.g., each machine should
deploy many cached containers.

Unfortunately, scaling functions to multiple machines is
common because a single machine has a limited function ca-
pacity to handle the timely load spikes. Consider the functions
sampled from real-world traces of Azure Functions [102].
The request frequency of function 9a3e4e can surge to over
150 K calls per minute, increased by 33,000× within one
minute (see the top of Figure 1). To avoid stalling numerous
newly arriving function calls, the platform should immedi-
ately launch sufficient containers across multiple machines
(see the bottom part of Figure 1). Due to the unpredictable
nature of the serverless workload, it is challenging for the
platform to decide the number of cached instances for the
warmstart. Hence, there is “no free lunch” for such resources:
commercial platforms require users to reserve and pay for
them to achieve better performance (i.e., lower response time),
e.g., AWS Lambda Provisioned Concurrency [12].

Even worse, dependent functions that run in separate con-
tainers cannot directly transfer states. Instead, they must re-
sort to message passing or cloud storage for state transfer,
which introduces data serialization/de-serialization, memory
copy and storage stack overheads. Recent reports have shown
that these may count up to 95% of the function execution

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 497

time [71, 53]. Unfortunately, transferring states between func-
tions is common in serverless workflows—a mechanism to
compose functions into more complex applications [4, 2].
Though recent research [71] bypasses these overheads for lo-
cal state transfer (i.e., functions that run on the same machine)
by co-locating local functions in the same container, it is still
unclear how to do so in a remote setting.

We argue that remote fork (forking containers across ma-
chines like a local fork) is a promising primitive to enable
both efficient function launching and fast function state shar-
ing. First, the fork mechanism has been shown efficient in
both performance and resource usage for launching contain-
ers on a single machine: one cached container is sufficient
to start numerous containers with 1 ms time [17, 37, 36]. By
extending the fork mechanism to remote, one active con-
tainer is sufficient to start numerous containers efficiently
on all the machines, achieving no provisioned concurrency
in a distributed setting. Second, remote fork provides trans-
parent intermediate state sharing between remote functions:
the code in the container created by the fork can access the
pre-materialized states of the forked container transparently
bypassing message passing or cloud storage.

However, state-of-the-art systems can only achieve a con-
servative remote fork with Checkpoint/Restore techniques
(C/R) [7, 117]. Our analysis reveals that they are not efficient
for serverless computing, i.e., even slower than coldstart due
to the costs of checkpointing the memory of parent container
into files, transferring the files through the network and ac-
cessing the files through a distributed file system (§3). Even
though we have utilized modern interconnects (i.e., RDMA)
to reduce these costs, the software overhead of checkpointing
and distributed file accesses still make C/R underutilize the
low latency and high throughput of RDMA.

We present MITOSIS, an operating system primitive that
provides a fast remote fork by deeply co-designing with
RDMA. The key insight is that the OS can directly access the
physical memory on remote machines via RDMA-capable
NICs (RNICs) [115], which is extremely fast thanks to by-
passing remote OS and remote CPU. Therefore, we can re-
alize remote fork by imitating local fork through mapping
a child container’s virtual memory to its parent container’s
physical memory without checkpointing the memory. The
child container can directly read the parent memory in a copy-
on-write fashion using RNIC, bypassing the software stacks
(e.g., distributed file system) introduced by traditional C/R.

Leveraging RDMA for remote fork with kernel poses sev-
eral new challenges (§4.1): (1) fast and scalable RDMA-
capable connection establishment, (2) efficient access control
of the parent container’s physical memory and (3) efficient
parent container lifecycle management at scale. MITOSIS ad-
dresses these challenges by (1) retrofitting advanced RDMA
feature (i.e., DCT [1]), (2) proposing a new connection-based
memory access control method designed for remote fork and
(3) co-designing container lifecycle management with the

help of serverless platform. We also introduce techniques
including generalized lean container [94] to reduce container-
ization overhead for the remote fork. In summary, we show
that remote fork can be made efficient, feasible and practical
on commodity RNICs for serverless computing.

We implemented MITOSIS on Linux with its core func-
tionalities written in Rust as a loadable kernel module. It can
remote-fork 10, 000 containers on 5 machines within 0.86 sec-
ond. MITOSIS is fully compatible with mainstream containers
(e.g., runC [13]), making integration with existing container-
based serverless platforms seamlessly. To demonstrate the
efficiency and efficacy, we integrated MITOSIS with Fn [123],
a popular open-source serverless platform. Under load spikes
in real-world serverless workloads, MITOSIS reduces the 99th

percentile latency of the spiked function by 89% with orders
of magnitude lower memory usage. For a real-world server-
less workflow (i.e., FINRA [14]) that requires state transfer,
MITOSIS reduces its execution time by 86%.

Contributions. We highlight the contributions as follows:
• Problem: An analysis of the performance-resource provi-

sioning trade-off of existing container startup techniques,
and the costs of state transfer between functions (§2).

• MITOSIS: An RDMA-co-designed OS remote fork that
quickly launches containers on remote machines without
provisioned concurrency and enables efficient function
state transfer (§4–5).

• Demonstration: An implementation on Linux integrated
with Fn (§6) and evaluations on both microbenchmarks
and real-world serverless applications demonstrate the effi-
cacy of MITOSIS (§7). MITOSIS is publically available at
https://github.com/ProjectMitosisOS.

2 Background and Motivation
2.1 Serverless computing and container
Serverless computing is a popular programming paradigm.
It abstracts resource management from the developers: they
only need to write the application as functions in a popular
programming language (e.g., Python), upload these functions
(as container images) to the platform, and specify how to
call them. The platform can auto-scale according to function
requests by dynamically spawning a container [54, 123, 59,
94, 22, 30, 91, 44, 22, 70]2 to handle each call. The spawned
containers will also be automatically reclaimed after functions
return, making serverless economical: the developers only pay
for the in-used containers.

Container is a popular host for executing functions. It
not only packages the application’s dependencies into a sin-
gle image that eases the function deployment, but also pro-
vides lightweight isolation through Linux’s cgroups and
namespaces, which is necessary to run applications in a
multi-tenancy environment. Unfortunately, enabling container
2Serverless platform may use virtual machines to run functions, which is not
the focus of this paper.

498 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ProjectMitosisOS

Table 1: A comparison of startup techniques for autoscaling n concurrent invocations of one function to m machines. Local means the
resources for the startup are provisioned on the function execution machine. The function is a simple python program that prints ‘hello world’.

Coldstart Caching Fork Checkpoint/Restore Remote fork
[9, 119] [63, 123, 94, 102, 122] [37, 17, 36] [120, 37, 117, 20] MITOSIS

Local startup performance Very slow (100ms) Very fast (< 1ms) Fast (1ms) Medium (5ms) Fast (1ms)

Remote startup performance Very slow (1, 000ms) N/A N/A Slow (24ms) Fast (3ms)

Overall resource provisioning O(1) O(n) O(m) O(1) O(1)

introduces additional function startup costs and state transfer-
ring costs due to container bootstrap and segregated function
address spaces, respectively.

2.2 Startup and resource provisioning costs

Coldstart performance cost. Starting a container from
scratch, commonly named as ‘coldstart’, is notoriously slow.
The startup includes pulling the container image, setting up
the container configurations and initializing the function lan-
guage runtime. All the above steps are costly, which take
even more than hundreds of milliseconds [37, 94]. As a
result, coldstart may dominate the end-to-end latency of
ephemeral serverless functions [37, 94, 119, 33]. For exam-
ple, Lambda@Eedge reports that 67% of its functions run in
less than 20 ms [33]. In comparison, starting a Hello-world
python container with runC [13]—a state-of-the-art container
runtime—takes 167 ms and 1783 ms when the container im-
age is stored locally and remotely, respectively (see Table 1).

Warmstart resource cost due to provisioned concurrency.
A wealth of researches focus on reducing the startup time of
coldstart with ‘warmstart’ techniques [94, 17, 37, 102, 113,
42, 119, 131, 106]. However, they must pay more resource
provisioning cost (see Table 1):

Caching [63, 64, 123, 41, 122, 94, 17, 102]. By caching fin-
ished containers (e.g., via Docker pause [8]) instead of
reclaiming them, future functions can reuse cached ones
(e.g., via Docker unpause) with nearly no startup cost (less
than 1 ms). However, Caching consumes large in-memory
resources: the resource provisioned—number of the cached
instances (O(n)) should match the number of concurrent
functions (n), because a paused container can only unpause
for one function. Given the unpredictability of the number
of function invocations (e.g., load spikes in Figure 1), it is
challenging for the developers or the platform to decide how
many cached instances are required. Thus, Caching inevitably
faces the trade-off between fast startup and low resource pro-
visioning, resulting in huge cache misses.

Fork [37, 17, 36]. A cached container (parent) can call the
fork system call (instead of unpause) to start new contain-
ers (children). Since fork can be called multiple times, each
machine only requires one cached instance to fork new con-
tainers. Thus, fork reduces resource provisioned of Caching—
cached containers from O(n) to O(m), where m is the num-
ber of machines that require function startup. However, it is

Start FINRA

Fetch Portfolio Data

Fetch Market Data

Run AuditRule #1

Run AuditRule #2

Run AuditRule #n

…

Market data

(10-20MB)

Portfolio data

(1-2KB)

Serverless

functionsRaw data

Figure 2. The workflow graph of a real-world serverless applica-
tion, Financial Industry Regulatory Authority, FINRA [14].

still proportional to the number of machines (m) since fork
cannot generalize to a distributed setting.

Checkpoint/Restore (C/R) [120, 37, 117]. C/R starts contain-
ers from container checkpoints stored in a file. It only needs
O(1) resource (the file) to warmstart, because the file can be
transferred through the network if necessary. Though being
optimal in resource usage, C/R is orders of magnitude slower
than Caching and fork. We analyze it in §3 in detail.

2.3 (Remote) state transfer cost

Transferring states between functions is common in server-
less workflows [36, 17, 95, 64, 4, 2]. A workflow is a graph
describing the producer-consumer relationships between
functions. Consider the real-world example FINRA [14]
shown in Figure 2. It is a financial application that validates
trades according to the trade (Portfolio) and market (Mar-
ket) data. Upstream functions (the ones that produce states),
i.e., fetchPortfolioData and fetchMarketData
first read data from external sources. Afterward, they trans-
fer the results to many downstream functions (the one that
consumes states), i.e., runAuditRules to process them
concurrently for a better performance.

Functions run in different containers can only transfer
states either by copying them through the network via mes-
sage passing or exchanging them at a cloud storage service.
Figure 3 (a) shows a simplified code for running FINRA on
AWS Lambda. For small states transfers (less than 32KB,
e.g., Portfolio), Lambda piggybacks the states in messages
exchanged between the coordinator and the function contain-
ers [131]. For large ones (Market), functions must exchange
them with S3—Lambda’s cloud storage service.

Transferring states via messages and cloud storage in-
evitably faces the overheads of data serialization, memory

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 499

global_market_data = None

def fetchPortfolioData():
 return query_portfolio_data() #1-2KB

def fetchMarketData():
 market_data = query_market_data();
 global_market_data = market_data

def runAuditRule(portfolio):
 marketdata = global_market_data
 return handle(portfolio, marketdata)

Per-container orchestrator (hidden from user)
while True:
 func_name, arg, need_fork = get_reqs()
 ret = globals[func_name](arg)
 send_results(ret) # back to coordinator
 if need_fork: ## may fork many times
 remote_fork()

1

2
3

4

5
6

7
8
9

10
11
12
13
14
15
16

path = 'market_data_file.o'

def fetchPortfolioData():
 return query_portfolio_data() #1-2KB

def fetchMarketData():
 s3 = boto3.resource('s3')
 market_data = query_market_data();
 s3.meta.upload_file(path, market_data)

def runAuditRule(portfolio):
 s3 = boto3.resource('s3')
 marketdata = global_market_data
 return handle(portfolio, marketdata)

Per-container orchestrator (hidden from user)
while True:
 func_name, arg = get_reqs()
 ret = globals[func_name](arg) # call function
 send_results(ret) # back to coordinator

1

2
3

4
5
6
7

8
9
10
11

12
13
14
15
16

Functions

(Containers)
Coordinator

portfolio_data

market_data

(remote) fork

Functions

(Containers)
Coordinator

portfolio_data
market_data

Storage

(a) State-passing via messaging & cloud storage (b) State-passing with remote fork

Messaging Messaging

1

1

2

22

x Execution order

1

1

2

2

2

Figure 3. (a) A simplified code of FINRA (see Figure 2) on existing serverless platforms. (b) A simplified code of using (remote) fork to
transfer states between FINRA functions. globals records a mapping between function name and its pointer.

copies, and cloud storage stacks, causing up to a 1,000X slow-
down [53, 71]. To cope with the issue, existing work proposes
serverless-optimized messaging primitives [17] or specialized
storage systems [110, 69, 96], but none of the mentioned over-
head is completely eliminated [71]. Faastlane [71] co-locates
functions in the same container with threads so that it can by-
pass these overheads with shared memory accesses. However,
threads cannot generalize to a distributed setting. Faastlane
fallbacks to message passing if the upstream and downstream
functions are on different machines. SPRIGHT [97] achieves
a similar effect by retrofitting eBPF. However, they don’t
support efficient data sharing across nodes.

3 Remote Fork for Serverless Computing
We show the following two benefits of remote fork to address
the issues mentioned in the previous section.

Efficient (remote) function launching. When generalizing the
FORK primitive to a remote setting, a single parent container
is sufficient to launch subsequent child3 containers across
the cluster, similar to C/R (see Table 1). We believe O(1)
resource provisioning is desirable for the developers/tenants
since they only need to specify whether they need resource for
warmstart, instead of how many (e.g., the number of machines
for forking or cached instances [12] for Caching).

Fast and transparent (remote) state transfer. The FORK prim-
itive essentially bridges the address spaces of parent and
child containers. The transferred states are pre-materialized in
the parent memory, so the child can seamlessly access them
with shared memory abstraction with no data serialization,
zero-copy (for read-only accesses4) and cloud storage costs.
Meanwhile, the copy-on-write semantic in the FORK primitive
avoids the costly memory coherence protocol in traditional
distributed shared memory systems [75, 57].
3We may also call the kernel/machine hosting the parent/child container as
parent/child in this paper without losing generality.

4In the case of the traditional fork. MITOSIS further optimizes with one-sided
RDMA (§4), allowing zero-copy even for read-write accesses.

Figure 4. Analysis of using C/R for remote fork. Setup: CRIU-
local: CRIU with a local file system (e.g., tmpfs), which uses RDMA
to transfer files between machines. CRIU-remote: CRIU with an
RDMA-accelerated distributed file system (e.g., Ceph [89]).

Figure 3 (b) presents a concrete example of using fork to
transfer market data in FINRA (see Figure 2). In this setup, all
functions are packaged in the same container, which has an or-
chestrator dispatching function requests to user-implemented
functions (lines 11–14).5 We further assume the coordina-
tor issuing requests to the orchestrators is fork-aware (§6.1):
based on the function dependencies in the workflow graph
(e.g., Figure 2), it will request the orchestrator to fork chil-
dren if necessary (line 12). After the orchestrator finishes
fetchMarketData (line 13), it forks (lines 15–16) to
run downstream functions (runAuditRule), which can di-
rectly access the global_market_data pre-materialized
by the parent (line 8).

Challenge: remote fork efficiency. To the best of our knowl-
edge, existing containers can only remote fork with a C/R-
based approach [108, 32]. To fork a child, the parent first
checkpoints its states (e.g., register values and memory pages)
by copying them to a file, and then transfers the file to the
child—either using a remote file copy—see CRIU-local in
Figure 5 (a), or a distributed file system (see CRIU-remote
in Figure 5 (b)). After receiving the file, the child restores
the parent’s execution by loading the container states from
the checkpointed file. Note that C/R may load some states
(i.e., memory pages) on-demand for better performance [120].

5This setup is common in serverless platforms [70, 71, 2].

500 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

M
eta

M
em

ory

C
on

ta
in

er
Fi
le
s

M0

Parent

Regs

N
et

w
or

k

M1

Child

Regs

1
C

he
ck

po
in

t

2

Copy files

R
estore

3
4Copy

(a) C/R with tmpfs (CRIU-local)

M
eta

M
em

ory

C
on

ta
in

er

M0

Parent

Regs

N
et

w
or

k

M1

Child

Regs

1

C
he

ck
po

in
t R

estore

2
3Copy

(b) C/R with a DFS (CRIU-remote)

Distributed file system (DFS)
M

eta
M

em
ory

C
on

ta
in

er

M0

Parent

Regs

N
et

w
or

k

M1

Child

Regs

(c) MITOSIS

1

3 One-sided RDMA

M0

M1

M2

Mn

Goal

…

Remote fork

D

Copy meta

2
Fetch
& Restore

Figure 5. An overview of different approaches to achieve ultra-fast remote fork, including (a) C/R with a local filesystem (e.g., tmpfs), (b) C/R
with a fast distributed filesystem (e.g., Ceph [5]), and (c) MITOSIS.

Unfortunately, the C/R-based remote fork is not efficient
enough for serverless computing. Figure 4 (a) shows the exe-
cution time of serverless functions on a remote machine using
CRIU [7]—the state-of-the-art C/R on Linux (with careful
optimizations, see §7 for details) to realize CRIU-local and
CRIU-remote. The synthetic function randomly touches the
entire parent’s memory. We observe that C/R-based remote
fork can even be 2.7× slower than coldstart if it accesses
1 GB remote memory. We attribute it to one or more of the
following aspects.

Checkpoint container memory. CRIU takes 9 ms (resp.
518 ms) and 15.5 ms (resp. 590 ms) to checkpoint 1 MB (resp.
1 GB) memory of the parent container using local or dis-
tributed file systems, respectively. The overhead is dominated
by copying the memory to the files: unlike the local fork, the
child’s OS resides on another machine and thus, lacks direct
memory access capability to the parent’s memory pages.

Copy checkpointed file. For CRIU-local, transferring the en-
tire file from the parent to the child takes 11–734 ms for
1 MB–1 GB image (compared to the 0.61–570 ms execution
time), respectively. The whole file copy is typically unneces-
sary since serverless functions typically access a partial state
of the parent container [120] (see also Figure 16 (b)).

Additional restore software overhead. CRIU-remote enables
on-demand file transfer6: it only reads the required remote file
pages during page faults. However, the execution time is 1.3–
3.1× longer than CRIU-local because each page fault requires
a DFS request to read the page: the DFS latency (100µs) is
much higher than local file accesses. More importantly, the
latency is much higher than one network round-trip time
(3µs) due to the software overhead.

4 The MITOSIS Operating System Primitive

Opportunity: kernel-space RDMA. Remote Direct Memory
Access (RDMA) is a fast networking feature widely deployed
in data-centers [115, 47, 43]. Though commonly used in the
user-space, RDMA further gives the kernel the ability to
read/write the physical memory of remote machines [115]
6CRIU lazy migration [6] also supports on-demand transfer. However, it
is not optimized for RDMA and is orders of magnitude slower than our
evaluated CRIU-remote (210 vs. 42 ms) for the python hello function.

Container

…

User mode Kernel mode Hardware

R
N

IC

Network daemonVirtual Memory

Fo
rk

or

ch
es

tr
at

or

Page Tables
PageFault
Handler

Page
fault

New module

Extended
module

RDMA
Conns

Fallback daemon
Kernel

Threads

One-sided RDMA

…

Systemcall

Container §4.3 §4.3

§4.2

§5.4 §5.4

§5.3

§5
.1
-5
.2

Figure 6. The MITOSIS architecture.

bypassing remote CPUs (i.e., one-sided RDMA READ), with
low latency (e.g., 2µs) and high bandwidth (400 Gbps).

Approach: imitate fork with RDMA. MITOSIS achieves an
efficient remote fork by imitating the local fork with RDMA.
Figure 5 (c) shows an overview. First, we copy the parent’s
metadata (e.g., page table) to a condensed descriptor (§5.1)
to fork a child (¶). Note that unlike C/R, we don’t copy the
parent’s memory pages to the descriptor. The descriptor is
then copied to the child via RDMA to recover the parent’s
metadata, similar to copy_process in the local fork (·).
During execution, we configure the child’s remote memory
accesses to trigger page faults, and the kernel will read the
remote pages accordingly. The fault handler is triggered nat-
urally in an on-demand pattern, which avoids transferring
the entire container state. Meanwhile, MITOSIS directly uses
one-sided RDMA READ to read the remote physical memory
(¸), bypassing all the software overheads.

Architecture. We target a decentralized architecture—each
machine can fork from others and vice versa. Note that we do
not require dedicated resources (e.g., pinned memory) to fork
containers, thus, non-serverless applications can co-run with
MITOSIS. We realize MITOSIS by adding four components to
the kernel (see Figure 6): The fork orchestrator rehearsals the
remote fork execution (§5.1 and 5.2). The network daemon
manages a scalable RDMA connection pool (§5.3) for com-
municating between kernels. We extend OS’s virtual memory
subsystems to utilize the remote memory with RDMA (§5.4).
Finally, fallback daemon provides RPC handlers to restore
rare remote memory accesses that cannot utilize RDMA.

Security model. We preserve the security model of contain-
ers, i.e., the OS and hardware (RNIC) are trustworthy while
malicious containers (functions) may exist.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 501

4.1 Challenges and approaches

Efficient and scalable RDMA connection setup. Though
RDMA is fast (e.g., 2µs), it is traditionally only supported
in the connection-oriented transport (RC) [35, 83, 126, 125,
105, 127, 124], where connection establishment is much
slower (e.g., 4 ms [11] with a limited 700 connections/sec-
ond throughput). Caching connections to other machines can
mitigate the issue, but it is impractical when RDMA-capable
clusters have scaled to more than 10,000 nodes [43].

We retrofit DCT [1], an underutilized but widely supported
advanced RDMA feature with fast and scalable connection
setups to carry out communications between kernels (§5.3).

Efficient remote physical memory control. MITOSIS ex-
poses the parent’s physical memory to the children for the
fastest remote fork. However, this approach introduces consis-
tency problems in corner cases. If the OS changes a parent’s
virtual–physical mappings [77, 80, 78, 79] (e.g., swap [78]),
the children will read an incorrect page. User-space RDMA
can use memory registration (MR) [93] for the access con-
trol. However, MR has non-trivial registration overheads [49].
Further, kernel-space RDMA has limited support for MR—it
only supports MR on RCQP (with FRMR [90]).

We propose a registration-free memory control method
(§5.4) that transforms RNIC’s memory checks to connection
permission checks. We further make the checks efficient by
utilizing DCT’s scalable connection setup feature.

Parent container lifecycle management. For correctness,
we must ensure a forked container (parent) is alive until all
its successors (including children forked from the children)
finish. A naive approach is letting each machine track the
lifecycles of the successors of its hosting parents. However,
it would pose significant management burdens: a parent’s
successors may span multiple machines, forming a distributed
fork tree. Meanwhile, each machine may have multiple trees.
Consequently, each machine needs extensive communications
with the others following paths in the trees to ensure a parent
can be safely reclaimed.

To this end, we onload the lifecycle management to the
serverless platform (§6.3). The observation is that serverless
coordinators (nodes that invoke functions via fork) naturally
maintain the runtime information of the forked containers.
Thus, they can trivially decide when to reclaim parents.

5 Design and Implementation
For simplicity, we first assume one-hop fork (i.e., no cascad-
ing) and then extend to multi-hops fork (see §5.5).

API. We decouple the fork into two phases (see Figure 7): The
user can first call fork_prepare to generate the parent’s
metadata (called descriptor) related to remote fork. The de-
scriptor is globally identified by the local unique handle_-
id and key (generated and returned by the prepared call)
and the parent machine’s RDMA address. Given the identifier,

// Prepare the container descriptor at the parent machine
status_t fork_prepare(uint64_t *handler_id, uint64_t *key);

// Resume from a parent descriptor at the child machine
status_t fork_resume(char *addr, uint64_t handler_id, uint64_t key);

Figure 7. The major MITOSIS remote fork system calls.

users can start a child via fork_resume at another machine
(can be the same as the parent, i.e., local fork).

Compared to the traditional one-stage fork system call, a
two-phase fork API (prepare and resume)—similar to pause
and unpause in Caching is more flexible for serverless com-
puting. For example, after preparing and recording the par-
ent’s identifier at the coordinator, it can later start children
without communicating with the parent machine.

Visibility of the parent’s data structures. By default, MI-
TOSIS exposes all the parent’s data structures—including
virtual memory and file descriptors, to the child after fork_-
prepare. MITOSIS could introduce APIs to let the applica-
tion limit the scope of the exposure, but currently, we find it
unnecessary: parents must trust the children since they are
from the same application.

5.1 Fork prepare
fork_prepare will generate a local in-memory data struc-
ture (container descriptor) capturing the parent states, which
contains (1) cgroup configurations and namespace flags—for
containerization, (2) CPU register values—for recovering the
execution states, (3) page table and virtual memory areas
(VMAs)—for restoring the virtual memory, and (4) opened
file information—for recovering the I/O. We follow local
fork (e.g., Linux’s copy_process()) to capture (1)–(3)
and CRIU [7] for (4). Since deciding when to reclaim a de-
scriptor is challenging, we always keep the prepared parents
(and their descriptors) alive unless the serverless platform
explicitly frees them (i.e., via fork_reclaim).

Though the descriptor plays a similar role as C/R check-
pointed file, we emphasize one key difference: the descriptor
only stores the page table, not the memory pages. As a result,
it is orders of magnitude smaller (KB vs. MB) and orders of
magnitude faster to generate and transfer.

5.2 Fork resume
fork_resume resumes the parent’s execution state by
fetching the parent descriptor and then restoring from it. We
now describe how to make the above two steps fast. For now,
we assume the child OS has established network connections
capable of issuing RPCs and one-sided RDMAs to the parent.
The next section describes the connection setup.

Fast descriptor fetch with one-sided RDMA. A straightfor-
ward implementation of fetching the descriptor is using RPC.
However, RPC’s memory copy overhead is non-trivial (see
Figure 18), as the descriptor of a moderate-sized container
may consume several KBs. The ideal fetch is using one one-
sided RDMA READ, which requires (1) storing the parent’s

502 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

descriptor into a consecutive memory area and (2) informing
the child’s OS of the memory’s address and size in advance.

The first requirement can be trivially achieved by serializ-
ing the descriptor into a well-format message. Data serializa-
tion has little cost (sub-millisecond) due to the simple data
structure of descriptor. For the second requirement, a naive
solution is to encode the memory information in the descrip-
tor identifier (e.g., handler_id) that is directly passed to
the resume system call. However, this approach is insecure
because a malicious user could pass a malformed ID, caus-
ing the child to read and use a malformed descriptor. We
adopt a simple solution to remedy this: MITOSIS will send an
authentication RPC to query the descriptor memory informa-
tion with the descriptor identifier. If the authentication passes,
the parent will send back the descriptor’s stored address and
payload so that the child can directly read it with one-sided
RDMA. We chose a simple design because the overhead of an
additional RPC (several bytes) is typically negligible: reading
the descriptor (several KBs) will dominate the fetch time.

Fast restore with generalized lean containers. With the
fetched descriptor, child OS uses the following two steps to
resume a child to the parent’s execution states: (1) Container-
ization: set the cgroups and namespaces to match the
parent’s setup; (2) Switch: replace the caller’s CPU registers,
page table, and I/O descriptors with the parent’s. The switch
is efficient (finishes in sub-milliseconds): it just imitates the
local fork—e.g., unmapping the caller’s current memory map-
ping and mapping the child’s virtual memory to the parents by
copying parent’s page table to the child . On the other hand,
containerization can take tens of milliseconds due to the cost
of setting cgroups and namespaces.

Fortunately, fast containerization has been well-studied [94,
17, 27, 112]. For instance, SOCK [94] introduces lean con-
tainer, which is a special container having the minimal con-
figurations necessary for serverless computing. It further uses
pooling to hide the cost of container bootstrap, reducing its
time from tens of milliseconds to a few milliseconds. We
generalize SOCK’s lean container to a distributed setting to
accelerate the containerization of the remote fork. Specifi-
cally, before resuming a remote parent, we will use SOCK
to create an empty lean container that satisfies the parent’s
isolation requirements. Afterward, the empty container calls
MITOSIS to resume execution. Since the container has been
properly configured with SOCK, we can skip the costly con-
tainerization.

5.3 Network daemon
The network daemon aims to reduce the costs of creating
RDMA connections (commonly called RCQP) on the critical
path of the remote fork. Meanwhile, it also avoids caching
RCQPs connected to all the servers to save memory.

Solution: Retrofit advanced RDMA transport (DCT). The
essential requirement behind the goal is that we need QP
to be connectionless. RDMA does provide a connectionless

CL

M1

M0

RCQPs ready

RCQP creation & connections

Connection requests

0 1

5~10ms

0
Req

1

1~2μs

One-sided RDMA

Key0 + Req Key1 + Req

2~3μs

DCQP

Connection +
One-sided RDMA

Key1

Key0

DC Targets

Figure 8. A comparison of a client (CL) using two RCQPs and
DCQP to communicate with two machines (M1 and M2).

transport—unreliable datagram (UD), but it only supports
messaging, so we can just use it for RPC.

We find dynamic connected transport (DCT) [1]—a less
studied but widely supported RDMA feature suits remote
fork well. DCT preserves the functionality of RC and further
provides a connectionless illusion: a single DCQP can com-
municate with different nodes. The target node only needs to
create a DC target, which is identified by the node’s RDMA
address and a 12B DC key.7 After knowing the keys, a child
node can send one-sided RDMA requests to the correspond-
ing targets without connection—the hardware will piggyback
the connection with data processing and is extremely fast
(within 1µs [11, 67]), as shown in Figure 8.

Based on DCT, the network daemon manages a small
kernel-space DCQP pool for handling RDMA requests from
children. Typically, one DCQP per-CPU is sufficient to uti-
lize RDMA [11]. However, using DCT alone is insufficient
because the child needs to know the DCT key in advance to
communicate with the parent. Therefore, we also implement
a kernel-space FaSST RPC [67] to bootstrap DCT. FaSST
is a UD-based RPC that supports connectionless. With RPC,
we piggyback the DCT key associated with the parent in the
RPC request to query the parent’s descriptor. To save CPU
resources, we only deploy two kernel threads to handle RPCs,
which is sufficient for our workloads (see Figure 13 (b)).

Discussion on DCT overheads. DCT has known perfor-
mance issue due to extra reconnection messages. Compared
with RC, it causes up to 55.3% performance degradations for
small (32B) one-sided RDMA READs [67]. Nevertheless, the
reconnection has no effect on the large (e.g., more than 1 KB)
transfer because transferring data dominates the time [11].
Since the workload pattern of MITOSIS is dominated by large
transfers, e.g., reading remote pages in 4KB granularity, we
empirically found no influence from this issue.

5.4 RDMA-Aware virtual memory management

For resume efficiency, we directly set the page table entries
(PTE) of the children’s mapped pages to the parent’s physical
addresses (PA) during the resume phase. However, the orig-
inal OS is unaware of the remote PA in the PTE. Thus, we
dedicate a remote bit in the PTE for distinction. In particular,
the OS will set the remote bit to be 1 and clear the present
bit of the PTE during the switch process at the resume phase.
Afterward, child’s remote page access will trap in the kernel

7The key consists of a 4 B NIC-generated number and 8 B user-passed key.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 503

Table 2: A summary of page fault handling related to remote fork at
the child categorized by whether the virtual address (VA) is mapped
to remote and whether the remote physical address (PA) is stored.

Example VA mapped Parent PA in PTE Method

Stack grows No No Local
Code in .text Yes Yes RDMA
Mapped file Yes No RPC

after the switch. Consequently, MITOSIS can handle them
in the RDMA-aware page fault handler. Note that we don’t
change the table entry data structure: we utilize an ignored
PTE bit (i.e., one in [58 : 52] [60]) for the remote bit.

RDMA-aware page fault handler. Table 2 summarizes how
we handle different faults related to remote fork. If the fault
page has not mapped to the parent, e.g., stack grows, we
handle it locally like a normal page fault. Otherwise, we
check whether the fault virtual address (VA) has a mapped
remote PA. If so, we use one-sided RDMA to read the remote
page to a local page. Most child pages can be restored via
RDMA because serverless function typically touches a subset
of the previous run [120, 37]. In case of a missed mapping,
we fallback to RPC.

Fallback daemon. Each node hosts a fallback daemon that
spawns kernel threads to handle children’s paging requests,
which contains the parent identifier and the requested virtual
address. The fallback logic is simple: After checking the
validity of the request, the daemon thread will load the page
on behalf of the parent. If the load succeeds, we will send the
result back to the child.

Connection-based memory access control and isolation.
Direct exposing the parent’s physical memory improves the
remote fork speed. Nevertheless, we need to reject accesses to
mapped pages that no longer belong to a parent and properly
isolate accesses to different containers. Since we expose the
memory via one-sided RDMA in a CPU-bypassing way, we
can only leverage RNIC for the control.

MITOSIS proposes a connection-based memory access con-
trol method. Specifically, we assign different RDMA connec-
tions to different portions of the parent’s virtual memory area
(VMA), e.g., one connection per VMA. If a mapped physical
page no longer belongs to a parent, we will destroy the con-
nection related to the page’s VMA. Consequently, the child’s
access to the page will be rejected by the RNIC. The connec-
tions are all managed in the kernel to prevent malicious users
from accessing the wrong remote container memory.

To make connection-based access control practical, each
connection must be efficient in creation and storage. Fortu-
nately, the DCQP satisfies these requirements well. At the
child-side, each connection (DC key) only consumes 12B—
different DC connections can share the same DCQP. Mean-
while, the parent-side DC target consumes 144B. Note that
creating DCQPs and targets also has overheads. Yet, they are

PPBVWUXFW

90�6SDFH

YPBDUHDBVWUXFW

YPBDUHDBVWUXFW

90$V)LOHV

3DJH�7DEOH '5$0

^

3
DU
HQ
W

PPBVWUXFW

90�6SDFH

YPBDUHDBVWUXFW

YPBDUHDBVWUXFW

90$V

3DJH�7DEOH

^

&
KL
OG
UH
Q

1
HW
Z
RU
N

5'0$

53&

'&7�.H\

'&7�3RRO

Figure 9. An illustration of the extended virtual memory subsystems
to map children’s virtual addresses to remote memory. The memory
space is divided into a list of virtual memory area (VMA)s, each
managed by a vm_area_struct. DC target pool and DCT keys
are used by connection-based memory access control.

logically independent of the parent’s memory. Therefore, we
use pooling to amortize their creation time (several ms).

Figure 9 shows the DCT-based access control in action.
Upon fork preparation, MITOSIS assigns one DC target—
selected from a target pool—to each parent VMA. The pool
is initialized during boot time and is periodically filled in the
background. The DC keys of these targets are piggybacked in
the parent’s descriptor so that the children can record them
in their VMA during resume. Upon reading a parent’s page,
the child will use the key corresponding to the page’s VMA
to issue the RDMA request. With this scheme, if the par-
ent wants to reject accesses to this page, it can destroy the
corresponding DC target.

Connection-based control has false positives: after destroy-
ing a VMA’s assigned target, all remote accesses to it are
rejected. Assigning DC targets in a more fine-grained way
(e.g., multiple targets per VMA) can mitigate the issue at the
cost of increased memory usage. We found it is unnecessary
because VA–PA changes are rare at the parent. For example,
swap never happens if the OS has sufficient memory.

Security analysis. Compared with normal containers, MI-
TOSIS additionally exposes its physical memory to remote
machines via RDMA. Nevertheless, since remote containers
must leverage their kernels to read the exposed memory, a ma-
licious container cannot read others states as long as its kernel
is not compromised. Besides this, the inherent security issues
of RDMA [111, 99, 128] may also endanger MITOSIS. While
such security threats are out of the scope of our work, it is
possible to integrate orthogonal solutions [111, 99, 128, 115]
to improve the security of MITOSIS.

Optimizations: prefetching and caching. Even with RDMA,
reading remote pages is still much slower than local memory
accesses [35] (3µs vs. 100 ns). Thus, we apply two standard
optimizations: Prefetching prefetches adjacent remote pages
upon page faults. Empirically, we found a prefetch size of one
is sufficient to improve the performance of remote fork at a
small cost to the runtime memory (see Figure 15). Thus, MI-
TOSIS only prefetches one adjacent page by default. Caching
caches the finished children’s page table (and the read pages)
in the kernel. A later child forking the same parent can then
reuse the page table in a copy-on-write way to avoid reading

504 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

data = [] #shared via fork

def func0():
 data.append(…)

def func1():
 new = process(data[0])
 data.append(new)

def func2():
 return process(data[1])

)XQFWLRQ�FKDLQ�FRGH

func0 func1 func2

)XQFWLRQ�FKDLQ
data[0] data[1]

3DJH�7DEOH '5$0'5$0 3DJH�7DEOH

IRUN IRUN

func0

func1

func2

5
'
0
$

5
'
0
$

Figure 10. An illustration of multi-hops remote fork.

the touched pages again. This is essentially a combination
of local-remote fork. To avoid extra memory cost, we only
keep the cached page table for a short period (usually several
seconds) to cope with load spikes (e.g., see Figure 1).

5.5 Supporting multi-hops remote fork
MITOSIS supports multi-hops fork: a child can be forked
again with its children possibly on the third machine. It is
similar to one-hop fork except that we need to further track the
ownership of remote pages in a fine-grained way. As shown
in Figure 10, the pages behind data[1] and data[0]
resides on two different machines. A naive approach would
be maintaining a map to track the owner of each virtual page.
However, it would consume non-trivial storage overhead. To
reduce memory usage, MITOSIS encodes the owner in the
PTE: we dedicate 4 bits in the PTE’s ignored bits to encode
the remote page machine—supporting a maximum of 15-hops
remote fork (up to 15 ancestors)

6 Bringing MITOSIS to Serverless Computing
This section describes how we apply MITOSIS to FN [123]—
a popular open source serverless platform. Though we focus
on FN, we believe our methodology can also apply to other
serverless platforms (e.g., OpenWhisk [122]) because they
follow a similar system architecture (see Figure 11).

Basic FN. Figure 11 shows an overview of FN. It handles the
function request that is either an invocation of a single func-
tion, or an execution of a serverless workflow (e.g., see Fig-
ure 2). A dedicated coordinator is responsible for scheduling
the executions of these requests. The function code must be
packed to a container and uploaded to a Docker registry [34]
managed by the platform.

To handle the invocation of a single function, the coordina-
tor will direct the request to an invoker chosen from a pool
of servers. After receiving the request, the invoker spawns
a container with Caching to accelerate startups to execute
the function. Note that FN hides the mapping of request to
user-function (e.g., 12–16 in Figure 3 (a)) with function de-
velopment kit (FDK): i.e., the user only needs to provide
the code for the function, not the code that dispatches the
requests to the function. Thanks to this abstraction, we can
extend FDK to add the fork capabilities.

To execute a workflow, the coordinator will first de-
compose the workflow into single-function calls (one

Users Invocations Coordinators Invokers

I I I…
Seed

…

Func 0

Func 1 Func 2

Func 3 Func 4

Fork tree manager

MITOSIS
Kernel

Fork

Fork

Serverless workflow

Seed store

User code

FDK

Figure 11. Integrating MITOSIS to FN. The gray boxes are our
added (or extended) components.

for each workflow graph node), then schedule them
based on the dependency relationship. In particular,
the coordinator will only execute a downstream func-
tion (e.g., defrunAuditRule in Figure 2) after all
its upstream functions (fetchPortfolioData and
fetchMarketData) finish.

6.1 Fork-aware serverless platform

Being aware of MITOSIS, the platform can leverage parents
that have prepared themselves via fork_prepare (we term
them as seeds in this paper) to accelerate function startup and
state transfer. Besides, it is also responsible for reclaiming the
seeds. Based on the use cases, we further categorize seeds into
two classes. 1) For seeds that are used for boosting function
startups, the frequency of reclamation is low. Hence, we name
them long-lived seeds and use a coarse-grained reclamation
scheme (§6.2). 2) For seeds that are used for state transfer,
they only live during the lifecycle of a serverless workflow.
We name them short-lived seeds and use a fine-grained fork
tree-based mechanism to free them (§6.3).

The steps to accelerate FN with MITOSIS are: (1) Extend
the FN coordinator to send prepare/resume requests to the
invoker to fork containers if necessary and (2) Instrument
FDK so that it can recognize the new (fork) requests from
the coordinator (e.g., line 12–16 in Figure 3 (b)). Since the
extensions to the FDK are trivial, we focus on describing the
extensions to the coordinator.

Fork-aware coordinator. For a single function call, the co-
ordinator first looks up an available (long-lived) seed. The
locations of seeds are stored at a seed store. If one seed is
available, it sends a fork resume request to the invoker. Other-
wise, we fallback to the vanilla function startup mechanism.

During workflow execution, the coordinator dynamically
creates short-lived based on state transfer relationship. Specif-
ically, it will tell the invoker to call fork_prepare if it
executes an upstream function in the workflow. The prepared
results are piggybacked in the reply of the function. Afterward,
the coordinator can use fork_resume to start downstream
functions, which transparently inherit the pre-materialized
results of the upstream one.

Note that one function may have multiple upstream func-
tions (e.g., run AuditRule in Figure 2). For such cases, we
require the user to specify which function to fork by annotat-
ing the workflow graph or fuse the upstream functions.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 505

6.2 Long-lived seed management

Deployment. We deploy long-lived seeds as cached contain-
ers because they naturally load the function’s working set into
the memory. If the invoker decides to cache a container, it will
call fork_prepare to generate a seed. Note that we must
also adjust FN’s cache policy to be fork-aware. For example,
FN always caches a container if it experiences a coldstart,
which is unnecessary considering MITOSIS because the fork
can accelerate startups more resource-efficiently. Therefore,
we only cache the first container facing coldstart across the
platform. Moreover, we also detect whether a container is a
multi-hop one, i.e., forked from a long-lived seed. We don’t
cache such containers as they are short-lived seeds.

Seed store. To find the seed information, we record a map-
ping between function name and the corresponding seed’s
RDMA address, the handle_id and key (the latter two are
returned by fork_prepare) at the coordinator. We also
record the time when the seed was deployed, which is neces-
sary to prevent the coordinator forking from a near-expired
cache instance. The seed store can be co-located with the
coordinator or implemented as a distributed key-value store.

Reclamation. Similar to Caching, the long-lived seeds are
reclaimed by timeout. Unlike Caching, seeds can have a much
longer keep-alive time (e.g., 10 minutes vs. 1 minute) since
they consume orders of magnitude smaller memory. The co-
ordinators can renew the seed if it doesn’t live long enough
for the forked function.

6.3 Fork tree and short-lived seed management

Fork tree granularity and structure. Each serverless work-
flow has a dedicated fork tree stored and maintained at the
coordinator executing it. The upper-layer nodes in the tree cor-
respond to the upstream functions (parents) in the workflow
and the lower-layer nodes represent the downstream func-
tions (children). Each node encodes the container IDs and
locations, which is sufficient for the coordinator to reclaim
the corresponding seed.

Fork tree construction and destroy. The construction of the
fork tree is straightforward: After the coordinator forks a new
child from a short-lived seed, it will add the seed to the tree.
When all functions in the tree finish, MITOSIS will reclaim
all the nodes except for the root node: the root node can be a
long-lived seed and MITOSIS will not reclaim it.

Fault tolerance. The fork tree should be fault-tolerant to pre-
vent memory leakage caused by dangling seeds. Replicating
the tree with common replication protocols (e.g., Paxos [74])
can tolerate the failure, but adds non-trivial overheads dur-
ing the workflow execution. Observing that serverless func-
tions have a maximum lifetime (e.g., 15 minutes in AWS
Lambda [3]), we use a simple timeout-based mechanism to
tolerate the failures. Specifically, invokers will periodically
garbage collect short-lived seeds if they run beyond the func-

tion’s maximum allowed runtime.

6.4 Limitation
First, fork still needs a long-lived seed to quickly bootstrap
others. If no seed is available, we can leverage existing ap-
proaches that optimize coldstart (e.g., FaasNET [119]) to first
start one. Second, fork only enables a read-only state transfer.
Yet, it is sufficient for serverless workflow—the dominant
function composition method. Finally, fork cannot transfer
states between multiple upstream functions. Thus, MITOSIS
must fuse these upstream functions into one or fallback to
messaging (see Portfolio in Figure 3) for such cases. We
are addressing this limitation by further introducing a remote
merge primitive to complement the remote fork.

7 Evaluation
Experimental setup. We conduct all our experiments on a
local cluster with 24 machines. Each machine has two 12-core
Intel Xeon E5-2650 v4 processors and 128GB of DRAM. 16
machines are connected to two Mellanox SB7890 100Gbps
switches with two 100 Gbps ConnectX-4 MCX455A Infini-
Band RNICs. We use them as invokers to execute the server-
less functions. Nodes without RDMA are left as coordinators.

Comparing targets. The evaluating setups of MITOSIS and
its baselines are listed as follows. Note that we apply our
generalized lean container (§5.2) to all the systems to hide
the cost of containerization.

1. Caching is the de facto warmstart technique that provides
a near-optimal function startup.

2. CRIU-local leverages CRIU [7] to implement remote fork
(see Figure 5 (a)) and stores all files in an in-memory
local filesystem (tmpfs). The file is transferred via our
optimized transfer library with one-sided RDMA. We also
apply existing on-demand restore optimization [120].

3. CRIU-remote leverages CRIU and a distributed file system
for the remote fork (see Figure 5 (b)). We use Ceph [89]—
a state-of-the-art production DFS that embraces RDMA.
We also apply optimizations from CRIU-local: in-memory
storage and on-demand restore.

4. FaasNET [119] optimizes the container image pulling
of coldstart with function trees. We evaluate an optimal
setup of FaasNET (for performance) that pre-provisions
the images at all the invokers.8

5. MITOSIS is configured with on-demand execution and
reads all pages from remote with a prefetch size of one.

6. MITOSIS+cache is the version of MITOSIS that always
caches and shares the fetched pages among children. It
essentially fallbacks to the local fork.

8The setup has been confirmed by the FaasNET authors.

506 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 12. (a) End-to-end latency comparisons of MITOSIS and baselines. (b) Analyses of different phases using microbenchmarks. Note that
the working set of the execution is smaller than the prepare and startup because child only touches a subset of the parent’s memory.

Functions evaluated. We chose functions from represen-
tative serverless benchmarks (i.e., ServerlessBench [131],
FunctionBench [68], and SeBS [31]), which cover a wide
range of scenarios, including simple function (hello/H—print
‘Hello world’), file processing (compression/CO—compress a
file), web requests (json/J—(de)serialize json data, pyaes/P—
encrypt messages, chameleon/CH—generate HTML pages),
image processing (image/I—apply image processing al-
gorithms to an image), graph processing (pagerank/PR—
execute the pagerank algorithm on a graph) and machine
learning (recognition/R—image recognition using ResNet).
These functions are written in python—the dominant server-
less language [33]. Besides, we also use a synthetic micro-
function that touches a variant portion of the memory to ana-
lyze the overhead introduced by MITOSIS. It is written in C
to minimize the language runtime overhead interference.

7.1 End-to-end latency and memory consumption

Figure 12 shows the results of end-to-end latency: the left sub-
figure is the time of different phases of the functions during
remote fork, and the right is each phase’s result on micro-
function. The function request is sent by a single client. To
rule out the impact of disk accesses, we put all the function’s
related files (e.g., images used by image/I) in tmpfs.

Prepare time. The prepare time is the time for the parent to
prepare a remote fork. For CRIU-local and CRIU-remote, it is
the time to checkpoint a container. For variants of MITOSIS,
it is the fork_prepare time. Caching and FaasNET do
not have this phase because they do not support fork.

MITOSIS is orders of magnitude faster in preparation than
CRIU-local and CRIU-remote. On average, it reduces the
prepare time by 94%. For example, MITOSIS prepared a
467 MB recognition/R container in 11 ms, while CRIU-local

and CRIU-remote took 223 ms and 253 ms, respectively. The
variants of CRIU are bottlenecked by copying the container
state from the memory to the filesystems.

Startup time. We measure the startup time as the time be-
tween an invoker receiving the function request and the time
the first line of the function executes. As shown in the middle
of Figure 12, caching is the fastest (0.5 ms) because starting a
cached container only requires a simple unpause operation.
MITOSIS comes next, it can start all the functions within
6 ms. It is up to 99%, 94%, and 97% (from 98%, 86%, and
77%) faster than CRIU-local, CRIU-remote, and FaasNET,
respectively. The startup time of MITOSIS is dominated by
the generalized lean container setup time since reading the de-
scriptor with RDMA is extremely fast with our fast descriptor
fetch protocol.

The startup of CRIU-local is dominated by copying the en-
tire file (shown in Figure 12 (b)). Using CRIU-remote avoids
transferring the file, but the overhead of communicating with
the DFS meta server (from 23–90 ms) is still non-trivial. Com-
pared to CRIU-remote, MITOSIS can directly read the con-
tainer metadata (descriptor) from the remote machine’s kernel.
Finally, the startup cost of FaasNET (coldstart) is dominated
by the runtime initialization of the function, as we skipped
the image pull process of it. The overhead depends on the ap-
plication characteristics. For example, recognition/R requires
loading a ResNet model from PyTorch, which takes 875 ms.
Other techniques can skip the loading process since the model
has been loaded in the parents or the cached containers.

Note that the results of CRIU-remote and FaasNET are not
significantly higher in the startup microbenchmark (Figure 12
(b)). For CRIU-remote, it is because the time (40ms) is rela-
tively small compared to CRIU-local (>191ms for working-
set larger than 256MB). For FaasNET, we use a native lan-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 507

Figure 13. (a) Peak throughput comparisons of MITOSIS and baselines. (b) Bottleneck analysis of MITOSIS using a single parent seed.

Figure 14. The per-function memory usage (in MB) for each tech-
nique before running (hatched) and during runtime (colored).

guage in the microbenchmark (C), so it doesn’t suffer from
the runtime initialization and library loading costs of the ap-
plication functions in Figure 12 (a).

Execution time. For function execution, MITOSIS is up to
2.24×, 1.46× and 1.14× (from 1.04×, 1.04×, and 1.02×)
slower than Caching, CRIU-local and FaasNET, respectively,
except for hello/H. The overhead is mainly due to page faults
and reading remote memory, which is proportional to the func-
tion working set (see Figure 12 (b)). Consequently, the over-
head is most significant in recognition/R that reads 321 MB of
the parent memory: MITOSIS is 2.24× (477 vs. 213 ms) and
1.46× (477 vs. 326 ms) slower than Caching and CRIU-local,
respectively. CRIU-local is faster since it reads files from
the local memory (tmpfs). To remedy this, MITOSIS+cache
reduces the number of remote memory accesses by reading
from the local cached copies of the remote pages. It improves
performance by up to 17%, making MITOSIS close to or bet-
ter than CRIU-local and FaasNET during execution. Note
that Caching is always optimal (i.e., faster than FaasNET and
CRIU-local) because it has no page fault overhead. Finally,
MITOSIS is up to 3.02× (from 1.02×) faster than CRIU-
remote thanks to bypassing DFS for reading remote pages.

Memory consumption. Figure 14 reports the amortized per-
machine memory consumed for each function categorized
by provisioned memory (before running) and runtime mem-
ory. An ideal serverless platform should use minimal pro-
visioned memory for each function. On average, MITOSIS
only consumes 6.5% of the provisioned memory (one cached
instance across 16 machines) while Caching requires at least
16 instances. CRIU-local/remote consumes a slightly lower
memory (77% on average) than MITOSIS, because it reuses

the local OS’s shared libraries to prevent storing them in the
checkpointed files. This works at the cost of requiring storing
all the function’s required libraries on all the machines, oth-
erwise the restored container will fail. For the same reason,
MITOSIS consumes a slightly larger runtime memory (8%
on average) than CRIU-remote. Yet, its runtime memory is
smaller than CRIU-local because the CRIU-local will read
the entire file before it can execute the function.

7.2 Bottleneck analysis and throughput comparisons

Bottleneck analysis. Using a single seed function is ideal for
resource usage. However, the parent-side network bandwidth
(RDMA) and two RPC threads can become the bottleneck.
Meanwhile, MITOSIS is also bottlenecked by the aggregated
client-side CPU resources processing the function logic. The
peak client-side performance for each function is the peak
throughput of running functions with Caching.

Figure 13 (b) analyzes the impact of the above factors.
We utilize all 16 invokers to achieve the peak throughput.
For H, CO, J, and R, RDMA is the bottleneck. For example,
recognition/R touches 321 MB of the parent’s memory, so the
RDMA (200 Gbps) can only serve (ideal) 80 forks/sec. Thus,
MITOSIS achieves 69 reqs/sec and is lower than Caching (960
reqs/sec). In contrast, if the children CPU is the bottleneck,
MITOSIS is similar to Caching (P, CH, I, and PR). For exam-
ple, Caching can only execute 384 reqs/sec for pagerank/PR.
In comparison, RDMA can handle an ideal 544 PR forks/sec
(the working set is 47 MB). Thus, MITOSIS can achieve a
slightly lower throughput (249 reqs/sec). Finally, the RPC
would never become the bottleneck: two kernel threads can
handle up to 1.1 million reqs/sec, which is always faster than
RDMA for working set from 1 MB to 1 GB.

Throughput comparison. Figure 13 (a) further compares the
peak throughput of different approaches. Note that we exclude
the prepare phase of CRIU—otherwise, it will be bottlenecked
by this phase. MITOSIS is up to 8.0× (from 2.1×) faster than
CRIU-local, thanks to avoiding the whole file during the
restore phase. Compared with CRIU-remote, MITOSIS is also
up to 20.4× (from 2.1×) faster except for R (69 vs. 81): CRIU-
remote reads a smaller amount of remote memory because it
reuses local copies of the shared libraries. R has the largest
working set, so it is mostly affected by the network. For the
others, MITOSIS is faster as it bypasses the overhead of DFS.

508 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 15. Effects of the number of pages prefetched per-fault on
(a) execution time (in ms) and (b) memory consumption (in MB).

Figure 16. Effects of COW to latencies on (a) the micro-function
(with a 64 MB parent working set) and (b) serverless functions.

We omit the comparison between MITOSIS and Caching,
which has been studied in the bottleneck analysis.

7.3 Effects of prefetching
We next explore how the prefetch number affects MITOSIS in
Figure 15 (a). As we can see, prefetching can significantly im-
prove the execution time of functions: prefetching 1, 2, and 6
pages improve the average time by 10%, 16%, and 18% (up to
30%, 50%, and 50%), respectively. More importantly, a small
prefetch size (6) can achieve a near-identical performance as
the optimal, i.e., no remote access, (MITOSIS+cache). Note
that for small prefetch size the cost to the throughput is negli-
gible, so we omit the results.

Prefetching has additional runtime memory consumption:
as shown in Figure 15 (b), prefetching 1, 2, and 6 consumes
average 1.1×, 1.3×, and 1.5× (up to 1.15×, 1.6×, and 2.5×)
more memory than no prefetching. Therefore, we currently
adopt a prefetch size of 1 to reduce runtime memory usage.

7.4 Effects of copy-on-write (COW)
MITOSIS reads the child’s pages in an on-demand way (copy-
on-write). This section presents the benefits and costs of COW

Figure 17. Effects of COW to peak thpt on (a) the micro-function
(with a 64 MB parent working set) and (b) serverless functions.

Figure 18. Effects of optimizations applied by MITOSIS.

compared to a non-COW design—the child will read all the
parent’s memory before executing the functions.

Latency. Figure 16 reports the latency results. The benefit
of COW in latency depends on the amount of the parent’s
memory touched by the child (touch ratio): the cross points
in the microbenchmark are 60% and 90% when the prefetch
size is 1 and 2, respectively. For larger prefetch size, the cross
point is close to 100%. Non-COW has a longer startup time
due to extra remote memory reading, but it is more efficient
in reading pages with RDMA because it can batch multiple
paging requests [66]. Nevertheless, serverless functions typ-
ically have a moderate touch ratio (i.e., < 67%). Therefore,
COW has averages of 8.7% (from 0.6% to 44%) and 3.7%
(from -5% to 31%) lower latency than Non-COW when the
prefetch size is 1 and 2, respectively.

Throughput. Figure 17 further reports the throughput results.
Unlike latency, COW is always faster in throughput (except
for 100% touch ratio) because non-COW will issue more
RDMA requests. Consequently, COW is 1.03X–10.2X faster
than Non-COW on serverless functions.

7.5 Effects of optimizations

Due to space limitation, Figure 18 briefly shows the effects
of optimizations introduced in §5 on the end-to-end fork time
using a short function (json/J) and a long function (recogni-
tion/R). First, generalized lean container (+GL) reduced a
fixed offset of the latency (100 ms) to all the functions com-
pared with a baseline of using runC [13]. Compared with
RPC, fast descriptor fetch with one-sided RDMA (+FD) fur-
ther contributes 10% and 25% latency reduction for both

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 509

Figure 19. (a) The latency CDF, (b) average latency, and (c) memory consumption timelines on image processing (I) under spikes.

Figure 20. (a) The state-transfer performance between two func-
tions and (b) performance of FINRA.

functions. The improvement is more obvious for R because
its descriptor is much larger (1.3 MB vs. 31 KB). Using DCT
instead of RC reduced a 10–20 ms to the functions, and di-
rectly exposing the physical memory with RDMA instead of
copying them (+no copy) further reduced the fork time by
12% and 20% for J and R, respectively. Finally, prefetching
(+prefetch) shortens the time by 9% and 15%.

7.6 State-transfer performance
Microbenchmark. We use the data-transfer testcase (5) in
ServerlessBench [131] to compare different approaches to
transfer states between two remote functions. As shown in
Figure 20 (a), MITOSIS is up to 1.4–5× faster than Fn, which
leverages Redis to transfer data between functions, when
transferring 1 MB–1 GB data. Note that we exclude the data
(de)serialization overhead (by skipping the phase) and cold-
start overhead (by pre-warming the containers) in Fn. Other-
wise, the gap between Fn and MITOSIS would become larger.
Compared to CRIU-local/remote, MITOSIS is faster thanks
to the design for a fast remote fork (see §7.1).

Application: FINRA. We next present the performance of
MITOSIS on FINRA [14], whose workflow graph is shown in
Figure 2. We manually fuse the fetchPortfolioData
and fetchMarketData into one function to fully lever-
age remote fork for MITOSIS and CRIU variants. For FN,
functions use Redis to transfer states. Figure 20 (b) re-
ports the end-to-end latency w.r.t the number of instances
of runAuditRule, where FINRA spawns about 200 in-
stances [10]. We select the market data from seven stocks,
resulting in a total 6 MB states transferred between functions.

As we can see, MITOSIS is 84–86%, 47–66% and 71–83%
faster than the baseline Fn, CRIU-local and CRIU-remote,
respectively. Note that we have pre-warmed Fn to prevent the
effects of coldstart—which is unnecessary for MITOSIS. Fn
is bottlenecked by Redis (27 ms) and data serialization and

de-serialization (600 ms). MITOSIS has no such overhead and
it further makes state transfer between machines optimal via
RDMA. Moreover, MITOSIS can scale to a distributed setting
with little COST [88]—it can outperform a single-function
sequentially processing all the rules (Single-function). This
is because MITOSIS can concurrently run functions across
machines with minimal cost transferring data between them.

7.7 Performance under load spikes

Finally, we evaluate the performance of MITOSIS under load
spike using image/I on the real-world traces (660323 [102]).
Figure 19 (a) summarizes the latency CDFs. The 99th per-
centile latency of FN+MITOSIS is 73.64% and 89.08%
smaller than FN+FaasNET and FN, respectively, thanks to
avoiding the coldstart with remote fork. Nevertheless, its
median latency is 1.85× longer than FaasNET (799 ms vs.
430 ms), because FaasNET leverages Caching and has a
65.1% cache hit during spikes. However, Caching incurs
non-trivial memory consumption: Fn (and Fn+FaasNET) will
cache a container for 30 seconds if it is a coldstart, result-
ing in a significant amount of memory usage (see Figure 19
(c)). In comparison, MITOSIS only caches a single seed and
saves orders of magnitude memory during the idle time. For
example, at time 2.3 min, MITOSIS only consumes 29 MB
memory per-machine, which is 3% and 2% of Fn (914 MB)
and Fn+FaasNET (1,199 MB), respectively.

8 Discussion
Seed placement and selection policies. We currently choose
a random placement policy. A better policy may further con-
sider network topology and system-wide load balance. Mean-
while, we simply choose the first container experiencing
coldstart as the long-lived seed, yet, a better selection policy
should further consider the status of the running container.
For instance, recent works have discovered that containers
may need multiple invocations to warm up properly [28, 107],
e.g., to JIT a function written in a managed language. There-
fore, choosing a properly warm-up container as the seed can
significantly improve the function performance after the fork.
As these policies are orthogonal to MITOSIS, we plan to in-
vestigate them in the future.

Frequency and cost of fallbacks. The frequency of fall-
backs can significantly impact the performance of remote
forks. During our experiment, we encountered no fallbacks

510 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

because the parent (cached container) had loaded all the chil-
dren’s memory. However, fallbacks can happen in corner
cases (e.g., swapping). The per-page overhead is 22× (65
vs. 3µs) due to the cost of RPC and loading the page from
disk (SSD). Currently, one fallback handler can process 16 K
paging requests per second, so it will not become a bottleneck.

The benefits of implementing MITOSIS in the kernel. We
choose to implement MITOSIS in the kernel for performance
considerations. First, a user-space solution cannot directly
access the physical memory of the container, so it pays
the checkpointing overhead (see §3). Moreover, the kernel
can establish RDMA connections more efficiently (see KR-
Core [11]), and the kernel-space page fault handler is much
faster than the user-space fault handler.

9 Related Work
Optimizing serverless computing. MITOSIS continues the
line of research on optimizing serverless computing, includ-
ing but not limited to accelerating function startups [94, 17,
106, 37, 117, 101, 119], state transfer [110, 69, 96, 71, 17, 86],
stateful serverless functions [132, 63], transactions [84], im-
proving the cost-efficiency [134, 42, 100, 76, 98, 40, 38], and
others [109, 133, 65, 36, 64, 15, 114, 85, 130, 136]. While
most of these works are orthogonal to MITOSIS, we believe
they can also benefit from our work. In particular, we propose
using the remote fork abstraction to simultaneously acceler-
ate function startups and state transfer, which is critical to
all serverless applications. We also compare our work exten-
sively to its closest related approaches in §2. Moreover, while
the implementation of Linux fork may not be optimal in some
scenarios [129, 24, 135], it has been shown to be suitable for
serverless functions [17, 37]. Thus, we generalize the fork
abstraction to accelerate functions running across machines.

Checkpoint and restore (C/R). C/R has been investigated
by OSes for a long time [39, 82]. e.g., KeyKOS [51],
EROS [104], Aurora [116] and others [52, 72, 7, 137, 118,
21, 26, 48]. Aurora [116] leverages C/R to realizing efficient
single level store, it introduces techniques including system
shadowing for efficient incremental checkpointing. MITO-
SIS eliminates checkpointing in the context of remote fork
via OS-RDMA co-design. VAS-CRIU [118] also noticed the
overhead of C/R introduced by filesystems. It leverages mul-
tiple independent address spaces (MVAS) [50] to bypass the
filesystem for C/R on a single machine. We further use kernel-
space RDMA to build a global distributed address space and
scale fast C/R to a distributed setting.

Remote fork (migrations). Besides using C/R for remote
fork [108, 32], MITOSIS is also inspired by works on virtual
machine fork (SnowFlock [73]) and migrations [18, 29, 45,
56, 55, 92, 81], just to name a few. For example, the MITOSIS
container descriptor is inspired by the VM descriptor used in
SnowFlock, which only captures the critical metadata used for
instantiating a child container at the remote side. We further

consider the opportunities and challenges when embracing
RDMA for remote fork in the context of serverless computing.
We believe our techniques can benefit existing works not
utilizing RDMA.

RDMA-based remote paging and RDMA multicast. Read-
ing pages from remote hosts via RDMA is not a so new
technique in modern OSes [19, 46, 16, 87, 103]. For example,
Infiniswap [46] leverages RDMA to build a fast swap device
for memory disaggregation. Remote regions [16] proposes a
remote file-like abstraction to simplify exposing an applica-
tion’s memory with RDMA. MITOSIS further builds efficient
remote fork by reading remote pages in a “copy-on-write”
fashion with RDMA.

MITOSIS exhibits a pull-based RDMA multicast commu-
nication pattern, where multiple children pull from the same
parent’s memory during load spikes. Push-based RDMA mul-
ticast has been extensively studied in the literature [25, 61, 62].
For example, RDMC [25] proposes a binomial pipeline pro-
tocol where a sender can efficiently push data to a group of
nodes using RDMA. We believe MITOSIS can further benefit
from research on pull-based RDMA multicast.

10 Conclusion

We present MITOSIS, a new OS primitive designed for fast re-
mote fork by co-designing with RDMA. MITOSIS possesses
two key attributes for serverless computing. (1) Startup effi-
ciency: MITOSIS is orders of magnitude faster than coldstart
while consuming orders of magnitude fewer resources than
warmstart (with comparable performance). (2) State trans-
fer efficiency: functions can directly access pre-materialized
states from the forked function. Extensive evaluation using
real-world serverless applications confirmed the efficacy and
efficiency of MITOSIS on commodity RDMA-capable clus-
ters. While we focus on serverless computing in this paper, we
believe MITOSIS also shines with other tasks, e.g., container
migrations.

Acknowledgment

We sincerely thank our shepherd Christopher Rossbach and
the anonymous reviewers, whose reviews and suggestions
greatly strengthened our work. We also thank Wentai Li,
Qingyuan Liu, Zhiyuan Dong, Dong Du, Nian Liu, Sijie
Shen, and Xiating Xie for their valuable feedback. This
work was partly supported by the National Key Research
& Development Program of China (No. 2020YFB2104100),
the National Natural Science Foundation of China (No.
62202291, 62202292, 61925206), the HighTech Support Pro-
gram from Shanghai Committee of Science and Technology
(No. 22511106200), as well as research grants from Huawei
Technologies and Shanghai AI Laboratory. Corresponding
author: Rong Chen (rongchen@sjtu.edu.cn).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 511

rongchen@sjtu.edu.cn

References
[1] Dynamically connected transport. https://www.

openfabrics.org/images/2018workshop/
presentations/303_ARosenbaum_
DynamicallyConnectedTransport.pdf, 2018.

[2] Apache OpenWhisk Composer. https://github.com/
apache/openwhisk-composer, 2022.

[3] AWS Lambda FAQs. https://aws.amazon.com/en/
lambda/faqs/, 2022.

[4] AWS Step Functions. https://aws.amazon.com/
step-functions/, 2022.

[5] Ceph - a scalable distributed storage system. https:
//github.com/ceph/ceph/tree/luminous-
release, 2022.

[6] CRIU Lazy migration. https://criu.org/Lazy_
migration, 2022.

[7] CRIU Website. https://www.criu.org/Main_
Page, 2022.

[8] docker container pause. https://docs.docker.com/
engine/reference/commandline/container_
pause/, 2022.

[9] Docker Website. https://www.docker.com/, 2022.

[10] FINRA adopts AWS to perform 500 billion validation checks
daily. https://aws.amazon.com/solutions/
case-studies/finra-data-validation/, 2022.

[11] KRCORE: a microsecond-scale RDMA control plane for elas-
tic computing. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22) (Carlsbad, CA, July 2022), USENIX
Association.

[12] Provisioned concurrency for lambda functions.
https://aws.amazon.com/cn/blogs/aws/new-
provisioned-concurrency-for-lambda-
functions/, 2022.

[13] runc. https://github.com/opencontainers/
runc, 2022.

[14] United States Financial Industry Regulatory Author-
ity. https://aws.amazon.com/cn/solutions/
case-studies/finra-data-validation/, 2022.

[15] AGACHE, A., BROOKER, M., IORDACHE, A., LIGUORI,
A., NEUGEBAUER, R., PIWONKA, P., AND POPA, D. Fire-
cracker: Lightweight virtualization for serverless applications.
In 17th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, Santa Clara, CA, USA,
February 25-27, 2020 (2020), R. Bhagwan and G. Porter,
Eds., USENIX Association, pp. 419–434.

[16] AGUILERA, M. K., AMIT, N., CALCIU, I., DEGUILLARD,
X., GANDHI, J., NOVAKOVIC, S., RAMANATHAN, A., SUB-
RAHMANYAM, P., SURESH, L., TATI, K., VENKATASUB-
RAMANIAN, R., AND WEI, M. Remote regions: a simple
abstraction for remote memory. In 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA,
July 11-13, 2018 (2018), H. S. Gunawi and B. Reed, Eds.,
USENIX Association, pp. 775–787.

[17] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE,
K., BECK, A., ADITYA, P., AND HILT, V. SAND: towards
high-performance serverless computing. In 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018 (2018), H. S. Gunawi and B. Reed,
Eds., USENIX Association, pp. 923–935.

[18] AL-KISWANY, S., SUBHRAVETI, D., SARKAR, P., AND

RIPEANU, M. Vmflock: virtual machine co-migration for
the cloud. In Proceedings of the 20th ACM International
Symposium on High Performance Distributed Computing,
HPDC 2011, San Jose, CA, USA, June 8-11, 2011 (2011),
A. B. Maccabe and D. Thain, Eds., ACM, pp. 159–170.

[19] AMARO, E., BRANNER-AUGMON, C., LUO, Z., OUSTER-
HOUT, A., AGUILERA, M. K., PANDA, A., RATNASAMY, S.,
AND SHENKER, S. Can far memory improve job throughput?
In EuroSys ’20: Fifteenth EuroSys Conference 2020, Herak-
lion, Greece, April 27-30, 2020 (2020), A. Bilas, K. Magoutis,
E. P. Markatos, D. Kostic, and M. I. Seltzer, Eds., ACM,
pp. 14:1–14:16.

[20] AO, L., PORTER, G., AND VOELKER, G. M. Faasnap: Faas
made fast using snapshot-based vms. In EuroSys ’22: Seven-
teenth European Conference on Computer Systems, Rennes,
France, April 5 - 8, 2022 (2022), Y. Bromberg, A. Kermarrec,
and C. Kozyrakis, Eds., ACM, pp. 730–746.

[21] ARMENATZOGLOU, N., BASU, S., BHANOORI, N., CAI,
M., CHAINANI, N., CHINTA, K., GOVINDARAJU, V.,
GREEN, T. J., GUPTA, M., HILLIG, S., HOTINGER, E.,
LESHINKSY, Y., LIANG, J., MCCREEDY, M., NAGEL, F.,
PANDIS, I., PARCHAS, P., PATHAK, R., POLYCHRONIOU,
O., RAHMAN, F., SAXENA, G., SOUNDARARAJAN, G.,
SUBRAMANIAN, S., AND TERRY, D. Amazon redshift re-
invented. In SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022 (2022), Z. Ives, A. Bonifati, and A. E. Abbadi, Eds.,
ACM, pp. 2205–2217.

[22] AWS. Aws fargate. https://aws.amazon.com/cn/
fargate/, 2022.

[23] AWS. Aws lambda. https://aws.amazon.com/
lambda, 2022.

[24] BAUMANN, A., APPAVOO, J., KRIEGER, O., AND ROSCOE,
T. A fork() in the road. In Proceedings of the Workshop
on Hot Topics in Operating Systems (New York, NY, USA,
2019), HotOS ’19, Association for Computing Machinery,
p. 14–22.

[25] BEHRENS, J., JHA, S., BIRMAN, K., AND TREMEL, E.
RDMC: A reliable RDMA multicast for large objects. In 48th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg City, Lux-
embourg, June 25-28, 2018 (2018), IEEE Computer Society,
pp. 71–82.

[26] BILAL, M., CANINI, M., FONSECA, R., AND RODRIGUES,
R. With great freedom comes great opportunity: Rethink-
ing resource allocation for serverless functions. CoRR
abs/2105.14845 (2021).

512 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTransport.pdf
https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTransport.pdf
https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTransport.pdf
https://www.openfabrics.org/images/2018workshop/presentations/303_ARosenbaum_DynamicallyConnectedTransport.pdf
https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk-composer
https://aws.amazon.com/en/lambda/faqs/
https://aws.amazon.com/en/lambda/faqs/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://github.com/ceph/ceph/tree/luminous-release
https://github.com/ceph/ceph/tree/luminous-release
https://github.com/ceph/ceph/tree/luminous-release
https://criu.org/Lazy_migration
https://criu.org/Lazy_migration
https://www.criu.org/Main_Page
https://www.criu.org/Main_Page
https://docs.docker.com/engine/reference/commandline/container_pause/
https://docs.docker.com/engine/reference/commandline/container_pause/
https://docs.docker.com/engine/reference/commandline/container_pause/
https://www.docker.com/
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/cn/fargate/
https://aws.amazon.com/cn/fargate/
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda

[27] CADDEN, J., UNGER, T., AWAD, Y., DONG, H., KRIEGER,
O., AND APPAVOO, J. SEUSS: skip redundant paths to make
serverless fast. In EuroSys ’20: Fifteenth EuroSys Conference
2020, Heraklion, Greece, April 27-30, 2020 (2020), A. Bilas,
K. Magoutis, E. P. Markatos, D. Kostic, and M. I. Seltzer,
Eds., ACM, pp. 32:1–32:15.

[28] CARREIRA, J., KOHLI, S., BRUNO, R., AND FONSECA,
P. From warm to hot starts: leveraging runtimes for the
serverless era. In HotOS ’21: Workshop on Hot Topics in
Operating Systems, Ann Arbor, Michigan, USA, June, 1-3,
2021 (2021), S. Angel, B. Kasikci, and E. Kohler, Eds., ACM,
pp. 58–64.

[29] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL,
E., LIMPACH, C., PRATT, I., AND WARFIELD, A. Live
migration of virtual machines. In 2nd Symposium on Net-
worked Systems Design and Implementation (NSDI 2005),
May 2-4, 2005, Boston, Massachusetts, USA, Proceedings
(2005), A. Vahdat and D. Wetherall, Eds., USENIX.

[30] CLOUD, A. Alibaba serverless application engine. https:
//www.aliyun.com/product/aliware/sae,
2022.

[31] COPIK, M., KWASNIEWSKI, G., BESTA, M., PODSTAWSKI,
M., AND HOEFLER, T. Sebs: a serverless benchmark suite
for function-as-a-service computing. In Middleware ’21:
22nd International Middleware Conference, Québec City,
Canada, December 6 - 10, 2021 (2021), K. Zhang, A. Gherbi,
N. Venkatasubramanian, and L. Veiga, Eds., ACM, pp. 64–78.

[32] CRIU. CRIU Usage scenarios. https://criu.org/
Usage_scenarios, 2022.

[33] DATADOG. The state of serverless. https://www.
datadoghq.com/state-of-serverless/, 2022.

[34] DOCKER. Docker Registry. https://docs.docker.
com/registry/, 2022.

[35] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND

HODSON, O. Farm: Fast remote memory. In Proceedings of
the 11th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014 (2014), R. Mahajan and I. Stoica, Eds., USENIX
Association, pp. 401–414.

[36] DU, D., LIU, Q., JIANG, X., XIA, Y., ZANG, B., AND

CHEN, H. Serverless computing on heterogeneous comput-
ers. In ASPLOS ’22: 27th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022
- 4 March 2022 (2022), B. Falsafi, M. Ferdman, S. Lu, and
T. F. Wenisch, Eds., ACM, pp. 797–813.

[37] DU, D., YU, T., XIA, Y., ZANG, B., YAN, G., QIN, C., WU,
Q., AND CHEN, H. Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less booting. In ASP-
LOS ’20: Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, March 16-20,
2020 (2020), J. R. Larus, L. Ceze, and K. Strauss, Eds., ACM,
pp. 467–481.

[38] DUKIC, V., BRUNO, R., SINGLA, A., AND ALONSO, G.
Photons: lambdas on a diet. In SoCC ’20: ACM Symposium

on Cloud Computing, Virtual Event, USA, October 19-21,
2020 (2020), R. Fonseca, C. Delimitrou, and B. C. Ooi, Eds.,
ACM, pp. 45–59.

[39] EGWUTUOHA, I. P., LEVY, D., SELIC, B., AND CHEN, S. A
survey of fault tolerance mechanisms and checkpoint/restart
implementations for high performance computing systems.
The Journal of Supercomputing 65, 3 (2013), 1302–1326.

[40] FINGLER, H., AKSHINTALA, A., AND ROSSBACH, C. J.
USETL: unikernels for serverless extract transform and load
why should you settle for less? In Proceedings of the 10th
ACM SIGOPS Asia-Pacific Workshop on Systems, APSys
2019, Hangzhou, China, Augsut 19-20, 2019 (2019), ACM,
pp. 23–30.

[41] FOR AWS LAMBDA CONTAINER REUSE, B. P.
https://medium.com/capital-one-tech/
best-practices-for-aws-lambda-container-
reuse-6ec45c74b67e, 2022.

[42] FUERST, A., AND SHARMA, P. Faascache: keeping server-
less computing alive with greedy-dual caching. In ASPLOS

’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
Virtual Event, USA, April 19-23, 2021 (2021), T. Sherwood,
E. Berger, and C. Kozyrakis, Eds., ACM, pp. 386–400.

[43] GAO, Y., LI, Q., TANG, L., XI, Y., ZHANG, P., PENG, W.,
LI, B., WU, Y., LIU, S., YAN, L., FENG, F., ZHUANG,
Y., LIU, F., LIU, P., LIU, X., WU, Z., WU, J., CAO, Z.,
TIAN, C., WU, J., ZHU, J., WANG, H., CAI, D., AND WU,
J. When cloud storage meets RDMA. In 18th USENIX
Symposium on Networked Systems Design and Implementa-
tion, NSDI 2021, April 12-14, 2021 (2021), J. Mickens and
R. Teixeira, Eds., USENIX Association, pp. 519–533.

[44] GOOGLE. Google serverless computing. https://cloud.
google.com/serverless, 2022.

[45] GU, J., HUA, Z., XIA, Y., CHEN, H., ZANG, B., GUAN,
H., AND LI, J. Secure live migration of SGX enclaves on
untrusted cloud. In 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2017,
Denver, CO, USA, June 26-29, 2017 (2017), IEEE Computer
Society, pp. 225–236.

[46] GU, J., LEE, Y., ZHANG, Y., CHOWDHURY, M., AND SHIN,
K. G. Efficient memory disaggregation with infiniswap. In
14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-
29, 2017 (2017), A. Akella and J. Howell, Eds., USENIX
Association, pp. 649–667.

[47] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,
J., AND LIPSHTEYN, M. RDMA over commodity ethernet at
scale. In Proceedings of the ACM SIGCOMM 2016 Confer-
ence, Florianopolis, Brazil, August 22-26, 2016 (2016), M. P.
Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM,
pp. 202–215.

[48] GUO, Z., BLANCO, Z., SHAHRAD, M., WEI, Z., DONG, B.,
LI, J., POTA, I., XU, H., AND ZHANG, Y. Resource-centric
serverless computing, 2022.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 513

https://www.aliyun.com/product/aliware/sae
https://www.aliyun.com/product/aliware/sae
https://criu.org/Usage_scenarios
https://criu.org/Usage_scenarios
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://medium.com/capital-one-tech/best-practices-for-aws-lambda-container-reuse-6ec45c74b67e
https://cloud.google.com/serverless
https://cloud.google.com/serverless

[49] GUO, Z., SHAN, Y., LUO, X., HUANG, Y., AND ZHANG, Y.
Clio: a hardware-software co-designed disaggregated mem-
ory system. In ASPLOS ’22: 27th ACM International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022 (2022), B. Falsafi, M. Ferdman, S. Lu,
and T. F. Wenisch, Eds., ACM, pp. 417–433.

[50] HAJJ, I. E., MERRITT, A., ZELLWEGER, G., MILOJICIC,
D. S., ACHERMANN, R., FARABOSCHI, P., HWU, W. W.,
ROSCOE, T., AND SCHWAN, K. Spacejmp: Programming
with multiple virtual address spaces. In Proceedings of the
Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016 (2016),
T. Conte and Y. Zhou, Eds., ACM, pp. 353–368.

[51] HARDY, N. Keykos architecture. SIGOPS Oper. Syst. Rev.
19, 4 (oct 1985), 8–25.

[52] HARGROVE, P. H., AND DUELL, J. C. Berkeley lab check-
point/restart (blcr) for linux clusters. In Journal of Physics:
Conference Series (2006), vol. 46, IOP Publishing, p. 067.

[53] HELLERSTEIN, J. M., FALEIRO, J. M., GONZALEZ, J.,
SCHLEIER-SMITH, J., SREEKANTI, V., TUMANOV, A.,
AND WU, C. Serverless computing: One step forward, two
steps back. In 9th Biennial Conference on Innovative Data
Systems Research, CIDR 2019, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings (2019), www.cidrdb.org.

[54] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Serverless computation with open-
lambda. In 8th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2016, Denver, CO, USA, June 20-21,
2016 (2016), A. Clements and T. Condie, Eds., USENIX
Association.

[55] HINES, M. R., DESHPANDE, U., AND GOPALAN, K. Post-
copy live migration of virtual machines. SIGOPS Oper. Syst.
Rev. 43, 3 (jul 2009), 14–26.

[56] HINES, M. R., AND GOPALAN, K. Post-copy based live
virtual machine migration using adaptive pre-paging and dy-
namic self-ballooning. In Proceedings of the 5th Interna-
tional Conference on Virtual Execution Environments, VEE
2009, Washington, DC, USA, March 11-13, 2009 (2009), A. L.
Hosking, D. F. Bacon, and O. Krieger, Eds., ACM, pp. 51–60.

[57] HONG, Y., ZHENG, Y., YANG, F., ZANG, B., GUAN, H.,
AND CHEN, H. Scaling out numa-aware applications with
rdma-based distributed shared memory. J. Comput. Sci. Tech-
nol. 34, 1 (2019), 94–112.

[58] HUAWEI. Huawei clound functions. https:
//developer.huawei.com/consumer/en/
agconnect/cloud-function/, 2022.

[59] IBM. IBM Cloud Functions. https://www.ibm.com/
cloud/functions, 2022.

[60] INTEL. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. https://cdrdv2.intel.com/v1/
dl/getContent/671200, 2022.

[61] JHA, S., BEHRENS, J., GKOUNTOUVAS, T., MILANO, M.,
SONG, W., TREMEL, E., VAN RENESSE, R., ZINK, S., AND

BIRMAN, K. P. Derecho: Fast state machine replication
for cloud services. ACM Trans. Comput. Syst. 36, 2 (2019),
4:1–4:49.

[62] JHA, S., ROSA, L., AND BIRMAN, K. Spindle: Tech-
niques for optimizing atomic multicast on RDMA. CoRR
abs/2110.00886 (2021).

[63] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless com-
puting with shared logs. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event
/ Koblenz, Germany, October 26-29, 2021 (2021), R. van
Renesse and N. Zeldovich, Eds., ACM, pp. 691–707.

[64] JIA, Z., AND WITCHEL, E. Nightcore: efficient and scal-
able serverless computing for latency-sensitive, interactive
microservices. In ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Virtual Event, USA, April 19-
23, 2021 (2021), T. Sherwood, E. D. Berger, and C. Kozyrakis,
Eds., ACM, pp. 152–166.

[65] KAFFES, K., YADWADKAR, N. J., AND KOZYRAKIS, C.
Centralized core-granular scheduling for serverless functions.
In Proceedings of the ACM Symposium on Cloud Computing,
SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019
(2019), ACM, pp. 158–164.

[66] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. De-
sign guidelines for high performance RDMA systems. In
2016 USENIX Annual Technical Conference, USENIX ATC
2016, Denver, CO, USA, June 22-24, 2016 (2016), A. Gulati
and H. Weatherspoon, Eds., USENIX Association, pp. 437–
450.

[67] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-
sided (RDMA) datagram rpcs. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016
(2016), K. Keeton and T. Roscoe, Eds., USENIX Association,
pp. 185–201.

[68] KIM, J., AND LEE, K. Practical cloud workloads for server-
less faas. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC 2019, Santa Cruz, CA, USA, November
20-23, 2019 (2019), ACM, p. 477.

[69] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEF-
FERLE, J., AND KOZYRAKIS, C. Pocket: Elastic ephemeral
storage for serverless analytics. login Usenix Mag. 44, 1
(2019).

[70] KNATIVE. https://knative.dev, 2022.

[71] KOTNI, S., NAYAK, A., GANAPATHY, V., AND BASU, A.
Faastlane: Accelerating function-as-a-service workflows. In
2021 USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021 (2021), I. Calciu and G. Kuenning,
Eds., USENIX Association, pp. 805–820.

[72] LAADAN, O., AND HALLYN, S. E. Linux-cr: Transparent
application checkpoint-restart in linux. In Linux Symposium
(2010), vol. 159, Citeseer.

514 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://knative.dev

[73] LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCANNELL,
A. M., PATCHIN, P., RUMBLE, S. M., DE LARA, E.,
BRUDNO, M., AND SATYANARAYANAN, M. Snowflock:
rapid virtual machine cloning for cloud computing. In
Proceedings of the 2009 EuroSys Conference, Nuremberg,
Germany, April 1-3, 2009 (2009), W. Schröder-Preikschat,
J. Wilkes, and R. Isaacs, Eds., ACM, pp. 1–12.

[74] LAMPORT, L. Paxos made simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number 121,
December 2001) (2001), 51–58.

[75] LI, K., AND HUDAK, P. Memory coherence in shared virtual
memory systems. ACM Trans. Comput. Syst. 7, 4 (1989),
321–359.

[76] LI, Q., LI, B., MERCATI, P., ILLIKKAL, R., TAI, C.,
KISHINEVSKY, M., AND KOZYRAKIS, C. RAMBO: re-
source allocation for microservices using bayesian optimiza-
tion. IEEE Comput. Archit. Lett. 20, 1 (2021), 46–49.

[77] LINUX. Kernel samepage merging. https:
//www.kernel.org/doc/html/latest/admin-
guide/mm/ksm.html, 2022.

[78] LINUX. Linux swap. https://www.linux.com/
news/all-about-linux-swap-space/, 2022.

[79] LINUX. Page migration. https://www.kernel.org/
doc/html/latest/vm/page_migration.html,
2022.

[80] LINUX. Transparent hugepage. https://www.kernel.
org/doc/html/latest/vm/transhuge.html,
2022.

[81] LITZKOW, M., AND SOLOMON, M. Supporting checkpoint-
ing and process migration outside the unix kernel.

[82] LITZKOW, M., TANNENBAUM, T., BASNEY, J., AND LIVNY,
M. Checkpoint and migration of unix processes in the con-
dor distributed processing system. Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences, 1997.

[83] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus: an rdma-
enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017 (2017), D. D. Silva
and B. Ford, Eds., USENIX Association, pp. 773–785.

[84] LYKHENKO, T., SOARES, R., AND RODRIGUES, L. Faastcc:
Efficient transactional causal consistency for serverless com-
puting. In Proceedings of the 22nd International Middleware
Conference (New York, NY, USA, 2021), Middleware ’21,
Association for Computing Machinery, p. 159–171.

[85] LYU, X., CHERKASOVA, L., AITKEN, R. C., PARMER, G.,
AND WOOD, T. Towards efficient processing of latency-
sensitive serverless dags at the edge. In EdgeSys@EuroSys
2022: Proceedings of the 5th International Workshop on Edge
Systems, Analytics and Networking, Rennes, France, April 5 -
8, 2022 (2022), A. Y. Ding and V. Hilt, Eds., ACM, pp. 49–54.

[86] MAHGOUB, A., SHANKAR, K., MITRA, S., KLIMOVIC, A.,
CHATERJI, S., AND BAGCHI, S. SONIC: application-aware
data passing for chained serverless applications. In 2021
USENIX Annual Technical Conference, USENIX ATC 2021,
July 14-16, 2021 (2021), I. Calciu and G. Kuenning, Eds.,
USENIX Association, pp. 285–301.

[87] MARUF, H. A., AND CHOWDHURY, M. Effectively prefetch-
ing remote memory with leap. In 2020 USENIX Annual
Technical Conference, USENIX ATC 2020, July 15-17, 2020
(2020), A. Gavrilovska and E. Zadok, Eds., USENIX Associ-
ation, pp. 843–857.

[88] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scal-
ability! but at what cost? In 15th Workshop on Hot Topics
in Operating Systems, HotOS XV, Kartause Ittingen, Switzer-
land, May 18-20, 2015 (2015), G. Candea, Ed., USENIX
Association.

[89] MELLANOX. Bring up ceph rdma - developer’s
guide. https://community.mellanox.com/s/
article/bring-up-ceph-rdma---developer-
s-guide, 2021.

[90] MELLANOX. Kernel verbs api update. https://
www.openfabrics.org/images/eventpresos/
2016presentations/204KernelVerbs.pdf,
2022.

[91] MICROSOFT. Azure functions. https://azure.
microsoft.com/en-us/services/functions/,
2022.

[92] MILOJICIC, D. S., DOUGLIS, F., PAINDAVEINE, Y.,
WHEELER, R., AND ZHOU, S. Process migration. ACM
Comput. Surv. 32, 3 (2000), 241–299.

[93] NVIDIA. Rdma aware networks programming
user manual. https://docs.nvidia.com/
networking/m/view-rendered-page.action?
abstractPageId=34256548, 2022.

[94] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T.,
ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. SOCK:
Rapid task provisioning with serverless-optimized containers.
In 2018 USENIX Annual Technical Conference (USENIX
ATC 18) (Boston, MA, July 2018), USENIX Association,
pp. 57–70.

[95] PONS, D. B., ARTIGAS, M. S., PARÍS, G., SUTRA, P., AND

LÓPEZ, P. G. On the faas track: Building stateful distributed
applications with serverless architectures. In Proceedings of
the 20th International Middleware Conference, Middleware
2019, Davis, CA, USA, December 9-13, 2019 (2019), ACM,
pp. 41–54.

[96] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuffling,
fast and slow: Scalable analytics on serverless infrastructure.
In 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019, Boston, MA, February 26-
28, 2019 (2019), J. R. Lorch and M. Yu, Eds., USENIX
Association, pp. 193–206.

[97] QI, S., MONIS, L., ZENG, Z., WANG, I., AND RAMAKR-
ISHNAN, K. K. SPRIGHT: extracting the server from server-
less computing! high-performance ebpf-based event-driven,
shared-memory processing. In SIGCOMM ’22: ACM SIG-
COMM 2022 Conference, Amsterdam, The Netherlands, Au-
gust 22 - 26, 2022 (2022), F. Kuipers and A. Orda, Eds., ACM,
pp. 780–794.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 515

https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.linux.com/news/all-about-linux-swap-space/
https://www.linux.com/news/all-about-linux-swap-space/
https://www.kernel.org/doc/html/latest/vm/page_migration.html
https://www.kernel.org/doc/html/latest/vm/page_migration.html
https://www.kernel.org/doc/html/latest/vm/transhuge.html
https://www.kernel.org/doc/html/latest/vm/transhuge.html
https://community.mellanox.com/s/article/bring-up-ceph-rdma---developer-s-guide
https://community.mellanox.com/s/article/bring-up-ceph-rdma---developer-s-guide
https://community.mellanox.com/s/article/bring-up-ceph-rdma---developer-s-guide
https://www.openfabrics.org/images/eventpresos/2016presentations/204KernelVerbs.pdf
https://www.openfabrics.org/images/eventpresos/2016presentations/204KernelVerbs.pdf
https://www.openfabrics.org/images/eventpresos/2016presentations/204KernelVerbs.pdf
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=34256548
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=34256548
https://docs.nvidia.com/networking/m/view-rendered-page.action?abstractPageId=34256548

[98] QIU, H., BANERJEE, S. S., JHA, S., KALBARCZYK, Z. T.,
AND IYER, R. K. FIRM: an intelligent fine-grained resource
management framework for slo-oriented microservices. In
14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November 4-6,
2020 (2020), USENIX Association, pp. 805–825.

[99] ROTHENBERGER, B., TARANOV, K., PERRIG, A., AND

HOEFLER, T. ReDMArk: Bypassing RDMA security mecha-
nisms. In 30th USENIX Security Symposium (USENIX Secu-
rity 21) (Aug. 2021), USENIX Association, pp. 4277–4292.

[100] RZADCA, K., FINDEISEN, P., SWIDERSKI, J., ZYCH, P.,
BRONIEK, P., KUSMIEREK, J., NOWAK, P., STRACK, B.,
WITUSOWSKI, P., HAND, S., AND WILKES, J. Autopilot:
workload autoscaling at google. In EuroSys ’20: Fifteenth
EuroSys Conference 2020, Heraklion, Greece, April 27-30,
2020 (2020), A. Bilas, K. Magoutis, E. P. Markatos, D. Kostic,
and M. I. Seltzer, Eds., ACM, pp. 16:1–16:16.

[101] SAXENA, D., JI, T., SINGHVI, A., KHALID, J., AND

AKELLA, A. Memory deduplication for serverless com-
puting with medes. In EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April 5 - 8,
2022 (2022), Y. Bromberg, A. Kermarrec, and C. Kozyrakis,
Eds., ACM, pp. 714–729.

[102] SHAHRAD, M., FONSECA, R., GOIRI, I., CHAUDHRY, G.,
BATUM, P., COOKE, J., LAUREANO, E., TRESNESS, C.,
RUSSINOVICH, M., AND BIANCHINI, R. Serverless in the
wild: Characterizing and optimizing the serverless workload
at a large cloud provider. In 2020 USENIX Annual Technical
Conference, USENIX ATC 2020, July 15-17, 2020 (2020),
A. Gavrilovska and E. Zadok, Eds., USENIX Association,
pp. 205–218.

[103] SHAN, Y., HUANG, Y., CHEN, Y., AND ZHANG, Y. Le-
goos: A disseminated, distributed OS for hardware resource
disaggregation. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad,
CA, USA, October 8-10, 2018 (2018), A. C. Arpaci-Dusseau
and G. Voelker, Eds., USENIX Association, pp. 69–87.

[104] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS:
a fast capability system. In Proceedings of the 17th ACM
Symposium on Operating System Principles, SOSP 1999, Ki-
awah Island Resort, near Charleston, South Carolina, USA,
December 12-15, 1999 (1999), D. Kotz and J. Wilkes, Eds.,
ACM, pp. 170–185.

[105] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph
exploration. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016 (2016), K. Keeton and T. Roscoe,
Eds., USENIX Association, pp. 317–332.

[106] SHILLAKER, S., AND PIETZUCH, P. FAASM: Lightweight
Isolation for Efficient Stateful Serverless Computing.
USENIX Association, USA, 2020.

[107] SHIN, W., KIM, W., AND MIN, C. Fireworks: a fast, effi-
cient, and safe serverless framework using vm-level post-jit
snapshot. In EuroSys ’22: Seventeenth European Confer-
ence on Computer Systems, Rennes, France, April 5 - 8, 2022

(2022), Y. Bromberg, A. Kermarrec, and C. Kozyrakis, Eds.,
ACM, pp. 663–677.

[108] SMITH, J. M., AND IOANNIDIS, J. Implementing remote fork
() with checkpoint/restart. Department of Computer Science,
Columbia Univ., 1987.

[109] SREEKANTI, V., WU, C., CHHATRAPATI, S., GONZALEZ,
J. E., HELLERSTEIN, J. M., AND FALEIRO, J. M. A fault-
tolerance shim for serverless computing. In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020 (2020), A. Bilas, K. Magoutis, E. P. Markatos,
D. Kostic, and M. I. Seltzer, Eds., ACM, pp. 15:1–15:15.

[110] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIER-SMITH, J.,
GONZALEZ, J. E., HELLERSTEIN, J. M., AND TUMANOV,
A. Cloudburst: Stateful functions-as-a-service. Proc. VLDB
Endow. 13, 12 (jul 2020), 2438–2452.

[111] TARANOV, K., ROTHENBERGER, B., PERRIG, A., AND

HOEFLER, T. Srdma: Efficient nic-based authentication and
encryption for remote direct memory access. In Proceedings
of the 2020 USENIX Conference on Usenix Annual Techni-
cal Conference (USA, 2020), USENIX ATC’20, USENIX
Association.

[112] THALHEIM, J., BHATOTIA, P., FONSECA, P., AND KASIKCI,
B. Cntr: Lightweight OS containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18) (Boston, MA, July
2018), USENIX Association, pp. 199–212.

[113] THOMAS, S., AO, L., VOELKER, G. M., AND PORTER,
G. Particle: ephemeral endpoints for serverless networking.
In SoCC ’20: ACM Symposium on Cloud Computing, Vir-
tual Event, USA, October 19-21, 2020 (2020), R. Fonseca,
C. Delimitrou, and B. C. Ooi, Eds., ACM, pp. 16–29.

[114] THORPE, J., QIAO, Y., EYOLFSON, J., TENG, S., HU, G.,
JIA, Z., WEI, J., VORA, K., NETRAVALI, R., KIM, M., AND

XU, G. H. Dorylus: Affordable, scalable, and accurate GNN
training with distributed CPU servers and serverless threads.
In 15th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2021, July 14-16, 2021 (2021),
A. D. Brown and J. R. Lorch, Eds., USENIX Association,
pp. 495–514.

[115] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (New York, NY, USA,
2017), SOSP ’17, ACM, pp. 306–324.

[116] TSALAPATIS, E., HANCOCK, R., BARNES, T., AND MASH-
TIZADEH, A. J. The aurora single level store operating
system. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles (New York, NY, USA,
2021), SOSP ’21, Association for Computing Machinery,
p. 788–803.

[117] USTIUGOV, D., PETROV, P., KOGIAS, M., BUGNION, E.,
AND GROT, B. Benchmarking, analysis, and optimization
of serverless function snapshots. In ASPLOS ’21: 26th ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Virtual Event,
USA, April 19-23, 2021 (2021), T. Sherwood, E. D. Berger,
and C. Kozyrakis, Eds., ACM, pp. 559–572.

516 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[118] VENKATESH, R. S., SMEJKAL, T., MILOJICIC, D. S., AND

GAVRILOVSKA, A. Fast in-memory CRIU for docker con-
tainers. In Proceedings of the International Symposium on
Memory Systems, MEMSYS 2019, Washington, DC, USA,
September 30 - October 03, 2019 (2019), ACM, pp. 53–65.

[119] WANG, A., CHANG, S., TIAN, H., WANG, H., YANG, H.,
LI, H., DU, R., AND CHENG, Y. Faasnet: Scalable and
fast provisioning of custom serverless container runtimes at
alibaba cloud function compute. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021
(2021), I. Calciu and G. Kuenning, Eds., USENIX Associa-
tion, pp. 443–457.

[120] WANG, K. A., HO, R., AND WU, P. Replayable execution
optimized for page sharing for a managed runtime environ-
ment. In Proceedings of the Fourteenth EuroSys Conference
2019, Dresden, Germany, March 25-28, 2019 (2019), G. Can-
dea, R. van Renesse, and C. Fetzer, Eds., ACM, pp. 39:1–
39:16.

[121] WANG, L., LI, M., ZHANG, Y., RISTENPART, T., AND

SWIFT, M. Peeking behind the curtains of serverless plat-
forms. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (Boston, MA, July 2018), USENIX Asso-
ciation, pp. 133–146.

[122] WEBSITE, A. O. https://openwhisk.apache.org,
2022.

[123] WEBSITE, F. P. https://fnproject.io, 2021.

[124] WEI, X., CHEN, R., AND CHEN, H. Fast rdma-based or-
dered key-value store using remote learned cache. In 14th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 20) (Nov. 2020), USENIX Association,
pp. 117–135.

[125] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Decon-
structing RDMA-enabled distributed transactions: Hybrid is
better! In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18) (Carlsbad, CA, Oct.
2018), USENIX Association, pp. 233–251.

[126] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using rdma and htm. In
Proceedings of the 25th Symposium on Operating Systems
Principles (New York, NY, USA, 2015), SOSP ’15, ACM,
pp. 87–104.

[127] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh:
Locality-preserving Graph Traversal with Split Live Mi-
gration. In 2019 USENIX Annual Technical Conference,
USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019
(2019), pp. 723–738.

[128] XING, J., HSU, K.-F., QIU, Y., YANG, Z., LIU, H., AND

CHEN, A. Bedrock: Programmable network support for
secure RDMA systems. In 31st USENIX Security Symposium
(USENIX Security 22) (Boston, MA, Aug. 2022), USENIX
Association, pp. 2585–2600.

[129] XU, W., KASHYAP, S., MIN, C., AND KIM, T. Designing
new operating primitives to improve fuzzing performance.

In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY,
USA, 2017), CCS ’17, Association for Computing Machinery,
p. 2313–2328.

[130] YANG, Y., ZHAO, L., LI, Y., ZHANG, H., LI, J., ZHAO, M.,
CHEN, X., AND LI, K. Infless: a native serverless system
for low-latency, high-throughput inference. In ASPLOS ’22:
27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Lau-
sanne, Switzerland, 28 February 2022 - 4 March 2022 (2022),
B. Falsafi, M. Ferdman, S. Lu, and T. F. Wenisch, Eds., ACM,
pp. 768–781.

[131] YU, T., LIU, Q., DU, D., XIA, Y., ZANG, B., LU, Z., YANG,
P., QIN, C., AND CHEN, H. Characterizing serverless plat-
forms with serverlessbench. In SoCC ’20: ACM Symposium
on Cloud Computing, Virtual Event, USA, October 19-21,
2020 (2020), R. Fonseca, C. Delimitrou, and B. C. Ooi, Eds.,
ACM, pp. 30–44.

[132] ZHANG, H., CARDOZA, A., CHEN, P. B., ANGEL, S., AND

LIU, V. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020 (2020), USENIX Association, pp. 1187–
1204.

[133] ZHANG, W., FANG, V., PANDA, A., AND SHENKER, S.
Kappa: a programming framework for serverless computing.
In SoCC ’20: ACM Symposium on Cloud Computing, Vir-
tual Event, USA, October 19-21, 2020 (2020), R. Fonseca,
C. Delimitrou, and B. C. Ooi, Eds., ACM, pp. 328–343.

[134] ZHANG, Y., GOIRI, I. N., CHAUDHRY, G. I., FONSECA,
R., ELNIKETY, S., DELIMITROU, C., AND BIANCHINI,
R. Faster and cheaper serverless computing on harvested
resources. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles (New York, NY, USA,
2021), SOSP ’21, Association for Computing Machinery,
p. 724–739.

[135] ZHAO, K., GONG, S., AND FONSECA, P. On-demand-
fork: A microsecond fork for memory-intensive and latency-
sensitive applications. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems (New York, NY, USA,
2021), EuroSys ’21, Association for Computing Machinery,
p. 540–555.

[136] ZHAO, L., YANG, Y., LI, Y., ZHOU, X., AND LI, K. Un-
derstanding, predicting and scheduling serverless workloads
under partial interference. In SC ’21: The International Con-
ference for High Performance Computing, Networking, Stor-
age and Analysis, St. Louis, Missouri, USA, November 14 - 19,
2021 (2021), B. R. de Supinski, M. W. Hall, and T. Gamblin,
Eds., ACM, pp. 22:1–22:15.

[137] ZHONG, H., AND NIEH, J. Crak: Linux checkpoint/restart
as a kernel module. Tech. rep., Citeseer, 2001.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 517

https://openwhisk.apache.org
https://fnproject.io

Johnny Cache: the End of DRAM Cache Conflicts
(in Tiered Main Memory Systems)

Baptiste Lepers
University of Neuchâtel

Willy Zwaenepoel
University of Sydney

Abstract
We demonstrate that hardware management of a tiered

memory system offers better performance for many applica-
tions than current methods of software management. Hard-
ware management treats the fast tier as a cache on the slower
tier. The advantages are that caching can be done at cache line
granularity and that data appears in fast memory as soon as it
is accessed. The potential for cache conflicts has, however, led
previous works to conclude these hardware methods generally
perform poorly.

In this paper we show that low-overhead conflict avoidance
techniques eliminate conflicts almost entirely and thereby
address the above limitation. We explore two techniques. The
static technique tries to avoid conflicts between pages at page
allocation time. The dynamic technique relies on monitoring
memory accesses to distinguish between hot and cold pages.
It uses this information to avoid conflicts between hot pages,
both at page allocation time and by dynamic remapping at
runtime.

We have implemented these techniques in the Linux ker-
nel on an Intel Optane machine in a system called Johnny
Cache (JC). We use HPC applications, key-value stores and
databases to compare JC to the default Linux tiered memory
management implementation and to HeMem, a state-of-the-
art software management approach.

Our measurements show that JC outperforms Linux and
HeMem for most applications, in some cases by up to 5×. A
surprising conclusion of this paper is that a cache can provide
close-to-optimal performance by minimizing conflicts purely
at page allocation time, without any access monitoring or
dynamic page remapping.

1 Introduction

Tiered memory systems combine DRAM with a slower, but
more abundant, storage tier (SSD, PMEM, CXL memory ex-
tension modules [8], ...). Most systems rely on a software dae-
mon that monitors accesses to the data. Frequently accessed

data is migrated to DRAM, while less frequently accessed
data is migrated to the slower tier [1, 9, 11, 14, 20, 23, 25].
Tiered memory systems have also been implemented purely
in hardware, using DRAM as an "L4" cache that sits between
the CPU and the slower tier [13].

Previous work has argued that hardware implementations
of tiered systems are inefficient because the hardware lacks a
high-level view of the application requirements and because
caching strategies have to be kept simple to be executed in
hardware. For instance, in tiered DRAM+PMEM systems,
software daemons have been shown to outperform the "mem-
ory mode" of Intel CPUs (in "memory mode", the CPU uses
DRAM as a directly-mapped cache for PMEM) [20].

This paper is based on the observation that the previously
mentioned limitations of hardware caching are not fundamen-
tal and can be addressed at the operating system level. In par-
ticular, we demonstrate that the poor performance observed
in earlier hardware-based systems is due to cache conflicts
resulting from Linux’s page allocation policy, and that simple
improvements to the page allocation policy can reduce cache
conflicts with little or no overhead.

Linux’s page allocation does not take into consideration
the location of pages in hardware caches. As a consequence,
Linux suffers from the birthday paradox: the DRAM cache is
large, but many pages tend to map to a subset of the available
cache locations. We propose the following simple static page
allocation policy to reduce conflicts: we allocate a new page
such that its physical address maps to a cache slot with the
fewest pages currently mapped to it. For example, if we have a
cache with 2 million slots and 4 million pages to be allocated,
we allocate 2 pages to each slot. The static policy has no
noticeable overhead, but it vastly reduces conflicts.

We also investigate a dynamic policy that takes into ac-
count the access frequency of pages, distinguishing between
hot and cold pages. The dynamic policy allocates a new page
to the cache slot with the lowest access frequency and reacts
to workload changes by dynamically remapping pages when
it detects conflicts. Surprisingly, we find that in many work-
loads the static policy already results in few conflicts, and the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 519

overheads of the dynamic policy offset the benefits of any
further gains in conflict reduction.

We compare our conflict avoidance policies to software
migration, as proposed by, among others, HeMem [20]. With
software migration, access frequency is monitored as well,
producing the same set of hot and cold pages and incurring
the same monitoring overhead as our dynamic approach. Soft-
ware migration, however, uses this information for an entirely
different purpose, namely to migrate hot pages from slow
to fast memory, and vice versa for cold pages, unlike our
dynamic policy which uses it to reduce conflicts.

We have implemented the static and dynamic policies at the
kernel level in a subsystem named Johnny Cache (JC), and we
refer to these systems as JC-static and JC-dyn, respectively.
We have evaluated these systems on a tiered DRAM+PMEM
system against the Linux page allocation mechanism and
against HeMem, a state-of-the-art software-based page mi-
gration system [20]. JC outperforms Linux and HeMem for
the vast majority of applications, in some cases by up to 5×.
We document these results in more detail in the paper and
also discuss the limitations of a cache-based approach. In
addition, we find that JC-static often suffices to obtain good
performance. Methods involving profiling such as HeMem
and JC-dyn suffer from profiling and migration overheads
and the inability to detect hot pages in some workloads. In
contrast, avoiding conflicts in the DRAM cache at allocation
time, as done by JC-static, is robust and sufficient to achieve
near-optimal performance for most workloads.

In summary, the paper makes the following contributions:

• The observation that hardware-managed DRAM caches
can be made efficient by minor modifications to the op-
erating system page allocation algorithms.

• The idea of placing conflict avoidance as a first principle
of page management in tiered memory systems, instead
of relying on migration of data.

• The design, implementation and evaluation of page
placement policies that outperform state-of-the-art page
migration systems.

The rest of the paper is organized as follows. Section 2 ex-
plains how tiered-main memory systems are managed in soft-
ware and in hardware. Section 3 presents the design of our
policies, Section 4 presents their implementation, and Section
5 their evaluation. Section 6 provides further discussion of
the strengths and weaknesses of various approaches. Section
7 presents related work and Section 8 concludes.

2 Tiered main memory systems

In this section, we give an overview of existing software- and
hardware-managed tiered memory systems, and we compare
their overheads.

2.1 Software-based migration

In software-managed tiered memory systems, the operating
system chooses which pages are allocated in DRAM and
which pages are allocated in the slower tier. The kernel usually
allocates as many pages in DRAM as possible and, when
DRAM is full, subsequent pages are allocated in the slow tier.
A daemon is in charge of migrating frequently accessed pages
(hot pages) from the slow tier to DRAM, and infrequently
accessed pages (cold pages) from DRAM to the slow tier. The
techniques vary but aim at inferring the set of hot pages with
high accuracy and low overhead. For instance, HeMem [20]
uses the hardware performance unit of Intel CPUs to track
memory accesses and migrates pages between DRAM and
PMEM using DMA to minimize CPU overheads.

Software-based migration gives the operating system full
control over page placement, but it comes with some down-
sides. First, data migrations are costly because they can only
happen at page granularity (4KB or 2MB), and each migration
requires modifying the page table, modifying the kernel VMA
metadata and flushing the TLBs. Migrations may also cause
latency spikes in write-heavy applications because pages have
to be write-protected while being migrated. Second, since
access frequency is collected on a per-page basis, for appli-
cations that mix hot and cold data in the same page, DRAM
may need to be used for cold data to allow fast access to
hot data in the same page. Finally, page migrations happen
asynchronously: data may be accessed for a while in the slow
tier before being migrated to DRAM. As a consequence, the
performance of software-based migration is heavily depen-
dent on the fast and accurate detection and migration of the
working set. To do so, memory access must be sampled with
high frequency, a costly proposition.

2.2 Hardware caching

In hardware, the CPU uses DRAM as a cache for the slow
tier. In existing implementations [13], the DRAM is config-
ured as a 1-way cache, indexed by physical address. Unlike
software-based approaches, hardware caches are synchronous:
all accessed data is cached in DRAM. In this section, we de-
scribe the implementation of the "memory mode" of Intel
processors for tiered DRAM+PMEM systems.

When looking for a physical address W , the memory con-
troller first checks if W is in the DRAM cache (at location
"W mod cachesize"). If W is not present in DRAM, W is
fetched from PMEM, copied to the DRAM cache and to the
CPU cache (see Figure 1(a)).

A conflict occurs when W maps to a cache slot that is al-
ready occupied by X , in which case X must first be removed
from the cache. In the best case, X is clean, and the cost is
equal to that of a PMEM read. If X is dirty, then X must be
written back to PMEM before W can be loaded in the cache,
making the cost the sum of a PMEM write and a PMEM

520 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

PMEM

DRAM

① copy line W

② copy line W

CPU

64B

(a)

PMEM

DRAM

CPU

64B

① copy line W

② evict dirty line X

③ copy line W ④ evict dirty line Y

(b)

⑤ evict dirty line Z

Figure 1: Caching in memory mode. (a) In the best case data
found in PMEM is cached in DRAM and in the CPU caches,
and in the (b) worst case the caching may result in evictions,
causing up to two writebacks to PMEM.

read. A worst-case scenario can arise as described in Fig-
ure 1(b). In addition to the writeback of X , a dirty line Y may
be evicted from the CPU cache, resulting in a writeback of Y
to the DRAM cache, which itself may result in a writeback
of another dirty line Z to PMEM (the DRAM cache is not
inclusive).

Regardless of the precise sequence of events, conflicts are
expensive. Table 1 compares the latency of performing 8B
random reads or random writes in DRAM, in PMEM, and
in the worst-case scenario presented in Figure 1(b). Reading
from PMEM (in AppDirect mode) is 3.2× slower than read-
ing from DRAM, and writing is 4.4× slower. A read causing
two writebacks to PMEM is 9.7× slower than a read from
DRAM, and a write causing two writebacks is 7.2× slower
than a write to DRAM. (Causing two writebacks to PMEM
is not exactly equivalent to performing two writes to PMEM,
which would be 8.8× slower, because the CPU overlaps the
evictions with other processing done by the application, re-
sulting in slightly more in-CPU parallelism).

Memory mode thus performs suboptimally when frequently
accessed data conflicts in the cache. If, however, conflicts can
be avoided, then memory mode offers several advantages
over software migration. First, caching avoids costly whole-
page migration as well as virtual memory operations. Second,
caches operate at the cache line level, while software migra-
tion can only migrate data at the page granularity. Therefore,
they avoid wasting DRAM space if hot and cold data are lo-
cated in the same page. Finally, caching is synchronous: hot
data appears in DRAM on the first access.

Read in DRAM 96ns
Plain read from PMEM 305ns

Write in DRAM 130ns
Plain write from PMEM 578ns

Read/Write causing 2 writebacks 938ns
Table 1: Latency of memory access in various scenarios.

2.3 Comparison
Table 2 summarizes the costs of migrating data vs. caching
data. These costs show that caching data in DRAM is a priori
a more parsimonious solution: data is cached at cache line
granularity (vs. page granularity), caching data requires no
kernel metadata updates, and no memory profiling is neces-
sary to infer which pages to cache.

3 Design

Our design is based on the idea that a DRAM cache is efficient,
as long as conflicts in the cache are rare. Conflicts happen
when two data items are mapped to the same cache location.
Conflicts become problematic if the data items are accessed
in turn. We have designed two policies that aim at minimizing
conflicts in the cache. The hardware caches data at cache
line granularity, but the kernel can only allocate data at page
granularity, so our policies try to minimize conflicts between
pages.

Static policy: The static policy minimizes the number of
allocated pages that map to the same DRAM cache location.
Assuming a DRAM cache that can store D pages, the static
policy allocates the first D pages so that they map to different
cache locations. The next D pages are allocated so that they
possibly conflict with a single other page, and so on.

Dynamic policy: The dynamic policy samples memory ac-
cesses to compute the heat of every page and every cache
location. When a new page is allocated, the kernel maps it to
the coldest available location.

A conflict avoidance daemon monitors for conflicts be-
tween hot pages at the same cache location. When two pages,
mapped to the same DRAM cache location, are both fre-
quently accessed, one of the pages is remapped to a different
cache location.

Rationale: The main advantage of the static policy is that
it requires no monitoring of memory accesses, and so it runs
with no overhead. The intuition behind the static policy is
that minimizing the number of pages that overlap in the cache
reduces significantly the likelihood of conflicts between hot
data items. Indeed, in most workloads, at most of a few GBs
of data is hot, even in workloads whose memory footprint
vastly exceeds the available DRAM. Minimizing overlaps
makes conflicts between hot pages unlikely. For instance, let’s
consider an application that allocates data twice the available
DRAM size, 5% of which is hot. The static policy allocates

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 521

Software migration Hardware caching
Granularity Page Size (4KB, 2MB) 64B

Cost of migrating/caching Page copy from PMEM to DRAM Best case
Page copy from DRAM to PMEM 1 cache line copied from PMEM to DRAM

2 page table updates Worst case
2 VMA updates 1 cache line copied from PMEM to DRAM

TLB flush 2 cache lines copied from DRAM to PMEM
Strategy Software defined All memory accesses are cached in DRAM

Table 2: Comparison of the cost of migration vs. caching.

pages such that exactly 2 pages map to each cache location.
A given hot page has a 5% chance to compete for the cache
with another hot page, and a 95% chance to compete with a
cold page. In other words, most hot pages are "paired" with a
cold page, and are thus unlikely to be evicted frequently from
the DRAM cache.

The dynamic policy makes more informed choices at page
allocation time, and the daemon fixes conflicts that may have
been missed at allocation time. The dynamic policy borrows
the notion of heat from software migration systems, but the
heat is used to track and avoid conflicts between hot pages
rather than to migrate hot pages to DRAM. We demonstrate
in Section 5.2 that, in the general case, avoiding conflicts is
less costly than migrating hot data to DRAM.

4 Implementation

In this section, we describe the implementation of the page al-
location policies and the migration daemon. The code is avail-
able at https://github.com/BLepers/JohnnyCache.

4.1 Page initialization and associated metadata

Our policies are implemented in the kernel, as hooks in the
kernel initialization function, the page initialization function,
the page fault handler and the page unmap handler. To ease the
development of policies, we implemented a framework that
contains the logic common to the policies. In the remainder of
the paper, we refer to the framework as Johnny Cache (JC).

In this paper, we assume a directly-mapped 1-way cache,
in which data is cached at its physical address modulo the
size of the cache – as implemented by Intel in the "memory
mode" of tiered DRAM+PMEM systems. It would be easy to
account for associativity in JC by changing the definition of a
conflict: currently, a conflict involves 2 or more pages; in an
N-way cache, a conflict would involve N+1 or more pages.

While DRAM caches data at cache line granularity, the
kernel can only allocate and migrate data at page granularity.
All the metadata maintained by JC are thus at the page level.
When the kernel boots, we query the processor’s memory
controller to find out the size of the DRAM cache. In the
remainder of this section, we refer to the maximum number of

pages that the cache can hold as the cache capacity. Because
the cache is directly-mapped, every page in the system maps
to a unique index in the cache, which we call a bin. The bin
of a page is its page frame number (physical address of the
first byte of the page / size of a page) modulo the capacity of
the cache. Furthermore, each bin of the cache has a heat. The
definition of heat depends on the policy. For instance, for the
static policy it corresponds to the number of allocated pages
that map to that bin.

As is the case with the default page allocation policy of
Linux, we use a lazy page allocation mechanism: pages are
physically allocated only when they are first accessed. We thus
hook the page fault handler to implement our page placement
policies. The framework maintains a list of bins with available
pages, sorted per heat. When a page fault occurs, a page from a
bin with the lowest heat is returned, and the current allocation
policy is informed of the page fault. Similarly, whenever a
page is freed, the kernel unmap handler is called, and the
current allocation policy is made aware of the unmapping.

Listing 1 summarizes the metadata and code of the page
fault hook used by our framework. The overhead of keeping
the metadata in memory is small (less than 50MB for a system
with 128GB of DRAM and 1TB of PMEM).

Our policies are implemented at the kernel level and oblivi-
ous to the notion of a thread or an application. The policies
try to minimize conflicts across the entire machine, and no
partitioning of the cache is done (unlike page-coloring ap-
proaches). A major benefit of this approach is that conflicts
are minimized globally. For instance, the conflict avoidance
daemon remaps hot conflicting pages even if they belong to
different applications.

4.2 Static policy
The static policy allocates a new page in a bin with the fewest
allocated pages. The static policy consists of counting the
number of allocated pages that map to a given cache bin. The
policy is called on every page fault and page unmap by the
framework. Listing 2 summarizes the code of the static policy.
During a page fault, the policy increments by one the heat of
the bin of the newly allocated page. Because the page fault
handler of the common framework allocates a page from the
bins which have the lowest heat, subsequent page faults will

522 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Listing 1 JC framework.

1 // struct for each cache bin (page granularity)
2 struct bin* bins[CACHE_CAPACITY] = { ... };
3 // avail[heat] = list of bins with free pages
4 struct bin* avail_bins[HEAT_LEVELS];
5 // full[heat] = list of fully allocated bins
6 struct bin* full_bins[HEAT_LEVELS];
7
8 struct page* page_fault_handler(void) {
9 for(i = 0; i < HEAT_LEVELS; i++) {

10 bin = list_first(avail_bins[i]);
11 if(bin) {
12 struct page *p =
13 list_pop(bin->avail_pages);
14 current_policy.page_fault(bin, p);
15 if(list_empty(bin->avail_pages))
16 list_move(bin, full_bins[bin->heat]);
17 else
18 list_move(bin, avail_bins[bin->heat]);
19 return p;
20 }
21 }
22 // OOM
23 }
24
25 void page_unmap(struct page *p) { ... }

likely avoid that bin. When a page is unmapped, the heat of
the bin is decremented by one, increasing the likelihood of
that bin being chosen for subsequent allocations.

Listing 2 In the static policy, the heat of a bin corresponds to
the number of pages allocated to that bin.

1 void static_pf(struct bin *b, struct page *p) {
2 b->heat++;
3 }
4
5 static_policy = {
6 .page_fault = static_pf, .unmap = ...
7 };

4.3 Dynamic policy and migration daemon
The dynamic policy allocates a page in a bin with available
pages and with the lowest heat. The dynamic policy monitors
memory accesses to infer the heat of each page and bin. We
monitor read accesses to the DRAM cache, read accesses
to PMEM and all stores using the Processor Event-Based
Sampling (PEBS) feature of Intel’s CPUs. When a memory
access is sampled, we increase the heat of the accessed page
and accessed bin. We also artificially increase the heat of the
bin of newly allocated pages to avoid multiple pages being
mapped to the same bin during bursts of allocations. To avoid
heat continually increasing over time, we trigger page cooling
as soon as a page becomes "super hot", i.e., when its heat
becomes double that of the threshold to detect a hot page.

In theory, our dynamic policy could monitor conflicts in
the cache instead of monitoring memory accesses, but no
such event exists in Intel CPUs. Our heat detection and cool-
ing approaches are identical to those used by HeMem [20],
which allows for a fair comparison between software-based
migration and conflict-avoidance (both solutions use the same
PEBS events, the same definition of heat and the same cooling
function).

The migration daemon monitors conflicts between allo-
cated pages. When two hot pages are present in the same bin,
one of them is remapped to a physical location in a different
bin. The daemon periodically looks for pages in the upper
heat buckets and remaps them. The remapping operation calls
the page fault handler which allocates a new page in a cold
bin and calls the unmap function, which decreases the heat of
the original bin. Algorithm 3 summarizes the approach of the
dynamic policy and migration daemon.

HeMem triggers migrations as soon as a hot page is de-
tected. To allow for a fair comparison, we trigger the daemon
as soon as we detect a bin containing two hot pages (i.e., as
soon as we detect a conflict that involves two hot pages).

Listing 3 The dynamic policy and migration daemon that
remaps pages from highly accessed bins.

1 // Migration daemon
2 void migration_daemon() {
3 wait();
4 for(i=HEAT_LEVELS-1; i>MIN_CONTENTION; i--) {
5 foreach(bin, avail_bins[i]) {
6 if(bin->nb_hot_pages >= 2)
7 remap(get_hot_page(bin));
8 }
9 foreach(bin, full_bins[i]) {

10 if(bin->nb_hot_pages >= 2)
11 remap(get_hot_page(bin));
12 }
13 }
14 }
15
16 // Called on every sampled memory access
17 void add_sample(struct bin *b, struct page *p){
18 b->heat++;
19 ... // increase the page’s heat &
20 ... // update the metadata
21 if(b->nb_hot_pages > 2)
22 migration_daemon.wakeup();
23 }
24
25 void dyn_pf(struct bin *b, struct page *p) {
26 b->heat++;
27 ... // increase the page’s heat &
28 ... // update the metadata
29 }
30
31 dynamic_policy = {
32 .page_fault = dyn_pf,
33 .unmap = ...
34 };

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 523

5 Evaluation

The evaluation aims at answering the following questions:

• What is the performance of JC compared to state-of-the-
art tiered memory management systems?

• What is the overhead of JC, in terms of performance and
latency spikes, compared to other systems?

• What are the limitations of JC? Which applications ben-
efit from hardware caches, and which benefit from page
migration?

We show that the static page allocation policy of JC
achieves close-to-optimal performance in many applications,
and sometimes outperforms the dynamic policy (and related
work) when minimizing CPU overhead is essential for per-
formance. The surprising conclusion of this evaluation is
thus that hardware caches often outperform existing software-
based migration strategies, provided minimal changes in the
kernel page allocation policy are put in place.

5.1 Setup
Hardware configuration. All the experiments presented in
this paper are run on a two-node NUMA machine, with 40
Intel Xeon Gold 6230 cores running at 2.10GHz (20 cores
per NUMA node), 128GB of DRAM, and 8*128GB Intel
Optane NV-DIMMs (64GB DRAM and 512GB PMEM per
NUMA node). In memory mode, each NUMA node has a
DRAM cache of 48GB (16GB is used by the CPU for the
cache metadata).
Workloads. We borrow the workloads used to evaluate
HeMem [20], a state-of-the-art software page migration sys-
tem. The GUPS microbenchmark allocates a large array, ze-
roes it, and then threads perform updates to a random subset
of 8-byte array elements. BC, from the GAP benchmark suite,
computes the betweenness centrality algorithm on a powerlaw
graph [4]. Silo [22] is an in-memory database running the
standard TPC-C benchmark suite. Finally, Masstree [16] is
an in-memory key-value store, running a YCSB workload1.
We also present results from the NAS benchmark suite [3].
JC equals or more commonly outperforms the related work
in all these benchmarks, with the exception of the MG.E ap-
plication from the NAS benchmark suite, which allows us to
demonstrate the limitations of our approach. As in the origi-
nal HeMem evaluation, NUMA effects of tiered memory are
beyond the scope of this paper, and we run the applications
on a single NUMA node.
Software configuration. We compare JC against unmodified
Linux and HeMem. Linux uses the machine in memory mode

1HeMem benchmarked FlexKVS [17], an in-memory key-value store
which we could not evaluate due to the lack of an RDMA network card on
our server.

with the default Linux page allocation policy. With the de-
fault page allocation policy, pages are allocated on the local
NUMA node, but contiguous virtual memory ranges may end
up fragmented in physical memory. Any array larger than 2
pages may thus conflict with itself in the DRAM cache (the
larger the array, the more likely 2 pages of the array conflict).
We refer to JC-static as the machine in memory mode with
our static page allocation policy and to JC-dyn as the machine
in memory mode with the dynamic page allocation policy
plus the page remapping daemon. We benchmark HeMem
using the provided artifact [19].

5.2 GUPS

The GUPS microbenchmark, from HeMem [20], allocates a
large array, a subset of which is hot. 90% of the updates are
done on the hot section of the array, and 10% on the cold
section. We configure the array to be 96GB, twice the DRAM
cache size and measure performance when 10% of the array
is hot (9.6GB).

The performance of HeMem and JC-dyn is dependent on
their ability to detect hot and cold pages. Intuitively, the more
threads perform memory accesses, the easier it is to detect hot
pages. To assess the impact of the workload on the detection
of hot and cold pages, we thus vary the number of threads.
Furthermore, HeMem and JC-dyn use two separate threads
to sample memory accesses and to migrate pages. To assess
the overhead of these threads, we either run them on separate
cores or on the cores used by GUPS. We refer to these con-
figurations as (M+N) where M is the number of cores used
by GUPS, and N is either 0 or 2 and reflects the number of
cores dedicated to monitoring and migration in HeMem and
JC-dyn. We use three such configurations: (16+2), (8+2) and
(8+0). These results are presented in Section 5.2.1.

In the original GUPS implementation the hot and cold
data items are located in separate regions of the array. While
this microbenchmark reflects the partitioning done by some
applications, it implies that all hot items are located in a small
number of pages, and all cold items are located in the other
pages. To reflect the behavior of applications that do not
partition their hot and cold items in this manner, we also run
GUPS with hot items scattered randomly in the array. These
results are presented in Section 5.2.2. Finally, in Section 5.2.3
we explore the performance of the different systems with a
larger data set of 480GB.

We measure the throughput achieved for a given combina-
tion of system and workload. When the hot data fits in DRAM,
we present the results as the percentage of the throughput
achieved when all hot data is manually allocated in DRAM.
Otherwise, we present the result in terms of millions of up-
dates per second.

524 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2.1 Random updates to clustered hot values

We first benchmark GUPS with hot values clustered on a few
pages, the scenario favoring page migration.

The allocated array is twice the size of the DRAM cache so,
initially, half of the array is in DRAM, and all systems start
with low throughput. Figure 2 presents the performance of JC-
static, JC-dyn, HeMem, and Linux over time, as a percentage
of the performance achieved when all hot pages are manually
allocated in DRAM.

Steady-state performance in configuration (16+2): Both
HeMem and JC-dyn achieve 100% of DRAM performance,
JC-static 85% and Linux 60%. There is (conflict-free) space
in the cache for all hot pages, so JC-dyn eventually eliminates
all conflicts, and HeMem eventually moves all hot pages to
DRAM, explaining their performance being equal to DRAM.

The good performance of JC-static is explained by the low
number of conflicts on hot data. The array is twice the size of
the cache, and JC allocates exactly 2 pages per cache bin. Let
P be a hot page. P conflicts with a single other page Q, and Q
only has a 10% probability of being hot. JC thus only suffers
from conflicts between 10% of the hot data (0.96GB).

The low performance of Linux is explained by the large
number of conflicts when no care is taken to properly spread
the pages in the cache. Just as with the "birthday paradox",
even though a year has many days (even though the cache has
many bins), in a small group of people, many are likely born
on the same day (many pages are mapped to the same cache
bin, even when allocating only 100GB). On average, Linux
uses only 32GB of the DRAM cache because the allocated
pages map to a subset of the available cache bins, while JC
takes advantage of the full cache. Figure 2(d) presents the
performance of an average run of Linux, but, depending on
page placement, performance varies between runs from 20%
to 80% of DRAM performance. These extreme values are
rare, with most runs achieving around 60%.

Steady-state performance in configuration (8+2) - The dif-
ficult configuration of heat detection systems: The perfor-
mance of JC-static and Linux relative to DRAM performance
remains the same as in configuration (16+2). HeMem does
not reach steady state even after 2 minutes, only reaching 40%
of DRAM speed. JC-static is between 4× faster than HeMem
(at the beginning of the execution) and 2.2× faster (after 2
minutes of execution). JC-dyn also does not reach steady state,
but its performance is closer to DRAM performance (85% at
the beginning of the execution, 90% at the end).

With 8 threads, fewer samples are generated, and the cool-
ing mechanisms of HeMem and JC-dyn reduce the heat of
pages faster than it increases as a result of accesses. HeMem
and JC-dyn trigger page cooling as soon as any given page
becomes "super hot", i.e., when its heat becomes double the
threshold to detect a hot page (see Section 4). We imple-
mented other cooling algorithms, but none ended up working

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(a)

%
 D

R
A

M
 p

e
rf

o
rm

a
n

c
e

JC-static (16 threads)
JC-static (8 threads)

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(b)JC-dyn (16+2 threads)
JC-dyn (8+2 threads)
JC-dyn (8+0 threads)

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(c)

Hemem (16+2 threads)
Hemem (8+2 threads)
Hemem (8+0 threads)

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(d)

Time (s)

Linux (16 threads)
Linux (8 threads)

Figure 2: Hot values clustered in the array. Performance
achieved by JC, HeMem, and Linux compared to the per-
formance achieved when all the hot values are manually al-
located in DRAM (optimal page placement). (a) JC-static,
which does not use any profiling, performs close-to-optimally.
(b) The profiling threads of the migration daemon can nega-
tively interfere with the application threads (brown line). (c)
The performance of HeMem is highly dependent on its abil-
ity to detect hot pages. When GUPS is launched with a low
number of threads, hot pages are rarely detected and HeMem
performs suboptimally. (d) The default page placement policy
of Linux performs suboptimally because of conflicts.

in all configurations of GUPS. For instance, forcing cool-
ing to happen periodically but less frequently results in most
of the array being detected as hot in some other configura-
tions (e.g., on smaller arrays). Replacing periodic cooling
with other algorithms such as LRU also performs poorly in
some configurations (e.g., when the hot set size exceeds the
DRAM size). Most of the related work on page migration
explores new ways of measuring heat accurately and with low
overhead [1, 9, 11, 12, 14, 20, 23–25] but, in our experience,
these heuristics require fine-tuning for each application and
configuration.

It is possible to tune the sampling rate of memory accesses
to gather more samples in a given amount of time, but doing
so is also fraught with problems. For instance, doubling the
sampling rate actually decreases the performance of GUPS
running with 16 threads by 20%, due to profiling overheads.
Some literature describes attempts to use dynamic sampling
rates, but these algorithms also need to be precisely tuned for
each machine or workload (e.g., to detect pages that need to
be migrated between NUMA nodes, Carrefour [11] adjusts

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 525

its sampling rate based on the workload, but all its parameters
are fine-tuned for each machine).

The inability to detect most hot pages negatively impacts
the performance of HeMem. In comparison, caches "work
well", even without any heat detection or page migration.
Once an item is updated, it is cached in DRAM. After a few
seconds, most items have been updated, and the cache has
reached its warmed-up state. JC-static and JC-dyn perform
close-to-optimally without any fine-tuning, regardless of the
number of GUPS threads. Just as HeMem, JC-dyn only man-
ages to detect a subset of the (conflicting) hot pages. The
partial detection of hot pages explains why JC-dyn is unable
to reach optimal performance, but also explains why it per-
forms slightly better than JC-static.

Performance over time in configuration (16+2) - Caches
reach steady-state performance faster: As expected, the
performance of JC-static and Linux remains constant after
allocation is completed, since the number of conflicts remains
the same throughout the execution. HeMem and JC-dyn re-
quire some time to reach maximum performance, in the case
of JC-dyn to migrate pages to avoid conflicts, in the case of
HeMem to migrate hot pages initially allocated in PMEM
to DRAM and vice versa for cold pages. The time to reach
this steady state performance is, however, much longer for
HeMem than for JC-dyn, 38 seconds versus 2 seconds.

HeMem needs to sample memory accesses in order to per-
form informed migration decisions, and each migration con-
sists in evicting a cold page to PMEM and promoting a hot
page to DRAM. Migrations are thus inherently asynchronous
and costly. In JC, once an item is updated, it is cached in
DRAM. After a few seconds, most items have been updated,
and the cache has reached its warmed-up state.

A surprising observation is that fixing conflicts requires
fewer page migrations than migrating hot and cold pages.
Indeed, before doing any page migration, only 0.96GB of
the data conflicts, and these conflicts can be avoided by mi-
grating 0.48GB of data. In HeMem, 4.8GB of the hot data
is misplaced and needs to be brought to DRAM, which also
causes 4.8GB of cold data to be migrated to PMEM. HeMem
thus migrates 9.6GB (20× more data) to reach steady state
performance.

Performance over time in configuration (8+0) - A back-
ground daemon can be counterproductive: JC-static and
Linux do not use any profiling threads, and their performance
is obviously the same as in configuration (8+2). The perfor-
mance of both HeMem and JC-dyn becomes quite variable,
and JC-dyn on average drops below JC-static in terms of
performance. When the monitoring and migration threads
execute on dedicated cores, JC-static and JC-dyn have similar
performance, but, when they are scheduled on the same cores
as the GUPS application, they have a non-negligible impact
on performance. In that situation, JC-static outperforms JC-
dyn by 10% on average and maintains a much more stable

throughput over time.

5.2.2 Random updates to distributed hot values

In the previous experiment, all the hot items were clustered
on the same pages, which is the best case scenario for page
migration systems. However, hot items may not be clustered
together in memory. To account for this behavior, we execute
GUPS with hot items randomly scattered in the allocated
array. As before, we allocate a 96GB array, 10% of which is
hot. We execute GUPS with 16 threads, and dedicated cores
for the profiling (16+2 configuration). Figure 3 presents the
performance of HeMem, Linux and JC over time. JC is 4.5×
faster than HeMem.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

M
U

p
d

a
te

s/
s

Time (s)

JC (all) Linux Hemem

Figure 3: 16+2 threads, hot values distributed in the array
and profiling running on dedicated cores. GUPS throughput
over time when the hot set size is equal to 20% of the DRAM
cache (higher is better).

In this experiment, because hot items are scattered in the
array, most pages contain one or a few hot items. HeMem
cannot bring all the hot pages in DRAM because the number
of pages that contain hot items exceeds the number of pages
that fit in DRAM. Interestingly, the hot data set does not need
to be large for HeMem to be unable to migrate data to DRAM.
Indeed, 1% of the data being hot (1GB) translates to 134
million 8-byte values, so all pages of the array likely contain
many hot values (100GB is "only" 51K 2MB pages).

Just as HeMem, JC-dyn cannot perform any useful remap-
pings, and as a result JC-static and JC-dyn perform equally
well in this benchmark. Although hot items are scattered on
all pages, since data is cached at the cache line granularity,
the hot items rarely overlap in the cache. In this configuration
of GUPS, JC reads on average 7× less data from PMEM than
HeMem.

5.2.3 Performance on large datasets

In the previous experiments, GUPS was configured with a
96GB dataset (2× the cache size), 10% of which was hot. In
this experiment, we configure GUPS to use 480GB (10× the
cache size), the maximum workload size that fits on a single
NUMA node, and we vary the percentage of hot data so that
the hot data either fits in the cache or not. We run HeMem
with dedicated cores for profiling and migration.

526 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Because GUPS allocates all the available memory, JC’s
static page allocation policy and Linux have the same perfor-
mance. Indeed, JC allocates pages in an order that minimizes
conflicts but, in the end, both JC and Linux end up allocating
all the pages of the system.

When the hot dataset is clustered and fits in the cache.
We measure performance when 2% of the data is hot (9.6GB,
same as in the smaller experiments). Figure 4 presents the
performance of JC and HeMem compared to the performance
obtained when the hot data is placed in DRAM.

As in the smaller dataset experiment, HeMem and JC’s
dynamic performance depends on their ability to detect hot
pages. When GUPS is configured to run with 8 threads,
HeMem does not reach steady state after 2 minutes of ex-
ecution. In comparison, caches "work well", even without
heat detection or page migration.

When GUPS is configured with 16 threads, both HeMem
and JC-dyn eventually reach optimal performance. As seen
earlier, caches reach optimal performance faster because
avoiding conflicts requires fewer page migrations (1.7GB
of the data initially conflicts in JC, 4.3GB of the data is ini-
tially misplaced in HeMem). The number of conflicting pages
is higher in the 480GB experiment than in the 96GB experi-
ments, even though the same number of pages are hot, because
more pages map to the same slot. In the 96GB experiment, 2
pages map on a given slot, so a hot page has a 10% probability
of conflicting with another hot page. In the 480GB experi-
ment, a hot page conflicts with 9 other pages, each of which
has a 2% probability of being hot, so it has a 16% probability
of conflicting with another hot page. The higher number of
conflicts explains why JC-static performs worse on bigger
datasets than on smaller datasets: large datasets hinder the
ability of JC-static to minimize conflicts at allocation time.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(a)

%
 D

R
A

M
 p

e
rf

o
rm

a
n

c
e

Time (s)

JC static (8 threads)
JC dyn (8+2 threads)

Hemem (8+2 threads)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(b)

Time (s)

JC static (16 threads)
JC dyn (16+2 threads)

Hemem (16+2 threads)

Figure 4: Hot values clustered in the array. 480GB dataset, 2%
of which is hot (9.6GB). (a) With few threads, hot pages are
rarely detected, and HeMem performs suboptimally. (b) With
a large number of threads, JC reaches optimal performance
faster than HeMem.

When the hot dataset is clustered but does not fit in the
cache. We measure performance when 50% of the data
is hot (240GB, 5× the cache size). Figure 5 presents the
performance of JC and HeMem compared to the performance
that GUPS would get if all the data were to fit in DRAM.

Interestingly, HeMem’s performance slightly increases at
the beginning of the benchmark as it brings hot pages in the
DRAM cache. JC’s performance slightly decreases as the
cache fills with dirty data. Regardless of the policy, GUPS
end up doing most of its memory accesses in PMEM because
most of the data does not fit in the cache. In their steady state,
all solutions have the same performance.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

%
 D

R
A

M

Time (s)

JC static (16 threads)
JC dyn (16+2 threads)

Hemem (16+2 threads)

Figure 5: Hot values clustered in the array. 480GB dataset,
50% of which is hot (250GB). JC and HeMem do most of their
accesses in PMEM because the hot dataset vastly exceeds
DRAM capacity, which explains the low overall performance.

When the hot dataset is not clustered. Figure 6 presents
the performance of GUPS when the hot data is not clustered.

As in the smaller experiment, HeMem cannot bring the hot
data to DRAM and performs most of its accesses in PMEM.
The performance of JC depends on the likelihood of conflicts.
When a small percentage of the data is hot (2%, 9.6GB), then
conflicts in the cache are unlikely. When most of the data is
hot, JC also performs most of its accesses in PMEM and has
the same performance as HeMem.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(a)

M
U

p
d
a
te

s/
s

Time (s)

JC (all) - 2% hot data
Hemem - 2% hot data

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(b)

M
U

p
d

a
te

s/
s

Time (s)

JC (all) - 50% hot data
Hemem - 50% hot data

Figure 6: Hot values distributed in the array, 480GB dataset.
The performance of JC depends on the percentage of hot
values. Because hot values are spread on most pages, HeMem
cannot improve performance and performs suboptimally.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 527

5.2.4 Summary

In summary:

+ Hardware caches perform well, even without any active
monitoring and page remapping. Software migration is
highly dependent on its ability to detect hot pages.

+ Hardware caches reach steady-state performance faster
than software migration.

+ Hardware caches often vastly outperform software mi-
gration when working with scattered small hot items.

5.3 BC
In this section, we evaluate the performance of BC, running
with as many threads as cores, using the default Linux page
allocator, HeMem and JC. Figure 7 presents the average dura-
tion of an iteration of the betweenness centrality algorithm.

 0
 5

 10
 15
 20
 25
 30
 35

BC 26

R
u
n
tim

e
 (

s)

Linux-DRAM
Linux-MemMode

 Hemem

JC-static
JC-dyn

 0

 20

 40

 60

 80

BC 27
 0

 30
 60
 90

 120
 150
 180

BC 28

Figure 7: BC, average duration of an iteration, in seconds
(lower is better). Linux-DRAM is the performance of BC
when all data is manually allocated in DRAM. Linux-DRAM
runs out of memory on BC 27 and BC 28. JC-static outper-
forms HeMem and JC-dyn.

When the hot data fits in DRAM With a scale of 26, BC
allocates 35GB of memory and fits in DRAM. With a scale of
27, BC allocates 70GB, but then only actively accesses 45GB,
so its "hot" dataset also fits in DRAM.

We confirm the results of the original HeMem paper:
HeMem is faster than Linux in these two configurations.
However, JC-static outperforms Linux and HeMem by up
to 3.2× and 2× respectively. On BC 26, JC-static matches
the performance of manually allocating all the data in DRAM
(Linux-DRAM in Figure 7).

The performance differences are explained by the nature
of the processing performed by BC. BC is an OpenMP ap-
plication, and each of its threads performs a fixed fraction of
the computation. The monitoring used by HeMem and JC-
dyn uses two CPU-intensive threads, and these two threads
compete for CPU with BC’s threads. Because BC’s threads
frequently wait for each other in barriers, interrupting a single
thread causes the whole application to be delayed at barriers.
When run with HeMem or JC-dyn, BC 26 spends 50% of

its time waiting at barriers. In comparison, JC-static has no
overhead during the execution of BC, BC’s threads progress
at the same pace and spend only 2.5% of their time at barriers.

The BC example again illustrates the difficulty of fine-
tuning software-migration systems. In BC, we found that the
optimal performance was reached when dividing the default
sampling rate by 10× and performing page cooling once every
second. In that configuration, the Hemem and JC-dyn versions
of BC 26 match that of JC-static in performance, and for BC
27 they improve from 60% slower to 10% slower. However,
with such a low sampling rate, no hot page is detected in
the previously tested configurations of GUPS, resulting in
JC-static being 4× faster than HeMem in that benchmark.

The poor performance of Linux is explained by conflicts
in the DRAM cache. Conflicts between hot pages are rare
(on average 500MB of hot pages conflict in BC 26), but these
conflicts are not evenly distributed between threads: some
threads end up manipulating pages that mostly conflict, while
others manipulate pages that mostly do not conflict. Threads
impacted by conflicts slow down the whole application be-
cause the fast threads spend most of their time waiting at
barriers. We measured that threads spend on average 63% of
their time waiting at barriers in BC 26.

When the hot data does not fit in DRAM With a scale of
28, BC allocates 140GB of memory and accesses 90GB of
it. In this configuration, JC-static is 5× faster than HeMem,
and HeMem is slower than the default Linux page allocation
mechanism.

The low performance of HeMem and JC-dyn is again ex-
plained by the interference between their monitoring threads
and BC, and pressure put by page migrations on PMEM.
HeMem copies data from DRAM to PMEM using DMA,
which has low CPU overhead, but still increases contention
on PMEM. HeMem ends up migrating 40GB of data dur-
ing the execution of BC 28, continuously putting pressure
on PMEM, and exacerbating the imbalance issues observed
at scale 26 and 27. At scale 28, on average threads spend
65% of their time waiting at barriers. JC-dyn performs better
than HeMem on BC 28 because it creates less contention on
PMEM: JC-dyn only infrequently migrates data (on average
4GB per run). Its overhead comes mostly from monitoring
memory accesses and cooling pages.

JC-static performs well because it is able to avoid most
conflicts at allocation time. Indeed, BC mostly operates on
two arrays: a 10GB array is frequently accessed, the other
one less so. JC-static allocates the pages of the frequently
accessed array so that they do not conflict with each other,
effectively minimizing conflicts without the need for any mi-
gration. It may seem "lucky" that the hot data was allocated at
once, which causes JC-static to place all hot pages in different
cache bins, but we found this pattern to be extremely common
in HPC applications (e.g., all the NAS applications start by
allocating large arrays, only a subset of which are hot).

528 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 5

 10
 15
 20
 25

YCSB A YCSB B YCSB C YCSB D

T
h
ro

u
g
h
p
u
t

(M
O

p
s/

s)

Linux Hemem JC-static JC-dyn

 0

 50

 100

 150

 200

YCSB E

T
h
ro

u
g
h
p
u
t

(K
O

p
s
/s

)

Figure 8: Masstree throughput (higher is better).

Summary Software-based migration requires monitoring
memory accesses to perform informed migrations. The over-
head of this monitoring can have cascading effects on HPC
applications that rely on barriers to synchronize their threads.
In contrast, it is possible to minimize conflicts in hardware
caches at allocation time, without any profiling. Hardware
caches thus vastly outperform software migrations when CPU
overheads need to be avoided.

5.4 Masstree

We configured Masstree to execute with a 120 GB database,
and we use 16 threads to avoid competition for CPU between
Masstree’s threads and the profiling and migration threads,
which run on dedicated cores. The YCSB workload used
by Masstree uses 128B items (1 billion items in total) and
follows a Zipfian distribution: 20% of the dataset is accessed
80% of the time. Most of the accesses thus target the index
(5GB) and a subset of the values (25GB).

5.4.1 Performance

Throughput Figure 8 summarizes the performance of
Masstree on the YCSB workload. In both applications, JC
outperforms Linux and HeMem by up to 2×.

The memory access behavior of Masstree is similar to that
of GUPS when the hot items are randomly scattered in the
allocated array. During initialization, items are inserted in the
key-value store in random order. It is thus possible for a hot
value to be allocated next to a cold value. Similarly, the nodes
of the index are populated in random order, and it is possible
for a hot node to sit next to a cold one. Because the hot data
is scattered on all pages, it is not possible to bring the hot
dataset to DRAM.

In the case of GUPS with distributed hot values, HeMem
could not improve the performance of the application at all
because hot items were uniformly hot. In Masstree, the index
is slightly hotter than the values, and values are accessed in
a Zipfian way. HeMem thus manages to migrate some of
the "hottest" pages to DRAM, but 45% of the memory ac-
cesses performed by Masstree still hit PMEM. In comparison,
hardware caches operate at the cache line granularity, and the

hottest nodes and values are unlikely to conflict. On average,
only 15% of the memory accesses hit PMEM with JC-static.

JC-dyn performs marginally better than JC-static because
it detects that the pages used by the index are hotter than the
pages used by the values. The difference with JC-static is
negligible (14% of the data found in PMEM vs 15%).

It may seem surprising that migrations do not improve
performance and that statically minimizing conflicts is enough
to achieve close to optimal performance in Zipfian workloads,
but conflicts between the hottest items are extremely unlikely
(items are only 128B each in a 48GB cache). The benefit
of adding active monitoring and conflict avoidance is thus
negligible on average.

Latency The migrations performed by HeMem and JC-dyn
have an impact on the observed latencies. Table 3 summarizes
the latency spikes observed while running YCSB. While all
systems have excellent 99p tail latency, the migration daemon
pre-empts the Masstree threads, sometimes delaying the pro-
cessing of a request by up to 4ms. Even though we use fewer
threads than cores, the threads are not pinned to cores. The
scheduler sometimes schedules two threads on the same core,
explaining the pre-emption delays. The phenomenon happens
when the scheduler tries to schedule threads that frequently
block and unblock, such as the migration daemon.

Configuration 99p Maximum latency
Linux 10us 10us

HeMem 10us 4ms
JC-static 10us 10us
JC-dyn 10us 4ms

Table 3: Maximum latency observed on the YCSB workload.

5.4.2 Performance over time, impact of the sampling rate

Both JC and HeMem perform better after a warm-up period:
the DRAM cache needs time to cache accessed data, and
HeMem needs time to detect and migrate hot pages to DRAM.
Figure 9 presents the evolution of the performance of YCSB
C. We initialize Masstree by inserting keys in random or-
der, and then launch multiple iterations of YCSB C. Each
iteration of YCSB C performs 10 million lookups, and keys

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 529

are accessed following a Zipfian distribution. For HeMem,
we compare 4 configurations with varying sampling rates.
HeMem-1K corresponds to the highest sampling rate, with 1
sample analyzed every 1,000 memory accesses, and HeMem-
50K to the lowest sampling rate. The default rate of HeMem
is HeMem-10K. We also evaluate the impact of the sampling
rate on JC-dyn (JC-10K and JC-50K).

Figure 9 illustrates the impact of the sampling rate on per-
formance. When the sampling rate is too high, the overhead
of sampling negatively impacts performance (HeMem-1K).
Even when the profiling and migration threads run on dedi-
cated cores, the other cores still handle the interrupts gener-
ated by the performance monitoring units of the CPU when a
memory access is sampled. These interrupts explain the lower
performance of HeMem-1K. When the sampling rate is too
low, many accessed pages are never marked as hot and are
never migrated to DRAM (HeMem-50K). In this benchmark,
the optimal performance of HeMem is reached when the sam-
pling rate is close to the default sampling rate (Hemem-5K,
Hemem-10K).

JC is less impacted by such considerations because its
performance is good even without any conflict avoidance
daemon. JC-dyn (JC-50K) also fails to detect any conflicts,
but its performance reaches 3% of our optimal configuration
after 100s of execution. Even without any conflict avoidance
daemon (JC-static), JC is only 5% slower than the optimal
configuration.

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 20 40 60 80 100M
ill

io
n

 L
o

o
ku

p
s/

s

Number of iterations of YCSB C

Hemem-1K
Hemem-5K

Hemem-10K

 Hemem-50K
Linux-Mem

JC-static

JC-10K
JC-50K

Figure 9: Performance of YCSB C. Every iteration of YCSB
C runs 10 million queries.

5.4.3 Summary

Hardware caches outperform page-based migrations when
working with scattered small items. Again, caches tend to
"work well" when conflicts are minimized at allocation time,
and their performance is not strongly dependent on monitor-
ing memory accesses to find and fix possible conflicts.

5.5 Silo

Silo is configured to execute a TPC-C workload on a 100GB
database. The TPC-C workload is heavily skewed: most of

the TPC-C data consists of the description of (sold) items, but
most of the memory accesses are done on the customer and
warehouse metadata. Figure 10 summarizes the performance
of Silo, varying the number of threads.

Due to the order of initialization of the database, most of
the hot working set used by Silo is allocated at the beginning
of the execution. JC is able to allocate hot pages in a non-
conflicting way, and HeMem allocates most of the hot pages
in DRAM. Both JC and HeMem perform equally well on this
workload, but better than Linux.

 0
 100
 200
 300
 400
 500

1 2 4 8

T
h
ro

u
g
h
p
u
t

(K
O

p
s/

s)

Number of threads

Linux-MemMode
 Hemem

JC-static
JC-dyn

Figure 10: SILO (TPC-C) throughput (higher is better)

5.6 NAS benchmarks
Figure 11 presents the performance of the NAS benchmark
suite running with Linux, HeMem and JC. We only include
applications that executed in less than 24 hours on our ma-
chine.

Most HPC applications follow the same pattern as BC:
large arrays are allocated and initialized at the beginning of
the application, and then only a subset of the arrays is used
during the execution of the algorithm. When the hot arrays
fit in the DRAM cache, JC and Linux outperform HeMem by
up to 2.8× (class D size of the NAS benchmark, on the left
of Figure 11). As BC, the NAS applications use OpenMP to
parallelize their computation, and the profiling and migration
threads of JC-dyn and HeMem have cascading effects on the
performance of threads waiting at barriers.

 0

 1000

 2000

 3000

 4000

 5000

BT.D
CG.D

EP.D
LU.D

MG.D
SP.D

UA.D

R
u

n
tim

e
 (

s)

Linux

 Hemem
JC-static

0

10k

20k

30k

CG.E
EP.E

MG.E

Figure 11: NAS application runtime (lower is better). JC
outperforms Linux and HeMem except when the hot set size
vastly exceeds the cache size (CG.E, MG.E).

The NAS benchmarks also allow us to demonstrate the lim-
itations of our approach. On MG.E, HeMem runs 1.8× faster
than JC, despite its profiling overhead. MG uniformly ac-
cesses a large array and does not benefit from DRAM caching:

530 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

most of the cached data is evicted before being reused. It is
well known that applications with uniform access to large data
sets or streaming access patterns do not benefit from caching.
For instance, in large streaming workloads, the streamed con-
tent keeps replacing itself in the cache, and data is always
evicted before being re-read. In the worst case scenario, with
DRAM caching, 100% of the memory accesses end up in
PMEM. With software-based migration, some of the data is
allocated in DRAM, and some of the memory accesses are
resolved in DRAM.

Such applications are hard to support efficiently at the ker-
nel level because no data is hot, and no conflict is particularly
worthy of fixing. However, caching could be improved at
the hardware level. CPUs already implement special cases
for streaming workloads in their CPU caches: most recent
CPUs implement QLRU, in which data that was cached by
a streaming thread is evicted before data cached by threads
performing random accesses [7]. Such a strategy could be
implemented in a DRAM cache as well, for instance by avoid-
ing caching large streams. The performance of the DRAM
cache could also be improved by optimistically flushing dirty
data to PMEM, when PMEM is idle, to reduce the latency of
future evictions of dirty data.

Summary JC-static equals or outperforms Linux and
HeMem on most NAS benchmarks. When, however, an ap-
plication does not have a clear hot dataset, but rather streams
or accesses large datasets that do not fit in the DRAM cache,
DRAM caches are inferior to software migration.

6 Discussion

Recommendations From our experience, working with
hardware caches and page migration systems, no solution
fits all workloads, but the general rule of thumb is:

• Systems that rely on monitoring memory accesses are
finicky to configure and can introduce huge performance
overheads if not properly fine-tuned. In our experience,
it is more likely for a migration daemon to be misconfig-
ured than to perform well. This observation is not unique
to this paper nor to the monitoring done by HeMem and
JC-dyn. For instance, by default, most Linux distribu-
tions deactivate AutoNUMA, the page migration dae-
mon of Linux because it negatively impacts most work-
loads. So, unless working with a known and predictable
workload, we recommend using hardware caches with a
static page allocation policy.

• When working with very large datasets that do not have
a clear hot subset, caches should be avoided.

A surprising observation of this paper is that, for many
workloads, large hardware caches perform close to optimally
with a static page allocation policy, and that having a conflict

avoidance daemon is unnecessary. This seemingly counter-
intuitive observation is explained as follows: conflicts that
would be fixed by a daemon happen between frequently ac-
cessed cache lines. The number of such cache lines has to be
small compared to the size of the DRAM: at current DRAM
speed, it takes a few seconds to read the full DRAM cache,
so any dataset that is large compared to the DRAM cache
size cannot be "frequently" accessed. Because the number
of frequently accessed cache lines is small compared to the
DRAM size, the likelihood of problematic conflicts is small
and a conflict avoidance daemon is more often a source of
overheads than useful.

It is possible to craft adversarial workloads for which the
static page allocation policy underperforms, and in which the
dynamic policy performs well. In hand-crafted corner-case
workloads, we found that running the conflict avoidance dae-
mon infrequently and with a low sampling rate was enough to
detect the most problematic conflicts and get close-to-optimal
performance.

Applicability to systems other than DRAM+PMEM To
the best of our knowledge, Intel’s Memory Mode is the only
currently commercially available hardware DRAM cache, so
we focused the performance evaluation on DRAM+PMEM
systems. We believe that the findings of this paper apply
more broadly. Indeed, we have shown that tracking memory
accesses at the software level is costly (profiling overhead)
and requires migrating a large amount of data (migration
overhead). These observations are fundamental limitations of
software migration and independent of the underlying technol-
ogy. If anything, software migration cost is likely to increase
in future hardware with larger and faster memory – higher
sampling rates will be required to detect and migrate more
pages faster, incurring even more CPU overhead.

In comparison, provided that conflicts are minimized, hard-
ware caches tend to "work well by default". Because hardware
caches perform close to optimally even without any active
conflict avoidance daemon, they can be operated with limited
or no CPU overhead, and are more likely to perform well on
future hardware.

7 Related Work

Software-managed migration Previous work focused on
managing tiered memory systems at the software level.
HeMem [20] is the state-of-the-art page migration system
for DRAM+PMEM systems. HeMem focused on reducing
the overhead of page migration, but still suffers from profil-
ing and metadata overheads. Over the years, multiple metrics
have been explored to accurately infer the heat of pages. Ther-
mostat [1] and AutoNUMA [9] compute heat by sampling
the accessed bit of the page table. Nimble [25] uses the OS
active/inactive page list. TMO [23] counts the number of cy-
cles wasted waiting for unavailable resources. HeteroOS [14]

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 531

uses hints from guest OSes to help the host OS perform in-
formed page placement decisions. X-Mem [12] uses hints
from the application developers to compute the hottest pages.
UniMEM [24] uses performance counters and hints from the
MPI runtime. Carrefour [11] gathers high-level performance
metrics from the CPU (e.g., average latency of memory ac-
cesses) to tune the frequency of memory access sampling. All
these works show that measuring heat accurately is a hard
problem, but crucial to the performance of software migration.
In this paper, we have shown that hardware caches are less
sensitive to heat measurement and can even operate efficiently
without if conflicts are statically minimized at page allocation
time.

CPU cache management systems In this work, we assume
the DRAM cache to be a 1-way directly mapped cache. This
assumption holds true on current systems, and is likely to hold
true in the future – for large caches DRAM, 1-way caches
have been shown to outperform multi-way caches [18].

Multiple strategies have been proposed for maximizing
the efficiency of CPU caches. In the early 90s, Kessler et
al. [15] simulated the relationship between page placement
and conflicts in caches and showed that it is possible to reduce
the number of conflicts at allocation time. Bershad et al. [5]
simulated the impact of page migration on the efficiency of
caches. The generalization of caches with large associativ-
ity (many-ways CPU caches) allowed CPUs to keep a few
conflicting cache lines in their caches and reduced the im-
pact of system-level page placement on the performance of
caches. These techniques have gradually been replaced by
much coarser-grain page coloring techniques that partition
the cache to avoid cache trashing between users or applica-
tions [6, 26] or by scheduling techniques to better share the
cache between cache-intensive and cache-friendly applica-
tions [2, 21, 27]. It is interesting to note that current DRAM
caches resemble the state of large CPU caches simulated in
the 90s, and that page allocation policies matter in current
tiered memory systems. In this work, we chose to avoid par-
titioning the cache. Adding page coloring on top of conflict
minimization could be implemented to give a larger portion
of the DRAM cache to an application.

The impact of page placement on cache performance has
also been studied on Intel Xeon Phis. Xeon Phis can be con-
figured to use a large MCDRAM pool as a hardware cache
that sits in front of DRAM. Intel’s Zonesort [28] aims at
limiting conflicts in the MCDRAM pool at page allocation
time. In its first release, ZoneSort [10] periodically sorted the
list of available free pages in an order that limits conflicts
with already allocated pages. The module incurred significant
CPU overhead and only partially limited conflicts. A later
version of ZoneSort [28] allocated pages from bins in a round-
robin order, an approach which does not always minimize
conflicts when pages are not freed in the same order as they
are allocated. JC always allocates pages from the bin with the

lowest heat. Zonesort was thought of as a temporary solution
for applications that have not been adapted to the Xeon Phi
architecture. In our paper, we show that the hardware manage-
ment of a tiered memory system, combined with low-overhead
conflict avoidance techniques, outperforms traditional page
migration on a wide range of workloads. We believe that
this novel counter-intuitive conclusion is important in the
widening context of cacheable disaggregated memory.

8 Conclusion

We have demonstrated that hardware caches offer better per-
formance than software management of tiered main memory
systems, provided minor modifications of the operating sys-
tem. We have shown that, surprisingly, statically minimizing
conflicts at allocation time is sufficient to avoid most conflicts
between hot pages in the cache.

Acknowledgements. We would like to thank our shepherd,
Emery Berger, and the anonymous reviewers for all their help-
ful comments and suggestions. This work was supported in
part by the Australian Research Council Grant DP210101984.

References

[1] Neha Agarwal and Thomas F Wenisch. Thermo-
stat: Application-transparent page management for two-
tiered main memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 631–644, 2017.

[2] Reza Azimi, David K Tam, Livio Soares, and Michael
Stumm. Enhancing operating system support for multi-
core processors by using hardware performance monitor-
ing. ACM SIGOPS Operating Systems Review, 43(2):56–
65, 2009.

[3] David Bailey, Tim Harris, William Saphir, Rob Van
Der Wijngaart, Alex Woo, and Maurice Yarrow. The
nas parallel benchmarks 2.0. Technical report, Techni-
cal Report NAS-95-020, NASA Ames Research Center,
1995.

[4] Scott Beamer, Krste Asanović, and David Patterson. The
gap benchmark suite. arXiv preprint arXiv:1508.03619,
2015.

[5] Brian N Bershad, Dennis Lee, Theodore H Romer, and
J Bradley Chen. Avoiding conflict misses dynamically in
large direct-mapped caches. In Proceedings of the sixth
international conference on Architectural support for
programming languages and operating systems, pages
158–170, 1994.

532 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[6] Edouard Bugnion, Jennifer M Anderson, Todd C Mowry,
Mendel Rosenblum, and Monica S Lam. Compiler-
directed page coloring for multiprocessors. ACM SIG-
PLAN Notices, 31(9):244–255, 1996.

[7] Zixian Cai, Stephen M Blackburn, and Michael D
Bond. Understanding and utilizing hardware transac-
tional memory capacity. In Proceedings of the 2021
ACM SIGPLAN International Symposium on Memory
Management, pages 1–14, 2021.

[8] Many contributors. Samsung Electronics Introduces
Industry’s First 512GB CXL Memory Module.
"https://news.samsung.com/global/samsung-
electronics-introduces-industrys-first-
512gb-cxl-memory-module", 2022.

[9] Jonathan Corbet. AutoNUMA: the other approach to
NUMA scheduling. "https://lwn.net/Articles/
488709/", 2019.

[10] Intel Corporation. ZoneSort module.
"https://github.com/oslab-swrc/flsched/
blob/main/knc/linux/drivers/zonesort/
zonesort_module.c", 2017.

[11] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: a
holistic approach to memory placement on numa sys-
tems. ACM SIGPLAN Notices, 48(4):381–394, 2013.

[12] Subramanya R Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings
of the Eleventh European Conference on Computer Sys-
tems, pages 1–16, 2016.

[13] Intel. How Does the DRAM Caching Work in
Memory Mode Using Intel® Optane™ Persistent
Memory? "https://www.intel.com/content/
www/us/en/support/articles/000055901/
memory-and-storage/intel-optane-persistent-
memory.html", 2021.

[14] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and
Karsten Schwan. Heteroos: Os design for heterogeneous
memory management in datacenter. In Proceedings of
the 44th Annual International Symposium on Computer
Architecture, pages 521–534, 2017.

[15] Richard E Kessler and Mark D Hill. Page placement
algorithms for large real-indexed caches. ACM Trans-
actions on Computer Systems (TOCS), 10(4):338–359,
1992.

[16] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[17] Amar Phanishayee, David G Andersen, Himabindu
Pucha, Anna Povzner, and Wendy Belluomini. Flex-
kv: Enabling high-performance and flexible kv systems.
In Proceedings of the 2012 workshop on Management
of big data systems, pages 19–24, 2012.

[18] Moinuddin K Qureshi and Gabe H Loh. Fundamental la-
tency trade-off in architecting dram caches: Outperform-
ing impractical sram-tags with a simple and practical
design. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 235–246. IEEE,
2012.

[19] Amanda Raybuck, Tim Stamler, Wei Zhang, Mat-
tan Erez, and Simon Peter. Hemem - artifact.
"https://sysartifacts.github.io/sosp2021/
results.html", 2021.

[20] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. Hemem: Scalable tiered memory
management for big data applications and real nvm. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 392–407, 2021.

[21] David Tam, Reza Azimi, and Michael Stumm. Thread
clustering: sharing-aware scheduling on smp-cmp-smt
multiprocessors. ACM SIGOPS Operating Systems Re-
view, 41(3):47–58, 2007.

[22] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[23] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, et al. Tmo:
transparent memory offloading in datacenters. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 609–621, 2022.

[24] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Run-
time data managementon non-volatile memory-based
heterogeneous main memory. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–14,
2017.

[25] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble page management for tiered

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 533

https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://lwn.net/Articles/488709/
https://lwn.net/Articles/488709/
https://github.com/oslab-swrc/flsched/blob/main/knc/linux/drivers/zonesort/zonesort_module.c
https://github.com/oslab-swrc/flsched/blob/main/knc/linux/drivers/zonesort/zonesort_module.c
https://github.com/oslab-swrc/flsched/blob/main/knc/linux/drivers/zonesort/zonesort_module.c
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://sysartifacts.github.io/sosp2021/results.html
https://sysartifacts.github.io/sosp2021/results.html

memory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
331–345, 2019.

[26] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. To-
wards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM European
conference on Computer systems, pages 89–102, 2009.

[27] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra
Fedorova. Addressing shared resource contention in
multicore processors via scheduling. ACM Sigplan No-
tices, 45(3):129–142, 2010.

[28] Daniluk Łukasz. mm: Add cache coloring mechanism.
"https://lkml.org/lkml/2017/8/23/195", 2017.

534 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lkml.org/lkml/2017/8/23/195

TAILCHECK: A Lightweight Heap Overflow Detection Mechanism
with Page Protection and Tagged Pointers

Amogha Udupa Shankaranarayana Gopal Raveendra Soori Michael Ferdman Dongyoon Lee

Stony Brook University

Abstract
A heap overflow vulnerability occurs when a program written
in an unmanaged language such as C or C++ accesses a memory
location beyond an object allocation boundary. Malicious
users may exploit this vulnerability to corrupt an adjacent
object in memory, creating an entry point for a security attack.
Despite decades of research, unfortunately, it still remains
challenging to detect heap overflow vulnerabilities in real-
world programs at a low cost.

We present TAILCHECK, a new lightweight heap overflow
detection scheme that leverages page protection and pointer
tagging. When an object is created, TAILCHECK allocates an
additional page-protected shadow object, called a TailObject,
placing the distance from the object to its TailObject as a
tag stored in the unused high-order bits of the object pointer.
For every access to the original object, TAILCHECK performs
an additional memory access to the TailObject, whose ad-
dress is computed using the tag. Heap overflows are detected
as page faults when an access occurs beyond the TailOb-
ject. We evaluated TAILCHECK with four server applications
(apache, nginx, memcached, redis) and the SPEC CPU2017
and SPEC CPU2006 benchmarks, successfully finding heap
overflows in SPEC CPU2017 gcc. TAILCHECK experiences
4% and 3% run-time overhead for the average and tail (99%)
latencies for server applications; and only 33% and 29% run-
time overhead for SPEC CPU2017 and SPEC CPU2006, re-
spectively, less than the state-of-the-art solution.

1 Introduction

A heap overflow [47,48] is an anomaly that occurs when a pro-
gram attempts to access a memory location beyond the bounds
of its allocated memory. This type of vulnerability is com-
monly found in programs written in unmanaged languages
such as C and C++, as these languages allow programmers to
directly manipulate pointers without providing compile-time
(e.g., as in Rust) or run-time protection (e.g., as in Java or
Go). A malicious user may exploit a heap overflow vulnera-
bility in a C or C++ program to perform a variety of security

attacks [57, 58], including corrupting code pointers to divert
control flow or leaking sensitive information.

Today, many critical software systems—such as server
applications and operating systems—are developed in un-
safe languages. Programming errors in these systems can
therefore lead to heap overflow exploitation. For example,
a vulnerability in the nginx web server (CVE-2014-0133)
allowed attackers to send a specially-crafted request that
caused a heap overflow, allowing them to execute arbitrary
code on the server. The mysql database code had a vulner-
ability (CVE-2021-2429) which allowed attackers to send
a specially-crafted request that caused a heap overflow, po-
tentially gaining access to the data or taking control of the
database. A heap overflow in the PHP programming language
related to encryption (CVE-2022-37454) could be used to
remotely execute arbitrary code on a web server. The preva-
lence of heap overflow vulnerabilities in deployed software
systems highlights the need for effective run-time techniques
to protect production systems against exploitation, even when
running vulnerable software.

Several systems have made significant strides toward run-
time mitigation of heap overflows. AddressSanitizer [54],
the state-of-the-practice solution, incurs high run-time over-
head: 80% (geometric mean) slowdown for SPEC CPU2006
applications [45]. Modern operating systems offer heap over-
flow protection by allocating an object at the boundary of a
virtual memory page and adding a protected page (with no
access permission) after it; this feature is available in Linux
as Electric Fence [49] and in Windows as PageHeap [61].
However, allocating just one object per protected page suffers
from extremely large memory overhead, along with high run-
time cost due to frequent TLB misses. Delta Pointers [28],
the state-of-the-art technique, achieves the lowest run-time
overhead (35% for SPEC CPU2006), but requires restricting
the address space of the protected application. Delta Point-
ers reserves the N most significant bits (32, by default) for
pointer tagging and supports only a 48−N bit address space
for 64-bit architectures. This limits Delta Pointers’ applicabil-
ity for modern software: it cannot be used for server software

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 535

with many-gigabyte footprints and even fails for the reference
inputs of xz and mcf in the SPEC CPU2017 suite.

In this work, we present TAILCHECK, a new lightweight
heap overflow detection scheme that leverages a cus-
tom memory allocator, OS-based page protection, and
compiler-directed pointer tagging. When an object is created,
TAILCHECK allocates an additional shadow object, called a
TailObject, at the boundary of a page whose subsequent page
is protected by the OS. The TAILCHECK memory allocator
returns a tagged pointer in which the otherwise unused most
significant bits (e.g., 16 bits for a 64-bit architecture with 48-
bit address space) encode the distance from the original object
to its TailObject, keeping the address of the original object un-
modified in the low-order bits as usual. A TAILCHECK com-
piler pass instruments each dereference of a tagged pointer,
using the embedded tag to compute the shadow address within
the corresponding TailObject and inserting an additional mem-
ory access to the shadow address alongside each access to the
original object. In the event of a heap overflow, the shadow
memory accesses reach beyond the bounds of the TailObject,
causing a page fault and triggering the OS to terminate the
program. This prevents the exploitation of heap overflow vul-
nerabilities (both over-writes and over-reads) and ensures the
integrity and confidentiality of the system.

The TAILCHECK tags allow many objects to share space
used by the TailObjects and the OS-protected pages, limiting
the memory overhead of the technique and eliminating the per-
formance overheads of frequent system calls to protect pages
during memory allocation. To further reduce run-time over-
head, TAILCHECK performs three compile-time optimiza-
tions to prune the shadow accesses for heap accesses that are
statically proven to be safe.

TAILCHECK makes use of well-known page protection and
pointer tagging techniques, yet it does not share the limita-
tions of prior solutions. TAILCHECK achieves low run-time
overhead by using page protection for heap overflow detec-
tion, but unlike Electric Fence and PageHeap, it allows multi-
ple small objects to be co-located on a virtual memory page.
TAILCHECK uses pointer tagging, but unlike Delta Pointers,
it allows a program to utilize the full address space by only
re-purposing the otherwise unused most significant bits.

We implemented TAILCHECK by extending the mimalloc
allocator [33] and developing LLVM [31] compiler passes for
code instrumentation. We evaluated TAILCHECK with four
server applications (apache, nginx, memached, redis) and
the SPEC CPU2017 and SPEC CPU2006 benchmark suites.
Interestingly, TAILCHECK identified an out-of-bounds read in
SPEC CPU2017 gcc (v4.5.0), a known bug with an available
patch [1], yet the patch is not present in SPEC CPU2017
v1.0.5. For performance, TAILCHECK experiences 4% and
3% run-time overhead for the average and 99% tail latencies
for server applications. TAILCHECK exhibits 33% (geometric
mean) run-time overhead and 3% memory overhead for SPEC
CPU2017. TAILCHECK exhibits 29% (geometric mean) run-

time overhead for SPEC CPU2006, lower than Delta Pointers,
the state-of-the-art compiler-based solution with the lowest
previously-reported run-time overhead (35%).

This paper makes the following contributions:
• To the best of our knowledge, TAILCHECK is the first

lightweight heap overflow detection scheme based on page
protection that does not place one object per page.

• TAILCHECK introduces a new pointer tagging scheme for
heap overflow detection, which encodes distance metadata
only in the otherwise unused pointer bits and thus does not
restrict the application address space.

• An evaluation of TAILCHECK demonstrates that it incurs
low run-time and memory overheads and supports applica-
tions with large many-gigabyte memory requirements.

2 Background & Motivation

This section briefly describes the background on heap over-
flows, discusses the threat model we assume in this work, and
highlights the need for a new solution.

2.1 A Heap Overflow Vulnerability
The lack of run-time and compile-time heap overflow protec-
tion in C and C++ exposes many critical software systems to
security threats. Stack-based buffer overflows have received
significant early attention from both academia and industry.
Mature mitigations using stack canaries [11] and shadow
stacks [60] are readily available: for example, GCC and
Clang have built-in support with the -fstack-protector
and -fsanitize=safe-stack compiler flags. On the con-
trary, standard solutions for heap overflows have not yet been
settled, with solutions offering trade-offs in run-time and
memory overheads, soundness, and completeness (§2.3).

Heap overflows are responsible for many critical real-world
security problems. A heap overflow over-write is particularly
critical as it may allow malicious users to divert the control
flow of a victim program or gain privilege escalation. For
instance, a heap overflow over-write vulnerability is found in
sudo (CVE-2021-3156), a widely-used utility on Unix-like
operating systems, which enables a user to run programs with
the security privileges of another user. This heap overflow
was particularly critical in that an attacker could control not
only the size of the buffer that can be overflowed but also the
size and contents of the overflow. As a result, when exploited,
the vulnerability could allow an unprivileged malicious user
to gain root privileges on a vulnerable host.

A heap overflow over-read can lead to information leakage.
The Heartbleed [19] vulnerability in the popular OpenSSL
cryptographic software library (CVE-2014-0160) is a repre-
sentative example. A missing bounds check in the SSL/TLS
heartbeat extension could be exploited to reveal up to 64KB
of memory, which may include private keys and other secrets.

536 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 Threat Model

In this work, we address the threat of overflows on heap-
allocated objects. We assume an attacker can feed a crafted
malicious input to a victim program to exploit a heap overflow
vulnerability. We mitigate heap overflows (both over-write
and over-read) that occur in application and library code that
can be instrumented with our tool, providing integrity and
confidentiality when the underlying software contains vulner-
able code. We provide no protection for uninstrumented code
such as third-party libraries. We do not consider other mem-
ory safety violations such as use-after-free or uninitialized
read vulnerabilities.

2.3 Motivation: Haven’t we solved it yet?

Given the critical implication for security, many solutions
have been proposed for mitigating heap overflows. We present
several representative works, discussing their limitations and
the lessons that we draw upon when designing TAILCHECK.
A more comprehensive related work discussion follows in §8.

The idea of leveraging a virtual memory protected page to
detect a heap overflow dates back to 1987. Electric Fence [49],
proposed by Perens and now included in Linux, was the first
to place allocated objects immediately before protected pages,
which are configured by the OS to trigger a hardware page
fault when accessed. Reads or writes beyond the allocated
object would land on the protected page, triggering a fault
and allowing the OS to mitigate the heap overflow. Succes-
sors to Electric Fence, including DUMA [5], DYBOC [56],
OSX’s libgmalloc [35], and Windows’ PageHeap [61] follow
a similar design. However, despite its simplicity, the approach
of allocating one heap object per virtual memory page has un-
acceptable memory overhead. Moreover, this approach incurs
large run-time overheads from multiple sources: performing
system calls to protect a page on every heap allocation is
expensive, spreading heap allocations across many pages re-
sults in excessive TLB misses, and placing objects at common
offsets from the end of memory pages increases data cache
contention. For example, Liu et al. [36] reports Electric Fence
incurs a 7x slowdown for the PARSEC benchmarks [7]. As
a result, the idea of using protected pages for run-time heap
overflow mitigation has lost its attraction and is rarely found
outside of debugging environments. Using protected pages
can offer heap overflow protection without explicit metadata
lookups and bounds checks, yet require a new solution that
supports placing multiple objects per virtual memory page
and avoids frequent page protection system calls.

AddressSanitizer (ASan) [54] is an alternative approach
with lower run-time overhead. ASan manages a fine-grained
inaccessible region called a redzone after each allocated ob-
ject by maintaining a disjoint shadow (metadata) memory
space. On each memory access, ASan looks up the metadata
space and checks if the target location falls in a redzone. Other

prior solutions, notably SoftBound [40], keep base and bound
metadata in a shadow memory space. On each memory access,
SoftBound performs a metadata lookup and explicitly checks
that the instrumented access falls within the object bounds.
Although the implementation details differ across these sys-
tems, they all share two downsides. First, the metadata lookup
(comprising additional shift, add, and load instructions) and
bounds check (including comparison and branching instruc-
tions) have significant run-time overhead. Second, the red-
zones and metadata store incur significant space overheads.
For example, for the SPEC CPU2006 benchmarks, Oleksenko
et al. [45] report 1.8x run-time and 4x memory overheads for
ASan, and 2x run-time and 3x memory overheads for Soft-
Bound. Such performance overheads and memory capacity
requirements are unacceptably high for modern large-memory
performance critical applications which would most benefit
from run-time heap overflow protection.

To reduce the metadata overheads and/or to facilitate meta-
data lookup, researchers proposed pointer tagging techniques
that keep metadata in the high-order bits of a pointer itself
(e.g., unused 16 bits in 64-bit architecture). For instance,
Baggy Bounds [2] tags a pointer with the encoded size of
an object. However, Baggy Bounds still requires expensive
array table look-ups and bounds checking on pointer arith-
metic. Taking one step further, Delta Pointers [28] remove
the bounds check (comparison and branching instructions)
by transforming the heap overflow detection problem into an
integer overflow detection problem, managing pointer tags
in a way that would cause out-of-bound pointer arithmetic to
set an overflow bit in the tags, thereby making such pointers
“uncanonical” and causing the MMU to generate a fault on
dereference. Delta Pointers are considered the state-of-the-art
software-only solution based on its low run-time overhead, ex-
hibiting only 35% slowdown for SPEC CPU2006 benchmarks.
However, Delta Pointer tags must include the distance from
the current pointer to the end of an object, requiring signifi-
cantly more than 16 bits for large objects. To work around this
limitation, Delta Pointers shrink the process address space.
By default, Delta Pointers use a 32-32 bit split, supporting
applications with up to 4GB of address space. Delta Pointers
offer a glimpse of a low-overhead solution without metadata
lookups or bounds checks, but are still limited in terms of
practicality due to its address space restrictions.

3 TAILCHECK Design

TAILCHECK extends the memory allocator and compiler to
produce executables that are protected against heap overflow
exploitation at run-time. Whenever a programming error leads
to an access that overruns the end of a heap-allocated object,
TAILCHECK ensures that a hardware page fault is triggered,
causing the operating system to mitigate a potential attack by
trapping the fault. Although this effect can be achieved by
placing each heap object at the end of its own virtual memory

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 537

low
addr.

high
addr.

p100
0100

Tagged ptr.
Original ptr. 0200

q200

distance: p
distance: q

0100+p == 0200+q

… …

protected
page

A

TailObject

B

Figure 1: TAILCHECK allocates a (shadow) TailObject at the
boundary of a protected page and tags object pointers with the
distance between the original and shadow objects.

… …

low
addr.

protected
page

A

TailObject

p110
0110

Tagged ptr.
Original ptr. 0210

p210

distance: p

0110+p

distance: p
page
fault

0210+p

B

Figure 2: TAILCHECK adds shadow memory access for the
TailObject. A heap overflow beyond object A is detected as a
page fault on the shadow access beyond its TailObject.

page (followed by a protected page) [49], such an approach
is prohibitively expensive; allocating a virtual memory page
for each heap object results in massive heap capacity bloat,
while performance is severely impacted at the time of alloca-
tion (due to configuring a protected page on each allocation)
and also at the time of use of the allocated object (due to a
significant increase in TLB and cache pressure).

Rather than coupling each heap object with its own pro-
tected page, TAILCHECK reserves one TailObject and a pro-
tected page per memory region managed by the heap allocator.
Figure 1 depicts this arrangement. When the TAILCHECK
memory allocator requests a region of memory from the OS,
it reserves space for the TailObject and configures a protected
page at the end of the region. After this, the allocator places
dynamically allocated heap objects, such as A and B, as usual.

To trigger a page fault on a heap overflow, the TAILCHECK
compiler instruments the application code to perform a
shadow memory access to the TailObject alongside each load
and store operation to the original heap object. Figure 1 shows
that the base address of object A is a known distance p away
from the base address of its TailObject. The base address of
object B is similarly a known distance q from its TailObject.
To compute the address for the shadow memory access, the
compiler simply adds the offset (p or q in this example) to the
address of the original access, as shown in Figure 2. Although
an access beyond object A (e.g., to the address p210) would
erroneously read or write data belonging to object B, the cor-
responding shadow access (e.g., to the address 0210+p) that
TAILCHECK performs before the original object access will
exceed the bounds of the TailObject, attempting to access the
protected page and triggering a page fault.

To store the distances (such as p and q) from the moment
when heap objects are allocated to the time when they are
accessed, TAILCHECK uses tagged pointers. We leverage the
otherwise unused high-order bits of pointers to store the dis-
tances, using the compiler to emit code that masks these high-

order bits before performing an access to the original object
and adds the distance encoded in these bits to compute the
address of the shadow access. Modern x86 and ARM systems
use a 48-bit address space, leaving 16 unused bits in 64-bit
pointers, thereby allowing TAILCHECK to store distances for
allocator regions of up to 64KB. A key advantage of this ap-
proach is that the distances encoded in the tagged pointers are
propagated implicitly, requiring code instrumentation only
at the time of pointer dereference or comparison. Notably,
TAILCHECK still protects large heap objects allocated within
their own allocator regions by using protected pages and set-
ting the distance for shadow accesses to 0, therefore treating
all accesses uniformly, but incurring a small overhead due to
the duplication of memory accesses to the large objects.

We note that reserving space for the TailObjects is neces-
sary because shadow memory accesses for stores write data
into the TailObject space. Although these data are never used,
if the space were not reserved, the application could allo-
cate an unrelated object in the same space (at the end of the
managed region), causing the shadow stores to clobber that
object. An alternative implementation, which uses shadow
loads for the corresponding original object stores, is possible.
At first glance, this arrangement would eliminate the mem-
ory overheads of TAILCHECK. However, this approach can
have significant performance drawbacks because loads are on
the critical path of the processor pipeline and have a higher
execution cost compared to stores.

3.1 TAILCHECK Code Instrumentation

We use the compiler to add TAILCHECK to executables. The
compiler performs three tasks: it replaces memory allocation
calls with the TAILCHECK allocator, adds shadow memory
accesses at pointer dereference sites, and masks pointer tags
when interacting with uninstrumented code (e.g., shared li-
braries). We detail these tasks below.

538 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Allocator Injection. TAILCHECK uses a custom mem-
ory allocator. Unlike regular allocator functions that return
a pointer carrying the address of the allocation in virtual
memory, the TAILCHECK allocator functions return a tagged
pointer. The tag is inserted into the otherwise unused high-
order bits of the returned value, and corresponds to the dis-
tance between the address of the allocated heap object and
the address of its corresponding TailObject.

Replacing the memory allocator provided by the standard
library is traditionally done with the dynamic linker. However,
TAILCHECK needs its custom allocator only for the heap ob-
jects that it protects. To inject its custom allocator during code
instrumentation, the TAILCHECK compiler identifies alloca-
tor calls (e.g., malloc, new, strdup, etc.) and replaces them
with their TAILCHECK allocator equivalents. Any code linked
into the executable, but not instrumented with TAILCHECK,
continues to use the unmodified system allocator.

For each allocator-managed memory region requested from
the OS by the TAILCHECK allocator, we reserve space for the
TailObjects at the end of the region and mprotect the virtual
memory page immediately following the region. TAILCHECK
requires for the TailObject reservation at the end of the man-
aged memory region to be as large as the largest object allo-
cated within that region. In practice, it is common for modern
allocators to separate memory regions by size class, dividing
each region into slots of this size and allocating one object per
slot. With this strategy, the TAILCHECK allocator can simply
reserve the last slot within each managed memory region. No-
tably, the distance encoded in the pointer tags is computed for
the TailObject address equal to address_of_protected_page
minus size_of_allocated_object, which lands in the middle of
the reserved slot whenever the allocated object size is smaller
than the size class, or lands at the start of the reserved slot
when the allocated object size equals the size class.

When the requested allocation size is larger than the
largest allocator size class (e.g., one that requires multi-
ple virtual memory pages), modern allocators switch to a
large-object allocation mode where a separate memory re-
gion is requested from the OS. When handling large-object
requests, the TAILCHECK allocator will mprotect a page
immediately following each allocated large object and com-
pute the returned pointer as address_of_protected_page minus
size_of_allocated_object, effectively falling back to the be-
havior of Electric Fence. For such large-object allocations,
the tag of the returned pointer is set to 0.

We note that, when computing TailObject addresses, we
round up the size_of_allocated_object to honor the original
object’s memory alignment requirements. This is useful for
both correctness and performance, as we want the shadow
access instructions to have the same alignment properties as
their corresponding original object access instructions. As
a result of this rounding, objects whose requested size is
not a multiple of their alignment size will have a small (sev-
eral bytes) region where heap overflows may go undetected

with our TAILCHECK implementation. We discuss the gener-
ally benign nature of such overflows and the ramifications of
adding support for precise overflow detection independent of
alignment constraints in §7.2.

Memory Access Instrumentation. The TAILCHECK com-
piler operates at module granularity, treating all pointers local
to a module as tagged pointers. On every pointer dereference
in the instrumented code, a tagged pointer must be decon-
structed into two parts, the object address (by masking the tag)
and the shadow access address (by adding the tag to the object
address). A compiler pass iterates over the pointer derefer-
ences, inserting compiler IR for tag handling and injecting
the TailObject shadow accesses. Each shadow access (load or
store) is performed first, immediately followed by the original
object access. For both loads and stores, the same store value
and load target registers can be used by the two accesses,
avoiding tying up additional register resources for the shadow
accesses. Compiler optimization passes are performed both
before and after the TAILCHECK instrumentation pass, ensur-
ing that all dereferences eliminated by the optimizer are not
instrumented and that the address calculation code for han-
dling the tagged pointers is optimized. The shadow accesses
are marked as volatile to ensure that they are not moved or
eliminated as dead code.

Pointer arithmetic with integers does not require special
handling for tagged pointers. However, whenever a tagged
pointer is compared (either to another tagged pointer or to
NULL), the TAILCHECK compiler must mask the tag bits prior
to the comparison. Similar to the case of pointer derefer-
ence instrumentation, comparison tag manipulation logic is
inserted as compiler IR, allowing an optimization pass to
minimize the overhead of these operations.

We note that memory access instrumentation does not dif-
ferentiate between objects allocated with the regular and large-
object modes. All pointers within the instrumented code are
treated as tagged pointers. For large-object allocations, the
tags are set to 0 by the memory allocator, resulting in minor
overhead for tag manipulation and harmless shadow accesses
that load or store exactly the same address as the original
access. Uniform handling of tagged pointers simplifies the
implementation, while the overhead of back-to-back instruc-
tions that access the same cache line is minimal in modern
superscalar out-of-order processors.

Linking with Uninstrumented Code. Although it is theo-
retically possible to compile all modules of a program with
TAILCHECK instrumentation, in practice, we must provide
the ability to link against uninstrumented modules, such as
shared libraries. In these situations, pointers passed by instru-
mented code into uninstrumented code (e.g., library function
calls that have pointers in their arguments) must have the
pointer tags removed. Even if all libraries, including the stan-
dard library, are instrumented with TAILCHECK, there are still

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 539

situations where pointers are passed as arguments to system
calls, also requiring the stripping of tags.

The TAILCHECK compiler performs a pass over the instru-
mented module to identify all function call sites. Calls to
functions within the same module receive unmodified tagged
pointers as arguments. However, for calls to external func-
tions, compiler IR is inserted to mask the tags of all pointer
arguments. Notably, it is safe to pass function pointers of
instrumented functions to uninstrumented code (e.g., as call-
backs), as any pointer arguments passed by uninstrumented
code into these functions will have tags set to 0 and will
execute correctly, albeit with harmless duplicated memory
accesses as in the case of the large-object allocations.

TAILCHECK keeps pointers without tags in globals be-
cause they may be accessed by uninstrumented libraries. To
this end, TAILCHECK identifies all pointer stores to global
variables in the instrumented code and ensures that the val-
ues written into these variables are masked prior to being
stored. The TAILCHECK compiler uses the LLVM instruc-
tion operand type GlobalVariable to identify globals (after
calling stripPointerCasts on the operand). There is a pos-
sibility that TAILCHECK may store a tagged pointer into a
global if a program uses a local alias to write to that global,
potentially leading uninstrumented code to later dereference
a tagged pointer stored in the global. However, we observe
that accessing a global variable via a local pointer alias is
uncommon in practice: during our evaluation (§6), none of
the tested server, SPEC CPU 2017, or SPEC CPU 2006 appli-
cations shows any unexpected behavior (e.g., segmentation
fault), which would happen if uninstrumented libraries ac-
cessed tagged pointers in globals. Thus TAILCHECK does
not perform additional pointer alias (provenance) analysis.
Furthermore, we treat the environ variable as a special case
where not only the variable itself, but also the nested pointers
within its structure, are written with their tags masked.

Finally, if the standard library is not instrumented with
TAILCHECK, there are two classes of commonly used func-
tions (mem* and str*) that can benefit from special handling,
following the practices of previous works [28, 29, 45]. These
functions are often responsible for heap overflows, making it
practical to insert bounds checks at their call sites when their
function bodies (part of the standard library) are not instru-
mented. For the MemIntrinsics functions (memcpy, memmove,
and memset), we inject a TAILCHECK-like bounds check by
performing a shadow access to the last byte of the arrays
passed as arguments. Notably, we must first check that the size
argument is non-zero, as the function semantics dictate that
no pointer dereferences occur if the size is zero. The common
string manipulation functions (e.g., strstr, strchr, etc.)
return pointers. Although instrumented code handles these
functions correctly (treating them like other 0-tag pointers),
calling these functions effectively removes TAILCHECK pro-
tection from the pointers passed to them. To avoid losing heap
overflow protection after these function calls, TAILCHECK

instruments the call sites of these functions to save the tags of
the pointer arguments before the call and re-applies the tags
on the returned pointers. Similarly, TAILCHECK masks tags
in the return values of those functions that convert a string to
a number (e.g., strtol) when used in arithmetic operations.

Mixing Memory Allocators Having the same allocator
in the application and shared libraries is not a requirement
for TAILCHECK. In our setup, we use LD_LIBRARY_PATH to
ensure that all linked libraries use the TAILCHECK mem-
ory allocator, primarily to maintain performance consistency
across all experiments. However, it is worth noting that li-
braries cannot and should not call free() on objects they
did not allocate themselves [53]. If application code includes
such a construct, it would cause failures in many scenarios
(e.g., where custom allocators are used), including with the
TAILCHECK allocator.

Custom Memory Allocators By default, TAILCHECK pro-
tects heap objects that are allocated and deallocated via stan-
dard interfaces (e.g., malloc, realloc, and free), replaced
by LD_LIBRARY_PATH. Thus, there could be a heap protec-
tion granularity mismatch if an application uses a custom
allocator. For example, for an application-level pool (slab) al-
locator, TAILCHECK may protect a malloc-allocated pool at
a coarse granularity, not at the fine-grained custom allocation
granularity. Our nginx server evaluation (§6) compares two
cases with and without application-level pool allocations (by
disabling a pool allocator using a debugging flag).

3.2 TAILCHECK Optimizations
To reduce the performance overheads of TAILCHECK, we
apply several compiler IR optimizations that reduce the cost
of instrumentation. We detail these optimizations below.

Merging Tag Handling. The tags of TAILCHECK tagged
pointers remain constant throughout the lifetime of the pointer.
When the same pointer is dereferenced multiple times within
a function, potentially with different offsets (for accessing dif-
ferent members of the heap object), the operations to compute
the TailObject pointers are redundant. To reduce the overhead
of this common case, the TAILCHECK compiler instrumenta-
tion pass keeps track of the computed TailObject pointers and
reuses their already computed values.

Hoisting Tag Handling. Heap pointers are frequently deref-
erenced inside loops, accessing different locations within the
same heap object (i.e., if the object is an array). To reduce
the overhead of tag handling, we hoist the computation of
the TailObject pointer outside of the loop, leaving only the
dereference operations inside the loop body. As a result of
this optimization, the TailObject accesses within the loop

540 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

body exactly mimic the original object accesses, including
using the same x86 scale-index-base-displacement for the
shadow memory access and pushing all other TAILCHECK
instrumentation overheads outside of the loop body.

Statically Safe Dereferences. TAILCHECK is effective at
preventing heap overflow exploitation with relatively low over-
heads at run-time. However, while many pointer dereferences
must be verified (e.g., using shadow accesses to the TailOb-
jects), some of the checks are unnecessary because static
analysis of the code can guarantee that all accesses remain
within the bounds of a heap object. As such, to further reduce
the overhead of TAILCHECK, we adopt the SafeAllocs [28]
static analysis implementation from the Delta Pointers work.

SafeAllocs identifies all heap allocations with statically
known sizes and uses the compiler metadata to track object
bounds along with the pointer corresponding pointer. When-
ever such pointers are dereferenced in the code, the compiler
checks if the offset of the dereference can be statistically
determined and, if it can be determined and falls within the
object bounds, a run-time check is unnecessary.

When SafeAlloc indicates that all accesses to a heap object
are known to be safe at compile time, TAILCHECK uses the
standard memory allocator for these objects and does not in-
troduce shadow accesses for them. Some heap objects have
both dereference sites that are known to be safe and also
dereference sites that must be checked at run-time. We stati-
cally identify the safe regions at function granularity, avoiding
shadow accesses for objects whose accesses are known to be
safe. This also requires masking the tag bits of these pointers
in the function preambles, as these objects are still allocated
using the TAILCHECK custom allocator and the function call
sites continue to pass arguments as tagged pointers.

4 TAILCHECK Implementation Details

We develop the TAILCHECK prototype by extending the mi-
malloc allocator [33] and developing LLVM [31] compiler
passes for code instrumentation. Tagged pointers are returned
by the TAILCHECK allocator for allocations up to 16KB, with
all larger requests treated as large-object allocations.

The TAILCHECK instrumentation is performed using three
compiler passes. First, a SafeAllocs pass is done to iden-
tify optimization opportunities. Then a Call-Site Instrumenta-
tion pass replaces memory allocation function calls (malloc,
calloc, realloc, strdup, strndup, and free) with the
TAILCHECK custom allocator versions of these functions
and masks pointer arguments at call sites of external func-
tions. The Dereference Instrumentation pass inserts shadow
loads and stores to the TailObjects for all heap objects requir-
ing run-time checks. These passes are performed as part of
the link-time optimization, ensuring that all statically linked
sub-modules are combined together into one module for

TAILCHECK instrumentation before the passes are performed.
Standard LLVM compiler optimization passes are performed
both before and after the TAILCHECK passes.

We take special care to handle function arguments with
the byval attribute. In LLVM, the byval attribute at a call site
means that the pointer must be dereferenced and the resulting
value copied before being passed as an argument. Because
the LLVM byval mechanisms cannot handle tagged pointers,
we mask the tags of all pointers with the byval attribute.

All tagged pointer-based solutions present challenges when
linking to uninstrumented libraries, as tagged pointers must be
masked before being passed to functions in uninstrumented
code. Although pointers to data structures have their tags
masked at the function call sites by the Call-Site Instrumenta-
tion pass, the nested pointers within these data structures are
written as tagged pointers by the TAILCHECK instrumented
code and cannot be directly dereferenced by the uninstru-
mented functions. As in prior work [2, 8, 28], we assume that
we can soundly enumerate all call sites of external uninstru-
mented functions that will operate on nested pointers, and in-
ject the necessary instrumentation code to mask nested tagged
pointers. Notably, most C++ Standard Template Library (STL)
containers do not require masking of nested pointers because
they are implemented in header files and thus come within
our instrumentation scope. For the select cases we encoun-
tered in our benchmark applications that require masking, we
manually add the appropriate instrumentation as discussed
in §5. In §7.3 we discuss how TAILCHECK may take advan-
tage of the ARM top-byte-ignore Memory Tagging Extension
(MTE) [3] and similar features in other ISAs to avoid the need
for explicitly masking pointer tags.

5 Evaluation Methodology

We conduct all experiments on a system with an Intel Xeon
Gold 5218 CPU. To benchmark TAILCHECK, we use four
popular server applications (apache v2.4.54, nginx v1.22.1,
memcached v1.6.17, redis v7.0.6), as well as the C and C++

applications from the SPEC CPU2017 and SPEC CPU2006
benchmark suites. For SPEC CPU2017, we use the speed set
and limit applications to one thread.

Server applications often have a custom pool-based
allocator. To evaluate potential performance differences
between coarse-grained and fine-grained memory alloca-
tions, in addition to the nginx server results, we also
present “nginx (w/o poolalloc),” which is compiled with the
-DNGX_DEBUG_PALLOC=1 flag to disable its custom pool allo-
cator and to use malloc and free directly. apache (v2.4.54)
and memcached (v1.6.17) do not provide similar pool alloca-
tion on/off options, while redis does not use pool allocation.

To quantify the performance of the web servers apache,
nginx, and nginx (w/o poolalloc), we measure request latency
using the hey HTTP load generator [16]. We create two work-
ers to repeatedly request a file 256 times per second. We test

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 541

four different file sizes: 32KB, 128KB, 512KB, and 2MB. We
configure apache with two worker threads and nginx with
one worker process. For the key value stores, memcached and
redis, we measure the request latency with four workers,
each requesting 128,000 keys with a 50% get/set ratio. We
use a key size of 16 bytes and four different object sizes:
32B, 128B, 512B, and 2KB. For the SPEC CPU2017 and
SPEC CPU2006 benchmarks, we measure performance with
reference input as wall-clock time of program execution.

For a fair comparison across all systems, we use unmod-
ified mimalloc [33] for all evaluated configurations except
TAILCHECK. For TAILCHECK, we use unmodified mimalloc
for the uninstrumented code and only extend the mimalloc
functionality with wrappers for the allocation functions, re-
taining all of the core functionality of the mimalloc allocator
even when called from the instrumented code. The memory
overheads we report are measured as peak resident set size.

As part of our evaluation, we include a comparison to Delta
Pointers [28] and AddressSanitizer [54]. To ensure fairness,
we reproduce the Delta Pointers results in our test environ-
ment after enabling only the comparable heap overflow pro-
tection features and ensuring that all available optimizations
are applied. To make the results directly comparable, we per-
form this study with the same SPEC CPU2006 benchmark
suite that was used in the original Delta Pointers publication.
AddressSanitizer is compared for the server applications.

TAILCHECK works for all SPEC CPU 2017 benchmarks
using LLVM -O3 with Link Time Optimization (LTO). How-
ever, we use -O2 and LTO in our evaluation to make the results
directly comparable to the prior work [28]. We introduced spe-
cialized handling for the following benchmark applications
to address compatibility issues with uninstrumented libraries:

• In the case of 403.gcc, pointers stored in “long long” vari-
ables are passed to functions invoked through function
pointers. Consequently, an uninstrumented libc function
is called with a long long argument containing a tagged
pointer. This causes a segmentation fault in the uninstru-
mented code, with the faulting address being a tagged
pointer. Debugging this situation is straightforward, as
the stack trace directly points to the problem. To ad-
dress this, we utilized source instrumentation and manual
pointer tag masking in the benchmark sources, similar
to techniques applied in previous works [28, 29, 45].

• 520.omnetpp employs a C++ data structure, evbuf, in-
herited from basic_stringbuf. This object contains
a nested tagged pointer, whose information is lost due
to C++ inheritance, leading to a tagged pointer being
passed to a libstdc++ function. This triggers a segmenta-
tion fault, easily identified by the faulting tagged pointer.
To overcome this, we explicitly marked the evbuf type
to ensure its members are always written as untagged
pointers, thereby maintaining the integrity of the passed
pointer irrespective of inheritance nuances.

Except for the above two cases, TAILCHECK is compat-
ible with many complex real-world applications, including
four servers and all other SPEC CPU 2017 and SPEC CPU
2006 applications. We note that although the two exception
cases were easily identifiable and debuggable because they
triggered a segmentation fault, it is theoretically possible that
a tagged pointer may lead to silent data corruption and exhibit
an observable event far later in time. TAILCHECK provides
limited support for such cases, and fixing them may require
manual code reviews. Indeed, addressing compatibility is-
sues with uninstrumented libraries is a common limitation
of pointer tagging-based solutions [2, 8, 28] with a notable
exception LowFat [30] (see related work discussion in §8.2).

6 Evaluation Results

Below, we first describe the heap overflow vulnerabilities that
were successfully caught by TAILCHECK. We then present
the performance and memory overheads of our technique,
and explain the impact of the optimizations described in §3.2
which mitigate some of the performance impacts. Finally,
we present a comparison with the prior art, demonstrating
comparable and lower overheads compared to Delta Pointers,
without being subject to its address space limitations.

6.1 Heap Overflow Detection
We developed a set of test cases that exhibit various types of
heap overflows to ensure that a segmentation fault is experi-
enced when running such cases when the code is instrumented
with TAILCHECK. The cases were drawn from prior empir-
ical studies [36, 65] that analyzed the types and frequencies
of heap overflows in 85 CVEs. For example, our test suite
includes the following cases:

• Loop accessing heap-allocated arrays, representing
35/85 studied CVE cases (41%).

• memcpy(), memset(), or memmove() into an insuffi-
ciently large buffer; 18/85 cases (21%).

• strncpy(), strncmp(), or sprintf() into an insuffi-
ciently large buffer; 6/85 cases (7%).

• Incorrect pointer arithmetic; 8/85 cases (9%).

• Accessing a derived class member on a base class object

• Attempting to iterate through char* cast to long*

Beyond the artificial test cases that we created,
TAILCHECK also uncovered a heap overflow read in
the SPEC CPU2017 gcc application (v4.5.0. function
vn_nary_may_trap in tree-ssa-sccvn.c:3365). When
instrumented with TAILCHECK, the application triggered
a segmentation fault and produced a core file pointing
to the error. This heap overflow was present in the code
for 16 months before being detected with Valgrind (PR

542 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

average 99th% memory
latency latency

apache 4% (3~6%) 3% (1~5%) 26% (15~32%)
nginx 2% (1~3%) 3% (1~5%) 41% (32~45%)

nginx (w/o poolalloc) 4% (3~6%) 3% (0~6%) 49% (44~52%)
memcached 3% (2~3%) 4% (3~5%) 2% (1~3%)

redis 6% (5~7%) 4% (0~18%) 3% (1~5%)

(Mean) 4% 3% 17%

Table 1: TAILCHECK runtime overhead (average latency and
99th% latency) and memory overhead on server applications,
normalized to an uninstrumented base system. The latencies
and memory overhead slightly vary for different file and object
sizes tested. The first percentage is a geometric mean and the
two numbers in parenthesis represent the range. The overall
geometric (Mean) is computed for four servers, excluding
nginx (w/o poolalloc), across all input sizes.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
un

 T
im

e
(n

or
m

al
iz

ed
 to

 b
as

e)

Figure 3: TAILCHECK run-time overhead on SPEC CPU2017,
normalized to an uninstrumented base system.

tree-optimization/44124 [1]). The bug made it into the SPEC
CPU2017 suite v1.0.51 and, to the best of our knowledge,
TAILCHECK is the first to report it in the literature.

6.2 TAILCHECK Performance

We present the performance overhead of TAILCHECK on
server applications in Table 1, which shows the average and
99th-percentile latencies. Both latencies vary only slightly for
different test input sizes: 32KB, 128KB, 512KB, and 2MB
files for web servers and 32B, 128B, 512B, and 2KB objects
for key-value stores. There were no noticeable differences
for nginx with and without application-level pool allocations.
Redis with 2KB objects shows the highest 99th% latency
overhead of 18%, yet with high variance. All the rest, in-

1The bug patch has been merged to gcc v4.5.1. The ChangeLog of SPEC
CPU2017 does not indicate version update or bug fix.

cluding redis with smaller objects, show minor performance
degradation (≤7%). An individual 99th-percentile latency
result for different file/object sizes can be also found in Fig-
ure 5 (for the comparison with AddressSanitizer [54]). The
geometric mean across the four servers was 4% and 3% for
the average and 99th-percentile latencies, respectively.

The TAILCHECK performance results for SPEC CPU2017
are shown in Figure 3. The geometric mean of the
TAILCHECK performance overhead for SPEC CPU2017 is
33%, among which perlbench shows the highest 1.8x slow-
down. We present a performance comparison study with prior
art in §6.5. Overall, we find that the combination of these
servers and SPEC CPU performance results indicate over-
heads that are likely low enough to warrant production use of
TAILCHECK for run-time heap overflow detection in security-
conscious environments.

6.3 TAILCHECK Memory Usage
In addition to the performance overheads, TAILCHECK in-
creases application memory requirements because it reserves
space for the TailObjects at the end of each allocator managed
region. Table 1 (last column) shows the memory overhead for
the server applications. The relative increase in memory usage
was small for the key-value store applications, while nginx
shows the highest overheads. In TAILCHECK, a protected
page for small objects is a virtual page with no access permis-
sion and thus does not require a physical page. However, for
large objects, TAILCHECK still requires one TailObject and
one protected page. Upon further investigation, we found that
at start-up, nginx allocates a large number of large objects,
incurring a relatively high memory overhead. However, we
also observed that once initialized, its peak RSS does not
change while serving client requests. Nginx (w/o poolalloc)
allocates more (non-pool) large objects, showing a slightly
higher memory overhead than nginx with pool allocations.

Next, we present the memory overheads in Table 2 for
SPEC CPU2007 applications. Because TAILCHECK shares
the space of the TailObjects for small objects within a re-
gion, the capacity overheads is minimal. The most affected
benchmarks (perlbench, gcc, and nab) experience only a
9% increase in the peak RSS. The geometric means were 17%
for the servers and 3% for the SPEC CPU2017 applications.

6.4 Analysis of Optimizations.
To better understand the TAILCHECK performance overheads,
we analyze the benefits of the optimizations described in §3.2.
For this experiment, we used the SPEC CPU2006 benchmark
instead of CPU2017 because when we compare ours with
Delta Pointers in §6.5, we want to compare the impact of the
same static optimization (SafeAlloc) on ours and Delta Point-
ers. However, few benchmark applications in SPEC CPU2017
have memory requirements and cannot be supported by Delta

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 543

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
un

 T
im

e
(n

or
m

al
iz

ed
 to

 b
as

e)

TailCheck TailCheck w/Opt. TailCheck w/Opt. & SafeAlloc Delta Pointers Delta Pointers w/SafeAlloc

Figure 4: Comparison of run-time overheads on SPEC CPU2006, normalized to an uninstrumented base system: (a) TAILCHECK;
(b) TAILCHECK with Opt.; (c) TAILCHECK with Opt. and SafeAlloc; (d) Delta Pointers; and (e) Delta Pointers with SafeAlloc.

application overhead application overhead

deepsjeng 0% nab 9%
gcc 9% omentpp 3%

imagick 0% perlbench 9%
lbm 0% x264 6%
leela -1% xalancbmk 5%
mcf 0% xz 0%

geo-mean 3%

Table 2: TAILCHECK memory overhead (peak RSS) on SPEC
CPU2017, normalized to an uninstrumented base system.

Pointers:e.g., xz and mcf with the reference input. Thus, we
based our analysis on SPEC CPU2006.

The first three bars in Figure 4 present the impact of opti-
mizations. We first disable the merging of tag handling code
when multiple offsets of an object are dereferenced within the
same function. Although not drastic, the geometric mean of
performance across the SPEC CPU2006 suite improves by
11%, with the biggest gains coming from several applications
such as bzip2, h264ref, and sphinx3.

We also examine the benefits of applying SafeAlloc to
avoid TAILCHECK instrumentation for heap objects whose ac-
cesses are known to be within bounds through static code anal-
ysis. Although the gains across all benchmarks are modest,
7% on average, applications such as hmmer and perlbench
exhibit drastic benefits, reducing the run-time overheads by
73% and 24%, respectively. These applications have hot loops
iterating over multiple large arrays, allowing SafeAlloc to find
a significant number of optimization opportunities.

We note that “Hoisting Tag Handling,” as described in 3.2,

reduces address calculation overheads, but may also increase
register pressure. For loops with a small number of pointer
dereferences in the loop body, hoisting the computation of the
tail pointer may add register pressure to the program, leading
to performance degradation. The TAILCHECK compiler per-
forms a simple count of the number of pointer dereferences,
applying hoisting if a loop has two or more dereferences.
In some cases (e.g., xalancbmk), SafeAlloc eliminates some
pointer dereferences, leaving just one dereference in the loop
body, bypassing optimization in those loops.

6.5 Comparison with Delta Pointers

This experiment compares TAILCHECK with Delta Pointers,
the state-of-the-art compiler-based solution that shares many
similarities with TAILCHECK in that both use pointer tagging
and do not perform explicit bound checking. We use mimal-
loc’s unmodified allocator for baseline and Delta Pointers
performance measurements.

Figure 4 shows the performance comparison. First, when
comparing the last two bars, we can find that the SafeAl-
locs optimization gives roughly the same relative benefit for
Delta Pointers (6%) as for TAILCHECK (7%). One thing to
note is that the other two tag merging and hoisting optimiza-
tions (excluding SafeAllocs) in §3.2 are only applicable to
TAILCHECK, but not to Delta Pointers. The reason is that
the two optimizations require the tag of a pointer remain un-
changed once defined (until an object becomes freed), which
is the case for TAILCHECK, but not for Delta Pointers.

Second, when comparing the two fully optimized ver-
sions, the 3rd and 5th bars in Figure 4, TAILCHECK exhibits
lower runtime overhead than Delta Pointers: 29% vs. 35%.
TAILCHECK has lower than or similar runtime overheads than
Delta Pointers for most applications. Two exceptions were

544 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

perlbench and xalancbmk. There are two significant differ-
ences in Delta Pointers’ and TAILCHECK code instrumenta-
tion. Delta Pointers instruments pointer arithmetic to update
a pointer tag, while TAILCHECK does not. TAILCHECK adds
additional memory operation on a pointer dereference, while
Delta Pointers does not. When considering the number of
instrumentation as a factor of runtime overhead, TAILCHECK
is likely to perform better than Delta Pointers for those appli-
cations with more pointer arithmetic and less dereferences.

For reference, we note that Oleksenko et al. [45] reported
1.8x, 1.8x, 2x, and >3x runtime overheads for AddressSan-
itizer [54], Intel’s MPX (ICC), SoftBound [40] and SAFE-
Code [15], respectively, for the SPEC CPU2006 applications
(in their experimental settings).

Delta Pointers does not incur additional memory overhead,
as it does not use a custom allocator with guard pages like
TAILCHECK (Table 2). Rather, the major drawback of Delta
Pointers is the need to shrink the process address space (e.g.,
32-bit tag and 32-bit address space).

6.6 Comparison with AddressSanitizer

Our last experiment compares TAILCHECK with Address-
Sanitizer [54] for server applications. AddressSanitizer is the
state-of-the-practice solution that maintains a disjoint meta-
data space to distinguish safe regions and (unsafe) redzones.
Figure 5 shows the 99th-percentile latency across different
file sizes (32KB-2MB) for web servers and object sizes (32B-
2KB) for key-value stores. As discussed in §6.2, TAILCHECK
shows minor (on average 3%) tail latency degradation. The
worst 18% overhead appears only for redis with 2KB ob-
jects. On the other hand, AddressSanitizer incurs higher over-
heads for all cases (on average 16%, up to 51%), reflecting
its expensive metadata lookup and checking costs. Likewise,
AddressSanitizer shows higher average latencies (not shown)
than TAILCHECK: 4% vs. 12% on average; and 7% vs. 56%
in the worst case.

7 Discussion

7.1 False Positives and False Negatives

TAILCHECK does not have false positives, assuming there
are no use-after-free violations. A shadow memory access
computed from a dangling pointer could be wrong if freed
and reallocated objects have a different size. Otherwise, the
tag in a pointer and the actual distance between a (current)
object and its corresponding TailObject always match, and
the size of a TailObject is always larger than or equal to that
of an original object. Thus, any page fault from a protected
page is evidence of a true heap overflow.

We exclude a discussion of potential segmentation faults
from passing tagged pointers to uninstrumented code without

proper masking. The mechanisms for using tagged pointers
in the presence of uninstrumented code are described in §4.

TAILCHECK may have false negatives (miss some heap
overflows). First, TAILCHECK is a dynamic tool. It can de-
tect a heap overflow only along the program paths that are
explored at run-time, given a test input and environment. Sec-
ond, TAILCHECK is an instrumentation-based tool and may
miss a heap overflow in an object that crosses the instru-
mented vs. uninstrumented code boundary, such as calls into
third-party libraries and assembly code.

Consider two cases, one in which a heap object is created
in the instrumented code, but escapes unmasked into uninstru-
mented code where it is accessed, and vise versa. TAILCHECK
cannot detect an overflow in uninstrumented code as there is
no shadow TailObject access. Similarly, if an object allocated
in the uninstrumented code is passed to instrumented code,
TAILCHECK cannot detect an overflow as there is no tag and
no corresponding protected page available for the object.

Finally, TAILCHECK relies on a guard page; thus it may
fail to detect an overflow beyond the 4KB protected page (sim-
ilar to AddressSanitizer’s 128B redzone [54]). However, it is
difficult for a malicious user to exploit this, particularly for
small objects, because both the original (manipulated) access
and the TailCheck (shadow) access must land on legal mem-
ory regions to succeed. The TAILCHECK memory allocator
scatters 64KB allocation regions for small objects in the pro-
cess address space, making the distance between a protected
page of a memory region and other valid memory regions
non-deterministic. Large objects may be easier to exploit as
their original and TailCheck accesses are to the same loca-
tion. We note that this is different from AddressSanitizer’s
traditional redzone approach in which a constant length (e.g.,
128B) redzone is inserted between adjacent valid memory ob-
jects/regions. Prior solutions that use explicit bounds checking
(e.g., MPX [45]) or precisely keep track of pointer arithmetic
(e.g., Delta Pointers [28]) do not have this limitation.

7.2 Benign False Negatives due to Alignment

x86-64 Linux assumes that heap allocators return 16-byte
aligned pointers, allowing the compiler to emit memory in-
structions based on this assumption. As discussed in §3.1,
TAILCHECK enforces the same alignment for TailObjects as
for the original objects, allowing the compiler to use the same
memory instruction for both original and shadow memory ac-
cesses. For objects that are not 16-byte aligned (e.g., 11 byte),
the bound of the corresponding 16-byte aligned TailObject (of
the same 11 byte size) will not be adjacent to the boundary of
a protected page and there will be a gap due to the alignment
requirement (5 bytes in this example). This gap may lead to
a false negative as the shadow access would not lead to a
page fault. Nonetheless, we see this as a “benign” overflow,
as the original object would also have the same gap before its
adjacent object, due to the same alignment requirement.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 545

1.0
1.1
1.2
1.3
1.4
1.5

32
KB

12
8K

B

51
2K

B

2M
B

(M
ea

n)

32
KB

12
8K

B

51
2K

B

2M
B

(M
ea

n)

32
KB

12
8K

B

51
2K

B

2M
B

(M
ea

n)

32
B

12
8B

51
2B 2K

B

(M
ea

n)

32
B

12
8B

51
2B 2K

B

(M
ea

n)

Apache Nginx Nginx (w/o poolalloc) Memcached Redis

99
th

%
 L

at
en

cy
 (n

or
m

'd
 to

 b
as

e)

TailCheck AddressSanitizer

Figure 5: Comparison of 99th-percentile latency on server applications across different file/object sizes, normalized to an
uninstrumented base system: (a) TAILCHECK and (b) AddressSanitizer.

If required, TAILCHECK can be extended to put the bound
of a TailObject immediately before the protected page without
a gap. TAILCHECK would create an unaligned TailObject, and
there will not be a false negative due to alignment. However,
in this case, the shadow memory access instrumentation pass
may need to use different instruction opcodes for the shadow
accesses, because the instructions used to access the original
object may not support unaligned addresses. Although such a
change is possible to eliminate these benign false positives, it
is likely to come at a performance cost.

7.3 Potential Hardware Support
TAILCHECK performance could benefit from the following
hardware support. First, TAILCHECK (on x86-64) must cur-
rently mask the tags of pointers before accessing an original
object and before passing pointers to uninstrumented code.
TAILCHECK could take advantage of the top-byte-ignore fea-
ture of ARM’s MTE [3] to avoid masking overhead, similar
to HWAsan [55], a hardware-assisted ASan.

Second, TAILCHECK (on x86-64) relies on load and store
instructions to perform shadow memory accesses for over-
flow detection. It would be sufficient for TAILCHECK shadow
operations to only check for access permission. TAILCHECK
could make use of new pseudo load/store-like instructions
which perform virtual to physical address translation and
check permissions, without performing an actual memory ac-
cess or perturbing the data cache, eliminating cache pollution,
cache coherence traffic, etc. Such shadow accesses would
not modify memory, reducing the TAILCHECK run-time over-
head and reducing the memory overhead because TailObject
space would no longer need to be reserved.

Lastly, one can design a hardware TAILCHECK without
compile-time dereference instrumentation. Given a tagged
pointer, the memory management unit of a processor can
transparently perform a page permission check or a shadow
memory access to the TailObject.

7.4 Extensions to Other Memory Safety

Heap Intra-Object Overflow. TAILCHECK defines a heap
object protection granularity at the time of heap allocation.
Thus, TAILCHECK does not protect a more fine-grained sub-
object from an overflow (e.g., an overflow of an array field
of a struct to another field of the same struct) as in per-object
bound checking solutions [2, 13, 17, 18, 25, 30, 51, 67]. If de-
sired, TAILCHECK’s compiler instrumentation pass could be
extended to “heapify” a subobject, similar to CCured [43].
This is analogous to the additional “bound narrowing” feature
in some per-pointer bound checking solutions [40, 45].

Heap Underflow. Though buffer underflow is less critical
than overflow in terms of security, if desired, the design of
TAILCHECK could be flipped to “HeadCheck.”

Heap Use-After-Free. TAILCHECK does not support any
temporal memory safety, yet it could be combined with exist-
ing use-after-free detection schemes that do not use pointer
tagging: e.g., Oscar [12] or DangZero [20] that rely on page
protection could be a good candidate for integration.

Stack Overflow. TAILCHECK assumes that stack is pro-
tected by other schemes such as stack canaries [11] and
shadow stacks [60]. In the current form, TAILCHECK’s in-
strumentataion pass does not need to distinguish stack and
heap objects as any address-taken stack object would hold a
tag of 0, leading to harmless redundant memory accesses.

If desired, TAILCHECK can be extended to support stack
overflow protection. The simplest solution is to replace stack
allocation with heap allocation, similar to CCured’s “heapi-
fied” stack [43], at some performance cost. Alternatively,
TAILCHECK could be extended to add a protected page to
stack and protect the stack objects similar to heap objects (us-
ing a distance tag, a TailObject, and a shadow memory access),

546 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

with the following instrumentation pass changes. The size of
a TailObject (a max of projected objects) can be determined
as the sizes of the stack objects are known. The location of
TailObject (before a protected page) should be kept in a re-
served register or a global variable by instrumenting the entry
function: e.g., main. For each function, any address-taken
stack object (e.g., defined by LLVM’s alloca) should be in-
strumented to tag the distance from the stack object (whose
address is computed from a stack pointer) to the TailObject
(whose address is kept separtely). Then, TAILCHECK can use
the same mechanism for stack objects as heap objects. The
default size of TAILCHECK’s tag is 16 bits, implying that it
can support a stack up to 64KB. If a larger stack is needed, the
address space should be reduced for a wider tag. Selectively
using heapification for a large stack object could be helpful.

8 Related Work

There are hundreds of prior memory safety solutions, with
a little bit of exaggeration. This section does not attempt
to cover them exhaustively. Instead, we focus on discussing
where TAILCHECK sits among these related works.

8.1 Buffer Overflow Detection

The first group maintains “redzone” metadata and checks if
a program accesses the red zone on each memory access.
Purify [22] is the first to use redzone. LBC [21] introduces
a fast path optimization skipping metadata lookup with a
random canary. ASan [54] and Valgrind [44] are popular
redzone-based tools using static instrumentation and dynamic
binary translation, repsectively.

The second group performs explicit “bounds checking.”
Some maintain per-object bound metadata and perform
bounds checking on pointer arithmetic: e.g., J&K [25],
CRED [51], D&A [13], Baggy Bounds [2], PAriCheck [67],
LowFat [17, 30], and EffectiveSan [18]. Others keep track
of per-pointer bound metadata and check bounds on pointer
dereferences: e.g., SoftBound [40], SGXBounds [29], Mid-
Fat [27], MPX [45], CUP [8], and FRAMER [42]. Static
analysis can be used to avoid some bound checks on memory
accesses proven to be safe: e.g., PICO [26]. The pointer-based
approach has another advantage that makes it easy to support
intra-object overflow protection: e.g., an array in a struct.

The third group leverages “page protection”: e.g., Elec-
tric Fence [49], DUMA [5], DYBOC [56], libgmalloc [35],
and PageHeap [61]. They do not maintain redzone/bound
metadata nor perform explicit checking as in the above two
groups. However, as discussed in §2.3, allocating one ob-
ject per page incurs huge memory and run-time overheads.
Prober [37] shows low overhead but it only protects heap
arrays. TAILCHECK proposes a new low-overhead page
protection-based solution for all heap objects.

On the other hand, Delta Pointers [28] check the integer
overflow of a tagged pointer. It does not make use of a redzone,
a bound, or a protected page; and thus does not fall into any
of the above groups.

8.2 Pointer Tagging
Many of the above solutions need to maintain some metadata.
Some use “fat pointers” that stores the metadata (e.g., base and
bound) in separate words alongside the actual pointer value.
Examples include Safe-C [4], Cyclone [24], and CCured [43].
CHERI [62, 63] provide hardware support for fat pointers.

Many recent works leverage “pointer tagging” that embeds
metadata into some bits of a pointer itself, to avoid a code
layout change. For example, Baggy Bounds [2] uses the spare
top bits to store the distance between an out of bound pointer
and its intended referent. Delta Pointers [28] uses a 32-bit tag
to encode the distance from the current pointer to the end of
an object. As discussed in §2.3, one common downside of
pointer tagging is that it may restrict the address space: e.g.,
Delta Pointers only support a 4GB of 32-bit address space.
This may not be a problem for SGXBounds [29], which is
designed for an Intel SGX enclave with already-limited 32-bit
address space, and thus it can use a 32-bit tag to store the
upper bound of the pointer’s referent without any sacrifice.
However, other pointer tagging solutions (including Delta
Pointers) that require more than 16 unused bits in the current
64 bit architecture cannot be used for general (non-SGX) pro-
grams with big memory requirements. TAILCHECK does not
share this limitation. Alternatively, CUP [8] takes an extreme
design that uses the entire pointer width to store tags. Low-fat
pointers [17, 30] store the tag implicitly in the pointer value,
and thus can be safely dereferenced without masking.

Several works proposed hardware support for pointer tag-
ging. In-Fat [64] is a hardware extension of EffectiveSan [18],
which tags the upper bits of a pointer with an index into a
bounds table, performing bounds checking on pointer arith-
metic. HeapCheck [52] stores an index into a per-pointer
bounds table, and checks bounds on pointer dereferences.
PACMem [34] leverages ARMv8 AArch64 Pointer Authenti-
cation (PA) [50], computing cryptographic hashes based on
the value of pointers (and other contexts) for pointer integrity.
PACMem seals object metadata into the high-order bits of
pointers via PA and uses the seal as the index to retrieve it.
The tagged PA codes are propagated by hardware along with
the pointers. No-Fat [23] supports low-fat pointers [17, 30].

8.3 Use-After-Free Detection
Existing use-after-free solutions can be categorized into three
groups based on their detection techniques. Some solutions
such as CETS [41], ViK [10] and xTag [6] tag the allocated
memory and the pointer with a unique identifier (referred to
as lock and key), and check if the tags of pointer and memory

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 547

match on dereference. Any mismatch indicates that a pointer
used for deference is a dangling pointer. ARM’s Memory
Tagging Extension (MTE) [3] and SPARCS’s Silicon Secured
Memory (SSM) [46] provide hardware support to assign ran-
dom 4-bit tags to object-pointer pairs to probabilistically find
use-after-free bugs on tag mismatch. HWAsan [55] an ex-
tension of ASan with ARM’s MTE makes use of its top-bit-
ignore feature and avoids masking on memory dereference.

Other solutions such as Undangle [9], FreeSentry [66], Dan-
gNull [32], DangSan [59], BOGO [68] maintain metadata to
find and invalidate dangling pointers on free. Then a use-after-
free is detected as an invalid pointer use: e.g., null pointer
dereference.

Yet others such as D&A [14], Oscar [12], and Dan-
gZero [20] leverage page protection: a page becomes inacces-
sible after a free. Oscar [12] reduces physical memory and
run-time overhead by mapping multiple virtual pages into a
single physical page. DangZero [20] further lowers run-time
overhead by directly accessing the page tables with support
from virtualization extensions and a privileged backend (e.g.,
Kernel Mode Linux). TAILCHECK does not provide use-after-
free detection, but its page-based approach makes it possible
to integrate the above page-based use-after-free solutions to
achieve both spatial and temporal memory safety. We leave
this to future work.

8.4 Uninitialized Memory Read
Uninitialized memory reads can lead to information leak-
age, similar to buffer overflow reads. Purify [22] and Val-
grind [44] detect an uninitialized memory read by maintaining
and checking (initialized vs. uninitialized) state metadata at
a byte or bit granularity, respectively. UniSan [38] uses data-
flow analysis to zero-out variables that might be disclosed
to an attacker. SafeInit [39] modifies the compiler and heap
allocator to ensure that all stack/heap regions be initialized.

9 Conclusions

Heap overflow vulnerabilities leave many software systems
exposed to security attacks and exploitation. This work pre-
sented TAILCHECK, a novel heap overflow mitigation scheme
that leverages a custom memory allocator, OS-based page pro-
tection, and compiler-directed pointer tagging. TAILCHECK
achieves low run-time overhead by detecting heap overflows
using page protection, without maintaining bound metadata
and without performing explicit bounds checks. TAILCHECK
uses pointer tagging and shadow memory accesses to detect
overflows, allowing multiple original objects to share a sin-
gle TailObject, which reduces both performance and memory
overheads compared to the previously explored techniques.
The results of our experimental evaluation demonstrate the
effectiveness and efficiency of TAILCHECK in detecting heap
overflows in C and C++ programs.

Acknowledgements

We would like to thank the anonymous reviewers for their
feedback on the draft of this work, and James Mickens for
acting as our shepherd. This work was supported in part
by the National Science Foundation under Grant No. CCF-
2153747, CNS-2135157, CNS-2214980, CCF-2153297, and
CNS-1763680.

References

[1] re PR tree-optimization/44124. https:
//gcc.gnu.org/git/?p=gcc.git&a=commit;h=
4d085b9ee391f005d209512de3ea283fde49d42e.

[2] Periklis Akritidis, Manuel Costa, Miguel Castro, and
Steven Hand. Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds
errors. In USENIX Security Symposium, volume 10,
2009.

[3] ARM. Armv8.5-a memory tagging extension.
https://developer.arm.com/-/media/Arm%
20Developer%20Community/PDF/Arm_Memory_
Tagging_Extension_Whitepaper.pdf.

[4] Todd M Austin, Scott E Breach, and Gurindar S Sohi.
Efficient detection of all pointer and array access errors.
In Proceedings of the ACM SIGPLAN 1994 conference
on Programming Language Design and Implementation,
pages 290–301, 1994.

[5] Hayati Aygün. Detect Unintended Memory Access
(D.U.M.A.). https://duma.sourceforge.io/, 2022.
[Online; accessed 29-Nov-2022].

[6] Lukas Bernhard, Michael Rodler, Thorsten Holz, and
Lucas Davit. xtag: Mitigating use-after-free vulnerabili-
ties via software-based pointer tagging on intel x86-64.
In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pages 502–519, 2022.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The parsec benchmark suite: Characteriza-
tion and architectural implications. In Proceedings of the
17th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’08, page 72–81,
New York, NY, USA, 2008. Association for Computing
Machinery.

[8] Nathan Burow, Derrick McKee, Scott A. Carr, and Math-
ias Payer. Cup: Comprehensive user-space protection
for c/c++. In Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, ASI-
ACCS ’18, page 381–392, New York, NY, USA, 2018.
Association for Computing Machinery.

548 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=4d085b9ee391f005d209512de3ea283fde49d42e
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=4d085b9ee391f005d209512de3ea283fde49d42e
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=4d085b9ee391f005d209512de3ea283fde49d42e
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://duma.sourceforge.io/

[9] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: Early detection of dangling
pointers in use-after-free and double-free vulnerabilities.
In Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ISSTA 2012, page
133–143, New York, NY, USA, 2012. Association for
Computing Machinery.

[10] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao,
Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé, and
Gail-Joon Ahn. Vik: Practical mitigation of tempo-
ral memory safety violations through object id inspec-
tion. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’22, page
271–284, New York, NY, USA, 2022. Association for
Computing Machinery.

[11] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, Qian Zhang, and Heather Hinton. Stackguard:
automatic adaptive detection and prevention of buffer-
overflow attacks. In USENIX security symposium, vol-
ume 98, pages 63–78. San Antonio, TX, 1998.

[12] Thurston HY Dang, Petros Maniatis, and David Wagner.
Oscar: A practical page-permissions-based scheme for
thwarting dangling pointers. In 26th USENIX security
symposium (USENIX security 17), pages 815–832, 2017.

[13] Dinakar Dhurjati and Vikram Adve. Backwards-
compatible array bounds checking for c with very low
overhead. In Proceedings of the 28th international con-
ference on Software engineering, pages 162–171, 2006.

[14] Dinakar Dhurjati and Vikram Adve. Efficiently detect-
ing all dangling pointer uses in production servers. In
International Conference on Dependable Systems and
Networks (DSN’06), pages 269–280. IEEE, 2006.

[15] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
Safecode: Enforcing alias analysis for weakly typed lan-
guages. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’06, page 144–157, New York, NY,
USA, 2006. Association for Computing Machinery.

[16] Jaana Dogan. hey: Http load generator. https://
github.com/rakyll/hey.

[17] Gregory J. Duck and Roland H. C. Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion, CC 2016, page 132–142, New York, NY, USA,
2016. Association for Computing Machinery.

[18] Gregory J. Duck and Roland H. C. Yap. Effectivesan:
Type and memory error detection using dynamically
typed c/c++. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2018, page 181–195, New York,
NY, USA, 2018. Association for Computing Machinery.

[19] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bailey, and
J. Alex Halderman. The matter of heartbleed. In Pro-
ceedings of the 2014 Conference on Internet Measure-
ment Conference, IMC ’14, page 475–488, New York,
NY, USA, 2014. Association for Computing Machinery.

[20] Floris Gorter, Koen Koning, Herbert Bos, and Cristiano
Giuffrida. Dangzero: Efficient use-after-free detection
via direct page table access. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’22, page 1307–1322, New York,
NY, USA, 2022. Association for Computing Machinery.

[21] Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-
weight bounds checking. In Proceedings of the Tenth
International Symposium on Code Generation and Opti-
mization, pages 135–144, 2012.

[22] Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In Proc. 1992 Winter USENIX Con-
ference, pages 125–136, 1992.

[23] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny
Manzhosov, Ryan Piersma, and Simha Sethumadhavan.
No-fat: Architectural support for low overhead memory
safety checks. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 916–929, 2021.

[24] Trevor Jim, J Gregory Morrisett, Dan Grossman,
Michael W Hicks, James Cheney, and Yanling Wang.
Cyclone: a safe dialect of c. In USENIX Annual Techni-
cal Conference, General Track, pages 275–288, 2002.

[25] Richard WM Jones and Paul HJ Kelly. Backwards-
compatible bounds checking for arrays and pointers in
c programs. In AADEBUG, volume 97, pages 13–26,
1997.

[26] Tina Jung, Fabian Ritter, and Sebastian Hack. Pico: A
presburger in-bounds check optimization for compiler-
based memory safety instrumentations. 18(4), jul 2021.

[27] Taddeus Kroes, Koen Koning, Cristiano Giuffrida, Her-
bert Bos, and Erik van der Kouwe. Fast and generic
metadata management with mid-fat pointers. In Pro-
ceedings of the 10th European Workshop on Systems
Security, pages 1–6, 2017.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 549

https://github.com/rakyll/hey
https://github.com/rakyll/hey

[28] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Her-
bert Bos, and Cristiano Giuffrida. Delta pointers: Buffer
overflow checks without the checks. In Proceedings of
the Thirteenth EuroSys Conference, pages 1–14, 2018.

[29] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnau-
tov, Bohdan Trach, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. Sgxbounds: Memory safety for shielded
execution. In Proceedings of the Twelfth European Con-
ference on Computer Systems, pages 205–221, 2017.

[30] Albert Kwon, Udit Dhawan, Jonathan M Smith,
Thomas F Knight Jr, and Andre DeHon. Low-fat point-
ers: compact encoding and efficient gate-level implemen-
tation of fat pointers for spatial safety and capability-
based security. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 721–732, 2013.

[31] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transfor-
mation. In International Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[32] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS, 2015.

[33] Daan Leijen, Benjamin Zorn, and Leonardo de Moura.
Mimalloc: Free list sharding in action. In Asian Sympo-
sium on Programming Languages and Systems, pages
244–265. Springer, 2019.

[34] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Math-
ias Payer, Ying Liu, and Chao Zhang. Pacmem: En-
forcing spatial and temporal memory safety via arm
pointer authentication. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’22, page 1901–1915, New York, NY,
USA, 2022. Association for Computing Machinery.

[35] libgmalloc(3) [osx man page]. (guard malloc), an ag-
gressive debugging malloc library. https://www.unix.
com/man-page/osx/3/libgmalloc/.

[36] Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu.
Prober: Practically defending overflows with page pro-
tection. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE ’20, page 1116–1128, New York, NY, USA, 2021.
Association for Computing Machinery.

[37] Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu.
Prober: Practically defending overflows with page pro-
tection. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,

ASE ’20, page 1116–1128, New York, NY, USA, 2021.
Association for Computing Machinery.

[38] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke
Lee. Unisan: Proactive kernel memory initialization to
eliminate data leakages. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, page 920–932, New York,
NY, USA, 2016. Association for Computing Machinery.

[39] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida.
Safelnit: Comprehensive and practical mitigation of
uninitialized read vulnerabilities. In NDSS, volume 17,
pages 1–15, 2017.

[40] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Softbound: Highly compatible
and complete spatial memory safety for c. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
245–258, 2009.

[41] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. Cets: Compiler enforced tempo-
ral safety for c. In Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10, page
31–40, New York, NY, USA, 2010. Association for Com-
puting Machinery.

[42] Myoung Jin Nam, Periklis Akritidis, and David J
Greaves. Framer: A tagged-pointer capability system
with memory safety applications. In Proceedings of the
35th Annual Computer Security Applications Confer-
ence, ACSAC ’19, page 612–626, New York, NY, USA,
2019. Association for Computing Machinery.

[43] George C Necula, Scott McPeak, and Westley Weimer.
Ccured: Type-safe retrofitting of legacy code. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages
128–139, 2002.

[44] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. ACM Sigplan notices, 42(6):89–100, 2007.

[45] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. Intel mpx explained:
A cross-layer analysis of the intel mpx system stack.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 2(2):1–30, 2018.

[46] Oracle. Sparc m7 silicon secured memory (ssm).
https://docs.oracle.com/cd/E37069_01/html/
E37085/gphwb.html.

550 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.unix.com/man-page/osx/3/libgmalloc/
https://www.unix.com/man-page/osx/3/libgmalloc/
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

[47] Mitre Org. CVE Buffer Overflow. https:
//cve.mitre.org/cgi-bin/cvekey.cgi?keyword=
buffer+overflow, 2022. [Online; accessed 29-Nov-
2022].

[48] Mitre Org. CWE-787. https://cwe.mitre.org/
data/definitions/787.html, 2022. [Online; ac-
cessed 29-Nov-2022].

[49] Bruce Perens. Electric Fence. https://linux.die.
net/man/3/efence/, 1987. [Online; accessed 19-Nov-
2022].

[50] Qualcomm. Pointer authentication on armv8.3. https:
//www.qualcomm.com/media/documents/files/
whitepaper-pointerauthentication-on-armv8-3.
pdf, 2017.

[51] Olatunji Ruwase and Monica S Lam. A practical dy-
namic buffer overflow detector. In NDSS, volume 4,
pages 159–169, 2004.

[52] Gururaj Saileshwar, Rick Boivie, Tong Chen, Benjamin
Segal, and Alper Buyuktosunoglu. Heapcheck: Low-
cost hardware support for memory safety. ACM Trans.
Archit. Code Optim., 19(1), jan 2022.

[53] R.C. Seacord. Secure Coding in C and C++. SEI series
in software engineering. Addison-Wesley, 2013.

[54] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12), pages 309–
318, 2012.

[55] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyap-
nikov, Vlad Tsyrklevich, and Dmitry Vyukov. Memory
tagging and how it improves c/c++ memory safety, 2018.

[56] Stelios Sidiroglou, Giannis Giovanidis, and Angelos D.
Keromytis. A dynamic mechanism for recovering from
buffer overflow attacks. In Proceedings of the 8th Inter-
national Conference on Information Security, ISC’05,
page 1–15, Berlin, Heidelberg, 2005. Springer-Verlag.

[57] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. Sok: Sanitizing for security. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 1275–1295,
2019.

[58] László Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–62, 2013.

[59] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuf-
frida. Dangsan: Scalable use-after-free detection. In

Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, page 405–419, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[60] Vendicator. Stack Shield: A “stack smashing” technique
protection tool for linux. https://www.angelfire.
com/sk/stackshield/, 2000.

[61] Microsoft Windows. PageHeap. https://learn.
microsoft.com/en-us/windows-hardware/
drivers/debugger/gflags-and-pageheap, 2022.
[Online; accessed 21-Nov-2022].

[62] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revisiting
risc in an age of risk. In 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA),
pages 457–468, 2014.

[63] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth,
Nathaniel W. Filardo, Michael Roe, Alexander Richard-
son, Peter Rugg, Peter G. Neumann, Simon W. Moore,
Robert N. M. Watson, and Timothy M. Jones. Cherivoke:
Characterising pointer revocation using cheri capabil-
ities for temporal memory safety. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’52, page 545–557, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[64] Shengjie Xu, Wei Huang, and David Lie. In-fat pointer:
Hardware-assisted tagged-pointer spatial memory safety
defense with subobject granularity protection. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 224–240, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[65] Tao Ye, Lingming Zhang, Linzhang Wang, and Xuan-
dong Li. An empirical study on detecting and fixing
buffer overflow bugs. In 2016 IEEE International Con-
ference on Software Testing, Verification and Validation
(ICST), pages 91–101, 2016.

[66] Yves Younan. Freesentry: protecting against use-after-
free vulnerabilities due to dangling pointers. In NDSS,
2015.

[67] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro,
R Sekar, Frank Piessens, and Wouter Joosen. Paricheck:
an efficient pointer arithmetic checker for c programs. In
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pages 145–
156, 2010.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 551

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://linux.die.net/man/3/efence/
https://linux.die.net/man/3/efence/
https://www.qualcomm.com/media/documents/files/whitepaper-pointerauthentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointerauthentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointerauthentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointerauthentication-on-armv8-3.pdf
https://www.angelfire.com/sk/stackshield/
https://www.angelfire.com/sk/stackshield/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap

[68] Tong Zhang, Dongyoon Lee, and Changhee Jung. Bogo:
Buy spatial memory safety, get temporal memory safety
(almost) free. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’19, page 631–644, New York, NY, USA, 2019.
Association for Computing Machinery.

552 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

SMART: A High-Performance Adaptive Radix Tree for Disaggregated Memory

Xuchuan Luo1,*, Pengfei Zuo2, Jiacheng Shen3,*, Jiazhen Gu3,
Xin Wang1,4, Michael R. Lyu3, and Yangfan Zhou1,4

1School of Computer Science, Fudan University
2Huawei Cloud 3The Chinese University of Hong Kong

4Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China

Abstract
Disaggregated memory (DM) is an increasingly prevalent
architecture in academia and industry with high resource uti-
lization. It separates computing and memory resources into
two pools and interconnects them with fast networks. Exist-
ing range indexes on DM are based on B+ trees, which suffer
from large inherent read and write amplifications. The read
and write amplifications rapidly saturate the network band-
width, resulting in low request throughput and high access
latency of B+ trees on DM.

In this paper, we propose to use the radix tree, which is
more suitable for DM than the B+ tree due to smaller read and
write amplifications. However, constructing a radix tree on
DM is challenging due to the costly lock-based concurrency
control, the bounded memory-side IOPS, and the complicated
computing-side cache validation. To address these challenges,
we design SMART, the first radix tree for disaggregated mem-
ory with high performance. Specifically, we leverage 1) a
hybrid concurrency control scheme including lock-free inter-
nal nodes and fine-grained lock-based leaf nodes to reduce
lock overhead, 2) a computing-side read-delegation and write-
combining technique to break through the IOPS upper bound
by reducing redundant I/Os, and 3) a simple yet effective re-
verse check mechanism for computing-side cache validation.
Experimental results show that SMART achieves 6.1× higher
throughput under typical write-intensive workloads and 2.8×
higher throughput under read-only workloads, compared with
state-of-the-art B+ trees on DM.

1 Introduction
Distributed range indexes are fundamental building blocks
of many applications, e.g., databases and key-value stores, to
conduct range queries [2, 21, 53, 57, 59]. To improve resource
utilization, many new proposals adopt the disaggregated mem-
ory (DM) architecture [53, 59]. DM can decouple computing
and memory resources into two elastic resource pools (i.e.,

*The work was mainly conducted when Xuchuan and Jiacheng were
interns at Huawei Cloud.

computing pool and memory pool) interconnected with high-
speed networks, e.g., remote direct memory access (RDMA)
connections [3, 9, 16, 19, 20, 27, 47]. In this way, a DM range
indexing system can utilize resources more efficiently.

Current DM index systems [53, 59] use B+ tree to build
range indexes, following the idea generally adopted in the
monolithic server solutions. However, B+ trees can bring se-
vere read and write amplification issues on DM. Specifically,
when reading or writing a key-value item in a B+ tree, one
should search the tree by traversing many nodes which con-
tain many useless keys and pointers since only one key is
the target. This inevitably amplifies the network bandwidth
consumption. As such network bandwidth is generally the bot-
tleneck of the DM architecture [23], the amplified bandwidth
consumption incurred by B+ trees exacerbates the bottleneck.
This issue will lead to low overall throughput and high access
latency. Our experimental study shows that it can dramatically
degrade the throughput of Sherman [53], the state-of-the-art
B+ tree index on DM. The throughput is 10.8× lower than the
theoretical bound of RNICs under the YCSB workloads [10].

In this paper, we propose that radix tree is a more suitable
tree index structure for DM. Compared with B+ trees, radix
trees have smaller read and write amplifications since they
do not store the entire keys in internal nodes. Moreover, the
state-of-the-art radix tree design, i.e., ART [32], further re-
duces read and write amplifications with an adaptive internal
node design. However, several challenges should be addressed
before radix trees become a high-performance, practical in-
dexing solution for DM.

(1) Lock-based concurrency control is expensive. Remote
lock operations are expensive on DM. However, the existing
ART design adopts a lock-based algorithm for concurrency
control [33], which contains many remote lock operations,
worsening the write performance. In addition, computing-side
caches are required on DM to reduce operation latency. The
traditional read-copy-update (RCU) scheme for radix trees
causes frequent changes in the addresses of cached nodes,
leading to cache thrashing.

(2) Redundant I/Os deteriorate the throughput. RNICs

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 553

in the memory pool of DM have bounded IOPS (I/O per
second) [51]. However, radix trees have multiple small-sized
read and write operations when traversing and modifying
the tree index. Many of these read and write operations are
redundant when multiple clients on the same compute node
concurrently traverse the tree. These redundant I/Os on DM
waste the limited IOPS of RNICs and thus decrease the peak
throughput of radix trees.

(3) The complicated computing-side cache validation.
Tree indexes on DM typically adopt computing-side caches
to reduce access latency [56]. However, the structural features
of radix trees (e.g., path compression) incur many address
changes and metadata changes in radix tree nodes. These
changes add more cache invalidation situations and thus com-
plicate the cache design.

To address the above challenges, we propose SMART, a
diSaggregated-meMory-friendly Adaptive Radix Tree. First,
for better concurrency control, we present a hybrid ART con-
currency control scheme with a lock-free internal node design
and a lock-based leaf node design to achieve high perfor-
mance without cache thrashing. Second, for an IOPS break-
through, we propose a read-delegation and write-combining
(RDWC) technique to reduce computing-side redundant I/Os.
Third, for cache validation, we co-design SMART with an
ART cache, including a reverse check mechanism to handle
new cache invalidation situations of ART.

We implement SMART from scratch and evaluate it using
the YCSB benchmark [10]. Compared with Sherman [53], the
state-of-the-art B+-tree-based range index on DM, SMART
achieves up to 6.1× higher throughput and 1.4× lower la-
tency for typical write-intensive workloads and 2.8× higher
throughput with similar latency for read-only workloads. The
code of SMART is available at https://github.com/dme
msys/SMART.

In summary, this paper makes the following contributions:
• We propose that ART is a better tree index on DM, based

on theoretical analysis and experimental results.
• We present the first memory-disaggregated radix tree,

SMART, with three key designs for high performance,
including a hybrid ART concurrency control scheme, a
read-delegation and write-combining technique, and a
reverse check mechanism for cache validation.

• We implement SMART and evaluate it using YCSB
workloads [10]. The evaluation results demonstrate the
efficacy and efficiency of SMART.

2 Background
2.1 Disaggregated Memory Architecture
As shown in Figure 1, the DM architecture physically sep-
arates computing (e.g., CPUs) and memory (e.g., DRAM)
resources into two independent resource pools to address the
resource utilization issue in traditional data centers with mono-
lithic servers [18, 31, 42, 43, 46, 54]. In the DM architecture,
compute nodes (CNs) own powerful computing resources but

RDMA Network

abundant CPUs

scarce memory

scarce CPUs

abundant memory

Compute Nodes(CNs) Memory Nodes(MNs)

Figure 1: The architecture of disaggregated memory.

only have a small piece of memory serving as local caches.
In contrast, memory nodes (MNs) are equipped with masses
of memory but only own a few wimpy computing cores for
simple tasks such as establishing network connections and
allocating memory spaces.

A high-speed network with high bandwidth and low la-
tency, e.g., RDMA network, is a crucial component in the
DM architecture that interconnects CNs and MNs [12, 17].
RDMA network interface cards (RNICs) allow CNs and
MNs to communicate with each other using one-side verbs
(e.g., RDMA_READ, RDMA_WRITE, RDMA_CAS) or two-side
verbs (e.g., RDMA_SEND, RDMA_RECV). One-side verbs are
preferred on the DM architecture to enable computing-side
clients to operate directly on the disaggregated memory with-
out involving the weak CPUs on MNs.

2.2 B+ Trees on Disaggregated Memory

Tree indexes are critical for many applications requiring range
queries. All previously proposed tree indexes on DM are vari-
ants of the B+ tree, including FG [59] and Sherman [53]. FG
is the first RDMA-based index supporting DM. It uses a B-
link tree structure and completely leverages one-sided verbs
to perform index operations, with RDMA-based spin locks
for concurrency control. Since FG directly ports the spin-lock-
based concurrency control and B-link tree node designs on
monolithic servers to DM, its performance suffers from severe
network contention on lock retries and write amplification
on B-link tree nodes. Sherman [53] is the state-of-the-art B+
tree on DM that addresses the network contention and write
amplification issues of FG. First, it addresses the network con-
tention on lock-fail retires with a hierarchical on-chip lock
(HOCL) scheme. The network requests on lock-fail retries
are reduced with a local lock table shared among clients on
the same CN. The on-chip memory of RNICs is leveraged to
reduce PCIe transmissions further. Second, it mitigates the
write amplification by allowing fine-grained modification to
B+ tree nodes with a two-level version mechanism. There-
fore, Sherman achieves much better performance than FG.
However, Sherman still suffers from the natural performance
bottleneck of B+ trees, i.e., coarse-grained lock-based con-
currency control and inherent read amplification, which are
analyzed in Section 3.

554 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dmemsys/SMART
https://github.com/dmemsys/SMART

meta.

meta.

0300

00 05 FF... ...

0200 FF

32 CC00 FF

7D00 FF

3C00 FF

key: 716
(0x0002CC)key key

05 FF... ...

32 CC00 FF

key: 716
(0x0002CC)

key

key

05

32

key: 716
(0x0002CC)

key

key

Header

Header

ART

Path Compression

NODE_4

NODE_4

00HeaderNODE_4

4 partial keys 4 child pointers

02 03 FF

00HeaderNODE_16

16 partial keys 16 child pointers

02 03 FF

HeaderNODE_48

child index array 48 child pointers
01 02 FF

Header

Header

00

00

CC

Figure 2: The optimization process from the basic radix tree to ART.
For clarity, hexadecimal partial keys are shown. NODE_256 is simply
an array of 256 pointers, which is not shown due to space limitation.

2.3 Radix Tree
The radix tree is another popular tree index structure. It stores
the segmented key in the top-down search path over the tree
rather than storing the whole key in the internal node. Specifi-
cally, each internal node in the radix tree consists of an array
of child pointers. Each pointer is associated with a segment of
bits of the whole key, called partial key, as shown in Figure 2.

Path compression. Path compression is an optimization
method for the radix tree to reduce tree height by removing
one-child internal nodes, and can be implemented in three
ways [32]: 1) The optimistic method simply abandons the par-
tial keys in the removed nodes and instead stores a depth value
to ensure the subsequent traversal process. 2) The pessimistic
method stores all the partial keys of the removed nodes in
the header of the subsequent node. 3) The hybrid method
integrates the two methods above by storing partial keys into
the fixed-sized header of the subsequent node, together with a
depth value to ensure the subsequent traversal if some partial
keys overflow from the header.

Adaptive radix tree (ART). ART [32] is the state-of-the-
art variant of the 8-bit-span radix tree, designed to optimize
the memory utilization of traditional radix trees. Traditionally,
an internal node of a radix tree has all 256 pointers represent-
ing all possible partial keys. Many pointers are empty due
to the sparse key distribution [32], wasting memory space
in these internal nodes. ART addresses the issue by propos-
ing four well-designed internal node structures with different
numbers of pointers, i.e., 4, 16, 48, and 256. It dynamically
chooses the best-fit internal node structure to save memory
space. As for concurrency control, ART is synchronized using
a lock-based algorithm, i.e., the read-optimized write exclu-
sion (ROWEX) protocol [33]. There are some proposed ART-
based indexes designed on monolithic servers [26, 29, 30, 37],
while none of them is designed for DM.

Table 1: Read and write amplification factors of different trees.

ART B+ Tree Sherman

Read M1+E
E = 1.10 M2+S·E

E = 32.7 M2+S·(M3+E)
E = 33.0

Write M1+E
E = 1.10 M2+S·E

E = 32.7 M3+E
E = 1.01

3 Analysis of Tree Indexes Built on DM
In this section, we first theoretically and experimentally com-
pare B+ trees with a vanilla ART (§ 3.1). We then present the
challenges of designing ART on DM (§ 3.2).

All the experiments in this section are conducted with 8
CNs and 1 MN, each equipped with a 100Gbps Mellanox
ConnectX-6 RNIC. Each CN launches 32 clients with one
shared 600MB cache. We use YCSB workloads [10] (includ-
ing 60 million entries) with 32-byte string keys and 64-byte
values, which is typical in real-world workloads [4, 58].

3.1 Motivations: B+ Tree vs. ART on DM
The main problem of B+ trees on DM is their severe read and
write amplifications. In internal nodes, the B+ tree stores the
whole keys. In leaf nodes, the B+ tree stores multiple keys
together. Without optimizations, the B+ tree needs to read and
write the entire nodes during each index operation, causing
serious read and write amplifications. In the following, we
first theoretically compare the read and write amplifications
of ART with the B+ tree and the write-optimized B+ tree (i.e.,
Sherman [53]). We then experimentally show the performance
impacts due to the read amplification.

3.1.1 Theoretical Analysis

The read and write amplification factors of different tree struc-
tures are shown in Table 1, respectively. We assume the in-
ternal nodes are cached and no node split occurs for brevity.
M1 and M2 denote the metadata size of the leaf node of the
radix tree and B+ tree, respectively. M3 denotes the size of the
additional metadata (i.e., entry-level versions) that Sherman
applied to each key-value item. S denotes the span size of the
B+ tree node. E denotes the key-value item size.

The amplification factor is defined as the ratio of bandwidth
consumption from the server and bandwidth returned to the
application. Without optimizations, when a client reads or
writes a single key-value item in a tree index, the whole leaf
node should be read or written. We use the same size of the
key-value item, i.e., 96 bytes, for all trees as an example.

The leaf node of the ART contains one item with its meta-
data. In our implementation, 10 bytes of metadata is enough
for each item in ART. The read and write amplification factors
are M1+E

E = 10B+96B
96B = 1.10.

The leaf node of the B+ tree contains S items together
with the metadata. The metadata at least includes two fence
keys (2 ·32B), a valid bit, a lock bit, a 1-byte level field, and
two 7-bit versions [53], i.e., 67 bytes in total. We use the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 555

(a) (b) (c) (d)

Figure 3: The read performances of Sherman and ART under the YCSB C workload (100% read). (a) The throughput bottleneck with no cache.
(b) The impact of key size and span size with no cache. (c) The peak throughput with various sizes of caches. (d) The latency deterioration with
excess requests.

default span size in Sherman, which is 32. The read and write
amplification factors are M2+S·E

E = 67B+32·96B
96B = 32.7.

For Sherman, each key-value item in the leaf node is sur-
rounded by a pair of 4-bit entry-level versions. Thus the read
amplification factor is M2+S·(M3+E)

E = 67B+32·(1B+96B)
96B = 33.0.

When writing an item without node splitting, the client only
requires to write back the modified item with its associated
entry-level versions. Thus the write amplification factor is
M3+E

E = 1B+96B
96B = 1.01.

3.1.2 Experimental Results

To show the impact of read amplification on the performance,
we compare the performances of Sherman and ART under
read-only workloads. The impact of write amplification is sim-
ilar. We observe that the amplification leads to low throughput
and high latency of B+ trees on DM.

Observation 1: The throughput of the B+ tree is bounded
by network bandwidth. The memory-side network bandwidth
is generally the performance bottleneck in the DM architec-
ture [23]. The read and write amplifications of B+ trees cause
more bandwidth consumption for each request, exacerbating
the network bottleneck and resulting in low throughput.

As shown in Figure 3a, with an increasing number of
clients, the limited bandwidth prevents the throughput of Sher-
man and ART from continually rising. With the same RNIC
bandwidth, Sherman has a lower peak throughput than ART
due to the severe read amplification. As shown in Figure 3b,
the larger the key size or the span size (i.e., the number of
keys stored in a leaf node) is, the larger the read amplification
is, which decreases the peak throughput of Sherman.

A computing-side cache is usually used for caching the
internal nodes of the B+ tree on DM. As shown in Fig-
ure 3c, with the increasing size of the cache, the through-
put of Sherman keeps bounded by the bandwidth bottle-
neck and finally saturates at 4.17 Mops/s. The bandwidth
consumption from the server equals the maximum network
bandwidth of 100 Gbps (12.5 GBps), and the bandwidth re-
turned to the application is 4.17 Mops/s ·96B = 0.39 GBps.
Thus the measured read amplification factor of Sherman is
12.5 GBps / 0.39 GBps = 32.1, which is close to our theo-

retical analysis in § 3.1.1.
In contrast, without the read amplification from leaf nodes,

the throughput of ART reaches about 45 Mops/s, which is the
IOPS upper bound of the RNIC we use. This indicates that
ART can make full use of the RNIC capacity and achieve the
best resource efficiency as DM desires.

Observation 2: The latency of the B+ tree is worsened by
early network congestion. Network congestion occurs when
computing-side requests saturate the bandwidth or IOPS up-
per bound of RNICs. As the number of clients keeps growing,
excess client requests need to queue up across the network,
which results in latency deterioration. The read and write am-
plifications make B+ trees consume the bandwidth rapidly,
expediting the process of network congestion.

As shown in Figure 3d, with the increase of throughput, the
latency of Sherman and ART is stable in the beginning and
then experiences a sudden surge due to the network conges-
tion. Moreover, with the same memory-side RNIC bandwidth,
Sherman has a much smaller inflection point (i.e., the through-
put threshold that triggers network congestion) than ART. As
a result, Sherman shows an extremely high latency with rela-
tively few clients. By contrast, ART has a high tolerance to
this latency deterioration thanks to its small amplifications.

3.2 Challenges: ART on DM
Even though ART has superiority under read-only workloads,
it suffers from significant challenges on DM under hybrid
read-write workloads.

Challenge 1: Lock-based concurrency control of ART
causes poor write performance. Existing ART adopts lock-
based algorithms to perform synchronization [33]. However,
lock operations are expensive on DM and lead to poor write
performance, as shown in Figure 4a. Specifically, unlike lo-
cal memory, each lock operation on DM requires additional
network transmission (e.g., RDMA_CAS). Furthermore, the
lock conflict mechanism (i.e., busy waiting) causes frequent
RDMA retries when failing to acquire a lock, which wastes
the limited IOPS of RNICs and reduces the throughput.

One feasible solution is to design lock-free algorithms.
However, lock-free design is not the best choice for ART as

556 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) (b) (c) (d)

Figure 4: (a) The write performance of ART under the YCSB insert workload (100% insert) with no cache. (b) The performance degradation
caused by cache thrashing under the YCSB A workload (50% read + 50% update) with sufficient caches. (c-d) The inter-client redundant I/Os
on DM in terms of reads and writes.

well. Specifically, an out-of-place update scheme is required
for lock-free algorithms to update items larger than 8 bytes.
It atomically compares and swaps the corresponding 8-byte
addresses instead of modifying the items in place, as the latter
cannot be realized atomically. However, in high-concurrency
scenarios, a mass of out-of-place updates lead to frequent
changes in the addresses of items. This brings about the se-
vere cache coherence issue since the old addresses of the items
have been cached in other CNs. Even worse, in skewed work-
loads, the addresses of hot items are changed continuously
and repeatedly, resulting in cache trashing.

To verify this, we evaluate the two update schemes in ART
with the YCSB A workload,1 as shown in Figure 4b. The
out-of-place scheme brings about an average of 19.1% invalid
cached addresses of leaf nodes and thus results in a 44.5%
throughput decline compared with the in-place scheme.

Challenge 2: Inter-client redundant I/Os on DM waste
the limited IOPS of RNICs. As mentioned in Observation 1,
B+ trees suffer from bandwidth bottleneck, while ART can
break through the bottleneck and achieve the IOPS upper
bound of RNICs, with small read and write amplifications.

However, we find that there are redundant I/Os that waste
the limited IOPS of RNICs in the DM architecture, hinder-
ing ART from continually breaking through the IOPS upper
bound. Specifically, taking read operations as an example,
when several clients on the same CN read the same key-value
item concurrently, they send identical RDMA_READs across
the network. This is superfluous duplication of effort since all
these requests do the same transmission work.

To measure the extent of underlying inter-client redundant
reads, we launch various numbers of clients on the same CN.
Each client continuously issues 1KB RDMA_READs, with
their destination addresses following a Zipfian distribution
of skewness 0.99 (i.e., the same as YCSB’s). As shown in
Figure 4c, during each read time window, the average number
of redundant RDMA_READs increases with the number of
clients and achieves up to 0.48 with 64 clients, implying 48%
read performance improvement potential.

1To eliminate the impact of concurrency conflicts, we scatter the update
part of workloads among clients without intersection.

As for inter-client redundant writes, we issue constant
RDMA_WRITEs with lock-based concurrency control via
RDMA_CASes from each client. As shown in Figure 4d, dur-
ing each write time window (including lock acquirement and
release), the average number of redundant RDMA_WRITEs
grows and reaches up to 3.3, indicating around 330% write
performance improvement space with 64 clients. Interestingly,
the number of redundant writes is more than the read one since
redundant writes inevitably exacerbate the concurrency con-
flicts, leading to a longer write time window and thus more
redundant writes in return. The nearly exponential growth of
the redundant number of RDMA_CASes saturates the IOPS
upper bound rapidly and causes poor write performance.

Challenge 3: Structural features of ART deteriorate the
problem of computing-side cache invalidation. As presented
in § 2.3, path compression and adaptive nodes are two im-
portant structural features that reduce memory consumption
by reducing the tree height and the node size, respectively.
However, these two features introduce new cache validation
problems. For instance, adjustments on the parent-child re-
lationship of nodes may happen during insertion into com-
pressed nodes. The caches on other CNs still store the old
content of the parent node. If a client on those CNs does not
conduct a cache verification, it incorrectly reads the old child
node according to the outdated cache and thus fails to access
the newly inserted node. Similarly, node type changes are
invisible by the computing-side cache either, which may lead
to incomplete node fetching.

4 SMART Design
We propose SMART, a high-performance ART for DM. Fig-
ure 5 shows the overview of SMART. To improve the effi-
ciency of concurrency control (Challenge 1), we present a hy-
brid ART concurrency control scheme. The scheme contains a
lock-free internal node design and a lock-based leaf node de-
sign to achieve high write performance without cache thrash-
ing (§ 4.1). To save the limited IOPS of RNICs (Challenge 2),
we propose a read-delegation and write-combining (RDWC)
technique to eliminate inter-client redundant I/Os (§ 4.2).
To handle the cache validation (Challenge 3), we co-design
SMART with an ART cache (§ 4.3), including a reverse check

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 557

Memory Memory

CNs
MNs

Clients

cached nodes

KV KV KV KV

ART Cache (§4.3)

lock-free

reverse pointer
child pointer

Insert / Search / Update / Delete / Scan (§4.4)

lock-based

Hybrid ART Concurrency
Control (§4.1)

Clients

cached nodes

RDWC (§4.2)

ART Cache (§4.3)

RDWC (§4.2)

Figure 5: The overview of SMART.

mechanism. Lastly, we summarize the operations (i.e., insert,
search, update, delete, scan) that SMART supports (§ 4.4).

4.1 Hybrid ART Concurrency Control
In this section, we first describe the data structures and con-
current operations of the hybrid concurrency control scheme
in SMART. We then introduce RDMA-related optimizations.

4.1.1 Data Structures

Lock-free internal node. As the addresses of internal
nodes change more infrequently, internal nodes do not cause
cache thrashing like leaf nodes. Hence, it is feasible for lock-
free internal nodes to achieve high performance. We modify
the internal nodes of ART as follows.

(1) Homogeneous adaptive internal node. As illustrated
in Figure 2, a naive ART stores partial keys and child pointers
separately. Such a heterogeneous design makes it hard to
design a lock-free algorithm since the separated partial key
and child pointer should be modified atomically. Besides,
it incurs additional read amplification due to the inflexible
fixed-sized internal nodes.

We come up with a homogeneous internal node design that
embeds the partial keys into slots. First, this enables a child
pointer to be modified together with its corresponding partial
key atomically, laying the foundation for lock-free algorithms.
Second, the read amplification can be reduced since internal
nodes can have an arbitrary number of slots.

As shown in Figure 6a, an internal node of SMART con-
sists of an 8-byte reverse pointer, several 8-byte slots, and an
8-byte header. The reverse pointer is used for cache validation,
which will be presented in § 4.3. As for each slot, apart from
the embedded 8-bit partial key and the 48-bit child pointer,
we add a 1-bit Lea f field to indicate whether the pointer is
pointing to a leaf node. When Lea f is set, a Lenlea f field is
provided, which is used to support variable-sized keys (§ 4.5).
When Lea f is unset, there is a 5-bit Typenode field to indicate

HeaderNODE_X:

X slots

Partial Key Leaf Typenode Child Pointer

Partial Key Leaf Lenleaf Child Pointer

8bit

Slot Slot Slot

1bit 5bit 48bit

Slot:

8B

2bit

8B

Depth Sizearray Array of Partial KeysTypenode

Reverse Pointer

Header:

8B

8bit 5bit 3bit 6B

Leaf = 0

Leaf = 1

parent node
child leaf / internal node

(a) The homogeneous adaptive internal node with the pessimistic 8-byte header.

ValidReverse Pointer
8B

Key ValueChecksum Lock
1bit 8B 1Bfixed size7bit

(b) The update-in-place leaf node with the rear embedded optimistic lock.

Figure 6: The structure of the internal node and the leaf node in
SMART. The reverse pointer and the in-header Typenode field are
used for cache validation.

the type of the following internal node. Note that SMART
mainly uses the Typenode to reduce the network bandwidth
consumption rather than memory consumption. When fetch-
ing an internal node, SMART can RDMA_READ only the
required number of slots according to the Typenode field, re-
ducing the read amplification and thus saving the network
bandwidth.

(2) Pessimistic 8-byte header of the internal node. We
choose the pessimistic method for path compression since
both the optimistic and hybrid methods need two tree traver-
sals to insert a nonexistent key. One entire tree traversal is
required to search for the nonexistent key since not all com-
pressed partial keys are stored in the header. The other traver-
sal executes the actual insertion. In contrast, the pessimistic
method can insert the nonexistent key through one traversal.

Besides, following previous designs [29, 33, 37], we fix the
header size to 8 bytes, which can be changed atomically. If
some partial keys overflow from the header, we store them
in an empty following node. Although this may increase the
tree height, we mitigate this with the help of cache (§ 4.3).

As shown in Figure 6a, a header consists of an 8-bit Depth
field, a 5-bit Typenode field, a 3-bit Sizearray field, and a 6-
byte array of partial keys. The Depth field indicates the start
position for matching the target key. The Typenode field is
used for cache validation, which will be illustrated in § 4.3.
The Sizearray field records the length of the partial key array,
where at most six partial keys can be stored.

Lock-based leaf node. In-place update schemes are pre-
ferred as it does not cause cache thrashing. To adopt the in-
place update, lock-based concurrency control for the leaf node
is required. This is acceptable since locks are fine-grained,
as each leaf node in the radix tree only contains one key-
value item. We design the leaf node structure as follows for
concurrency control.

(1) Checksum-based update-in-place leaf node. The in-

558 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

00

56
N4 12 341 2

FF 7D

k1 k2 k3

node A

empty slot

k1: 0x123456CF
k2: 0x1234FF37
k3: 0x12347D94
k4: 0x12346494

tree root

(a) Initial state. Before inserting k4.

00

56
N4 12 341 2

FF 7D

k1 k2 k3

node A

k4: 0x12346494
k4

64

normal insert
existing leaf

k5: 0x123456CC

(b) Normal insert of k4. Before inserting k5.

00

56
N4 12 341 2

FF 7D

k1

k2 k3

node A

k4

64

k5: 0x123456CC
k1: 0x123456CF

CF
N44 0

CC

k5

leaf split

mismatching

node B

k6: 0x120577AC

(c) Leaf split when inserting k5. Before inserting k6.

00

56 FF 7D

k1

k2 k3

node A

k4

64

CF
N44 0

CC

k5

k6: 0x120577AC

34
N41 1

05
12

k6

header split

no empty slot

N43 0

node B

node C

k7: 0x123477FF

①

②

(d) Header split when inserting k6. Before inserting k7.

00

56
N83 0

FF 7D

k1

k2 k3

node A

k4

64

CF
N44 0

CC

k5

34
N41 1

05
12

k6

k7: 0x123477FF

77

k7

node type switch

node B

node C

①
②

②

(e) Node type switch when inserting k7.

Figure 7: A step-by-step example of inserting several new keys into SMART with 8-bit partial keys. For clarity, hexadecimal partial keys are
shown and reverse pointers are omitted. Each thick dotted box indicates an atomic CAS.

place update scheme overwrites the leaf node at the same ad-
dress, causing conflicts among readers and writers. To avoid
conflicts, we adopt an optimistic lock in each leaf node with
a checksum-based consistency check mechanism [40, 53],
where the fixed-sized key-value item in the leaf node is pro-
tected by a checksum. For write-write conflicts, an exclusive
lock is used to synchronize the writers. As for read-write con-
flicts, when a writer modifies the leaf node, the checksum is
re-calculated based on the new content of the leaf node and
written with the new content. The readers verify the checksum
after reading the leaf node. If the checksum verification fails,
the reader conducts a re-read.

(2) Rear embedded lock. To further reduce the overhead of
locks, we combine the lock release with the writing back of
the updated leaf node by embedding the lock into each leaf
node. Therefore, the two operations can be done via one single
RDMA_WRITE. Particularly, to avoid premature lock release,
we ensure that the lock release is always triggered after the
completion of writing back. We achieve this by placing the
lock at the rear of a leaf node, which leverages the in-order
delivery property of RNICs [12].

As shown in Figure 6b, a leaf node of SMART consists of
an 8-byte reverse pointer, a Valid bit, an 8-byte checksum, a
1-byte rear lock and a fixed-sized key-value item. The reverse

pointer is used for cache validation, which will be illustrated
in § 4.3. The Valid bit is used to indicate the deleted state.

4.1.2 Concurrent Operations
Based on the above structural modifications, we demonstrate
essential write-related sub-operations with a step-by-step ex-
ample, as shown in Figure 7. Except for the in-place leaf
update, all the sub-operations are lock-free. The complete
operation process will be described in § 4.4.

Normal insert. During an insert, the target partial key may
not be in the internal node yet. As shown in Figure 7b, after
the WRITE of the new leaf node (k4), the client CASes the
first empty slot in the node, together with the new partial key.
If the CAS fails, the client checks whether the return value
(i.e., a new value of the slot written by a concurrent client)
contains the target partial key. If yes, the client continues to
traverse the tree following the return pointer. Otherwise, the
client tries the insert again with the next empty slot.

Leaf split. If an existing leaf node is found during an insert,
a leaf split is needed as shown in Figure 7c. Specifically, the
client first calculates the rest of the longest common key prefix
of the two leaf nodes (k5 and k1). Then it allocates sufficient
sequentially-connected internal nodes to store the common
key prefix in their headers. The last internal node will contain
two child pointers pointing to the old and new leaf nodes. All

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 559

internal nodes and the new leaf node can be written in parallel,
after which the client CASes the parent slot to point to the
first new internal node. If the CAS fails, the client continues
to traverse following the return pointer.

Header split. If a mismatching for in-header partial keys
is found, a header split is required as shown in Figure 7d.
Specifically, the client allocates a new NODE_4 pointing to
the split internal node and new leaf node (k6), with its header
storing the matched part of partial keys. The new internal and
leaf node can be written in parallel. Then the client CASes
the parent slot to make it point to the new internal node (1⃝).
If CAS succeeds, the redundant in-header old partial keys are
removed via an additional CAS (2⃝). Otherwise, the client
continues to traverse following the return pointer.

Note that the correctness of concurrent searches can be
guaranteed by the in-header Depth value, which indicates
the start position for matching the current key. A concurrent
search READs the parent node and then the child node. There-
fore, there are two situations of read-write conflicts. First, the
READ of the parent node occurs after the CAS of the parent
slot (1⃝), while the READ of the child node occurs before
the CAS of the split header (2⃝). In this situation, redundant
in-header partial keys are read, which does not affect the cor-
rectness. Second, the former READ occurs before the former
CAS (1⃝), while the latter READ occurs after the latter CAS
(2⃝). In this case, the reader re-reads the parent slot if finding
partial keys missing according to the Depth value.

Node type switch. To avoid copy-on-write (COW) overhead
and additional cache coherence introduced by out-of-place
updates (Challenge 1), we conduct an in-place node type
switch. This is feasible thanks to the homogeneous adaptive
internal node design (§ 4.1.1). To be specific, we pre-allocate
the contiguous space of NODE_256 on MNs for each internal
node. This consumes a little additional memory but enables
lock-free operations during the node type switch. When nei-
ther a matching partial key nor an empty slot is found in the
current internal node, the client can try to CAS the follow-
ing empty slots one by one, whose addresses are behind the
node (1⃝) as shown in Figure 7e. After a successful CAS, the
current best-fit node type can be determined by the index of
the newly inserted slot. The client then tries to update the
two old Typenode values (on the header and the parent slot)
with the new one via two concurrent CASes (2⃝), making
the newly inserted leaf visible by subsequent search. If both
CASes succeed or fail with return values containing Typenode
values larger than/equal to the expected one, the node type
switch is finished. Otherwise, the client retries the CASes.

In-place leaf update. To update a leaf node, the client first
acquires the rear embedded lock in the leaf node. It then
WRITEs back the updated leaf node with the re-calculated
checksum and the unset lock, after which the in-place leaf
update is finished with the lock properly released.

4.1.3 RDMA-related Optimizations

To further optimize performance on DM, SMART adopts the
following RDMA-related optimizations [23].

Inline write. For small-sized WRITE (e.g., writing internal
nodes smaller than NODE_16 or leaf nodes), the INLINE flag
is set, enabling the RNIC to encapsulate payload into the work
queue entry (WQE) and thus reducing PCIe overhead.

Unsignaled verbs. As for writing commands allowing asyn-
chronous execution (e.g., CAS of the header during header
split), SMART unsets the SIGNALED flag to reduce the over-
head of polling RDMA completion queues.

Doorbell batching. If a client issues multiple WQEs to the
same queue pair (e.g., to the same MN), a doorbell batching
is conducted to reduce PCIe overhead.

4.2 Read Delegation and Write Combining
SMART proposes the read-delegation and write-combining
(RDWC) technique on DM to eliminate inter-client redun-
dant I/Os in terms of reads and writes, respectively, to break
through the IOPS upper bound.

Hash-based local locks. The inter-client redundant I/Os
on each CN occur among the concurrent read and write oper-
ations on the same key or address. Therefore, computing-side
local locks are needed to collect the concurrent operations.

We maintain the local locks in each CN as a table, similar
to the local lock table of HOCL in Sherman [53]. However,
unlike Sherman, which maintains each local lock for a coarse-
grained global lock, SMART maintains each local lock for
a key (i.e., fine-grained leaf node). It is challenging to store
all such locks in each limited computing-side memory. To
address this, we use hash-based local locks, where a lock
corresponds to a set of keys with the same hash value.

We dynamically maintain a unique key in each local lock
to solve the hash-conflict problem of our hash-based scheme.
Specifically, the first client who acquires a local lock success-
fully will record its target key as the unique key of this local
lock. The subsequent clients who fail to acquire this local
lock will conduct a hash-conflict check by comparing their
target key with the unique key. If the target key is exactly the
same as the unique key, the client can be involved in the read
delegation or write combining. Otherwise, a hash conflict is
found, and the client should execute a normal remote read
or write on its own for correctness. The unique key is freed
when the first client releases the local lock.

Read delegation. To reduce inter-client redundant I/Os for
reads, a delegation client can be elected on each CN to execute
the same read, and then share its RDMA_READ result with
other waiting clients. The first client who acquires the local
lock successfully is the delegation client and the subsequent
clients who fail to acquire the lock are the waiting clients.
The relationship between the delegation client and the waiting
clients is similar to that between the first cache miss and the
subsequent delayed cache hits in the cache system [5].

560 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

C
ac

he
 S

ea
rc

h

Lock R R

R

R

Tr
ee

 T
ra

ve
rs

al

Le
af

 R
ea

d

R

conflict

Yes

NoYes

No

Delegated Read

Time Window

Normal Read

Concurrent
Reads

lock fail

①

③

②

computing-side memory-side

(a) Read delegation.

Le
af

 L
oc

k

C
ac

he
 S

ea
rc

h

Lock W W

W

W

Tr
ee

 T
ra

ve
rs

al

Le
af

 R
ea

d

W

conflict

lock fail

Le
af

 W
rit

e

Le
af

 U
nl

oc
k

Yes

Yes

No

No

Combined Write
write

write

read

WCB Time Window

Normal Write

Concurrent
Writes

①

②

③

computing-side memory-side

(b) Write combining.

Figure 8: The processes of the read delegation and the write combining on SMART respectively.

We implement this as shown in Figure 8a. After acquir-
ing the corresponding local lock successfully, the delegation
client records its target key as the unique key and then con-
ducts the remote tree search (i.e., including cache search, tree
traversal, and leaf node read), which is the time window of
read delegation (1⃝). During the time window, the subsequent
clients failing to acquire the local lock first execute the hash-
conflict check by comparing their target key with the unique
key. If a hash conflict is found, the client executes a normal
tree search by itself (2⃝). Otherwise, it pushes itself into a
read-waiting queue and waits for the search result from the
first client (3⃝). Finally, the delegation client shares its search
result with the waiting clients and releases the local lock.

Write combining. Write combining (WC) is a normal
technology in modern processors [11]. When a processor
intends to issue multiple writes to the same memory region
in a small time window, it combines the writes into a single
burst write so as to save the system bus bandwidth. This idea,
also known as write coalescing, is applied to many storage
systems [22, 28, 50]. Inspired by this, we find it feasible to
conduct a WC on each CN. When clients intend to make
several concurrent key-value writes to the same memory-side
key or address, they can combine the writes into a single
consensus write so as to save the network bandwidth and the
limited IOPS of RNICs.

We implement WC on DM as shown in Figure 8b. A client
that succeeds in acquiring the corresponding local lock first
records its target key as the unique key and writes its new
value into the write combining buffer (WCB), and then con-
ducts the remote tree insert or update (1⃝). Differently, the
time window of write combining is the former partial period
of tree insert or update (i.e., cache search, tree traversal, and
lock acquirement on leaf node). After that, the client reads
the combined consensus result from WCB and then makes a
RDMA_WRITE to write back the result and release the remote
lock. Finally, the client releases the local lock. During the
write-combining time window, the subsequent clients first
perform the same hash-conflict check. If a hash conflict is
found, the client performs a normal tree insert or update on its
own (2⃝). Otherwise, it first writes its expected value into the

WCB (with local lock-based concurrency control), making
the value visible to the first client. Then the client pushes
itself into a write-waiting queue to wait for the completion of
the remote write (3⃝).

Put both together. Naively putting read-delegation and
write-combining together may introduce incorrect read results
when a client reads a key-value item after writing it. Specifi-
cally, the latter read may be delegated by a client whose read
happens before the write operation. In this case, the old value
(i.e., the value of the item before the client’s write) is returned
to the read operation that happens after the write, breaking the
causality of the read and write. We use the same time window
for read-delegation and write-combining to address this issue.
In this way, the write and read operations with causal relations
are included in two non-overlapped time windows, and thus,
the above issue can be avoided. To achieve this, we let readers
and writers operating on the same key fairly acquire the same
local lock, where the winner decides the time window. Each
local lock is associated with two waiting queues, i.e., a read
queue and a write queue, so as to conduct read delegation and
write combining exclusively and concurrently. In our imple-
mentation, 4M 32-bit local locks are sufficient on each CN,
consuming only nearly 3% of cache size.2

4.3 ART Cache
ART-indexed cache. To reduce remote access during tree

traversal, a memory-efficient ART-indexed cache is designed
on each CN to store partial internal nodes of SMART. To
be specific, utilizing the feature that each radix tree node
(excluding header) can be uniquely identified by a key prefix,
we adopt a local ART on each CN to index the cached internal
nodes. As shown in Figure 9, each leaf node (i.e., cache entry)
of the local ART contains the snapshot of a traversal context
(i.e., the content of an internal node being read from MNs, the
Depth value, and the address of the node).

Cache invalidation situations. Since we cache the slots of
the internal nodes in clients, changing the slots in the disag-
gregated memory leads to cache invalidation. We analyze all

2Note that with N clients in each CN, there are at most N dynamically-
allocated WCBs and unique keys at the same time, whose memory consump-
tion (i.e., size of N key-value items) is negligible.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 561

Local ART

Leaf Leaf Leaf

Depth Cached Internal NodeCache Entry:
1B

Node Address
8B

Slot Slot Slot
8B

Figure 9: The structure of the ART cache.

operations that change the slots (i.e., slot insert, update, and
delete) and find there are only three types of cache invalida-
tion in the current SMART design, i.e., Type 1: adjustments
on the parent-child relationship, Type 2: node type changes,
and Type 3: deleted nodes. Specifically:

For slot insert, inserting a new slot does not affect the client
cache since the new slot is not in the client cache.

For slot update, it contains four situations according to the
structure of slots in Figure 6a (note that the Partial Key field
keeps unchanged until deleted):

• Updating the Child Pointer field. This type of cache
invalidation corresponds to Type 1.

• Updating the Typenode field. This type of cache invalida-
tion corresponds to Type 2.

• Updating the Lea f field. Since leaf nodes have differ-
ent addresses from internal nodes, the Leaf field update
should be combined with a Child Pointer update. Thus
this type of cache invalidation corresponds to Type 1.

• Updating the Lenlea f field. This field keeps unchanged
since SMART is currently designed for fixed-sized leaf
nodes. The support for variable-sized leaf nodes will be
discussed in § 4.5.

For slot delete, this type of cache invalidation corresponds
to Type 3.

Reverse check mechanism. To handle the above three
types of cache invalidation situations, we design a reverse
check mechanism specifically for SMART, as existing solu-
tions on B+ trees are infeasible for ART. We store the check
information in remote internal and leaf nodes. A mismatch
between check information and cache content indicates an
outdated cache entry, which will be invalidated.

(1) Adjustments on the parent-child relationship. We store
a reverse pointer in the front of each node to point to its
parent, as shown in Figure 6. If the client reads a remote node
according to a cached pointer, it checks whether the reverse
address is equal to the node address in the cache entry. If not,
a mismatch is found, which indicates that a newly inserted
node (e.g., caused by leaf split or header split) is invisible to
the client due to the outdated cache entry.

(2) Node type changes. We design a Typenode field in the
header of each node to indicate the current type of the node,
as shown in Figure 6a. If the client reads a remote node
according to a cached pointer, it checks whether the in-header

Typenode value being read is the same as that in the cached
slot. If not, and the in-header Typenode value is larger than the
cached one, read the rest of the remote node.

(3) Deleted nodes. We set the in-header Typenode value to
zero to indicate the deleted state of an internal node. As for a
deleted leaf node, the Valid bit is unset.

4.4 Operations
All operations first search in the cache for the deepest slot
that is matched by the prefix of the target key. If none of the
cached slots hits, start the traversal from the tree root slot.

Search. The client first reads the node according to the slot,
after which a reverse check is conducted to check if the cache
entry expires. If yes, invalidate the cache entry and retry this
search. As for a leaf node being read, the target item is found
if its key is the same as the target key. Otherwise, it does not
exist. As for an internal node, if all the in-header partial keys
are matched, and the next target partial key can be found in a
slot, read the next node along the child pointer in the slot and
repeat the process. Otherwise, the target item does not exist.

Insert/Update. The client first reads the node and conducts
a reverse check like the search. After that, as for a leaf node,
if its key is the same as the target key, execute an in-place leaf
update. Otherwise, a leaf split is needed. As for an internal
node, if a mismatching for the in-header partial keys is found,
conduct a header split. Otherwise, turn to search among the
slots. If the current target partial key can be found in a slot,
read the next node along the corresponding child pointer in the
slot and start the process again. Otherwise, conduct a normal
insert with the next empty pointer slot. If no empty slot can
be found, a node type switch is needed.

Delete. Delete operations have a similar process as insert
operations. A normal delete clears the slot pointing to the
target leaf node via RDMA_CAS and unsets the Valid bit of
the deleted leaf node. Opposite operations of leaf split and
header split are conducted for path compression.

Scan. At each level of traversal, the client conducts par-
allel RDMA_READs to fetch all nodes inside the target key
range. For each RDMA_READ, the client processes the node
being read in the same way as the search operation, with an
additional comparison between partial keys and target key
range to exclude unwanted concurrent search paths. Like
many other existing tree indexes [53, 59] on DM, SMART
does not guarantee the scan is atomic with concurrent insert
or update operations.

4.5 Discussion
Support for variable-sized keys and values. SMART

currently supports fixed-sized keys and values. For variable-
sized keys and values, the optimizations of update-in-place
leaf node and rear embedded lock in SMART are no longer
applicable. Instead, SMART can use the RCU scheme to
out-of-place update the leaf node to support variable-sized
keys and values. The search, insert and delete operations on

562 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ValidReverse Pointer
8B

Lenkey Key Value
1bit variable size

Lenval

7bit

Figure 10: The structure of the variable-sized leaf node.

variable-sized key-value items are the same as that on fixed-
sized ones.

As for the leaf node structure, SMART can follow the de-
sign in RACE [60]. As shown in Figure 10, the leaf node
structure includes a Lenkey field and a Lenval field, which in-
dicate the sizes of the following Key and Value fields, respec-
tively. SMART can use the 7-bit Lenlea f field in the parent
slot and a pre-configured length_unit value to indicate the
length of the leaf node. The maximum length of a leaf node
is 27 · length_unit. When a key-value item exceeds the max-
imum length, SMART can store the remaining content in a
second key-value block linked to the leaf node.

Moreover, the cache validation mechanism (§ 4.3) can be
extended to support variable-sized leaf nodes with a new
cache invalidation situation, i.e., Type 4: leaf node length
changes. When a client reads a remote leaf node according
to a cached slot, it checks whether the sum of the Lenkey and
Lenval values equals the Lenlea f · length_unit value. If not,
the cached slot is invalid.

Generality of techniques in SMART. Some techniques
in SMART can also be applied to other kinds of indexes.
Particularly: 1) The RDWC technique can benefit any tree in-
dexes since it is transparent to the lower-level index structures.
When applied to other index structures, it brings about the
same performance improvement as applied to ART. 2) The
reverse check mechanism can benefit any radix-tree-based in-
dexes. It is designed to handle the cache validation problems
caused by ART’s features. 3) The rear embedded lock can be
adopted in any lock-based structures on DM to save one RTT.

The first lock-free ART design. A pure lock-free ART can
be formed with the lock-free node design in Figure 6a and a
lock-free leaf node design with a traditional RCU scheme. To
our knowledge, this is the first lock-free ART design. In our
implementation, SMART can degenerate into the pure lock-
free ART by disabling the optimizations of update-in-place
leaf node and rear embedded lock.

5 Evaluation
5.1 Experimental Setup

Testbed. We run all experiments on 16 physical machines
(16 CNs and 2 MNs)3 on the Clemson cluster of Cloud-
Lab [13]. Each machine has two 36-core Intel Xeon CPUs,
256GB of DRAM, and one 100Gbps Mellanox ConnectX-6
IB RNIC. Each RNIC is connected to a 100Gbps Ethernet
switch. Each MN owns 64GB DRAM and 1 CPU core for
network connection and memory allocation. Each CN owns

3Like Sherman [53], we make two physical machines act as both CN and
MN to save machine resources.

4GB DRAM and 64 CPU cores, where each core can serve as
a client. The MNs register memory with huge pages to reduce
page translation cache misses of RNICs [12].

Workloads. Without explicit mention, we use the index mi-
crobench [55] to generate YCSB [10] workloads like previous
work [6,26,39]. We evaluate SMART with 6 YCSB core work-
loads: A (50% read, 50% update), B (95% read, 5% update),
C (100% read), D (latest-read, 95% read, 5% insert), E (95%
scan accessing up to 100 items, 5% insert) and an additional
LOAD (100% insert) workloads, using the default Zipfian
distribution for all workloads except for YCSB LOAD and D.
For most workloads, we test 2 key types, i.e., integer (8-byte)
and string (32-byte). For string workloads, we use 125 million
publicly available email addresses [15] and conduct a com-
mon pre-processing (i.e., swap username and domain fields of
email addresses) like previous work [32, 38, 39, 55]. We use
8-byte values consistent with prior work [6, 24, 38, 41, 53, 56].
For each workload, we populate 60 million keys before con-
ducting 60 million operations, except for the LOAD test.

Comparisons. We compare SMART with two state-of-the-
art tree indexes, i.e., Sherman [53] and ART [32]. We use
the default configuration of Sherman (e.g., a span size of 32
for long key) with all optimizations enabled (e.g., on-chip
memory). Since ART is not designed for DM, we port it to
DM by re-implementing it from scratch (as mentioned in § 3),
including its synchronization design (i.e., ROWEX [33]). For
better baseline performance, we apply the HOCL of Sherman
to ART and any other baselines of SMART. Coroutines are
used in each client to hide RDMA polling overhead.

5.2 Performance Comparison
Figures 11 and 12 present the throughput-latency curves of
the three indexes with integer and string keys respectively,
using various numbers of clients (16 at least and 896 at most,
evenly distributed across 16 CNs). Without loss of generality,
we discuss the performance of integer keys in the following.

Search-only workload (YCSB C). For the YCSB C work-
load, SMART outperforms Sherman by 2.8× due to no leaf
read amplification, as mentioned in § 3. Moreover, it outper-
forms ART by 1.2× due to the read delegation mechanism
for reducing redundant I/Os. It is worth noting that SMART
achieves up to 96M requests per second, which breaks through
the total IOPS upper bound of memory-side RNICs (about
90 Mops in total with the two MNs). This is because the
read delegation can perform concurrent duplicated reads with
only one delegated read. Besides, the similar P99 latency
of SMART and ART shows that the read delegation causes
near-zero overhead.

Insert workload (YCSB LOAD, D). For the YCSB LOAD
workload, SMART outperforms Sherman and ART by 1.6×,
1.5× in throughput and achieves 1.4×, 1.5× lower P99 la-
tency respectively. This can be attributed to the design of
the lock-free internal nodes. Specifically, both Sherman and
ART have low throughput and high latency due to the node-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 563

(a) YCSB LOAD (b) YCSB A (c) YCSB B (d) YCSB C (e) YCSB D

Figure 11: The performance comparison of tree indexes on DM under YCSB workloads of integer keys.

(a) YCSB LOAD (b) YCSB A (c) YCSB B (d) YCSB C (e) YCSB D

Figure 12: The performance comparison of tree indexes on DM under YCSB workloads of string keys.

Figure 13: The scalability of
tree indexes under the YCSB
A workload of integer keys.

Figure 14: The performance of scan un-
der the YCSB E workload of integer
keys with different value sizes.

grained locks, which introduce additional RTTs with frequent
lock-fail retries, thus wasting the limited IOPS of RNICs in
write-intensive scenarios (i.e., 50% insert). Interestingly, with
string workloads, the latency of ART becomes much worse
since the smaller set of string partial keys (e.g., alphanumeric
characters) aggravates concurrency conflicts.

For the YCSB D workload, SMART achieves 2.4× and
1.4× higher throughput and 1.1× and 1.8× lower P99 latency,
compared with Sherman and ART respectively. With fewer
write conflicts (i.e., only 5% insert), read and write amplifi-
cations become the main reason for the poor performance of
Sherman. ART still has a high tail latency since concurrent
writes cause cache misses, leading to remote tree traversals
and thus continuous lock operations on the remote tree.

Update workload (YCSB A, B). Compared with Sher-
man and ART, SMART gains 6.1× and 3.4× improvement

in throughput and 1.4× and 1.3× reduction in latency for
YCSB A, and achieves 2.4× and 1.8× higher throughput and
1.1× and 1.7× lower P99 latency for YCSB B, respectively.

Unlike the insert workload, YCSB A and B follow a Zipfian
distribution of skewness 0.99, indicating a high amount of up-
date concurrency conflicts. Consequently, Sherman performs
poorly with YCSB A due to its coarse-grained, lock-based
concurrency control. ART performs better than Sherman since
update operations do not modify the partial key fields and
thus do not need to acquire locks. However, the out-of-place
update scheme used by ART causes cache thrashing, resulting
in huge cache-miss overhead and thus much higher latency
than SMART. Note that the cache thrashing also impacts
search performance, leaving a poor performance of ART on
YCSB B (with only 5% update). As shown in Figure 13, ART
experiences performance collapse with increasing clients due
to severe cache thrashing. In contrast, SMART shows excel-
lent scalability due to the cache-friendly in-place leaf node
design and fine-grained concurrency control.

Scan workload (YCSB E). We evaluate the performance
of scan operations with 128 clients using varying value sizes
as shown in Figure 14. For a small value size (e.g., 8 bytes),
SMART shows poorer performance than Sherman since the
small-sized leaf nodes saturate the memory-side IOPS upper
bound, which is an inherent shortcoming of radix trees. How-
ever, for a value size larger than 64 bytes, which is common in
real-world workload [4,58], the scan performance of Sherman
becomes worse than SMART since the large-sized leaf nodes
rapidly saturate the bandwidth bottleneck.

564 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 15: The factor analysis of overall performance on SMART.

5.3 Factor Analysis for SMART Design
Figure 15 presents the factor analysis on SMART. We start
with the naive ART and apply each proposed technique one
by one. We use 16 CNs (each launches 24 clients) and integer
keys for experiments in this section.

+ Lock-free internal node. The lock-free internal nodes
mainly contribute to the insert workload. With YCSB LOAD,
it brings 1.5× improvement in throughput and 1.8×/1.4× re-
duction in P50/P99 latency. Unlike ROWEX, lock-free inter-
nal nodes eliminate expensive lock overhead during insertion
and thus improve performance.

+ Update-in-place leaf node. In-place update scheme
mainly contributes to the update workload. It achieves 1.5×
improvement in throughput and 1.4×/1.7× reduction in
P50/P99 latency with YCSB B. The in-place update scheme
alleviates the cache coherence problem, as the addresses of
the cached leaf nodes never expire until being deleted.

+ Rear embedded lock. The rear embedded locks further
optimize the in-place update scheme. It eliminates the lock-
releasing overhead, saving one RTT during each update. With
YCSB A, it improves throughput by 3.0× and reduces tail
latency by 11.3×.

+ Read delegation. The read delegation mechanism con-
tributes to the search workload. It brings 1.1× throughput
improvement and 1.3× tail latency reduction with YCSB C.
It eliminates superfluous reads and thus saves network I/O
consumption, so as to support more client requests.

+ Write combining. The write combining mechanism
mainly contributes to the write-intensive workload. It im-
proves the throughput by 1.1× and reduces tail latency by
1.3× with YCSB A.

As the RDWC technique can reduce concurrency conflicts
similar to HOCL, we compare their efficiency by applying
them on SMART respectively. As shown in Figure 16, when
applying the primitive HOCL design, SMART shows poor
performance with an average of 0.76 lock-fail retry count,
due to the limited on-chip memory space (128MB per RNIC
in our evaluation) with only 2 MNs, which is insufficient for
a large number of fine-grained locks. With E-HOCL (i.e.,
integrating the rear embedded lock technique into HOCL),
SMART achieves much better performance with an average

Figure 16: The efficiency
comparison of HOCL, E-
HOCL and RDWC under
the YCSB A workload.

Figure 17: The factor analysis of cache
efficiency on SMART under the YCSB
C workload of string keys with differ-
ent cache sizes.

of 0.29 lock-fail retry count. However, despite the optimiza-
tion, HOCL still shows lower improvement efficiency than
RDWC, which can introduce a 26.2% higher throughput. This
is because RDWC saves not only the lock overhead but also
the superfluous bandwidth consumption of reads and writes.

As the design of RDWC is transparent to the lower-level in-
dex structures, it will lead to the same amount of performance
improvements on Sherman, i.e., 1.3× and 1.1× under write-
intensive and read-only workloads (Figure 15). Therefore,
after applying RDWC to Sherman, SMART can still achieve
4.7× (= 6.1/1.3) higher throughput under write-intensive
workloads and 2.5× (= 2.8/1.1) higher throughput under
read-only workloads.

Cache-related techniques. Some cache-related techniques
contribute to cache efficiency: 1) Homogeneous adaptive
internal node. Due to the homogeneous adaptive internal
node design, more fine-grained and flexible adaptive nodes
are available, saving cache space with smaller sizes of cached
nodes. 2) ART-indexed cache. Compared with a normal hash-
based cache index, ART-indexed cache can efficiently save
memory consumption of index keys without redundant key
prefixes stored. As shown in Figure 17, after applying the
above two techniques one by one, SMART achieves an in-
creasing cache hit ratio and overall throughput under each
specific limited cache size.

5.4 Sensitivity
In this section, we investigate how the workload skewness,
key size, and value size affect the performance of SMART.
We use 16 CNs with 16 clients each and integer keys for the
sensitivity evaluation.

Skew test. Figure 18a shows the performances of differ-
ent tree indexes on a generated Zipfian workload [35] (50%
search + 50% update) with various skewness. SMART per-
forms best under both slightly and highly skewed workloads.
Sherman shows a good performance in slightly skewed work-
loads, while having the poorest performance in highly skewed
workloads because of its coarse-grained lock-based concur-
rency control design. ART performs better than Sherman in

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 565

(a) Skewness. (b) Key size. (c) Value size.

Figure 18: The sensitivity analysis.

highly skewed workloads due to the lock-free RCU scheme
but performs worst in slightly skewed workloads due to cache
thrashing. Note that the RDWC in SMART does not benefit
the overall throughput since the network bandwidth is un-
saturated. As the Zipfian skewness grows from 0.5 to 0.99,
the performance of ART and SMART decrease by the same
multiple (2.6×), and thus their performance gap is reduced.
The performance of Sherman decreases by 7.4×, indicating
the poor efficiency of coarse-grained lock-based design.

Impact of key/value size. Figures 18b and 18c show the
impact of key size and value size on the performances of the
three tree indexes under YCSB C with sufficient caches. As
the key size grows from 8 to 256 bytes, SMART and ART
show a slight performance decline (1.3×), while Sherman
experiences a rapid drop in performance (14×). As the value
size grows from 8 to 1024 bytes, the performance declines of
SMART, ART and Sherman are 3.1×, 3.4× and 64×, respec-
tively. This is because, during each search, Sherman needs
to fetch the whole leaf node, whose size grows with key and
value size, causing the rapidly increasing consumption of net-
work bandwidth. On the contrary, SMART and ART only
need to fetch the fine-grained small-sized leaf node. Thus,
they are not bounded by the network bandwidth bottleneck,
showing a stable performance with varying key sizes and
value sizes. The performances of ART and SMART are close
since the read delegation in SMART does not benefit the
throughput under the unsaturated network. This is consistent
with the results shown in Figure 11d.

6 Related Work
Disaggregated Memory. The DM architecture is widely

discussed in the literature [3, 9, 16, 19, 20, 27, 47], which is
proposed to address the problem of a growing imbalance
between computing and memory resources. Many recent aca-
demic works have been conducted on DM. LegoOS [46]
designs a distributed operating system for disaggregated re-
source management. PolarDB Serverless [8] co-designs the
database and DM to achieve better dynamic resource provi-
sioning and faster failure recovery speed. Clover [52] explores
an efficient manner to build a key-value store on disaggre-
gated persistent memory (PM), with careful designs between
the data plane and the metadata/control plane. FUSEE [48]

designs a fully memory-disaggregated key-value store that
brings disaggregation to metadata management. ROLEX [34]
proposes a scalable RDMA-oriented learned key-value store
that dissociates the model retraining from data modification
operations. RACE [60] is an extendible RDMA-based hashing
index with lock-free remote concurrency control and efficient
remote resizing. Sherman [53] is a B+ tree index on DM with
RDMA-friendly software techniques to boost index write per-
formance. SMART focuses on building a fast, scalable radix
tree index on DM with small read and write amplifications.

RDMA-based Tree Indexes. Attracted by the high perfor-
mance of RDMA, there are increasing studies focusing on
RDMA-based tree indexes [1, 41, 45, 53, 59]. Many studies
conduct operations via remote procedure calls (RPCs), which
is unsuitable for DM due to weak memory-side computation
power. FG [59], designed as a B-link tree, is the first index
that completely leverages one-side verbs for write operations
and thus supports DM. Sherman [53] is the state-of-the-art
B+ tree index with several RDMA-friendly software tech-
niques. However, constrained by the structure of the B+ tree,
it suffers from low peak throughput and early latency dete-
rioration due to read and write amplifications. Besides, ex-
tending RDMA interfaces is another approach to design tree
indexes on DM, which offloads index write operations into
memory-side NICs via SmartNICs or other customized hard-
ware [1,7,14,25,36,44,49]. To our knowledge, SMART is the
first radix tree index on DM that achieves high performance
with commodity RNICs.

7 Conclusion

Based on a thorough theoretical and experimental analysis
of tree indexes built on DM, this paper points out the perfor-
mance bottleneck of B+ trees on DM due to severe read and
write amplifications and then presents SMART, the first radix-
tree-based index on DM. SMART addresses the challenges of
applying ART on DM, including a hybrid concurrency control
scheme to reduce lock overhead and avoid cache thrashing,
a read-delegation and write-combining technique to reduce
redundant I/Os, and a tailed cache validation mechanism. Our
evaluation results show that SMART outperforms the state-
of-the-art B+ tree on DM by up to 6.1× under write-intensive
workloads and 2.8× under read-only workloads.

Acknowledgments

We sincerely thank our shepherd Steven Swanson and the
anonymous reviewers for their constructive comments and
suggestions. This work is supported by the National Natu-
ral Science Foundation of China (Project No. 61971145),
the Natural Science Foundation of Shanghai (Project
No. 22ZR1407900), and Huawei Cloud. Yangfan Zhou
(zyf@fudan.edu.cn) and Pengfei Zuo (pfzuo.cs@gmail.com)
are the corresponding authors.

566 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Marcos K. Aguilera, Kimberly Keeton, Stanko No-

vakovic, and Sharad Singhal. Designing far memory
data structures: Think outside the box. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS 2019, Bertinoro, Italy, May 13-15, 2019, pages
120–126. ACM, 2019.

[2] Marcos Kawazoe Aguilera, Wojciech M. Golab, and
Mehul A. Shah. A practical scalable distributed B-tree.
Proc. VLDB Endow., 1(1):598–609, 2008.

[3] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen.
Disaggregation and the application. In 12th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud
2020, July 13-14, 2020. USENIX Association, 2020.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS

’12, London, United Kingdom, June 11-15, 2012, pages
53–64. ACM, 2012.

[5] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S.
Berger. Caching with delayed hits. In SIGCOMM ’20:
Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, Virtual Event, USA, Au-
gust 10-14, 2020, pages 495–513. ACM, 2020.

[6] Robert Binna, Eva Zangerle, Martin Pichl, Günther
Specht, and Viktor Leis. HOT: A height optimized trie
index for main-memory database systems. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pages 521–534. ACM, 2018.

[7] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan R. K. Ports. PRISM: Rethinking the RDMA
interface for distributed systems. In SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, Virtual Event / Koblenz, Germany, October 26-29,
2021, pages 228–242. ACM, 2021.

[8] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li,
Sheng Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen,
Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing
Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei
Hu, Jianwei Zhao, Yusong Gao, Songlu Cai, Yunyang
Zhang, and Jiawang Tong. PolarDB Serverless: A cloud
native database for disaggregated data centers. In SIG-
MOD ’21: International Conference on Management

of Data, Virtual Event, China, June 20-25, 2021, pages
2477–2489. ACM, 2021.

[9] Amanda Carbonari and Ivan Beschastnikh. Tolerating
faults in disaggregated datacenters. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks,
Palo Alto, CA, USA, HotNets 2017, November 30 - De-
cember 01, 2017, pages 164–170. ACM, 2017.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, Indiana, USA, June 10-11, 2010, pages
143–154. ACM, 2010.

[11] Intel Corporation. Write combining memory implemen-
tation guidelines. https://download.intel.com/d
esign/PentiumII/applnots/24442201.pdf.

[12] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2014, Seattle, WA, USA, April 2-4, 2014, pages 401–414.
USENIX Association, 2014.

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuang-Ching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019, pages 1–14. USENIX Associa-
tion, 2019.

[14] Daniel Firestone, Andrew Putnam, Sambrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian M. Caulfield, Eric S.
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert G. Green-
berg. Azure accelerated networking: SmartNICs in the
public cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2018, Ren-
ton, WA, USA, April 9-11, 2018, pages 51–66. USENIX
Association, 2018.

[15] Fonxat. 300 million email database. https://archiv
e.org/details/300MillionEmailDatabase, 2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 567

https://download.intel.com/design/PentiumII/applnots/24442201.pdf
https://download.intel.com/design/PentiumII/applnots/24442201.pdf
https://archive.org/details/300MillionEmailDatabase
https://archive.org/details/300MillionEmailDatabase

[16] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,
João Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016, pages
249–264. USENIX Association, 2016.

[17] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity ethernet at scale. In Proceedings of
the ACM SIGCOMM 2016 Conference, Florianopolis,
Brazil, August 22-26, 2016, pages 202–215. ACM, 2016.

[18] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In ASPLOS

’22: 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Lausanne, Switzerland, 28 February 2022 -
4 March 2022, pages 417–433. ACM, 2022.

[19] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Rat-
nasamy, Guangyu Shi, and Scott Shenker. Network
support for resource disaggregation in next-generation
datacenters. In Twelfth ACM Workshop on Hot Top-
ics in Networks, HotNets-XII, College Park, MD, USA,
November 21-22, 2013, pages 10:1–10:7. ACM, 2013.

[20] Eric Hooper. Intel rack scale design: Just what is it?
https://www.datacenterdynamics.com/en/op

inions/intel-rack-scale-design-just-what-i
s-it, 2018.

[21] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu,
and Rui Zhang. iDistance: An adaptive B+-tree based
indexing method for nearest neighbor search. ACM
Trans. Database Syst., 30(2):364–397, 2005.

[22] Minwen Ji, Alistair C. Veitch, and John Wilkes. Seneca:
Remote mirroring done write. In Proceedings of the
General Track: 2003 USENIX Annual Technical Confer-
ence, June 9-14, 2003, San Antonio, Texas, USA, pages
253–268. USENIX, 2003.

[23] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance RDMA systems.
In 2016 USENIX Annual Technical Conference, USENIX
ATC 2016, Denver, CO, USA, June 22-24, 2016, pages
437–450. USENIX Association, 2016.

[24] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Datacenter RPCs can be general and fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2019, Boston, MA, February 26-
28, 2019, pages 1–16. USENIX Association, 2019.

[25] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostic, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient SmartNIC
offload of a distributed file system with pipeline paral-
lelism. In SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 756–771. ACM,
2021.

[26] Wook-Hee Kim, Madhava Krishnan Ramanathan, Xin-
wei Fu, Sanidhya Kashyap, and Changwoo Min.
PACTree: A high performance persistent range index
using PAC guidelines. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages
424–439. ACM, 2021.

[27] HP Labs. The machine: A new kind of com-
puter. https://www.hpl.hp.com/research/syst
ems-research/themachine, 2014.

[28] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug
Burger. Architecting phase change memory as a scalable
DRAM alternative. In 36th International Symposium on
Computer Architecture (ISCA 2009), June 20-24, 2009,
Austin, TX, USA, pages 2–13. ACM, 2009.

[29] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write optimal radix
tree for persistent memory storage systems. In 15th
USENIX Conference on File and Storage Technologies,
FAST 2017, Santa Clara, CA, USA, February 27 - March
2, 2017, pages 257–270. USENIX Association, 2017.

[30] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. Recipe: Convert-
ing concurrent DRAM indexes to persistent-memory
indexes. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019, pages
462–477. ACM, 2019.

[31] Seung-Seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
MIND: In-network memory management for disaggre-
gated data centers. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages
488–504. ACM, 2021.

[32] Viktor Leis, Alfons Kemper, and Thomas Neumann. The
adaptive radix tree: Artful indexing for main-memory
databases. In 29th IEEE International Conference
on Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, pages 38–49. IEEE Computer Society,
2013.

568 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-design-just-what-is-it
https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-design-just-what-is-it
https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-design-just-what-is-it
https://www.hpl.hp.com/research/systems-research/themachine
https://www.hpl.hp.com/research/systems-research/themachine

[33] Viktor Leis, Florian Scheibner, Alfons Kemper, and
Thomas Neumann. The ART of practical synchroniza-
tion. In Proceedings of the 12th International Workshop
on Data Management on New Hardware, DaMoN 2016,
San Francisco, CA, USA, June 27, 2016, pages 3:1–3:8.
ACM, 2016.

[34] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and
Jiajie Sheng. ROLEX: A scalable RDMA-oriented
learned key-value store for disaggregated memory sys-
tems. In 21st USENIX Conference on File and Storage
Technologies, FAST 2023, Santa Clara, CA, USA, Febru-
ary 21-23, 2023, pages 99–114. USENIX Association,
2023.

[35] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In Proceedings of the
11th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2014, Seattle, WA, USA,
April 2-4, 2014, pages 429–444. USENIX Association,
2014.

[36] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto SmartNICs using iPipe. In
Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM 2019, Beijing, China, Au-
gust 19-23, 2019, pages 318–333. ACM, 2019.

[37] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing
Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu.
ROART: Range-query optimized persistent ART. In
19th USENIX Conference on File and Storage Technolo-
gies, FAST 2021, February 23-25, 2021, pages 1–16.
USENIX Association, 2021.

[38] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
European Conference on Computer Systems, Proceed-
ings of the Seventh EuroSys Conference 2012, EuroSys

’12, Bern, Switzerland, April 10-13, 2012, pages 183–
196. ACM, 2012.

[39] Ajit Mathew and Changwoo Min. HydraList: A scalable
in-memory index using asynchronous updates and par-
tial replication. Proc. VLDB Endow., 13(9):1332–1345,
2020.

[40] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, CPU-efficient
key-value store. In 2013 USENIX Annual Technical Con-
ference, San Jose, CA, USA, June 26-28, 2013, pages
103–114. USENIX Association, 2013.

[41] Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing CPU

and network in the cell distributed B-tree store. In 2016
USENIX Annual Technical Conference, USENIX ATC
2016, Denver, CO, USA, June 22-24, 2016, pages 451–
464. USENIX Association, 2016.

[42] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci, and
Daniel Hagimont. Welcome to zombieland: Practical
and energy-efficient memory disaggregation in a data-
center. In Proceedings of the Thirteenth EuroSys Confer-
ence, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 16:1–16:12. ACM, 2018.

[43] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-performance,
application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6,
2020, pages 315–332. USENIX Association, 2020.

[44] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
accelerated distributed transactions. In SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, Virtual Event / Koblenz, Germany, October 26-29,
2021, pages 740–755. ACM, 2021.

[45] Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Dragoje-
vic, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD Conference 2019, Amster-
dam, The Netherlands, June 30 - July 5, 2019, pages
433–448. ACM, 2019.

[46] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October
8-10, 2018, pages 69–87. USENIX Association, 2018.

[47] Yizhou Shan, Will Lin, Ryan Kosta, Arvind Krishna-
murthy, and Yiying Zhang. Disaggregating and consoli-
dating network functionalities with SuperNIC. CoRR,
abs/2109.07744, 2021.

[48] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang,
Yuxin Su, Yangfan Zhou, and Michael R. Lyu. FUSEE:
A fully memory-disaggregated key-value store. In 21st
USENIX Conference on File and Storage Technologies,
FAST 2023, Santa Clara, CA, USA, February 21-23,
2023, pages 81–98. USENIX Association, 2023.

[49] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart remote mem-
ory. In EuroSys ’20: Fifteenth EuroSys Conference 2020,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 569

Heraklion, Greece, April 27-30, 2020, pages 29:1–29:16.
ACM, 2020.

[50] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh
Balakrishnan, and Ted Wobber. Extending SSD life-
times with disk-based write caches. In 8th USENIX Con-
ference on File and Storage Technologies, San Jose, CA,
USA, February 23-26, 2010, pages 101–114. USENIX,
2010.

[51] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is faster
than server-bypass with RDMA. In Proceedings of the
Twelfth European Conference on Computer Systems, Eu-
roSys 2017, Belgrade, Serbia, April 23-26, 2017, pages
1–15. ACM, 2017.

[52] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, pages
33–48. USENIX Association, 2020.

[53] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed B+tree index on disaggre-
gated memory. In SIGMOD ’22: International Confer-
ence on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022, pages 1033–1048. ACM, 2022.

[54] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: Distributed shared
memory with in-network cache coherence. In 19th
USENIX Conference on File and Storage Technolo-
gies, FAST 2021, February 23-25, 2021, pages 277–292.
USENIX Association, 2021.

[55] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis,
Huanchen Zhang, Michael Kaminsky, and David G. An-
dersen. Building a Bw-tree takes more than just buzz
words. In Proceedings of the 2018 International Con-
ference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 473–
488. ACM, 2018.

[56] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based ordered key-value store using remote learned
cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020, pages 117–135. USENIX
Association, 2020.

[57] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kun-Lung
Wu. Efficient B-tree based indexing for cloud data pro-
cessing. Proc. VLDB Endow., 3(1):1207–1218, 2010.

[58] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual
Event, November 4-6, 2020, pages 191–208. USENIX
Association, 2020.

[59] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Bin-
nig, Rodrigo Fonseca, and Tim Kraska. Designing
distributed tree-based index structures for fast RDMA-
capable networks. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30
- July 5, 2019, pages 741–758. ACM, 2019.

[60] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided RDMA-conscious extendible
hashing for disaggregated memory. In 2021 USENIX
Annual Technical Conference, USENIX ATC 2021, July
14-16, 2021, pages 15–29. USENIX Association, 2021.

570 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix
Abstract
The artifact provides the source code of SMART and auto-
mated scripts to reproduce all the experiment results in the
paper. The experiment results can show the superiority of
ART on DM compared with the B+ tree and demonstrate the
efficacy and efficiency of SMART we design.

Scope
Superiority of ART on DM. By reproducing the experi-

ments of Figure 3, the artifact can validate that the radix tree
is more suitable for DM than the B+ tree due to smaller read
amplification under read-only workloads.

Challenges of ART on DM. By reproducing the experi-
ments of Figure 4, the artifact can validate that ART suffers
from significant challenges on DM under hybrid read-write
workloads.

Efficacy and Efficiency of SMART. By reproducing the
experiments of Figure 11-18, the artifact can validate that
SMART can show better performance under YCSB work-
loads, compared with the state-of-the-art B+ tree on DM and
a naive ART design.

Contents
Source codes. The artifact contains source codes of

SMART and the compared baselines (e.g., ART). Specifically,
the source code of SMART contains the implementation of
our three key designs, i.e., the hybrid ART concurrency con-
trol scheme, the read-delegation and write-combining tech-
nique, and the reverse check mechanism for cache validation.

Automated scripts. The artifact also contains automated
scripts to reproduce all the experiment results in the paper,
i.e., Figure 3-4, 11-18. Each figure has a Python script to au-
tomatically reproduce and visualize the experimental results.

Hosting
The artifact is available at https://github.com/dmemsys
/SMART. Please use the latest commit version on the main
branch.

Requirements
The artifact is developed and tested using the r650 machines
on CloudLab. 16 r650 machines are needed to reproduce
all the results. Each r650 machine has two 36-core Intel
Xeon CPUs, 256GB of DRAM, and one 100Gbps Mellanox
ConnectX-6 IB RNIC. Each RNIC is connected to a 100Gbps
Ethernet switch.

Tutorial
Environment setup. To set up the environment, please

clone the source codes to the r650 machines. The necessary
dependencies can be installed using our provided shell scripts
in the artifact. Listing 1 shows the commands to set up the
experiment environment.

Listing 1: Commands to set up the environment.

1 # Get the source codes
2 git clone https://github.com/dmemsys/SMART
3 git clone https://github.com/River861/Sherman
4 # Set bash as the default shell
5 sudo su && chsh -s /bin/bash
6 # Install Mellanox OFED
7 cd SMART
8 sh ./script/installMLNX.sh
9 # Resize disk partition

10 sh ./script/resizePartition.sh
11 reboot
12 sudo su && resize2fs /dev/sda1
13 # Install libraries and tools
14 cd SMART
15 sh ./script/installLibs.sh
16 # Setup hugepages
17 echo 36864 > /proc/sys/vm/nr_hugepages

Workloads generation. The index microbench is used
to generate YCSB workloads, including two key types, i.e.,
integer and string. Listing 2 shows the commands to generate
all the workloads to reproduce the results.

Listing 2: Commands to generate all workloads.

1 # Download YCSB source code
2 cd SMART/ycsb
3 sudo su && curl -O --location https://github.

com/brianfrankcooper/YCSB/releases/
download/0.11.0/ycsb-0.11.0.tar.gz

4 tar xfvz ycsb-0.11.0.tar.gz
5 mv ycsb-0.11.0 YCSB
6 # Download the email dataset
7 gdown --id 1ZJcQOuFI7IpAG6ZBgXwhjEeKO1T7Alzp
8 # Start to generate all the workloads
9 sh generate_full_workloads.sh

Results Reproduced. The artifact provides a single batch
script to reproduce all the experiments. This script should
be run on a master node, which can directly establish SSH
connections to other nodes of the r650 cluster.

To reproduce the experiments, please set up the home_dir
and master_ip values in ./exp/params/common. json. Then
the script can be run. Listing 3 shows the commands. The
reproduced results will be saved automatically.

Listing 3: Commands to start all experiments.

1 sudo su && cd SMART/exp
2 # Run all the experiments
3 sh run_all.sh

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 571

https://github.com/dmemsys/SMART
https://github.com/dmemsys/SMART

ORC: Increasing Cloud Memory Density via Object Reuse with Capabilities

Vasily A. Sartakov
Imperial College London

Lluís Vilanova
Imperial College London

Munir Geden
Imperial College London

David Eyers
University of Otago

Takahiro Shinagawa
The University of Tokyo

Peter Pietzuch
Imperial College London

Abstract
Cloud environments host many tenants, and typically there
is substantial overlap between the application binaries and
libraries executed by tenants. Thus, memory de-duplication
can increase memory density by allocating memory for shared
binaries only once. Existing de-duplication approaches, how-
ever, either rely on a shared OS to de-deduplicate binary ob-
jects, which provides unacceptably weak isolation; or exploit
hypervisor-based de-duplication at the level of memory pages,
which is blind to the semantics of the objects to be shared.

We describe Object Reuse with Capabilities (ORC), which
supports the fine-grained sharing of binary objects between
tenants, while isolating tenants strongly through a small
trusted computing base (TCB). ORC uses hardware sup-
port for memory capabilities to isolate tenants, which per-
mits shared objects to be accessible to multiple tenants safely.
Since ORC shares binary objects within a single address space
through capabilities, it uses a new relocation type to create
per-tenant state when loading shared objects. ORC supports
the loading of objects by an untrusted guest, outside of its
TCB, only verifying the safety of the loaded data. Our experi-
ments show that ORC achieves a higher memory density with
a lower overhead than hypervisor-based de-deduplication.

1 Introduction

In data centers, memory density determines how many ap-
plications can be deployed on machines with given memory
amounts. Therefore, density is a critical cost factor, as mem-
ory contributes significantly to capital and operational ex-
penses [3]. The challenge of achieving high memory density
is expected to worsen as applications move to larger working
set sizes [20, 36], and machines have more memory [10].

High memory density can be achieved by de-duplicating
memory pages that have the same contents across a constel-
lation of virtual machines (VMs), containers, and processes
running on machines. This exploits that, in practice, the same
OS is used across VMs, the same applications across contain-
ers, and the same libraries across processes [7, 31, 41, 61].

We observe that there is a trade-off between the efficiency
of de-duplication and the level of isolation between tenants.
Containers and processes achieve near-perfect memory den-
sity when they use a shared OS with binary loaders that ex-
plicitly identify de-duplication opportunities, e.g., through
dynamic shared libraries [24, 25]. The high efficiency of de-
duplication is due to the shared OS, which has visibility of
memory at a binary object level. For security reasons, cloud
environments, however, require stronger isolation between
tenants, i.e., by using VMs without a shared OS.

In contrast, hypervisors implement strong isolation at the
instruction set architecture (ISA) level, moving OS-level se-
mantics to the guest OS. While this removes complexity from
hypervisors, allowing them to provide strong isolation, it loses
semantic information about how memory pages are used by
VMs for object allocation. Memory de-duplication must thus
occur at a page level: the hypervisor compares page con-
tents blindly across VMs and performs expensive page table
manipulations when de-duplicating, both of which result in
performance and tail latency overheads [8,39]. While hypervi-
sors can accept de-duplication hints from VMs to reduce page
scanning [1, 31, 40, 51], this does not eliminate overheads.

Our goal is to design a new cloud software stack that com-
bines high memory density with low overhead, while provid-
ing strong isolation guarantees between tenants, relying only
on a small trusted computing base (TCB).

We describe Object Reuse with Capabilities (ORC), a
new cloud software stack that allows de-duplication across
tenants with strong isolation, a small TCB, and low overheads.
ORC extends a binary program format (ELF [9]) to enable
isolation domains to share binary objects, i.e., programs and
libraries, by design. Object sharing is always explicit, thus
avoiding the performance overheads of hypervisors with page
de-duplication. For strong isolation, ORC only shares im-
mutable and integrity-protected objects. To keep the TCB
small, object loading is performed by the untrusted guest OS.

In more detail, the design and implementation of ORC
combines the following novel features:

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 573

(1) Object sharing with capabilities. Current cloud stacks
use page tables to control isolation and sharing, but page table
manipulation is expensive: inter-VM sharing requires exits
into the hypervisor to modify nested page tables [60]; de-
duplication must temporarily downgrade page table entries,
which can severely affect tail latencies [54].

Instead, ORC shares binary objects by design between
isolation domains: it uses hardware support for memory capa-
bilities [14, 16, 34, 64, 66] to place objects into compartments.
Memory capabilities grant access to memory regions, can be
copied between memory and registers, and are protected by
hardware. They can be a building block for isolating cloud
tenants with a small TCB by supporting an OS instance per
compartment, as in today’s VMs [49].

With the help of capabilities, ORC isolates multiple com-
partments within a single address space, while sharing bi-
nary objects between compartments with virtually no over-
head. ORC uses memory capabilities to isolate compartments
within a single page table, safely and efficiently sharing ob-
jects in a controlled way.

(2) Safe sharing of immutable objects. Current binary for-
mats, memory layouts, and loaders are designed for sharing
across address spaces. After an object is loaded into mem-
ory, formats such as ELF [9] assume that global variables are
mapped at fixed addresses relative to the code. While this is
not an issue with per-process page tables, because an object’s
global variables are mapped to different physical addresses
in each process, ORC’s shared page table means that global
per-process-and-object variables must be handled differently
when sharing pages across compartments.

As a solution, ORC introduces a new type of variable relo-
cation for compartment-local storage (CLS). ORC maintains
absolute and code-relative references for code and read-only
data, and the area for per-thread variables, i.e., thread-local
storage (TLS). It also adds a new mechanism for per-process
variables that replaces the traditional global variable refer-
ences. This allows compartments to share immutable contents
directly, i.e., code and read-only data, while still having per-
process-and-thread state that is isolated across compartments.
Under the hood, ORC allocates writable global variables in
each compartment’s CLS, and loads objects to refer always
to the executing compartment’s CLS (similar to TLS).

(3) Untrusted loading of shared objects. When objects are
shared across isolation domains, loading is typically con-
trolled by the TCB. The complexity of object loading bloats
the TCB: it requires access to I/O devices, must load binary
data into memory, and adjust memory contents to reflect load-
time addresses, e.g., through relocations. Such functionality
spans user-level, kernel-level and device driver code, and mov-
ing it into the TCB exposes a wide attack surface.

ORC avoids this issue by allowing untrusted compartments
to handle most of the object loading (i.e., storage and file
system I/O, data processing and copying, and adjustments

of memory contents). When an object is requested for the
first time, the untrusted compartment manages its loading,
and requests ORC to register an immutable and integrity-
protected version of the newly-loaded object.

ORC verifies that the loaded object cannot be used to attack
future compartments that reuse the same object, and makes
it available to future load requests. The verification process
is simple: it requires (i) scanning the memory contents of
the registered object to calculate a hash, which ensures the
object’s integrity in future load requests; and (ii) checking
that any contained capabilities used by the object stay within
the object’s memory and maintain immutability.

We evaluate ORC using a prototype implementation on the
CHERI/Morello platform [42, 66] that includes a new com-
piler pass and loader support for CLS, a small privileged com-
ponent that manages compartments and enforces the proper-
ties for secure sharing of binary objects, and a port of a library
OS and C standard library that execute in each compartment.

We consider three workloads: (1) a cloud-based video
transcoding micro-service, showing that ORC’s memory de-
duplication is more resource-efficient compared to page-level
de-duplication; (2) a latency-sensitive key/value store, demon-
strating the lower impact of object-level de-duplication on tail
latencies; and (3) an embedded database system, evaluating
ORC’s decomposition cost into sharable compartments.

ORC has several limitations: unlike hypervisor-based de-
duplication, ORC only de-duplicates read-only contents; it
needs applications recompiled to use capability instructions
and the new CLS; and it executes all compartments in one vir-
tual address space, because capabilities use virtual addresses.

2 Increasing Memory Density in the Cloud

Memory density in cloud computing defines how efficiently
the cloud provider is utilizing memory. Improving memory
density is crucial for providers, because memory is often
the main resource that determines how many tenants can be
accommodated [33]. While providers want to exploit as many
memory-sharing opportunities as possible, they must ensure
that tenants and their workloads remain isolated.

We first discuss different approaches and their associ-
ated challenges for page-based isolation and memory shar-
ing (§2.1). After that, we provide background on memory
capabilities, which can act as an isolation mechanism without
some of the drawbacks of page table-based isolation (§2.2).

2.1 Page-based memory sharing and isolation

Cloud tenants expect strong isolation for their applications
from those of other tenants, while providers seek ways to min-
imize the total physical memory footprint by finding share-
able memory. The two goals are at odds with each other: the

574 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mechanisms that we have for efficient memory sharing are,
in essence, reducing the level of isolation between tenants.

With today’s isolation approaches, we must choose between
containers [35, 38] and VMs [2, 30, 61], which in turn dictate
how memory sharing can be done:

(1) OS-managed memory sharing. Container-based deploy-
ments rely on a shared OS for isolation. The OS provides
user-space abstractions for sharing memory, and a loader can
map the same binary object (e.g., dynamic library) across
multiple processes. The OS has thus enough user-level infor-
mation to de-duplicate object contents at load time, sharing
memory across containers without extra runtime overhead.

Higher memory density in containers comes at the expense
of isolation. Containers are not as strongly isolated as VMs,
because they are managed by a shared OS kernel. Such a
large, shared TCB is too complex to eliminate all vulnerabili-
ties [11], which can be exploited by malicious containers to
access information from other containers and tenants [12, 13].

(2) Hypervisor-managed memory sharing. VMs offer
stronger isolation compared to containers: they expose a nar-
row virtualization interface at the level of the ISA, with a
potentially small TCB (the hypervisor) that makes security
vulnerabilities less likely [29, 57]. To share memory between
VMs, typical hypervisors, such as ESX [61] and KVM [30],
identify and eliminate redundant memory pages at runtime.
Since the hypervisor lacks visibility into the semantics of user-
space applications within each VM, it must periodically scan
the memory of each VM to find pages with identical content,
and remap these guest physical pages across VMs into the
same host physical page to de-duplicate their contents.

A popular implementation of this approach is Linux kernel
same-page merging (KSM) [1], which the KVM hypervisor
leverages to eliminate duplicate memory pages across VMs.
KSM periodically scans physical memory to find identical
pages, and deduplicates them by mapping a single physical
copy to multiple virtual locations. It also marks those pages
as copy-on-write (COW), which triggers the re-duplication
before a modification on shared page contents. Therefore,
each VM instance can safely operate on its own copy, without
affecting the memory contents of other VMs.

KSM uses red-black trees to search for memory pages with
identical content. For efficiency, it utilizes two trees: (1) a
stable tree that contains already-shared pages; and (2) an
unstable tree that represents pages not shared but scanned
previously. During the scanning process of a memory page,
KSM first searches for a match in the stable tree. If the page
is found, the redundant copy is eliminated through merging.
If there is no match in the stable tree, KSM checks whether
the page has been modified since the last scanning round by
comparing hashes. If the page has not been modified, it is
considered a suitable candidate for searching in the unstable
tree. If the page is found in the unstable tree, merging occurs,
and the shared page is inserted into the stable tree. Otherwise,

it is inserted into the unstable tree as a scanned page. The
unstable tree is also reinitialized after each scanning round.

Despite the advantages of hypervisor-based isolation, its
memory de-duplication mechanism has several drawbacks:
(1) blindly scanning page contents and manipulating their
permissions comes with an overhead on average performance
and tail latencies [8,39,54]; (2) hypervisors lack the visibility
of an OS to application-level load-time semantics, and there-
fore must rely on page scans; (3) while the use of larger pages
in the cloud improves memory performance [27,47], it can re-
duce memory density by making memory de-duplication less
frequent; and (4) the use of COW semantics on de-duplicated
pages has been shown to be vulnerable to timing side-channel
attacks across VMs [26, 45, 58, 59, 67, 69].

2.2 Isolation with memory capabilities
As described above, using paging for both translation and
protection introduces performance challenges in traditional
virtualized environments due to its management granularity.
In contrast, memory capabilities offer an alternative memory
protection mechanism that is more flexible, robust, and effi-
cient to manage. At the same time, memory capabilities can
co-exist with the use of paging for translation [4,6,18,19,64].

Memory capabilities replace integer-type pointers with pro-
tected capabilities. Unlike regular pointers, capabilities pro-
vide information to enforce accesses within a given address
range and access type. They can thus be used to partition a
single address space into multiple, isolated regions, allowing
the use of a single page table across isolation domains.

Memory capabilities. The Capability Hardware Enhanced
RISC Instructions (CHERI) architecture [62] provides a mod-
ern implementation of memory capabilities. It introduces new
instructions, registers, and other hardware primitives to sup-
port capabilities. CHERI enforces three properties: (1) prove-
nance validity ensures that a capability cannot be created from
an arbitrary sequence of bytes, but can only be derived from
another capability; (2) capability integrity guarantees that ca-
pabilities in memory cannot be modified. One-bit validity tags
are used to distinguish them from other data for protection;
and (3) monotonicity ensures that a capability’s permissions,
including its bounds, cannot be expanded but only reduced.

CHERI can thus replace all pointers in an application with
capabilities to enforce precise bounds and permissions on
each memory access. This is known as the pure-capability
(pure-cap) mode. Pure-cap enables spatial memory safety
and fine-grained memory sharing, but requires ABI changes
and other source code changes, e.g., to pointer-integer casts.
CHERI also supports a hybrid mode, in which code is per-
mitted to use legacy, capability-unaware instructions. In this
mode, all control flow and memory operations are checked
against a pair of special registers that contain program-counter
and default data capabilities, thus restricting the code and
data accesses performed by capability-unaware instructions.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 575

Service

LibC

hostcalls

LibOS

hostcalls

cr
os

s-
co

m
pa

rt
m

en
tc

al
ls

Cross-compartment TCB

HostOS kernel

Compartment Component
cap-based

jump-and-return calls

Fig. 1: Using capabilities to create compartments

Code can use the capability-aware CInvoke instruction to
perform function calls between isolated memory domains,
carrying the necessary capability arguments across domains.

Capability-based compartmentalization. Capabilities of-
fer a good mechanism to isolate software components, and
their flexibility and efficiency can eliminate the overheads of
page-based sharing. CAP-VM [49] describes a new capability-
based compartmentalization mechanism: each capability com-
partment (cVM) has its own separate address sub-range within
a shared address space, and executes programs in CHERI’s
hybrid mode. cVMs are managed by a shared TCB compo-
nent called the Intravisor, similar to a VM hypervisor. The
Intravisor is a host process that starts cVMs as one or more
host threads within its address space, using the default capa-
bilities in hybrid mode to isolate cVMs. Each cVM has its
own library OS instance to support private namespaces and
program execution environments.

Fig. 1 shows how multiple components can be placed in
capability compartments, potentially sharing access to ob-
jects across compartments. An Intravisor, or some other cross-
compartment TCB, can give each compartment the capabil-
ities needed to jump into/call code in other compartments,
allowing the compartments to share capabilities to the same
object. The figure also shows how capabilities can be used to
request Intravisor operations (hostcalls at the bottom).

After compiling software components using CHERI’s pure-
cap mode, however, it is not possible to use capability-based
compartments to share objects efficiently, because: (1) the
Intravisor has no explicit information about the extent and
sharing properties of objects; and (2) existing storage formats
and memory layouts of pure-cap binary objects assume that
each compartment has its own page table.

In particular, ELF [9] assumes that global variables are
reachable through constant addresses relative to code loca-
tions. If we use a per-process (or compartment) page table,

we can physically share non-writable pages across processes,
while having separate contents for writable pages. This is no
longer the case if we use a single page table, which is the only
way to avoid page table management overheads.

2.3 Efficiency and security considerations

The goal of this paper is to provide high memory density in
cloud environments. To achieve this goal, our solution must
fulfill the following requirements:

(1) Strong isolation with a minimal TCB: Memory sharing
is needed for density, but it should not undermine isolation
between tenants. We must thus reduce the attack surface by
providing a small TCB with a narrow interface to manage
isolation and sharing for density.

(2) Low performance overhead: The sharing mechanism
should not incur high overheads in terms of CPU cycles, and
it should not prevent the system from performing other opti-
mizations, such as using large pages to reduce TLB misses.

(3) High sharing precision: The sharing mechanism should
support arbitrary object sizes and have visibility into the in-
tended object sharing semantics. An ideal solution should not
miss opportunities to share, nor unintentionally share mem-
ory that soon diverges into different contents. This can be a
problem with KSM, because it blindly de-duplicates pages
solely based on content and access frequencies.

Note that sharing memory can be used as an unintended side
channel across compartments. This is an intrinsic trade-off
between memory density and isolation that all cloud providers
face, regardless of the employed mechanism. Given the impor-
tance of side channels, there are proposals to avoid or mitigate
them at both hardware and software levels [23, 44].

The sharing of binary objects in this work is limited to
side channels on accesses to (i) code and (ii) read-only data
only. Since the user controls which binary objects to share
and when, they can decide on a suitable policy for trading off
between memory efficiency and side-channel resistance. We
leave the exploration of such policies to future work.

3 Design of ORC

We exploit the capabilities provided by the CHERI architec-
ture [62] to implement both software compartmentalization
and binary object sharing. ORC shares binary objects explic-
itly, making the use of physical memory denser without the
performance overheads of de-duplication.

Fig. 2 shows an example with two applications (app1 and
app2), which use multiple object binaries that are identical
across VMs, including the OS kernel (database, libC and ker-
nel). Fig. 2a shows a baseline system in which each applica-
tion is deployed in a VM for maximum isolation. In this case,
the hypervisor incurs overheads of memory de-duplication.

576 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

app1

database

LibC

kernel

VM1

app2

database

LibC

kernel

VM2

Hypervisor

(a) VM-based stack with intrinsic object duplication

app1

database @comp1

LibC @comp1

kernel @comp1

Compartment 1 (comp1)

app2

database @comp2

LibC @comp2

kernel @comp2

Compartment 2 (comp2)

database

libC

kernel
object

object

object

Intravisor

(b) ORC-based stack with explicitly shared objects

Fig. 2: Comparison between VMs and ORC compartments with explicit object sharing (Dotted lines show compartment-local variables.)

In contrast, Fig. 2b shows the approach taken by ORC.
Programs are isolated into compartments (shown as light
yellow boxes), which contain all needed objects (app1, app2,
database and libC) as well as their own OS kernel instance
(kernel). ORC compartments are deployed using a shared page
table, and obtain access to non-overlapping addresses using
memory capabilities. Both the page table and capabilities are
controlled by the TCB, shown as Intravisor.

Compartments are strongly isolated: each has its own OS
instance, and they are restricted to access non-overlapping
memory address ranges. Sharing objects across compartments
is supported through capabilities, which provide access to the
object’s contents (light red boxes with objects database, libC
and kernel). If possible, the ORC program loader requests
capabilities from the Intravisor for an object that has already
been loaded by another compartment. Otherwise, the compart-
ment loads the object itself and registers it with the Intravisor,
allowing future compartments to reuse it.

To make object sharing across compartments safe, the In-
travisor must ensure that a shared object cannot be modified
after registration. This, of course, implies that the registering
compartment cannot change the object after registering it, but
also that shared objects cannot contain writable state. We indi-
cate this with the dotted lines in Fig. 2b: each shared object is
recompiled to have per-compartment instances of any writable
state. We refer to this as compartment-local storage (CLS).

As a result, objects can be efficiently shared across domains,
while retaining strong isolation down to the level of separate
OS instances. In addition, sharing is part of the cloud software
stack, ensuring that the memory density benefits do not come
at the cost of reduced performance.

3.1 Architecture overview

Fig. 3 shows the high-level architecture of ORC. Programs
execute within a compartment (shown as yellow boxes) and

have statically and dynamically-linked objects, as usual.
1 All potentially shareable objects, including the main

program binary, must be compiled with our ORC-specific
extensions. These extensions move all the writable state of
an object into the CLS, i.e., all global writable variables, by
extending the binary storage format and the loader (see below).
The figure shows an example with three global variables, a
constant, a thread-local, and a writable variable (var0, var1,
and var2, respectively). Of the three variables, only var2 is
moved to the CLS, because thread-local variables are already
stored in a per-thread data structure, the TLS [17].

Note that none of these elements are part of the TCB – com-
partments can still use private copies of objects without the
ORC extensions, and only references to global writable vari-
ables are changed to the CLS. Heap allocations are supported
as usual, resulting in private compartment allocations.

Each compartment has its own, untrusted loader (ld.so in
Linux). The compartment itself therefore loads the required
objects by reading them from storage and parses their con-
tents according to the binary format (e.g., ELF). 2 When the
loader finds an ORC shareable object, it allocates the neces-
sary memory to load the object and prepares it for execution.

3 After loading, the compartment calls the Intravisor’s
orc_register() operation to register the loaded object for
future use. The compartment passes the capabilities to where
the object’s contents are loaded, and a list of variable ref-
erences in the object’s code. The Intravisor then copies the
object to a new location controlled by itself, computes a hash
of its contents, resolves the variable references to the new
load address, and registers the object’s hash and allocation
capabilities for future use. At this point, all compartments,
including the registering one, proceed in the knowledge that
the shareable object is available in the Intravisor.

4 When a shareable object is registered in the Intravisor,
the compartment requests it via orc_request(), passing it
the expected object content hash. If the hash matches that of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 577

Capabilities for compartment-local storage (CLS)

.ddata : var2

.tdata : var1

❷ Load Object

Compartment 1

❸ orc_register

app1

.rodata : var0

.tdata : var1

.cdata : var2

.code :
inc var1@tls
inc var2@cls
. . .

ORC
compiler

const intr var0 = 0;
thread_local int
var1;
int var2;
...
var1++;
var2++;
. . .

❶ Compile object

.ddata : var2

.tdata : var1

Compartment 2

❹ orc_request

app2

.rodata

.code

object
database

Intravisor

Fig. 3: Architecture of the ORC stack (Circled numbers identify operations referenced in the text.)

a registered object by orc_register() above, the Intravisor
releases the capabilities for that object. The loader then pro-
ceeds by allocating the memory for the CLS variables, and
subsequently loaded objects can reference this one.

Note that the main program itself can be an ORC shareable
object. In that case, after loading it with orc_request(), the
whole application is ready for execution.

3.2 Compiler support and binary format

To support shared ORC objects, the compiler extends the
binary format with CLS variables. With ORC enabled, the
compiler adds a flag to identify the object as ORC-enabled,
and moves writable global variables to the CLS.

For CLS, the compiler replaces each reference to a writable
global variable with a new relocation type. Such relocations
are resolved at load time to point to the per-container instance
of that variable (see below), similar to how thread-local vari-
ables are moved to the TLS at load time.

Fig. 3 shows this process on the left-hand side. Code, con-
stant variables, such as var0, and thread-local variables, such
as var1, are handled as usual by the compiler: they are placed
in the .code, .rodata and .tdata sections of the ELF object,
respectively, generated with standard relocations. Writable
global variables (var2) are placed in a new .cdata section,
and references identified with the new @cls relocation.

3.3 Secure object loading and reuse

The compartment loader brings the object’s file contents
into memory, and handles all relocations that are inde-
pendent of the load address. It then calls the Intravisor’s
orc_register() operation by passing the capabilities that
delimit the memory regions in which the object was loaded
and a description of the yet-unprocessed relocations.

To ensure that the object contents cannot be changed once
shared, the Intravisor allocates new memory in capabilities C,
copies the object contents into them, and checks that the object
contains no capabilities pointing outside the C allocations to
avoid malicious use of orc_register(). At this point, the
Intravisor computes a hash H of the object contents, resolves
the remaining relocations that depend on the information of
the secure load location, and registers the object’s hash and a
non-writable version of the allocation capabilities, H and C,
respectively. The CLS relocations are replaced with a value
that points to a per-compartment memory address that holds
all CLS variables of that object (see §4.2).

When a compartment calls orc_request(), it passes the
hash H. If an object with hash H exists in the Intravisor,
i.e., it was previously registered with orc_register(), the
Intravisor returns the capabilities for it, which are ready to
use by the calling compartment.

The object hash H is computed by the Intravisor before any
location-dependent relocations, and so it is also known by the
requesting compartment. If an object with hash H exists in the
Intravisor, we know that its integrity and isolation are ensured.
The Intravisor does not ensure object correctness beyond
relocation resolution, which should be handled through other
means, e.g., attestation checks as part of the software supply
chain, for which hash H can be helpful.

3.4 Discussion

With ORC, components are shared by design via capabilities.
Component sharing by design could also be implemented
by other systems, e.g., traditional hypervisors with MMU
mappings, but end-to-end performance would vary due to
the different hardware mechanisms for enforcing isolation.
Capabilities have further benefits e.g., their ability to provide
spatial memory protection within components.

We also note that ORC only de-duplicates read-only mem-

578 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ory contents, while traditional hypervisors also de-duplicate
writable pages. This is not necessarily an issue: ORC de-
duplicates application instances in less time than hypervisor-
based approaches, which makes it better suited for short-lived
instances, as often found in cloud environments. Our evalua-
tion results also show that de-duplicating small amounts of
writable memory leads to little practical benefit.

Finally, ORC requires the recompilation of applications,
because applications must use capability instructions for code
and data access and ORC’s compiler pass for the required
CLS functionality. ORC also executes all compartments in
a single virtual address space, but we expect this to not be a
problem: virtual addresses are an abundant resource, and it is
possible to use large blocks to make allocations scalable and
resistant to side channels e.g., via core-local caches.

4 Implementation

We implement ORC on the Morello platform [42], a devel-
opment board from Arm that supports the CHERI capability
extensions. In this section, we describe how we: build ORC
compartments by extending CAP-VMs [49] with our own
library OS to maximize object sharing; add CLS support
through a new LLVM compiler pass; and implement the nec-
essary logic to load shared objects securely.

Both the Intravisor and the host OS are implemented
as hybrid capability code using the existing CAP-VM and
CheriBSD [22] projects. We extend the Intravisor to support
pure-cap compartments, i.e., using the pure-cap CHERI ABI,
and the program loading operations, which adds 530 and
240 lines of C and assembly code, respectively.

For our evaluation, we also port the SQLite database [56],
FFmpeg [21] with the libav libraries, and Redis [48] to sup-
port the pure-cap CHERI ABI and ORC. In total, the porting
requires approximately 350 lines of code. Note that, besides
adding the system functionality specific to ORC, the main
effort went into porting code to the pure-cap model.

4.1 Library OS and standard C library
To increase object sharing across compartments, we make the
library OS and low-level C library support a pure-cap build,
as no such software components exist with the necessary
functionality. We implement our own pure-cap library OS
kernel, which is based on Unikraft [32] and CubicleOS [50],
from which we use 40 system calls and 9,061 lines of code.
We extend it with support for the CHERI ABI and add a
capability-aware memory allocator.

We also use a pure-cap version of the C library for our
evaluation applications. It is based on musl libc [43], whose
pure-cap support is maintained by Arm. Our fork has 494 func-
tions and 19,717 lines of code. We modify it to introduce a
capability-aware memory allocator based on dlmalloc, and
a few extra changes for compatibility with our library OS.

4.2 Compiler support and CLS

We implement our ORC compiler support as an LLVM pass.
It replaces all references to global, writable, non-TLS vari-
ables with a call to function __cls_get_addr(), which re-
turns a compartment-local version of that variable. Internally,
__cls_get_addr() is implemented using regular capability-
aware instructions (cgetaddr, cincoffset, csetlen, etc.).
The function retrieves the address of the variable from the
input capability and makes it relative to the beginning of the
data section. After that, it applies the relative offset to the
capability that points to the shadow data section. Finally, it
creates the replaced capability by limiting its size to match
that of the original capability.

The __cls_get_addr() function works similarly to
how TLS is supported, i.e., through __tls_get_addr() in
ELF [17]. It takes the shared object identifier (assigned at
load time) and the variable offset within the CLS (assigned at
compile time), and returns a capability that grants access to
the calling compartment’s copy of that variable.

For ease of implementation, the compiler pass inlines
__cls_get_addr() into the generated code – a production
implementation should use a separate CLS relocation type –
and it uses a TLS variable to point to the compartment’s CLS
buffer for that object. This means that the loader (see below)
only needs to implement TLS variables, accessed through the
tp register in Arm, to support both TLS and CLS.

4.3 Secure object loader

To simplify application deployment, we implement a loader
that takes deployment configurations, i.e., a list of binary paths
to load into memory. The program deployment logic loads
binaries into the target memory regions, resolves relocations,
and generates all capabilities needed in the PLT and GOT of
a pure-cap program [63].

The deployment configuration also identifies shareable ob-
jects and provides their hash, so that they can be reused if
previously loaded by orc_register() and orc_request().

4.4 Discussion

Our prototype implementation showcases ORC’s core ideas,
but it has shortcomings:

Performance. The CLS implementation uses TLS variables
for simplicity. This results in new capabilities fetched from
TLS and adjusted to the corresponding variable on each call
to __cls_get_addr() (except for reuse optimizations in the
compiler). In a future version, we would pre-calculate the
per-variable capability at dynamic link time, so that no new
capabilities are created at runtime by __cls_get_addr().

Compatibility. Since we use a compiler pass, we cannot sup-
port pre-initialized variable references on other data structures,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 579

e.g., a statically-initialized array entry pointing to a CLS vari-
able address. In our library OS (Unikraft), we found only
a single place where this was necessary. Adding compiler
support for new CLS relocations would solve this problem by
adjusting data structure addresses at dynamic link time.

Our __cls_get_addr() implementation assumes a per-
compartment CLS. We plan to support per-process CLS, al-
lowing for multiple processes within the same compartment.

5 Evaluation

We ask the following questions when evaluating ORC:
(1) how efficient is ORC compared to KSM? (2) what is
the impact of ORC on tail latency compared to KSM; and
(3) what is the execution and compilation overhead of ORC,
as a function of the degree of binary object sharing?

5.1 Experimental setup

Workloads. We evaluate a real-time video transcoding micro-
service that scales out to a large number of clients. The micro-
service uses FFmpeg [21] to perform transcoding. A single
FFmpeg instance consumes a fraction of the CPU and memory
resources on the machine, allowing multiple instances to be
run. By de-duplicating memory, we can support more FFmpeg
instances and thus more concurrent clients. We compare the
deployment of the micro-service using ORC to one that uses
Linux KSM as a baseline for memory de-duplication.

We also consider other workloads to evaluate specific char-
acteristics of ORC: (1) we use Redis [48] with the memtier
benchmark [37] to understand the impact of ORC and KSM
on request tail latencies; and (2) we use the SQLite database
system [56] and its speedtest1 benchmark [55] to compare
the performance of different object sharing scenarios.

Testbed. We deploy ORC on a Morello board [42], which has
an Armv8-A CPU with hardware support for CHERI [66].
The board has 4 CPU cores running at 2.5 GHz, with 16 GB of
DDR4 memory (64 KB L1, 1 MB L2, and 1 MB L3 caches).

The experiments compare two OSs: (1) Ubuntu 22.04.1
LTS with Linux v5.15.0, which only runs native arm64 bi-
naries with no CHERI support; and (2) Hybrid CheriBSD
version 14 (release/22.05p1) [22]. The Linux OS is used to
measure KSM, and can also run the entire ORC stack with-
out isolation guarantees (i.e., disabling our compiler pass and
eliminating capability management instructions in the Intravi-
sor and loader). The CheriBSD OS is used to run ORC with
all its isolation guarantees, as described in this paper. All
ORC results use CheriBSD unless stated otherwise.

Note that the same source code executes on all compart-
ments, so that we can compare ORC and KSM despite the
different compiler options and underlying OS support.

0 50 100 150 200 250 300
0

50

100

150

Time from start (sec)

M
ic

ro
-s

er
vi

ce
in

st
an

ce
s

KSM-Tuned ORC
KSM-On (best) KSM-On (worst)

Fig. 4: Throughput over time when de-duplication of the video
transcoding micro-service happens (The shaded area indicates
the difference between ORC and KSM-Tuned, which is the best-
performing KSM configuration.)

5.2 Efficiency and performance overhead
We now evaluate the trade-off between memory de-
duplication efficiency and application performance over-
head when comparing ORC and KSM. We deploy the
video transcoding micro-service, which increases application
throughput with higher memory density – i.e., it increases
the number of processed frames by increasing the number of
deployed transcoder instances.

The experiment deploys new transcoder instances until
it reaches one of two limits: (i) memory limit – when the
instances consume all available physical memory, but there
are still spare CPU resources to support more instances; and
(ii) CPU limit – when at least one of the instances can no
longer transcode at real-time due to a lack of CPU resources.

Each micro-service instance contains FFmpeg’s main pro-
gram and libraries, our library OS, and the standard C li-
brary (see §4.1). It occupies around 111 MB of memory
(11 MB in binaries and read-only data, shareable by ORC,
and 100 MB of heap). The transcoded video has a resolution
and frames-per-second configuration such that, without de-
duplication, the experiment reaches the memory limit after
127 instances; optimal de-duplication can run more instances:
it eventually reaches the CPU limit after 180 instances.

We deploy multiple KSM configurations with different
de-duplication and overhead trade-offs:

KSM-Tuned is the default policy of the ksmtuned daemon [70].
Every 60 secs, it checks the share of free memory, and starts
KSM if it is below 20%. It also adjusts KSM parameters: the
number of scanned pages in each iteration (pages_to_scan)
is increased gradually when the de-duplication rate is too low.

KSM-On is a hand-tuned policy that achieves good memory ef-
ficiency in the shortest time for our workload, but it consumes
significant CPU resources. With this setting, KSM operates
constantly and uses 20,000 pages_to_scan.

580 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 100 200 300 400
0

50

100

150

Time from start (sec)

M
ic

ro
-s

er
vi

ce
in

st
an

ce
s

KSM-Tuned ORC
KSM-On (1200) KSM-On (20000)

Fig. 5: Throughput over time when de-duplication of the video
transcoding micro-service happens using larger binaries (The
shaded area indicates the difference between ORC and KSM-Tuned.)

Micro-service instances. Fig. 4 shows the number of active
micro-service instances over time, with ORC and the various
KSM configurations. Given the performance of one instance,
there are sufficient CPU resources for 180 instances, but only
enough memory for 127 instances without de-duplication.

The plot shows that KSM-Tuned first reaches the mem-
ory limit (127 instances) after 119 secs, and it does not de-
duplicate memory until 58 secs later. It then reaches the mem-
ory limit again at around 227 secs, and, after 23 secs, it is able
to de-duplicate enough memory to deploy 180 instances.

In contrast, ORC is designed to optimize for density al-
most instantaneously: it creates 142 instances in just 11 secs,
which is a 20× speedup over KSM-Tuned for the same num-
ber of instances. Note that the 142 instances deployed by
ORC correspond to 11% more than the 127 instances without
de-duplication. This is expected, because code and read-only
data occupy only 11% of the memory of each instance (see
above). In contrast, KSM can de-duplicate additional pages
by also considering writable memory.

ORC thus deploys and de-duplicates instances much faster
than KSM-Tuned, which gives it an advantage over KSM on
the aggregate performance over time, expressed as the total
number of processed frames (highlighted by the shaded ar-
eas in Fig. 4). Although KSM-Tuned deploys more instances
than ORC within 300 secs, at this point, ORC has processed
15%–35% more frames than the various KSM configurations.
To outperform ORC, KSM-Tuned would require a total execu-
tion time of 441 secs – an extra 141 secs after reaching 180
instances. None of the other policies outperform ORC.

KSM-Tuned limits its de-duplication speed, as it tries to
minimize CPU overheads – it operates only under mem-
ory pressure (80%), and at a limited memory scanning rate
(pages_to_scan). This negatively impacts environments in
which processes are frequently created and destroyed, so
we also evaluate the case in which KSM maximizes de-
duplication rate with KSM-On. Since KSM is probabilistic in

Tab. 1: Impact of memory de-duplication on Redis tail latency

set requests get requests
p50 p99 p50 p99

Linux 0.5 ms 9.7 ms 0.5 ms 9.3 ms
Linux+KSM 0.5 ms 20.9 ms 0.5 ms 20.8 ms

CheriBSD 2.1 ms 3.7 ms 2.2 ms 3.6 ms
CheriBSD+CC 2.1 ms 4.2 ms 2.1 ms 4.3 ms
CheriBSD+CC+ORC 2.1 ms 4.9 ms 2.1 ms 4.8 ms

nature, we show the best and worst results of twenty different
runs of the same KSM-On experiment.

KSM-On (best) deploys more instances than KSM-Tuned
within the first 170 secs, but instances are created more slowly
and peak at just 140 (98.6% of ORC), because KSM is con-
stantly consuming more CPU resources. KSM-On (worst) cre-
ates instances at the same rate as KSM-On (best), until its
heuristics stop at only 100 instances (70% of ORC).

Conclusions: The results show that instance creation and de-
duplication in ORC are substantially more efficient than in
the baseline system with KSM. Although KSM-Tuned de-
duplicates more (writable) memory, given enough time, ORC
retains an advantage with shorter-lived application instances,
which are prominent in the cloud. In addition, more aggressive
de-duplication with KSM-On is not viable, because higher
de-duplication rates are hidden by higher CPU overheads,
resulting in a 30% throughput overhead compared to ORC.

Large binary instances. We now evaluate how a larger
amount of shareable memory affects ORC and KSM, given
that language runtimes and programming frameworks can
easily consume hundreds of megabytes.1 To this end, we run
the same experiment after manually injecting an additional
100 MB of code into the FFmpeg binary, resulting in 53% of
shareable code and read-only data contents on each instance.

Fig. 5 shows the results for this experiment, which supports
68 and 136 instances without and with perfect de-duplication,
respectively. In this case, the ability to de-duplicate writable
data in KSM has no long-term advantage over ORC, because
KSM has further CPU overheads that prevent spawning addi-
tional instances; ORC reaches 136 instances in 18 secs, while
it takes KSM-Tuned 377 secs to reach the same maximum. In
this case, we also report the best results for KSM-On with two
fixed values for pages_to_scan (1,200 and 20,000), which
reach 132 instances 52 secs earlier than the default policy.

Conclusions: With a larger proportion of directly shareable
contents, ORC reaches optimal de-duplication effectiveness
at a 20× faster rate than any of the KSM configurations.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 581

100 110 120 130 140 142 145 150 160 161 170 180 190 230 240 250 270 280 290 300 310 320 400 410 500 510 520 980 990
0

0.5

1

1.5

Query type from SQLite Speedtest1 benchmark

E
xe

cu
tio

n
tim

e
(s

ec
)

1 compartment 2 compartments 3 compartments 4 compartments 5 compartments

Fig. 6: Query execution times for different compartments using ORC (SQLite)

5.3 Impact on service tail latency

Next, we investigate the impact of ORC and KSM on the tail
latencies in a typical cloud service. We observe that KSM
consumes up to an entire CPU core when active, and it issues
TLB shootdowns when scanning and de-duplicating pages.

We spawn 4 instances of the Redis key-value store ser-
vice [48] and use the memtier benchmark [37] as a workload:
it pre-fills each instance with 2.5G GB of data and then ex-
ecutes a 1:10 set/get request workload, using 4 threads with
4 concurrent connections for each instance.

Tab. 1 shows the results of five deployments: (1) Linux
acts as our baseline (arm64 binaries without using CHERI
or KSM); (2) Linux+KSM adds memory de-duplication with
an always-on KSM; (3) CheriBSD is our baseline with a
CHERI-capable host OS but without ORC or enabling capa-
bilities when compiling Redis; (4) CheriBSD+CC uses ORC
to compartmentalize Redis but disables de-duplication; and
(5) CheriBSD+CC+ORC uses ORC for de-duplication.

We run both Linux and CheriBSD to decouple the impact of
KSM and ORC from the intrinsic differences between the two
OSs. CheriBSD shows worse throughput and tail latencies
than Linux on all operations, which can be attributed to the
different device driver and network stack implementations.

Linux+KSM matches the 50th percentile (p50) latencies of
Linux, but the CPU overheads and TLB shootdowns due to
KSM more than double the 99th percentile (p99) latencies. In
contrast, ORC has a small impact on tail latencies: support for
compartmentalization alone (CheriBSD+CC, i.e., compiling
the program in pure-cap mode and crossing isolation bound-
aries results in a 13% and 19% increase in p99 latencies

1For example, the MongoDB database system uses 104 MB; the PyTorch
machine learning stack with CUDA uses over 200 MB; a Python-based data
science pipeline with TensorFlow uses over 300 MB.

LibC

VFS RamFS

ST1 SQLite

LibC

ST1 SQLite

LibC

VFS RamFS

LibC

ST1

LibC

SQLite

LibC

VFS RamFS

LibC

ST1

LibC

SQLite

LibC

VFS

LibC

RamFS

ST1

SQLite

VFS

RamFS

LibC
ORC Unique

1 compartment 2 compartments 3 compartments 4 compartments 5 compartments

Fig. 7: Decomposition into capability compartments (SQLite)

for set and get operations, respectively. Fully enabling ORC
(CheriBSD+CC+ORC) leads to an 17% and 12% increase in
p99 set/get latencies, respectively, which can be attributed to
the overheads of our current CLS implementation.

Conclusions: The page table management and memory hash-
ing overheads of KSM’s page de-duplication lead to a more
than 2× increase in p99 latencies; the explicit sharing of
binary objects in ORC reduces these overheads to 12%–17%.

5.4 Cost of isolation
We also investigate how increasing the number of shareable
binary objects in an application affects performance. We con-
trol both the overheads introduced by the compiler pass, and
those of capability-based crossings between binary objects.

To measure the cost of isolation, we execute a single com-
partment with the speedtest1 benchmark and its embedded
SQLite instance, and incrementally make some of its compo-
nents separate binary objects (see Fig. 7). We start with one
compartment that contains all components in a single binary
object. Since CLS support is unnecessary here, we disable the
compiler pass. We then incrementally build further compo-

582 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

nents into separate shareable objects (2 to 5 compartments),
compiled with CLS support. The VFS and RamFS compo-
nents correspond to internal components of the library OS;
ST1 is the benchmark binary.

Fig. 6 shows the execution times of the benchmark for dif-
ferent SQLite query types, varying compartment numbers. We
observe that all configurations, except for 5 compartments,
have only a minor performance overhead. The average differ-
ence between one compartment (everything monolithic; no
CLS support) and 4 compartments (all system components
but LibC are shareable objects) is 10% (median of 3%). Even
when isolating all components into separate shareable ob-
jects (5 compartments), which adds many cross-compartment
calls, the average slowdown is 53% (median of 39%).

Conclusions: We draw two conclusions: (1) the overhead of
supporting CLS is small, especially when compared to the per-
formance cost of cross-object calls; and (2) while the cost of
cross-object calls exists, it is sufficiently small that it becomes
possible to share across multiple fine-grained objects.

6 Related Work

Page-level memory sharing. Modern hypervisors support
dynamic page sharing among VMs. VMware ESX [61] pio-
neered inter-VM page sharing without guest OS support by
periodically scanning physical pages and transparently dis-
covering pages with identical contents using their hash values.
KSM [1] also periodically scans physical pages but uses a bal-
anced tree to find duplicated pages (see §2.1). Dynamic page
sharing by hypervisors, however, results in an inflexible shar-
ing granularity due to the lack of OS semantics, unpredictable
latency spikes due to runtime scans, and vulnerabilities to
side-channel attacks due to copy-on-write semantics.

Hypervisors can also perform page sharing on disk reads.
Disco [5] intervenes in DMA to support copy-on-write shared
disks and copy-less NFS shares among VMs, allowing page
sharing without runtime scanning. Satori [41] uses simi-
lar sharing-aware block devices that enable copy-on-write
sharing as well as content-based sharing through enlighten-
ment (para-virtualization). Sharing in these systems is still
page-based, and copy-on-write issues remain.

VM introspection (VMI) or graybox approaches can be
used to improve the efficiency of de-duplication by extracting
semantic information from in-VM memory data. Sindelar et
al. [53] used VMI techniques to identify memory pages be-
longing to free memory pools in Windows and Linux without
making kernel version-specific assumptions. They are treated
as zero pages to improve de-duplication and VM migration
efficiency. Singleton [52] uses KSM page information to de-
duplicate pages in the guest page cache by dropping them
from the host page cache. VMI, however, cannot always ob-
tain semantic information reliably without cooperation from
the guest, and these techniques are still page-based.

Overall, ORC has the advantage over page-level sharing in
that it allows for reliable, flexible, and efficient sharing that
leverages semantic information about objects.

Efficient inter-VM page sharing techniques can be applied
to optimize inter-server VM placement for cloud-wide mem-
ory density. Memory buddies [65] aggregate memory finger-
print information into a centralized control plane to deter-
mine VM placements for increased sharing and to optimize
VM placement dynamically with live migration. Sindelar et
al. [53] show that inter-VM sharing largely occurs hierarchi-
cally, and they propose a tree structure to manage sharing.
ORC leverages semantic knowledge about shared memory
objects and could be applied to improve memory density in
the cloud through optimal VM placement.

Mixed-granularity sharing. Sharing at a granularity finer
than pages can help increase memory density, as many pages
are found to be nearly identical with only some differences.
Gupta et al. [28] propose a difference engine as an extension
to Xen [2], which supports sharing at the sub-page level in
addition to page level. The difference engine stores patches
against reference pages for similar but not identical pages, and
compresses pages that are unique but accessed infrequently.
Several studies on VM live migration also leverage sub-page
granularity for differentiation, compression and write detec-
tion [15, 46, 71]. Although such proposals could increase
memory density, unlike ORC, they do not reason about what
should be shared across tenants.

Prior work on improving scanning efficiency groups pages
based on access characteristics and uses a granularity finer
than pages. CMD [8] identifies page access characteristics
by measuring the distribution of writes per subpage using
dedicated hardware, in addition to the address and number
of writes to the page. UKSM [68] proposes adaptive partial
hashing, which hashes only a portion of the page and gradually
changes its size. These approaches allow for fine-grained
sharing and reduce the cost of hashing, but still lack semantic
information, making sharing opportunities non-deterministic.

In modern cloud environments, it has become important
to leverage large page sizes that minimize the overhead of
TLB misses. The opportunity for page-level memory shar-
ing decreases with the page size. SmartMD [27] splits large
cold pages with high repetition rates for de-duplication, while
re-consolidating small hot pages for improved access perfor-
mance. GLUE [47] attempts to maintain large-page perfor-
mance in regions that are broken into small pages for de-
duplication. It extends the hardware to perform speculative
large-page translation using normal-sized TLBs. While these
approaches leverage finer granularities than a page, ORC has
an advantage in its ability to share objects at byte granularity.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 583

7 Conclusions

We have described ORC, a new memory de-duplication ap-
proach that improves the memory density of cloud environ-
ments using capability-protected compartments. Our motiva-
tion was to create a practical, capability-based cloud stack, in
which tenants can enjoy strong isolation and cloud providers
benefit from more efficient use of memory resources.

Unlike conventional hypervisors, which blindly scan mem-
ory for identical pages, ORC takes advantage of a semantic
separation into sharable and non-sharable objects. Therefore,
it is not subject to the performance overheads of existing run-
time methods. Due to its use of capabilities, ORC can share
objects more precise at a word granularity (i.e., spatial preci-
sion), while avoiding unintentional sharing of runtime objects
(i.e., temporal precision). The loading of objects is done via a
narrow interface with a small TCB, providing strong isolation.

Source code availability. The source code of ORC and
our evaluated sample applications can be downloaded from
https://github.com/lsds/intravisor.

Acknowledgements. This work was funded by the Technol-
ogy Innovation Institute (TII) through its Secure Systems Re-
search Center (SSRC), and the UK Government’s Industrial
Strategy Challenge Fund (ISCF) under the Digital Security
by Design (DSbD) Programme (UKRI grant EP/V000365
“CloudCAP”). This work was also supported by JSPS KAK-
ENHI grant number 18KK0310 and JST CREST grant num-
ber JPMJCR22M3, Japan. We thank our shepherd, Malte
Schwarzkopf, and the anonymous reviewers for their helpful
feedback and comments.

References

[1] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increas-
ing memory density by using KSM. In Proceedings of
the Linux Symposium 2009, pages 19–28, 2009.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 164–
177. ACM, 2003.

[3] Luiz André Barroso, Jimmy Clidaras, and Urs Hlzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan & Clay-
pool Publishers, 2nd edition, 2013.

[4] Viktors Berstis. Security and protection of data in the
IBM System/38. In Proceedings of the 7th annual sym-
posium on Computer Architecture, ISCA ’80, pages 245–
252, New York, NY, USA, May 1980. Association for
Computing Machinery.

[5] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running Commodity Op-
erating Systems on Scalable Multiprocessors. ACM
Trans. Comput. Syst., 15(4):412–447, November 1997.
Place: New York, NY, USA Publisher: Association for
Computing Machinery.

[6] Nicholas P. Carter, Stephen W. Keckler, and William J.
Dally. Hardware Support for Fast Capability-Based
Addressing. In Proceedings of the Sixth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VI, pages
319–327, New York, NY, USA, 1994. Association for
Computing Machinery.

[7] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. An
empirical study on memory sharing of virtual machines
for server consolidation. In 2011 IEEE Ninth Interna-
tional Symposium on Parallel and Distributed Process-
ing with Applications, pages 244–249. IEEE, 2011.

[8] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen,
Haiyang Pan, and Yungang Bao. CMD: Classification-
based Memory Deduplication through Page Access
Characteristics. ACM SIGPLAN Notices, 49(7):65–76,
2014.

[9] TIS Committee et al. Tool interface standard (TIS) exe-
cutable and linking format (ELF) specification version
1.2, 1995.

[10] Intel Corporation. 5-level paging and 5-level EPT. Tech-
nical report, Intel Corporation, May 2017. Revision 1.1.

[11] Domenico Cotroneo, Roberto Natella, and Roberto
Pietrantuono. Predicting aging-related bugs using soft-
ware complexity metrics. Performance Evaluation,
70(3):163–178, 2013. Publisher: Elsevier.

[12] CVE-2013-6441. Available from MITRE, CVE-ID
CVE-2013-6441, December 2013.

[13] CVE-2021-21284. Available from MITRE, CVE-ID
CVE-2021-21284, December 2021.

[14] Jack B Dennis and Earl C Van Horn. Programming
semantics for multiprogrammed computations. Commu-
nications of the ACM, 9(3):143–155, 1966.

[15] Umesh Deshpande, Xiaoshuang Wang, and Kartik
Gopalan. Live Gang Migration of Virtual Machines.
In Proceedings of the 20th International Symposium on
High Performance Distributed Computing, HPDC ’11,
page 135–146, 2011.

[16] Joe Devietti, Colin Blundell, Milo MK Martin, and
Steve Zdancewic. Hardbound: Architectural support
for spatial safety of the C programming language. ACM

584 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/lsds/intravisor

SIGOPS Operating Systems Review, 42(2):103–114,
2008.

[17] Ulrich Drepper. ELF Handling For Thread-Local Stor-
age, August 2013. Version 0.21.

[18] DM England. Capability concept mechanism and struc-
ture in System 250. In Proceedings of the International
Workshop on Protection in Operating Systems, pages
63–82, 1974.

[19] R. S. Fabry. Capability-based addressing. Communica-
tions of the ACM, 17(7):403–412, July 1974.

[20] Wei Fan and Albert Bifet. Mining big data: Current
status, and forecast to the future. ACM SIGKDD Wxplo-
rations Newsletter, 14(2), 2013.

[21] FFmpeg: A complete, cross-platform solution to record,
convert and stream audio and video. https://ffmpeg.
org. 2022.

[22] FreeBSD adapted for CHERI-MIPS, CHERI-RISC-
V, and Arm Morello. https://github.com/
CTSRD-CHERI/cheribsd. Last accessed: June 1, 2022.

[23] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.
Time protection: the missing OS abstraction. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–17, 2019.

[24] Robert A Gingell, Meng Lee, Xuong T Dang, and
Mary S Weeks. Shared libraries in SunOS. AUUGN,
8(5):112, 1987.

[25] Mel Gorman. Understanding The Linux Virtual Memory
Manager. Prentice Hall Upper Saddle River, 2004.

[26] Daniel Gruss, David Bidner, and Stefan Mangard. Prac-
tical Memory Deduplication Attacks in Sandboxed
JavaScript. In Günther Pernul, Peter Y A Ryan, and
Edgar Weippl, editors, Computer Security – ESORICS
2015, volume 9326, pages 108–122. Springer Interna-
tional Publishing, Cham, 2015. Series Title: Lecture
Notes in Computer Science.

[27] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, and
John CS Lui. SmartMD: A High Performance Dedu-
plication Engine with Mixed Pages. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
733–744, 2017.

[28] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan
Savage, Alex C. Snoeren, George Varghese, Geoffrey M.
Voelker, and Amin Vahdat. Difference Engine: Har-
nessing Memory Redundancy in Virtual Machines. In
Proceedings of the 8th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 2008),
pages 309–322, December 2008.

[29] Gernot Heiser. The seL4 microkernel – an introduction,
June 2020. White paper. The seL4 Foundation, Revision
1.2 of 2020-06-10.

[30] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: the Linux Virtual Machine Monitor.
In Proceedings of the Linux Symposium, pages 225–230,
2007.

[31] Jacob Faber Kloster, Jesper Kristensen, and Arne Mejl-
holm. Efficient memory sharing in the Xen virtual ma-
chine monitor. Aalborg University, pages 1–86, 2006.

[32] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,
Sharan Santhanam, Alexander Jung, Gaulthier Gain,
Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi
Răducanu, et al. Unikraft: fast, specialized unikernels
the easy way. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems, pages 376–394,
2021.

[33] Sajib Kundu, Raju Rangaswami, Ming Zhao, Ajay Gu-
lati, and Kaushik Dutta. Revenue Driven Resource Allo-
cation for Virtualized Data Centers. In 2015 IEEE Inter-
national Conference on Autonomic Computing, pages
197–206, July 2015.

[34] Lanfranco Lopriore. Capability based tagged architec-
tures. IEEE transactions on computers, 33(09):786–803,
1984.

[35] Linux containers. https://linuxcontainers.org.
Last accessed: June 1, 2022.

[36] Artemiy Margaritov, Dmitrii Ustiugov, Edouard
Bugnion, and Boris Grot. Prefetched address translation.
In Intl. Symp. on Microarchitecture (MICRO), 2019.

[37] NoSQL Redis and Memcache traffic generation
and benchmarking tool. https://github.com/
RedisLabs/memtier_benchmark. Last accessed: Dec
13, 2022.

[38] Dirk Merkel. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal, 2014(239):2, 2014.

[39] Konrad Miller, Fabian Franz, Marc Rittinghaus, Mar-
ius Hillenbrand, and Frank Bellosa. XLH: More effec-
tive memory deduplication scanners through cross-layer
hints. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 279–290, 2013.

[40] Konrad Miller, Fabian Franz, Marc Rittinghaus, Mar-
ius Hillenbrand, and Frank Bellosa. XLH: More effec-
tive memory deduplication scanners through cross-layer
hints. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pages 279–290, 2013.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 585

https://ffmpeg.org
https://ffmpeg.org
https://github.com/CTSRD-CHERI/cheribsd
https://github.com/CTSRD-CHERI/cheribsd
https://linuxcontainers.org
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark

[41] Grzegorz Milos, Derek G Murray, Steven Hand, and
Michael A Fetterman. Satori: Enlightened page sharing.
In USENIX Annual technical conference, 2009.

[42] Arm Morello Program. https://www.arm.com/
architecture/cpu/morello. 2022.

[43] musl libc. https://musl.libc.org. Last accessed:
June 1, 2022.

[44] Meni Orenbach, Andrew Baumann, and Mark Silber-
stein. Autarky: Closing controlled channels with self-
paging enclaves. In Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, pages 1–16,
2020.

[45] Rodney Owens and Weichao Wang. Non-interactive
OS fingerprinting through memory de-duplication tech-
nique in virtual machines. In 30th IEEE International
Performance Computing and Communications Confer-
ence, pages 1–8, November 2011. ISSN: 2374-9628.

[46] Yosuke Ozawa and Takahiro Shinagawa. Exploiting
Sub-page Write Protection for VM Live Migration. In
Proceedings of the 2021 IEEE 14th International Con-
ference on Cloud Computing (CLOUD), pages 484–490,
2021.

[47] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek
Bhattacharjee. Large pages and lightweight memory
management in virtualized environments: can you have
it both ways? In Proceedings of the 48th International
Symposium on Microarchitecture, pages 1–12, Waikiki
Hawaii, December 2015. ACM.

[48] Redis is an in-memory database that persists on disk.
https://github.com/redis/redis. Last accessed:
June 1, 2022.

[49] Vasily A. Sartakov, Lluís Vilanova, David Eyers,
Takahiro Shinagawa, and Peter Pietzuch. CAP-VMs:
Capability-Based isolation and sharing in the cloud. In
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 597–612, Carls-
bad, CA, July 2022. USENIX Association.

[50] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.
CubicleOS: A Library OS with Software Componen-
tisation for Practical Isolation. In Proceedings of the
Twenty-Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’21, pages 575–587. ACM, 2021.

[51] Martin Schwidefsky, Hubertus Franke, Ray Mansell,
Himanshu Raj, Damian Osisek, and JongHyuk Choi.
Collaborative memory management in hosted Linux en-
vironments. In Proceedings of the Linux Symposium,
volume 2, pages 313–330. Linux Symposium Incorpo-
ration Ottawa, 2006.

[52] Prateek Sharma and Purushottam Kulkarni. Singleton:
system-wide page deduplication in virtual environments.
In Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing -
HPDC ’12, page 15, Delft, The Netherlands, 2012. ACM
Press.

[53] Michael Sindelar, Ramesh K. Sitaraman, and Prashant
Shenoy. Sharing-aware algorithms for virtual machine
colocation. In Proceedings of the 23rd ACM symposium
on Parallelism in algorithms and architectures - SPAA

’11, page 367, San Jose, California, USA, 2011. ACM
Press.

[54] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrel-
las. Pageforge: a near-memory content-aware page-
merging architecture. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 302–314, 2017.

[55] Speedtest1 benchmark. http://www.sqlite.org/
src/finfo?name=test/speedtest1.c. Last accessed:
Dec 13, 2022.

[56] SQLite. https://www.sqlite.org. 2022.

[57] Udo Steinberg and Bernhard Kauer. NOVA: A
Microhypervisor-Based Secure Virtualization Architec-
ture. In Proceedings of the Fifth European Conference
on Computer Systems, EuroSys ’10, pages 209–222.
ACM, 2010.

[58] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and
Cyrille Artho. Software side channel attack on mem-
ory deduplication. In ACM Symposium on Operating
Systems Principles (SOSP 2011), Poster session, 2011.

[59] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and
Cyrille Artho. Implementation of a Memory Disclosure
Attack on Memory Deduplication of Virtual Machines.
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E96.A(1):215–
224, 2013.

[60] A Virtualization. Secure virtual machine architecture
reference manual. AMD Publication, 33047, 2005.

[61] Carl A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation
(OSDI 2003), December 2003.

[62] Robert NM Watson, Peter G Neumann, Jonathan
Woodruff, Michael Roe, Jonathan Anderson, David Chis-
nall, Brooks Davis, Alexandre Joannou, Ben Laurie, Si-
mon W Moore, et al. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture
(Version 8). Technical report, University of Cambridge,
Computer Laboratory, 2019.

586 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello
https://musl.libc.org
https://github.com/redis/redis
http://www.sqlite.org/src/finfo?name=test/speedtest1.c
http://www.sqlite.org/src/finfo?name=test/speedtest1.c
https://www.sqlite.org

[63] Robert NM Watson, Alexander Richardson, Brooks
Davis, John Baldwin, David Chisnall, Jessica Clarke,
Nathaniel Filardo, Simon W Moore, Edward Napierala,
Peter Sewell, et al. CHERI C/C++ Programming Guide.
Technical report, University of Cambridge, Computer
Laboratory, 2020.

[64] Maurice Vincent Wilkes and Roger Michael Needham.
The Cambridge CAP computer and its operating system.
Operating and Programming System Series, 1979.

[65] Timothy Wood, Gabriel Tarasuk-Levin, Prashant
Shenoy, Peter Desnoyers, Emmanuel Cecchet, and
Mark D Corner. Memory buddies: exploiting page
sharing for smart colocation in virtualized data centers.
ACM SIGOPS Operating Systems Review, 43(3):27–36,
2009. Publisher: ACM New York, NY, USA.

[66] Jonathan Woodruff, Robert N. M. Watson, David Chis-
nall, Simon W. Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. The CHERI capability model: Re-
visiting RISC in an age of risk. In 2014 ACM/IEEE
41st International Symposium on Computer Architec-
ture (ISCA), pages 457–468, 2014.

[67] Lei Xia and Peter A. Dinda. A case for tracking and
exploiting inter-node and intra-node memory content
sharing in virtualized large-scale parallel systems. In
Proceedings of the 6th international workshop on Virtu-
alization Technologies in Distributed Computing Date -
VTDC ’12, page 11, Delft, The Netherlands, 2012. ACM
Press.

[68] Nai Xia, Chen Tian, Yan Luo, Hang Liu, and Xiaoliang
Wang. UKSM: Swift memory deduplication via hierar-
chical and adaptive memory region distilling. In Pro-
ceedings of the 16th USENIX Conference on File and
Storage Technologies, pages 325–339, February 2018.

[69] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang.
Security implications of memory deduplication in a vir-
tualized environment. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 1–12, Budapest, Hungary, June
2013. IEEE.

[70] Bernd Zeimetz. ksmtuned. https://github.com/
bzed/debian-ksmtuned. 2022.

[71] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. Ex-
ploiting Data Deduplication to Accelerate Live Virtual
Machine Migration. In Proceedings of the 2010 IEEE
International Conference on Cluster Computing, pages
88–96, 2010.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 587

https://github.com/bzed/debian-ksmtuned
https://github.com/bzed/debian-ksmtuned

Global Capacity Management With Flux

Marius Eriksen, Kaushik Veeraraghavan, Yusuf Abdulghani, Andrew Birchall, Po-Yen Chou,

Richard Cornew, Adela Kabiljo, Ranjith Kumar S, Maroo Lieuw, Justin Meza, Scott Michelson,

Thomas Rohloff, Hayley Russell, Jeff Qin, and Chunqiang Tang

Meta Platforms

Abstract

Customers of both private and public clouds must wrestle with

the problem of regionalization: how should service capac-

ity be apportioned across a large number of geo-distributed

datacenter regions? This problem is further complicated by

the complex service dependency graphs that arise from mi-

croservice architectures, as well as capacity availability and

hardware mix that can vary greatly by region.

Historically, regionalization has been solved through a

slow-moving and manual process, whereby owners of large

services directly negotiate capacity allocation and distribu-

tion with the cloud provider. However, as both service and

cloud footprints continue to grow, these manual processes are

becoming untenable, and often result in excessive labor for

all parties involved, as well as suboptimal outcomes.

At Meta, we have built a system called Flux to automate

capacity regionalization, transitioning it from a bottoms-up,

manual process, to a top-down, automated one. Flux employs

RPC tracing to identify service capacity models, and uses

these to compute an optimal joint capacity and traffic distri-

bution plan that spans thousands of services across tens of

products, and involves millions of servers. These plans are

orchestrated by a system that safely and efficiently rebalances

service capacity and product traffic across tens of regions on

a continuous basis.

1 Introduction

Meta’s private cloud consists of millions of machines and

hosts products serving billions of users. It must provide the

products with a growing, geographically distributed capacity

footprint, so that they can scale and remain fault tolerant while

their usage grows and new features are introduced.

Our products employ large microservice architectures [29]

comprising thousands of services, globally deployed in tens

of datacenter regions. Most of these services are shared by

multiple products, and hence the sizing of one service needs to

consider the demands of all products. Moreover, the services

are interdependent. It is not uncommon that a service calls

tens of other services and the depth of the call graph can

go beyond 10 levels. As a result, capacity distributions for

services must be managed in concert: the growth of one

service may cause the growth of tens more, which in turn

places further capacity demands on their downstream services,

and so on. Thus, it is a daunting task to manage capacity at

scale, as service operators must answer questions such as:

How to size my service? How and where do I provision

capacity for organic growth, or to enable a new feature? Are

downstream services correctly provisioned for the demand

generated by my service?

To avoid the above complexities getting out of control

when planning capacity jointly across tens of regions, service

owners often prefer the simplicity of reasoning about their

capacity on a per-region basis: a service responds to demand

increases by requesting that new capacity be delivered to the

regions where the service is already running.

However, this local optimization leads to many issues:

• Services in mature regions cannot grow as those regions

have no available space or power to add capacity.

• Hardware utilization becomes imbalanced as some regions

may provide more capacity than others.

• Hardware ordering is overly constrained by specific ser-

vices requiring specific hardware to be placed in specific

regions.

• Capacity imbalances lead to excess disaster-readiness

buffers as we must have enough buffers for the potential

loss of the single largest region.

Before Flux, these issues were solved by lengthy negotiations

between service owners and cloud providers. For example, in

order for service A to grow in region X, the service owners

might negotiate to trade the service’s excess capacity in region

Y for service B’s capacity in region X. This laborious process

does not scale well with the number of regions and services,

and leads to suboptimal capacity allocation. Moreover, even

after capacity negotiations, rebalancing services and traffic

across regions in order to match capacity supply is still a

daunting task, requiring coordination across many services

and traffic distribution systems.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 589

Finally, this region-centric capacity management process

leads to tight coupling between specific products and specific

regions. The capacity mix (i.e., the ratio of different hardware

types) of any given region often reflects the products that

have historically been deployed to that region. As a result,

the capacity mixes of our regions have already diverged sig-

nificantly, further exacerbating the problem as this regional

heterogeneity limits the flexibility of moving services across

regions to rebalance demands and supplies.

Global capacity management. Our key insight to solving

these issues is to elevate capacity management to a global

problem, decoupling global service placement from global

hardware placement. This paper describes our global capac-

ity placement system, called Flux, which runs continuously

on weekslong timescales, redistributing service capacity and

product traffic to best utilize our global capacity footprint.

Flux utilizes RPC tracing to identify a model that pre-

dicts service capacity demands given a traffic mix for our

products. This model is then used to formulate a mixed-

integer-programming (MIP) problem that jointly distributes

service capacity and product traffic across all of Meta’s re-

gions. Flux’s service placement distributes service growth ca-

pacity, rebalances existing service capacity to meet infrastruc-

ture goals, and manages projected regional capacity deficits

such as those caused by regional hardware refresh.

A capacity orchestrator works with our existing autoscal-

ing and traffic management systems to safely and efficiently

execute global capacity redistribution plans. The orchestra-

tor also allows human-in-the-loop operations as needed by

escalating low-quality estimates to be vetted by human opera-

tors, or delegate orchestration for services that have not yet

onboarded to our autoscaling systems.

Flux has been running in production at Meta for 2.5 years,

continually allocating service capacity quotas and performing

cross-region shifts of service placements and traffic for our

largest products. Currently, Flux covers about 50% of the

servers in our private cloud that consists of millions of servers

supporting online, batch, and AI training & inference work-

loads. We expect Flux to cover more than 90% of our capacity

as we increase adoption. Flux has also enabled dramatic sim-

plification of our hardware planning process, as it allows us

to plan for capacity globally, while gradually homogenizing

our current heterogenous regional hardware mixes.

Besides Flux’s usage in our private cloud, the ideas pre-

sented in this paper can potentially be adapted to public cloud

settings as well. Public cloud providers also similarly ne-

gotiate with their large customers directly to match capacity

demands with supplies. This sometimes entails providing

capacity outside of the customer’s preferred regions, which

in turn may require customers to relocate their workloads.

Contributions. We make the following contributions:

• To the best of our knowledge, this paper is the first to con-

duct a comprehensive study of global capacity manage-

ment and global service placement, which are important

issues for public and private cloud providers. We hope

that by sharing our firsthand experiences, we can help

the research community better understand this important

problem and the constraints involved in solving it.

• We propose global capacity contracts, whereby service

owners only need to reason about their global capacity

demands, leaving it for Flux to optimally regionalize ser-

vice capacity and product traffic distributions. By contrast,

cloud providers still mostly operate in a mode where large

services require specific hardware to be placed in spe-

cific regions, and traffic distribution is not integrated with

capacity management.

• We use RPC tracing to build a service-capacity regionaliza-

tion model, which calculates a service’s regional capacity

distribution as a function of the traffic mix for different

products. We are not aware of any prior work that attempts

to use models to regionalize service capacity. Moreover,

although RPC tracing has been used for debugging and

performance modeling, we are not aware of any prior work

that uses it for capacity modeling, not to mention doing it

at our scale and in production.

• We formulate a MIP problem to optimally distribute ser-

vice capacity under constraints of capacity supply as

well as service and infrastructure objectives. Despite the

widespread use of MIP, our approach is novel in its ap-

plication to joint capacity and traffic regionalization, a

problem that has not been considered before. We also

use load-test-induced nonlinear models to complement

MIP-based linear models, improving modeling accuracy.

• We describe our capacity orchestrator which integrates

across autoscaling and traffic management systems to

safely implement capacity and traffic redistribution plans.

Automating joint service placement and traffic redistribu-

tion at our scale is highly risky and may negatively impact

site reliability. To our knowledge, this has not been at-

tempted before.

• Finally, the effectiveness and robustness of Flux is demon-

strated by the fact that we use it every quarter to assign

hundreds of thousands of new machines to services.

2 Background

In this section, we provide background on our datacenters,

workloads, capacity management practices, and the capacity

management challenges that are addressed by Flux.

2.1 Datacenter Regions

Meta operates 10s of datacenter regions, each comprising

multiple datacenter buildings in the same local geography,

typically located on a single campus.

Our existing infrastructure abstractions generally operate

at the level of regions. For example, our cluster management

590 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

systems [37, 45] manage all machines in a region as a single

pool. Services are expected to be oblivious to the placement

of their tasks within a region, and they may be spread across

multiple datacenter, network segments, or power domains.

Our regional infrastructure abstractions are supported by a

network fabric that provides sufficient regional cross-sectional

bandwidth for all but a few workloads

2.2 Traffic Management

We maintain a global network of small edge datacenters that

are connected to our backbone network. User traffic (e.g.,

those from apps or web browsers) are terminated in these

edge datacenters. Requests from clients connected to our

edge datacenters are forwarded to front-end servers in one of

our geo-distributed regions. A traffic distribution system [18]

manages the distribution of requests from edge datacenters

to our large datacenter regions, typically by considering a

combination of factors including front-end utilization and

geographic proximity to the end-user.

2.3 Service Workloads

Traffic enters a region through a front-end web service, typ-

ically an HTTP reverse proxy that routes the request to an

appropriate application server based on the request URI. The

application server implements some business logic, and typi-

cally makes RPC calls to tens to hundreds of services, which

in turn fan out to yet more services. While some of these ser-

vices implement functionality used by just a single product,

most are shared across many products. Thus, our services are

highly interdependent, and we cannot partition our services

into product-specific silos.

Figure 1 illustrates the complexity in our request serving

paths, with a large fanout and deep call depth. The complexity

of service interdependencies [29] motivated us to use precise

RPC tracing to attribute resource consumption when design-

ing Flux, rather than using indirect methods such as statistical

analysis [2] or heuristics [3, 38, 43].

Figure 1: Service RPC fanout. An example of how to read

the curves: when a request for the web product reaches the

call depth of 10, it fans out to call 158 services on average.

2.4 Service Capacity Management

Meta’s capacity management systems provide quotas in the

form of regional reservations [37], which provide strong guar-

antees of regional capacity availability and sub-regional fail-

ure tolerance. Thus, the various hardware buffers required

to reliably operate services within a region are encapsulated

by the regional capacity management systems, and hidden

from higher-level capacity management systems like Flux.

The number of service replicas in a region is usually deter-

mined by our autoscaling systems which combine service

capacity models with demand forecasts and disaster scenario

simulations to ensure the job is sized correctly.

Most RPCs occur within the same region due to strict la-

tency requirements imposed by applications. Additionally,

our complex service dependency graphs often contain critical

paths with tens of hops, which can quickly amplify cross-

region RPC latencies. Finally, by hosting both the caller and

callee in the same region, we can limit cross-region depen-

dencies and improve disaster readiness [31, 52].

Figure 2 illustrates regional caller-callee affinity by show-

ing the latency distribution of RPC calls across thousands of

compute services, denominated by total capacity. The inflec-

tion point at around 25ms represents calls going cross-region;

observe that ≈ 80% of capacity is reached by in-region re-

quests.

Figure 2: Cumulative distribution of capacity by RPC

latency. Note the y-axis begins at 80%.

All of our products are located in multiple regions to im-

prove disaster readiness, access a large capacity pool, and

achieve wide geographic distribution. However, the distribu-

tion of service capacity across regions is uneven. This is due

to the organic growth of both service capacity demand and re-

gional capacity supply. Service capacity demand responds to

new features and world events, while regional capacity supply

depends on factors such as power availability and datacen-

ter construction timelines. Additionally, geographic skew in

product usage exacerbates the issue as we try to place service

capacity close to end users.

Over time, this has led to a negative feedback loop, wherein

services prefer to grow proportionally to their existing re-

gional footprints, causing regional hardware mixes to reflect

these historical workloads. This in turn makes it difficult

to move these workloads to other regions, causing services

to continue preferring the regions in which they are already

deployed to receive capacity growth. We can see this spe-

cialization reflected in the regional hardware mix, as shown

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 591

Figure 3: Regional hardware type distribution. A histogram

of the compute, flash, HDD, and other hardware deployed

across a subset of our regions. Note that the y axis starts at

50%. The right-most region is dominated by flash, because

it is a small region that recently underwent a large retrofit,

leaving a lot of database workloads in place.

in Figure 3. For instance, the percentage of servers of the

compute type ranges from 55% to 80%.

Regions also vary in their power headroom, i.e., the differ-

ence between used and available power. Observe in Figure 4

that six regions have little available power, implying that if

service deployments in those regions need to grow, they must

expand their capacity footprint in other regions as there is

little additional power to support additional racks. This is

similar to the situation in public clouds where users cannot

acquire new capacity in a given region [10–12, 21, 22, 47].

Figure 4: Power headroom per region for capacity growth.

The y-axis is power, normalized to our largest region.

2.5 Capacity Management Challenges

Service capacity management presents significant challenges

for both service owners and infrastructure operators. While

service owners wish to grow freely where they already are de-

ployed, infrastructure operators must reconcile these wishes

with constraints associated with operating physical infrastruc-

ture, as well as goals around efficient fleet operations.

These problems are amplified as regions reach maturity–

when there is no longer additional power available to allocate

to new racks–and infrastructure owners cannot accommodate

service capacity growth without shrinking the footprint of

other services. The complex dependency graphs between ser-

vices in a typical online product make this a more challenging

problem still.

We refer to this challenge as the service regionalization

problem: How can we optimally allocate capacity to a set of

services across multiple regions? Additionally, how should

product traffic be appropriately distributed based on this allo-

cation? Finally, considering that cluster and capacity manage-

ment systems usually operate at the regional level, how can we

effectively rebalance services according to the regionalization

plan?

3 Design and Implementation

Our global capacity management system, Flux, continually

rebalances a large number of interdependent services across

regions in response to demand changes (e.g., product growth)

and supply changes (e.g., hardware refreshes). By decoupling

the management of capacity demand and supply, Flux enables

service owners to focus on their global capacity demand with-

out considering regional needs, and allows cloud providers to

evolve each region’s capacity supply independently.

3.1 Overview of Flux’s Workflow

As illustrated in Figure 5, Flux solves the regionalization

problem through the following workflow.

Product-to-service capacity attribution via RPC tracing.

Flux uses RPC request tracing [30, 40] to construct a regional

baseline 1 that attributes each service’s peak capacity foot-

print to the products that are served directly or indirectly by

the service. This baseline is used to construct a service place-

ment model 2 that determines how service capacity should

be distributed given a product traffic distribution.

Joint regionalization of service capacity and product

traffic. Using inputs from our budgeting systems, Flux then

creates a capacity target for each service, which specifies

the amount of global capacity that is needed for each service.

These service targets are jointly regionalized with product

traffic by formulating an assignment problem that is solved

using mixed-integer programming (MIP) 3 . The result of

this stage is a placement plan that redistributes service ca-

pacity and product traffic across regions. The optimization

problem also encodes a number of infrastructure objectives,

such as minimizing the total amount of disaster-readiness

buffer required to operate services safely.

Global capacity orchestration. Flux introduces a global

capacity orchestrator, responsible for executing placement

plans safely and efficiently 4 . The orchestrator drives au-

tomation through several capacity and traffic management

systems, and also supports human-in-the-loop operations to

handle exceptions or uncertainties in execution.

The overall Flux workflow runs continuously in weekslong

cycles to rebalance service capacity across regions accord-

ing to changing hardware supplies and service demands. It

measures the current state of service and hardware placement,

computes a desired state, and then executes a plan to move

592 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 5: Flux’s end-to-end workflow.

towards the desired state. It tolerates imperfect execution of

the plan by repeating this self-correcting reconciliation loop.

Next, we describe the details of the steps above.

3.2 Service Modeling

The goal of service capacity modeling is to determine the

optimal distribution of a service’s capacity across regions in

concert with product traffic. This is challenging because many

of our services are shared by multiple products, and each

product may invoke different call paths within the service.

This can result in significant differences in the cost per request

depending on the product being served (see §2.4).

3.2.1 Baseline

Flux defines a baseline for each region, attributing portions

of each service’s peak capacity footprint to different products.

This baseline is created by combining two other baselines:

Capacity usage baseline. We run profilers on every server

in our fleet to produce a dataset that attributes resource usage

to specific services. Profiles are sampled every minute, and we

process this dataset to identify the daily peak time window1

and peak resource usage per service and per region, covering

different resource types such as CPU and SSD.

Demand baseline. Flux uses sampled RPC traces to recon-

struct the call graphs for requests that are handled by each

service. We identify a set of product gateways that act as

traffic entry points for each product. Importantly, the traf-

fic destined for these gateways is globally and independently

routable, and is usually managed by Meta’s shared traffic man-

agement systems [18]. Each sampled RPC call is attributed

1Demand spikes due to new product launches or special events such as

New Year’s Eve are handled separately. During daily off-peak periods, many

of our services are automatically scaled down to donate unused capacity to

our elastic capacity pools, which are used to run preemptible services.

Async

Web Product

(WP)

Mobile Product

(MP)

Region = A Region = B

frontend 1frontend 2

search feed

Indexing

frontend 2frontend 1

feed search

indexing

async

Web Product Traûc

Mobile Product Traûc

Async Traûc

[X%]
Service Demand (e.g.,

requests per second)

[100% MP] [100% MP]

[100% MP] [100% MP]

[80% WP, 20% MP] [75% WP, 25% MP]

[65% WP,

35% MP]

[75% WP,

 25% MP]

[40% WP,

60% MP]

[30% WP, 70% MP]

[20% WP,

80% MP]

cross-region

traûc

Product

gateways

cache[100% Async]

regional

boundary

Mixed Traûc

Figure 6: Demand attribution. Attribution of capacity us-

age to three Products: Web Product, Mobile Product, and

Async. For the indexing service in Region A, the annota-

tion “[40% WP, 60% MP]” means that 40% and 60% of the

indexing service’s capacity consumption is attributed to the

Web Product and Mobile Product, respectively. Note that

while demand attribution is relative, the capacity usage base-

line is defined in terms of absolute capacity.

to the product handled by the nearest upstream gateway in

the call path. The demand attribution process is illustrated

in Figure 6. Sampled traces are aggregated to compose the

demand attribution dataset for each service, dividing a ser-

vice’s total demand among the set of products served by it.

Traces collect multiple demand metrics, including call counts

as well as CPU instructions. The next section discusses how

we select the demand metric that minimizes the overall model

error.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 593

3.2.2 Modeling

Flux’s service models predict the amount of service capacity

required in a region to serve that region’s product traffic mix.

We assume that each product’s traffic is fungible across re-

gions, and thus that capacity requirements for serving a fixed

portion of the product’s traffic is also the same across regions.

This suggests a model where capacity for service s in re-

gion r, cs,r, is given by a linear combination of the capacity

contributions from each product:

cs,r = ∑
p∈P

(αs,p ∗ρp,r)+δs,r, (1)

where αs,p is the amount of capacity for service s attributed

to product p; ρp,r is the presence, or the proportion of global

traffic for product p assigned to region r; and δs,r is the model

residual for service s in region r.

Modeling residuals may be due to an existing capacity

imbalance, or due to nonlinear effects not captured by the

model. We allow service owners to be involved in managing

the treatment of residuals during planning.

The baseline includes multiple demand metrics. In the

modeling step, we select the metric that minimizes modeling

error. For example, many large services have per-request costs

that vary significantly across different products (because they

invoke different internal code paths), and are well-modeled

using CPU instructions as a demand metric. On the other

hand, some services perform very little computation for each

request. Therefore, call counts are a more appropriate demand

metric for these services due to the CPU overhead of tracing.

3.3 Joint Capacity & Traffic Regionalization

Flux computes joint service capacity and traffic regional-

ization plans by formulating an assignment problem that is

solved by a MIP solver. This section provides the intuition

behind the problem formulation.

The formulation, detailed in appendix A, is an optimization

problem that jointly assigns capacity for each service in each

region and product traffic in each region, corresponding to

cs,r and ρp,r from equation 1. The assignments are subject to

a set of constraints imputed from the service placement model

described in §3.2, which determines the service capacity mix

required to serve each product.

Initial capacity and traffic assignment are given by the base-

line. The capacity residual (δs,r in equation 1) is interpreted

as capacity that is unexplained by the model, and is thus ex-

cluded from reassignment, unless directed otherwise by the

service owner. We provide an analysis of capacity residuals

in §6.3.

Baseline adjustments. Flux adjusts the existing baselines

to match planned capacity and product distribution changes.

These planned changes are encoded as events and maintained

in a capacity ledger. Flux commits its plans to the ledger

along with other capacity planning systems. Thus, Flux can

overlap planning and execution, as we can adjust the baseline

to account for planned changes between the plan generation

time and the start of its execution cycle.

Regional capacity pools. Flux divides each region’s ca-

pacity into a shared pool per hardware type. Our capacity

reservation system, RAS [37], provides these pools as a re-

gional abstraction that we build upon, and lets us treat the

capacity in each pool fungibly.

Each hardware type is assigned a capacity measure that

represents the common bottleneck for that hardware type. For

example, the generic compute pool is denominated by a nor-

malized CPU throughput measure, while our SSD hardware

is generally I/O bound. The capacity measure is normalized

across all generations of the same hardware type. Some ser-

vices can run on multiple hardware types: we encode this

knowledge through a set of fungibility rules that establish

a service’s conversation ratios between different hardware

types.

Service capacity demand. The global capacity demand for

each service is computed by querying our budgeting systems

which mandate service capacity budgets in terms of a normal-

ized cost measure. Flux converts this normalized budget to a

hardware-type specific capacity demand using a conversion

ratio specific to the service and hardware type.

Service placement model. Flux imputes placement con-

straints from the service capacity model. Specifically, for

each service, the model determines a lower bound of service

capacity assigned to a region as a function of the product

traffic mix to that region (see §3.2.2). The product traffic

assignments are also optimization variables, and hence the

service and traffic placement is jointly optimized. The base-

line model residual (see Equation 1) is codified as an explicit

term in the formulation to offset capacity imbalances that ex-

ist at baseline. Flux gives service owners the choice to reduce

the model residual, which is often used to correct baseline

capacity imbalances; see §6.5 for an example.

Optimization constraints. The MIP assignment problem

constrains (1) the capacity assignment in each region to be

no more than its available supply; and (2) the global capacity

demand for each service to be met. The latter constraint is a

soft constraint, which allows us to prioritize capacity fulfill-

ment among services if necessary. Flux prioritizes baseline

capacity footprint (i.e., the capacity present when the baseline

was measured) over growth capacity (i.e., additional capacity

granted by the budget systems), to ensure that already granted

service capacity is not taken away.

Optimization objectives. The MIP assignment problem

includes several infrastructure objectives that help us man-

age our global capacity footprint more effectively. First, a

balancing objective spreads service capacity evenly across

regions, which reduces the amount of buffer capacity needed

594 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

for disaster readiness. Second, unused capacity is also dis-

tributed evenly based on region size, making extra capacity

available to account for discrepancies or defects in Flux’s

placement. Third, a stability objective minimizes the amount

of capacity reassignment in each placement cycle, simplifying

the placement plans and reducing infrastructure churn.

Timesteps. Regionalization is simultaneously computed for

multiple future timesteps in increments of future execution

cycles. This serves three purposes. First, multi-timestep plans

can incorporate large changes in supply or demand ahead

of time, allowing for a plan that anticipates these changes

with small, individually feasible adjustments over multiple

timesteps. Second, we can set stability objectives that span

multiple timesteps to prevent undue oscillation in placement

plans. Finally, this multi-timestep approach prevents the

solver from optimizing a short-term solution at the expense

of long-term negative impacts.

While Flux computes plans for multiple timesteps, we only

execute the plan for the next timestep. Flux runs in a self-

correcting reconciliation loop as the baseline can change be-

tween executions for a number of reasons, including: (1) exe-

cution may have deviated from the placement plan; (2) supply

and demand forecasts may change in the interim; (3) manual

capacity operations may affect the baseline; (4) service code

changes or new services may affect the service models.

The formulation is detailed in appendix A.

3.4 Execution Planning

Flux derives an execution plan from the joint service and

traffic placement plan. The plan is a directed acyclic graph

(DAG) of service capacity assignments and product traffic

assignments. The plan ensures that services are always suffi-

ciently provisioned for the traffic during the transition stage.

Flux provides this guarantee through a three-phase plan.

First, all upsizes are executed, i.e., each service is sized to the

maximum of its baseline size and its target placement size.

Second, all product traffic is reassigned. Third, downsizes are

executed by sizing each service to its target size.

The advantage of this approach is its simplicity and the

ability to execute it quickly by parallelizing actions in each

phase. A disadvantage is that it requires temporarily overpro-

visioning services, which takes up capacity that could be used

by other services. To address this limitation, we explored us-

ing more sophisticated multi-step plans. However, we found

that these plans were both complex to execute and difficult to

explain to service owners. As a result, we decided to continue

using the simple approach.

3.5 Orchestration

The execution plan is fulfilled by Flux’s capacity orchestrator

which: (1) executes capacity and traffic assignments in the

Execution plan

Orchestrator

Human in the loop

Capacity ledger

Time

Reservation
Management Autoscaling Traffic

Management …

Upsize Downsize
Shift

Figure 7: End-to-end orchestration workflow.

correct dependency order; (2) continuously monitors product-

level and service-level metrics to ensure that they remain

healthy; (3) delegates exceptions and actions to human opera-

tors as needed; and finally (4) performs load tests to validate

the placement.

Figure 7 illustrates the orchestration workflow. A capacity

ledger stores a timeline of capacity events.These events are

timestamped, and each reflect a proposed capacity related

change. Capacity and traffic management systems query the

ledger for future events, but only execute them once they are

marked by the orchestrator as active. After execution, the

same systems store their status (success or failure) back into

the ledger.

The ledger acts as a central repository of all anticipated

capacity changes, and allows multiple systems to simulta-

neously propose and coordinate changes, while decoupling

capacity planning systems from capacity management sys-

tems. While Flux is the primary writer to the ledger, we

sometimes write manual events to make temporary capacity

changes in support of product launches or experimentation.

The ledger provides three important properties. First, we

can compose events from different writers, so that the un-

derlying management systems can consider the combined

effect of a set of events. Second, by providing events ahead of

time, we accommodate services that require a long lead time

to provision capacity and scale. For example, our caching

systems need a significant warm-up period before newly pro-

visioned capacity can handle production traffic. By providing

future events, the control plane gives the management systems

enough time to ensure that services are ready for future traffic

shifts. Third, the ledger serves as an authoritative forecast of

future capacity changes, and is used by Flux to incorporate

future and ongoing events during planning. This allows Flux

to overlap planning with execution, and to compose well with

other capacity planning systems.

The orchestrator ensures that events are executed in de-

pendency order by verifying that all antecedent events have

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 595

completed before marking an event as active. RF delegates

any exceptions to human operators through its UI. The UI is

also used when (1) the service owner has configured the ser-

vice to require validation before execution, or (2) the capacity

estimates for a service are considered low confidence in the

modeling stage and require operator validation. By provid-

ing this progressive path towards full automation, Flux offers

transparency and explainability, and allows service owners to

gain comfort with the system.

Finally, before downsizing service capacity, the orchestra-

tor initiates product load tests [52] to validate that the sizing

is correct and that the site as a whole remains disaster ready.

3.6 Stateful Services

Flux integrates with Shard Manager [32] to handle stateful

services within our platform. Shard Manager is responsible

for managing most of our stateful workloads. Shard Manager

continuously queries the capacity ledger for relevant capacity

events, and builds new replicas after upsize capacity has been

provided by Flux. This is done by migrating or replicating

data from other regions. Shard Manager then acknowledges

the capacity event, allowing Flux to safely proceed with exe-

cution. After the demand shift, Shard Manager safely removes

the old replicas from downsized regions before Flux reclaims

capacity.

The primary challenge with integrating stateful services

today is that the default demand attribution algorithms do not

always accurately capture requests costs. Such systems often

exhibit interaction between requests, where processing of one

request can affect the cost of subsequent requests. Our default

attribution algorithms also do not capture persistent storage

costs, the effects of caching, etc. We work with service teams

to update our algorithms to better capture their capacity cost

models. For example, TAO [16], Meta’s social graph store,

maintains a custom cost model, which captures many of the

above effects across their complex, distributed system. We

integrate this cost model into Flux’s attribution models to

correctly capture TAO’s capacity needs.

4 Design Alternatives

In this section, we discuss the major design alternatives.

4.1 RPC tracing

Flux relies on RPC tracing for gray box measurements of

product-service capacity attribution. Meta has invested in a

unified RPC stack [39], leading to high out-of-the-box trac-

ing coverage without any additional instrumentation needed

from service owners. Moreover, all our main traffic ingestion

systems [30,52] already implement sampled trace origination.

As of 2022, we have 52% of capacity usage covered by

RPC tracing. For services that are not yet covered by RPC

tracing, we have been working closely with the the service

owners to drive the adoption, because distributed tracing [40]

as a fundamental capability in a large infrastructure has broad

usage beyond capacity management, such as problem deter-

mination [17] and performance debugging [2].

Black box methods like statistical analysis [2] or heuris-

tics [3, 38, 43] can be used to infer service call graphs with-

out needing service-specific instrumentation. However, our

highly interdependent microservice architecture makes em-

ploying such techniques less accurate. Since many of our

backend systems are shared among multiple frontends, which

invoke distinctly different callpaths, often with substantially

different cost per request.

Black box methods were previously only evaluated on sim-

ple three-tier applications, while in our complex environment,

the depth of call graphs reaches 14 and the RPC fanout is as

high as 742, and hundreds of different upstream services may

call a given service at varying call-graph depths. The full

complexities of Meta’s service topology and call graphs are

reported in detail in a recent work [29]. These complexities

make statistical or heuristic methods less applicable to our

environment.

Furthermore, because we can mandate high tracing cov-

erage in our services, we can expect higher quality models,

which in turn helps us provide greater levels of automation in

global capacity management.

4.2 Nonlinear Service Models

The core service model used by Flux is linear: it assumes that

capacity usage is linearly related to a chosen demand metric

(see Equation 1) and a product traffic mix. While such models

are simple to identify and to apply broadly, many services

exhibit nonlinear capacity behaviors. When available, Flux

can update its estimates by using more accurate nonlinear

models such as those produced by load testing [55], queuing

analysis [41], or by simulation.

Many of our services use continuous load testing to main-

tain an accurate model of the relationship between a service’s

capacity usage and its RPC throughput. These models are

used by our Capacity Estimator (CE) [14] to ensure that

services are sized correctly for demand and remain disaster

ready as determined by simulating various failure scenarios.

However, simulations introduce nonlinearities that cannot be

represented in a MIP assignment problem. To solve this prob-

lem, Flux invokes CE with the traffic distribution produced

by the MIP solver. CE then runs its simulations against the

proposed traffic distribution, and provides updated capacity

estimates that incorporate planned failure scenarios.

We have found that using a combination of a default linear

model for regionalization, along with a load-test-induced non-

linear model for improving estimates, works well in practice.

Linear models provide upper bounds and are amenable to

MIP optimization, while the nonlinear models provide higher

accuracy, and usually operate within the bounds of the linear

596 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

models. Additionally, the simpler linear models are easier to

explain and diagnose. Currently, 9.2% of services using Flux

have load-test-induced models, and these services account for

46.4% of the total capacity allocated by Flux. This suggests

that larger services are more concerned about capacity and are

more likely to build their load-test-induced nonlinear models.

5 Discussion

In this section, we discuss the challenges of doing capacity

planning in a complex real world and several ways of applying

ideas in Flux to public clouds.

5.1 Practical Challenges

Flawed baselines impact modeling accuracy. Because

Flux started with a baseline that was the result of many years

worth of ad-hoc capacity management, the baseline itself does

not reflect an ideal placement. Thus, when modeling capacity,

we have to take extra care when interpreting model residuals:

they could be due to imperfect modeling, or baseline itself not

well-balanced. Flux provides rebalancing to service owners

wishing to correct these imbalances in a controlled manner.

Complete capacity models are hard to come by. We have

found that many capacity management practices rely on tribal

knowledge, ad-hoc modeling, and implicit agreements be-

tween services. These are not captured in the service capacity

models that Flux operates with, and thus cannot incorporate

various de facto objectives or constraints. We work with ser-

vice owners to codify these, but often find that we need to

work around these with manual planning adjustments. We

have also introduced tools like the capacity ledger (see §3.5)

that help capture and mechanize previously ad-hoc capacity

management practices.

These realities mean that there isn’t a clear ground truth for

capacity distribution, and require a nuanced interpretation of

both modeling residuals and execution errors.

5.2 Applying Flux in Public Clouds

Many large public cloud customers maintain “virtual private

clouds”, whereby they acquire large capacity pools of re-

served instances. For example, Netflix has reported [36] that

it runs thousands of services on hundreds of thousands of geo-

distributed reserved instances [9] in AWS. These customers

can apply Flux to manage these pools of reserved instances,

and intelligently place services so that they are maximally

utilized. These customers can also use Flux to extract recom-

mendations about the type, location, and amount of capacity

to acquire in order to accommodate growth, and to optimize

the customer’s capacity footprint.

Cloud providers could provide a new kind of capacity

contract, whereby customers are guaranteed low-cost capac-

ity, but are not guaranteed specific regional placement. The

cloud provider offers an online capacity-planning tool through

Figure 8: Automated actions in total and by services. Ac-

tions are nodes in the Flux’s capacity placement plan, and

include capacity and traffic management operation, such as

adjusting regional quotas or resizing services.

which their customers continually update their aggregated

placement constraints. The cloud provider then regularly re-

regionalizes the capacity for customers that use this form of

capacity, calling into customer’s control planes to execute

service and traffic rebalancing. This is similar to existing

preemption APIs for spot instances [8].

6 Evaluation

Our evaluation answers the following questions:

1. How long does it take for Flux to execute its plan (6.1)?

2. Do Flux’s service models help accurately assign global

workloads to hardware in individual regions (6.2, 6.3)?

3. To what extent does Flux help meet the growing needs of

out-of-region hardware refresh (6.4)?

4. How does Flux plan capacity and service placement for a

specific service in practice (6.5)?

6.1 Execution Automation

Our goal for Flux is to maximize automation across both

planning and execution, while incorporating humans-in-the-

loop to review proposed actions and catch defects. We have

granted Flux increasing autonomy as we gain confidence in

the completeness and accuracy of Flux’s models, its solvers,

and automated execution systems. Currently, not all services

support automation when adjusting their deployments across

regions; Flux compensates by incorporating human-in-the-

loop manual actions.

Figure 8 plots the degree of automation in Flux’s execu-

tion plans, showing a handful of service groups as well as

the overall automation. The drastic improvement in “total”

around July 2021 was due to the introduction of a fully auto-

mated capacity distribution mechanism that integrates with

our autoscaling system [14]. Over the past 2.5 years, we have

increased automation in Flux from 27% to nearly 100%.

Figure 9 shows Flux’s plan completion times. When Flux

was first introduced, execution was dominated by operations

requiring human feedback or execution. As we have simul-

taneously improved automation coverage and model quality,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 597

Figure 9: Plan completion times. The “total” curve repre-

sents the end-to-end plan execution time. The boxplots repre-

sent the distribution of individual service resize operation’s

completion time. From bottom to top, the markers on a box

represent, excluding outliers, the minimum, lower quartile,

median, upper quartile, and maximum. Outliers are shown

separately as small circles. The spike in the “total” curve

represents a large shift in the complexity of Flux’s placement

plans, which caused service automation coverage to lag Flux’s

capacity coverage. We spent the ensuing months improving

the coverage of our capacity automation tooling.

fewer operations require human-in-the-loop intervention and

scrutiny, and most operations are now fully automated. Re-

cently, executions take roughly 1 week. Even with model

and automation improvements, some limits still remain. For

example, cross-region data replication or cache warmup may

still require long execution times for stateful services even if

they support full automation.

6.2 Capacity Sizing Error

We define Flux’s capacity sizing error as the service capacity

eventually used in production, minus Flux’s recommended

capacity assignments, which include improvements from us-

ing load-test-induced models when available (§4.2). The

errors exist for several reasons. First, since capacity-planning

mistakes can be costly, service owners often review and some-

times revise Flux’s recommendation based on their domain

knowledge of their services. Second, after Flux executes its

capacity plan, our autoscaling system [14] may resize services

in production, if it finds that additional capacity is needed to

support Flux’s traffic shift, or that a service is left with a

capacity surfeit.

Figure 10 shows the proportion of upsize and downsize

capacity executed in each plan. A value of 100% means that

execution was (in aggregate) exactly to plan. Over the course

of the last year, we have improved planning accuracy signifi-

cantly, primarily by working with service owners to improve

their attribution and capacity models. We use execution his-

tory to incorporate expected error rates into Flux’s planning

assumptions, and thus are able to tolerate this error by en-

suring that we both (1) have sufficient capacity to support

anticipated (aggregate) upsizes; and (2) are able to reclaim

sufficient capacity where this is needed for refresh.

Figure 10: Capacity-sizing error, the percentage of Flux’s

recommended assignments executed in production. Each data

point represents the proportion of the total capacity in a Flux

placement plan that was actually executed. The error is split

by upsizes and downsizes.

Unless service owners explicitly opt out, we require them

to review Flux’s placement plans through a UI tool. An Oct

2022 execution plan had 377 resize nodes. The total number

of nodes available for Flux to execute on is about 3000. Of

these, 81 nodes were for services that opted out of review; of

the remaining 296 nodes, 84, or 22% of the total nodes, were

revised by service owners. These revisions modify the resize

node directly; Flux continues execution with the updated

node. Our tool captures the reason given by service owners

for each override, and we present the most frequent reasons

below, with the number of each kind of override shown in

parentheses.

Insignificant capacity (15). The service owner rejected the

plan as the service does not have fully automated ca-

pacity management and the plan moved an insignificant

amount of capacity. Therefore, the overhead to the ser-

vice owner is too high to justify the benefits of execution.

Service should not be rebalanced (13). The service owner

rejected the plan because the service should not be re-

balanced by Flux. The remedy is to add the service to

Flux’s execution blocklist.

Insufficient headroom (10). The plan would leave a service

without enough headroom capacity, usually to accom-

modate anticipated growth. The remedy for this is to

capture this requirement as a capacity event, so that it

can be incorporated into Flux’s capacity plans.

Deprecated service (8) The service is deprecated, and

should no longer be managed by Flux.

Bad estimates(4) The service owner judges the estimates to

be incorrect, usually due to one of two reasons. First,

598 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Flux has incorrectly attributed product demand to the

service. In these cases, we repair the demand baselines,

for example, by choosing another demand metric. Sec-

ond, the linear model is inaccurate for the service. In

these cases, we work with the service owner to adopt the

load-test-induced model (see §4.2).

These overrides highlight the complexity of operating in a

large-scale production environment. These results show that,

with supervision, it is feasible for Flux to operate in a com-

plex environment. Over time, as bugs are fixed and new

features (e.g., headroom modeling) are added to Flux to cover

a broader set of scenarios, we expect Flux to perform with

higher accuracy and gain greater autonomy.

6.3 Model Residuals

The model residual δ (expression 1 in §3.2.2) measures the

portion of baseline service capacity distribution not explained

by Flux’s service model. While the previously presented er-

ror metric reflects plan defects that could cause inefficient

placement or operational risks, δ merely reflects the imbal-

ance between traffic and capacity distribution. Large residuals

often reflect pre-existing capacity imbalance or inherent limi-

tations in services which prevent the system from achieving

an ideal balance.

Figure 11 shows the residual for several representative ser-

vices. Web product’s residual varies between 3% and 5%.

Such stateless services are usually well-modeled by Flux.

The residual for feed infra was initially higher at ≈8%,

because its capacity distribution was uneven before Flux was

applied. Over multiple placement cycles, we have used Flux

to reduce this capacity imbalance, which is reflected in recent

residuals that match those of web product. Due to limited

capacity supply during COVID, Flux’s optimization objective

has been dominated by supply constraints, and once Flux is

able to meet decommission and growth objectives, we limit

the infrastructure changes that Flux is allowed to introduce.

As capacity supply improves in the future, we plan to use Flux

Figure 11: Aggregate model residual. We show
∑r∈R|δs,r |

∑r∈R cs,r
, for

several representative services.

to more aggressively rebalance service capacity and reduce

the residual. The short-term variance of the residual curves

in Figure 11 correspond to load tests [6] and drain tests [52],

as well as Flux traffic shifts. These events temporarily distort

the relationship between traffic and capacity distribution, and

are filtered out of Flux’s baseline.

Figure 12 shows the distribution of feed infra’s model

residual across regions. This kind of plot guides us to work

with service owners to improve their service balance by ap-

plying more aggressive balance objectives in Flux. The figure

also demonstrates that, while the aggregate residual is higher

at ≈5%, the per-region residual is generally less than 1%.

In Figure 11, database infra’s model residual is the

highest due to some unique challenges associated with state-

ful services. For example, if a subset of hot data shards are

the bottleneck, naively adding more capacity may not im-

prove the service’s throughput proportionally. Many stateful

services also have substantial capacity requirements for in-

ternal data replication [5], which fall outside of the usual

request-response RPC regime, making it difficult to apply

RPC tracing. We have been continuously improving Flux’s

support for stateful services. In Figure 11, the initial reduction

of residual from 22% to 15% was primarily due to improved

attribution accuracy and coverage for database. The later

regression coincides with deployment of new database sys-

tems into just a subset of regions, and for which we need to

define new product attribution rules to capture correctly.

Overall, we deploy many stateful services, including

databases, storage, and caches. Of the capacity currently

managed by Flux, 14% is for stateful services. Our long-

term strategy is to migrate stateful services to a common

stateful framework called Shard Manager [32], which solves

many common problems (e.g., hot shards) that impact stateful-

service modeling. Moreover, Shard Manager is integrated

with Flux so that the services it manages are automatically

covered by Flux. Finally, Shard Manager intelligently places

data shards onto the capacity allocated by Flux to minimize

data-access latency [1, 4].

6.4 Accelerating Out-of-Region Refresh

Figure 4 shows that as regions mature, they may have min-

imal power headroom to accommodate new hardware. Ac-

cordingly, the “quarterly OORR demand” data points in Fig-

ure 13 shows the rapidly increasing need for performing out-

Figure 12: Model residual for feed infra by region.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 599

of-region hardware refresh (OORR). Prior to 2020, a negligi-

ble amount of OORR was performed, and even then OORR

was already a significant planning challenge. This was due to

the lack of planning tools to compute global workload shuf-

fling and traffic shifting for interdependent services, as well

as lack of automation to execute such plans even when it was

manually built. The benefits of Flux go far beyond OORR,

but the imminent increase in OORR demand and the unsus-

tainable toil in performing OORR motivated us to develop

Flux. Flux has helped scale OORR planning and execution by

≈950% year-over-year. Currently, we perform global work-

load shifts once every 6 weeks; each shift typically reshuffling

capacity for 100k-300k servers globally. The shifted capac-

ity exceeds OORR demand because (1) the decommissioned

capacity may not reflect the overall workload hardware com-

position, meaning that Flux must perform larger reshuffles to

utilize the underlying hardware; and (2) Flux also allocates

growth capacity and optimizes other infrastructure goals such

as reducing disaster-readiness buffers.

6.5 Case Study: FeatureStore

As a detailed case study, we present the impact of Flux on

FeatureStore, a flash-based key-value store serving features

of machine learning models, deployed across thousands of

servers, with a 99th percentile read latency of under 15ms,

and a read request rate of 10s of millions per second. In

September 2020, Flux was used for the first time to generate

a service-placement plan for FeatureStore. Prior to that, its

service placement was performed by humans.

A key event that took place during the September 2020

planning cycle was large-scale decommissioning of servers in

three regions A, B, and C, resulting in a reduction of supply

in those regions. Accordingly, we expect Flux to perform

out-of-region hardware refresh and shift traffic away from

those regions to others in order to accommodate this regional

supply reduction, which is confirmed by Figure 14.

Figure 13: Volume of out-of-region refresh (OORR). This

figure shows OORR planning and execution volumes handled

by manual processes as well as Flux. The uptick in manual

OORR in 2022 was due to a one-time large-scale decommis-

sion of data-warehouse hardware. Over all, Flux has helped

scale our yearly OORR volume by ≈950%.

To understand Flux’s capacity assignment, we focus on

two sets of services: (1) the frontend Web service that serves

as the traffic gateway for FeatureStore, and (2) all back-

end services that support or consume FeatureStore. Fig-

ure 15 shows the ratio of capacity for these two sets, which

varies due to different workload mixes across regions. Specif-

ically, regions A and B show a lower capacity ratio, be-

cause they are data-warehouse heavy and have a larger

FeatureStore footprint to support additional training work-

loads that are co-located with data warehouse but do not

go through Web to access FeatureStore. Before Flux was

applied to FeatureStore, capacity planners needed to ex-

plicitly take this into consideration, whereas Flux’s MIP for-

mulation is able to automatically account for this and other

factors affecting placement.

Recall from §3.3 that one optimization objective is to min-

imize deviation from the ratios in the globalized service

model. This deviation is partially reflected in Figure 15 as

the Web-to-FeatureStore capacity ratio’s variances across

regions. Before Flux was applied to FeatureStore, the vari-

ances across regions C, D, and E were partially due to sub-

optimal planning done by humans. Flux is able to reduce the

variances by lowering the ratio for region D and increasing

the ratio for region E, thus leading to better balance across

regions C, D, and E. The improvement was small as this was

the first time that Flux was applied to FeatureStore and was

configured to be more conservative in introducing changes.

Deviation from ideal service capacity ratios is also reflected

in the service’s unbalanced CPU utilization across regions.

Note that, if FeatureStore’s capacity increase in a region

is bigger than FeatureStore’s traffic increase in the region,

we expect FeatureStore to have a lower CPU utilization

Figure 14: FeatureStore traffic changes computed by

Flux. An example of how to read the figure: region A’s traffic

change is
new traffic for FeatureStore in region A
old traffic for FeatureStore in region A -1=-37%. Only

5 out of 10s of regions are shown for readability.

Figure 15: Ratio of capacity for Web and FeatureStore.

Only 5 out of 10s of regions are shown for readability.

600 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

in the region after the change. This type of change can be

applied to lower the CPU utilization of more heavily loaded

regions, which is precisely what Flux did. For each region r,

we calculate the average CPU utilization ur of FeatureStore

during its daily peak time window. Then we calculate the

median of ur across 10s of regions, and call it û. Before

and after Flux was applied to FeatureStore, û was 55%

and 50%, respectively. This indicates that Flux is effective

in matching traffic distribution with capacity distribution to

balance load across regions.

Figure 16 shows ur for some sample regions. Overall, Flux

reduces the CPU utilization of more heavily loaded regions

such as regions A and D. In this instance, Flux was unable to

increase CPU utilization in C due to the other constraints and

objectives. This example shows that there are many factors to

be considered during optimization, which is better suited to a

MIP solver than humans.

7 Related Work

Capacity management. Capacity management impacts ser-

vice performance and reliability as well as an organization’s

capital and operating expenses. Two USENIX ;login: arti-

cles [27, 48] provide an overview of this topic. Misbah et al.

provide a survey of resource management in federated

cloud [33]. Several publications report capacity-management

practices for internet services such as LinkedIn [53, 56],

Uber [15], Google [34], and Netflix [36]. They focus on

forecasting demand and capacity headroom, and are comple-

mentary to our work focusing on global service placement.

Service tracing and modeling. Several systems [13,17,30,40,

46] insert unique request IDs into RPC calls to discover end-

to-end service dependency. Our work adopts this approach.

Some systems use statistical analysis [2] or heuristics [3, 38,

43] to infer service dependencies. Although these techniques

are easier to deploy, they have not been proven to be robust

enough to be used for internet-scale complex services. Both

analytical models [51] and profiling techniques [41] have

been applied to build performance models for three-tiered

applications, but our environment is much more complex (see

Figure 1). Endo et al. [20] call out the challenges of operating

Figure 16: CPU utilization of FeatureStore per region

before and after Flux is applied. Only 5 out of 10s of regions

are shown for readability.

a distributed cloud, including resource modeling, but do not

propose solutions.

Service placement. Yang et al. [54] propose joint service

placement and traffic routing in mobile cloud, without con-

sidering service interdependencies. Malet and Pietzuch [35]

propose placing services across datacenters to minimize net-

work latency without considering the constraints of capacity

supply and demand.

Constrained optimization. Constrained optimization has

been used for resource allocation in different scenarios, includ-

ing hardware-to-reservation assignment within a region [37],

data-shard-to-container placement [32], and job scheduling

within a cluster [19,23–26,42,44,49,50]. None of them tackle

the problem of global service placement.

Infrastructure orchestration. Cloud infrastructure orches-

trators like Terraform [28] and CloudFormation [7] coordi-

nate changes across multiple infrastructure systems in public

clouds. These could be used to implement the orchestration

component of Flux in a public cloud setting.

8 Conclusion

We identified the regionalization problem associated with

managing customer services on large, global cloud footprints.

We presented Flux, which solves regionalization by (1) us-

ing RPC tracing to build service regionalization models;

(2) jointly solving service and traffic placement, growth ca-

pacity distribution, and infrastructure objectives; and (3) in-

troducing a capacity orchestration system that safely and

automatically rebalances services and traffic according to the

computed plan. We shared our experience of using Flux at

Meta’s large private cloud and discussed ways in which the

ideas in Flux can be applied to public clouds.

9 Acknowledgements

This paper presents many years worth of work by multiple

teams at Meta. They include: the Regional Fluidity, Capac-

ity Engineering, Capacity Automation, Shard Manager, and

Algorithmic Optimization teams. We would like to thank

the current members of the Flux team who are not already

on the author list: Kiryong Ha, Alex Cauthen, Chris Zheng,

Hossein Tajik, Lin Xiao, Xiaomeng Shen, Austin Hendy,

Daniel Boeve, Jikai Zhang, Tejash Shah, Kevin Lin, Partha

Roy Chowdhury, Caroline Tony, Junjie Qian, Anand Saggi,

Sebastiano Peluso, David Xu, Yichen Zhou, and Peter John

Daoud.

We would also like to thank the following for their insight-

ful comments, honest feedback, and partnership during the

development of Flux: Maria Kacik, James Kneeland, Nasser

Manesh, Haying Wang, Ariel Rao, Ash Shroff, and Alp Elci.

Finally, we thank Yunqi Zhang, Dimitrios Skarlatos, all

reviewers, and our shepherd Z. Morley Mao for their help

and insightful feedback.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 601

References

[1] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan

Saroiu, Alec Wolman, and Harbinder Bhogan. Volley:

Automated data placement for geo-distributed cloud ser-

vices. In 7th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 10), San Jose, CA,

April 2010. USENIX Association.

[2] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener,

Patrick Reynolds, and Athicha Muthitacharoen. Perfor-

mance debugging for distributed systems of black boxes.

ACM SIGOPS Operating Systems Review, 37(5):74–89,

2003.

[3] Animashree Anandkumar, Chatschik Bisdikian, and

Dakshi Agrawal. Tracking in a spaghetti bowl: monitor-

ing transactions using footprints. In Proceedings of the

2008 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, pages

133–144, 2008.

[4] Masoud Saeida Ardekani and Douglas B Terry. A self-

configurable geo-replicated cloud storage system. In

11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 367–381, 2014.

[5] Anonymized Authors. Meta’s Geo-Replicated Pub-

Sub Service. 2015. Research paper published at a

conference.

[6] Anonymized Authors. Live traffic load testing in pro-

duction at Meta. 2016. Research paper published at a

conference.

[7] AWS. Provision Infrastructure As Code, 2021. https:

//aws.amazon.com/cloudformation/.

[8] AWS EC2. Use Capacity Rebalancing to handle

Amazon EC2 Spot interruptions. https://docs

.aws.amazon.com/autoscaling/ec2/userguide/

ec2-auto-scaling-capacity-rebalancing.html,

2022.

[9] AWS reserved instance, 2021. https:

//docs.aws.amazon.com/whitepapers/latest

/cost-optimization-reservation-models/amaz

on-ec2-reserved-instances.html.

[10] AWS user. Instance does not start—AWS out of

capacity, 2016. https://answers.sap.com/ques

tions/12184202/instance-does-not-start---a

ws-out-of-capacity.html.

[11] AWS user. Capacity shortage hits AWS UK micro

instances, 2017. https://www.theregister.com/

2017/03/24/aws_uk_t2_micro_instances_run_ou

t/https://www.theregister.com/2017/03/24/aw

s_uk_t2_micro_instances_run_out/.

[12] AWS user. Hit with “insufficient capacity” for 3 days,

2018. https://www.reddit.com/r/aws/comment

s/97rnvj/hit_with_insufficient_capacity_for

_3_days_do_i/.

[13] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using magpie for request extraction

and workload modelling. In OSDI, volume 4, pages

18–18, 2004.

[14] Daniel Boeve, Kiryong Ha, and Anca Agape. Through-

put autoscaling: Dynamic sizing for Facebook.com,

2020. Blog post.

[15] Rick Boone. “Capacity Prediction” instead of “Ca-

pacity Planning” How Uber Uses ML to Accurately

Forecast Resource Utilization, 2020. SREcon20 Amer-

icas, https://www.usenix.org/conference/srec

on18americas/presentation/boone.

[16] Nathan Bronson, Zach Amsden, George Cabrera, Prasad

Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony

Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,

Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

Venkataramani. TAO: Facebook’s Distributed Data

Store for the Social Graph. In Proceedings of the 2013

USENIX Annual Technical Conference, pages 49–60,

2013.

[17] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando

Fox, and Eric Brewer. Pinpoint: Problem determination

in large, dynamic internet services. In Proceedings

International Conference on Dependable Systems and

Networks, pages 595–604. IEEE, 2002.

[18] David Chou, Tianyin Xu, Kaushik Veeraraghavan, An-

drew Newell, Sonia Margulis, Lin Xiao, Pol Mauri Ruiz,

Justin Meza, Kiryong Ha, Shruti Padmanabha, Kevin

Cole, and Dmitri Perelman. Taiji: managing global user

traffic for large-scale internet services at the edge. In

Proceedings of the 27th ACM Symposium on Operating

Systems Principles, pages 430–446, 2019.

[19] Carlo Curino, Djellel E. Difallah, Chris Douglas,

Subru Krishnan, Raghu Ramakrishnan, and Sriram

Rao. Reservation-based scheduling: If you’re late don’t

blame us! In Proceedings of the ACM Symposium on

Cloud Computing, SOCC ’14, 2014.

[20] Patricia Takako Endo, Andre Vitor de Almeida Palhares,

Nadilma Nunes Pereira, Glauco Estacio Goncalves,

Djamel Sadok, Judith Kelner, Bob Melander, and Jan-

Erik Mangs. Resource allocation for distributed cloud:

concepts and research challenges. IEEE network,

25(4):42–46, 2011.

602 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-capacity-rebalancing.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-reservation-models/amazon-ec2-reserved-instances.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-reservation-models/amazon-ec2-reserved-instances.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-reservation-models/amazon-ec2-reserved-instances.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-reservation-models/amazon-ec2-reserved-instances.html
https://answers.sap.com/questions/12184202/instance-does-not-start---aws-out-of-capacity.html
https://answers.sap.com/questions/12184202/instance-does-not-start---aws-out-of-capacity.html
https://answers.sap.com/questions/12184202/instance-does-not-start---aws-out-of-capacity.html
https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/
https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/
https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/
https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/https://www.theregister.com/2017/03/24/aws_uk_t2_micro_instances_run_out/
https://www.reddit.com/r/aws/comments/97rnvj/hit_with_insufficient_capacity_for_3_days_do_i/
https://www.reddit.com/r/aws/comments/97rnvj/hit_with_insufficient_capacity_for_3_days_do_i/
https://www.reddit.com/r/aws/comments/97rnvj/hit_with_insufficient_capacity_for_3_days_do_i/
https://www.usenix.org/conference/srecon18americas/presentation/boone
https://www.usenix.org/conference/srecon18americas/presentation/boone

[21] Mary Jo Foley. Microsoft Azure customers reporting

hitting virtual machine limits in U.S. East regions, 2019.

https://www.zdnet.com/article/microsoft-a

zure-customers-reporting-hitting-virtual-m

achine-limits-in-u-s-east-regions/.

[22] Mary Jo Foley. European users reporting they’re hitting

Azure capacity constraints, 2020. https://www.zd

net.com/article/european-users-reporting-t

heyre-hitting-azure-capacity-constraints/.

[23] Panagiotis Garefalakis, Konstantinos Karanasos, Pe-

ter Pietzuch, Arun Suresh, and Sriram Rao. Medea:

Scheduling of long running applications in shared pro-

duction clusters. In Proceedings of the Thirteenth Eu-

roSys Conference, 2018.

[24] Robert Grandl, Ganesh Ananthanarayanan, Srikanth

Kandula, Sriram Rao, and Aditya Akella. Multi-

resource packing for cluster schedulers. In Proceed-

ings of the 2014 ACM Conference on SIGCOMM, SIG-

COMM ’14, 2014.

[25] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,

and Ganesh Ananthanarayanan. Altruistic scheduling in

multi-resource clusters. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16). USENIX Association, 2016.

[26] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya

Akella, and Janardhan Kulkarni. GRAPHENE: Pack-

ing and dependency-aware scheduling for data-parallel

clusters. In 12th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI 16). USENIX

Association, November 2016.

[27] David Hixson Kavita Guliani. Capacity Planning.

USENIX ;login:, 40(1):49, 2015.

[28] HashiCorp. Terraform by HashiCorp, 2021. https:

//www.terraform.io/.

[29] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan.

Lifting the veil on Meta’s microservice architecture:

Analyses of topology and request workflows. In Pro-

ceedings of the 2023 USENIX Annual Technical Confer-

ence. USENIX, 2023.

[30] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edi-

son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win

Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.

Canopy: An end-to-end performance tracing and analy-

sis system. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 34–50, 2017.

[31] Kripa Krishnan. Weathering the unexpected: Failures

happen, and resilience drills help organizations prepare

for them. Queue, 10(9):30–37, sep 2012.

[32] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,

Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun

Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-

araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,

and Chunqiang Tang. Shard Manager: A Generic Shard

Management Framework for Geo-distributed Applica-

tions. In Proceedings of the 28th ACM Symposium on

Operating Systems Principles, 2021.

[33] Misbah Liaqat, Victor Chang, Abdullah Gani,

Siti Hafizah Ab Hamid, Muhammad Toseef, Umar

Shoaib, and Rana Liaqat Ali. Federated cloud resource

management: Review and discussion. Journal of

Network and Computer Applications, 77:87–105, 2017.

[34] Ramón Medrano Llamas. Capacity Plan-

ning at Scale, 2016. SREcon16 Europe,

https://www.usenix.org/conference/srecon

16europe/program/medrano-llamas.

[35] Barnaby Malet and Peter Pietzuch. Resource allocation

across multiple cloud data centres. In Proceedings of the

8th International Workshop on Middleware for Grids,

Clouds and e-Science, pages 1–6, 2010.

[36] Rajan Mittal and Andrew Park. Why Regional Reserved

Instances Are a Game Changer for Netflix. In AWS

re:Invent, 2017. https://www.youtube.com/watc

h?v=i1EW6zmFbSM.

[37] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-

van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui

Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, Bren-

don Daugherty, Apurva Samudra, Prashasti Baid, James

Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-

drigues, Scott Michelson, Ben Christensen, Kaushik

Veeraraghavan, and Chunqiang Tang. RAS: Contin-

uously Optimized Region-Wide Datacenter Resource

Allocation. In Proceedings of the 28th ACM Symposium

on Operating Systems Principles, 2021.

[38] Patrick Reynolds, Janet L Wiener, Jeffrey C Mogul,

Marcos K Aguilera, and Amin Vahdat. Wap5: black-

box performance debugging for wide-area systems. In

Proceedings of the 15th international conference on

World Wide Web, pages 347–356, 2006.

[39] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max

Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios

Skarlatos, Hitesh Khandelwal, and Chunqiang Tang.

ServiceRouter: a Scalable and Minimal Cost Service

Mesh. In Proceedings of the 17th USENIX Sympo-

sium on Operating Systems Design and Implementation,

2023.

[40] Benjamin H Sigelman, Luiz Andre Barroso, Mike Bur-

rows, Pat Stephenson, Manoj Plakal, Donald Beaver,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 603

https://www.zdnet.com/article/microsoft-azure-customers-reporting-hitting-virtual-machine-limits-in-u-s-east-regions/
https://www.zdnet.com/article/microsoft-azure-customers-reporting-hitting-virtual-machine-limits-in-u-s-east-regions/
https://www.zdnet.com/article/microsoft-azure-customers-reporting-hitting-virtual-machine-limits-in-u-s-east-regions/
https://www.zdnet.com/article/european-users-reporting-theyre-hitting-azure-capacity-constraints/
https://www.zdnet.com/article/european-users-reporting-theyre-hitting-azure-capacity-constraints/
https://www.zdnet.com/article/european-users-reporting-theyre-hitting-azure-capacity-constraints/
https://www.terraform.io/
https://www.terraform.io/
https://www.usenix.org/conference/srecon16europe/program/medrano-llamas
https://www.usenix.org/conference/srecon16europe/program/medrano-llamas
https://www.usenix.org/conference/srecon16europe/program/medrano-llamas
https://www.youtube.com/watch?v=i1EW6zmFbSM
https://www.youtube.com/watch?v=i1EW6zmFbSM

Saul Jaspan, and Chandan Shanbhag. Dapper, a large-

scale distributed systems tracing infrastructure. Techni-

cal report, Google, Inc., 2010.

[41] Christopher Stewart and Kai Shen. Performance mod-

eling and system management for multi-component

online services. In Proceedings of the 2nd Confer-

ence on Symposium on Networked Systems Design &

Implementation-Volume 2, pages 71–84, 2005.

[42] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu

Jyothi, Nina Narodytska, Leonid Ryzhyk, Sahan Gam-

age, Brian Oki, Pranshu Jain, and Michael Gasch. Build-

ing scalable and flexible cluster managers using declar-

ative programming. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

20). USENIX Association, 2020.

[43] Byung-Chul Tak, Chunqiang Tang, Chun Zhang, Sri-

ram Govindan, Bhuvan Urgaonkar, and Rong N Chang.

vPath: Precise Discovery of Request Processing Paths

from Black-Box Observations of Thread and Network

Activities. In USENIX Annual technical conference,

2009.

[44] Chunqiang Tang, Malgorzata Steinder, Michael Spre-

itzer, and Giovanni Pacifici. A Scalable Application

Placement Controller for Enterprise Data Centers. In

Proceedings of the 16th international conference on

World Wide Web, pages 331–340, 2007.

[45] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,

Jonathan Kaldor, Scott Michelson, Thawan Kooburat,

Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long

Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-

nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas

Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-

navi Venkatesan, and Peter Zhang. Twine: A unified

cluster management system for shared infrastructure. In

14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 787–803. USENIX

Association, 2020.

[46] Eno Thereska, Brandon Salmon, John Strunk, Matthew

Wachs, Michael Abd-El-Malek, Julio Lopez, and Gre-

gory R Ganger. Stardust: Tracking activity in a dis-

tributed storage system. ACM SIGMETRICS Perfor-

mance Evaluation Review, 34(1):3–14, 2006.

[47] Tim Anderson. ‘Azure appears to be full’: UK pun-

ters complain of capacity issues on Microsoft’s cloud,

2020. https://www.theregister.com/2020/03/

24/azure_seems_to_be_full/.

[48] Luis Quesada Torres and Doug Colish. SRE Best

Practices for Capacity Management. USENIX ;login:,

45(4):49, 2020.

[49] Alexey Tumanov, James Cipar, Gregory R. Ganger, and

Michael A. Kozuch. Alsched: Algebraic scheduling of

mixed workloads in heterogeneous clouds. In Proceed-

ings of the Third ACM Symposium on Cloud Computing,

SoCC ’12, 2012.

[50] Alexey Tumanov, Timothy Zhu, Jun Woo Park,

Michael A. Kozuch, Mor Harchol-Balter, and Gre-

gory R. Ganger. Tetrisched: Global rescheduling with

adaptive plan-ahead in dynamic heterogeneous clusters.

In Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys ’16, 2016.

[51] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy,

Mike Spreitzer, and Asser Tantawi. An analytical

model for multi-tier internet services and its applica-

tions. ACM SIGMETRICS Performance Evaluation

Review, 33(1):291–302, 2005.

[52] Kaushik Veeraraghavan, Justin Meza, Scott Michel-

son, Sankaralingam Panneerselvam, Alex Gyori, David

Chou, Sonia Margulis, Daniel Obenshain, Shruti Pad-

manabha, Ashish Shah, et al. Maelstrom: Mitigating

Datacenter-level Disasters by Draining Interdependent

Traffic Safely and Efficiently. In Proceedings of the

13th USENIX Symposium on Operating Systems Design

and Implementation, 2018.

[53] Ruoying Wang, Lei Zhang, Yang Yang, Yi Zhen,

Bo Long, Tie Wang, Vinoth Govindaraj, Todd Palino,

Samir Tata, and Viji Nair. CapPredictor: A Capacity

Headroom Prediction Framework in Cloud. In Work-

shop on Cloud Intelligence, associated with Artificial

Intenlligence (AAAI 2020), 2020.

[54] Lei Yang, Jiannong Cao, Guanqing Liang, and Xu Han.

Cost aware service placement and load dispatching in

mobile cloud systems. IEEE Transactions on Comput-

ers, 65(5):1440–1452, 2015.

[55] Wei Zheng, Ricardo Bianchini, G John Janakiraman,

Jose Renato Santos, and Yoshio Turner. Justrunit:

Experiment-based management of virtualized data cen-

ters. In Proc. USENIX Annual technical conference,

pages 18–18, 2009.

[56] Zhenyun Zhuang, Haricharan Ramachandra, Cuong

Tran, Subbu Subramaniam, Chavdar Botev, Chaoyue

Xiong, and Badri Sridharan. Capacity Planning and

Headroom Analysis for Taming Database Replication

Latency: Experiences with LinkedIn Internet Traffic. In

Proceedings of the 6th ACM/SPEC International Confer-

ence on Performance Engineering, pages 39–50, 2015.

604 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.theregister.com/2020/03/24/azure_seems_to_be_full/
https://www.theregister.com/2020/03/24/azure_seems_to_be_full/

S Set of all services.

R Set of all regions.

H Set of all hardware types.

P Set of all products.

T Set of all timesteps.

t0 Baseline timestep, i.e., infrastructure’s current state.

t1 Target timestep, i.e., the timestep for which we are executing.

Inputs

mr,h,t Capacity pool: amount of type h hardware available in region

r at time t. It is generated by capacity forecast and includes

the current capacity and net incoming and outgoing supply.

φs,h,p,t Globalized service baseline: output of the service-modeling

process described in §3.2, indicating the fraction of service s’

consumption of type h hardware being attributed to product

p. We also scale the globalized service baseline by service

growth, derived from our capacity budget management system,

leading to varying values at different timesteps t.

γs,h,t The total growth capacity, indicating the global amount of type

h hardware allocated for service s at time t to support service

growth. It is derived from Meta’s budget management system,

and is used to to support product growth and launches.

τp,t The total traffic growth indicating the global increase in traffic

to product p at time t, represented as the percentage above

above 100% global baseline traffic.

en The penalty coefficient for objective n. Penalty coefficients

dictate how tradeoffs are compared.

Assignment variables

Variable
Baseline

Distr
ibution

Description

xp,r,t ξp,r Xt Traffic assignment, indicating the fraction of traffic

from Regionalization Entity e assigned to region r at

time t.

Xt := {xp,r,t : p ∈ P,r ∈ R}

Invariant: ∀p ∈ P ∑r∈R ξp,r = 1

cs,r,h,t κs,r,h Ct Capacity assignment, indicating the amount of type h

hardware allocated to service s in region r at time t.

Ct := {cs,r,h,t : s ∈ S,r ∈ R,h ∈ H}

gs,r,h,t - Gt Growth assignment, indicating the amount of addi-

tional type h hardware allocated to service s in region

r at time t for the purpose of growth.

Gt := {gs,r,h,t : s ∈ S,r ∈ R,h ∈ H}

dr,h,t - Dt Deficit assignment, indicating the amount of addi-

tional type h hardware needed in region r at time t.

Dt := {dr,h,t : r ∈ R,h ∈ H}

sr,h,t - St Spares, indicating the amount of unallocated hardware

of type h in region r at timestep t.

St := {sr,h,t : r ∈ R,h ∈ H}

or,h,t - Ot Double occupancy capacity. See explanation for Ex-

pression 14.

Ot := {or,h,t : r ∈ R,h ∈ H}

rs,r,h,t ρs,r,h - Model residual, the difference between the observed

baseline capacity distribution and the capacity distri-

bution implied by the globalized service baseline, φ,

distributed according to the baseline traffic distribu-

tion ξ.

ρs,r,h := κs,r,h −∑p∈P ξp,r ×φs,h,p,t0

Table 1: Notation used in the MIP formulation. Baseline

means the current state of the infrastructure.

A MIP Formulation in Flux

This appendix presents the MIP formulation used by Flux.

The core of the formulation is an assignment problem, rep-

resented by the assignment variables enumerated in Table 1.

Each variable shares a region (r) and timestep (t) dimension;

while capacity related assignments also include dimensions

for the service being assigned (s) and hardware type of the

assignment (t).
Next, we present the MIP problem formulation and explain

each expression. The MIP problem is to minimize:

e1 × ∑
p∈P,r∈R,t∈T

|xp,r,t − xe,r,t0 | (2)

+ e2 × ∑
t∈T,p∈P

max
r∈R

xp,r,t (3)

+ e3 × ∑
r∈R,h∈H,t∈T

dr,h,t (4)

+ e4 × ∑
r∈R,h∈H,t∈T

or,h,t (5)

+ e5 × ∑
p∈P,r∈R,h∈H,t∈T

|rp,r,h,t | (6)

+ e6 × ∑
r∈R

∣

∣

∣

∣

sr,h,t −
sr,h,t

∑r∈R sr,h,t

∣

∣

∣

∣

∀h ∈ H, t ∈ T (7)

Subject to:

cs,r,h,t0 = κs,r,h rs,r,h,t0 = ρs,r,h,t0

xp,r,t0 = ξe,r or,h,t0 = 0 (8)

cs,r,h,t ≥ ∑
p∈P

(xp,r,t ×φs,h,p,t)+ rs,r,h,t (9)

rs,r,h,t ≥ min{ρs,r,h,0} (10)

mr,h,t +dr,h,t = sr,h,t +∑
s∈S

cs,r,h,t +∑
s∈S

gs,r,h,t (11)

∀p ∈ P, t ∈ T ∑
r∈R

xp,r,t = 1+ τp,t (12)

gs,r,h,t =
γs,h,t ∗ cs,r,h,t

∑
r∈R

cs,r,h,t

(13)

or,h,t = ∑
s∈S

cs,r,h,t−1 − cs,r,h,t [cs,r,h,t < cs,r,h,t−1] (14)

sr,h,t +∑
s∈S

gs,r,h,t ≥ or,h,t (15)

Below, we explain the intuition behind the MIP expressions.

Stability objective. Expression 2 penalizes traffic shifts to

reduce churn in the infrastructure.

Disaster-readiness objective. Services have a disaster-

readiness buffer to cope with any single-region failure. Ex-

pression 3 minimizes this buffer, by minimizing the size of

the largest region.

Objective to minimize deficits. Expression 4 minimizes the

additional hardware needed. Technically, a feasible solution

requires that ∀r ∈ R,h ∈ H, t ∈ T dr,h,t = 0, and we use a

high penalty p4 to ensure that deficits are non-zero only if a

solution requires it.

Objective to minimize deviation from service model. Pre-

existing placement imbalance, attribution inaccuracies, or

traffic routing imbalances can cause baseline capacity as-

signments to deviate from the service model. Expression 6
minimizes deviation from the global service model defined

by the globalized service baseline. rp,r,h,t is the residual of

the service model, which is further discussed in §6.3.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 605

Objective to balance spare pool distribution Expression 7

encourages balancing unused capacity across regions to re-

duce hardware stranding. Sufficient unused capacity place-

ment can also act as a buffer for capacity estimation discrep-

ancies.

Baseline. Expression 8 establishes timestep t0 as the

baseline, i.e., the current state of the infrastructure.

Product attribution ratio constraint. Expression 9 ensures

that each service is allocated according to the ratio imputed

from the service model (see §3.2). The model residual rs,r,h,t

is used to offset the placement.

Residual-regression constraint. Expression 10 prevents

model residuals from regressing. Specifically, negative resid-

uals (i.e., underprovisioned services per the model) are pre-

vented from becoming more negative, while positive residuals

may not become negative. Together, objective 6 and this con-

straint cause Flux to better balance service utilization across

regions. Flux provides fine-grained controls (per service,

region, hardware type) that let the service owner tune how

aggressively Flux is allowed to rebalance a service. §6.5

provides a case study of this benefit.

Capacity-sufficiency constraint. Expression 11 ensures that

each region has sufficient capacity to support the capacity

assignment, as determined by expression 9. This also assigns

additional hardware as deficits, if required for feasibility. Un-

allocated capacity is assigned to the spare pool St .

Full-placement constraint. Expression 12 ensures that each

RE is fully placed.

Organic growth constraint. When τp,t ≥ 0 Expression 12

places additional traffic demand which Expression 9 then al-

locates the organic growth capacity to each service according

to its globalized service model. Organic growth is used to

model increased traffic where all dependent services much be

sized up proportionally.

Inorganic growth constraint. Expression 13 distributes the

growth capacity proportionally to a service’s placed capac-

ity. Inorganic growth is used to distribute growth capacity

to an individual service such that dependent services don’t

necessarily need to be resized, such as product launches.

Double-occupancy constraint. We execute the capacity up-

sizes before capacity downsizes (see §3.4) and cannot count

on future released capacity to fund an ongoing upsize oper-

ation. Expression 14 defines the amount of capacity needed

during an upsize operation, whereas Expression 15 ensures

a valid intermediate state by enforcing sufficient capacity is

available to prevent an upsize from using still occupied ca-

pacity. Growth is given out as a final step of execution, and

can be used during the upsize stage. Expression 5 minimizes

double occupancy.

MIP Solver Scalability. Flux uses the MIP solver well

within its scalability limit. Our latest service placement run

generated a problem with 24K assignment variables and 36K

constraints. Solving the problem took only 5 seconds.

606 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Defcon: Preventing Overload with Graceful Feature Degradation

Justin J. Meza Thote Gowda Ahmed Eid Tomiwa Ijaware Dmitry Chernyshev
Yi Yu Md Nazim Uddin Rohan Das Chad Nachiappan Sari Tran Shuyang Shi

Tina Luo David Ke Hong Sankaralingam Panneerselvam Hans Ragas
Svetlin Manavski Weidong Wang Francois Richard

Meta Platforms, Inc.

Abstract
Every day, billions of people depend on Internet services for
communication, commerce, and entertainment. Yet planetary-
scale data center infrastructures consisting of millions of
servers experience unplanned capacity outages and unex-
pected demand for resources; how can such infrastructures
remain reliable in the face of capacity and workload flux?

In this paper, we introduce Defcon, a system for improving
the availability of large-scale, globally-distributed Internet
services using graceful feature degradation. In response to
overload conditions, Defcon enables site operators to gradu-
ally disable less-critical features in order to reduce resource
demand. Defcon presents a common interface to product de-
velopers to define feature knobs that represent degradation
capabilities. Defcon automatically tests knobs to understand
each knob’s product- and infrastructure-level trade-offs. At
Meta, we have used Defcon to improve global product avail-
ability in the face of worldwide demand-surges in addition to
large-scale infrastructure failures.

1 Introduction

Large-scale, globally-distributed Internet services, such as
those operated by Alibaba, Amazon, Google, Meta, Microsoft,
and Netflix, power modern human life by providing access to
communication, commerce, entertainment, and many other
experiences. At the same time, rapid advances in finance, arti-
ficial intelligence, machine learning, and virtual/augmented
reality have solidified the utility of Internet services for much
of humanity for the foreseeable future.

Internet services consist of features – functional building
blocks that make up a larger product. For example, a video
product consists of a search feature, a playback feature, a rec-
ommendation feature, and so on. Features are hierarchical: A
top-level playback feature may itself consist of a video quality
feature and a closed-caption feature, for example. Features,
and the products they make up, power Internet services.

Products (and, by extension, features) run in data centers
distributed around the planet. Analogous to the familiar von

Neumann architecture, computing at a planetary scale requires
input/output (in the form of HTTP and RPC requests), com-
putation (in the form of front-end servers), interconnect (the
network backbone), caching, storage, and so on. Site opera-
tors deploy these resources within geographically-distributed
data centers with the goal of ensuring that the workload de-
manded by users does not exceed the resources supplied by
the network, servers, and so on.

Planning data center resources well requires predicting
the future – or at least trying to. Capacity engineers rely on
detailed user demand forecasts and server supply models to
decide how and where to purchase and deploy resources, but
alas, prophesy yet remains elusive: Errors and inaccuracy
creep into models and forecasts, making data center capacity
planning at times more of an art than a science. In addition, un-
predictable world events – like global pandemics – can render
even the most sophisticated predictions obsolete overnight.

At the end of the day, the people that use Internet services
care about availability: Can they use the product that they
want to use when they want to use it? Toward that end, com-
panies work hard to ensure their products remain highly avail-
able. But what happens when things do not go according plan,
such as during a persistent product demand increase due to a
global pandemic, or when recovering from a global outage?
Can we achieve high product availability without sacrific-
ing additional resources? Can we be more efficient for rare
– but inevitable – partial outages and survive them without
additional server resources?

For example, Figure 1 shows a real-world surge in demand
for one of Meta’s products, Facebook (measured on the y-
axis in mega-instructions per second, or MIPS, executed by
front-end servers for the product), that occurred over several
hours on October 27, 2022. Localized peaks toward the left
and right of the chart illustrate software deployment on the
front-end systems, which consumes additional resources due
to idle hosts updating their binaries and cold cache effects –
these are expected behaviors. At around 5AM PDT, however,
an unexpected increase in demand for the product happened
to coincide with the daily peak usage of the product (shown

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 607

Figure 1: Defcon in action during a real-world site event. (See
Section 1 for explanation.)

from a previous day as “reference signal”) leading to con-
structive interference and causing the product to run out of
capacity and dangerously approach an overload condition
(approximately 1.15×1010 MIPS) at which point fail-slow
behavior and overload would occur. At around 6:35AM PDT
(vertical dotted line), site operators engaged a system, which
we present in this paper, in order to safely and efficiently
reduce resource consumption (MIPS), while still preserving
access to core product functionality for all users, avoiding
an outage. Around 7:15AM PDT, as demand for the product
continued to increase, site operators further engaged a next
level of the system – leading to a correspondingly larger de-
crease in resource consumption, bending the traffic (MIPS)
surge curve to restore it to nominal amounts of resource de-
mand. After the surge had passed, at around 8:00AM PDT,
site operators disengaged the system, restoring the product’s
features to their original state.

In this paper, we present Defcon, a system to provide
graceful feature degradation for Internet services. Defcon
achieves high availability without sacrificing additional server
resources by allowing site operators to dynamically turn off
product features in response to rare (e.g., monthly or yearly)
demand spikes or even unpredictable product demand in-
creases. The key insight of Defcon is that not all product
features provide equal value – many features can safely be
turned off for short periods of time without altering a prod-
uct’s fundamental behavior. Human guidance is used to define
and actuate “knobs” – control flow annotations that represent
the best capacity savings and user experience trade-offs.

We characterize the overload problem and solution space,
apply a rigorous data-scientific methodology to analyze knob
behavior, and describe a real-world at-scale testing method-
ology to validate the efficacy of Defcon. We also shed light
on the design and organization of large-scale, real-world sys-
tems from the field as our approach accurately reflects the
trade-offs involved in designing and implementing an initial
solution to an emerging problem under realistic constraints.
A key contribution of this paper is to prove the efficacy of
feature degradation to help solve the overload problem in
distributed systems.

We describe the design and implementation of Defcon and

our experience operating Defcon in production over the course
of three years. We evaluate our approach using a combination
of continual at-scale controlled tests as well as case studies
from production incidents, including during a sustained de-
mand surge. Overall, we find graceful feature degradation
to be a powerful design pattern for system architects to ef-
ficiently improve the availability of large-scale distributed
systems.

2 Background

Graceful degradation pervades the natural world: Removing
ballast to prevent a ship from capsizing, escalators losing
power and becoming ordinary stairs, starfish reproducing a
lost limb, and so on. We observe analogous patterns of grace-
ful degradation in the realm of computing and provide a brief
overview of these techniques as well as a backdrop for why
graceful degradation matters in large-scale Internet services,
next.

2.1 Data Center Capacity Management
Modern hyper-scale data center infrastructures rely on server
capacity distributed across the planet in order to support the
diverse resource needs of the services that run in the data cen-
ters. Capacity Engineers rely on two inputs in order to make
data center capacity planning decisions: workload resource
demand and server resource supply.

Workload resource demand models the resource needs of
a product in order to support its set of features. Capacity
engineers normalize resources to a common unit baseline
in order to plan resources across different server architec-
tures or generations (e.g., Relative Resource Units, or RRUs)
where resource types include computational throughput, stor-
age capacity, memory bandwidth, and network bandwidth.
Modeling workload resource demand involves understanding
how many RRUs of different resource types are required to
support product features. To accurately model future resource
demand, engineers scale current resource demand based on
feature growth projections.

Of course, in reality, resource supply and demand can be-
have in unpredictable ways. For example, a workload pattern
change can change resource demand, while a data center out-
age can decrease resource supply. A key challenge, therefore,
is how to allocate resources in the face of constant infras-
tructure and workload flux1. In many traditional systems,
scenarios where resource demand > resource supply leads
to fail-slow – and, eventually, overload-induced – system un-
availability.

1Note that systems in Meta’s infrastructure are already equipped to auto-
matically scale up and down capacity in response to predictable (e.g., diurnal)
demand changes. Even so, there still comes a point when there is no remain-
ing capacity to elastically expand a service into (such as during unpredictable
load spikes or large outages).

608 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Potential Solution Description Additional Resources Engineering Effort User Impact
0. Do Nothing Allow overload to happen, leading to

product outages.
None None Very High

1. Overprovision Resources Increase server resources, leading to
lower steady state utilization. Cannot
fully predict future traffic patterns.

Prohibitively High None Potentially None

2. Drop User Requests Reduce work by discarding user requests
at a load balancer level (L4 or L7) before
they enter into a data center.

None Medium High

3. Shed Server Load Modify micro-services to decide when
and which requests to drop for their ser-
vice.

None High Medium

4. Degrade Product Features Annotate control flow and avoid execut-
ing certain features on-demand.

None High Low

Table 1: Potential solutions to the overload problem and their associated trade-offs.

2.2 The Overload Problem

System overload occurs when the requested throughput of
a service (e.g., measured in queries per second, QPS) ex-
ceeds the capabilities of the system, leading to a phenom-
ena known as congestion collapse whereby goodput (a mea-
sure of the rate of successful responses from the service),
decreases [2, 38]. Systems of any size can become over-
loaded, but the overload problem is especially acute in large,
geographically-distributed Internet services, which can cause
cascading failure scenarios, and can lead to widespread out-
ages [12]. Overload remains a fundamental problem in the
operation of distributed systems.

Meta’s infrastructure is organized around a collection of
geographically-distributed data center failure domains, each
representing around 5–12% of the overall capacity. Common
failures such as bugs, network/power outages, and incorrect
configuration happen within these failure domains and we
have found 5–20% of savings to be a sweet spot for capacity
savings for mitigating the risk of cascading failures due to
overload. In this work, we assume a baseline of an overload-
induced metastable failure state that leads to product outages
for large portions of users for minutes to hours at a time.

Table 1 summarizes some potential solutions to the over-
load problem and how they trade off the amount of hardware
resources (Server Resources), the amount of effort required
of engineers to implement and maintain (Engineering Effort),
and the potential impact to users (User Impact). For example,
one way to attempt to solve the overload problem is to simply
allocate more server resources for a distributed system (op-
tion 1). While potentially effective, simply allocating more
resources can be inefficient, leading to low resource utiliza-
tion when traffic is not at its infrequent (e.g., on the order of
months or years) projected peak.

Furthermore, we can never perfectly predict traffic patterns
and real-world events can often thwart even the best prepara-
tions. Take the COVID-19 pandemic as an example: In 2020,
as more persons began to shelter in place, communication

that was once in-person began shifting to occur online. Fig-
ure 2 shows an example of how traffic for one product at Meta
greatly exceeded its pre-pandemic resource plans. During
global crises, Internet services often become more important
than ever for humans to communicate and remain connected
with each other. And while at Meta we were able to survive
the COVID-19 demand surge, we wondered: “Can we build
systems that are inherently resilient in the face of unforeseen
overload?”

To answer this question, we found options 2–4 compelling.
Note that options 2 and 3 both reduce work, but whereas op-
tion 2 reduces work at its source, option 3 reduces work at its
destination. Specifically, for option 3, we considered a fine-
grained backpressure-based approach, which led to noticeable
user impact when capacity demand exceeded capacity sup-
ply and requests could not be processed. After evaluating the
potential trade-offs at Meta, we opted for a technique to min-
imize user impact and found option 4, Degrade Features, to
achieve the best trade-off: No additional server resources and
low impact to users, albeit with an investment in engineering
effort (which we qualify in Section 5).

Figure 2: Real-world events can often thwart event the most so-
phisticated preparation techniques, as shown by this graph of actual
versus forecasted demand for Facebook in 2020 during the onset of
the COVID-19 pandemic.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 609

2.3 Related Work

Degradation is a self-adaptation technique that reduces the
amount of work that servers need to perform to stay resilient
during resource shortages, spiky load, and reduced hardware
performance [12] that would otherwise cause a distributed
system to enter a failure state [6, 16]. Degradation has been
considered in many different contexts of system design, such
as storage systems [8, 22, 31, 39], processor design [4, 17],
cloud computing infrastructure [9, 11, 20, 25, 29], edge com-
puting systems [21], web server applications [1, 2, 14], search
engines [10], and mail services [27]. In network systems,
graceful degradation is used to handle overload of network
resources through intelligent connection management [36],
traffic prioritization [3], traffic handover control [5], security
hardening [15, 34], as examples.

Degrading the static content of a website was proposed
in [2] and relevant techniques have been extended to dynamic
content [26]. Degradation has also been proposed by cloud
Infrastructure as a Service (IaaS) providers as a feature to
increase cloud utilization [29] and used for adapting to the
high network variability and possible network disruptions in
edge computing infrastructure [21]. Defcon contributes to this
area of research by developing a product-level, feature-centric
framework to perform configurable graceful degradation of
large-scale geo-distributed micro-services during spiky load
and disaster events and providing real-world insights on how
to build and operate such a system from its global of deploy-
ment in products at a large scale.

One alternative approach for surviving resource shortages
during load spike or outage events is load shedding [11,37,38],
which drops a proportion of load by dropping request traffic
when a server approaches overload. However, load shedding
sacrifices availability guarantees and broadly impacts user
experience. In contrast, degradation techniques aim to provide
high availability of products and services to users around the
globe, which is critical to minimize impact.

Another area of related research is on specifying and real-
izing degradation for distributed systems. A relaxation lattice
method was proposed for specifying the behavior of degrada-
tion [13]. Furthermore, specifications and implementations
of degradation were presented in [39] as a complementary
mechanism to fault tolerance in the design of highly-available
distributed systems. Availability Knob [30] was proposed to
provide a variety of availability guarantees, improving the
utilization of reliability-heterogeneous infrastructures. In this
work, we adopt the “knob” nomenclature, although for differ-
ent means. Whereas Availability Knobs specify availability
SLA flexibility, knobs as used in this work describe source
code control flow annotations which can be enabled or dis-
abled at-will.

Client-managed degradation was explored in the context
of features like low power modes [18]. Our approach differs
from client-managed degradation in three key ways. First, in

contrast to an ad-hoc approach to define individual points of
degradation in client code (which, like a low power mode,
then effectively become new “features” to maintain in the
client), our approach provides a framework (knobs) that de-
velopers can use to efficiently encapsulate existing features,
significantly reducing the development cost of degradation.
Second, our approach provides developers with a framework
to automatically test, analyze knob savings, and manage the
lifecycle of knobs. Third, our approach extends to both client-
side and server-side knobs, as it abstracts the knob control
plane into configuration management as opposed to custom
client (or server) code.

2.4 Graceful Feature Degradation

In this work, we ask the question, “Can we design distributed
systems that remain available even when resource demand
> resource supply?” While such systems would violate tra-
ditional system design assumptions, our key insight is that
not all features of a product are equally important – if we
can identify essential features (such as the ability to send
a message in a messaging product) versus fungible features
(such as an online status indicator for whether the message
recipient is currently online), then we can gracefully trade
off fungible features for on-demand server resources, while
still preserving essential features. For example, the number of
results can be considered as an adjustable feature for a search
product.

In this paper, we introduce the qualifier graceful feature
degradation to refer to the property of a large, globally-
distributed system to dynamically modify its behavior (fea-
tures) in order to dynamically (i.e., at runtime, without re-
compilation or changing binary flags) alter its control flow for
the purpose of reducing the system’s resource requirements.
From here on, we use the terms “graceful degradation” and
“graceful feature degradation” interchangeably.

3 Defcon

Defcon is a system to implement graceful degradation in
large-scale distributed systems. Defcon is designed to be used
during infrequent site emergency situations where demand is
greater than supply. There are many reasons why a system
may encounter situations where demand for the system’s re-
source exceeds the supply of resources for the system. Some
examples are data center outages, load spikes during special
events like New Year’s Eve, service overload due to a bug in
a software deployment, and so on. We provide an overview
of Defcon and discuss the design and implementation of its
key system components, next.

610 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.1 Overview

Figure 3 shows an overview of Defcon. Knobs annotate pro-
gram control flow eligible for degradation and follow a well-
defined API. Product engineers use a Knob Definition Frame-
work to annotate source code that can be degraded. These
knobs are controlled using a Knob Actuator Service by site
operators according to a policy. Not shown in the figure, a
Knob Testing Framework registers knobs defined in the code
base and automatically tests them to understand the sensitivity
of product experience and resource consumption when the
knob is turned on. We discuss each of these components next.

Figure 3: Overview of Defcon system architecture. Product software
engineers use a Knob Definition Framework to label sections of con-
trol flow corresponding to specific features to conditionally execute.
A Knob Actuator Service controls which knobs (and their correspond-
ing features) are enabled or disabled in response to real-time events.
Mobile clients, web clients, and micro-services all communicate
via configuration with the Knob Actuator Service to dynamically
determine control flow. A Degradation Portal provides insights for
site operators to understand which knobs to enable in response to
server resource shortages and a Degradation CLI allows humans to
rapidly control knobs en masse.

3.2 Knob Definition Framework

A knob is a switch to enable or disable a feature in the code.
Unlike feature flags, which require a binary restart in order to
take effect, knobs are controlled dynamically while a binary is
running. Knobs are implemented by a client library (or sidecar
service) that determines the current state of each knob and
are controlled using a configuration management system [32].
Software developers provide each knob a unique name, which
they then can reference in their code. Thus, knobs can span
multiple source code files, or even multiple binaries. Knobs
come in two flavors:

1. Server-side knobs are implemented in binaries running
on the servers in data centers. The advantage of server-side
knobs is that we can adjust the knobs’ state in seconds without
any propagation delays.

2. Client-side knobs are implemented in client code run-
ning on phones, tablets, wearables, and so on. The advantage
of client-side knobs is that they have the capability to reduce
network load by stopping requests sent to the server along
side reducing server load due to the request. Client-side knobs
can also be controlled conditionally based on device metadata,
such as cache state and network bandwidth availability. For
example, Meta’s mobile apps maintain a client-side cache
response freshness threshold value. We update this freshness
threshold value during Defcon to control incoming traffic. At
Meta, we use server-side configuration to control these values.
We use two approaches to propagate knobs state changes to
clients, each with its own pros and cons:

2.a. Silent Push Notification (SPN): This approach uses a
push notification system to propagate knobs state changes. At
Meta, we have large numbers of client devices and the system
takes around 30 minutes to finish all push notification jobs to
propagate knobs state changes. SNP works like a typical app
notification mechanism but instead of showing a notification
to a user, the client app updates corresponding configuration
fields.

2.b. Mobile Configuration Pull (MCP): In this approach,
clients pull updated mobile configurations from servers
through an API. At Meta, every client application imple-
ments two kinds of configuration-pull mechanisms: (1) A
full configuration pull happens every 6 hours and pulls up-
dated configuration data for every configuration definition.
Full configuration pull is more thorough, but requires more
network bandwidth and server resources. (2) During Emer-
gency Mobile Configuration (EMC) pull, each client request
triggers a server to inspect an emergency configuration file lo-
cated on the server to fetch updated configuration data for the
fields mentioned in the emergency configuration file. EMC
consumes less network bandwidth and server resources, but
requires manual intervention.

Listing 1 shows an example of defining a knob in Python
(although APIs also exist for Rust, C++, Hack [35], and Java).
Every knob has a unique name (with a namespace unique
for each product name, Feed in this example), a level corre-
sponding to the magnitude of resource reduction and used
for grouping all knobs of a similar magnitude together, and
a Boolean enabled state. The export statement instructs the
build system to generate/update knob source code definitions
in the code base.

Listing 1: Knob definition.

from configs.knobs import KnobConfig
disableCommentsRanking = KnobConfig(

name = "Feed/DisableCommentsRanking",
oncall = "owner_team_oncall",
level = 2, # Impact magnitude.
enabled = True)

export(disableCommentsRanking)

Listing 2 shows an example of using a knob in Python. To

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 611

use a knob, a developer must inspect the enabled field for the
knob:2 If the knob is disabled (the common case), the binary
follows its normal control flow; if the knob is enabled (e.g.,
during an emergency), the binary follows a work-reducing
control flow to reduce server resource consumption for every
request served.

Listing 2: Knob usage.

from configs import ConfigReader
disableCommentsRanking = ConfigReader(

"Feed/DisableCommentsRanking")
comments = fetchComments()
if (disableCommentsRanking.enabled == False)

comments.RankUsingModel()
else # Knob enabled: do less work.

comments.RankChronologically()

At Meta, knobs are not implemented haphazardly, but are
instead carefully planned for by product teams with target
resource savings set for different knob levels. Even so, the
flexibility and ease of knob definition has enabled some prod-
ucts to implement and manage hundreds of knobs. Usually
product teams choose the design of their knobs (i.e., server
side knobs or client side knobs) based on the product behavior
and the trade offs from controlling the demand at different
places. Generally, knobs are defined at product feature level
to stop the entire control flow across different surfaces.

Defcon knobs are added to both existing and new features.
At Meta, features are deployed gradually with server-side con-
trols and experiments. Meta’s deployment process requires
product engineers to have a single-server side configuration
to enable/disable their features. In Meta’s infrastructure, fea-
tures are typically implemented as separate RPCs and there-
fore there is strong isolation between the control flow of each
feature. For shared library code, product engineers have the
choice to degrade at the library level or at a finer-grained RPC
request level.

This process provides an advantage for developing knobs
as a product team can simply extend these feature controls
to check for Defcon configuration. Integrating knobs with
feature development and deployment processes has other ad-
vantages: Ease of running experiments to test a knob for
side-effects, measuring the capacity savings from disabling
a knob, and measuring the impact of a knob on users (Sec-
tion 3.4). User impact is then used to classify a knob into the
correct Defcon level (Section 3.5). Once a product engineer
is satisfied with a knob’s behavior, they will explicitly choose
to include it in the Defcon system.

To aid product teams in understanding the breadth and
behavior of the knobs they have defined, a browser-based
graphical user interface is provided to help developers under-
stand target level resource saving expectations, manage knob

2Knob configuration state is cached within memory on the server a binary
is running on and accessed either by a shared library or a sidecar binary,
typically requiring no more than microseconds to access.

metadata, visualize knob savings against the target expecta-
tions, and understand any user experience trade-offs (using a
measurement methodology we discuss later). In turn, emer-
gency responders use this user interface to understand Defcon
level savings and the associated impact of enabling knobs.

3.3 Knob Actuator Service
We believe it is important to have a highly reliable tool with
minimal dependencies to control Defcon, so that we can use
Defcon even when most other systems are unavailable. The
Knob Actuator Service is responsible for enabling or disabling
(actuating) sets of knobs. Knobs are grouped into three cate-
gories: (1) By service name, (2) by product name, and (3) by
feature name (such as “search,” “video,” “feed,” and so on).

The Knob Actuator Service also manages metadata
for knobs, stored in a geographically-replicated relational
(MySQL) database. Knob metadata includes: (1) The engi-
neering oncall responsible for the knob’s definition, (2) the
engineering team responsible for the knob’s usage, and (3)
a cache of recent resource and user experience test results
(discussed later in this section).

Finally, the Knob Actuator Service is responsible for chang-
ing the state of knobs. Knob state changes can be performed
for individual knobs or for sets of knobs grouped using one
of the three categories (service, product, or feature name).
State changes occur in seconds for server-side knobs and in a
couple of minutes for client-side knobs (due to the EMC pull
cycle duration mentioned before).

While state changes across sets of knobs are used dur-
ing site events that require additional capacity supply, state
changes for individual knobs are used for testing knob impact.
Knobs can be further selected for only a fraction of users
participating in controlled A/B test experiments (discussed in
the next sub-section).

At Meta, emergency responders receive notifications for
various overload scenarios (including increased demand, de-
creased capacity, etc.) for services. The emergency responders
use a Degradation Policy (defined in Section 3.5) to evaluate
if Defcon can and should be used to reduce the load. Once the
emergency responders decide on a course of action, they use
capacity savings data from recent tests (which are available in
a dashboard) to estimate what Defcon level should be enabled,
and use the Knob Actuator Service to enable Defcon knobs
to reduce the demand to the desired amount.

3.4 Knob Testing Framework
As an emergency response tool, we must test Defcon periodi-
cally to ensure its reliability and performance. Since Defcon
will incrementally degrade product features when enabled,
we go to great lengths to minimize its impact during testing.

Our strategy is to execute frequent, but small scale A/B tests
to get continuous signals for Defcon knob resource savings as

612 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

well as potential issues, and infrequent large-scale exercises to
validate these signals at scale and observe how the knobs for a
product, service, or feature (and downstream services) behave
when Defcon is enabled for all of the product’s, service’s, or
feature’s requests.

We classify production tests into two categories:
1. Small scale tests. A/B testing measuring user behavior

metrics helps us quantify the impact on users and products.
These tests are conducted across a product, but with a very
small user base, (e.g., 0.01–2%) of a population over a cer-
tain duration (e.g., 15 minutes to 36 hours). The main goals
from these tests are vaidating the knob set-up for the product,
measuring the impact from the knobs, and measure the sav-
ings on downstream services using TRU. During A/B testing,
we define four groups. One control group without any impact
from Defcon and three treatment groups with different Defcon
levels. We compare the resource consumption between the dif-
ferent groups with the control group as a baseline to measure
the impact from Defcon on the service and the downstream
services. To understand the impact of the Defcon knobs at a
more granular level, we also run A/B tests at a service level
(for any services that have knobs defined) and at a feature
level.

We run server-based tests for multi-tenant backend services
when per-user annotation is not propagated (e.g., for batch-
processing services or multi-tenant services, where requests
may belong to the system or several users simultaneously). In
this case, we randomly select a small number of hosts for a
particular service, and split these hosts in 4 groups, testing as
described above.

We compare host metrics with the control group and store
the results. The downside of this approach is that user experi-
ence may be momentarily inconsistent because consecutive
requests from the same user may be served by different hosts.
To minimise the user impact, we pick a negligible number of
hosts for this test and run it for 5–15 minutes only. We run
host-based tests weekly to always have fresh data and make
sure that results are consistent. If results are not consistent,
we adjust the number of randomly selected hosts. To make
sure that our results are statistically significant and reliable we
check that they match with empirical large scale test results
(discussed next).

2. Large scale tests. Since Defcon is an emergency tool,
we must test Defcon at scale to ensure its reliability and per-
formance. We execute a Defcon service test on 100% of users
quarterly to measure the resource savings at the product and
service level and the demand reduction on the downstream
services. Since during an emergency situation we may need
support from Defcon for multiple products at the same time,
we also execute combined degradation tests for multiple prod-
ucts together to measure the impact on Meta’s infrastructure.
During such tests, we enable Defcon knobs across products
at levels 3, 2 and 1 for a short time and we monitor behavior
similar to individual product tests.

3.5 Degradation Policy
Graceful feature degradation provides a trade-off between
resource savings and product behavior. When designing the
policy for when – and to what extent – to enable degradation,
we must understand the trade-off between capacity savings
from enabling a knob or collection of knobs and the user or
product impact that comes from doing so. Product teams are
responsible for defining key performance indicators that are
closely measured and monitored during tests. Infrastructure
teams provide a distributed tracing framework [19] to measure
resource savings not only on the product, service, or feature
where the knob is implemented, but also along the transitive
closure of services affected by the knob.

Meta implements a four-level Defcon policy scheme
whereby smaller-numbered levels correspond to higher
amounts of degradation. Levels can be applied across the
same features supported by the Knob Actuator Service (prod-
uct, service, and feature). To ground the policy in reality, care
has been taken to design each level around handling a specific
set of failure scenarios:

Level 4 (L4) is the default state: All knobs are disabled.

Level 3 (L3) is used for handling overload situations result-
ing from relatively small-scale load spikes such as those
seen during New Year’s Eve or sporting events like
World Cup. The Level 3 target savings is 5% of a prod-
uct’s overall demand.3

Level 2 (L2) is used for handling overload situation that arise
from full data center region failures. Target savings is
10% of a product’s overall demand (but can vary up
or down based on a product’s data center deployment
model).

Level 1 (L1) is used during rare emergency events such as
unforeseen global system outages. Target savings is 20%
of a product’s overall demand.

For setting target level savings, recall from Section 2.2
that Meta’s infrastructure is organized around a collection of
geographically-distributed data center failure domains, each
representing around 5–12% of the overall capacity, making
5–20% of savings to be a sweet spot for mitigating the risk of
cascading failures due to overload.

The Knob Definition Framework allows product developers
the freedom and flexibility to explore potential knob resource
savings and trade-offs in order to arrive at a portfolio of knobs
that attempt to maximize the resource savings while min-
imizing the potential impact to users. When setting these
level targets, service owners will translate demand reduction
numbers to whichever resource they bottleneck on, like CPU,

3Most front-end services at Meta have CPU utilization as the bounding
resource, and so target CPU savings is the most salient metric to focus on.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 613

memory, network. We rely on historical data for the amount of
demand increase typically seen during similar past scenarios.

Figure 4 illustrates the four-step policy that emergency re-
sponders follow when operating Defcon in production. Emer-
gency responders:

1. Analyze the state of the product resource demands and
potential Defcon knob resource supplies using a sys-
tem monitoring dashboard. The dashboard lists critical
system resource utilization metrics described in Degra-
dation Policy.

2. Decide if the situation can be mitigated by applying a
Degradation Policy. A degradation policy specifies the
resource and impact trade-offs associated with enabling
knobs at a particular level for a product.

3. Check the current state of Defcon and adjust it in accor-
dance with the desired Degradation Policy (e.g., enable
L2 knobs for a product).

4. Degrade fungible product features using a command line
interface (CLI). Continue at step 1, adjusting Defcon
level as necessary.

Figure 4: Emergency responders rely on a well-defined Degradation
Policy in order to engage Defcon effectively.

We next evaluate the efficacy and trade-offs associated with
operating Gratuit in a real-world large-scale environment.

4 Evaluation

At Meta, we have operated Defcon across three products –
Facebook, Instagram, and Messenger – for over three years.
Defcon has been used to avert or avoid many dozens of situ-
ations that would have otherwise led to resource exhaustion
and overload. We next evaluate Defcon to demonstrate its
efficacy, both during tests as well as during real-world events.

4.1 Measurement Methodology

We relied on four main sources of data for our analysis:4

1. A Real-time Monitoring System (RMS) for measuring
hardware counter statistics across the entire fleet of
servers at Meta to measure real-time demand for server
resources.

2. A Resource Utilization Metric (RUM) source of truth
data set for available server resource supply, measured
using load-test data. Supply metrics include available
request throughput, CPU MIPS, memory bandwidth, and
so on.

3. A Transitive Resource Utilization (TRU) system that
uses a distributed tracing framework to measure resource
changes across the transitive closure of services involved
in serving requests from a particular service.

4. A User Behavior Measurement (UBM) framework for
quantifying any user workload changes that occur during
a test.

Using these systems, we measure two system-level metrics
during testing: (1) The global savings in resource utilization
on the product, service, or feature under test using RMS; and
(2) the savings in resource utilization on back-end services
that receive traffic from the product, feature, or service under
test using a combination of RMS, RUM, and TRU.5

We rely on controlled UBM experiments in order to mea-
sure the non–system-level effects of Defcon in a statistically
significant manner. Requests to a product, service, or feature
under test are divided into two groups: A control group (group
A) and a test group (group B). Resource usage and user be-
havior is measured and then compared between group A and
group B. Tests are run on a small fraction of users (typically a
fraction of a percent) and over a long enough period to obtain
statistically-significant results (typically minutes to hours).

In addition, for large-scale tests that involve large collec-
tions of knobs, we utilize various data science approaches
to model each of our metrics both before a test (a forecast)
and after a test (a backcast). Through linear modeling and
time-series forecasting/backcasting, we construct a source-
of-truth signal during the test period. Resource savings are
subsequently computed by taking the percentage difference
between the real signal captured during the large-scale test
and the constructed source-of-truth.

As an example of this methodology, Figure 5 shows the
measured global request throughput for the Facebook prod-
uct before a product-level Defcon test. This experiment was
performed as the product was nearing its peak moment of

4Due to space constraints, we do not detail the design of these systems in
this paper.

5Whether to use RMS or RUM depends on the resource consumption to
measure.

614 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 5: An example of timeseries forecasting. The measured
global request throughput (QPS, y-axis) over time for the Facebook
product immediately prior to enabling Defcon. A raw signal is con-
verted to a smoothed signal and a forecast is generated from the
smoothed signal.

request throughput (i.e., the highest organic load that we can
test upon). Raw signal obtained prior to switching on Defcon
(“raw signal”) is first smoothed (“smoothed signal”) and sev-
eral time-series forecasting models are applied to obtain an
estimate of what the raw signal would have looked like if De-
fcon was not turned on. Examples include linear, exponential,
and Auto-Regressive Moving Average (ARMA) [28] models
that are fitted using sections of the test signal before and after
the Defcon degradation period.

Figure 6: An example of timeseries backcasting. Methodology is
similar to Figure 5.

Aside from the forecasting models, we also reference past
days’ signals in the steady state. The model which gives
the smallest Median Percentage Error (MAPE) [23] is then
chosen. Similarly, Figure 6 shows a time-series backcasting
method applied to the smoothed signal gathered when Defcon
is turned off. Note that the forecast and backcast use a some-
what conservative approach to ensure that measured savings
are not over-estimated and to factor in headroom for the spikes
observed in the raw signal. Finally, combining both the fore-
casted and backcasted signals (Figure 7), we derive a baseline
which tells us what the metric would have been under nor-
mal circumstances when Defcon is not enabled. Savings are
subsequently computed by taking the difference between the
actual signal gathered during a Defcon test and the baseline.

Figure 7: By combining forecasts and backcasts during a Defcon
test, we can construct a baseline to compare to the behavior when
Defcon is enabled during a test.

4.2 Individual Product Tests
To continuously validate Defcon savings and reliability, we
regularly perform A/B tests with a small percentage of users
(0.01%, 0.05% and 0.5% for Level 1, Level 2, and Level 3
experiment groups respectively). The user percentages are
set based on required population size of A/B test statistical
analysis. Figure 8 shows the results of A/B test applied across
different product areas. The y-axis shows the CPU resource
consumption (measured in relative MIPS) and each bar corre-
sponds to a group under test. As we expect, enabling lower
levels of knobs generally results in more resource savings.

Figure 8: Results for Defcon tests for different sets of knobs (Prod-
uct Areas) with different Defcon levels enabled. The y-axis plots
the percentage change in CPU resource consumption, MIPS. Lower
values indicate greater resource savings. Tests at each level are in-
clusive of higher levels (i.e., L1 tests also include L2 and L3 knobs).
Notice that, generally, L1 knobs have larger resource savings than
L2 knobs, and the same for L2 and L3. However, levels correspond
to impact and not necessarily savings, and so some products, such
as Storage, can achieve higher savings at lower levels of impact (L2
> L1).

Table 2 provides a detailed example of user impact metric
data measured using the UBM framework described in Sec-
tion 4.1 while testing at Level 1 for: (1) an individual knob,
(2) a collection of knobs for a feature, and (3) all the knobs
within all the features that make up a product. We observe

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 615

that degradation generally leads to relatively small user inter-
action changes, especially when compared to the alternative
of an overload event leading to a site-wide outage. We also
observe that enabling knobs can lead to user interaction shifts
since user behavior changes in response to feature availability.
For example, Video Watch Time at the Feature granularity
increases when Level 1 knobs are turned on, as users engage
in different ways to interact with a product.

Metric Name Knob Feature Product
User Interaction –1.82% –4.3% –5%
News Feed Usage –0.6% –1.1% –1.6%
Video Watch Time –0.6% +2.37% –0.93%
App Usage Time –0.36% –1.9% –11.0%

Table 2: Example UBM metrics when enabling Defcon Level 1 for
a selected Knob, Feature, and Product. User Interaction measures
high level user engagement metrics for an app, like the number of
comments, reactions, posts, and so on over the test interval. News
Feed Usage is a composite metric measuring feed views and feed
interaction time. Video Watch Time is a composite metric aggregat-
ing time spent watching videos, count of live viewers, engagement
with live videos, and so on. The Knob granularity is for an individual
knob defined for the product. The Feature granularity is the feature
that contains that individual knob and all other knobs that make up
the feature. The Product granularity is for the product that contains
that feature and all other features that make up the product.

4.3 Combined Product Tests

At Meta, we regularly run combined degradation tests for
multiple products. Figure 9 shows a combined Defcon test for
three products: Facebook, a multi-tenant asynchronous com-
pute platform (Async), and Instagram on 100% of traffic. The
main goal of these tests is to accurately measure the combined
transitive resource savings for shared backend services (here
we illustrate the savings for Memcache, an in-memory key–
value store [24]). As we can see, enabling Defcon across these
three products leads to a compounding resource reduction for
Memcache.

Of course, even when core product behavior remains un-
changed, users may not expect to see changes in product
features. At Meta, a user can submit a report when the user en-
counters something unexpected. Figure 10 shows user reports
for four products during a combined test. As the figure shows,
changing the features within products does not go unnoticed
by users, with users submitting higher than nominal reports
when Defcon is enabled. Note that this volume of reports –
while keeping core product functionality available – is much
preferred compared to fail-slow or overload conditions which
could be several orders of magnitude larger without Defcon
enabled.

Figure 9: An example of transitive resource changes on a multi-
tenant backend system (Memcache), measured in QPS (y-axis). Re-
quests are tagged according to which source of traffic sent the request:
Facebook, an asynchronous compute platform (Async) and Insta-
gram. We see that Facebook and Async contribute the most to the
reduction in overall QPS (All of the Above).

Figure 10: Number of reports submitted by users for different prod-
ucts during a combined product test.

4.4 Transitive Resource Savings

We next explore in more detail how transitive savings affect
dependent services. Figure 11 shows an example of the re-
source savings achieved on the Memcache service (the same
service from Figure 9) as measured only for the requests origi-
nating from the Feed product. Knobs of decreasing level were
enabled incrementally during the test and then removed later
in the test.

Note that knobs for the Feed product were only enabled
during the first half of the annotated test range, and while
other products participated in this test, using TRU, we were

616 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

able to observe the resource changes for only a single source
of requests. Crucially, this savings is a beneficial side-effect
of the reduction in workload from the front-end service and
not a result of knobs defined in the Memcache service.

Figure 11: Resource savings, measured in QPS on the y-axis, on the
Memcache service by enabling Defcon on upstream products, de-
spite the Memcache service having no knobs defined. Reducing the
request throughput to the Memcache service leads to corresponding
reductions in resource consumption for the service and its dependent
services.

Figure 12 shows an example of resource savings for TAO
(a social graph caching service [7]) when Defcon is enabled
across the three products under test. In addition to showing
another service that achieves savings despite not having any
knobs defined, it also shows an example of how resource
savings can remain relatively stable over long periods of time
(hours).

Figure 12: Another example of transitive resource savings on a so-
cial graph (TAO) service that has no knobs defined. We find resource
savings from Defcon to be stable over long periods of time (e.g.,
hours).

Figure 13 adds annotations to the results for TAO, showing
the distinct phases involved in a large-scale test. As we can
see, products enable knobs of decreasing level until reaching
Level 1, remain at Level 1 for a small period of time, and then
return to a disabled state. In this case, we can clearly see in
Phase III, IV, and V that most of the demand for the TAO
service comes from the Async product. We record insights

such as these as metadata for knobs and use the insights to
inform decisions during real-world site events.

Figure 13: A detailed timeline of events during a typical multi-
product Defcon test. This figure illustrates the complexity of testing
Defcon at-scale in a production environment.

Interestingly, we also find that enabling Defcon across mul-
tiple products can achieve more resource savings for a product
than enabling Defcon for that product alone. This occurs be-
cause some front-ends (such as the Facebook product) also
serve RPC requests from other products (such as the Insta-
gram product) so enabling Defcon on the other products re-
duces the resource consumption of the Facebook product.
Figure 14 shows such an interaction for the Facebook product
during a test when Defcon is applied to the asynchronous
compute product, Async. We can see that even after Facebook
knobs are disabled (around 17:50 UTC), Facebook still sees
reduced resource consumption compared to its baseline due
to reduced requests from the Async product.

Figure 14: An illustration of the inter-dependent resource savings
of knobs: Enabling knobs for the asynchronous compute product,
which sends requests to the Facebook product, leads to additive
savings compared to enabling knobs for the Facebook product alone.

4.5 Outage Simulation Testing
At Meta we also simulate the conditions posed by large-scale
outages such as natural disasters by redirecting traffic away
from data center regions in order to concentrate more traffic

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 617

on the remaining regions, akin to what could happen during a
fiber cut, hurricane, or power grid failure [33]. This reduces
the available resource supply, effectively simulating load spike
events such as New Year’s Eve or World Cup.

In Figure 15 we show the results of running a large-scale
test on the Facebook product through the Facebook product’s
peak moment of traffic. At the beginning of the test, we se-
quentially redirect traffic from multiple data center regions
(labeled C and A) in order to concentrate enough load on
the remaining regions. This operation continued until site
operators began to detect a small volume (measured in very
low parts per million of requests) of failed requests due to
overload, whereupon Defcon was enabled at Level 2.

Figure 15: We regularly run tests to test the efficacy of Defcon
under large-scale outages. In this test, we start by redirecting prod-
uct traffic away from two data center regions in order to reduce
the amount of server resource supply for the same amount of user
demand, thereby increasing the resource utilization of the remainder
of the fleet. We then enable Defcon in order to validate resource
savings when products are in a highly-loaded state.

Moreover, after enabling Defcon at Level 2, we continued
to redirect traffic until the second data center region was com-
pletely drained of traffic. This example illustrates how Defcon
can effectively avert overload conditions that could ultimately
lead to fail-slow behavior and wide-spread cascading failures.
Tests such as this also provide valuable validation of the mea-
sured resource savings in a realistic environment: At-scale, at
peak, and using the real production workload.

To illustrate the importance of at-scale testing, in Figure 16,
we show an example of measured resource savings on a sepa-
rate day, during a similar time, using the same knobs as the
previous example. We can see that while the mean resource
savings during this test is similar to the real-world increased
load simulation, it is not exactly the same. A major reason for
this is cold cache effects from traffic being redirected among
data centers, a realistic concern during real-world outages.

To illustrate the generality of our approach, Figures 17–20
show similar results across four different products – Feed,
TAO, Memcache, and Graph Search – during a different two–
data-center region drain test at peak levels of traffic with
L2 knobs enabled. The y-axes of these figures have been
normalized to compare the relative sensitivity to knobs across
different products, with the measured savings corresponding

Figure 16: We find that resource savings (measured in MIPS on the
y-axis) are load-dependent. In this example, having warm caches
increases the amount of resource savings (corresponding to lower
values of MIPS) compared to when outages are simulated (cf. Fig-
ure 15).

to 3.2% for Feed, 2% for TAO, 8% for Memcache, and 6%
for Graph Search.

Notice that while different products achieve different levels
of savings (these are reflections of their own target savings
for L2 knobs), their response to enabling Defcon can vary due
to caching effects and workload pattern changes in response
to enabling knobs. The figures also illustrate how different
products can customize their demand metrics used to measure
and track their target Defcon savings (e.g., by using CPU
Cycles or Power consumption).

Figure 17: Results for L2 knobs enabled during a two–data-center
region drain test for the Feed product.

4.6 Real-World Large-Scale Outage
Since Defcon is an emergency tool used during large-scale
outages, we must ensure that unknown unknowns are mini-
mized. Based on the different degradation tests that we exe-
cute for products, and by measuring the impact on users and
downstream services, we work closely with Site Reliability
Engineers (SREs) to come up with degradation policies and
guidelines for the scenarios where Defcon can help. During
a real-world outage, SREs work with a lead emergency re-
sponder, the Incident Manager (IM), who decides on which
options from the Degradation Policy to pursue to mitigate an
outage.

618 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 18: Results for L2 knobs enabled during a two–data-center
region drain test for the TAO product.

Figure 19: Results for L2 knobs enabled during a two–data-center
region drain test for the Memcache product.

Figure 1 from Section 1, showed one such outage where
the IM applied the principles listed in the Degradation Policy
to avert a site-wide overload event and outage (please refer
to Section 1 for an detailed explanation). During this event,
the IM made the call to first engage L3 knobs for the product
before eventually engaging L2 knobs. The fact that different
levels of knobs – with different amounts of impact – existed,
provided the IM with a spectrum of options to pursue in order
to eventually arrive at the right degradation trade-off in real-
time.

To ensure that we could mitigate this real-world event
smoothly, we needed to ensure that the degradation policy
discussed in Section 3.5 has been practiced by SREs and the
IM. To make sure all the responding members are trained on
using the policy, we frequently execute mock fire drills where
we come up with potential scenarios, and role play the neces-
sary steps to mitigate the risks. We have found such testing
to be largely beneficial in ensuring emergency responders are
prepared when disasters strike.

Figure 20: Results for L2 knobs enabled during a two–data-center
region drain test for the Graph Search product.

5 Lessons Learned

Over the past several years of using Defcon, we have learned
several key lessons to consider for graceful feature degrada-
tion:

1. Understand business goals and customer perception to
determine what to degrade.

Prior to implementing knobs, product engineers first decide
on which features to degrade. Core product functionality must
remain intact, but among the non-core features, we find that
there exists a spectrum of resource savings compared to user
impact. For this reason, product designers perform A/B tests
(cf. Table 2) and make a decision about which knobs to keep
and which to pass on. While this process requires human
interaction, the Knob Definition Framework and Knob Testing
Framework allow developers to quickly explore the knob
definition space in order to determine the set of knobs that
provide the most resource savings for the least user impact.

2. Leveraging graceful degradation during emergencies
requires regular testing and an easy-to-consume under-
standing of the business and customer impact.

To provide an easy-to-consume understanding for emer-
gency responders to use in the heat of the moment, product
engineers provide a high-level functional summary of what
is affected at each Defcon level. Using this summary, site
incident managers can quickly determine whether enabling
knobs for a product at a given level is an adequate response.
Additionally, this summary benefits the public relations and
communications team, who may need to respond to inquiries
from customers or the media about product feature changes.

3. Degradation systems require high and regular commit-
ment from product teams.

To motivate product engineers to work on Defcon knobs,
we built mechanisms to provide recognition for investing in
this technique for product reliability. We organize monthly
Defcon meetings per product to showcase each team’s work
to their organizational leader (e.g., a vice president). We also

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 619

leverage the concept of Defcon champions. A Defcon cham-
pion is someone who is passionate about reliability that can
drive Defcon throughout the organization. Defcon champions
identify and recruit people in their organization to work on
Defcon.

4. Knobs, once built, need to be regularly maintained.
Implementing and maintaining knobs requires engineering

effort. Identifying candidate features involves coordination
with product developers to run experiments to understand
the capacity savings and user impact of knobs. Developers,
however, have provided feedback that controlling and testing
knobs using a standardized framework has helped them to
rapidly develop and deploy knobs. While automated systems
measure and report knob behavior, regressions in capacity
savings and user impact require manual investigation. We
intend to explore automating this area of knob maintenance
in future work.

5. Low dependence and high availability actuation.
To ensure that Defcon is ready to be deployed during disas-

ters, we iterated on improving our operations and operational
availability. As an example, we developed a CLI with minimal
dependencies on other systems in our infrastructure to make
sure that Defcon is ready to be enabled during partial failures
and disasters. Having a low dependence and highly available
mechanism for knob actuation is critical for facing real-world
disasters.

6. Developer experience and efficiency are key.
Before Defcon existed, there were scattered independent

efforts to try to achieve similar goals. By unifying these dis-
parate efforts and providing tools to support teams in a struc-
tured manner, we were able to increase the coverage of Defcon
and simplify knob maintenance. Since Defcon is built on top
of existing tools at Meta, such as Configerator [32], develop-
ers do not need to learn new technologies to implement new
Defcon knobs.

Safety is handled by ensuring that features are isolated at
the RPC layer (a design practice at Meta) and thus knobs
typically encapsulate control flow between RPC callers and
callees. While fine-grained degradation within a binary serv-
ing an RPC request is possible, safety and consistency must
be validated by product developers during initial knob testing.
We note that such validation is similar to what developers
must do when routinely modifying binary control flow (i.e.,
not for the purpose of Defcon knobs) – a common practice
at Meta. To aid developers in knob definition, we provide
guidance on how to properly implement and maintain knobs,
as well as provide developers with a Knob Testing Framework
to measure Defcon savings and track regressions.

The main challenge for developers in maintaining Defcon
knobs is capacity savings regression tracking. Systems at
Meta are constantly evolving, so the impact of existing knobs
can drift over time. Because of this, we make sure that each

team tests Defcon savings at a limited scale in production at
least once every three months (an interval chosen to balance
knob impact with the need to understand behavior changes)
using the Knob Testing Framework. We are actively exploring
ways to test knobs more frequently at lower impact.

6 Conclusion

We presented Defcon, a system for graceful feature degrada-
tion to prevent overload in large-scale Internet services. We
hope that by characterizing the overload problem, the corre-
sponding solution space, and our approach to graceful feature
degradation, we will spark discussion within the research
community about how best to tolerate overload-induced sys-
tem behavior and advance reliable and available distributed
system design.

620 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Trustworthy Graceful Degradation: Fault Tol-
erance across Service Boundaries. https:
//www.usenix.org/conference/srecon21/
presentation/rodgers-prior, 2021.

[2] Tarek F. Abdelzaher and Nina Bhatti. Web Con-
tent Adaptation to Improve Server Overload Behav-
ior. Computer Networks: The International Jour-
nal of Computer and Telecommunications Networking,
31(11–16):1563–1577, may 1999.

[3] Satyajeet Singh Ahuja et al. Network entitlement:
contract-based network sharing with agility and SLO
guarantees. In SIGCOMM’22, 2022.

[4] S. Almukhaizim, T. Verdel, and Y. Makris. Cost-
effective graceful degradation in speculative processor
subsystems: the branch prediction case. In Proceed-
ings 21st International Conference on Computer Design,
pages 194–197, 2003.

[5] Matteo Maria Aurizzi, Tommaso Rossi, Emanuele Raso,
Ludovico Funari, and Ernestina Cianca. An SDN-Based
Traffic Handover Control Procedure and SGD Manage-
ment Logic for EHF Satellite Networks. Computer
Networks: The International Journal of Computer and
Telecommunications Networking, 196(C), sep 2021.

[6] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko,
and Timothy Zhu. Metastable Failures in Distributed
Systems. HotOS ’21, page 221–227, 2021.

[7] Nathan Bronson, Zachary Amsden, George Cabrera III,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. Tao: Facebook’s distributed
data store for the social graph. USENIX ATC, 2013.

[8] Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Anto-
niu, and María S. Pérez. Harmony: Towards Automated
Self-Adaptive Consistency in Cloud Storage. In 2012
IEEE International Conference on Cluster Computing,
pages 293–301, 2012.

[9] Google Cloud. Infrastructure Design for Availability
and Resilience. https://services.google.com/
fh/files/misc/infrastructure_design_for_
availability_and_resilience_wp.pdf, 2020.

[10] Shuai Ding, Sreenivas Gollapudi, Samuel Ieong, Krish-
naram Kenthapadi, and Alexandros Ntoulas. Indexing
Strategies for Graceful Degradation of Search Quality.
In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’11, page 575–584, 2011.

[11] Google Site Reliability Engineering. Addressing Cas-
cading Failures: Load Shedding and Graceful Degrada-
tion. https://sre.google/sre-book/addressing-
cascading-failures/#xref_cascading-
failure_load-shed-graceful-degredation,
2019.

[12] Haryadi S. Gunawi et al. Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production
Systems. In FAST’18, 2018.

[13] M.P. Herlihy and J.M. Wing. Specifying graceful degra-
dation. IEEE Transactions on Parallel and Distributed
Systems, 2(1):93–104, 1991.

[14] Hideaki Hibino, Kenichi Kourai, and Shigeru. Differ-
ence of Degradation Schemes among Operating Systems
— Experimental analysis for web application servers —.
In Proceedings of DSN 2005 Workshop on Dependable
Software - Tools and Methods, pages 172–179, 2005.

[15] David Ke Hong, Qi Alfred Chen, and Z. Morley Mao.
An Initial Investigation of Protocol Customization. In
Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation, FEAST
’17, 2017.

[16] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Charapko.
Metastable Failures in the Wild. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 73–90, 2022.

[17] Lin Huang, I-Hong Hou, Sachin Sapatnekar, and Jiang
Hu. Graceful Degradation of Low-Criticality Tasks in
Multiprocessor Dual-Criticality Systems. pages 159–
169, 10 2018.

[18] Xiaofan Jiang, Jay Taneja, Jorge Ortiz, Arsalan Tavakoli,
Prabal Dutta, Jaein Jeong, David Culler, Philip Levis,
and Scott Shenker. An Architecture for Energy Manage-
ment in Wireless Sensor Networks. SIGBED Rev., 4(3),
jul 2007.

[19] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An end-to-end performance tracing and
analysis system. SOSP, 2017.

[20] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and
Francisco Hernández-Rodriguez. Brownout: Building
More Robust Cloud Applications. In Proceedings of the
36th International Conference on Software Engineering,
ICSE 2014, page 700–711, 2014.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 621

https://www.usenix.org/conference/srecon21/presentation/rodgers-prior
https://www.usenix.org/conference/srecon21/presentation/rodgers-prior
https://www.usenix.org/conference/srecon21/presentation/rodgers-prior
https://services.google.com/fh/files/misc/infrastructure_design_for_availability_and_resilience_wp.pdf
https://services.google.com/fh/files/misc/infrastructure_design_for_availability_and_resilience_wp.pdf
https://services.google.com/fh/files/misc/infrastructure_design_for_availability_and_resilience_wp.pdf
https://sre.google/sre-book/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation
https://sre.google/sre-book/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation
https://sre.google/sre-book/addressing-cascading-failures/#xref_cascading-failure_load-shed-graceful-degredation

[21] HyunJong Lee, Shadi Noghabi, Brian Noble, Matthew
Furlong, and Landon P. Cox. BumbleBee: Application-
Aware Adaptation for Edge-Cloud Orchestration. In
2022 IEEE/ACM 7th Symposium on Edge Computing
(SEC), 2022.

[22] Jingqiang Lin, Bo Luo, Jiwu Jing, and Xiaokun Zhang.
GRADE: Graceful Degradation in Byzantine Quorum
Systems. In 2012 IEEE 31st Symposium on Reliable
Distributed Systems, pages 171–180, 2012.

[23] Spyros Makridakis. Accuracy measures: theoretical and
practical concerns. International Journal of Forecasting,
1993.

[24] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry Li, Ryan McEl-
roy, Michael Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkat Venkataramani. Scal-
ing memcache at facebook. NSDI, 2013.

[25] Alessandro Vittorio Papadopoulos, Jakub Krzywda, Erik
Elmroth, and Martina Maggio. Power-Aware Cloud
Brownout: Response Time and Power Consumption
Control. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 2017.

[26] Jeremy Philippe, Noel De Palma, Fabienne Boyer, and
et Olivier Gruber. Self-adaptation of Service Level in
Distributed Systems. Software: Practice and Experi-
ence, 40(3):259–283, 2010.

[27] Yasushi Saito, Brian N. Bershad, and Henry M. Levy.
Manageability, Availability, and Performance in Porcu-
pine: A Highly Scalable, Cluster-Based Mail Service.
ACM Trans. Comput. Syst., 18(3):298, aug 2000.

[28] Björn Schelter, M. Winterhalder, and J. Timmer. Hand-
book of Time Series Analysis: Introduction and
Overview, chapter 1, pages 1–4. 2006.

[29] Mohammad Shahrad, Cristian Klein, Liang Zheng,
Mung Chiang, Erik Elmroth, and David Wentzlaff. In-
centivizing Self-Capping to Increase Cloud Utilization.
In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC ’17, page 52–65, 2017.

[30] Mohammad Shahrad and David Wentzlaff. Availability
Knob: Flexible User-Defined Availability in the Cloud.
In Proceedings of the Seventh ACM Symposium on
Cloud Computing, SoCC ’16, page 42–56, 2016.

[31] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Im-
proving Storage System Availability with D-GRAID.
ACM Trans. Storage, 1(2):133–170, may 2005.

[32] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat,
Akshay Chander, Zhe Wen, Aravind Narayanan, Patrick
Dowell, and Robert Karl. Holistic configuration man-
agement at facebook. SOSP, 2015.

[33] Kaushik Veeraraghavan, Justin Meza, Sankar-
alingam Panneerselvam Scott Michelson, Alex Gyori,
David Chou, Sonia Margulis, Daniel Obenshain, Ashish
Shah, Yee Jiun Song, and Tianyin Xu. Maelstrom:
Mitigating datacenter-level disasters by draining
interdependent traffic safely and efficiently. OSDI,
2018.

[34] Jagannadh Vempati, Ram Dantu, Syed Badruddoja, and
Mark Thompson. Adaptive and Predictive SDN Control
During DDoS Attacks. In 2020 IEEE International
Conference on Intelligence and Security Informatics
(ISI), pages 1–6, 2020.

[35] Julien Verlaguet and Alok Menghrajani. Hack:
a new programming language for hhvm.
https://engineering.fb.com/2014/03/20/developer-
tools/hack-a-new-programming-language-for-hhvm/,
2014.

[36] J. Robert von Behren, Eric A. Brewer, Nikita Borisov,
Michael Chen, Matt Welsh, Josh MacDonald, Jeremy
Lau, Steve Gribble, and David Culler. Ninja: A Frame-
work for Network Services. In 2002 USENIX Annual
Technical Conference (USENIX ATC 02), June 2002.

[37] Eugene Wiehahn and John Walker. Target Group
Load Shedding for Application Load Balancer.
https://aws.amazon.com/blogs/networking-
and-content-delivery/target-group-load-
shedding-for-application-load-balancer,
2021.

[38] David Yanacek. Using load shedding to avoid overload.
https://aws.amazon.com/builders-library/
using-load-shedding-to-avoid-overload, 2020.

[39] Lidong Zhou, Vijayan Prabhakaran, Venugopalan Ra-
masubramanian, Roy Levin, and Chandramohan A.
Thekkath. Graceful Degradation via Versions: Spec-
ifications and Implementations. In Proceedings of the
Twenty-Sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’07, page 264–273,
2007.

622 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://aws.amazon.com/blogs/networking-and-content-delivery/target-group-load-shedding-for-application-load-balancer
https://aws.amazon.com/blogs/networking-and-content-delivery/target-group-load-shedding-for-application-load-balancer
https://aws.amazon.com/blogs/networking-and-content-delivery/target-group-load-shedding-for-application-load-balancer
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload
https://aws.amazon.com/builders-library/using-load-shedding-to-avoid-overload

Cilantro: Performance-Aware Resource Allocation for
General Objectives via Online Feedback

Romil Bhardwaj*1, Kirthevasan Kandasamy*2, Asim Biswal1, Wenshuo Guo1, Benjamin Hindman1,
Joseph Gonzalez1, Michael Jordan1, and Ion Stoica1

1UC Berkeley
2University of Wisconsin-Madison

Abstract
Traditional systems for allocating finite cluster resources
among competing jobs have either aimed at providing fair-
ness, relied on users to specify their resource requirements,
or have estimated these requirements via surrogate metrics
(e.g. CPU utilization). These approaches do not account for
a job’s real world performance (e.g. P95 latency). Existing
performance-aware systems use offline profiled data and/or
are designed for specific allocation objectives. In this work,
we argue that resource allocation systems should directly ac-
count for real-world performance and the varied allocation
objectives of users. In this pursuit, we build Cilantro.

At the core of Cilantro is an online learning mechanism which
forms feedback loops with the jobs to estimate the resource
to performance mappings and load shifts. This relieves users
from the onerous task of job profiling and collects reliable
real-time feedback. This is then used to achieve a variety of
user-specified scheduling objectives. Cilantro handles the un-
certainty in the learned models by adapting the underlying
policy to work with confidence bounds. We demonstrate this
in two settings. First, in a multi-tenant 1000 CPU cluster with
20 independent jobs, three of Cilantro’s policies outperform 9
other baselines on three different performance-aware schedul-
ing objectives, improving user utilities by up to 1.2−3.7×
and performs comparably to oracular policies. Second, in a
microservices setting, where 160 CPUs must be distributed
between 19 inter-dependent microservices, Cilantro outper-
forms 3 other baselines, reducing the end-to-end P99 latency
to ×0.57 the next best baseline.

1 Introduction
The goal of cluster resource managers is to allocate a finite
amount of scarce resources to competing jobs. When doing
so, we should ensure that the allocations fulfill the users’
and the organization’s overall goals. Traditionally, resource
allocation policies have aimed to provide fairness [16, 24],
maximize resource utilization [61], maximize the amount of

* Co-primary authors.

0 20 40 60 80 10050
CPUs Allocated

0

50

100

150

200

Qu
er

ie
s p

er
 S

ec
on

d
(Q

PS
)

U1 SLO:
120 QPS

U1 Demand:
 40 CPUs

U2 SLO:
62 QPS

U2 Demand:
60 CPUs

Resource-fair allocation:
50 CPUs

U1 Throughput U2 Throughput

Figure 1: Two users, U1 and U2, serving TPC-DS benchmark
queries with different resource-throughput mappings and perfor-
mance goals (SLO). A user’s demand is the amount of CPUs needed
for her SLO.

work done [24], or minimize queue lengths [47,66]. However,
these policies miss, or at best are imperfect proxies for what
matters most to the users: the performance of their jobs in
terms of real-world metrics that impact business (e.g. P99
latency or throughput for a serving job). Barring some re-
cent exceptions [10, 18, 35, 64], resource allocation systems
have traditionally focused on the resources requested by a job
rather than the job’s real-world performance from using those
resources (henceforth, simply performance).

To illustrate the pitfalls of performance-oblivious scheduling,
consider an example where two users, U1 and U2, are sharing
a cluster of 100 CPUs. They are each serving different sets of
TPC-DS [43] queries and care about their throughput: U1’s
service level objective (SLO) is 120 queries per second (QPS),
while the U2’s SLO is 62 QPS. If the goal is to satisfy all
user’s SLOs, how should CPUs be allocated? If it were known
that the resource-to-throughput curves of the two users’ jobs
were as shown in Figure 1, a scheduler can allocate 40 CPUs
to the first job and 60 to the second. However, in practice, this
mapping is usually not available and performance-oblivious
scheduler will likely be suboptimal. For instance, a CPU-
based fair allocation algorithm would allocate 50 CPUs to
each user, which would result in U2 getting just 59 QPS, thus
missing its SLO.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 623

Despite extensive theoretical work [16, 24, 28, 37, 38],
performance-aware scheduling has remained challenging
since the resource-to-performance mappings are usually
unavailable in practice. To obtain these mappings, past
work [15, 58, 64] profile their workloads before execution.
Such profiling has three limitations. First, offline profiled
resource-to-performance mappings may not reliably reflect a
job’s performance in a production environment, as it may not
capture the interference from other jobs [14] and the server’s
performance variability [19]. Second, jobs’ resource require-
ments change with time due to varying load (e.g., arrival rate
of external queries) and profiling typically cannot account
for these changes. Third, such profiling is burdensome for
users and expensive for organizations as it requires a large
pool of resources to exhaustively profile a wide range of re-
source allocations. This informs the first requirement for this
work: obtain the resource-to-performance mappings in the
production environment where the job will be run.

Even if the resource-to-performance mappings are known, the
choice of scheduling policy depends on the objective of the
end-users (e.g. organization, developers). For instance, sup-
pose in Figure 1, we wished to maximize the total throughput
of the cluster, instead of trying to satisfy each user’s SLOs.
In this case, we would allocate ∼64 CPUs to U1 and ∼36 to
U2 for a total throughput of ∼212 QPS. As more realistic ex-
amples, in multi-tenant clusters, we may wish to use policies
which balance between performance and fairness [16, 24, 38].
In contrast, when we provision resources to different microser-
vices of the same application, we are more interested in some
end-to-end performance objective, such as application latency,
and may wish to allocate more resources to critical microser-
vices which bottleneck performance. These objectives can
vary from organization to organization and optimizing for
such different objectives requires different allocation policies.
However, while end users may find it relatively easy to state
their objective (e.g., satisfy all SLOs, maximize throughput),
it is harder to design a policy to achieve it. This informs
our second requirement: support a diverse set of user-defined
scheduling objectives.

To address these requirements, we introduce Cilantro, a frame-
work for performance-aware allocation of a single fungible
resource type (e.g. CPUs, containers) among competing jobs
(Figure 2). In Cilantro, end users first declare their desired
scheduling objective. To satisfy the first requirement, a pool
of performance learners and load forecasters analyzes live
feedback from jobs and learns models to estimate resource-
performance curves and load shifts for each job. To satisfy the
second requirement, Cilantro’s scheduling policies, which are
automatically derived based on the users’ objectives, leverage
these estimated models to compute allocations for each job.
As the learned models become accurate over time, Cilantro
is able to eventually achieve the users’ objectives. This ob-
viates the need for an offline model to estimate the required

Cilantro Scheduler

Job
1

Job
2

Shared Cluster

Online Learners

Policy

User-defined ObjectiveJob 1 40

Job 2 60

Per-Job Feedback

Resource
Allocations

Performance Model
(Job 1)

Performance Model
(Job 2)

 P95_SLO: 100ms
P95_actual: 125ms

2

 P95_SLO: 100ms
P95_actual: 125ms

1

Figure 2: Cilantro overview. Cilantro uses continuous feedback
to dynamically learn each job’s resource-to-performance mappings.
An uncertainty-aware resource allocation policy, instantiated for the
user’s objective, uses these mappings to determine allocations.

resource allocation for a given performance target, and allows
Cilantro to optimize for custom objectives, such as various
fairness or performance criteria. This is a marked departure
from performance-oblivious policies, those based on unreli-
able proxy metrics such as CPU utilization and queue lengths,
and other heuristic-based policies (using either surrogates [51]
or performance metrics [10, 18]) which are designed for very
specific scheduling objectives. Cilantro seamlessly enables
the implementation of performance-aware policies in two
settings: (i) multi-tenant resource allocation for independent
jobs, and (ii) resource allocation for inter-dependent jobs (mi-
croservices) within an application.

Our proposed solution solves two key challenges. First, esti-
mating resource-to-performance mappings online can be no-
toriously difficult due to highly stochastic nature of real-time
production environments, unexpected load shifts, especially
in the early stages when there is insufficient data. To oper-
ate without accurate estimates, Cilantro informs scheduling
policies with confidence intervals of its estimates. Policies
are designed to account for this uncertainty when making
allocation decisions until the estimates become more accurate.
Accounting for this uncertainty helps Cilantro conservatively
explore the space of allocations making it robust to environ-
ment stochasticity and also to the idiosyncrasies specific to
the performance models used.

Second, supporting a diversity of objectives in the same frame-
work is challenging. The monolithic design of end-to-end
feedback-driven approaches [34,49,64] restricts them only the
objective they were originally designed for. Instead, Cilantro
achieves generality in supporting custom objectives by de-
coupling the learning mechanisms from the allocation policy.
This decoupling is necessary as it allows us to account for
the effect of each job’s performance and load shifts on the
objective individually. Moreover, this decoupling has other in-
tangible benefits: it leads to a more transparent design which
is easy to debug than monolithic systems which directly opti-
mize for end-to-end performance, and if online job feedback
cannot be obtained for a particular job, it is easy to swap the
learners with profiled information or other sensible defaults.

624 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We have implemented Cilantro as an open-source ex-
tension to the Kubernetes core scheduler, available
at https://github.com/romilbhardwaj/cilantro. To
evaluate Cilantro, first we deploy it on a 1000-CPU multi-
tenant cluster which includes a diversity of real-world, latency
and throughput-sensitive jobs. On three different allocation
objectives, Cilantro’s policies are able to outperform 9 other
baselines, and is able to compete with oracular policies which
know the resource-to-performance mappings a priori on re-
source efficiency and fairness. When compared to resource-
fair allocation, it is able to increase the performance of 1/3
of users in the clusters by 1.2−3.7×. Second, we evaluate
Cilantro on a 160 CPU cluster where we wish to allocate
CPUs to constituent microservices of an application. Here,
Cilantro is able to minimize the end-to-end P99 latency of the
application to ×0.18 the latency of a resource-fair scheduler
and to ×0.57 of the next-best performance-aware baseline.

2 Background & Related Work
In this section, we compare Cilantro with prior work. Ta-
ble 1 summarizes the key differences of Cilantro against other
resource allocation systems and methods.

Performance oblivious methods: The simplest, yet popular
approach to allocating finite resources among competing jobs,
is to adopt a resource fair policy, which simply divides the
resource equally (or proportional to weights) [2, 30, 32, 42].
As this does not account for jobs’ resource requirements, it is
inadequate in all but the most trivial settings.

Several scheduling frameworks, such as Kubernetes [9],
Mesos [29] and YARN [57], relies on users to submit their
own resource demand. To execute resource allocations from
policies, Kubernetes and YARN use resource reservations
while Mesos negotiates through resource offers. This requires
users to estimate their jobs’ resource needs, which can be
difficult. They focus on one-way resource allocations and do
not provide any mechanisms for the policy to get feedback on
application performance. However, recognizing that end users
may have varied scheduling objectives, these frameworks sup-
port and implement multiple policies.

Methods based on proxy metrics: The most common
approach to account for resource requirements relies on
proxy metrics (e.g. CPU utilization, work-queue lengths).
Quasar [15] offline profiles jobs’ proxy metrics, and has
a fixed operator-centric policy to maximize cluster utiliza-
tion. Paragon [14] accounts for resource heterogeneity and
inter-job interference to achieve performance guarantees. AG-
ILE [46] models the resource pressure, and uses demand pre-
diction to minimize SLO violations. The above works do not
directly account for users’ performance goals and optimize
for singular objectives.

Methods which use offline profiling: Some work has ex-
plored directly incorporating job performance via profiled his-

torical data. Morpheus [33] aims to mitigate performance un-
predictability by defining SLOs and satisfying their resource
demands by using models based on historical data. Ernest [58]
provides methods for estimating performance curves using
limited amount of data, but does not study using these esti-
mates for resource allocation under scarcity. Sinan [64] partly
uses profiled information for auto-scaling in a cloud envi-
ronment. Quincy’s [30] min-cost flow formulation aims at
providing fairness, but relies on offline estimates of data move-
ment costs. For reasons explained in §1, offline profiling can
be problematic and it is desirable to rely on real-time feedback
to determine resource allocations.

Methods which use online feedback: Among related work,
some feedback-driven systems account for performance met-
rics and SLOs in resource allocation. Jockey [18] focuses
on meeting latency SLOs for a single job by modeling inter-
nal job dependencies to dynamically re-provision resources.
Henge [35] defines new utility functions for stream process-
ing workloads and aims to maximize a singular objective –
the sum of utility of all jobs. [48] uses application hints in
for prefetching disk blocks in the OS kernel. Gavel [44] is a
scheduler for ML training workloads in heterogeneous envi-
ronments with varying objectives. Since Gavel is focused on
ML training, it’s policies are designed for throughput and a
greedy optimizer computes the optimal allocation for each
round. On the other hand, Cilantro supports any metric spec-
ified by the user and employs online learning to eventually
converge on the optimal allocation. Finally, in a video stream-
ing application, Minerva [45] studies methods for resource
allocation so that all end users have the same quality of ser-
vice. The highly customized policies used in the above works,
while adequate to the allocation objectives set out by the au-
thors, are not applicable for diverse cluster objectives which
is our goal here.

Variable resource amounts: In other related work, PAR-
TIES [10] allocates resources to jobs within the same server
while always satisfying SLOs. If the SLOs of all jobs cannot
be met, it evicts one of them to a different server; thus, it
does not apply to our setting where there is a fixed amount of
resources and eviction is not possible. Indeed, in §7 we show
that a straightforward adaptation of PARTIES does not work
as well. Sinan [64], DS2 [34], Autopilot [51] and FIRM [49]
consider performance-aware resource allocation using on-
line feedback when there is elasticity in resource availability,
e.g. the cloud. Because these works can scale up to more
resources than originally provisioned, they are not directly
comparable to Cilantro which operates in a fixed cluster set-
ting. While the cloud is an emerging use case, traditional fixed
resource cluster management remains pertinent for privacy
and cost reasons. Moreover, the above work focus on specific
goals and are not designed to handle general allocation ob-
jectives. As an example, FIRM [49] focuses on autoscaling
resources for single applications deployed as microservices to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 625

https://github.com/romilbhardwaj/cilantro

Cilantro
PARTIES [10]

Henge [35]

Autopilot [51]

Jockey [18]

Paragon [14]

Morpheus [33]

DS2 [34]
Quasar [15]

FIRM [49]

Sinan [64]

YARN [57]

Mesos [29]

Performance awareness RW RW RW RW RW RW RW RW PM PM PM PO PO
Works without apriori
performance model? Y Y Y Y N N N N Y Y N NA NA

Supports multiple
allocation objectives? Y N N N N N N N N N N Y1 Y1

Cluster size Fix Var Fix Var Fix Fix Fix Var Fix Var Var Fix Fix

abbr. RW = Real-world metrics, e.g., latency, PM = Proxy metrics e.g., CPU util., PO = Performance oblivious, Fix = Fixed size, Var = Variable size
1 Supports multiple objectives, but only performance oblivious ones

Table 1: Cilantro and related work. Cilantro uses real-world metrics (e.g., latency) to build performance models online, which can be used
to derive custom policies for different objectives.

minimize end-to-end SLO violations, Cilantro operates differ-
ently, reallocating a fixed number of resources according to
user-specified objectives, which can include fairness consid-
erations. Additionally, FIRM uses Reinforcement Learning
with anomaly injection, in contrast to Cilantro, which focuses
on resource-allocation under uncertainty and is agnostic to
the learning method used.

3 Cilantro Architecture
Cilantro is a performance-aware scheduling framework that
can optimize for various scheduling objectives without re-
quiring any a priori knowledge of the resource-performance
mapping of the workloads. The design of Cilantro is informed
by the following two key insights.

[I1] Offline profiling of resource-performance is insuffi-
cient. Performance-aware policies rely on accurate estimates
of resource-to-performance mappings and load shifts. Of-
fline profiling of these resource-performance mappings can
be inaccurate due to unpredictability in server and application
performance [19] and changing traffic patterns [50]. Adapt-
ing to these changes necessitates continuously learning and
predicting these unknowns in an online manner.

[I2] Decoupling learning mechanisms and policies en-
ables diverse scheduling objectives. As different schedul-
ing policies optimize different criteria, it may be challenging
for a scheduling framework to generally support different
policy types. Prior work on feedback-driven resource allo-
cation [34, 49, 64] uses an end-to-end model for allocating
resources for a fixed objective, such as total utility or cost.
Optimizing for a different objective in these systems may
require a complete redesign of the system and policy, or at the
very least an expensive retraining of their models. Decoupling
learning mechanisms from policies allows the model to be
learned once and applied to multiple allocation objectives.
This decoupling also increases transparency in the allocation
decisions made by the scheduler and facilitates debugging.

We leverage these learnings to build Cilantro (Figure 3).
Cilantro is composed of two key components: the central-

Cilantro Scheduler

Performance Learners Load Forecasters

Data
Loggers

Learning Modules

Resource Allocator

Res-Perf
Confidence

Bounds

Load
Confidence

Bounds

Res-Perf
Data

Physical
Resources

Job 1

Job
Server

Cilantro Client

Job
Server

More Jobs

Load Data

Resource Manager (Kubernetes)

Resource Allocations

Perf
Data

Uncertainty-aware Policy

User-defined Objective

Figure 3: The Cilantro scheduler and client architecture. The sched-
uler generates resource allocations for jobs and the clients collect
performance feedback to report to the scheduler.

ized Cilantro scheduler, which is responsible for generating
resource allocations, and the Cilantro clients—lightweight
sidecars co-located with each job—which fetch a job’s per-
formance metrics and send them to the Cilantro scheduler.
Informed by [I1], the Cilantro scheduler employs online learn-
ing to create increasingly accurate models of job performance
and load. Guided by [I2], the policy optimizes a user-defined
objective by polling these models for a resource-performance
estimates to produce a resource allocation.

Assumptions & terminology. In this work, we will focus
on jobs which can scale elastically with the number of re-
sources with corresponding gains in performance. Examples
of such workloads include stateless or stateful distributed

626 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

services (e.g., prediction serving [13], memcached [21], Cas-
sandra [40]), distributed computation (ML training, MPI jobs)
and distributed frameworks (e.g. Hadoop [52], Spark [62]).
Some of these can be viewed as a collection of several tasks
whose job size may vary with time, such as in serving jobs.
Each task may refer to a query whose arrival rate may change
with time. For jobs with such varying query rates, we will
refer to the instantaneous rate of external query arrival as the
load (measured in queries per second (QPS)). Finally, we
assume there is a fixed amount of a single, fungible resource
type that must be allocated.

Cilantro scheduler: The Cilantro scheduler is designed
as a centralized asynchronous event driven system. Event
sources include timers, performance updates received from
the Cilantro clients, and cluster state updates from the under-
lying resource manager. Below, we describe the scheduler’s
modules. Specific implementation details are available in §6.

1. Data loggers. Application metrics pushed from Cilantro
clients are stored in memory-backed tables. They relay these
metrics to the performance learners and load forecasters.

2. Performance learner. The performance learner learns a
job’s performance as a function of the resource allocation and
the load using an associated model. It periodically polls the
data logger for new data and updates the model. The learner’s
update frequency is constrained only by the velocity at which
the model can be updated. One instance of a performance
learner is maintained per application. A performance learner
provides get-perf-ucb and get-perf-lcb interfaces for
a policy, which return upper and lower confidence bounds for
the performance as a function of the resources and load.

3. Load forecasters. In many real-world deployments, the job
size could vary with time depending on the real-time traffic,
which should be accounted for when allocating resources.
The goal of the load forecaster is to estimate this load for the
duration of a future allocation based on past observed loads
via an associated time series model. It offers get-load-ucb
interface for a policy which returns an upper confidence bound
for the future load. Load forecasters are periodically updated
by polling from the data loggers.

4. Uncertainty-aware Policy. Policies compute allocations
in order to optimize for a user-specified scheduling objective.
In an online setting, using direct estimates of the performance
may fail as it does not reflect the uncertainty in the model.
Therefore, Cilantro’s policies leverage confidence intervals of
these estimates to account for this uncertainty in a principled
manner when making allocation decisions (§4).

5. Resource allocator. The resource allocator is responsible
for executing the resource allocations by interfacing with the
underlying cluster manager. This module is driven via an
allocation expiry event, upon which it invokes the policy’s
compute-alloc method and allocates the resources. Alloca-

tion expiry events are raised based on a timeout, resulting in a
new round of allocations. In practice, the duration of an alloca-
tion round is limited by the agility of the environment. Since
scaling jobs requires time, changing resource allocations too
frequently can result in job thrashing (having to scale down
before it has a chance to utilize new resources).

Cilantro client: The Cilantro client is a lightweight side-car
container whose purpose is to to poll the job to get its cur-
rent performance, process it, and publish it to the scheduler’s
data loggers. The primary task for the client is to extract met-
rics from their assigned job. Many systems expose REST
endpoints to query system performance [3, 4], but often the
applications also use monitoring tools such as Prometheus
or Grafana. Depending on the job, the performance metric
extraction logic is specified by the users. In §5, we describe
built-in fallback options if job metrics are not available.

4 Policies
We now describe our policies for performance-aware resource
allocation in two settings: multi-tenant resource allocation
in a fixed cluster (§4.1), and allocating finite resources to
constituent microservices of an application (§4.2).

Set up & notation: We will denote the number of jobs (or
microservices) by n, the amount of resources by R, and an
allocation by a = (a1, . . . ,an), where a j is the amount of re-
sources allocated to job (or microservice) j. A scheduler
should allocate these resources so that ∑

n
j=1 a j ≤ R.

4.1 Resource allocation in shared clusters
Cilantro supports two classes of performance-aware alloca-
tion objectives in the multi-tenant setting: welfare-based, and
demand-based. Our primary contributions are in §4.1.2 where
we derive uncertainty-aware online variants of these policy
classes. But first, we will review some common examples of
such objectives in §4.1.1. For what follows, we will need to
define the performance, demand, and utility of a job.

Performance: The resource/load-to-performance mapping
(henceforth simply performance or performance mapping) p j
of a user’s job j refers to some raw metric of interest, which,
say, can be obtained from a monitoring tool. We write the
performance p j(a j, ℓ j) as a function of the resources received
a j and the load ℓ j. As we are allocating a single resource type,
a j is a single number, as is ℓ j. For example, in a serving job
with a P95, 100 ms latency SLO, the performance may be the
fraction of queries completed in under 100 ms, and the load
may refer to the external arrival rate of queries.

Demand: If a job has a well-defined SLO, we define the de-
mand d j to be the minimum amount of resources needed to
achieve this SLO. The demand depends on the job’s perfor-
mance curve p j, SLO, and load ℓ j.

Utility: The utility u j of a job is the practical value derived

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 627

Resources
0.0

0.5

1.0

Pe
rfo

rm
an

ce SLO

dj
Resources

0.0

0.5

1.0

Ut
ilit

y

SLO

dj

(a)
Resources

0.0

0.5

1.0

Ut
ilit

y

(b)

SLO

dj
Resources

0.0

0.5

1.0

Ut
ilit

y

SLO

dj

(c)

Performance Utility

Figure 4: Three candidates for SLO-based utility functions. The left-most figure shows a job’s performance p j as a function of the resources
(for fixed load). In (a), the utility scales linearly with performance until the SLO, i.e u′j(p) ∝ min(p,SLO), whereas in (b) it scales quadratically

u′j(p) ∝ min(p,SLO)2, and in (c) it scales with the square-root u′j(p) ∝ min(p,SLO)
1/2. Here, (b) captures settings where even small SLO

violations are critical while (c) captures settings where small SLO violations are not very significant.

due to its performance. Generally, u j is a non-decreasing
function of the performance and we can write u j(a j, ℓ j) =
u′i(p j(a j, ℓ j)) for some non-decreasing function u′j.

Examples of utilities. The simplest option is to set the
utility to be equal to the performance u j = p j, i.e., u′j is the
identity. However, we may also choose a utility which is more
applicable when there are well-defined SLOs. Fig. 4 illustrates
three candidates for u′j: the maximum utility for any job is
set to 1, which is achieved for any performance greater than
the SLO; for performances below the SLO, we may set the
utility to (a) decrease proportionally with SLO violation, (b)
decrease sharply in settings where small SLO violations are
critical (e.g., with external customers where SLO violations
can lead to penalties [1] and a loss of credibility), (c) decrease
gradually when small SLO violations are not critical (e.g., soft
SLOs internal to an organization). Such utility forms which
are ‘clipped’ at the SLO provide a simple way to compare
jobs with heterogeneous performance metrics and SLOs, such
as latency and throughput. Prior work have also used similar
forms of utility [23,35,60]. For these reasons, our experiments
also use these forms, although we emphasize that Cilantro can
handle any utility form which increases with performance.

4.1.1 Review of multi-tenant allocation when perfor-
mance mappings are known

We will first review two classes of multi-tenant allocation
objectives supported in Cilantro—welfare-based and demand-
based—and three examples of such objectives. In §4.1.2, we
will develop online learning policies that achieve the same
objectives when performance mappings are unknown.

Welfare-based objectives: These policies aim to maximize
a given cluster-wide welfare function W , which is a function
of the utility of each job, i.e., W =W (u1, . . . ,un). Below, we
describe two common welfare-based objectives.

(i) Social welfare (a.k.a. Kelly mechanism [38]): We choose
the allocation a which maximizes the social welfare (the aver-
age utility), i.e. a = argmaxWS, where,

WS =
1
n ∑

n
j=1 u j(a j, ℓ j) =

1
n ∑

n
j=1 u′j(p j(a j, ℓ j)). (1)

As we show in Figure 5, this notion of fairness allocates

more resources to “high-performing” users, i.e those who can
generate large utility with a small amount of resources.

(ii) Egalitarian welfare: Here, we choose the allocation a
which maximizes the egalitarian welfare (minimum of all
utilities), i.e. a = argmaxWE, where

WE = min
j∈{1,...,n}

u j(a j, ℓ j) = min
j∈{1,...,n}

u′j(p j(a j, ℓ j)). (2)

This allocates more resources to “struggling” jobs which need
more resources to achieve large utility (Figure 5).

Demand-based policies: These policies apply when jobs
have a well-defined SLO and it is possible to define its de-
mand d j. Such policies will compute allocations based on the
demands of all jobs. This requires knowledge of the demand,
which in turn depends on the performance mapping.

(iii) No justified complaints (NJC) fairness [16, 17, 28]: One
class of demand-based policies which adopt the NJC fairness
paradigm guarantee an equal share of R/n for each job. If
the job’s demand is larger than R/n, it is allocated at least
(but possibly more than) this share. But, if the job’s demand
is smaller, the excess resources may be allocated to other
jobs to improve overall resource usage. A user can have no
justified complaints since they are either guaranteed to satisfy
their SLOs or their utility will be larger than if they were to
have R/n resources. To quantify this, we define the following
metric. The term inside the minimum measures the utility
achieved by job j with allocation a j relative to the utility
when using its fair share of R/n resources.

FNJC = min
j∈{1,...,n}

u j(a j, ℓ j)

u j(R/n, ℓ j)
= min

j

u′j(p j(a j, ℓ j))

u′j(p j(R/n, ℓ j))
(3)

In contrast to metrics such as the Jain’s index [31], FNJC
accounts for users’ performance when evaluating fairness.
This metric has a maximum value of 1. Below, we describe
a demand-based policy [16] which achieves FNJC = 1 while
also using the resources efficiently as also shown in Figure 5.

An NJC policy: This policy proceeds iteratively. In the first
round, it sets each user’s “share” to be R/n. It allocates d j
to each user j for whom d j is smaller than the share. If n′

628 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

job 1 job 2

job 3

allocation (utility) metrics
Policy job 1 job 2 job 3 WS WE FNJC

Social welfare 10 (1.0) 50 (1.0) 0 (0.0) 0.67 0.0 0.0
Egalitarian welfare 4 (0.4) 20 (0.4) 36 (0.4) 0.4 0.4 0.4
NJC fair 10 (1.0) 25 (0.5) 25 (0.28) 0.59 0.28 1.0
Resource fair 20 (1.0) 20 (0.4) 20 (0.22) 0.54 0.22 1.0

Figure 5: Comparison of the three (oracular) fair allocation criteria described in §4.1.1 in a synthetic example with 60 CPUs. Left: Utility
curves for three jobs. The y axis is the utility and the x-axis is the number of resources. For simplicity, we have ignored the loads and assumed
that utilities increase linearly up to the demand. The total demand is 150, whereas only 60 resources are available. Right: The allocations and
utilities for each job under the three criteria. We have also shown the WS (1), WE (2), and FNJC (3) metrics for each policy.

users were allocated R′ resources in the first round, in the
second round it sets each user’s share to be (R−R′)/(n−n′).
It repeats this until all the remaining users’ demands are larger
than their share. It then divides up the remaining resources
equally among the remaining users. While this policy may
not maximize any welfare, it achieves Pareto-efficient user
utilities. Another advantage of this policy is that it is strategy-
proof, i.e a user does not gain additional utility by falsely
stating their demand [24, 28, 36].

This concludes our review of multi-tenant resource alloca-
tion objectives when performance mappings are known. We
mention that prior work have used these objectives in various
contexts with custom utilities. For instance, social welfare
has been used in stream processing [35] and wireless net-
works [55], egalitarian welfare in video streaming [45], and
several NJC policies are implemented in Mesos [29].

4.1.2 Online learning policies in Cilantro

We will now develop our online policies. Our policies will
operate on lower and upper confidence bounds obtained from
the load forecasters and performance learners instead of the
direct estimates; doing so accounts for the uncertainty in the
learned models and encourages a policy to conservatively
explore the space of allocations until the estimates become
accurate. Cilantro’s policies will proceed sequentially in al-
location rounds. On round r, Cilantro chooses an allocation
a(r) = (a(r)1 , . . . ,a(r)n) based on the feedback from all jobs up
to now and the specific scheduling objective.

Welfare-based online policies: For welfare-based policies,
Cilantro adopts the optimism in the face of uncertainty (OFU)
principle [7]. OFU stipulates that, to maximize an uncertain
function, we should choose actions which maximize an upper
confidence bound (UCB) on the function. Both theoretically
and empirically, OFU is known to outperform other strategies
which use direct estimates or those which are pessimistic (i.e.
maximize lower confidence bound). An in-depth exploration
of OFU is beyond the scope of this work, but we refer the
reader to relevant literature (e.g. [6, 8, 25, 53]).

While OFU is a well established design paradigm, most OFU
policies are designed for end-to-end systems which output

a single reward signal. Adapting OFU for general welfare-
based policies requires studying how the uncertainty in the
performance and load translate to a UCB Ŵ on the welfare
W which we wish to maximize. Since W is non-decreasing
in the utilities u j, we can obtain a UCB for W by plugging in
UCBs û j for the utility u j, i.e Ŵ =W (û1, . . . , ûn). Similarly,
since u j is non-decreasing in the performance we can obtain
a UCB by plugging in a UCB p̂ j for p j, i.e û j = u′j(p̂ j). This
leads to the following choice of allocation on round r.

a(r) = argmax
a∈A(r)

W
(

u′1
(

p1
(
a1, ℓ̂1

))
, . . . , u′1

(
p1
(
an, ℓ̂n

)))
(4)

Above, since the exact load cannot be known, we conserva-
tively over-estimate it via a UCB ℓ̂ j on the load. Here, A(r)

is the allocation space on round r which is defined by two
constraints: first, the total allocation cannot be larger than R,
i.e. ∑ j a j ≤ R; second, the current allocation cannot deviate

too much from the previous allocation, i.e. a(r−1)
j −B ≤ a j ≤

a(r−1)
j +B for all j, where B is a parameter to be specified. We

impose the second constraint since large changes to alloca-
tions can have unpredictable effects on a job’s performance;
moreover, they take a long time to actuate, resulting in unreli-
able feedback while resources are being scaled up/down.

To optimize (4), one can use any off-the-shelf optimizer such
as evolutionary algorithms, hill climbing, or integer program-
ming which can handle the linear constraints for A(r). In our
implementation, we used an evolutionary algorithm (details
in the appendix). Finally, we describe instantiations of this
principle for the two welfare-based policies we saw in §4.1.1.

(i) Cilantro-SW: To emulate the social welfare policy
in §4.1.1, on round r, we use the UCB for l̂ for load and
p̂ for performance. Thus, we choose an allocation

a(r) = argmax
(a1,...,an)∈A(r)

∑
n
j=1 u′j

(
p̂ j(a j, ℓ̂ j)

)
.

(ii) Cilantro-EW: To emulate the egalitarian welfare policy
in §4.1.1, on round r, we choose an allocation

a(r) = argmax
(a1,...,an)∈A(r)

min
j∈{1,...,n}

u′j
(

p̂ j(a j, ℓ̂i)
)
,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 629

SLO

Figure 6: Illustration of Cilantro’s uncertainty-aware demand-based
policies. We first obtain a UCB ℓ̂ j from the load forecaster, which
ensures that we have a conservative estimate on the job’s load. In
the figure, the x axis is the amount of resources a j that could be
allocated to job j. We show the SLO (pink), the slice of the unknown
performance curve (blue) when the load is ℓ̂ j, and the confidence
region obtained from past data (green). The LCB p̂ j and UCB p̂ j
on p j(a, ℓ̂ j) are given by the lower and upper boundaries of the
confidence region (solid green lines). A confidence interval for the
demand (orange) can be obtained by the region where p̂ j, p̂ j intersect
the SLO line. To obtain a recommendation, we compute a UCB d̂(r)

j
on the demand (where SLO intersects p̂ j) and d(r)

j via equation (5).

Demand-based online policies: For demand-based policies,
on round r, we will use the confidence intervals from the
performance learners and load forecasters to obtain conser-
vative recommendations d(r)

j for job j’s demand. Then, we
compute the allocations a(r) for this round by invoking the
same demand-based policy with the recommended demands
{d(r)

1 , . . . ,d(r)
n } instead of the true demands.

Our method for obtaining demand recommendations is based
on [36]. To describe this in more detail, observe that for
demand-based policies it is sufficient to accurately estimate
the demand well, i.e. it is not necessary to learn the entire
performance mapping well. We have illustrated our strategy
for obtaining the demand recommendation in Figure 6. First,
we will denote by d̂(r)

i , the UCB for the demand obtained as
shown in Figure 6. As a conservative choice for this demand,
we may wish to choose d̂(r)

i as the recommendation. However,
we found that in practice this was overly conservative and
the resulting allocations were very slow to adapt to feedback.
Therefore, we also wish to use a more aggressive exploration
strategy to reduce the uncertainty in our demand. We use:

d
(r)
j = argmax

a j

min
(

p̂ j(a j, ℓ̂ j)−SLO, SLO− p̂ j(a j, ℓ̂ j)
)

(5)

To illustrate this rule, consider Figure 6 where min(p̂ j −
SLO, SLO− p̂ j) is negative for large allocations when the
performance LCB p̂ j is larger than the SLO and for small
allocations where the performance UCB p̂ j is smaller than
the SLO. By maximizing (5), we are choosing points inside
the confidence interval for the demand where both p̂ j, p̂ j are

further away from the SLO; so if job j were to receive d
(r)
j

resources, then we are most likely to reduce the demand un-
certainty. However, choosing d

(r)
j as the recommendation can

lead to overly aggressive exploration so our final recommen-
dation d(r)

j is then obtained via,

d(r)
j = clip

(
βd̂(r)

j +(1−β)d
(r)
j , d(r−1)

j −B, d(r−1)
j +B

)
(6)

Here, β ∈ (0,1) is a parameter to trade-off between d̂(r)
i and

d
(r)
i . We clip this value between d(r−1)

j −B and d(r−1)
j +B

to control wide deviations in resource allocations (similar to
before). Next, we formally state Cilantro’s instantiation of the
demand-based NJC procedure described in §4.1.1.

(iii) Cilantro-NJC: Here, we simply compute the recom-
mended demand via (5), and then invoke the NJC procedure
described in §4.1.1, In §7.1 we show that Cilantro-NJC re-
tains some of the strategy-proofness properties of NJC.

4.2 Microservice resource allocation
Now, we will look another use-case for Cilantro, where we
wish to optimize an end-to-end performance metric p of an ap-
plication composed of several interdependent microservices
(jobs). Examples for p include the total throughput of the ap-
plication, the negative P99 latency, or even any combination
of the two. Here, the entire fixed set of resources is available
to the application and must be allocated between microser-
vices for to maximize p. There are two main differences in
this setting when compared to the multi-tenant setting which
introduces new challenges. First, while assuming jobs run by
different users are independent is reasonable when we aim to
optimize for fairness, this is no longer true now since microser-
vices within an application may have complex dependency
graphs (see Figure 12-Left). Second, while an application’s
performance is clearly tied to the performance of individual
microservices, it is not possible to write it explicitly, as we
did for the social or egalitarian welfare.

We overcome these challenges by modeling the end-to-end
performance p as a direct function of the allocation to each
microservice and the external load faced by the application.
That is, we write p(a, ℓ), where, a = (a1, . . . ,an) is a vector
of allocations for each microservice and ℓ is the external load
on the application. On allocation round r, our online learning
policy, which adopts the OFU principle, chooses an allocation
vector which maximizes an upper confidence bound p̂ on the
performance obtained from the performance learners:

a(r) = argmax
a∈A(r)

p̂(a, ℓ). (7)

While this circumvents accounting for individual microser-
vice performance and dependency graphs, we now face the
challenge of optimizing for an n–dimensional allocation with
just one feedback signal. In contrast, in the multi-tenant set-
ting we had more feedback (one for each job).

630 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Discussion
We now present a discussion on Cilantro’s operation under
various adversarial conditions that may occur in deployment.

When online job feedback is unavailable. Cilantro provides
three fallback options when online feedback is not available.
First, Cilantro allows a user to use a profiled model (using
historical data) instead of online feedback. Second, it allows
using proxy metrics from the Kubernetes API instead of real-
world performance. In such cases, a user should specify how
these proxies are tied to their utility and/or demand. Third, if
neither of these is possible, we allow the user to directly sub-
mit an estimate for their resource demand which will then be
fed to the policy when determining allocations. In such cases,
we assume that utility increases linearly up to the demand
when computing allocations. We evaluate this fallback option
in §7.3. Due to Cilantro’s decoupled design, these fallback
options can be effected with simple modifications to a job’s
performance learner.

Learning in unpredictable environments. Some situations,
such as unexpected load spikes for web services or inter-
ference between jobs, are fundamentally hard to predict.
Cilantro’s uncertainty-aware design provides a degree of re-
silience against these unpredictable changes, as we show in
it’s robustness to noise in load and resource demand estimates
in Section 7.3. However, continued extreme fluctuations in
the loads can negatively impact Cilantro’s performance. To
avoid hysteresis when reallocating resources, future work can
explore averaging loads over dynamically sized windows or
including rules to temporarily override Cilantro’s policy.

Limitations and Future Work. Cilantro currently supports
allocating only a single resource type. In our current im-
plementation, multiple resource types can be bundled into
grouping units, such as VM SKUs with a fixed ratio of CPU,
Memory and GPUs, which can then be scheduled by Cilantro.
However, such bundling is not always possible, especially
when different jobs have different resource requirements. Ex-
tending Cilantro to handle multiple resource types is possible
for welfare-based policies. However, learning and optimiza-
tion can be challenging since the search space is now very
large. Another related limitation is that Cilantro cannot handle
non-fungible resource types. Cilantro also does not support
online learning versions of market-based resource allocation
policies in the multi-tenant setting [39, 56, 63]. These are
avenues for future work to improve Cilantro. Cilantro also
assumes utilities increase with increasing resources, however
some workloads may demonstrate inverse scaling, especially
when allocated resources become fragmented across physical
nodes. Future work can relax this assumption by applying
learning techniques robust to non-convex utility shapes. We
also note that Cilantro can support multiple SLO parameters
(e.g., for an inference job, ensuring a minimum latency and
accuracy) by wrapping them in a single utility function, and

the design of such utility functions can be explored by future
work.

6 Implementation
The Cilantro scheduler is implemented in 7600 lines of Python
code, as a standalone scheduler for Kubernetes. Resource
reallocation events are triggered by a timer-based event, which
is raised every 2 minutes in our experiments. This window
was chosen based on the fact that Kubernetes pods could be
created and destroyed in 5-15 seconds. A 2 minute allocation
round is long enough for the pod to reach its steady state that
performance metrics from the job would be reliable, while at
the same time frequent enough to adapt to changes in the load
and learned performances.

To execute updated resource allocations received from poli-
cies, we horizontally scale the workloads by adding more
replicas to their Kubernetes deployment. Newly created pods
rely on the Kubernetes service discovery mechanism to con-
nect to the workload’s other servers. The workload is respon-
sible for load balancing queries onto the new servers. Work-
loads write logs to a volume shared with the sidecar cilantro
client. The client parses performance metrics and then pub-
lishes them to the scheduler over gRPC. These messages also
act as heartbeats to inform liveness to the scheduler.

The frequency of performance feedback depends on the ap-
plication and the environment. For instance, database serving
jobs may report feedback multiple times in a minute, while
ML training jobs may do so once every few minutes. To
avoid bottlenecks, we use an asynchronous design for Cilantro
where each component operates in a push or pull based frame-
work. This allows high frequency components to operate at
their maximum rate while allowing slower components, such
as learners for low-frequency jobs or cluster managers, to be
polled when required.

Specifying utilities and objectives. Utilities of jobs are cal-
culated based on the performance metrics collected by the
Cilantro clients in the last resource allocation round. To com-
pute the utilities, application developers specify utility as a
python method which operates on a list of floating point num-
bers representing the performance metrics observed in the
previous resource allocation round. Similarly, the scheduling
objective (e.g., social welfare from §4.1.1) is also defined by
the cluster operator as a python method operating on the list
of utilities from all jobs.

Learning models and load forecasters. For the multi-tenant
setting, we used a tree-based binning estimator [8,27,36] with
Lipschitz constant 10 for each job’s resource-to-performance
estimation. This is a simple and computationally efficient
estimator, but does not work well in high dimensions. There-
fore, for the microservices setting where we have a high di-
mensional estimation challenge, we use kernel ridge regres-
sion [59,65] with a Matern kernel with smoothness parameter

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 631

set to 2.5. In both settings, for the load forecasters, we use
an autoregressive moving average (ARMA) model [41] with
autoregressive order 1 and moving average order 1. Finally,
all confidence bounds were computed at the 90% level, mean-
ing that the probability that the true parameter lies between
the upper and lower confidence bounds is 90%. We used the
above learning models since they are simple and have few tun-
able hyperparameters. With Cilantro’s modular design, these
can be easily swapped with any other model as long as they
provide reliable uncertainty estimates.

Other policy parameters: For all our policies, we set the
parameter B which controls the deviation from the previous
allocation to 10. For demand-based policies, we set the param-
eter β which trades off between conservative and aggressive
exploration to 3/4. For the welfare-based policies in §4.1 and
the microservices use case in §4.2, we use evolutionary algo-
rithms to optimize the UCBs. The exact implementation is
described in the appendix.

7 Evaluation
We evaluate Cilantro in two settings described in §4.

1. In the multi-tenant setting, Cilantro’s online learning
policies, which do not start with any prior data, are com-
petitive with oracular policies which have access to jobs’
resource to performance mappings obtained after several
hours of profiling. Moreover, they outperform 9 other
baselines on the metrics outlined in §4.1.

2. In the microservices setting, Cilantro is able to support
the completely different objective of minimizing end-
to-end latency. It outperforms three other baselines and
reduces the P99 latency to ×0.57 that achieved by the
next best performance-aware baseline.

3. In our microbenchmarks, we show that Cilantro’s al-
location policies are inexpensive, evaluate its fallback
options when performance metrics are unavailable, and
demonstrate its robustness to errors in feedback and
choices for performance learner and forecaster models.

7.1 Multi-tenant cluster sharing
We first evaluate Cilantro’s multi-tenant policies (§ 4.1.2) on
a 1000 CPU cluster shared by 20 users.

Workloads. We use three classes of workloads—database
querying, prediction serving and machine learning training—
which are used to create multiple jobs. The database querying
workload runs TPC-DS [43] queries on replicated instances of
sqlite3 database and uses the query latency as the performance
metric. The prediction serving workload runs queries on a
ML model (random forest regressor) trained on the news pop-
ularity dataset [20]. The ML training workload trains a neural
network on the naval propulsion [12] dataset using stochas-
tic gradient descent. The database querying and prediction
serving workloads use the query latency as the performance

metric while ML training uses batch throughput to measure
performance. Resource-performance mappings for informing
the oracle baselines in §7.1 were obtained through offline pro-
filing of all workloads. These profiles are visualized in Figure
7. More details of the workloads, including workload-specific
parameters are available in the appendix.

Traces. Queries to the database and prediction serving work-
loads are dispatched by a trace-driven workload generator.
We use the Twitter API [5] to collect a trace of tweet arrival
rates at Twitter’s Asia datacenters; to bring to parity with our
cluster, we subsample the arrival rate by a factor of 10. For the
ML training workload, we draw queries from an essentially
infinite pool to create a constant stream of work.

Experimental set up. We use a cluster of 250 AWS m5.xlarge
instances (4 vCPUs each). The Cilantro scheduler runs on its
own dedicated m5.xlarge instance. We use the above 4 work-
loads to create 20 jobs as follows: 10 database jobs with P90,
P90, P90, P90, P95, P95, P95, P95, P99, P99 latency SLOs of
2s; 3 prediction serving jobs with P90, P90, and P95 latency
SLOs of 2s; 7 ML training jobs with throughput SLOs of
400, 400, 450, 450, 500, 500, and 500 QPS. To reflect settings
where small SLO violations may be either critical or inconse-
quential, we discount the utility via one of the three options
in Fig. 4 for each job. Detailed information on the users’ jobs
is given in the appendix. The estimated total amount of re-
sources based on the median demand was 1637 CPUs; hence,
even at full capacity, not all users can satisfy their SLOs. We
evaluate all baselines for 6 hours.

7.1.1 Baselines
Oracular policies. We implement the three policies in §4.1.1
with oracular access to the true performance mappings (ob-
tained by exhaustively profiling workloads for at least 4 hours).
They are Oracle-SW, Oracle-EW, for maximizing social/egal-
itarian welfare and the Oracle-NJC fairness policy.

Cilantro policies. We evaluate Cilantro-SW, Cilantro-EW,
and Cilantro-NJC, as described in Sec. 4.1.2.

Other heuristics. We implement four methods for fairness
and maximizing welfare. While not based directly off specific
prior work, such methods are common in the scheduling litera-
ture [13,26]. Resource-Fair simply allocates an equal amount
of resources to each job. EvoAlg-SW and EvoAlg-EW are
evolutionary algorithms for social and egalitarian welfare;
the same procedure used for Cilantro’s welfare policies, but
now operating directly on the performance metrics. Greedy-
EW starts by allocating resources equally; on each round, it
evaluates job utilities in the previous round and takes away
one CPU each from the top half of the users who had high
utility and allocates it to the bottom half.

Baselines from prior work. We adapt five feedback-
driven methods from prior work - Ernest [58], Quasar [15],
Minerva [45], Parties [10] and MIAD (Multiplicative-

632 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: Performance vs resource-allocation-per-unit-load obtained after profiling the database querying, predicition serving and ML training
workloads. The blue curve is the average performance value and the shaded region is the 2σ confidence interval. For the latency-based
workloads (DB-0, DB-1, and prediction serving), we show the number of resources per unit load (arrival QPS) on the x-axis and the fraction of
queries completed under 2s on the y-axis. For the ML training workload, we show the number of resources on the x axis the amount of data
processed per second on the y-axis. To obtain accurate estimates, we sampled low resources allocations more densely.

Increase/Additive-Decrease) [11]. In particular, we note that
applying the Parties notion of migration in our setting would
imply moving the job to a different cluster or increasing the
size of the cluster, both of which are beyond scope for this
fixed cluster setting. Details on the specific adaptations are
available in the appendix.

7.1.2 Results & Discussion

Evaluation on performance-aware fairness metrics. We
first compare all 15 baselines on the social welfare (1), egal-
itarian welfare (2), and the NJC fairness criteria (3). Fig. 8
illustrates the results by plotting the time-averaged NJC fair-
ness vs the two welfare criteria. Table 2 (in the appendix)
tabulates these values explicitly with error bars. While the
oracular methods perform best on their respective metrics, we
find that the online learning policies in Cilantro come close to
matching them. Resource-Fair achieves a perfect NJC score
by definition, but performs poorly on social and egalitarian
welfare as it is performance oblivious.

We found that Greedy-EW, Parties, and MIAD were sensitive
to the amount by which we changed the allocations based on
feedback; when tuning them, we found that they were either
too slow or too aggressive when responding to load shifts.
Next, the learning models used by Quasar and Ernest were
not able to accurately estimate the demands in our experiment.
Finally, the evolutionary baselines were inefficient, taking a
long time to discover the optimal solution. They, however,
were effective within Cilantro’s welfare policies when you
need to optimize a cheap analytically computable function as
they can be run for several iterations.

Despite our general approach, Cilantro’s policies are able
to outperform Minerva and Greedy-EW which are designed
specifically to maximize egalitarian welfare. It also outper-
forms generically designed evolutionary algorithms for the
social and egalitarian welfare. While it may indeed be pos-
sible to design more efficient fine-tuned policies for a given
objective, the flexibility provided by Cilantro’s approach is
beneficial to end users. It should not be surprising that Cilantro
outperforms other systems such as Ernest, Quasar, Parties,
and MIAD as our policies are designed to explicitly optimize

for these objectives. But this is precisely the goal of Cilantro.
End-users can declare their desired objective, and Cilantro
will automatically derive policies to achieve them.

To illustrate how Cilantro improves with feedback, in Fig. 9,
we have shown how the three objectives evolve over time for
Cilantro’s policies. Resource-Fair trivially achieves FNJC = 1
at start since our initial allocation is always 50 CPUs to each
job (i.e Resource-Fair). However, it does poorly on welfare
due to poor cluster usage. The goal behind Cilantro-NJC is
to achieve FNJC = 1 while also achieving good cluster us-
age. This causes the initial drop in performance for Cilantro-
NJC as it explores better allocations that still maximize FNJC.

Table 2 presents the detailed results of our multi-tenant cluster
resource sharing evaluation. This table adds a metric which
measures the useful resource usage.

Useful resource usage = ∑
m
j=1 min(a j,d j) (8)

Here, the d j is user j’s resource demand. This demand-based
metric, measures how much useful work is being done by
the cluster as allocations beyond the demand do not increase
a user’s utility (see Fig. 4). We find that Cilantro’s policies
achieve the maximum useful resource usage in their respective
classes. This is because learning resource demands allows
Cilantro to reallocate resources from jobs which have already
achieved maximum utility to jobs which can benefit from
increased resources.

Individual user utilities. To delve deeper into the trade-offs
of the three paradigms discussed in §4.1, we have shown the
individual user utilities achieved by these three policies in
Fig. 10. We see that both the social and egalitarian welfare
policies result in some users being worse off than receiving
their fair allocation of 1000/20 = 50 CPUs. This results in an
NJC fairness violation. In contrast, in Cilantro-NJC, users are
at most marginally worse off than their fair share. However, a
third of the users achieve a noticeably higher utility than their
fair share utility, with more than 3× for a few of them. We
also see that Cilantro-EW has maximized egalitarian welfare
by taking resources away from those who achieve high utility
and giving it to those who do not, while Cilantro-SW has

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 633

Figure 8: NJC fairness vs the social and egalitarian welfare (see §4.1.1) for all policies. We report the average value over the 6 hour period.
Higher is better for all metrics, so closer to the top right corner is desirable. The Oracle-SW, Oracle-EW policies optimize for the social and
egalitarian welfare when the performance mappings are known and Oracle-NJC achieves maximum fairness while improving cluster usage.
The corresponding Cilantro policies are designed to do the same without a priori knowledge of the performance mappings.

Figure 9: Convergence over time of social, egalitarian welfares and
NJC fairness for the three Cilantro policies.

maximized social welfare by allocating more resources to
jobs that can quickly achieve high utility.

Evaluating Strategy-proofness. We next evaluate Cilantro
policies for strategy-proofness. A policy is said to be strategy-
proof if an unscrupulous user cannot increase the utility of
their job by misreporting their performance metrics to the
scheduling policy. For this, we repeat the same experiment
set up; all jobs behave exactly as before except the db16 job
which lies about its performance by either under-reporting by
a factor ×1/2, or over-reporting by a factor ×2. By under-
reporting, the user gives the impression that more resources
are required to reach its SLO; in contrast, by over-reporting,
a user is deceiving the scheduler to prioritize their job as they
can achieve high utility with few resources. In Fig. 11, we
report the utilities achieved by db16 under these untruthful
behaviors. We see that for Cilantro-NJC, the job’s utility does
not increase when over-reporting and decreases when under-
reporting, leaving no incentive for the user to be untruthful.

In contrast, for Cilantro-EW, a user stands to gain by under-
reporting while for Cilantro-SW, they gain by over-reporting.
While a theoretical study of such strategy-proofness prop-
erties is beyond the scope of this work, it is interesting to
empirically observe that the strategy-proofness properties of
NJC fairness policies are retained in Cilantro.

7.2 Resource allocation for Microservices
We now demonstrate the use of Cilantro to allocate resources
for inter-dependent microservices serving an application. A
query to the application triggers multiple queries to differ-
ent microservices and the final result is returned to the user.
Cilantro must observe a single end-to-end metric, the end-to-
end query latency, and then allocate fixed cluster resources
to different microservices to minimize the P99 latency of the
application. We note that Cilantro does not require meta in-
formation about the microservices, such as their dependency
and control flow graphs; Cilantro directly optimizes the end-
to-end metric as described in §7.2.

Workload. We use the Hotel Reservation application from
DeathStarBench [22]. It has 19 microservices, including 6
MongoDB databases, 3 memcached kv-stores and a nginx
webserver running on a consul service mesh. The architecture
is shown in Fig. 12-Left. Collectively, these microservices
serve search, recommendation, rating, account management
and geolocation queries from users. We use wrk2 [54] to
process and submit the query workload provided in [22]. We
measure the end-to-end latency of queries submitted to the
frontend microservice. All microservices experiments are run
on a 160 CPU cluster with 20 AWS m5.2xlarge instances.

Baselines. We compare Cilantro’s end-to-end policy (§4.2)
against three baselines. Resource-Fair always equally allo-
cates the resources among microservices. EvoAlg is an evo-
lutionary algorithm which optimizes for the P99 latency. ε-
greedy randomly picks a new allocation with probability 1/3,

634 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: The average utility achieved by the 20 jobs for the three online learning methods in Cilantro and Resource-Fair. Here, db0x, mltx,
db1x, and prsx refers to jobs using the DB-0, ML training, DB-1, and prediction serving workloads from § 7.1.

Policy Social Welfare, (WS) Egalitarian Welfare (WE) NJC Fairness (FNJC) Useful resource usage

Oracle-SW 0.892±0.004 0.324±0.008 0.336±0.004 0.964±0.002
Oracle-EW 0.752±0.003 0.412±0.007 0.272±0.002 0.997±0.000
Oracle-NJC 0.828±0.002 0.373±0.008 0.999±0.000 0.991±0.000

Cilantro-SW 0.864 ± 0.006 0.337±0.013 0.513±0.020 0.818±0.012
Cilantro-EW 0.760±0.007 0.390 ± 0.020 0.426±0.037 0.954 ± 0.012
Cilantro-NJC 0.823±0.002 0.355±0.005 0.964 ± 0.006 0.931±0.003
EvoAlg-SW 0.649±0.017 0.131±0.016 0.182±0.048 0.671±0.021
EvoAlg-EW 0.687±0.011 0.158±0.012 0.387±0.040 0.700±0.009

Resource-Fair 0.611±0.002 0.151±0.006 1.000 ± 0.000 0.766±0.001
Greedy-EW 0.724±0.005 0.306±0.006 0.518±0.009 0.882±0.004

Ernest 0.675±0.002 0.214±0.005 0.891±0.013 0.774±0.002
Quasar 0.756±0.002 0.095±0.003 0.060±0.003 0.706±0.002
Minerva 0.555±0.017 0.082±0.006 0.034±0.005 0.407±0.023
Parties 0.661±0.002 0.285±0.006 0.645±0.000 0.766±0.001
MIAD 0.761±0.002 0.285±0.005 0.745±0.000 0.766±0.001

Table 2: The social welfare (1), egalitarian welfare (2), NJC fairness metric (3), and the effective resource usage (8) for all 13 methods. Higher
is better for all four metrics, and the maximum and minimum possible values for all metrics are 1 and 0. The values shown in bold have achieve
the highest value for the specific metric, besides the oracular policies. Resource-Fair has NJC fairness FNJC = 1 by definition.

Figure 11: The utility of db16 under the three online learning
policies, when they report truthfully, when they under-report, and
when they over-report. The plot normalizes with respect to truthful
reporting, but the bars are annotated with the absolute value.

or uses the allocation with the smallest observed P99 latency
with probability 2/3.

Results and Discussion. Fig. 12 shows how the instantaneous
and time-averaged P99 latency (computed in 30s intervals)
evolves with time during the course of the experiment. Both
Cilantro and EvoAlg explore early on (Fig. 12-Center), but
as they find better values, exploration shrinks as they focus

on testing more promising allocations. However, Cilantro’s
OFU-based online learning policy is able to do this more
effectively than EvoAlg. ε-greedy explores aggressively even
in later stages and is unable to adequately exploit good can-
didates it may have discovered in the early stages. Overall,
Cilantro achieves a mean P99 of 525ms, compared to 930ms
for EvoAlg, the next best baseline.

7.3 Microbenchmarks
Cilantro Overhead. Fig. 13-Left evaluates the time taken for
Cilantro to process the feedback and compute the allocations
for the three policies described in Sec. 4.1. This shows that
Cilantro is fairly light-weight. For comparison, the average
time it took to de-allocate a Kubernetes pod and assign it to a
different job was on the order of 5-15s.

Unavailable performance metrics. In real-world situations,
performance metrics of all users may not be available. We
evaluate Cilantro’s fallback defaults for such instances. We
re-run the same experiment in §7.1, but for users db01, mlt1,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 635

Frontend

Search

Recommend

Profile

Geo

Rating

Reserve

User

Geo
MongoDB

User
MongoDB

Profile
MongoDB

Rate
MongoDB

Reserve
MongoDB

Recommend
MongoDB

Profile
memcached

Rate
memcached

Reserve
memcached

`

Queries

Consul
Mesh

Jaeger

Figure 12: Left: Microservices architecture of the hotel reservation benchmark [22]. Blue boxes are business logic, red boxes are caching
services, yellow boxes are databases and purple boxes are networking services. Center: Results for the microservices experiment comparing
four methods on P99 latency over 6 hours, plotting the instantaneous P99 latency vs time. Right: The time-averaged P99 latency vs time.

Operation Call time (s)

Model Update 0.0413±0.0048

get-alloc call
Cilantro-SW 2.8823±0.3155
Cilantro-EW 2.1239±0.0212
Cilantro-NJC 0.0081±0.0016

Figure 13: Cilantro microbenchmarks. Left: Mean time taken (in seconds) by Cilantro to update the performance model and for computing
a new allocation for each of the three fixed cluster sharing policies. Center: Evaluation of Cilantro’s fallback option, where users provide
a demand value if they cannot report performance metrics. We evaluate Cilantro-NJC when 5 out of 20 users use this option. Since the
true demand cannot be known, we use either half or twice the true demand under the median load from our profiled data. Right: The three
performance metrics for Cilantro-NJC when we artificially introduce error to the confidence intervals of the performance and load.

mlt2, db11, and prs1, we manually set the demand as de-
scribed in §5. Since the true demands are not known a priori,
users might under- or overstate them. To reflect this, we first
compute the true demand for each user under the median
load from our profiled data. We evaluate Cilantro-NJC when
these five users report either half this value as their demand
or twice this value, when compared to providing feedback.
Fig. 13-Center presents results on the three criteria given in
§4.1. While the fallback options are worse than when report-
ing feedback, the failures are graceful. Cilantro is still able to
learn from the remaining 15 users and achieve efficient alloca-
tions with only relatively small drops in social and egalitarian
welfare. The NJC fairness criterion is significantly small when
under-reporting since these 5 users will have been allocated
at most half of their true demand and FNJC (3) depends on the
single worst fairness violation.

Robustness to choice of learners and feedback errors.
While Cilantro’s decoupled design aids with generality, it
may be susceptible to the idiosyncrasies of the specific mod-
els used for the performance learners and load forecasters.
Moreover, in many real environments, the feedback can be
very noisy. To show that Cilantro is robust to both these ef-
fects, we perform the following microbenchmark in a syn-
thetic 5 user environment (described in the Appendix) with
the Cilantro-NJC policy. As both feedback noise and model
idiosyncrasies can be modeled with inaccurate confidence
intervals, we introduce increasing levels of noise (5%, 10%,

20%, 50%) to the upper and lower confidence bounds returned
by the learners and forecasters. The results, given in Fig. 13-
Right, show that the social and egalitarian welfare decrease
gracefully with noise. Moreover, due to Cilantro-NJC’s con-
servative approach for demand recommendations, the NJC
fairness metric remains relatively high despite the noise.

8 Conclusion

We described Cilantro, a performance-aware framework for
the allocation of a finite amount of resources among com-
peting jobs. Our motivations were: (i) resource allocation
policies should be performance-aware and based on real-
time feedback in production environments, (ii) schedulers
should accommodate diverse allocation objectives. We de-
signed Cilantro to address these challenges by decoupling
the performance learning from the policies and informing the
policies of uncertainties in performance estimates, thus en-
abling the realization of several performance-aware policies
in multi-tenant and microservices settings.

9 Acknowledgements

We thank the OSDI reviewers and our shepherd, Tim Harris,
for their invaluable feedback. This work is in part supported
by NSF CISE Expeditions Award CCF-1730628 and gifts
from Astronomer, Google, IBM, Intel, Lacework, Microsoft,
Nexla, Samsung SDS, Uber, and VMware.

636 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon Compute Service Level Agreement. https:

//aws.amazon.com/compute/sla/, 2022.

[2] Hadoop Fair Scheduler. https://hadoop.apache.
org/, 2022.

[3] Kubernetes api health endpoints | kubernetes.
https://kubernetes.io/docs/reference/
using-api/health-checks/, 2022.

[4] Ray dashboard — ray v1.7.0. https://docs.ray.io/
en/latest/ray-dashboard.html, 2022.

[5] Twitter Streaming API. https://developer.
twitter.com, 2022.

[6] Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

[7] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret
analysis of stochastic and nonstochastic multi-armed
bandit problems. arXiv preprint arXiv:1204.5721, 2012.

[8] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and
Csaba Szepesvari. X-armed Bandits. arXiv preprint
arXiv:1001.4475, 2010.

[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
ACM Queue, 14:70–93, 2016.

[10] Shuang Chen, Christina Delimitrou, and José F Martínez.
Parties: Qos-aware resource partitioning for multiple in-
teractive services. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
107–120, 2019.

[11] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN sys-
tems, 17(1):1–14, 1989.

[12] Andrea Coraddu, Luca Oneto, Aessandro Ghio, Ste-
fano Savio, Davide Anguita, and Massimo Figari. Ma-
chine learning approaches for improving condition-
based maintenance of naval propulsion plants. Proceed-
ings of the Institution of Mechanical Engineers, Part M:
Journal of Engineering for the Maritime Environment,
230(1):136–153, 2016.

[13] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, 2017.

[14] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters.
ACM SIGPLAN Notices, 48(4):77–88, 2013.

[15] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
ACM SIGPLAN Notices, 49(4):127–144, 2014.

[16] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queueing algorithm.
ACM SIGCOMM Computer Communication Review,
19(4):1–12, 1989.

[17] Danny Dolev, Dror G Feitelson, Joseph Y Halpern, Raz
Kupferman, and Nathan Linial. No justified complaints:
On fair sharing of multiple resources. In proceedings
of the 3rd Innovations in Theoretical Computer Science
Conference, pages 68–75, 2012.

[18] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, page 99–112, New York, NY, USA,
2012. Association for Computing Machinery.

[19] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula,
Eric Boutin, and Rodrigo Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In Proceedings of
the 7th ACM European Conference on Computer Sys-
tems, EuroSys ’12, page 99–112, New York, NY, USA,
2012. Association for Computing Machinery.

[20] Kelwin Fernandes, Pedro Vinagre, and Paulo Cortez. A
proactive intelligent decision support system for pre-
dicting the popularity of online news. In Portuguese
Conference on Artificial Intelligence, 2015.

[21] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 124, 2004.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud and edge systems. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 3–18, New York,
NY, USA, 2019. Association for Computing Machinery.

[23] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica.
Multi-resource Fair Queueing for Packet Processing. In
Proceedings of the ACM SIGCOMM 2012 conference on

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 637

https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://kubernetes.io/docs/reference/using-api/health-checks/
https://kubernetes.io/docs/reference/using-api/health-checks/
https://docs.ray.io/en/latest/ray-dashboard.html
https://docs.ray.io/en/latest/ray-dashboard.html
https://developer.twitter.com
https://developer.twitter.com

Applications, technologies, architectures, and protocols
for computer communication, pages 1–12, 2012.

[24] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In Nsdi, volume 11, pages 24–24, 2011.

[25] Alkis Gotovos. Active learning for level set estimation.
Master’s thesis, Eidgenössische Technische Hochschule
Zürich, Department of Computer Science„ 2013.

[26] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling
in multi-resource clusters. In 12th USENIX symposium
on operating systems design and implementation (OSDI
16), pages 65–80, 2016.

[27] Jean-Bastien Grill, Michal Valko, and Rémi Munos.
Black-box optimization of noisy functions with un-
known smoothness. In Advances in Neural Information
Processing Systems, pages 667–675, 2015.

[28] Avital Gutman and Noam Nisan. Fair allocation without
trade. arXiv preprint arXiv:1204.4286, 2012.

[29] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[30] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276, 2009.

[31] Raj Jain, Dah-Ming Chiu, and W. Hawe. A quanti-
tative measure of fairness and discrimination for re-
source allocation in shared computer systems. CoRR,
cs.NI/9809099, 1998.

[32] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving
fairness, efficiency, and stability in http-based adaptive
video streaming with festive. In Proceedings of the
8th international conference on Emerging networking
experiments and technologies, pages 97–108, 2012.

[33] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Mor-
pheus: Towards automated slos for enterprise clusters.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 117–134,
Savannah, GA, November 2016. USENIX Association.

[34] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann,
Desislava Dimitrova, Matthew Forshaw, and Timothy
Roscoe. Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming
dataflows. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
783–798, 2018.

[35] Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal,
and Indranil Gupta. Henge: Intent-driven multi-tenant
stream processing. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’18, page 249–262,
New York, NY, USA, 2018. Association for Computing
Machinery.

[36] Kirthevasan Kandasamy, Gur-Eyal Sela, Joseph E Gon-
zalez, Michael I Jordan, and Ion Stoica. Online learn-
ing demands in max-min fairness. arXiv preprint
arXiv:2012.08648, 2020.

[37] Mamoru Kaneko and Kenjiro Nakamura. The nash
social welfare function. Econometrica: Journal of the
Econometric Society, pages 423–435, 1979.

[38] Frank P Kelly, Aman K Maulloo, and David KH Tan.
Rate control for communication networks: shadow
prices, proportional fairness and stability. Journal of the
Operational Research society, 49(3):237–252, 1998.

[39] Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and
Bernardo A Huberman. Tycoon: An implementation of
a distributed, market-based resource allocation system.
Multiagent and Grid Systems, 1(3):169–182, 2005.

[40] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[41] Spyros Makridakis and Michele Hibon. Arma models
and the box–jenkins methodology. Journal of forecast-
ing, 16(3):147–163, 1997.

[42] Jeonghoon Mo and Jean Walrand. Fair end-to-end
window-based congestion control. IEEE/ACM Transac-
tions on networking, 8(5):556–567, 2000.

[43] Raghunath Othayoth Nambiar and Meikel Poess. The
making of tpc-ds. In Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases, VLDB
’06, page 1049–1058. VLDB Endowment, 2006.

[44] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-Aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 481–498. USENIX Association,
November 2020.

638 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[45] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-
dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-
hammad Alizadeh. End-to-end transport for video qoe
fairness. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 408–423. 2019.

[46] Hiep Chi Nguyen, Zhiming Shen, Xiaohui Gu, Sethu-
raman Subbiah, and John Wilkes. Agile: Elastic dis-
tributed resource scaling for infrastructure-as-a-service.
In International Conference on Automation and Com-
puting, 2013.

[47] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
page 69–84, New York, NY, USA, 2013. Association
for Computing Machinery.

[48] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-
sky, and J. Zelenka. Informed prefetching and caching.
SIGOPS Oper. Syst. Rev., 29(5):79–95, dec 1995.

[49] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM:
An intelligent fine-grained resource management frame-
work for SLO-Oriented microservices. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 805–825. USENIX Associ-
ation, November 2020.

[50] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012. As-
sociation for Computing Machinery.

[51] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, et al. Autopilot: workload autoscaling
at google. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[52] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST), pages 1–10. Ieee, 2010.

[53] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning al-
gorithms. Advances in neural information processing
systems, 25, 2012.

[54] Gil Tene. giltene/wrk2: A constant throughput, correct
latency recording variant of wrk. https://github.
com/giltene/wrk2. (Accessed on 04/19/2022).

[55] Yan Kyaw Tun, Nguyen H Tran, Duy Trong Ngo,
Shashi Raj Pandey, Zhu Han, and Choong Seon Hong.
Wireless network slicing: Generalized kelly mechanism-
based resource allocation. IEEE Journal on Selected
Areas in Communications, 37(8):1794–1807, 2019.

[56] Hal R Varian. Equity, envy, and efficiency. 1973.

[57] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing, page 5. ACM, 2013.

[58] Shivaram Venkataraman, Zongheng Yang, Michael
Franklin, Benjamin Recht, and Ion Stoica. Ernest: Effi-
cient performance prediction for large-scale advanced
analytics. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
363–378, 2016.

[59] Max Welling. Kernel ridge regression. Max Welling’s
classnotes in machine learning, pages 1–3, 2013.

[60] John Wilkes. Utility Functions, Prices, and Negotiation,
chapter 4, pages 67–88. John Wiley and Sons, Ltd, 2009.

[61] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
595–610, 2018.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, Ion Stoica, et al. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95,
2010.

[63] Seyed Majid Zahedi, Qiuyun Llull, and Benjamin C Lee.
Amdahl’s law in the datacenter era: A market for fair
processor allocation. In 2018 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 1–14. IEEE, 2018.

[64] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Ed-
ward Suh, and Christina Delimitrou. Sinan: Ml-based
and qos-aware resource management for cloud microser-
vices. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 167–181,
2021.

[65] Yuchen Zhang, John Duchi, and Martin Wainwright. Di-
vide and conquer kernel ridge regression. In Conference
on learning theory, pages 592–617. PMLR, 2013.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 639

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2

[66] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale computers.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 1225–1240.
USENIX Association, November 2020.

640 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 14: Sampled query arrival rate from the twitter trace collected over the duration of a day.

A Experiment Addendum
A.1 Workload description
Database querying: We use the TPC-DS [43] benchmark suite as the workload backed by replicated instances of sqlite3 database.
From the TPC-DS query set, we created two workloads (setting scale factor to 100): DB-0, which had queries that completed in
under 100 ms and DB-1 which had queries that had a completion time between 100 and 300 ms. When a query is requested, we
randomly pick a relevant query and dispatch it according to the trace. The performance metric of interest is query latency.

Prediction serving: In prediction serving [13], a job processes arriving queries to output a prediction, usually obtained via a
machine learning model. In our set up, we use a random forest regressor as the model and the the news popularity dataset [20]
for training and test queries in a 50:50 split. Queries are picked randomly from the test set and issued in batches of 4. The metric
of interest is the serving latency.

ML training: We use CPUs to train a neural network with four hidden layers of size 64 each. We train our model on the naval
propulsion [12] dataset using stochastic gradient descent (SGD). Each task in this workload consists of training a batch of 16
points for 100 iterations. The performance metric of interest here is the batch throughput.

A.2 Environment details
Workload traces. As described in §7.1, we use traces collected from twitter to generate traffic patterns for our workloads. The
query arrival rate of this trace is visualized in Figure 14.

Multi-tenant cluster jobs setup. For the multi-tenant cluster resource sharing evaluation, we setup 20 jobs with different
workloads and SLOs as described in in §7.1. Table 3 details the exact SLO and utility function for each job. The utility function
for each job is either of linear, which directly maps performance to utility (Figure 4(a)), sqrt, which performs a sublinear
mapping of performance to utility (Figure 4(b)), or quadratic, which performs a superlinear mapping of performance to utility
(Figure 4(c)).

TPC-DS Query Binning. The queries used for the db serving workload in §7.1 were selected from the TPC-DS benchmark
suite. The TPC-DS suite consists of 99 query templates out of which 27 were not compatible with the sqlite dialect and were
discarded. The remainder were binned according to their mean latency when measured on a AWS m5.2xlarge instance. The
chosen query types and their ids are listed in Table 4

A.3 Baselines from prior work
Here we describe the specific implementation of prior work baselines used in Section 7.

1) Ernest [58]: Ernest uses a featurized linear model to estimate the time taken to run a job. We use this estimate to approximate
the resource demand to meet the job’s SLO. On each round, we use the estimated demand as inputs to NJC to compute the
allocations.

2) Quasar [15]: Quasar uses collaborative filtering to estimate a job’s resource demand, which we use as inputs to NJC to
compute the allocations. We do not incorporate mechanisms for vertical scaling and workload co-location described in [15]
to be consistent across all methods.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 641

Job and SLO Type Job Name SLO Utility Function

Database Serving (Latency)

db01 0.9 linear
db02 0.9 linear
db03 0.95 sqrt
db11 0.9 linear
db12 0.9 quadratic
db13 0.95 quadratic
db14 0.95 linear
db15 0.95 quadratic
db16 0.99 quadratic
db17 0.99 sqrt

Prediction Serving (Latency)
prs1 0.9 linear
prs2 0.9 sqrt
prs3 0.95 sqrt

ML Training (Throughput)

mlt1 400 sqrt
mlt2 400 sqrt
mlt3 450 linear
mlt4 450 linear
mlt5 500 quadratic
mlt6 500 quadratic
mlt7 500 quadratic

Table 3: SLO and utility functions used for jobs in experiments in §7.1. For Latency based SLOs, the SLO implies the fraction of queries that
completed under 2 seconds. For Throughput based SLOs, the SLO is the desired query rate, measured in queries per second.

Query Bin TPC-DS Query Ids Mean Execution Time (s)

db0 93, 91, 92, 45, 85, 15, 32 0.28
db1 90, 84, 8, 55, 96, 81, 79 0.67

Table 4: Details of the bins created from TPC-DS queries. Each user’s workload is generated using these bins. Execution time is profiled on a
SQLite3 database running on AWS m5.2xlarge instance with one allocated CPU core.

3) Minerva [45]: Minerva sets the allocation for job j at each step to be proportional to a j/u j where a j and u j are the allocation
and utility at the previous round.

4) Parties [10]: Parties upsizes the allocation for a job if it violates or is close to violating the SLO, downsizes the allocation if
the job comfortably satisfies the SLO, and otherwise does nothing. If the SLOs of all jobs cannot be met, it evicts the job
from the server. As eviction is not an option in our setting we use the Parties logic to compute the demands which are then
fed to NJC to obtain the allocations. For upsizing, we increase the demand by 20 CPUs and for downsizing, we decrease it
by 5. These parameters were tuned so that the policy did reasonably well on all three metrics.

5) MIAD (Multiplicative-Increase/Additive-Decrease) [11]: This is inspired by TCP congestion control. If a user’s job violates
the SLO, we increase its demand by 1.5× the current allocation, and if it satisfies the SLO, we set the demand to be one
minus the current allocation. We then invoke NJC to compute the allocation for the next round. These parameters were
tuned so that the policy did reasonably well on all three metrics.

A.4 Evolutionary Algorithm
We describe the evolutionary algorithm used in all of our experiments, i.e to optimize the profiled information for the oracular
welfare polices, to optimize the upper confidence bounds for the learning policies in §4.1.2 and§4.2, and the evolutionary
algorithm baselines in §7.1 and§7.2. The input to the algorithm is a data source which the algorithm can query using an allocation
and obtain a feedback signal. This data source can either be a cheap analytically computable function available in memory, as
is the case for the oracles and learning polices, or an expensive experiment, as is the case when used as a baseline to directly

642 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

optimize for performance. The algorithm maintains a hash table mapping allocations to mean observed signal values. When it
receives feedback for an allocation, it updates the mean value if the allocation has already been tried, or it creates a new entry
and stores the feedback.

Our evolutionary algorithm proceeds as follows. In has an initialization phase of 10 rounds. In the first 2 rounds, it always
queries a resource-fair allocation. In the remaining 8 rounds, it queries a random allocation a such that ∑

n
j=1 a j = R. On each

subsequent round, it chooses a random allocation in the above manner with probability 0.1. With probability 0.9, it samples one
of the existing allocations in the hash table based on the mean feedback value, performs a mutation operation, and queries the
new allocation obtained via the mutation. We now to describe these two steps.

• Sampling: Let {(ai,yi}i be the (allocation, mean feedback) pairs in the hash table. Let m,s denote the man and standard
deviation of the {yi} values. We sample ai with probability proportional to exp

(
(yi −m)/s

)
.

• Mutation: The mutation operation is composed of a sequence of steps to modify a given allocation a. At each step, we
randomly sample one job j which has an allocation of at least 2 CPUs; we then sample any other job k ̸= j; we then decrease
j’s allocation by 1 and increase k’s allocation by 1. The number of steps is chosen uniformly at random between 1 and 20.

A.5 Other experimental details
Synthetic environment for robustness microbenchmark: For the microbenchmark in Fig. 13(left), we use 5 users whose
load is obtained by the same twitter trace from the experiments, and whose synthetic performance function is given by
p j(a, ℓ) = 1/(1+ e−(a/ℓ−b j)), where a is the allocation and ℓ is the load. For the 5 users, we set b j ∈ {0.1,0.3,0.5,0.7,0.9}. We
set the SLO to be 0.95 for all users (note that 0 ≤ p j ≤ 1. As the stochastic observation, we sample a Gaussian with standard
deviation 0.2.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 643

Karma: Resource Allocation for Dynamic Demands

Midhul Vuppalapati
Cornell University

Giannis Fikioris
Cornell University

Rachit Agarwal
Cornell University

Asaf Cidon
Columbia University

Anurag Khandelwal
Yale University

Éva Tardos
Cornell University

Abstract

We consider the problem of fair resource allocation in a
system where user demands are dynamic, that is, where user
demands vary over time. Our key observation is that the
classical max-min fairness algorithm for resource allocation
provides many desirable properties (e.g., Pareto efficiency,
strategy-proofness, and fairness), but only under the strong
assumption of user demands being static over time. For the
realistic case of dynamic user demands, the max-min fairness
algorithm loses one or more of these properties.

We present Karma, a new resource allocation mechanism
for dynamic user demands. The key technical contribution in
Karma is a credit-based resource allocation algorithm: in each
quantum, users donate their unused resources and are assigned
credits when other users borrow these resources; Karma
carefully orchestrates the exchange of credits across users
(based on their instantaneous demands, donated resources
and borrowed resources), and performs prioritized resource
allocation based on users’ credits. We theoretically establish
Karma guarantees related to Pareto efficiency, strategy-
proofness, and fairness for dynamic user demands. Empirical
evaluations over production workloads show that these
properties translate well into practice: Karma is able to reduce
disparity in performance across users to a bare minimum
while maintaining Pareto-optimal system-wide performance.

1 Introduction
Resource allocation is a fundamental problem in computer
systems, spanning private and public clouds, computer
networks, hypervisors, etc. There is a large and active body
of research on designing resource allocation mechanisms
that achieve Pareto efficiency (high resource utilization) and
strategy-proofness (selfish users should not be able to benefit
by lying about their demands) while ensuring that resources
are allocated fairly among users, e.g., [30,32,39,57,59,66,67].

For a system containing a single resource, the two most
popular allocation mechanisms are strict partitioning [9, 72]
and max-min fairness [30, 32, 36, 40, 49, 50, 57, 59, 66].

The former allocates the resource equally across all users
(“fair share”), independent of their demands; this guarantees
strategy-proofness and fairness, but not Pareto efficiency since
resources can be underutilized when one or more users have
demands lower than the fair share. Max-min fairness allevi-
ates limitations of strict partitioning by taking user demands
into account: it maximizes the minimum allocation across
users while ensuring that each user’s allocation is no more
than their demand. A classical result shows that resource allo-
cation based on max-min fairness guarantees each of the three
desirable properties—Pareto efficiency, strategy-proofness,
and fairness. These powerful properties have, over decades,
motivated efforts in both systems and theory communities on
generalizations of max-min fairness for allocating multiple
resources [30–32], for incorporating application performance
goals and deadlines [31, 39, 46, 47], and for new models of
resource allocation [17, 22, 25, 33, 59, 66], to name a few.

This paper explores a complementary problem—resource
allocation of a single elastic resource in a system where user
demands are dynamic, that is, vary over time. Dynamic user
demands are the norm in most real-world deployments [12,16,
41, 45, 60, 63, 70, 72, 79]; for instance, analysis of production
workloads in §2 reveals that user demands vary by as much as
17× within minutes, with majority of users having demands
with standard deviation 0.5−43× of the average over time.
We show in §2 that, for systems with such dynamic user de-
mands, resource allocation based on the max-min fairness
algorithm fails to guarantee one or more of its properties: (1)
if the allocation is done based on demands at t=0, Pareto ef-
ficiency and strategy-proofness are no longer guaranteed; and,
(2) if the allocation is done periodically, long-term fairness is
no longer guaranteed—for n users with the same average de-
mand, the max-min fairness algorithm may allocate some user
as much as Ω(n) more resources than other users over time.

We present Karma, a new resource allocation mechanism
for dynamic user demands. The key technical contribution
of Karma is a credit-based resource allocation algorithm:
in each quantum, users receive credits when they donate
a part of their fair share of resources (e.g., if their demand

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 645

is less than their fair share); users can use these credits to
borrow resources in any future quantum when their demand
is higher than their fair share. When the supply of resources
from donors is equal to the demand from borrowers, it is
easy to exchange resources and credits among users. The key
algorithmic challenge that Karma resolves is when supply
is not equal to demand—in such scenarios, Karma carefully
orchestrates resources and credits between donors and
borrowers: donors are prioritized so as to keep credits across
users as balanced as possible, and borrowers are prioritized
so as to keep the resource allocation as fair as possible.

We theoretically establish Karma guarantees for dynamic
user demands. Karma guarantees Pareto efficiency at all times:
in each quantum, it allocates resources such that it is not pos-
sible to increase the allocation of a user without decreasing
the allocation of at least another user. For strategy-proofness,
Karma guarantees that a selfish user cannot increase their ag-
gregate resource allocation by over-reporting their demands
in any quantum. In addition, we show a new surprising
phenomenon (that may primarily be of theoretical interest): if
a user had perfect knowledge about the future demands of all
other users, the user can increase its own aggregate allocation
by a small constant factor by under-reporting its demand
in some quanta; however, for n users, imprecision in this
future knowledge could lead to the user losing Ω(n) factor
of their aggregate resource allocation by under-reporting
their demand in any quantum. Put together, these results
enable Karma to provide powerful guarantees related to
strategy-proofness. Finally, for fairness, we prove that given a
set of (past) allocations, Karma guarantees an optimally-fair
resource allocation. We also establish that Karma guarantees
similar properties even when multiple selfish users can col-
lude, and even when different users have different fair shares.

We have realized Karma on top of Jiffy [41], an
open-sourced multi-tenant elastic memory system; an
end-to-end implementation of Karma is available at
https://github.com/resource-disaggregation/karma.
Evaluation of Karma over production workloads demonstrates
that Karma’s theoretical guarantees translate well into prac-
tice: it matches the max-min fairness algorithm in terms of re-
source utilization, while significantly improving the long-term
fairness of resources allocated across users. Karma’s fairer
resource allocation directly translates to application-level
performance; for instance, over evaluated workloads, Karma
keeps the average performance (across users) the same as
the max-min fairness algorithm, while reducing performance
disparity across users by as much as ∼2.4×. Karma also in-
centivizes users to share resources: our evaluation shows that
(1) Karma-conformant users achieve much more desirable
allocation and performance compared to users who prefer a
dedicated fair share of resources; and, (2) if users were to turn
Karma-conformant, they can improve their performance by
better matching their allocations with their demands over time.

2 Motivation

We begin by outlining our motivating use cases, followed
by an in-depth discussion on the limitations of the classic
max-min fairness algorithm for dynamic user demands.

Motivating use cases. Fair resource allocation is an important
problem in private clouds where resources are shared by mul-
tiple users or teams within the same organization [12, 16, 17,
30–33, 36,39, 40, 45,46, 59, 60,66, 70, 72,79, 80]; our primary
use cases are from such private clouds. Karma may also be
useful for emerging use cases from multi-tenant public clouds
where spare resources may be allocated to tenants while
providing performance isolation [8, 14, 38, 41, 57, 63, 64, 66].
We discuss motivating scenarios in both contexts below.

One scenario is shared analytics clusters. For instance,
companies like Microsoft, Google, and Alibaba employ
schedulers [32,35,39,69,70,80] that allocate resources across
multiple internal teams that run long-running jobs (e.g., for
data analytics [23, 81]) on a shared set of resources. Consider
memory as a shared resource; in many of these frameworks,
main memory is used to cache frequently accessed data
from slower persistent storage and to store intermediate
data generated during job execution. Indeed, increasing the
allocated memory improves job performance; however, since
memory is limited and is shared across multiple teams, en-
suring resource allocation fairness is also a key requirement.
Moreover, since these jobs are usually long-running, their
performance depends on long-term memory allocations,
rather than instantaneous allocations [16, 32, 45].

Another use case is shared caches: many companies (e.g.
Facebook [9, 12, 52] and Twitter [79]) operate clusters of
in-memory key-value caches, such as memcached or Redis,
serving a wide array of internal applications. In this use case,
the memory demand of each application may be computed as
the amount of memory that would be required to fit hot objects
within the cache [18,19,52,79]. In such settings, efficient and
fair sharing of caches is of utmost importance [9, 19, 52, 72]:
to maintain service level agreements, it is important to have
consistently good performance over long periods of time,
rather than excellent performance at some times and very
poor performance at other times (see [9, 19, 52, 72] for more
discussion on the importance of long-term performance).

Third, fair resource allocation while ensuring high utiliza-
tion is also a goal in inter-datacenter bandwidth allocation [36,
40, 49]. Existing traffic engineering solutions used in produc-
tion environments perform periodic max-min fair resource
allocation to account for dynamic user demands [36, 40, 49].
Our work demonstrates that periodically performing max-min
fair resource allocation over such dynamic demands leads to
unfair resource allocation across users.

Finally, an interesting use case in the public cloud context is
that of burstable VMs [2,4] that use virtual currency to enable
resource allocation over dynamic user demands. These VMs
share resources with VMs from other users and are charged

646 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/resource-disaggregation/karma

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

F
ra

c
ti
o
n
 o

f
u
s
e
rs

CPU demand variation (stddev/mean)

Google
Snowflake

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900

N
o
rm

a
liz

e
d
 C

P
U

 d
e
m

a
n
d

Time (seconds)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120

N
o
rm

a
liz

e
d
 C

P
U

 d
e
m

a
n
d

Time (minutes)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

F
ra

c
ti
o
n
 o

f
u
s
e
rs

Memory demand variation (stddev/mean)

Google
Snowflake

 1

 3

 5

 7

 9

 11

 13

 15

 17

 19

 0 100 200 300 400 500 600 700 800 900

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 d
e
m

a
n
d

Time (seconds)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 d
e
m

a
n
d

Time (minutes)

Figure 1: Analysis of Google and Snowflake workloads suggests that a large fraction of users have dynamic demands (left)
that can change dramatically over short timescales (center, right) (Left) CDFs, across users, of the ratio of standard deviation
and mean of each user’s demand. (Center) For a randomly sampled user in the Snowflake trace, the variation in the user’s CPU
and memory demands (normalized by minimum demand) over a 15 minute period. (Right) For a randomly sampled user in the
Google trace, the variation in the user’s CPU and memory demands (normalized by minimum demand) over a 2 hour period.

on an instance-specific baseline. When resource utilization
is below the baseline, users accumulate virtual currency
that they can later use to gain resources beyond the baseline
during periods of high demand. Given that Burstable VMs are
primarily useful for dynamic user demands, they will likely
need resource allocation mechanisms that guarantee high
utilization, strategy-proofness, and fair resource allocation.

Dynamic user demands. Increasingly many applications
running data analytics or key-value caches operate on data
collected from social media, application and network logs,
mobile systems, etc. A unique characteristic of these data is
that they are less controllable by the organization because
they are generated by entities outside of the organization.
As a result, applications can observe highly time-varying
dynamic resource demands [12, 16, 41, 45, 60, 63, 70, 72, 79].

To build a deeper understanding of variation in user
demands over time, we analyze two publicly-available
production workloads: (1) Google [60] resource usage
information across 8 clusters (1000−2000 users per cluster)
over a 30 day period; and, (2) Snowflake [72], a cloud-based
database query engine that provides resource usage statistics
for over 2000 users over a 14 day period. To characterize user
demand variability over time, we compute—for each user—
the ratio of the standard deviation and mean of their demands
over the entire period. Figure 1 (left) shows that 40−70%
of all users in both Google and Snowflake workloads have
a standard deviation in CPU and memory demands at least
0.5× their mean, indicating high variability in demands for
most users. Furthermore, the standard deviation in demands
of as many as 20% of the users can be as high as their mean
demand, with some users having extremely high variance
in demands (standard deviations up to 12−43× the mean).
Similar observations have been made for time-varying
user demands in inter-datacenter networks; for instance,

production studies [5] show that, on average, user demands
vary by 35% within 5-minute intervals, with some demands
varying by as much as 45% within a short period of time.

Figure 1 (center) shows the CPU and memory demands for
a randomly-sampled user from the Snowflake trace over a 15
minute window (we show only one user and only 15 minute
window for clarity; analyzing a sample of 100 users, we
find 87% of the users to have similar demand patterns). The
figure shows that user demands can change dramatically over
tens of seconds, by as much as 6× and 2× for compute and
memory, respectively. Similarly, we see significant variation
in demands even for a random user from the Google trace
(shown in Figure 1 (right)).

Max-min fairness guarantees fail for dynamic user
demands. The classical max-min fairness algorithm for
resource allocation provides many desirable properties, e.g.,
Pareto efficiency, strategy-proofness, and fairness. However,
buried under the proofs is the assumption that user demands
are static over time, an assumption that does not hold in
practice (as demonstrated in Figure 1). For the realistic case
of dynamic user demands, max-min fairness can be applied
in two ways, each of which leads to violating one or more
of its properties. We will demonstrate this using the example
in Figure 2; here, time is divided into five quanta and three
users have demands varying across quanta.

First, one can naïvely perform max-min fair allocation
just once based on user demands at quantum t = 0. This
results in max-min fairness losing both Pareto efficiency
and strategy-proofness. In the example of Figure 2, since
allocations will only be done based on the demands specified
by the users at t = 0, if users were to specify their true
demands, user C will obtain an allocation of 1 unit leading
to a total useful allocation of 3 units over the entire duration
(as shown in Figure 2 (middle, top)); if user C were to lie

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 647

0 1 2 3 4

1
2
3
4
5
6
7
8
9

10
Demands

0 1 2 3 4

1
2
3
4
5
6

Allocations with
max-min at t=0

User C lies

0 1 2 3 4

1
2
3
4
5
6

Users are honest

0 1 2 3 4

1
2
3
4
5
6

Allocations with
periodic max-min

Users are honest

User A User B User C Wasted Resources

Figure 2: Classical max-min fairness guarantees break for
dynamic user demands. Here, 6 units of a resource are shared
by 3 users (fair share of 2). Discussion in §2.

and over-report their demand at t = 0 as 2 units, then they
can achieve a more desirable total useful allocation of 5 units
(Figure 2 (middle, bottom)). This breaks strategy-proofness.
In addition, max-min fairness is also not Pareto efficient:
for many quanta, resources allocated to users will be
underutilized as is evident in Figure 2 (middle).

A better way to apply max-min fairness for dynamic user
demands is to periodically reallocate resources based on users’
instantaneous demands (e.g., every quantum of time periods,
as in several operating systems and hypervisors [3, 73]). This
trivially guarantees Pareto efficiency and strategy-proofness
but results in extremely unfair allocation across users. Fig-
ure 2 (right, top) shows an example where max-min fairness
can result in 2× disparity between resources allocated to users
over the 5 quanta—user A receives a total allocation of 10
slices, while user C receives a total allocation of only 5 slices,
despite them having the same average demand; this example
can be easily extended to demonstrate that max-min fairness
can, for n users, result in resource allocations where some user
gets a factor of Ω(n) larger amount of resources than other
users (proof in [71]). Such disparity in resource allocations
also leads to disparity in application-level performance across
users since, as discussed above in use cases, many applica-
tions require consistently good performance over long periods
of time, rather than excellent performance at some times and
very poor performance at other times [22, 28, 32, 68]. We will
demonstrate, in the evaluation section, that users experience
significant disparity in application-level performance due to
such disparate resource allocations.

For the rest of the paper, we focus on long-term fairness;
informally, an allocation is considered fair if all users have
the same aggregate resource allocation over time. Our
goal is to design a resource allocation mechanism that,
for dynamic user demands, guarantees Pareto efficiency,
strategy-proofness, and fairness.

3 Karma

Karma is a resource allocation mechanism for dynamic user
demands. Karma uses credits (§3.1, §3.2)—users receive
credits when they donate a part of their fair share of resources
(e.g., when their demand is less than their fair share), and can
use these credits to borrow resources beyond their fair share
during periods of high demand. Karma carefully orchestrates
the exchange of resources and credits between donors and
borrowers: donors are prioritized in a manner that ensures
credit distribution across users remains as balanced as
possible, and borrowers are prioritized in a manner that keeps
the resource allocation as fair as possible. We will prove
theoretically in §3.3 that, while simple in hindsight, this allo-
cation mechanism simultaneously achieves Pareto efficiency,
strategy-proofness, and fairness for dynamic user demands.

3.1 Preliminaries
We consider the following setup for the problem: we have
n users sharing a single resource (CPU, memory, GPUs,
etc.); each user has a fair share of f resource units (each unit
is referred to as a slice), and thus the pool has n× f slices
of the resource (as we discuss in §3.4, all our results hold
for users having different fair shares). Time is divided into
quanta, users demand a certain number of resource slices
every quantum, and Karma performs resource (re)allocation
at the beginning of each quantum. While user demands
during each quantum can be arbitrary, unsatisfied demands
in one quantum do not carry over to the next. Similar to prior
work [30, 57, 59, 66], we assume that users are not adversarial
(that is, do not lie about their demands simply to hurt others’
allocations), but are otherwise selfish and strategic (willing
to misreport their demands to maximize their allocations).

3.2 Karma design
Let 0≤ α≤ 1 be a parameter. Karma guarantees that each
user is allocated an α fraction of its fair share (=α· f) in each
quantum; we refer to this as the guaranteed share. Karma
maintains a pool of resource slices—karmaPool—that, at any
point in time, contains two types of slices:
• Shared slices are the slices in the resource pool that are not

guaranteed to any user. It is easy to see that the number of
shared slices in the system is n· f−n·α· f =n·(1−α)· f .

• Donated slices, that are donated by users whose demands
are smaller than their guaranteed share.

We use these two sets of slices in the following manner.
In any given quantum, if a user has demand less than its
guaranteed share, then the user is said to be “donating” as
many slices as the difference between the user’s guaranteed
share and demand in that quantum. A user that has demand
larger than its guaranteed share is said to be “borrowing”
slices beyond its guaranteed share, which the system can
potentially supply using either shared slices or donated slices.

648 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3.2.1 Karma credits

Karma allocates resources not just based on users’ instanta-
neous demands, but also based on their past allocations. To
maintain past user allocation information, Karma uses credits.

Users earn credits in three ways. First, each user is
bootstrapped with a fixed number of initial credits upon
joining the system (we discuss the precise number once we
have enough context, in §3.4); second, each user is allocated
(1−α) · f free credits every quantum as compensation for
contributing (1−α) fraction of its fair share to shared slices.
Finally, users earn one credit when some other user borrows
one of their donated slices (one credit per quantum per slice).

Unlike earning credits, there is only one way for any user
to lose credits: for every slice borrowed from the karmaPool
(donated or shared), the user loses one credit.

3.2.2 Prioritized resource allocation

We now describe Karma’s resource allocation algorithm, that
orchestrates resources and credits across users (Algorithm 1).
To make the discussion succinct, we refer to the sum of
user demands beyond their guaranteed share as “borrower
demand”; that is, to compute borrower demand for any
given quantum, we take all users with demand greater than
their guaranteed share and sum up the difference between
their demand (in that quantum) and α · f . In quanta when
borrower demand is equal to the supply (number of slices
in karmaPool), Karma’s decision-making is trivial: simply
allocate all slices in karmaPool to the borrowers, and update
credits for all users as described in the previous subsection.
The key algorithmic challenge that Karma resolves is when
the supply is either more or less than the borrower demand.
We describe Karma allocation mechanism for such scenarios
next and then provide an illustrative example.

Orchestrating resources and credits when supply >
borrower demand. When supply is greater than borrower
demand, there are enough slices in karmaPool to satisfy the
demands of all borrowers. In such a case, Karma prioritizes
the allocation of donated slices over shared slices (so that
donors get credits), and across multiple donated slices,
prioritizes the allocation of a slice from the donor that has
the smallest number of credits—this allows “poorer” donors
to earn more credits, and moves the system towards a more
balanced distribution of credits across users. Intuitively,
credits capture the allocation obtained by a user until the
last quantum—users who obtained lower allocations in the
past will have a higher than average (across users) number of
credits, while those who received a surplus of allocations will
have a below-average number of credits. Hence, balancing
the number of credits across users over time allows Karma to
move towards a more equitable set of total allocations across
users. Once all donated slices are allocated, Karma allocates
shared slices to satisfy the remaining borrower demands.

Algorithm 1 : Karma resource allocation algorithm.
demand[u]: demand of user u in the current quantum
credits[u]: credits of user u in the current quantum
alloc[u]: allocation of user u in the current quantum
f : fair share
α: guaranteed fraction of fair share

Every quantum do:
1: shared_slices← n·(1−α)· f
2: For each user u,
3: increment credits[u] by (1−α)· f
4: donated_slices[u]= max (0, α· f− demand[u])
5: alloc[u]= min (demand[u], α· f)
6: donors← all users uwith donated_slices[u]>0
7: borrowers← all users uwith
8: alloc[u]<demand[u]& credits[u]>0

9: while borrowers ̸=φ and
10: (∑u donated_slices[u] > 0 or shared_slices > 0)

do
11: b⋆← borrower with maximum credits
12: if donors ̸=φ then
13: d⋆← donor with minimum credits
14: Increment credits[d⋆] by 1
15: Decrement donated_slices[u] by 1
16: Update the set of donors (line 6)
17: else
18: Decrement shared_slices by 1
19: Increment alloc[b⋆] by 1
20: Decrement credits[b⋆] by 1
21: Update the set of borrowers (line 7)

Orchestrating resources and credits when supply <
borrower demand. When supply is less than demand,
karmaPool does not have enough slices to satisfy all borrower
demands. In such a scenario, Karma prioritizes allocating
slices to users with the maximum number of credits. This
strategy essentially favors users that had fewer allocations in
the past (and thus, a larger number of credits), hence moving
the system towards a more balanced allocation of resources
across users, promoting fairness. At the same time, reducing
the credits for the users with the most credits also moves the
system to a more balanced distribution of credits across users.

Illustrative example. We now illustrate through a concrete
example. The running example in Figure 3 shows the execu-
tion of Karma’s algorithm for the example from Figure 2 for
α=0.5: that is three users A, B, and C, each with a fair share
2 slices (f =2), and a guaranteed share of 1 slice. Recall that,
since (1−α)· f =1, each user receives 1 credit every quantum,
and suppose all users are bootstrapped with 6 initial credits.

In the first quantum, C’s demand is equal to the guaranteed
share, while A and B request 2 and 1 slices beyond the guar-
anteed share, respectively. Since supply (= 3 shared slices
in karmaPool) is equal to borrower demand, Karma uses the
shared slices to allocate slices beyond the guaranteed share for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 649

1 2 3 4 5

1
2
3
4
5
6
7
8
9

10
Demands

1 2 3 4 5

1
2
3
4
5
6
7
8
9

10
Allocations

1 2 3 4 5 6

3
6
9

12

1 2 3 4 5 6

3
6
9

12

1 2 3 4 5 6

3
6
9

12

Credits

User A User B User C Resource Pool Size

Figure 3: Karma resource allocation for the running example of Figure 2: Recall that there are 6 resource slices, 3 users each
with average demand and fair share equal to 2. We show the case of the guaranteed share being 1 (α=0.5), with 6 bootstrapping
(initial) credits for each user. Note that each user receives 1 free credit every quantum. Karma achieves significantly improved
fair allocation than max-min fairness—it allocates each user an equal allocation of 8 resource slices over time.

A and B and satisfies their demands. This results in a final allo-
cation of 3 slices for A, 2 slices for B, and 1 slice for C. A loses
2 credits, and B loses 1 credits, and no one gains any credits.

In the second quantum, A demands 3 slices, while B and
C donate 1 slice each. The total supply (=5, with 2 donated
slices and 3 shared slices) exceeds the borrower demand. A
is allocated 3 slices and it loses 3 credits (since its allocation
is 2 slices above its guaranteed share). B and C receive 1
credit each since their donated slices are used. Similarly, in
the third quantum, B demands 3 slices, while A and C donate
1 slice each. Since total supply exceeds borrower demand,
B receives the 3 slices it asked for, and loses 2 credits; A and
C gain 1 credit each.

The fourth quantum is important: here, demand exceeds
supply, and there are no donated slices. Now, unlike classic
max-min fairness, Karma will prioritize the allocation of
resources based on the credits of each tenant. Since at the
start of this quantum, C has 11 credits, while A and B have
only 6 and 7 credits respectively, C will be able to get 3 extra
slices from the pool of shared slices by using 3 credits and
achieve an allocation of 4. A and B will get their guaranteed
allocation of 1 and do not gain or lose any credits.

In the fifth quantum, once again, demand exceeds supply.
C has 9 credits, B has 8 credits, and A has 7 credits. Karma
first prioritizes allocating to C giving it 1 extra slice, at which
point both C and B have equal credits (8). Next, they both
get 1 extra slice each, at which point the supply is exhausted.
The final resulting allocation is 1 slice for A, 2 slices for B,
and 3 slices for C.

In the end, A, B, and C end up with the exact same total
allocation (8 slices) and number of credits (unlike max-min
fairness where user allocations had a disparity of 2×).

3.3 Karma Properties & Guarantees
In this section, we present a theoretical analysis of Karma.
Recall from §3.1 that, similar to all prior works, users
are considered selfish and strategic (that is, are willing to
misreport their demands to maximize their allocations), but
not adversarial (that is, do not lie about their demands simply

to hurt others’ allocations). For the purpose of our theoretical
analysis, we assume that Karma is initialized with a large
enough number of initial credits so that users do not run out
of credits during the execution of the algorithm (we discuss
how to achieve this in practice in § 3.4). All our results hold
for α = 0; extending our results to α > 0 is an interesting
open question. Finally, while we provide inline intuition for
each of our results, full proofs are presented in [71].

We define Pareto efficiency on a per-quantum basis. An
allocation is said to be Pareto efficient if it is not possible
to increase the allocation of a user without decreasing
the allocation of at least one other user by a similar total
amount during that quantum. Note that, Pareto efficiency on
a per-quantum basis implies Pareto efficiency over time.

Theorem 1. Karma is Pareto efficient.

Karma’s Pareto efficiency follows trivially from the obser-
vation that similar to max-min fairness, Karma allocation
satisfies the two properties: (1) no user is allocated more
resources than its demand, and (2) either all resources are
allocated or all demands are satisfied.

For strategy-proofness, we make two important notes.
First, if one assumes that the system has a priori knowledge
of all future user demands, the resource allocation problem
can be solved trivially using dynamic programming; however,
for many use cases, it is hard to have a priori knowledge
of all future user demands. This leads to our second note:
Karma is solving an “online” problem (that is, it does not
assume a priori knowledge of future user demands), and thus,
we prove online strategy-proofness [7] defined as follows:
assume that all users are honest during quanta 0 to q− 1;
then, a mechanism is said to be online strategy-proof if, for
any quantum q, a user cannot increase its allocation during
quantum q by lying about its demand during quantum q.

Theorem 2. Karma is online strategy-proof.

To prove Theorem 2, we actually prove a stronger result
stated below. Karma’s online strategy-proofness trivially
follows from this.

650 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 3

2
4
6
8

10
12
14
16

Demands

1 2 3

2
4
6
8

Allocations

1 2 3

2
4
6
8

A is honest

A under-reports

1 2 3

2
4
6
8

10
12
14
16

Demands

1 2 3

2
4
6
8

Allocations

1 2 3

2
4
6
8

A is honest

A under-reports

User A User B User C User D Resource Pool Size

Figure 4: The phenomenon of users (left) gaining a small factor of improvement in their allocations by specifying demands
less than their real demands, by exploiting knowledge of all future demands of all users; (right) any imprecision in the
knowledge of future demands of all users could result in a significant reduction in useful allocations of the lying user. The
resource pool has 8 slices, and 4 users with fair share of 2 and guaranteed share of 0 (α=0).

Lemma 1. A user cannot increase its useful resource
allocation by specifying a demand higher than its real demand
in any quantum.

The proof for the lemma is a bit involved, but intuitively, it
shows the following. The immediate effect of a user speci-
fying a demand higher than its actual demand is that if the
user is allocated more resources than its actual demand, these
extra resources do not contribute to its utility, but do put the
user into a disadvantageous position: not only can this user
lose credits (either because it’s asking for resources beyond its
guaranteed share, or because it could have gained credits if this
extra resource could have been allocated to some borrower),
but also because other users get fewer resources; this makes
other users be favored by the allocation algorithm in the future
while making the lying user less favored. Thus, the user can-
not increase its long-term “useful” allocation by specifying a
demand higher than the real demand in any quantum. Specif-
ically, it is possible that when a user over-reports its demand
during quantum q′, the user receives an increased instanta-
neous allocation during some future quantum q>q′; however,
we are able to show that, in this case, the user will also receive
reduced instantaneous allocation(s) during other quantum(s)
in between q′ and q, leading to either a lower or equal total
allocation over the period between q′ and q. The hardness in
the proof stems from carefully analyzing such cascade effects:
a small change in users’ resource allocation in any quantum
can result in complex changes in future allocations that may
lead to higher instantaneous but equal or lower total alloca-
tions in future quanta. Once we prove this lemma, the proof
for Karma’s online strategy-proofness follows immediately.

While analyzing Karma properties, we encountered a new,
surprising, phenomenon that may be of further theoretical in-
terest: we show that a user that knows all future demands of all
other users can report a demand that is lower than its actual de-
mand in the current quantum to increase its allocation in future
quanta by a small constant factor. However, any imprecision
in the knowledge of all future demands of all other users could
result in the user losing a factor of Ω(n) of its total allocation.

Lemma 2. A user cannot increase its total useful allocation
by a factor more than 1.5× by specifying a demand less than
its real demand in any quantum. Gaining this useful allocation
requires the user to know the future demands of all users. If the
user does not have a precise knowledge of all future demands
of all users, it can lose its useful allocation by a factor of n+2

2
(for n≥3) by specifying a demand less than its real demand.

We provide intuition for this phenomenon using an example
(Figure 4). In the left figure, user A is able to gain 1
extra slice in its overall allocation by under-reporting its
demand (reporting 0 instead of 8) in the first quantum. By
under-reporting, its allocation in the first quantum reduces,
enabling it to get more resources during the second quantum
when it competes with user C. In the third quantum, it is
able to recover the resources it lost in the first quantum from
user B, resulting in an overall gain. To see the flip-side, if the
demands of other users had been as shown in Figure 4 (right),
then user A sees a 3× degradation in overall allocation.

To prove the first part of the Lemma 2, we consider an
arbitrary user Alice and an arbitrary time period, and compare
two scenarios—one where Alice is truthful (hereby called
the truthful scenario) and one where Alice is deviating by
under-reporting her demand during some quantum (hereby
called the deviating scenario).

Our key insight for the proof is that bounding the increase in
total allocation of all users is easier than reasoning about the
increase in total allocation of an individual user (Alice) since
even a small change in Alice’s demand during one quantum
can result in cascading effects on the total allocation of other
users as well. To that end, we prove the following claim: the
total amount of resources all the users have earned in excess
in the deviating scenario compared to the truthful one can be
at most as large as Alice’s total allocation in the truthful sce-
nario. We prove this claim based on the following observation:
whenever Alice under-reports her demand she is effectively
"donating" the allocation she would have gotten in the truthful
scenario to the other users whose allocations in the deviating
scenario increase. Since Karma is Pareto efficient, the total

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 651

gain in allocation across users during this quantum is limited
by the amount donated by Alice which is in turn bound by
Alice’s own allocation during this quantum in the truthful sce-
nario. By applying this reasoning iteratively across all quanta1,
we can show that the total increase in allocation across all
users cannot exceed the total allocation of Alice in the truth-
ful scenario. This already implies a 2× upper bound on the
maximum increase in total allocation that Alice can achieve.

To tighten the upper bound, we prove a second claim: if
Alice receives higher total allocation in the deviating scenario
compared to the truthful scenario, then there must exist some
other user Bob who gained an even larger increase in total
allocation than Alice. Putting together the above two claims
allows us to establish the desired upper bound. Based on
the first claim, the total gain in allocation across all users
cannot exceed Alice’s total allocation in the truthful scenario.
This implies that the sum of total gains across Alice and Bob
cannot exceed Alice’s total allocation in the truthful scenario.
Since Bob’s gain is at least as large as Alice’s gain (based
on the second claim), this implies that Alice’s gain is at most
half the total allocation of Alice in the truthful scenario—a
gain of at most 1.5×, thus proving the first part of Lemma 2.

The second part of the lemma is proven by first creating
a set of demands where a user can under-report its demand
during quantum q to earn increased total allocation by some
quantum q′ > q. Then we create a set of demands that are
identical up to quantum q but vastly different from quanta
q+1 to q′. If the user (in the hope of facing the first set of
demands) under-reports its demand on quantum q but ends
up facing the second set of demands then this results in vastly
different allocations by quantum q′. By correctly picking the
two sets of demands we get the desired bounds.

In [71], we prove an even stronger result that extends
Karma properties from Theorem 1, Theorem 2, Lemma 1 and
Lemma 2 to the case of multiple colluding users:

Theorem 3. No group of colluding users can increase their al-
location by specifying a demand higher than their real demand.
Additionally, for any group of colluding users, under-reporting
demands cannot lead to more than a 2× improvement in
their useful resource allocation. Finally, even if users form
coalitions, Karma is Pareto efficient and online strategy-proof.

Recall that Karma focuses on long-term fairness without a
priori knowledge of future user demands. To that end, the
following theorem summarizes Karma’s fairness guarantees:

Theorem 4. For any quantum q, given fixed user allocations
from quantum 0 to quantum q − 1, and user demands at
quantum q, Karma maximizes the minimum total allocation
from quantum 0 to quantum q across users.

1It turns out that Alice under-reporting in a given quantum cannot cause
cascading increases in total allocation across users in future quanta if Alice
does not under-report in future quanta. This is because Karma prioritizes
allocation to users with high credits (or equivalently low total allocations).

The proof for the above theorem follows from the prior-
itized resource allocation mechanism of Karma. Intuitively,
given allocations from quantum 0 to q−1, the user with the
least total allocation up to quantum q−1 will have the largest
number of credits. In quantum q, Karma will prioritize the
allocation of resources to this user (until it is no longer the
one with the minimum total allocation, after which it will
prioritize the next user with the minimum total allocation,
and so on), thus maximizing the minimum total allocation
from quantum 0 to q across users—this is the best one can
do in quantum q given past allocations.

3.4 Discussion

Finally, we briefly discuss some additional aspects of Karma
design not included in the previous subsections.

Bootstrapping Karma with initial credits. Recall that, to
bootstrap users, Karma allocates each user an initial number
of credits. The precise number of initial credits has little
impact on Karma’s behavior; after all, credits in Karma
essentially capture a relative ordering between users, rather
than having any absolute meaning. The only importance
of the number of credits is to ensure that no user runs out
of credits at any quantum (which, in turn, could lead to
violation of Karma’s Pareto efficiency guarantees): even if
spare resources are available, a user with high demand may
not be able to borrow resources beyond the guaranteed share
(line 7 of Algorithm 1) due to running out of credits. Thus,
Karma sets the number of initial credits to a large numerical
value to ensure that no user ever runs out of credits2,

User churn. Fairness is relatively ill-defined when users can
join and leave the system on a short-term basis (e.g., when a
user runs a short query with large parallelism, and then leaves
the cluster). Also, recall from our motivating scenarios, fair
resource allocation in private clouds is usually performed
for long-running services. However, Karma still handles user
churn since, in many realistic scenarios, the set of all users of
the system may not be known upfront during system initial-
ization. For users that join and leave over longer timescales,
Karma handles user churn with a simple mechanism: its
credits. When a new user joins, either the resource pool
size remains fixed and the fair share of all users is reduced
proportionally or the resource pool size increases and the fair
share of users remains the same. The credits of the existing
n−1 users do not change, and the new user is bootstrapped
with initial credits equal to the current average number of
credits across the existing n−1 users. Intuitively, users who
have donated more resources than they have borrowed will
have above-average credits, and those who have borrowed

2For example, in a system with 100 users with fair share of 100 slices,
setting initial credits to say 1013 will ensure that even a worst-case user with
highest possible demand (10000 slices) during all quanta cannot run out of
credits for∼31 years, which is good enough for all practical purposes.

652 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

more than they have donated will have below-average credits.
As such, initializing the new user with the average number of
credits (heuristically) puts the new user on equal footing with
an existing user that has borrowed and donated equal amounts
of resources over time. When a user leaves the system, the
fair share of the remaining users is increased proportionally
(or resource pool size reduces while maintaining the same
fair share), and there is no change in their credits.

Users with different fair shares. We have presented Karma’s
algorithm for the case of users having the same fair share
merely for simplicity: all our results extend to the case of
users having different fair shares. To generalize the algorithm
to users with different fair shares, users with larger weights
are charged fewer credits to borrow resources beyond their
guaranteed share when compared to users with smaller
weights. Intuitively, this enables users with larger weights to
obtain more resources than users with smaller weights for the
same number of credits. We achieve this by updating Line 20
of Algorithm 1 to decrement credits by 1

n·wi
instead of 1,

where wi is the normalized weight of the corresponding user,
and n is the number of users. For users with different fair
shares, this generalization leads to the same properties and
guarantees as discussed in §3.3 (the only difference, is that the
upper bound factor in Lemma 2 changes from 1.5× to 2×).
A full description of the weighted version of the algorithm
along with proofs of guarantees can be found in [71].

System parameters, and interpretation for α. Karma has
only one parameter: α; one can think of resource slice size and
quantum duration as parameters, but these are irrelevant to
Karma’s guarantees: they hold for any slice size and quantum
duration, as long as demands change at coarse timescales than
the quantum duration. The α parameter in Karma provides
a tradeoff between instantaneous and long-term fairness.
Providers can choose any α depending on the desired proper-
ties. Intuitively, an α smaller than 1 leads to a larger portion
of shared slices, giving Karma’s algorithm more flexibility
in adjusting allocations to achieve better long-term fairness.

4 Karma Implementation Details

We have implemented Karma on top of Jiffy [41], an
open-sourced elastic far memory system. Jiffy has a standard
distributed data store architecture (Figure 5(a)): resources are
partitioned into fixed-sized slices (blocks of memory) across
a number of resource servers (memory servers), identified
by their unique sliceIDs (referred to as blockIDs in Jiffy).
A logically centralized controller tracks the available and
allocated slices across the various resource servers and stores
a mapping that translates sliceIDs to the corresponding
resource server. We have implemented Karma as a new
resource allocation algorithm at the Jiffy controller3.

3Karma can thus directly piggyback on Jiffy’s existing mechanisms for
controller fault tolerance [41, Section 4] to persist its state across failures.

Users interact with the system through a client library
that provides APIs for requesting resource allocation and
accessing allocated resource slices. Users express their
demands to the controller through resource requests which
specify the number of slices required. The controller
periodically performs resource allocation using the Karma
algorithm and provides users with the sliceIDs of the resource
slices that are allocated to them. Users can then directly
access these slices from the resource servers through read
or write API calls without requiring controller interposition.
In the rest of this section, we discuss the key data structures
and mechanisms required to integrate Karma with Jiffy.

Karma employs three key data structures to efficiently
implement the policies and mechanisms outlined in §3:
karmaPool, a credit map, and a rate map.

karmaPool. Recall from §3.2 that the karmaPool tracks
the pool of donated slices and shared slices, and needs to
be updated when resource allocations change. Also, the
resource allocation algorithm should be able to efficiently
select donated slices from a particular user while satisfying
borrower demands (§3.2.2). To this end, the karmaPool is
implemented as a hash map, mapping userIDs to the list of
sliceIDs corresponding to slices donated by them. The list of
sliceIDs corresponding to shared slices is stored in a separate
entry of the same hash map. When resource allocations
change, the corresponding sliceIDs are added to or removed
from the corresponding lists. As such, karmaPool supports
all updates in O(1) time.

Credit Tracking. Karma employs two data structures for
tracking and allocating credits across various users: a rate
map and a credit map. The rate map maps each user to the
rate at which it earns or spends its credits every quantum, that
is, the difference between the user’s guaranteed share and
the number of its allocated slices in that quantum. The rate is
positive when the user is earning (that is, has donated slices)
and negative when it is spending credits (that is, has borrowed
slices), respectively. The credit map, on the other hand, maps
each user to a counter corresponding to its current credits.

Separating the rate map and credit map facilitates efficient
credit tracking at each quantum: Karma simply iterates
through the rate map entries, and updates the credit counters
in the credit map based on the corresponding user credit
rates. Since the rate map only contains entries for users with
non-zero rates, Karma can efficiently update credits for only
the relevant users. At the same time, Employing a hash-map
for each of them permits O(1) updates to the user credit rate
or number of credits while performing resource allocation.

Borrowing and donating slices. Karma realizes its credit-
based prioritized allocation algorithm (§3.2) using two
modules at the controller. First is a slice allocator that
maintains the karmaPool to track and update slice allocations
across users, and, second a credit tracker that maintains the
current number of credits for any user (via Credit Map) and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 653

Controller

...

R
es

ou
rc

eS
er

ve
rs

S1 S2 S3

BA CUsers:
demands
requests R

esource

A
PI

(a) System Architecture

Slice Allocator

karmaPool

A
B
C

Credit Tracker

Rate Map

A
B

2
-1

Credit Map

A
B
C

7
4
7

(b) Karma state in the Controller

Figure 5: Karma Design. See §4 for details.

how it should be updated (via Rate Map). Figure 5(b) shows
these modules along with the data structures they manage.

The slice allocator intercepts resource requests from
users, periodically executes the Karma resource allocation
algorithm (Algorithm 1) to compute allocations based on
the user demands, and updates slices in the karmaPool
accordingly. It interacts with the credit tracker to query and
update user credits. A naïve implementation of Algorithm 1
runs in O(n · f · logn) time, where n is the number of users,
and f is the fair share4. Instead of computing allocations
one slice at a time, we use an optimized implementation that
carefully computes them in a batched fashion (full details are
provided in [71]). This enables the slice allocator to support
resource allocation at fine-grained timescales.

Consistent hand-off of resources. Since users are allowed
to directly access slices from resource servers, we need to
ensure consistent hand-off of slices from one user to another
when slices are reallocated. For example, say user U1 has a
slice during a given quantum, and in the next quantum, this
slice is allocated to user U2. We need to ensure that (1) U1’s
data is flushed to persistent storage before U2 overwrites it (2)
U1 should not be able to read/write to the slice after U2 has
accessed it (for example, there could be in-flight read/write
requests to the slice which were initiated before U1 gets to
know it’s allocation changed).

Karma ensures the above by maintaining a monotonically
increasing sequence number and current userID for each
slice, at both the controller (within the karmaPool) and the
resource servers (as slice metadata). On slice allocation, its
userID is updated and its sequence number is incremented
at the controller, and the sequence number is returned to the
user. Subsequent user reads and writes to the slice specify this
userID and sequence number. A slice read succeeds only if
the accompanying sequence number is the same as the current
slice sequence number, while a slice write succeeds only if
the accompanying sequence number is the same or greater
than the current sequence number. If a write necessitates
an overwrite of the current slice content and metadata, the

4The loop in Line 10 of Algorithm 1 takes O(n · f) iterations and each
iteration would take O(logn) time to find the donor/borrower with the mini-
mum/maximum credits (if we were to maintain min/max heaps for the donor
and borrower sets).

old slice content is transparently flushed persistent storage
(e.g., S3) before the overwrite. In our example above, U2’s
first access to the slice after re-allocation will trigger a flush
of U1’s data to S3 and update the slice sequence number.
Following this U1’s accesses to this slice will fail since the
current sequence number of the slices is higher. U1 can then
read/write this data from persistent storage. Implementing
consistent resource hand-off in Jiffy required minor changes
to the controller (to track sequence numbers per slice),
memory servers (to perform sequence number checking), and
the client library (to tag requests with sequence numbers).

5 Evaluation

We have already established Karma properties theoretically in
§3. In this section, we evaluate how Karma’s properties trans-
late to application-layer benefits over an Amazon EC2 testbed
with real-world workloads. Our evaluation demonstrates that:
• Karma reduces the performance disparity between different

users by ∼ 2.4× relative to classic max-min fairness,
without compromising on system-wide utilization or
average performance (§5.1);

• Karma incentivizes users to share resources, quantifying
Karma’s online strategy-proofness property (§5.2);

We primarily focus on the shared cache use case from §2
for the following reason. While datasets for the shared data
analytics clusters use case are publicly available (e.g., Google
and Snowflake datasets), they do not provide user queries that
may impact our final conclusions. For the shared cache use
case, we do have all the information we need: these datasets
provide information on the working set size of each user
over time, which can be fed into an end-to-end multi-tenant
in-memory cache system running on Amazon EC2. We, thus,
focus on this use case.

Experimental setup. Our experimental setup consists of a
distributed elastic in-memory cache shared across multiple
users backed by a remote persistent storage system. For the
cache, we use Jiffy [41], augmented with our implementation
of Karma (§4) and other evaluated schemes. If the evaluated
scheme does not allocate sufficient slices to a user on Jiffy
to fit its entire working set, the remaining data is accessed
from remote persistent storage. When slices are reallocated
between users across quanta, the corresponding data is moved
between Jiffy and persistent storage through the consistent
hand-off mechanism described in §4. We deployed our setup
on Amazon EC2 using c5n.9xlarge instances (36 vCPUs,
96GB DRAM, 50Gbps network bandwidth). We host the
Jiffy controller and resource servers across 7 instances and
use 25 instances for the users/clients that issue queries to
Jiffy. We use Amazon S3 as the persistent storage system.

Workload. We use the publicly available Snowflake
dataset [72] that provides dynamic user demands in terms
of memory usage for each customer from Snowflake’s

654 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Strict Max−min Karma

 1

 10

 100

 0 10 20 30 40 50 60 70 80

%
 o

f
u
s
e

rs

 w
it
h

 t
h

ro
u
g

h
p

u
t

 <

x

Throughput (kops/sec)

(a) CDF of throughput across users

 1

 10

 100

 0 0.4 0.8 1.2 1.6 2 2.4

%
 o

f
u
s
e

rs

 w
it
h

 l
a

te
n

c
y

>

x

Average Latency (ms)

(b) CCDF of average latency across users

 1

 10

 100

 0 20 40 60 80 100

%
 o

f
u
s
e

rs

 w
it
h

 l
a

te
n

c
y

>

x

P99.9 Latency (ms)

(c) CCDF of P99.9 latency across users

 0

 1

 2

 3

 4

 5

D
is

p
a
ri
ty

(d) Disparity in throughput across
users (median/min)

 0

 0.2

 0.4

 0.6

 0.8

 1

m
in

/m
a
x
 a

llo
c
a
ti
o
n

(e) Fairness in overall allocations
(min/max allocation)

 0

 1

 2

 3

 4

 5

 6

 7

 8

S
y
s
te

m
-w

id
e
 T

h
ro

u
g
h
p
u
t

(m
ill

io
n
 o

p
s
/s

e
c
)

(f) System-wide average throughput
(million ops/sec)

Figure 6: Understanding Karma benefits. (a) Karma enables a much tighter throughput distribution across users (colored
arrows show the absolute gap between median and minimum throughput across users). (b, c) It also enables a tighter distribution
of average and tail latencies across users (again, colored arrows show the absolute gap between median and maximum latency
across users). (d) Karma achieves much lower throughput disparity—ratio of median to minimum values of throughput across
users—than classic max-min fairness. (e) It also significantly reduces the gap between the users with minimum and maximum
overall allocations, (f) while achieving similar system-wide performance as max-min fairness.

production cluster. We use these demands as the dynamic
working set size for individual users. For each user, we
issue data access queries using the standard YCSB-A
workload [20] (50% read, 50% write) with uniform random
access distribution, with queries during each quantum
being sampled (according to the YCSB parameters) within
the instantaneous working set size of that user. If a query
references data that is currently cached in Jiffy, then it is
serviced directly from the corresponding resource server;
otherwise, it is serviced from the persistent storage.

Default parameters. Unless specified otherwise, we
randomly choose 100 users (out of ∼ 2000 users) over a
randomly-chosen 15 minute time window (out of a 14-day
period) in the Snowflake workload. To test for extreme
scenarios, we set the length of each quantum to be one second
(that is, a total of 900 quanta). The fair share of each user
is 10 slices, and the total memory capacity of the system is
set to the number of users times the fair share (1000 slices).
Each slice is 128MB in size, while each query corresponds
to a read or write to a 1KB chunk of data (the default size
in the YCSB workload).

Compared schemes. We compare Karma to strict partitioning
and max-min fairness, since they correspond to the two most
popular fair allocation schemes, and represent extremes in re-
source allocation and performance. When evaluating Karma,

we set the number of initial credits to a large value5. The
fraction of fair share that is guaranteed (α) is 0.5 by default.

Metrics. We evaluate system-wide resource utilization,
along with both per-user and system-wide performance—key
metrics for any resource allocation mechanism. For perfor-
mance, we measure both throughput and latency (average
and 99.9th percentile tail). We define performance disparity
for an allocation scheme as the ratio of median to minimum
performance (that is, throughput or latency) observed across
various users. For any given user, we define welfare over
time t as ∑t allocations

∑t demands , that is, the fraction of its total demands
satisfied by the allocation scheme. We define fairness as
minuserswelfare
maxuserswelfare (higher is better, 1 is optimal), as a measure of
welfare disparity between users.

5.1 Understanding Karma Benefits
We now evaluate Karma’s benefits in terms of reducing
disparity across users’ application-level performance as well
as resource allocation.

Karma reduces performance disparity between users.
Figure 6(a) shows the throughput distribution across users for
our compared schemes; the y-axis is presented in log-scale to

5As discussed in §3.4, the precise value is unimportant. Here, we set it to
900,000, so that even if a user was allocated the full system capacity for the
entire duration (1000×900) it would not run out of credits.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 655

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

U
ti
liz

a
ti
o
n

Conformant Users (% of total)

(a) Utilization

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100S
y
s
te

m
-w

id
e
 T

h
ro

u
g
h
p
u
t

(m
ill

io
n
 o

p
s
/s

e
c
)

Conformant Users (% of total)

(b) Performance

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 20 40 60 80 100

W
e
lf
a
re

 I
m

p
ro

v
e
m

e
n
t

 o
f
n
o
n
-c

o
n
fo

rm
a
n
t
u
s
e
rs

Conformant Users (% of total)

(c) Welfare improvement

Figure 7: Karma incentivizes resource sharing. All metrics are computed as averages (with error bars) for three random
selections of users being non-conformant. See §5.2 for details.

focus on the users at the tail of the distribution, which observe
the most performance disparity. Since Karma strives to bal-
ance fairness over time, it significantly narrows the throughput
distribution across users compared to the two baselines: the
ratio between the maximum and minimum throughput across
all users is 7.8× with strict partitioning and 4.3× with max-
min fairness, but only 1.8× for Karma. As Figure 6(d) shows,
Karma lowers the throughput disparity across users by 2.4×
compared to max-min fairness. Karma also reduces average
latency disparity (Figure 6(b)) by 2.4× and 99.9th percentile
latency disparity (Figure 6(c)) by 1.2× compared to max-min
fairness by enabling a tighter distribution for both latencies.

Equitability in performance across users for a scheme is
closely tied to how fairly resources are allocated across users.
Specifically, because of the large gap between elastic memory
(Jiffy) and S3 latencies (50–100×), accesses to slices in S3
result in significantly lower throughput than accesses to slices
in elastic memory. As a result, users’ average throughput
ends up being roughly proportional to their total allocation of
slices in elastic memory over time. Similarly, since a larger
total allocation results in a smaller fraction of requests going
to S3, average and tail latencies also reduce.

Karma reduces disparity in allocations. We now quantify
disparities in overall allocations obtained by users across our
compared schemes via our fairness metric in Figure 6(e). Due
to dynamic demands, strict partitioning exhibits very poor
fairness, since users with very bursty demands end up getting
much lower total allocations than users who have steady
demands6. While, max-min fairness observes better fairness
compared to strict partitioning, the best-off user still receives
4× higher allocation than the worst-off user, resulting in
poor absolute fairness. Karma achieves significantly better
fairness with the best-off user receiving only 1.5× higher
allocation than the worst-off user. It is able to achieve this by
prioritizing the allocation of resources beyond the fair share
to users with more credits (§3.2.2).

Karma achieves Pareto efficiency and high system-wide
performance. Karma achieves the same overall resource

6Note that only useful allocations are considered—strict partitioning guar-
antees a fixed allocation at all times, but resources may remain unused when
demand is low.

utilization as max-min fairness (∼ 95%). This is because
Karma is Pareto efficient (§3.3) similar to max-min fairness
and thus achieves near-optimal utilization. We find that the
optimal utilization is < 100% since some quanta observe
total user demands less than system capacity.

Max-min fairness observes 1.4× higher system-wide
throughput (that is, throughput aggregated across all users)
than strict partitioning (Figure 6(f)) since it permits alloca-
tions beyond the fair share, allowing more requests to be
served on faster elastic memory. Karma observes system-wide
performance similar to max-min fairness for similar reasons;
the slight variations are attributed to variance in S3 latencies.

5.2 Karma Incentives
We now empirically demonstrate that Karma incentivizes
users to donate resources instead of hoarding them, to
improve their own as well as overall system welfare. To
this end, we vary the fraction of users using Karma that are
conformant or non-conformant. A conformant user is truthful
about its demands and donates its resources when its demand
is less than its fair share. A non-conformant user, on the other
hand, always asks for the maximum of its demand or its fair
share (that is, it over-reports its demand during some quanta).

Resource utilization and system-wide performance
improve with more conformant users. Figure 7(a) and
Figure 7(b) show that Karma’s system-wide utilization and
performance improve as the fraction of conformant users in-
creases. This is because as more users donate resources when
they do not need them, other users can use these resources,
improving overall utilization and performance. When none
of the users are conformant, since no one ever donates any
resources, Karma essentially reduces to strict partitioning,
hence achieving low overall utilization and performance.
When all users are conformant, Karma achieves optimal uti-
lization and performance, similar to classic max-min fairness.

Becoming conformant improves user welfare. Figure 7(c)
shows the average welfare gain non-conformant users
would achieve if they were to become conformant. When
non-conformant users become conformant, it leads to
significant (1.17–1.6×) welfare gains for them, empirically

656 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

U
ti
liz

a
ti
o

n

Instantaneous guarantee (α)

Max-min
Strict

Karma

(a) Utilization

 0
 1
 2

 3
 4
 5
 6

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

S
y
s
te

m
-w

id
e
 t

h
ro

u
g
h

p
u

t

 (
m

ill
io

n
 o

p
s
/s

e
c
)

Instantaneous guarantee (α)

Max-min
Strict

Karma

(b) Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

m
in

/m
a
x
 a

llo
c
a
ti
o

n

Instantaneous guarantee (α)

Max-min
Strict

Karma

(c) Fairness

Figure 8: Sensitivity analysis with varying instantaneous guarantee (α) (a, b) Karma matches the resource utilization and
system-wide performance of max-min fairness independent of α (c) Smaller values of α result in improved long-term fairness.

validating Karma’s property that users have nothing to gain by
over-reporting their demand (§3.3). Note that the gain varies
with the number of conformant users in the system—the gains
from non-conformant users becoming conformant are higher
when the percentage of conformant users is low. As expected,
the gains show diminishing returns as more users in the sys-
tem become conformant as overall utilization is already high.

5.3 Karma Sensitivity Analysis

We now show sensitivity analysis with the only parameter
in the Karma algorithm–the instantaneous guarantee (α).
Figure 8 shows the resource utilization, system-wide
performance, and fairness with α varying between 0 and
1. Karma continues to match the resource utilization and
system-wide performance of max-min fairness independent
of α (Figure 8(a) and Figure 8(b)). Varying α has an impact
on the long-term fairness achieved by Karma (Figure 8(c)),
with smaller values of α resulting in improved fairness, thus
validating our discussion in §3.4. Even for α = 1, Karma
is able to achieve significantly better fairness compared
to max-min fairness. This is because, while it allocates
resources up to the fair share identically to max-min fairness,
it prioritizes allocation beyond the fair share based on credits.

6 Related Work
There is a large and active body of work on resource
allocation and scheduling, exploring various models and
settings; it would be a futile attempt to compare Karma with
each individual work. We do not know of any other resource
allocation mechanism that guarantees Pareto efficiency,
strategy-proofness, and fairness similar to Karma for the case
of dynamic user demands; nevertheless, we discuss below
the most closely related works.

Max-min fairness variants in cloud resource allocation and
cluster scheduling. Many works study variants of max-min
fairness for cloud resource allocation and cluster schedul-
ing [8,10,17,30–33,44,46,57–59,64,66,77], including recent
work on ML job scheduling [15,34,47,50,55]. We make three
important notes here. First, while dominant resource fairness

(DRF) [30] has generalized max-min fairness to multiple
resources, it makes the same assumptions as max-min
fairness: user demands being static over time; our goals are
different: we have identified and resolved the problems with
max-min fairness for the case of a single resource but over
dynamic user demands. It is an interesting open problem to
generalize Karma for the case of multiple resources.

Second, cluster scheduling has been studied under several
metrics beyond fair resource allocation (e.g., job completion
time, data locality, priorities, etc.). Themis [47] considers
long-term fairness but defines a new ML workload-specific
notion of fairness, and is therefore not directly comparable
to Karma. Our goals are most aligned with those works that
study fair allocation under strategic users while guaranteeing
Pareto efficiency. To that end, the closest to Karma is
CARBYNE [32]. However, CARBYNE not only assumes
non-strategic users but also, for the single-resource case
(the focus of this paper), CARBYNE converges to max-min
fairness. As discussed earlier, generalizing Karma to multiple
resources remains an open problem; a solution for that
problem must be compared against CARBYNE.

Finally, fairness in application-perceived performance
is only indirectly related to fairness in resource allocation:
other factors like software systems (e.g., hypervisors
and storage systems) and resource preemption granu-
larity can impact performance. Similar to other mecha-
nisms [9, 10, 16, 30–33, 39, 45, 46, 59, 60, 66, 67, 72, 77, 80],
Karma’s properties are independent of these system-level
factors; while our evaluation shows that Karma properties
translate to application-level benefits, absolute numbers
depend on the underlying system implementation.

Allocation of time-shared resources. Generalized Processor
Sharing (GPS) [54] is an idealized algorithm for sharing
a network link which assumes that traffic is infinitesi-
mally divisible (fluid model). For equal-sized packets and
equal flow weights, GPS reduces to Uniform Processor
Sharing [54, Section 2], which is equivalent to max-min
fairness. GPS guarantees fairness over arbitrary time intervals
only under the assumption that flows are continuously
backlogged [54, Section 2]. This assumption implies that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 657

flows always have demand greater than their fair share,
making it trivial to guarantee a max-min fair share of the
network bandwidth over arbitrary time intervals. Classical
fair-queueing algorithms [11, 24, 48, 65, 83] in computer
networks approximate GPS with the constraint of packet-
by-packet scheduling. Under this constraint, varying-sized
packets and different flow weights make it hard to realize
fairness efficiently; thus, the technical question that these
algorithms solve is to achieve fairness approximately equal to
GPS with minimal complexity. Karma focuses on a different
problem—we show that GPS guarantees (equivalent to
max-min fairness) are not sufficient when demands are dy-
namic and present new mechanisms to achieve fairness while
maintaining other properties for such dynamic demands.

Stride [74] scheduling essentially approximates GPS in the
context of CPU scheduling [74, Section 7], and thus the above
discussion applies to it as well. DRF-Q [29] generalizes
DRF to support both space and time-shared resources, but
is explicitly designed to be memoryless similar to max-min
fairness, and therefore suffers from similar issues for
long-term fairness. Least Attained Service (LAS) [13, 43, 53]
is a classical job scheduling algorithm that has been applied
to packet scheduling [13], GPU cluster scheduling [34],
and memory controller scheduling [42]. For α = 0, Karma
behaves similarly to LAS, and for α>0, Karma generalizes
LAS with instantaneous guarantees. Moreover, our results
from §3.3 establish strategy-proofness properties of LAS for
dynamic user demands, which may be of independent interest.

Theory works. Several recent papers in the theory commu-
nity study the problem of resource allocation for dynamic user
demands. Freeman et al. [26] and Hossain et al. [37] consider
dynamic demands under a different setting, where users can
benefit when they are allocated resources above their demand;
under this setting, they focus on instantaneous fairness (which
is non-trivial since users can be allocated resources beyond
their demand). Karma instead focuses on long-term fairness
under the traditional model, where users do not benefit from
resources beyond their demands. Sadok et al. [62] present
minor improvements over max-min fairness for dynamic de-
mands. Their mechanism allocates resources in a strategy-
proof manner according to max-min fairness while marginally
penalizing users with larger past allocations using a parameter
δ∈ [0,1). For both δ=0 and δ→1, the penalty goes to 0 for
every past allocation, and the mechanism becomes identical
to max-min fairness; for other values of δ, the penalty is at
most a δ(1−δ)≤1/4 fraction of past allocation surplus, and
it reduces exponentially with time (users who were allocated
large amounts of resources further in the past receive an even
smaller penalty). Thus, for all values of δ, and in particular, for
δ=0 and δ→1, their mechanism suffers from the same prob-
lems as max-min fairness. Aleksandrov et al. [7] and Zeng
et al. [82] consider dynamic demands, but in a significantly
different setting than ours where resources arrive over time.

Pricing- and credit-based resource allocation. Another
stream of work related to Karma is pricing-based and bidding-
based mechanisms for resource allocation, e.g., spot instance
marketplace and virtual machine auctions [1, 6, 27, 76, 84, 85].
While interesting, this line of work does not focus on fair re-
source allocation and is not applicable to use cases that Karma
targets. XChange [75] proposes a market-based approach to
fair resource allocation in multi-core architectures but focuses
on instantaneous fairness rather than long-term fairness, un-
like Karma. It assigns a “budget” of virtual currency to each
user which can be used to bid for resources. This budget
is however reset during every time quantum, and therefore
information about past allocations is not carried over.

Credits are used in many other game theoretic con-
texts [25,51,61], e.g., in peer-to-peer and cooperative caching
settings to incentivize good behavior among participants with
static demands [21,56,78]. However, we are not aware of any
credit-based mechanisms that deal with resource allocation
in the context of dynamic user demands.

7 Conclusion
This paper builds upon the observation that the classical
max-min fairness algorithm for resource allocation loses
one or more of its desirable properties—Pareto efficiency,
strategy-proofness, and/or fairness—for the realistic case of
dynamic user demands. We present Karma, a new resource
allocation mechanism for dynamic user demands, and
theoretically establish Karma guarantees related to Pareto
efficiency, strategy-proofness, and fairness for dynamic user
demands. Experimental evaluation of a realization of Karma
in a multi-tenant elastic memory system demonstrates that
Karma’s theoretical properties translate well into practice: it
reduces application-level performance disparity by as much as
2.4× when compared to max-min fairness while maintaining
high resource utilization and system-wide performance.

Karma opens several exciting avenues for future research.
These include (but are not limited to) extending Karma
theoretical analysis for α>0, generalizing Karma to allocate
multiple resource types (similar to DRF), extending Karma
to handle all-or-nothing or gang-scheduling constraints
which are prevalent in the context of GPU resource alloca-
tion [15, 47], and applying Karma to other use cases such as
inter-datacenter network bandwidth allocation and resource
allocation for burstable VMs in the cloud.

Acknowledgements
We thank our shepherd, Sebastian Angel, and the OSDI
reviewers for their insightful feedback. This research was
supported in part by NSF CNS-1704742, CNS-2047220,
CNS-2047283, CNS-2104292, CNS-2143868, AFOSR
grants FA9550-19-1-0183, FA9550-23-1-0068, a Ne-
tApp Faculty Fellowship, an NDSEG fellowship, a Sloan
fellowship, and gifts from Samsung, VMware, and Enfabrica.

658 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Amazon EC2 Spot Instances. https://aws.amazon.
com/ec2/spot/.

[2] B-series Burstable Virtual Machine Sizes.
https : / / learn . microsoft . com / en-us / azure /

virtual-machines/sizes-b-series-burstable.

[3] CFS: Completely Fair Process Scheduling in
Linux. https://opensource.com/article/19/2/

fair-scheduling-linux.

[4] Key Concepts and Definitions for Burstable
Performance Instances. https : / / docs .

aws . amazon . com / AWSEC2 / latest / UserGuide /

burstable-credits-baseline-concepts.html.

[5] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai
Menache, Matei Zaharia, and Peter Bailis. Contracting
Wide-Area Network Topologies to Solve Flow Problems
Quickly. In NSDI, 2021.

[6] Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-
Yehuda, Assaf Schuster, and Ahuva Mu’alem. Ginseng:
Market-Driven Memory Allocation. In VEE, 2014.

[7] Martin Aleksandrov and Toby Walsh. Strategy-
proofness, Envy-freeness and Pareto efficiency in Online
Fair Division with Additive Utilities. In PRICAI, 2019.

[8] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis,
Greg O’Shea, and Eno Thereska. End-to-end Perfor-
mance Isolation Through Virtual Datacenters. In OSDI,
2014.

[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In SIGMETRICS, 2012.

[10] Hitesh Ballani, Keon Jang, Thomas Karagiannis,
Changhoon Kim, Dinan Gunawardena, and Greg
O’Shea. Chatty Tenants and the Cloud Network Sharing
Problem. In NSDI, 2013.

[11] Jon CR Bennett and Hui Zhang. Hierarchical Packet
Fair Queueing Algorithms. Transactions on Networking,
1997.

[12] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter,
and Gregory Ganger. The CacheLib Caching Engine:
Design and Experiences at Scale. In NSDI, 2020.

[13] Ernst W Biersack, Bianca Schroeder, and Guillaume
Urvoy-Keller. Scheduling in practice. Performance
Evaluation Review.

[14] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang,
Christos Kozyrakis, and Rachit Agarwal. Towards µs
Tail Latency and Terabit Ethernet: Disaggregating the
Host Network Stack. In SIGCOMM, 2022.

[15] Shubham Chaudhary, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha.
Balancing Efficiency and Fairness in Heterogeneous
GPU Clusters for Deep Learning. In EuroSys, 2020.

[16] Yue Cheng, Ali Anwar, and Xuejing Duan. Analyzing
Alibaba’s Co-located Datacenter Workloads. In Big
Data, 2018.

[17] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi,
and Ion Stoica. HUG: Multi-Resource Fairness for
Correlated and Elastic Demands. In NSDI, 2016.

[18] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Cliffhanger: Scaling Performance
Cliffs in Web Memory Caches. In NSDI, 2016.

[19] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and
Ryan Stutsman. Memshare: a Dynamic Multi-tenant
Key-value Cache. In ATC, 2017.

[20] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In SoCC, 2010.

[21] Landon P Cox and Brian D Noble. Samsara: Honor
Among Thieves in Peer-to-Peer Storage. Operating
Systems Review, 2003.

[22] Alexander D’Amour, Hansa Srinivasan, James Atwood,
Pallavi Baljekar, D Sculley, and Yoni Halpern. Fairness
is Not Static: Deeper Understanding of Long Term
Fairness via Simulation Studies. In FAccT, 2020.

[23] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. 2008.

[24] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and Simulation of a Fair Queueing Algorithm.
In SIGCOMM, 1989.

[25] Joan Feigenbaum and Scott Shenker. Distributed
Algorithmic Mechanism Design: Recent Results and
Future Directions. In Current Trends in Theoretical
Computer Science: The Challenge of the New Century
Vol 1: Algorithms and Complexity Vol 2: Formal Models
and Semantics. 2004.

[26] Rupert Freeman, Seyed Majid Zahedi, Vincent Conitzer,
and Benjamin C. Lee. Dynamic Proportional Sharing: A
Game-Theoretic Approach. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 659

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://opensource.com/article/19/2/fair-scheduling-linux
https://opensource.com/article/19/2/fair-scheduling-linux
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html

[27] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf
Schuster. Ginseng: Market-Driven LLC Allocation. In
ATC, 2016.

[28] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun
Xian, Yunqi Li, Xiangyu Zhao, Changhua Pei, Fei Sun,
Junfeng Ge, Wenwu Ou, and Yongfeng Zhang. Towards
Long-Term Fairness in Recommendation. In WSDM,
2021.

[29] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica.
Multi-Resource Fair Queueing for Packet Processing.
In SIGCOMM, 2012.

[30] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
Resource Fairness: Fair Allocation of Multiple Resource
Types. In NSDI, 2011.

[31] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
Resource Packing for Cluster Schedulers. In
SIGCOMM, 2014.

[32] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic Scheduling
in Multi-Resource Clusters. In OSDI, 2016.

[33] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. GRAPHENE: Packing
and Dependency-Aware Scheduling for Data-Parallel
Clusters. In OSDI, 2016.

[34] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang
Liu, and Chuanxiong Guo. Tiresias: A GPU Cluster
Manager for Distributed Deep Learning. In NSDI, 2019.

[35] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In
NSDI, 2011.

[36] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving High Utilization with Software-Driven
WAN. In SIGCOMM, 2013.

[37] Ridi Hossain. Sharing is Caring: Dynamic Mechanism
for Shared Resource Ownership. In AAMAS, 2019.

[38] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and
Rachit Agarwal. Rearchitecting Linux Storage Stack
for µs Latency and High Throughput. In OSDI, 2021.

[39] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair Scheduling for Distributed Computing Clusters. In
SOSP, 2009.

[40] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a Globally-Deployed Software Defined
WAN. In SIGCOMM, 2013.

[41] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal,
Aditya Akella, and Ion Stoica. Jiffy: Elastic Far-Memory
for Stateful Serverless Analytics. In EuroSys, 2022.

[42] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor
Harchol-Balter. ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple
Memory Controllers. In HPCA, 2010.

[43] Leonard Kleinrock. Queueing Systems, Volume 1:
Theory. 1975.

[44] Haikun Liu and Bingsheng He. Reciprocal Resource
Fairness: Towards Cooperative Multiple-Resource Fair
Sharing in IaaS Clouds. In SC, 2014.

[45] Chengzi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu,
and Tongxin Bai. Imbalance in the Cloud: An Analysis
on Alibaba Cluster Trace. In Big Data, 2017.

[46] Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon,
Roxana Geambasu, and Mathias Lécuyer. Privacy
Budget Scheduling. In OSDI, 2021.

[47] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
Efficient GPU Cluster Scheduling. In NSDI, 2020.

[48] Paul E McKenney. Stochastic Fairness Queueing. In
INFOCOM, 1990.

[49] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving Large-Scale
Granular Resource Allocation Problems Efficiently
with POP. In SOSP, 2021.

[50] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-Aware Cluster Scheduling Policies for
Deep Learning Workloads. In OSDI, 2020.

[51] Noam Nisan and Amir Ronen. Algorithmic Mechanism
Design. Games and Economic Behavior, 2001.

[52] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani.
Scaling Memcache at Facebook. In NSDI, 2013.

660 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[53] Misja Nuyens and Adam Wierman. The Foreground–
Background Queue: A Survey. Performance Evaluation,
2008.

[54] Abhay K Parekh and Robert G Gallager. A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single-Node Case.
Transaction on Networking, 1993.

[55] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: An Efficient Dynamic
Resource Scheduler For Deep Learning Clusters. In
EuroSys, 2018.

[56] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind
Krishnamurthy, and Arun Venkataramani. Do Incentives
Build Robustness in BitTorrent. In NSDI, 2007.

[57] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion
Stoica. FairCloud: Sharing the Network in Cloud
Computing. In SIGCOMM, 2012.

[58] Lucian Popa, Praveen Yalagandula, Sujata Banerjee,
Jeffrey C Mogul, Yoshio Turner, and Jose Renato Santos.
ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing. In SIGCOMM, 2013.

[59] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and
Ion Stoica. FairRide: Near-Optimal, Fair Cache Sharing.
In NSDI, 2016.

[60] Charles Reiss, Alexey Tumanov, Gregory R. Ganger,
Randy H. Katz, and Michael A. Kozuch. Heterogeneity
and Dynamicity of Clouds at Scale: Google Trace
Analysis. In SoCC, 2012.

[61] Tim Roughgarden. Algorithmic Game Theory.
Communications of the ACM, 2010.

[62] Hugo Sadok, Miguel Elias M. Campista, and Luís
Henrique M. K. Costa. Stateful DRF: Considering the
Past in a Multi-Resource Allocation. Transactions on
Computers, 2021.

[63] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the Wild: Characterizing
and Optimizing the Serverless Workload at a Large
Cloud Provider. https://arxiv.org/abs/2003.03423.

[64] Alan Shieh, Srikanth Kandula, Albert G Greenberg, and
Changhoon Kim. Seawall: Performance Isolation for
Cloud Datacenter Networks. In HotCloud, 2010.

[65] Madhavapeddi Shreedhar and George Varghese.
Efficient Fair Queueing using Deficit Round Robin. In
SIGCOMM, 1995.

[66] David Shue, Michael J. Freedman, and Anees Shaikh.
Performance Isolation and Fairness for Multi-tenant
Cloud Storage. In OSDI, 2012.

[67] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, San-
joy K Baruah, Johannes E Gehrke, and C Greg Plaxton.
A Proportional Share Resource Allocation Algorithm
for Real-Time, Time-Shared Systems. In RTSS, 1996.

[68] Shanjiang Tang, Bu-Sung Lee, Bingsheng He, and
Haikun Liu. Long-Term Resource Fairness: Towards
Economic Fairness on Pay-as-you-use Computing
Systems. In ICS, 2014.

[69] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris
Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, and Eric
Baldeschwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In SoCC, 2013.

[70] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes.
Large-scale Cluster Management at Google with Borg.
In EuroSys, 2015.

[71] Midhul Vuppalapati, Giannis Fikioris, Rachit Agarwal,
Asaf Cidon, Anurag Khandelwal, and Eva Tardos.
Karma: Resource Allocation for Dynamic Demands.
https://arxiv.org/abs/2305.17222.

[72] Midhul Vuppalapati, Justin Miron, Rachit Agarwal,
Dan Truong, Ashish Motivala, and Thierry Cruanes.
Building an Elastic Query Engine on Disaggregated
Storage. In NSDI, 2020.

[73] Carl A. Waldspurger. Memory Resource Management
in VMware ESX Server. In OSDI, 2002.

[74] Carl A Waldspurger and William E Weihl. Stride
Scheduling: Deterministic Proportional Share Resource
Management. 1995.

[75] Xiaodong Wang and José F Martínez. XChange:
A Market-Based Approach to Scalable Dynamic
Multi-Resource Allocation in Multicore Architectures.
In HPCA, 2015.

[76] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard.
Probabilistic Guarantees of Execution Duration for
Amazon Spot Instances. In SC, 2017.

[77] Di Xie, Ning Ding, Y Charlie Hu, and Ramana
Kompella. The Only Constant is Change: Incorporating
Time-Varying Network Reservations in Data Centers.
In SIGCOMM, 2012.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 661

https://arxiv.org/abs/2003.03423
https://arxiv.org/abs/2305.17222

[78] Gala Yadgar, Michael Factor, and Assaf Schuster.
Cooperative Caching with Return on Investment. In
MSST, 2013.

[79] Juncheng Yang, Yao Yue, and K. V. Rashmi. A Large
Scale Analysis of Hundreds of In-Memory Cache
Clusters at Twitter. In OSDI, 2020.

[80] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
Scheduling: A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling. In EuroSys, 2010.

[81] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. In NSDI, 2012.

[82] David Zeng and Alexandros Psomas. Fairness-
Efficiency Tradeoffs in Dynamic Fair Division. In EC,
2020.

[83] Hui Zhang and Jon CR Bennett. WF2Q: Worst-Case
Fair Weighted Fair Queueing. In INFOCOM, 1996.

[84] Liang Zheng, Carlee Joe-Wong, Christopher G Brinton,
Chee Wei Tan, Sangtae Ha, and Mung Chiang. On
the Viability of a Cloud Virtual Service Provider. In
SIGMETRICS, 2016.

[85] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung
Chiang, and Xinyu Wang. How to Bid the Cloud. In
SIGCOMM, 2015.

662 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AlpaServe: Statistical Multiplexing with Model Parallelism
for Deep Learning Serving

Zhuohan Li1,∗ Lianmin Zheng1,∗ Yinmin Zhong2,∗ Vincent Liu3 Ying Sheng4

Xin Jin2 Yanping Huang5 Zhifeng Chen5 Hao Zhang6 Joseph E. Gonzalez1 Ion Stoica1

1UC Berkeley 2Peking University 3University of Pennsylvania
4Stanford University 5Google 6UC San Diego

Abstract
Model parallelism is conventionally viewed as a method to

scale a single large deep learning model beyond the memory
limits of a single device. In this paper, we demonstrate that
model parallelism can be additionally used for the statistical
multiplexing of multiple devices when serving multiple mod-
els, even when a single model can fit into a single device. Our
work reveals a fundamental trade-off between the overhead
introduced by model parallelism and the opportunity to ex-
ploit statistical multiplexing to reduce serving latency in the
presence of bursty workloads. We explore the new trade-off
space and present a novel serving system, AlpaServe, that
determines an efficient strategy for placing and parallelizing
collections of large deep learning models across a distributed
cluster. Evaluation results on production workloads show that
AlpaServe can process requests at up to 10× higher rates or
6× more burstiness while staying within latency constraints
for more than 99% of requests.

1 Introduction
Advances in self-supervised learning have enabled exponen-
tial scaling in model sizes. For example, large pretrained mod-
els like BERT [14] and GPT-3 [5] have unlocked a plethora of
new machine learning (ML) applications from Copilot [18]
to copy.ai [7] and ChatGPT [35].

Serving these very large models is challenging because
of their high computational and memory requirements. For
example, GPT-3 requires 325 GB of memory to store its pa-
rameters as well as a requisite amount of computation to run
inference. To serve this model, one would need at least 5 of
Nvidia’s newest Hopper 80 GB GPUs just to hold the weights
and potentially many more to run in real-time. Worse yet, the
explosive growth of model sizes continues unabated [6, 17].
Techniques like model compression and pruning are not suf-
ficient in face of the exponential growth in model sizes and
often come at the expense of reduced model quality [15].

∗Equal contribution.

(a) No colocation

GPU 1 Model A

GPU 2 Model B

R1 R2 R3 R4

R5 R6

Burst 1:
4 requests of model AModel placement Burst 2:

2 requests of model B

(b) Colocation with model parallelism

GPU 1 A.0

GPU 2 A.1

R1 R3R2 R4

Burst 1:
4 requests of model AModel placement Burst 2:

2 requests of model B

B.0

B.1 R1 R3R2 R4

R5 R6

R5 R6

Figure 1: Two placement strategies for serving two models on
two GPUs. In each subfigure, the left part shows the model
placements and the right part shows the timeline for handling
bursty requests. At the time of "Burst 1", 4 requests of model
A come at the same time. Colocation with model parallelism
can reduce the average completion time of bursty requests.

Provisioning sufficient resources to serve these models can
be arduous as request rates are bursty. For example, using
common workload traces, we observe frequent spikes in de-
mand of up to 50× the average [54]. Meeting the service level
objective (SLO) of latency usually means provisioning for
these peak loads, which can be very expensive; additional
devices allocated for this purpose would remain underutilized
most of the time. Making matters worse, it is increasingly
common to serve multiple models and multiple variations of
the same large model in situations like A/B testing or serving
fine-tuned models for specific domains (§2).

This paper studies how to efficiently serve multiple large
models concurrently. Specifically, we explore the underappre-
ciated benefits of model parallelism in online model serving,
even for smaller models that can fit on a single device. Model
parallelism refers to partitioning and executing a model on dis-
tributed devices (§2.1). The benefits of model parallelism have
been well studied [23, 27, 31, 56] in the throughput-oriented
training setting. However, its effects for model serving under
latency-sensitive settings remains largely untapped.

We observe that there are fundamental transition points in

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 663

the model serving design space that challenge prior assump-
tions about serving, even for models that fit on a single device.
For example, consider the scenario with two models and two
GPUs, each of which has sufficient memory to hold one com-
plete model. As shown in Fig. 1(a), the natural approach
assumed by almost all existing serving systems [9, 33, 34] is
to allocate one dedicated GPU for one model. This approach
appears rational because partitioning the model across GPUs
would incur communication overheads that would likely in-
crease the prediction latency. However, we find that inducing
additional model parallelism (to the point where per-example
execution time actually increases) enables a wider range of
placement strategies, e.g., model co-location, which can im-
prove the statistical multiplexing of the system under bursty
workloads. In Fig. 1(a), assuming the execution time of a
model is y, the average end-to-end latency of request 1 through
4 is (1y+ 2y+ 3y+ 4y)/4 = 2.5y. In Fig. 1(b), assuming a
10% model-parallel overhead, the average latency of request 1
through 4 is reduced to (1.1y+1.6y+2.1y+2.6y)/4= 1.85y.
Co-location with model parallelism can utilize more devices
to handle bursty requests and reduces the average comple-
tion time, despite its overheads (§3.1). Even if we batch the
requests, the case still holds (§6.5).

Unfortunately, the decision of how to optimally split and
place a collection of models is complex. Although leverag-
ing model parallelism as above has its benefits, it still adds
overheads that may negate those benefits for less bursty work-
loads. For example, we find that a particularly influential axis
on the efficacy of model parallelism is per-GPU memory ca-
pacity (§3.2), although other factors (e.g., the arrival pattern,
SLO) can also have a significant effect. Further, besides the
inter-op model parallelism presented in Fig. 1, another kind
of model parallelism, intra-op parallelism, presents its own
distinct tradeoffs (§3.3). Ultimately, different styles of paral-
lelism and their tradeoffs create a complex, multi-dimensional,
and multi-objective design space that existing systems largely
ignore and/or fail to navigate. However, not leveraging model
parallelism in the serving setting is typically not an option for
large models, and not addressing this trade-off space directly
results in significant increases in cost and serving latency.

To that end, we present AlpaServe2, a system that automat-
ically and efficiently explores the tradeoffs among different
parallelization and placement strategies for model serving.
AlpaServe takes a cluster resource specification, a set of mod-
els, and a periodic workload profile; it then partitions and
places the models and schedules the requests to optimize
SLO attainment (i.e., the percentage of requests served within
SLO). To assist the design of AlpaServe, we first introduce a
taxonomy and quantify the tradeoffs between different paral-
lelization strategies in model serving (§3). We then present
key algorithms to navigate the tradeoff space (§4). We de-
sign an iterative simulator-guided model placement algorithm

2https://github.com/alpa-projects/mms

to optimize the colocation of models and a group partition
algorithm to search for the best way to partition the cluster
into disjoint model-parallel groups. In addition, we extend the
existing auto-parallelization algorithms for training to make
them more suitable for inference.

We evaluate AlpaServe with production workloads on a
64-GPU cluster (§6). Evaluation results show that, when opti-
mizing one metric at a time, AlpaServe can choose to increase
the request processing rate by 10×, achieve 2.5× lower la-
tency deadlines, or tolerate 6× burstier traffic compared to
previous state-of-the-art serving systems.

In summary, we make the following contributions:
• A detailed analysis of the tradeoff space of different

model parallel strategies for efficient model serving.
• Novel model placement algorithms to incorporate model

parallelism in a serving system.
• A comprehensive evaluation of AlpaServe with both

synthetic and production workloads.

2 Background
Over the past few years, increasingly capable models have
been developed for everything from recommendations to text
generation. As a result, serving predictions from these mod-
els has become an essential workload in modern cloud sys-
tems. The structure of these workloads often follows a simple
request-response paradigm. Developers upload a pre-trained
model and its weights ahead of time; at runtime, clients (either
users or other applications) submit requests for that model
to a serving system, which will queue the requests, dispatch
them to available GPUs/TPUs, and return the results.

The requirements of these model-serving systems can be
stringent. To satisfy user demand, systems often must ad-
here to aggressive SLO on latency. At the same time, serving
systems that must run continuously need to minimize their
operational costs associated with expensive accelerators. Min-
imizing serving costs can be challenging because dynamically
scaling compute resources would be too slow on the critical
path of each prediction request: it can take multiple seconds
just to swap a large model into accelerator memory [37]. Fur-
thermore, there is significant and unpredictable burstiness
in the arrival process of user requests. To meet tight SLO,
contemporary serving systems are forced to over-provision
compute resources, resulting in low cluster utilization [48].

Another pattern that emerges in serving large models is the
use of multiple instances of the same or similar model archi-
tectures. This is commonly seen in the practice of pretraining
on large unlabeled data and fine-tuning for various down-
stream tasks [14], which can significantly boost accuracy but
results in multiple instances of the same model architecture.
For example, Hugging Face serves more than 9,000 versions
of fine-tuned BERT [24]. They either share a portion of the
parameters or do not share any parameters at all for better
accuracy. Prior works have [44, 57] exploited the property of
shared parameters, but we do not consider the shared parame-

664 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ters in this paper because AlpaServe targets general settings
and full-weight tuning is still a major use case.

2.1 Model Parallelism in Model Serving
Distributed parallel model execution is necessary when at-
tempting to satisfy the serving performance requirements or
support large models that do not fit in the memory of a single
device. At a high level, distributed execution of deep learning
models can be classified into two categories: intra-operator
parallelism and inter-operator parallelism [56].

Intra-operator parallelism. DL models are composed of a
series of operators over multidimensional tensors, e.g., matrix
multiplication over input and weight tensors. Intra-operator
parallelism is when a single operator is partitioned across
multiple devices, with each device executing a portion of
the computation in parallel [43, 45, 50]. Depending on the
specific partitioning strategy and its relationship to prior and
subsequent operators in the model, partitioning can require
communication among participating GPUs to split the input
and then merge the output.

The benefit of intra-operator parallelism for single-request
execution is twofold. First, it can expand the total amount of
computation available to the target model, reducing its end-
to-end latency. In a similar fashion, it can expand the total
memory available to the model for storing its inputs, weights,
and intermediate values. The cost is the aforementioned com-
munication overhead.

Inter-operator parallelism. The other type of parallelism
available to DL models is inter-operator parallelism, which
assigns different operators of the model’s execution graph
to execute on distributed devices in a pipeline fashion (a.k.a.
pipeline parallelism) [23, 28, 30]. Here, devices communicate
only between pipeline stages, typically using point-to-point
communication between device pairs.

Unlike intra-operator parallelism, pipeline parallelism does
not reduce the execution time of a single request. In fact, it
typically increases the execution time due to modest amounts
of communication latency between pipeline stages, although
the total amount of transferred data is often lower than it is in
intra-operator parallelism. Instead, the primary use of inter-
operator parallelism in traditional serving systems is to allow
the model to exceed the memory limitation of a single GPU.

3 Motivation and Tradeoff Analysis
As mentioned, both types of model parallelism reduce per-
device memory usage by partitioning a model on multiple
devices. A key motivation for this work is that we can use this
property to fit more models on one device, enabling better
statistical multiplexing of the devices when handling bursty
requests. We explore this idea through a series of empirical
examinations and theoretical analysis, starting with an illus-
trative example (§3.1), followed by an empirical analysis of
when model parallelism is beneficial (§3.2), the overhead of

model parallelism (§3.3), and a queueing theory-based analy-
sis (§3.4). All the experiments in this section are performed
on an AWS EC2 p3.16xlarge instance with 8 NVIDIA 16GB
V100 GPUs.

3.1 Case Study: A Two-model Example

We start with an illustrative experiment to show how model
parallelism can benefit the serving of multiple models. We use
two GPUs to serve two Transformer models with 6.7 billion
parameters each (13.4 GB to store its FP16 weights). Because
each GPU has 16 GB of memory, it can fit one and only one
model. A single request takes around 0.4 s to process on one
GPU.

We compare the following model placements, correspond-
ing to the strategies in Fig. 1. The first is simple placement,
where we place one model on each GPU due to the memory
constraint. The second is model-parallel placement, where we
use inter-op parallelism to partition each model to a 2-stage
pipeline and let each GPU execute half of each model.

We evaluate the two placements when the requests to each
model follow an independent Poisson process with an arrival
rate of 1.5 request/s. Fig. 2a shows the cumulative distribu-
tion function (CDF) and average of request latency (which
includes the GPU execution time and queuing delay). Model-
parallel placement reduces the average latency of the simple
placement from 0.70s to 0.55s, a 1.3× speedup. The speedup
comes from the better burst tolerance: when a burst arrives
that exceeds the capability of a single GPU, simple placement
must begin queuing requests. However, as long as the other
model does not receive many requests, the model parallel
placement can use both GPUs to serve the requests for the
popular model via statistical multiplexing of the GPUs.

This effect becomes more pronounced with higher bursti-
ness, which we can demonstrate using a Gamma request ar-
rival process with the same average request rate as above but a
higher coefficient of variance (CV) of 3. As shown in Fig. 2b,
the speedup on mean latency is now increased to 1.9×. Fig. 2d
shows a representative trace of the corresponding total cluster
utilization over time. Note that for each request burst, model-
parallel placement can use the whole cluster and only take
half of the time to process, while simple placement can only
use half of the cluster.

In addition, we also evaluate the case where one model re-
ceives more requests than another. In Fig. 2c, we use Poisson
arrival but let 20% of the requests ask for model 1 and 80% ask
for model 2. Although replication performs slightly better for
model 1 requests, it is drastically worse on model 2 requests
compared to the model-parallel placement. For model-parallel
placement, because both GPUs are shared across two models,
the requests to both models follow the same latency distri-
bution. Overall, model-parallel placement reduces the mean
latency by 6.6×.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 665

0 1 2 3 4
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Simple Placement
Simple Placement Mean Latency
Model Parallelism
Model Parallelism Mean Latency

(a) Poisson arrival.

0 10 20 30
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Simple Placement
Simple Placement Mean Latency
Model Parallelism
Model Parallelism Mean Latency

(b) High CV Gamma arrival.

0 5 10 15 20 25
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Simple Placement

Simple Placement Model 1
Simple Placement Model 2
Simple Placement Mean Latency
Model Parallelism
Model Parallelism Model 1
Model Parallelism Model 2
Model Parallelism Mean Latency

(c) Different rates.

0 5 10 15 20 25
Time (s)

0

50

100

Ut
iliz

at
io

n
(%

)

Simple Placement Model Parallelism

(d) Cluster utilization.

Figure 2: Latency CDF and cluster utilization in the 2-model example.

GPU 1

A

GPU 2

B

GPU 3

C

GPU 4

D

A
B

B
C

C
D D

A

C
B

D

A

C
B

D

A

C
B

D

A

C
B

D

1x

2x

4x

A

GPU 1 GPU 2 GPU 3 GPU 4

A

C
B

D

A

C
B

D

A

C
B

D

A

C
B

D

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

A1 B1

C1 D1

A2 B2

C2 D2

A1 B1

C1 D1

A2 B2

C2 D2

Mem

(a) Replication （b) Model Parallelism

Figure 3: Replication and model parallel placement illustra-
tion with different memory budgets, where the memory bud-
gets are set to be multiples of a single model’s size.

10 20 30 40
Memory Budget (GB)

1

2

M
ea

n
La

te
nc

y
(s

)

Model Parallelism
Replication
GPU Memory Bound

10 20 30 40
Memory Budget (GB)

5

10

P9
9

La
te

nc
y

(s
) Model Parallelism

Replication
GPU Memory Bound

Figure 4: Serving performance with changing per-GPU mem-
ory budgets. Model parallelism is beneficial for limited mem-
ory budget. The dashed vertical line is the real per-GPU mem-
ory bound of a 16GB V100. The value is around 13GB due
to the need to store activations and other runtime context.

3.2 When is Model Parallelism Beneficial
To further explore the nuances of model parallelism in serving,
we increase the size of the deployment to 8 GPUs and 8
Transformer models with 2.6B parameters each. As a base
setting, we set the requests to each model as a Gamma process
with an average rate of 20 request/s and CV of 3; we then
vary a range of factors to see their effects. Note that some
of the settings we evaluate are impossible on real hardware
(e.g., exceeding the memory capacity of a single device) so
we leverage the simulator introduced in §5. The fidelity of the
simulator is very high as verified in §6.1.

The model in this case is smaller (5.2GB), so one GPU
can also store multiple models without model parallelism.
We compare two placement methods: (1) Replication. In this
setting, we replicate the models to different devices until each
device cannot hold any extra models. Because all the models
receive equal amounts of loads on average, we replicate each
model the same number of times (Fig. 3a). (2) Model Paral-

0 10 20
Total Rates (req/s)

0.50

0.75

1.00

M
ea

n
La

te
nc

y
(s

) Model Parallelism
Replication

0 10 20
Total Rates (req/s)

1

2

3

4

P9
9

La
te

nc
y

(s
) Model Parallelism

Replication

Figure 5: Serving performance with changing arrival rates.
Model parallelism is beneficial for smaller rates.

0 2 4 6 8
Coefficient of Variance

0

2

4

6
M

ea
n

La
te

nc
y

(s
)

Model Parallelism
Replication

0 2 4 6 8
Coefficient of Variance

0

10

20

P9
9

La
te

nc
y

(s
) Model Parallelism

Replication

Figure 6: Serving performance with changing CVs. Model
parallelism is beneficial for larger CVs.

lelism. Here we use inter-operator parallelism and uniformly
assign the Transformer layers to different GPUs.

Device memory. We evaluate the mean and the tail latency
of the two placement methods under different device memory
capacities. For replication, more GPU memory can fit more
models onto a single GPU. For model parallelism, more GPU
memory can also reduce the number of pipeline stages and
reduce the overhead as in Fig. 3b. The resulting mean and P99
latency is shown in Fig. 4. With more memory, more models
can fit into a single GPU, so the benefit of statistical multi-
plexing diminishes because replication can also effectively
use multiple devices to serve the bursty requests to a single
model. When the GPU memory capacity is large enough to
hold all models, there is no gain from model parallelism.

Request arrival. We vary the parameters of the arrival pro-
cess and compare the replication placement with the model-
parallel placement with 8-stage pipeline parallelism. The
mean and P99 latency results of changing arrival rate are
shown in Fig. 5. When the arrival rate is low, model paral-
lelism can greatly reduce the serving latency. However, when
the arrival rate approaches the peak serving rate of the clus-
ter, the benefit of model-parallel placement starts to diminish.
Eventually, it starts to perform worse than replication. This is
because when all models are equally saturated, the replication

666 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 10 15 20
SLO Scale

0

50

100

SL
O

At
ta

in
m

en
t (

%
)

Model Parallelism
Replication

(a) Real model latency.

5 10 15 20
SLO Scale

0

50

100

SL
O

At
ta

in
m

en
t (

%
)

Model Parallelism (α=1.0)
Model Parallelism (α=1.1)
Model Parallelism (α=1.2)
Model Parallelism (α=1.3)
Model Parallelism (α=1.4)
Model Parallelism (α=1.5)
Replication

(b) Changing overhead.

Figure 7: SLO attainment with changing SLOs. Model paral-
lelism is beneficial for smaller SLOs.

placement is able to achieve efficient cluster utilization and
there is no benefit to the statistical multiplexing afforded by
model parallelism. Instead, the overhead of model parallelism
(§3.3) starts to become a significant factor.

The mean and P99 latency results of changing CV are in
Fig. 6. With a higher CV, the requests become more bursty,
and the benefit of model parallelism becomes more significant.
As shown in the results, with a higher CV, model parallelism
can greatly outperform the performance of replication.

Service level objectives. In prediction serving settings, it
is common to have tight latency SLO and predictions made
after these deadlines are often discarded [19]. For example,
advertising systems may choose not to show an ad rather
than delay rendering user content. In this case, the goal of the
serving system is to optimize the percentage of requests that
can be finished within the deadline, i.e., SLO attainment.

In this experiment, we measure how SLOs affect the perfor-
mance of the placement methods. We compare the replication
and the model-parallel placement with 8-stage pipeline par-
allelism. During execution, we drop the requests that will
exceed the deadline even if we schedule it immediately. We
scale the SLO to different multiplies of the single device exe-
cution latency (SLO Scale in Fig. 7a) and compare the SLO
attainment of the two methods.

As in Fig. 7a, when SLO is tight (< 10× model latency),
model parallelism can greatly improve SLO attainment. How-
ever, when the SLO becomes looser, its SLO attainment
plateaus but that of the replication placement keeps grow-
ing. This result shares the same core logic as previous ex-
periments: When SLO becomes looser, more requests can
stay in the waiting queue, and thus the effective burstiness of
the requests decreases. When many requests are queued, the
system is bounded by its total processing capability, which
might be affected by the model parallelism overhead. In the
real world, the SLO requirement is often less than 5× of the
model execution latency [19], where model parallelism can
improve SLO attainment.

Summary: Model parallelism benefits model serving
through statistical multiplexing when the device mem-
ory is limited, the request rate is low, the request CV is
high, or the SLO is tight.

1 2 4 8
Number of GPUs

0.0

0.1

0.2

0.3

La
te

nc
y

(s
)

Compuation
Communication Overhead
Uneven Partition Overhead

(a) Inter-op parallelism.

1 2 4 8
Number of GPUs

0.00

0.05

0.10

0.15

0.20

0.25

La
te

nc
y

(s
)

Compuation
Communication Overhead

(b) Intra-op parallelism.

Figure 8: The overhead decomposition. The overhead of inter-
op parallelism mainly comes from uneven partition while the
overhead of intra-op parallelism comes from communication.

3.3 Overhead of Model Parallelism
In this section, we further investigate the overheads of dif-
ferent model parallel strategies and how they affect serving
performance. Similar to the setup in Fig. 7a, we manually
modify the overhead of model parallelism. Specifically, let
the latency of a single model executing on the GPU be L and
the number of pipeline stages be n. We set the total latency of
pipeline execution to be αL and the latency of each pipeline
stage to be αL/n, where α is a parameter that controls the
overhead. When α = 1, model parallelism does not have any
overhead and larger α means higher overhead.

We show the results in Fig. 7b. If model parallelism does
not have any overhead (α = 1), it can always outperform repli-
cation due to its ability to multiplex the devices. When the
overhead becomes larger and the SLO is low, model paral-
lelism still outperforms replication. However, with a larger
SLO, the effective burstiness is reduced and the performance
is dominated by the overhead.

Given that the overhead can greatly affect serving perfor-
mance, we perform a detailed study of the multiple sources
of model-parallel overhead in Fig. 8. For inter-op parallelism,
when partitioning a single model into multiple stages, dif-
ferent stages need to communicate the intermediate tensors,
and we denote this overhead as the communication overhead.
In addition, the pipeline execution will be bottlenecked by
the execution time of the slowest stage, making the effective
latency to be the number of pipeline stages times the latency
of the slowest stage [23]. We denote this as the uneven par-
tition overhead. As in Fig. 8a, for inter-op parallelism, most
overhead comes from the latency imbalance among different
pipeline stages, instead of the communication between stages.
While our previous discussion mainly focuses on inter-op
parallelism, the other type of model parallelism, intra-op par-
allelism, has very different performance characteristics. Its
overhead is merely brought by the collective communication
across multiple devices [31], which cannot be overlapped
with the neural network computation due to data dependency.
From Fig. 8b, we can see that the communication overhead of
intra-op parallelism is much higher than inter-op parallelism.

Finally, we compare the latency, throughput, and memory
consumption of different model-parallel placements and the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 667

2 4 6 8
#GPUs

0.0

0.1

0.2
La

te
nc

y
(s

)

Inter-op Parallelism
Intra-op Parallelism
Replication

(a) Single input latency.

2 4 6 8
#GPUs

10

20

30

Th
ro

ug
hp

ut
 (r

eq
/s

)

Inter-op Parallelism
Intra-op Parallelism
Replication

(b) Throughput.

2 4 6 8
#GPUs

10

20

30

40

M
em

or
y

(G
B)

Inter-op Parallelism
Intra-op Parallelism
Replication

(c) Total memory usage.

Figure 9: The latency, throughput and memory usage vs. #GPUs for inter-op parallelism, intra-op parallelism, and replication. In
subfigure (c), the lines for inter-op and intra-op parallelism overlap.

replication placement in Fig. 9. Because of the sequential
dependence between the different stages, inter-op parallelism
cannot reduce the execution latency of a single input data. In-
stead, the latency is slightly higher due to the communication
between the stages. On the other hand, intra-op parallelism
can largely reduce the latency via the parallel execution of dif-
ferent GPUs (Fig. 9a). However, because inter-op parallelism
can pipeline the execution of different stages and only com-
municate a relatively small amount of data, it attains higher
throughput compared to intra-op parallelism (Fig. 9b). Be-
cause both parallel methods split the model weight tensors
across different GPUs, the total memory usage stays con-
stant with increasing numbers of GPUs (Fig. 9c). This makes
the statistical multiplexing of different GPUs across multiple
models possible.

In the end, the tradeoff between parallelization strategies
and their interplay with cluster resources, arrival patterns, and
serving objectives forms an intricate design space.

3.4 Queueing Theory Analysis
In this section, we use queuing theory to mathematically ver-
ify the conclusions in §3.2 and §3.3. Specifically, we analyze
the case where the inputs follow the Poisson arrival process.
Since the execution time of a deep learning inference task is
highly predictable [19], we assume the request serving time is
deterministic. For the single device case, suppose the request
rate to a model is λ0 and the single device latency is D with
the utilization λ0D < 1, then the average number of requests
LQ and the average latency W in this M/D/1 queue [46] are:

LQ =
λ0D

2(1−λ0D)
, W = D+LQD = D+

λ0D2

2(1−λ0D)
.

Now consider the example in §3.1. Let pλ,(1− p)λ be the
average request rates for the two models respectively, where
p ∈ [0,1] controls the percentage of requests for both models.
Then for the simple placement, the average latency can be
derived as the average latency of two independent queues:

Wsimple = D+
p2λD2

2(1− pλD)
+

(1− p)2λD2

2(1− (1− p)λD)
.

0.0 0.5 1.0 1.5 2.0
λD

1.0

1.2

1.4 α
β

Figure 10: Maximal communication overhead α and uneven
partition overhead β satisfy Wpipeline ≤Wsimple as a function
of total utilization λD.

Note that Wsimple reaches minimum when p = 1/2. Intuitively,
when p is not exactly half, one model receives more requests
than the other. This larger portion of requests have a longer
queueing delay, which leads to the higher overall mean la-
tency.

For the model-parallel case, the requests to both models
merged to a single Poisson Process with rate λ. For pipeline
parallelism, suppose the latency for a single input to be Ds
and the maximum stage latency to be Dm, then the average
latency would be

Wpipeline = Ds +
λD2

m

2(1−λDm)
.

Suppose there is no model-parallel overhead, then Ds =
2Dm =D. Let’s first consider the case where p= 1/2 (Fig. 2a).
We have

Wsimple = D+
λD2

4−2λD
, Wpipeline = D+

λD2

8−4λD
.

In this case, the waiting time for model-parallel execution is
half of the simple placement waiting time, as shown in the
vertical lines in Fig. 2a. When the p is not 1/2, Wsimple will
increase while Wpipeline will stay the same, so the gap between
Wsimple and Wpipeline will be even larger, as in Fig. 2c.

Next, we consider the case where model parallelism in-
curs overhead. We measure the two types of overheads in
§3.3 separately: With the overhead from communication,
Ds = 2Dm = αD, where α ≥ 1 is the overhead factor. With
the overhead from uneven stages, we suppose Ds = D still
holds, but Dm = βD/2 where β ≥ 1 is the overhead factor.
To keep Wpipeline ≤Wsimple, we can get the maximal α and

668 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Controller
HTTP Requests

Model a

Model b

Model c

GPU GPU GPU GPU

Model Parallel Runtime

Model a

Model d

Model e

GPU GPU GPU GPU

Model Parallel Runtime

Model f

Model g

GPU GPU

Model Parallel Runtime

Group 1 Group 2 Group 3

Figure 11: AlpaServe Runtime System Architecture

β as a function of the total utilization λD separately and we
visualize the function in Fig. 10. When the utilization is high,
the benefit of statistical multiplexing diminishes, and thus
the overhead needs to be low, as in §3.2. On the other hand,
when the utilization is very low, most requests will not be
queued, and thus the communication overhead α needs to
be low to keep the processing latency to be low. Note that
the maximal overhead here is based on a uniform Poisson ar-
rival distribution. A more bursty or more non-uniform arrival
distribution will make the simple placement performs worse
and make the model-parallelism placement outperforms the
simple replication placement with even higher overhead.

4 Method
From §3, we can see that there are several key challenges to
effectively utilize model parallelism for deep learning serving:

• Derive efficient model parallel strategies for inference to
reduce the overhead of model parallelism. Specifically,
find a partitioning strategy that minimizes the stage im-
balance for inter-operator parallelism.

• Determine model-parallel placements according to the
arrival pattern to maximize SLO attainment.

We built AlpaServe to specifically tackle these challenges.
The runtime architecture of AlpaServe is shown in Fig. 11. Al-
paServe utilizes a centralized controller to dispatch requests to
different groups.3 Each group hosts several model replicas on
a shared model-parallel runtime. This section describes the ar-
chitecture of AlpaServe and the key algorithms for efficiently
leveraging model parallelism in a model serving system.

4.1 Automatic Parallelization for Inference
Since different parallelization configurations have different
latency and throughput trade-offs, we need to enumerate mul-
tiple possible configurations for every single model and let the
placement algorithm choose the best combination for all mod-
els in the whole cluster. Therefore, given a model, AlpaServe
first runs an auto-parallelization compiler with various con-
straints to generate a list of possible configurations. We build
several extensions on top of an existing auto parallelization
training system, Alpa [56], to make it suitable for generating
serving parallelization strategies. Alpa includes two passes

3For a larger service, AlpaServe can be extended as a hierarchical deploy-
ment with each controller only managing a subset of devices as in [52].

for generating efficient model parallel partitions: inter-op pass
and intra-op pass. The inter-op pass uses a dynamic program-
ming (DP) algorithm to figure out the optimal inter-op parallel
plan, and it calls the intra-op pass for each potential pipeline
stage, which is formulated as an integer linear programming
(ILP) problem, to profile its latency with the optimal intra-
op parallel plan. In AlpaServe, we keep the two compilation
passes, but extends both passes for serving.

The inter-op pass in Alpa optimizes the overall pipeline
execution latency, which includes the time of forward and
backward propagation and weight synchronization. However,
in serving workloads, only forward propagation is being exe-
cuted and there is no need for weight synchronization. There-
fore, we reformulate the dynamic programming in AlpaServe
to merely focus on minimizing the maximal stage latency.
Specifically, denote F(s,k) to be the maximum latency when
slicing layers 1 to k into s stages. We can derive F as

F(s,k) = min
1≤i≤k

{max{F(s−1, i−1), latency(i,k)}} ,

where latency(i,k) denotes the latency of a stage composes
of layer i to k. In Alpa, the latency function of all possible
O(K2) combinations is being profiled by the intra-op pass
because of the complicated dependency between forward and
backward passes. In AlpaServe, because the pipeline stages
only perform forward propagation and only communicate
intermediate results once between layer boundaries, we can
accelerate the profiling by only profiling K layers and letting
latency(i,k) to be the sum of the latencies for layer i to k.
This acceleration enables us to efficiently enumerate different
inter- and intra-op device partition setups and generate a list
of parallel strategies for the placement algorithm in §4.2.

For the intra-op pass, we extend the ILP in Alpa to drop
all configurations that use data parallelism. For serving work-
loads, because there is no need for weight synchronization,
data parallelism can be achieved by the replication placement.
We leave the decision of whether to replicate a model to the
placement algorithm in §4.2.

4.2 Placement Algorithm
Given a set of models and a fixed cluster, AlpaServe parti-
tions the cluster into several groups of devices. Each group
of devices selects a subset of models to serve using a shared
model-parallel configuration. Different groups can hold the
same model as replicas. The requests for a model are dis-
patched to the groups with the requested model replica. We
call a specific cluster group partition, model selection, and
parallel configuration as a placement. Our goal is to find a
placement that maximizes the SLO attainment.

However, finding the optimal placement is a difficult combi-
natorial optimization problem. The overall placement config-
uration space grows exponentially with the number of devices
and the number of models. To make things worse, the objec-
tive “SLO attainment” has no simple analytical formula for

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 669

Algorithm 1 Simulator-Guided Greedy Model Selection.

Input: Model list M, device group list G, group parallel con-
figurations P, workload W , beam size k (default = 1).

Output: The model selection best_sel.
best_sel← /0

beam_sels←{ /0}
while true do

new_sels← /0

for sel ∈ beam_sels do
for (m,(g, p)) ∈M× (G,P) do

// Parallelize the model as in §4.1.
mparallelized← parallelize(m,g, p)
sel′← sel.add_model_to_group(mparallelized,g)
if sel′ is in memory constraint then

sel′.slo_attainment← simulate(sel′,W)
new_sels.append(sel′)

if new_sels = /0 then
break

beam_sels← top-k_SLO_attainment(new_sels)
sel∗← pick_highest_SLO_attainment(beam_sels)
if sel∗.slo_att > best_sel.slo_att then

best_sel← sel∗

return best_sel

an arbitrary arrival distribution. Existing tools and approxima-
tions from queueing theory can only analyze simple cases in
§3.4 and cannot model more complex situations [46]. There-
fore, we resort to a simulator-guided greedy algorithm that
calls a simulator to compute SLO attainment.

To compute the SLO attainment with a given set of requests
and placement, in AlpaServe, we assume we know the arrival
process in advance. Although short-term burstiness is impos-
sible to predict, the arrival pattern over longer timescales (e.g.,
hours or days) is often predictable [48]. Given this predictabil-
ity, AlpaServe either directly uses the history request traces
or fits a distribution from the trace and resamples new traces
from the distribution as the input workload to the simulator
to compute the SLO attainment.

We design a two-level placement algorithm: Given a cluster
group partition and a shared model-parallel configuration for
each group, Algorithm 1 uses a simulator-guided greedy algo-
rithm to decide which models to select for each group. Then,
Algorithm 2 enumerates various potential cluster partitions
and parallel configurations and compares the SLO attainment
from Algorithm 1 to determine the optimal placement.

Given a cluster group partition with a fixed model-parallel
configuration for each group, Algorithm 1 selects model repli-
cas iteratively as a beam search algorithm: At each iteration,
it enumerates all possible (model, group) pairs, parallelizes
the model on the device group with the algorithms in §4.1,
and checks whether the model can be put on the group under
the memory constraint. For all valid selections, it runs the

Algorithm 2 Enumeration-Based Group Partition and Model-
Parallel Configuration Selection.

Input: Model list M, cluster C, workload W .
Output: The placement best_plm.

best_plm← /0

B ← get_potential_model_buckets(M)
for (B1,B2, . . . ,Bk) ∈ B do

H ← get_potential_device_buckets(C,B,k)
for (H1,H2, . . . ,Hk) ∈H do

// Get the placement for each bucket individually.
for i from 1 to k do

plm∗i ← /0

G ← get_potential_group_partitions(Hi)
for G ∈ G do

P ← get_potential_parallel_configs(G)
for P ∈ P do

plm← greedy_selection(Bi,G,P,W)
if plm.slo_att > plm∗i .slo_att then

plm∗i ← plm
plm∗← concat(plm∗1, ...,plm∗k)
if plm∗.slo_att > best_plm.slo_att then

best_plm← plm∗

return best_plm

simulator and computes SLO attainment. It then picks the
top-k solutions and enters the next iteration. The algorithm
terminates when no more replicas can be put into any groups.

The complexity of Algorithm 1 is O(MGRSB), where M
is the number of models, G is the number of groups, R is
the number of replicas we can put according to the memory
constraint, S is the number of requests in the workload (the
simulation time is proportional to the number of the requests)
and B is the beam size. It runs reasonably fast for our medium-
scale cluster when the number of requests is small. When the
number of requests is very large, we propose another heuristic
to accelerate: Instead of using the simulator to evaluate all
(model, group) pairs at each iteration, we can run the simu-
lator only once and place a model with the most unserved
requests in an available group with the lowest utilization. This
reduces the time complexity to O((M+G)RS). We find this
heuristic gives solutions with SLO attainment higher than
98% of the SLO attainment get by the original algorithm in
our benchmarks.

Algorithm 2 enumerates different group partitions and
model-parallel configurations and picks the best one via mul-
tiple calls to Algorithm 1. When designing Algorithm 2,
the first phenomenon we notice is that putting small and
large models in the same group causes convoy effects, where
the requests of small models have to wait for the requests
of large models and miss the SLO. Therefore, in Algo-
rithm 2, we first cluster models into model buckets. Each
bucket contains a set of models with relatively similar sizes

670 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and every model is assigned to one and only one bucket.
Specifically, the function get_potential_model_buckets
returns all the possible model bucket partitions that sepa-
rate models whose latency difference is larger than a thresh-
old into different disjoint buckets. We then enumerate all
the potential ways to assign the devices to each bucket in
get_potential_device_buckets.

Because different buckets include a disjoint set of models,
we can then figure out the optimal placement for each bucket
individually. For each bucket, we enumerate possible ways
to partition the devices in the bucket into several groups in
get_potential_group_partitions and enumerate the po-
tential parallel configurations for each group with the method
in get_potential_parallel_configs. We then call Al-
gorithm 1 with greedy_placement to place models in the
model bucket to the groups in the device bucket. We send the
whole workload W to Algorithm 1, which ignores the requests
that hit the models outside of the current bucket. Finally, a
complete solution is got by concatenating the solutions for
all buckets. The algorithm returns the best solution it finds
during the enumerative search process.

Enumerating all possible choices can be slow, so we use
the following heuristics to prune the search space. Intuitively,
we want the different buckets to serve a similar number of
requests per second. Therefore, we eliminate the bucket con-
figurations with high discrepancies in the estimated num-
ber of requests it can serve per second for each bucket.
Additionally, in get_potential_group_partitions and
get_potential_parallel_configs, we assume all groups
have the same size and the same parallel configurations except
for the last group which is used when the number of devices
is not divisible by the group size.

4.3 Runtime Scheduling
We use a simple policy to dispatch and schedule the requests at
runtime. All requests are sent to a centralized controller. The
controller dispatches each request to the group with the short-
est queue length. Each group manages a first-come-first-serve
queue. When a group receives a request, it checks whether
it can serve the request under SLO and rejects the request if
it cannot. This is possible because the execution time of a
DNN model is very predictable and can be got in advance by
profiling [19]. In most of our experiments, we do not include
advanced runtime policies such as batching [19], swapping,
and preemption [21]. These techniques are complementary to
model parallelism. Nevertheless, we discuss how they fit into
our system.

Batching. Batching multiple requests of the same model to-
gether can increase the GPU utilization and thus increase the
throughput of a serving system. In our system, we do find
batching is helpful, but the gain is limited. This is because we
mainly target large models and a small batch size can already
fully saturate the GPU, which is verified in §6.5. To isolate
the benefits of model parallelism and make the results more

explainable, we decide to disable any batching in this paper
except for the experiments in §6.5.

Preemption. The optimal scheduling decision often depends
on future arrivals, and leveraging preemption can help cor-
rect previous suboptimal decisions. The first-come-first-serve
policy may result in convoy effects when models with signifi-
cantly different execution times are placed in the same group.
We anticipate a least-slack-time-first policy with preemption
can alleviate the problems [12].

Swapping. The loading overheads from the CPU or Disk to
GPU memory are significant for large models, which is the
target of this paper, so we do not implement swapping in Al-
paServe. We assume all models are placed on the GPUs. This
is often required due to tight SLOs and high rates, especially
for large models. The placement of models in AlpaServe can
be updated in the periodic re-placement (e.g., every 24 hours).

Fault tolerance. While the current design of AlpaServe does
not have fault tolerance as a focus, we acknowledge several
potential new challenges for fault tolerance: With model par-
allelism, the failure of a single GPU could cause the entire
group to malfunction. Additionally, the use of a centralized
controller presents a single point of failure.

5 Implementation
We implement a real system and a simulator for AlpaServe
with about 4k lines of code in Python. The real system is
implemented on top of an existing model-parallel training sys-
tem, Alpa [56]. We extend its auto-parallelization algorithms
for inference settings to get the model-parallel strategies. We
then launch an Alpa runtime for each group and dispatch
requests to these groups via a centralized controller.

The simulator is a continuous-time, discrete-event simula-
tor [39]. The simulator maintains a global clock and simulates
all requests and model executions on the cluster. Because the
simulator only models discrete events, it is orders of magni-
tude faster than the real experiments. In our experiment, it
takes less than 1 hour for a 24-hour trace. The fidelity of the
simulator is very high because of the predictability of DNN
model execution, which is verified in §6.1.

6 Evaluation
In this section, we evaluate AlpaServe’s serving ability under
a variety of model and workload conditions. The evaluation is
conducted on a range of model sizes, including those that do
and do not fit into a single GPU, and we show that AlpaServe
consistently outperforms strong baselines across all model
sizes. In addition, we evaluate the robustness of AlpaServe
against changing arrival patterns and do ablation studies of our
proposed techniques. Evaluation results show that AlpaServe
can greatly improve various performance metrics. Specifically,
AlpaServe can choose to save up to 2.3× devices, handle 10×
higher rates, 6×more burstiness, or 2.5×more stringent SLO,
while meeting the latency SLOs for over 99% requests.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 671

Name Size Latency (ms) S1 S2 S3 S4

BERT-1.3B 2.4 GB 151 32 0 10 0
BERT-2.7B 5.4 GB 238 0 0 10 0
BERT-6.7B 13.4 GB 395 0 32 10 0
BERT-104B 208 GB 4600 0 0 0 4
MoE-1.3B 2.6 GB 150 0 0 10 0
MoE-2.4B 4.8 GB 171 0 0 10 0
MoE-5.3B 10.6 GB 234 0 0 10 0

Table 1: The first three columns list the sizes and inference
latency of the models. The latency is measured for a single
query with a sequence length of 2048 on a single GPU. BERT-
104B’s latency is reported using a minimal degree of inter-op
parallelism. The latter columns list the number of instances
for each model in different model sets named as S1-S4.

6.1 Experiment Setup
Cluster testbed. We deploy AlpaServe on a cluster with 8
nodes and 64 GPUs. Each node is an AWS EC2 p3.16xlarge
instance with 8 NVIDIA Tesla V100 (16GB) GPUs.

Model setup. Since Transformer [47] is the default backbone
for large models, we choose two representative large Trans-
former model families: BERT [14] and GShard MoE [27]
for evaluation.4 In ML practice, the large model weights are
usually pretrained and then finetuned into different versions
for different tasks. Hence, for each model family, we select
several most commonly used model sizes [5], and then create
multiple model instances at each size for experimentation.
Also, we design some model sets to test the serving systems
under different model conditions; details about model sizes,
their inference latency on testbed GPUs, and the number of
model instances in each model set are provided in Tab. 1.

Metrics. We use SLO attainment as the major evaluation
metric. Under a specific SLO attainment goal (say, 99%), we
concern with another four measures: (1) the minimal num-
ber of devices the system needs, (2) the maximum average
request rate, (3) the maximum traffic burstiness the system
can support, and (4) the minimal SLO the system can handle.
We are particularly interested in a SLO attainment of 99% (in-
dicated by vertical lines in all curve plots), but will also vary
each variable in (1) - (4) and observe how the SLO attainment
changes.

Simulator fidelity. We want to study the system behavior
under extensive models, workload, and resource settings, but
some settings are just beyond the capacity of our testbed. Also,
it is cost- and time-prohibitive to perform all experiments on
the testbed for the days-long real traces. To mitigate the prob-
lem, we use the simulator introduced in §5 for the majority
of our experiments, noticing that DNN model execution [19]
has high predictability, even under parallel settings [27, 56].

4In this paper, we focus on non-autoregressive large models which per-
form inference with one forward pass, but note that the techniques proposed
in this paper can be extended to auto-regressive models like GPT-3.

SLO
Scale

Selective Replication AlpaServe
Real System Simulator Real System Simulator

0.5x 00.0% 00.0% 33.3% 33.3%
1x 00.0% 00.0% 53.5% 53.2%

1.5x 29.7% 30.2% 64.1% 64.7%
2x 36.9% 36.8% 79.0% 80.6%
3x 49.5% 48.5% 91.4% 92.1%
4x 58.6% 57.8% 96.4% 96.5%
5x 64.9% 64.0% 97.6% 97.9%
10x 83.1% 82.6% 100.0% 99.7%

Table 2: Comparison of the SLO attainment reported by the
simulator and the real system under different SLO scales.

We study the fidelity of the simulator in Tab. 2. Given two
model placement algorithms, we compare the SLO attain-
ment reported by the simulator and by real runs on our testbed
under different SLO Scales. The error is less than 2% in all
cases, verifying the accuracy of our simulator. Additionally,
we conduct experiments on cluster testbed for results in §6.3.

6.2 End-to-end Results with Real Workloads
In this section, we compare AlpaServe against baseline meth-
ods on publicly available real traces.

Workloads. There does not exist an open-source production
ML inference trace to the best of our knowledge. Therefore,
we use the following two production traces as a proxy: Mi-
crosoft Azure function trace 2019 (MAF1) [42] and 2021
(MAF2) [54]. They were originally collected from Azure
serverless function invocations in two weeks, and have been
repurposed for ML serving research [4, 25]. The two traces
exhibit distinct traffic patterns. In MAF1, each function re-
ceives steady and dense incoming requests with gradually
changing rates; in MAF2, the traffic is very bursty and is
distributed across functions in a highly skewed way – some
function receives orders of magnitude more requests than
others. Note that most previous works [19] are evaluated on
MAF1 only. Since there are more functions than models, fol-
lowing previous work [4, 25], given a model set from Tab. 1,
we round-robin functions to models to generate traffic for
each model.

Setup. SLO attainment depends on many factors. For each
metric (1) - (4) mentioned in §6.1, we set a default value, e.g.,
the default SLO is set as tight as 5× inference latency (SLO
Scale=5). This forms a default setting, given which, we then
vary one variable (while fixing others) at a time and observe
how it affects the resulting SLO attainment. To change the
two variables (3) and (4), which characterize traffic patterns,
we follow Clockwork [19] and Inferline [8] and slice the
original traces into time windows, and fit the arrivals in each
time window with a Gamma Process parameterized by rate
and coefficient of variance (CV). By scaling the rate and CV
and resampling from the processes, we can control the rate
and burstiness, respectively.

Baselines. We compare AlpaServe to two baseline methods:

672 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 20 30 40 50
#devices

60

70

80

90

100
S1 @ MAF1

60 80 100 120
#devices

60

70

80

90

100
S2 @ MAF1

40 60 80
#devices

60

70

80

90

100
S3 @ MAF1

5 10 15
#devices

60

70

80

90

100
S1 @ MAF2

20 40 60
#devices

60

70

80

90

100
S2 @ MAF2

20 40 60
#devices

60

70

80

90

100
S3 @ MAF2

SL
O

At
ta

in
m

en
t (

%
)

AlpaServe Clockwork++ SR

0.002 0.004 0.006 0.008
Rate Scale

60

70

80

90

100

0.002 0.004 0.006 0.008
Rate Scale

60

70

80

90

100

0.002 0.004 0.006 0.008
Rate Scale

60

70

80

90

100

20 40 60 80 100
Rate Scale

60

70

80

90

100

20 40 60 80 100
Rate Scale

60

70

80

90

100

0 20 40 60
Rate Scale

60

70

80

90

100

SL
O

At
ta

in
m

en
t (

%
)

2 4 6 8
CV Scale

40

60

80

100

2 4 6 8
CV Scale

40

60

80

100

2 4 6 8
CV Scale

40

60

80

100

2 4 6 8 10
CV Scale

40

60

80

100

2 4 6 8 10
CV Scale

40

60

80

100

2 4 6 8
CV Scale

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
)

2.5 5.0 7.5 10.0
SLO Scale

0

25

50

75

100

2.5 5.0 7.5 10.0
SLO Scale

0

25

50

75

100

2.5 5.0 7.5 10.0
SLO Scale

0

25

50

75

100

1 2 3 4
SLO Scale

0

25

50

75

100

1 2 3 4
SLO Scale

0

25

50

75

100

1 2 3 4 5
SLO Scale

0

25

50

75

100

SL
O

At
ta

in
m

en
t (

%
)

Figure 12: SLO attainment under various settings. In column S1@MAF1, we replay the MAF1 trace on the model set S1, and
so on. In each row, we focus on one specific metric mentioned in §6.2 to see how its variation affects the performance of each
serving system. If any, the dotted vertical line shows when the system can achieve 99% SLO attainment.

(1) Selective Replication (SR): use AlpaServe’s placement al-
gorithm without model parallelism, which mimics the policy
of a wide range of existing serving systems [9, 44]; (2) Clock-
work++: an improved version of the state-of-the-art model
serving system Clockwork [19]. The original Clockwork con-
tinuously swaps models into and out of GPUs. This helps for
very small models (e.g., w/ several million parameters) but
incurs significant swapping overheads on larger models. For
fair comparisons, we implement Clockwork++ in our simula-
tor, which swaps models following Clockwork’s replacement
strategy at the boundary of every two windows5 of the trace
using SR’s algorithm, but assuming zero swapping overheads.
We believe it represents a hypothetical upper bound of Clock-
work’s performance. Since all the baselines can only support
models that can fit into one GPU memory,6 we use model set
S1, S2 and S3 from Tab. 1 in this experiment.

SLO attainment vs. cluster size. Fig. 12’s first row shows
the SLO attainment with varying cluster sizes when serving
a specific (model set, trace) pair. AlpaServe outperforms the
two baselines at all times and uses far fewer devices to achieve
99% SLO attainment thanks to model parallelism. By splitting

5For MAF1, we follow Clockwork to set the window size as 60 seconds.
For MAF2, we set it as 5.4K seconds.

6In our cluster testbed, the per-GPU memory is 16GB, but the actual
available space for model weights is around 13GB due to the need to store
activations and other runtime context.

one model replica onto N devices, AlpaServe can achieve
similar throughput as if N replica were created for replication-
only methods; but note AlpaServe uses only one replica of
memory. Surprisingly, although we let Clockwork++ adjust
to the traffic dynamically with zero overhead, AlpaServe still
wins with a static placement; this is because model-parallel
placement is by nature more robust to bursty traffic.

It is worth noting that replication-only methods can at most
place 2 replicas of BERT-2.6B on a V100 (13GB memory bud-
get), resulting in a substantial memory fraction, while model
parallelism can avoid such memory fractions and enable more
flexible placement of models.

SLO attainment vs. rate. Fig. 12’s 2nd row varies the rate of
the workloads. For a stable trace like MAF1, AlpaServe can
handle a much higher rate than baselines. While for a skewed
and highly dynamic trace MAF2, whose traffic is dominated
by a few models and changes rapidly, the replication-based
methods have to allocate the majority of the GPUs to create
many replicas for “hot” models to combat their bursty traffic;
those GPUs, however, may go idle between bursts, even with
frequent re-placement as in Clockwork++. In AlpaServe, each
model needs fewer replicas to handle its peak traffic.

SLO attainment vs. CV. Fig. 12’s 3rd row varies the CV of
the workloads. The traffic becomes more bursty with a higher
CV, which aggravates the queuing effect of the system and
increases the possibility of SLO violation. The traditional

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 673

solution to handle burstiness is by over-provision, wasting a
lot of resources. AlpaServe reveals a hidden opportunity to
handle this by model parallelism.

SLO attainment vs. SLO. Fig. 12’s 4th row shows the effect
of different SLO. Previous work [19] which targets serving
small models usually sets SLO to hundreds of milliseconds,
even though the actual inference latency is less than 10 ms.
Thanks to the intra-op parallelism, AlpaServe can maintain
good performance under similar SLO when serving large
models, whose inference latency can be over 100 ms. When
SLO is tight, even less than the model inference time, Al-
paServe favors intra-op parallelism to reduce the inference
latency, which also reduces AlpaServe’s peak throughput due
to the communication overhead but can make more requests
to meet their SLO. When SLO becomes looser, AlpaServe
will automatically switch to use more inter-op parallelism to
get higher throughput.

6.3 Serving Very Large Models
Today’s large models may possess hundreds of billions of
parameters [5, 31, 53]. To serve large models at this scale,
the common practice in production is to choose the model
parallelism strategy manually and use dedicated GPUs for
each model [51]. To show AlpaServe has improved capability
in serving very large models, we deploy model set S4 on our
testbed, each requiring at least 16 GPUs to serve in terms of
memory usage. As baselines, for each model, we enumerate
all combinations of inter- and intra-op parallelisms on 16
GPUs. In contrast, AlpaServe searches for the optimal GPU
group allocation and model placement according to the arrival
traffic and tries to achieve statistical multiplexing.

Offered load. In the default setting, the traffic is generated
via a Gamma Process with an average rate of 8 requests/s and
CV of 4. We then split the requests to each model following
a power law distribution with an exponent of 0.5 to simulate
the real-world skewness.7 Similar to §6.2, we vary one of the
rate, CV, or SLO in the default setting to see how each factor
contributes to the resulting performance. It is worth noting
that all results presented in this section are obtained via real
execution on the testbed cluster.

SLO attainment. Fig. 13 shows the SLO attainment of each
system under various settings. Although enumerating par-
allelism strategies and selecting the best can improve per-
formance, it still remains a substantial gap compared to Al-
paServe. This means that the traditional way of using ded-
icated GPUs to serve large models is not ideal. We check
the solution of AlpaServe and find it slices the cluster evenly
into two groups, each with the (4, 8) inter-/intra-op parallel
configuration, and groups the models in a way that balances
the requests between two groups. This further proves that our
motivation in §3.1 still holds for extremely large models. By

7Uniform split yielded similar results.

2.5 5.0 7.5
Rate (r/s)

60

70

80

90

100

1 2 3 4
CV

60

70

80

90

100

2.5 5.0 7.5
SLO Scale

0

20

40

60

80

100

SL
O

At
ta

in
m

en
t (

%
)

AlpaServe (16,1) (8,2) (4,4) (2,8)

Figure 13: SLO attainment as we vary the rate, CV, and SLO
scale. (8,2) means 8-way inter-op parallelism and in each
pipeline stage using 2-way intra-op parallelism.

space-sharing the devices, AlpaServe can exploit new oppor-
tunities for statistical multiplexing, which is advantageous for
bursty workloads but largely under-explored by prior work.

6.4 Robustness to Changing Traffic Patterns
Until now, AlpaServe’s good performance is based on the
assumption we make in its placement algorithm that we know
the arrival process in advance. In practice, the arrival process
can be approximated using historical traces but the unavoid-
able real-world variance may make the prediction inaccurate.
In this experiment, we study how AlpaServe performs if the
traffic patterns change.

We reuse the same setting for S2@MAF1 in §6.2, but this
time for AlpaServe and SR, we randomly slice two one-hour
traces from MAF1, one is what their algorithms are assumed,
while the other one is used as the actual arrival process. While
for Clockwork++, we still run its algorithm directly on the
actual arrival process to respect its online nature. Similarly,
we vary different factors and compute the SLO attainment for
each system. We repeat the experiments three times and show
the average results in Fig. 14.

Unsurprisingly, SR’s performance drops significantly when
traffic changes. By contrast, AlpaServe maintains good per-
formance and still outperforms Clockwork++, an online ad-
justment algorithm, using a static placement generated from
substantially different traffic patterns. This confirms that, in
face of highly-dynamic traffic patterns, statistical multiplex-
ing with model parallelism is a simple and better alternative
than existing replication- or replacement-based algorithms.

6.5 Benefits of Dynamic Batching
Batching is a common optimization in other serving sys-
tems [19, 33, 34] and the choice of batch size is critical to
the performance because it can increase GPU utilization and
thus increase the system throughput. However, in large model
scenarios, the benefit of batching is limited mainly due to
two reasons. First, for large models, a small batch size will
saturate the GPU, which means there is little gain to batching
more requests. Second, the execution latency grows linearly
with the batch size [44], so when the SLO is tight (say SLO
Scale is less than 2), batching is simply not a choice.

To isolate the benefits of model parallelism and make the

674 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10 20 30 40 50
#devices

0

20

40

60

80

100

0.002 0.004 0.006 0.008
Rate Scale

0

20

40

60

80

100

2 4 6 8
CV Scale

0

20

40

60

80

100

2 4 6 8 10
SLO Scale

0

20

40

60

80

100
SL

O
At

ta
in

m
en

t (
%

)
AlpaServe Clockwork++ SR

Figure 14: The actual arrival traffic for AlpaServe and SR is different from what their algorithms are assumed, while Clockwork++
runs directly on the actual traffic.

0.0 2.5 5.0 7.5 10.0 12.5
SLO Scale

0

20

40

60

80

100

AlpaServe
AlpaServe (mb=2)
AlpaServe (mb=4)
AlpaServe (mb=8)
AlpaServe (mb=16)

0.0 2.5 5.0 7.5 10.0 12.5
SLO Scale

0

20

40

60

80

100

AlpaServe
Clockwork++
AlpaServe (mb=2)
Clockwork++ (mb=2)

SL
O

At
ta

in
m

en
t (

%
)

Figure 15: SLO Attainment when batching is enabled. mb=2
means the maximum batch size is 2.

results more explainable, we decide to disable any batching
in other experiments but prove that the batching strategy is
purely orthogonal to the scope of this paper in this subsection.
To prove this, we implement a standard batching algorithm in
AlpaServe and evaluate its performance.

Batching strategy. When a request arrives, it will get exe-
cuted immediately if any device group is available. Otherwise,
it will be put into a per-model requests queue for batching.
When a device group becomes idle, it will choose a model
which has a replica on it and batch as many requests as possi-
ble from the requests queue of the model while satisfying the
SLO requirements.

Setup. As the model size increases, the potential benefit of
batching decreases. Therefore, we choose to evaluate model
set S1. We generate a synthetic Gamma Process traffic with
an average rate of 4 requests/s and a CV of 4 for each model.

SLO attainment. Fig. 15 (left) shows the SLO attainment
achieved by AlpaServe with different maximum batch size set-
tings under various SLO scales. When the SLO requirement
is tight, any batching will violate the SLO so there is no gain
with batching enabled. Also, although we choose to serve the
smallest model in Tab. 1, a small batch size like 2 combined
with a long sequence length of 2048 already saturates the
GPU, so a larger maximum batch size brings no performance
improvement. Fig. 15 (right) compares the improvement for
AlpaServe and Clockwork++ with our batching algorithm
enabled.8 When the SLO requirement becomes loose, both
AlpaServe and Clockwork++ have better SLO attainment to

8SR is left out to make the figure clearer as it is worse than Clockwork++.

1 2 4 8
Number of GPUs

0.100
0.125
0.150
0.175
0.200
0.225
0.250

La
te

nc
y

(s
)

Compuation
Communication Overhead
Uneven Partition Overhead

(a) Transformer 1.3B.

1 2 4 8
Number of GPUs

0.20

0.22

0.24

0.26

0.28

0.30

La
te

nc
y

(s
)

Compuation
Communication Overhead
Uneven Partition Overhead

(b) Transformer 2.6B.

Figure 16: Comparison of the model parallel overhead be-
tween manual partition (lighter color) and the partition found
by the automatic algorithm (darker color).

some extent. Since AlpaServe’s performance is good even
without batching and batched requests with different batch
sizes will incur stage imbalance and pipeline bubble in inter-
op parallel, the absolute improvement of Clockwork++ is
slightly better.

6.6 Ablation Study
In this section, we study the effectiveness of our proposed
auto-parallelization (§4.1) and placement algorithms (§4.2).

Benefits of auto-parallelization. We show that the auto-
parallelization ability allows AlpaServe to not only gener-
alize to arbitrary model architectures but even also reduce
parallelism overheads – hence improved serving performance
(see §3.3 for more discussion). To see that, typical manual
model-parallel parallelization strategies offered in de facto
systems [1, 31, 32] is to assign an equal number of (trans-
former) layers to each pipeline stage. These strategies often
fail to create balanced workloads across distributed GPUs be-
cause contemporary large models have heterogeneous layers,
such as embedding operations. The extensions introduced in
§4.1 automatically partition the models at the computational
graph level and generate nearly-balanced stages. Empirically,
as shown in Fig. 16, for 8 pipeline stages, auto-parallelization
reduces the total overhead by 32.9% and 46.7% for Trans-
former 1.3B and 2.6B respectively, which is necessary for
achieving good serving performance when model parallelism
is used for serving.

Effectiveness of the placement algorithm. We now test the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 675

20 40 60 80 100 120
Rate (r/s)

60

65

70

75

80

85

90

95

100

Round robin
Greedy placement
Greedy placement + Group partitioning

2 4 6
CV

60

65

70

75

80

85

90

95

100

Round robin
Greedy placement
Greedy placement + Group partitioning

SL
O

At
ta

in
m

en
t (

%
)

Figure 17: Ablation study of placement algorithms.

effectiveness of our placement algorithm on a synthetic work-
load. We serve the most challenging model set S3 (Tab. 1)
on our testbed. The rate distribution of the models follows
a power law distribution. The arrival pattern of each model
is a Gamma process. Three variants of the placement algo-
rithms are evaluated. Round robin means placing models in a
round-robin fashion and using 4-stage pipelines for all groups.
Greedy placement uses our greedy placement and 4-stage
pipeline for all groups. Greedy placement + Group partition-
ing performs greedy placement plus group partitioning search.
As shown in Fig. 17, both placement and group partitioning
are necessary to achieve good SLO attainment. In the left
subfigure, the group partitioning increases the rate by 1.5×
compared to greedy placement without group partitioning
over 99% SLO attainment, while round robin can never reach
99% SLO attainment. In the right subfigure, the group parti-
tioning increases the traffic burstiness that can be handled to
meet 99% SLO attainment by 1.3×.

7 Related Work
Model serving systems. There has been a proliferation of
model serving systems recently. These range from general-
purpose production-grade systems like TensorFlow Serv-
ing [34] and NVIDIA Triton [33], which are widely used but
do not provide any support for automatic placement or latency
constraints. They also include systems that are optimized for
single-model serving [51] or serving of specific classes of
models (e.g., transformers) [16, 51, 57]. AlpaServe targets a
broader set of models and features than these systems.

For SLO-aware, distributed serving, most serving systems
ignore placement-level interactions between models. Clock-
work [19], for instance, primarily focuses on predictability;
when scheduling, it greedily loads and executes models on
available GPUs. Shepherd [52] utilizes preemption to correct
sub-optimal scheduling decisions. For large models, loading
model weights and preemption can easily overwhelm prac-
tical SLOs. Other systems like Clipper [9], Infaas [40], and
DVABatch [10] also do not reason about the latencies of
co-located models.

Nexus [44] is very related to our work in that it exam-
ines the placement of models; however, Nexus is an example
of a system that takes the traditional replication approach
described in §3 and, thus, misses a broad class of potential
parallelization strategies that we explore in this paper.

Inference optimizations for large models. AlpaServe is com-
plementary to another large body of work on optimizations
for inference over large models. These include techniques like
quantization [13], distillation [41], offloading [1], better oper-
ator parallelism [36], and CUDA kernel optimization [11, 26].
Some of these optimizations are intended to stem the tide
of increasing model sizes; however, all of these gains are
partial— the challenge of serving large models has continued
to escalate rapidly despite these efforts.

Model parallelism for training. AlpaServe is largely orthog-
onal to the large body of work on model parallelism in train-
ing [23, 28, 31, 37, 56]. As described in §3, serving presents
a unique set of constraints and opportunities not found in
training workloads. Where these systems do intersect with
AlpaServe, however, is in their methods for implementing
model parallelism along various dimensions. In particular,
AlpaServe builds on some of the parallelization techniques
introduced in [56].

Resource allocation and multiplexing. The problem of how
to multiplex limited resources to the incoming requests is one
of the oldest topics in computer science and has been stud-
ied in different application domains [3, 29, 38]. Recent work
on DL scheduling uses swapping [2], preemption [20], inter-
leaving [55], and space-sharing [49] to realize fine-grained
resource sharing. Rather, the contribution of this paper is a
deep empirical analysis of the applications of these ideas to
an emerging space: the serving of multiple large models.

8 Conclusion and Future Work
In this paper, we presented AlpaServe, a system for prediction
servings of multiple large deep-learning models. The key
innovation of AlpaServe is integrating model parallelism into
multi-model serving. Because of the inherent overheads of
model parallelism, such parallelism is traditionally applied
conservatively—reserved for cases where models simply do
not fit within a single GPU or execute within the required SLO.
AlpaServe demonstrates that model parallelism is useful for
many other scenarios, quantifies the tradeoffs, and presents
techniques to automatically navigate that tradeoff space.

In the future, we will extend AlpaServe to more com-
plicated scenarios, including serving multiple parameter-
efficient adapted models (e.g., LoRA [22]), models with de-
pendencies, and autoregressive models [5].

9 Acknowledgement
We thank the OSDI reviewers and our shepherd, Heming Cui,
for their valuable feedback. This work is in part supported by
NSF CISE Expeditions Award CCF1730628, NSFC under the
grant number 62172008, and gifts from Astronomer, Google,
IBM, Intel, Lacework, Microsoft, Nexla, Samsung SDS, Uber,
and VMware. Yinmin Zhong and Xin Jin are also with the
Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education.

676 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Reza Yazdani Aminabadi, Samyam Rajbhandari, Min-

jia Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, El-
ton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,
et al. Deepspeed inference: Enabling efficient inference
of transformer models at unprecedented scale. arXiv
preprint arXiv:2207.00032, 2022.

[2] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
{PipeSwitch}: Fast pipelined context switching for deep
learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 499–514, 2020.

[3] Nirvik Baruah, Peter Kraft, Fiodar Kazhamiaka, Pe-
ter Bailis, and Matei Zaharia. Parallelism-optimizing
data placement for faster data-parallel computations.
Proceedings of the VLDB Endowment, 16(4):760–771,
2022.

[4] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei
Kang, Hongyang Sun, Aniruddha Gokhale, and Gabor
Karsai. Barista: Efficient and scalable serverless serving
system for deep learning prediction services. In 2019
IEEE International Conference on Cloud Engineering
(IC2E), pages 23–33. IEEE, 2019.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

[7] Copy.ai. Copy.ai: Write better marketing copy and con-
tent with ai. https://www.copy.ai/.

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: latency-aware provisioning and scal-
ing for prediction serving pipelines. In Proceedings of
the 11th ACM Symposium on Cloud Computing, pages
477–491, 2020.

[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, 2017.

[10] Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui
Li, Deze Zeng, Chao Li, and Minyi Guo. Dvabatch:

Diversity-aware multi-entry multi-exit batching for ef-
ficient processing of dnn services on gpus. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 183–198, 2022.

[11] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in
Neural Information Processing Systems, 2022.

[12] Robert I Davis, Ken W Tindell, and Alan Burns.
Scheduling slack time in fixed priority pre-emptive sys-
tems. In 1993 Proceedings Real-Time Systems Sympo-
sium, pages 222–231. IEEE, 1993.

[13] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. Advances in Neural Information
Processing Systems, 2022.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[15] Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad
Shokouhi, Xia Hu, and Ahmed Hassan Awadallah. What
do compressed large language models forget? robust-
ness challenges in model compression. arXiv preprint
arXiv:2110.08419, 2021.

[16] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 389–402, 2021.

[17] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(120):1–39, 2022.

[18] Github. Github copilot: Your ai pair programmer.
https://github.com/features/copilot.

[19] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving {DNNs} like clockwork: Performance
predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 443–462, 2020.

[20] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
GPU-accelerated DNN inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 539–558, Carlsbad, CA,
July 2022. USENIX Association.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 677

https://www.copy.ai/
https://github.com/features/copilot

[21] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
{GPU-accelerated}{DNN} inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 539–558, 2022.

[22] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models, 2021.

[23] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[24] Huggingface. Models - huggingface. https://
huggingface.co/models.

[25] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a serverless
platform. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 257–262. IEEE, 2018.

[26] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. Data movement is all you need:
A case study on optimizing transformers. Proceedings
of Machine Learning and Systems, 3:711–732, 2021.

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. In International Conference on Learning Rep-
resentations, 2020.

[28] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. Terapipe:
Token-level pipeline parallelism for training large-scale
language models. In International Conference on Ma-
chine Learning, pages 6543–6552. PMLR, 2021.

[29] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang,
Eric Bouillet, and Dimitrios Pendarakis. Efficient re-
source provisioning in compute clouds via vm multiplex-
ing. In Proceedings of the 7th international conference
on Autonomic computing, pages 11–20, 2010.

[30] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[31] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[32] NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer.

[33] NVIDIA. Triton inference server.
https://developer.nvidia.com/
nvidia-triton-inference-server.

[34] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

[35] OpenAI. Chatgpt. https://chat.openai.com/chat.

[36] Reiner Pope, Sholto Douglas, Aakanksha Chowdh-
ery, Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff
Dean. Efficiently scaling transformer inference. arXiv
preprint arXiv:2211.05102, 2022.

[37] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[38] KV Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
401–417, 2016.

[39] Stewart Robinson. Simulation: the practice of model
development and use. Bloomsbury Publishing, 2014.

[40] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less in-
ference serving. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 397–411. USENIX
Association, July 2021.

[41] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

678 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://huggingface.co/models
https://huggingface.co/models
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://chat.openai.com/chat

[42] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[43] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. Mesh-
TensorFlow: Deep learning for supercomputers. In Neu-
ral Information Processing Systems, 2018.

[44] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, pages 322–337, 2019.

[45] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[46] John F Shortle, James M Thompson, Donald Gross, and
Carl M Harris. Fundamentals of queueing theory, vol-
ume 399. John Wiley & Sons, 2018.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[48] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. Mlaas in the wild: Workload analysis and
scheduling in large-scale heterogeneous gpu clusters. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 945–960, 2022.

[49] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu,
and Xin Jin. Transparent GPU sharing in container
clouds for deep learning workloads. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 69–85, Boston, MA, April
2023. USENIX Association.

[50] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: general and scalable parallelization for ml com-
putation graphs. arXiv preprint arXiv:2105.04663,
2021.

[51] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 521–538,
2022.

[52] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. {SHEPHERD}: Serving {DNNs} in the
wild. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages 787–
808, 2023.

[53] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[54] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 724–739, 2021.

[55] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu,
Xuanzhe Liu, and Xin Jin. Multi-resource interleaving
for deep learning training. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 428–440, 2022.

[56] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez, et al.
Alpa: Automating inter-and intra-operator parallelism
for distributed deep learning. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), 2022.

[57] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu
Sun. Pets: A unified framework for parameter-efficient
transformers serving. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 489–504,
2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 679

COCKTAILER: Analyzing and Optimizing Dynamic Control Flow in Deep Learning

Chen Zhang†£⋄∗ Lingxiao Ma⋄ Jilong Xue⋄ Yining Shi‡⋄∗ Ziming Miao⋄

Fan Yang⋄ Jidong Zhai† Zhi Yang‡ Mao Yang⋄

†Tsinghua University ‡Peking University ⋄Microsoft Research

Abstract

With the growing complexity of deep neural networks
(DNNs), developing DNN programs with intricate control
flow logic (e.g., loops, branches, and recursion) has become
increasingly essential. However, executing such DNN pro-
grams efficiently on accelerators is challenging. Current DNN
frameworks typically process control flow on the CPU, while
offloading the remaining computations to accelerators like
GPUs. This often introduces significant synchronization over-
head between CPU and the accelerator, and prevents global
optimization across control flow scopes.

To address this challenge, we propose COCKTAILER, a
new DNN compiler that co-optimizes the execution of control
flow and data flow on hardware accelerators. COCKTAILER
provides the uTask abstraction to unify the representation of
DNN models, including both control flow and data flow. This
allows COCKTAILER to expose a holistic scheduling space
for rescheduling control flow to the lower-level hardware par-
allelism of accelerators. COCKTAILER uses a heuristic policy
to find efficient schedules and is able to automatically move
control flow into kernels of accelerators, enabling optimiza-
tion across control flow boundaries. Evaluations demonstrate
that COCKTAILER can accelerate DNN models with control
flow by up to 8.2× over the fastest one of the state-of-the-art
DNN frameworks and compilers.

1 Introduction

In deep neural networks (DNNs), control flow plays a crucial
role in accomplishing sophisticated tasks, akin to its usage in
general programming languages. Examples of this include it-
erating over sequential data like text and time steps, activating
different components of the model based on input-data-driven
conditions, dynamically skipping some computation based on
runtime decisions for efficient computation, and recursively

£Tsinghua University, BNRist
∗Work is done during the internship at Microsoft Research.

traversing tree-based data structures. A DNN program is typi-
cally divided into two parts: control flow and data flow. The
data flow is typically represented as a graph of DNN operators,
which can be efficiently executed on specialized accelerators
such as GPUs. The control flow, on the other hand, is either
implemented as a special operator [4] or by directly reusing
the built-in statements of programming languages [36], and
is typically executed on a CPU. Therefore, the control flow
and data flow are executed alternatively in an entire DNN
computation: the control flow determines which part of the
data flow should be executed, and then the corresponding data
flow is sent to accelerators for processing and the result is
obtained, which is used to decide the next step of control flow.

However, the interleaved execution paradigm on both sides
in existing DNN frameworks often introduces significant ef-
ficiency issues. First, the control flow and data flow require
frequent synchronization between the CPU and accelerator
(e.g., for checking conditions based on results), resulting in
significant communication overhead (e.g., across PCIE) in
the critical path. Second, the control flow in a DNN program
often establishes explicit boundaries between data flow opera-
tors, which prevents their holistic optimization for maximum
efficiency, such as fusing two operators across a loop scope.
Lastly, the control flow implicitly serializes the execution of
data flow operators that could potentially be executed in par-
allel. We have observed that these overheads are prevalent in
existing DNN models and can often occupy as much as 72%
of the total time in PyTorch. These efficiency issues not only
introduce obstacles to dynamic model developments but also
make many optimizations, e.g., dynamically skipping some
computation, hard to achieve theoretical speedup.

Based on our observation of DNN workload patterns, the
fundamental reason for the inefficiency is the parallelism
mismatch between the control flow and data flow. In partic-
ular, control flow operations, such as loops, branches, and
recursion, are single-thread semantic and execute in a strictly
sequential order. However, the data flow operators are par-
allelizable, running on multiple parallel threads (e.g., GPU
cores) and synchronizing periodically across different scopes

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 681

of threads (between operators or thread blocks). To control
the execution flow of a parallel program, the mismatch be-
tween control flow and data flow forces existing practices to
place the control flow either outside the DNN operators (e.g.,
in existing DNN frameworks) or inside an individual DNN
operator, through implementing custom kernels in an ad-hoc
way (e.g., Relu operator). This can be either inefficient or
unscalable to support the increasing demands for control flow
in DNN workloads.

In this paper, we present a new DNN compiler, COCK-
TAILER, that addresses the challenges of co-optimizing con-
trol flow and data flow in a single space. COCKTAILER is
based on three key insights observed from studying DNN
models and modern accelerators. First, the data flow in DNNs
is inherently a multi-level parallel program, where individ-
ual operators are executed in different hardware parallelism,
such as threads, thread blocks, or kernels in GPUs. Second,
the control flow operations in DNNs are mostly applied at
the operator level, where all lower-level parallelisms share
the same control result. This implies that the control flow
can be rescheduled to the low-level parallelism by replicating
the control logic to all parallel tasks at different levels. Most
importantly, modern hardware accelerators, such as GPUs,
are designed to support the control logic in their low-level
programming languages in each thread, which makes this
rescheduling approach feasible in practice.

Based on these insights, COCKTAILER introduces the uTask
abstraction as the primitive execution unit of a DNN program
for both control flow and data flow. An operator in data flow
can be naturally decomposed into different levels of granu-
larity of uTasks aligned with its computation parallelism. For
control flow, COCKTAILER introduces three types of special
uTasks: loop uTask, branch uTask, and uTask reference, to
represent the program with control flow as a special uTask. By
unifying the DNN program into the uTask granularity, COCK-
TAILER creates a holistic space for co-scheduling control
flow uTasks with compute uTasks, i.e., by assigning the con-
trol flow uTask to the most efficient parallel level with data
dependencies resolved correctly. To facilitate this schedul-
ing, COCKTAILER proposes a scheduling mechanism and a
traverse-based bottom-up scheduling policy that incorporates
all control flow optimizations such as function inline, loop
unroll, and recursion unroll.

As a result, COCKTAILER is able to automatically move
control flow operations, such as loops or branches, into ac-
celerator side when applicable, enabling more optimization
opportunities across the control flow boundary. COCKTAILER
is built on top of general DNN tensor compilers by leverag-
ing their kernel generation capabilities for uTask, allowing it
to adapt to different accelerators such as CUDA GPUs and
ROCm GPUs easily. COCKTAILER’s approach can be ap-
plied to both DNN frameworks that implement control flow
as special operators or language-built-in statements, by only
compiling the sub-programs that can be optimized by COCK-

co
nv

co
nv

co
nv

co
nv

co
nv

co
nv+ + +drop cake

lstm lstm lstmlstm

I like cakes <EOS>

encoder 1

2

4 5

3

6 7

I like cakes .
(b) BlockDrop with branches

(a) Seq2seq with a loop

(c) RAE with recursion

Figure 1: Models with control flow

TAILER. Evaluation with 7 typical DNN models on CUDA
GPUs and ROCm GPUs shows that COCKTAILER accelerates
these models by up to 8.2× over the fastest one of state-of-
the-art DNN frameworks and compilers. Furthermore, the
evaluation shows that COCKTAILER not only reduces the
overheads introduced by control flow but also enables scenar-
ios like dynamically skipping some computation by achieving
real speedup. The code has been open-sourced1.

2 Background and Motivation

DNNs have been successfully applied in many areas, such as
computer vision, speech, and natural language. Meanwhile,
the concept of control flow in programming languages is
introduced to deep learning. The architecture of DNN models
rapidly evolves from sequential feed-forward layers [15, 23,
38] to structures with complex control logic [16,39–41,46,47],
enabling dynamic computation and adaptability within the
network architecture:

• Dynamic computation. Control flow enables construct-
ing dynamic computation architectures, which can adapt
their structure during runtime. For example, the loops are
widely used to handle variable-length sequences (e.g.,
text, speech, time-series data) in RNNs [16, 40, 58] and
Transformers [43].

• Conditional computation. Control flow enables the ex-
ecution of specific parts of the model based on certain
conditions [7, 24] like executing different parts of the
model for images with different resolution.

• Efficient computation. Control flow can help reduce the
computational resources required by DNN models by
selectively executing parts of the model based on input
data or intermediate results, e.g., the early-exiting mech-
anism [46, 47] that can skip some layers on easy input
samples. Besides, control flow can be leveraged to adapt
DNN models to different environments (e.g., different
hardware accelerators) by trading off computation cost
and model performance via control flow [26].

Dynamic computation for structural data is a common re-
quirement in modern deep learning models. For instance,
nearly 27% of the 52 models in PyTorch Hub (as of commit
ID 1c747e2) contain structural data (e.g., sequence, tree). Fur-
thermore, a survey on dynamic DNN models [13] indicates

1https://github.com/microsoft/nnfusion/tree/cocktailer_
artifact/artifacts

682 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/nnfusion/tree/cocktailer_artifact/artifacts
https://github.com/microsoft/nnfusion/tree/cocktailer_artifact/artifacts

that conditional computation and efficient computation are
promising research directions.

In programming languages, control flow constructs are
typically categorized into the following types: sequence,
branch, loop, and subroutine (function). Similarly, a majority
of DNN models with complex control flow can be catego-
rized into models with loops for temporal-wise dynamism
(e.g., LSTM [16], NASRNN [58], Seq2seq [40]), models with
branches to skip computation (e.g., BlockDrop [47], Skip-
Net [46]), and models with tree-based architecture via recur-
sion (e.g., RAE [39], Tree-LSTM [41]). We discuss the three
representative categories with their representative models, as
shown in Figure 1.

• Loop. Seq2seq [40] can generate arbitrary-length se-
quences. It contains a while loop that continues to emit
new tokens until an end-of-sequence (EOS) token.

• Branch. BlockDrop [47] is a convolution neural network
that can drop some convolution layers. Each layer is
implemented by an if statement with two branches for
whether executing the branch or not.

• Recursion. RAE [39] computes the embedding of a
parse tree by traversing the tree. It can be implemented
by a depth-first search using recursion.

To support these emerging DNN models, there are two
mainstream approaches. The first one, represented by Tensor-
Flow of version 1.x [4], supports these complex model archi-
tectures by introducing a set of control flow operators [52]
like Enter and NextIteration. Then, these control flow op-
erators are executed in the framework runtime with the CPU
threads. The second one, represented by PyTorch [36] and
JAX [11], leverages the programming language to represent
and execute the control flow. For example, in PyTorch, algo-
rithm designers program control logic in Python, and these
control flow statements are running in the Python runtime.

Both approaches schedule data flow operators onto the ac-
celerators while maintaining control flow in the CPU side for
execution. The reason is the parallelism mismatch between
the control flow and the data flow. Specifically, different from
data flow operators (e.g., matrix multiplication) that have in-
ternal data parallelism, control flow operations are represented
as single-thread computation. Modern hardware accelerators
have massive hierarchical parallel processing units. For exam-
ple, GPUs contain many parallel streaming multiprocessors
(SMs) and each SM has many parallel cores. This architec-
ture aligns with data flow operators’ parallelism, but it is
hard to schedule the single-thread control flow to the massive
hierarchical parallel processing units for execution. There-
fore, current practices [4, 11, 36, 52] schedule control flow
operations to the CPU side for execution. Such approaches
introduce boundaries between DNN operators of different
basic blocks, resulting in performance issues.

Figure 2 compares JAX’s performance of executing the
three models via dynamic control flow to executing the corre-
sponding traced static graph that has removed all the control

0.00
0.15
0.30
0.45

tim
e

(m
s)

(a) Seq2Seq
0.00
0.25
0.50
0.75

(b) BlockDrop
0
8

16
24

(c) RAE0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
traced graph with control flow

Figure 2: Control flow overhead in JAX

CPU

GPU

synchronization between CPU and GPU

asynchronious kernels: short idle time synchronous kernels: long idle time

Figure 3: Timeline of BlockDrop in JAX. The data copy from
GPU to CPU (MemcpyD2H) causes synchronization.

flow computation and only remains data flow computation.
Compared with the traced graph baseline, the control flow
computation of JAX causes 1.16×, 1.54×, and 56.22× slow-
down in Seq2Seq, BlockDrop, and RAE, respectively. More
results can be found in §5. The loop in Seq2seq and branches
in BlockDrop use control flow operators. The recursion in
RAE is executed in Python. Both approaches cannot match
the performance of static traced graphs.

The performance issue comes from the following parts.
(1) Boundary overheads. Executing data flow operators on
the accelerator and control flow operations on the CPU can
incur synchronizations between the CPU and the accelerator.
Take the BlockDrop model on a CPU-GPU system as an ex-
ample, the DNN operators in the branch body are executed
in the GPU side, while the branch operation is executed in
the CPU side. The CPU stalls when waiting for the GPU to
provide the data required for deciding the branch target, and
then the GPU stalls to wait for the CPU to check the branch
condition and send the following operations to the GPU. The
boundary overheads mainly contain the communication be-
tween the CPU and the accelerator and the kernel launching.
This boundary may also break the asynchronous execution in
the accelerator side.

Figure 3 shows part of the timeline of JAX executing the
BlockDrop model that the CPU-GPU synchronization not
only has high synchronization overheads but also breaks the
asynchronous execution and causes a long idle time without
computation in the GPU side.
(2) Boundary limits the optimization scope. Executing
control flow and data flow on separate sides divides the DNN
program into sub-programs, each representing a static data
flow that can be executed on the accelerator side. Many DNN
optimizations (e.g., Rammer [28], kernel fusion [35, 56], etc.)
are limited to only optimizing these sub-programs, resulting
in sub-optimal performance. Consider a multi-layer LSTM
model as an example: the DNN operators in LSTM cells
across different layers can be scheduled for parallel execution.
However, the loop control flow constrains the DNN optimiza-
tions within a cell, resulting in overlooking this parallelism.
(3) Boundary prevents parallelism in DNN programs.
This boundary makes the DNN programs in different con-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 683

L2-Unit
L1-Unit
L0

accelerator’s abstraction

loop

L0
L1-Unit
L0 L0

L1-Unit
L0 L0

L1-Unit
L0 L0

Loop-uTask

schedule

map

loop
Mat
Mul

Add Relu

schedule

CPU

accelerator

MatMul
kernel

Add
kernel

Relu
kernel

Loop

(a) (b)

uTask

uProgram

uOperator

Figure 4: System overview of DNN computation in (a) exist-
ing DNN frameworks (e.g., JAX), and (b) COCKTAILER

trol flow statements executed sequentially due to the synchro-
nizations between the CPU and the accelerator, which may
prevent possible inter-operator parallelism. Take the RAE
model as an example, the recursion builds up a tree-based
architecture where operators without dependencies can be
executed concurrently. However, because the control flow can
only be executed sequentially, operators of nodes without
dependencies are executed sequentially.
Observations and opportunities. Given the fundamental
limitations of current approaches described above, it is desir-
able to schedule the DNN programs including control flow
and data flow in a single space (i.e., the accelerator side). How-
ever, it is challenging to achieve this because of the parallelism
mismatch between control flow and data flow. Fortunately,
control flow in DNN programs is applied across DNN oper-
ators, that is to say, the DNN operators’ computation under
control flow shares the same control logic. On the other hand,
most hardware accelerators (e.g., GPUs) have the ability to
execute control flow instructions. If we represent control flow
in a finer granularity that can be properly mapped to the paral-
lel processing units for execution, we can schedule both data
flow and control flow to the accelerator side.

3 COCKTAILER Design

The observation in §2 motivates COCKTAILER, a DNN com-
piler for co-optimizing control flow and data flow in a single
space. Figure 4 shows the overview of COCKTAILER. First,
COCKTAILER takes a DNN program with control flow and
data flow as input, where each operator in the data flow is
a uOperator that consists of independent and homogeneous
uTasks. Each uTask can be scheduled to one compute unit of
the accelerator. Second, instead of scheduling control flow on
the CPU side and data flow on the accelerator side separately,
COCKTAILER schedules control flow and data flow inside
the program in a single space. COCKTAILER will generate
the uProgram representation for the program, which contains
multiple independent uTasks (e.g., the Loop-uTasks in Fig-
ure 4(b)) that can be scheduled to the parallel compute units
in hardware accelerators for execution. Each uTask represents

both the control flow and data flow logic of one compute unit.
COCKTAILER abstracts an accelerator of massive paral-

lelism as multiple levels of parallel processing units. In each
level, there are parallel and homogeneous processing units,
which construct a higher level of processing unit. This hard-
ware abstraction naturally aligns with common hardware ac-
celerators. Take the NVIDIA GPU as an example, there are
multiple homogeneous streaming multiprocessors (SMs) in
a GPU, where each SM consists of multiple homogeneous
cores. Therefore, NVIDIA GPUs can be mapped as an archi-
tecture with 3 levels of parallel processing units in COCK-
TAILER’s hardware abstraction shown as Figure 4: L0 is the
core (thread); L1 is the SM (thread block); L2 is the GPU
device (kernel).

The example loop structure in Figure 4 is scheduled as a
uProgram mapped on the 3-level accelerator. The uProgram
consists of 4 loop-uTasks for 4 L1-Units resepectively and
each loop-uTask is mapped to a L1-Unit for execution. Both
the data flow operators and the loop are scheduled into the
loop-uTasks. Take the first loop-uTask as an example, it has a
loop control flow and a list of uTasks for data flow operations
containing 1 MatMul uTask, 1 Add uTask, and 1 Relu uTask.

The concepts of uTask, uOperator, and uProgram are de-
scribed in detail in §3.1. And the uProgram scheduling is
illustrated in §3.2.

3.1 uTask-based DNN Program
To co-schedule the control flow and the data flow of a DNN
program to accelerators with massive parallel units, COCK-
TAILER defines the DNN program in fine grained with the
concept of unit-task (uTask). Specifically, uTask is defined
as the computation logic that can be scheduled to one of the
multi-level processing units in hardware accelerators for exe-
cution. Note that the computation in a uTask can be a list of
other uTasks, i.e., a nested uTask. uProgram represents the ex-
ecution plan of the uTask-represented DNN program mapped
to a level of parallel processing units on the hardware.
uTask and uOperator for data flow operators. As Fig-
ure 5(a)(c) show, a data flow operator is represented as
a group of independent and homogeneous uTasks where
each uTask is the computation to be scheduled to one
processing unit. Specifically, each uTask takes a slice of
the input tensor via get_input_data() and executes the
corresponding computation defined in compute(). Then,
a uOperator is defined as the collection of all uTasks of
the corresponding data flow operator. The uTasks of a
uOperator are indexed by the logical uTask_id and called by
compute(uTask_id). The total uTask count in an uOperator
is reported by get_uTask_num(). When all uTasks in an op-
erator are executed, the execution of this operator is finished.

Data flow operators (e.g., matrix multiplication) are usually
implemented as multiple independent and homogeneous tasks
that are scheduled to the massive parallel units of accelerators

684 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

interface uTask {
void compute();
void get_input_data();
};

(a)

interface NestedUTask: uTask {
void compute();
void get_input_data();

vector<uTask> body_uTasks;
};

(b)

interface uOperator {
void compute(uTask_id);
size_t get_uTask_num();

set<uTask> uTasks;
};

(c)

interface uProgram {
void compute(uTask_id);
size_t get_uTask_num();
set<uTask> uTasks;
size_t unit_level;

};

(d)
Figure 5: The definition of uTask, uOperator and uProgram

for execution. Each task consumes a slice of the input tensor,
processes the corresponding computation over the input slice,
and produces a slice of the output tensor. Take the NVIDIA
GPU as an example, the kernel of an operator (e.g., matrix
multiplication) is scheduled as multiple thread blocks and
each of them is mapped to an SM for processing a tensor
slice. Furthermore, a thread block is scheduled as multiple
threads and mapped to cores for processing a tensor slice.
Therefore, the concept of uTask is not only natural to represent
the fine-grained computation of data flow operators, but also
aligns with the hardware architecture of multi-level parallel
processing units in accelerators.

uTask for control flow. It is natural to represent data flow
operators with uTasks due to the internal data parallelism that
can be divided into parallel tasks. However, different from
DNN operators, the control flow cannot be divided into such
parallel tasks. To enable the scheduling of control flow on the
parallel processing units, we need to bridge this gap of the
mismatching between the control flow computation and the
massive parallelism in the accelerator.

Control flow operation applies to a scope of DNN operators
in DNN programs. When the DNN operators can be divided
into independent and homogeneous uTasks, controlling the
DNN operators is equal to applying control flow computa-
tion on each uTask. For example, assuming there is a loop
structure that has a matrix multiplication operator in the loop
body, compared with executing the loop over the operator, it
is equally that let each unit of the hardware accelerator pro-
cess the loop control flow over the uTask of the operator. If
we apply such control flow on the scope of the fine-grained
representation of these DNN operators, we can schedule such
computation including the control flow to the parallel process-
ing units of the hardware accelerators. That is to say, we can
represent control flow in the uTask granularity by replicating
the control flow computation to the multi-level parallel units
that each unit executes the control flow independently and
controls the uTasks scheduled on the unit.

According to the observation, COCKTAILER represents con-
trol flow operations as NestedUtasks defined in Figure 5(b),
where the computation in the body is represented in the
body_uTasks. These uTasks have data dependencies and
should be executed sequentially on one processing unit. Dif-
ferent from data flow operators that the get_input_data()
extracts a slice of the input tensor, the input data of the uTasks
in the body_uTasks of control flow is related to the results
of the control flow. For example, in the LSTM model, the

1 interface LoopUTask: NestedUTask {
2 void compute();
3 void get_input_data();
4 void control_flow();
5 vector<uTask> body_uTasks;
6 };

(a) Loop-uTask

1 interface BranchUTask: NestedUTask {
2 void compute();
3 void get_input_data();
4 void control_flow();
5 vector<uTask> then_uTasks;
6 vector<uTask> else_uTasks;
7 };

(b) Branch-uTask

Figure 6: Control flow uTasks
uTasks in the body of the loop control flow require different
values of the loop counter in different loop steps. Therefore,
the get_input_data() for control flow should prepare the
input data with consideration of the results of control flow.
Note that different control flow operations have different data
access patterns in the body_uTasks. We will discuss it in
detail in the following.

According to Section 2, there are three types of control flow
in DNN programs: loop, branch, and recursion. Therefore,
COCKTAILER defines the concepts of loop-uTask, branch-
uTask, and uTask reference correspondingly to represent the
fine-grained uTask for control flow in DNN programs.

(1) Loop-uTask. Figure 6(a) shows the uTask definition
for the loop control flow. COCKTAILER currently supports
two types of loop control flow, i.e., for loop and while loop.
The control_flow() interface implements the for loop or
the while loop condition. The body computation of a loop
represented in uTasks is implemented in body_uTasks. Note
that the body_uTasks is executed multiple times in a loop
with different input data in each loop step. For example,
in the LSTM model, the computation of a LSTM cell in
each loop step requires the same model parameter tensors
but different loop counter tensors and state tensors. The
get_input_data() interface needs to prepare the corre-
sponding tensors in each loop step.

(2) Branch-uTask. Figure 6(b) shows the uTask definition
for the branch control flow. The control_flow() interface
implements the condition computation in the branch. The
branch-uTask has then_uTasks and else_uTasks to indi-
cate the computation of two branches represented in uTasks,
respectively. The get_input_data() interface returns the
required data for a branch indexed by the condition result.

(3) Function. A function can be natively represented

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 685

1 ScheduleOperator(op, D, unit_level, config);
2 ScheduleControlFlow(g, D, unit_level, config);
3 Config SetResource(D, unit_level, resource);

Figure 7: Scheduling interfaces

with NestedUTasks that each uTask represents the compu-
tation in the function body in the fine-grained uTasks in the
body_uTasks. The get_input_data() interface prepares
input data tensors and The compute() interface executes the
uTasks in body_uTasks sequentially.

(4) Recursion and uTask reference. Functions can be rep-
resented with uTasks. However, recursion is a special case in
functions that a function may call itself in the function body.
That is to say, a uTask may have itself in its body_uTasks.
To support recursion, COCKTAILER introduces uTask refer-
ence to reference a uTask definition. The uTask reference can
be considered as a function call to a uTask. The difference
between a reference and a uTask is that the reference is a
declaration for a uTask while a uTask defines the computation
in a function. When executing a reference, COCKTAILER will
find its uTask definition and execute this uTask.

The uTask abstraction in COCKTAILER is a general abstrac-
tion to represent control flow. We show how to represent loop,
branch, function and recursion with uTask as most of current
DNN models only contain these structures. More types of con-
trol flow can be represented by inheriting the NestedUTask.
uProgram The generated execution plan of the whole input
DNN program is represented by a uProgram. The uProgram
contains independent uTasks, each of which is the compute
logic scheduled to one processing unit of the unit_level
of the accelerator. The uTasks can be executed by compute,
and the total uTask count of the uProgram is reported by
get_utask_num.

The uTask abstraction enables COCKTAILER to represent
DNN programs with data flow operators and control flow in
a fine granularity for accelerators with massive parallelism.
This representation opens a new space for co-scheduling con-
trol flow and data flow.

3.2 uProgram Scheduling

The uTask representation for DNN programs opens a large
scheduling space for co-optimizing control flow and data flow
in a single space. Instead of the pre-defined schedule in exist-
ing frameworks that executes data flow on the accelerator side
while executes control flow on the CPU side, COCKTAILER
chooses to explore this scheduling space at compile-time. To
achieve this, COCKTAILER separates the scheduling policy
from its mechanism. On the mechanism side, COCKTAILER
provides scheduling interfaces with scheduling constraints.
On the policy side, COCKTAILER provides a traverse-based
scheduling policy. Note that the scheduling is generally de-
signed for operators of uTask representation and can be exe-
cuted automatically.

Scheduling interfaces. COCKTAILER provides three in-
terfaces ScheduleOperator, ScheduleControlFlow and
SetResource, to facilitate the scheduling process, as
shown in Figure 7. Specifically, ScheduleOperator sched-
ules an operator op, which can be either a data flow
uOperator or a solely-scheduled control flow operation,
into the target uProgram with unit_level of the acceler-
ator D. The config describes the current scheduling sta-
tus including the target uProgram and is initialized by
the SetResource. ScheduleOperator will set the target
uProgram to NULL if it fails to schedule the uOperator.
Similarly, ScheduleControlFlow schedules a control flow
operation whose body has been scheduled to the required
unit_level under the scheduling config, and returns NULL
when failing to schedule this control flow. To ensure correct-
ness, both schedule functions will add necessary barriers
to enforce the desired uTask dependency. Moreover, as con-
trol flow should control the uTasks in the body, a scheduling
constraint is shown below,.

Constraint 1 The unit_level of control flow should not
be lower than the unit_level of data flow in the body.

COCKTAILER also has a profiler that measures the exe-
cution time for a uProgram. The profiled information could
guide a policy on deciding whether to schedule a uProgram
to the unit_level of the accelerator.
Traverse-based bottom-up scheduling policy. Algorithm 1
describes a traverse-based scheduling policy to show how to
use the interfaces and the profiler to schedule control flow
and data flow in a single space to the accelerator side. This
policy takes a DNN program g represented as control flow
operations and uOperators in data flow and the accelerator
D as input and returns a list of scheduled uPrograms on this
accelerator. The policy also accepts a unit_level parameter
indicating the highest scheduled unit_level of the operators
inside the graph g or NULL if the operators inside the graph
are not scheduled yet, which is the initial case. If the input
program has multiple operators, COCKTAILER will put these
operators into a function operator before scheduling.

Initially, this policy schedules all the data flow uOperators
to uProgram (line 4 and line 21-27). The policy continues by
progressively trying to schedule more parts of the program
to the same uProgram if the profiler suggests this schedule
could reduce the overall execution time (line 5-27). Specifi-
cally, the policy will recursively traverse the program (line 7)
until it only contains a uOperator (line 3-4) and schedule
it to the uProgram via ScheduleProgram which achieves
this via ScheduleOperator. During the traverse, if all the
operations in the input program are scheduled to accelera-
tor’s units (line 21), the policy will try to schedule this pro-
gram (i.e., the control flow) to the uProgram (line 21-27) via
ScheduleProgram. ScheduleProgram implements schedul-
ing an input program g to a unit_level of the accelera-
tor D. Note that the input g is either a graph of operators

686 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Traverse-based Scheduling Policy
Data: g: DNN program represented with uOperator; D: accelerator
Result: uProgram

1 Function Schedule(g, D, unit_level = NULL):
2 ulevel=unit_level, ulevelmax=D.unit_levels.size()-1, uProgs=[];
3 if g ∈ D.Operators and ulevel is NULL then
4 ulevel = 0;
5 if ulevel is NULL then
6 for op ∈ g.TopoSort() do
7 gop, ulevelop = Schedule(op, D, NULL);
8 ulevel = max(ulevel, ulevelop);
9 uProgramp = uProgs[-1];

10 ulevelm = max(ulevelop, uProgramp.ulevel);
11 if ulevelm < ulevelmax then
12 gmerge = uProgramp.g + gop;
13 gmerge, ulevelmerge = Schedule(gmerge, D, ulevelm);
14 if ulevelmerge < ulevelmax then
15 uProgs[-1] = gmerge.uProgs[0];
16 ulevel = max(ulevel, ulevelmerge);
17 continue;
18 uProgs.append(gop.uProgs);
19 else
20 uProgs = g.uProgs
21 if ulevel < ulevelmax then
22 for ulevelcur ∈ range(ulevel, ulevelmax) do
23 uProgramcur = ScheduleProgram(g, D, ulevelcur);
24 if uProgramcur is not NULL then
25 if Latency(uProgramcur) < Latency(uProgs) then
26 uProgs = [uProgramcur];
27 ulevel = ulevelcur;

28 g.uProgs = uProgs;
29 return g, ulevel;
30 Function ScheduleProgram(g, D, unit_level):
31 // g is a graph of operators in uTask representation or a control

flow operation that the body has been scheduled
32 resource = GetResource(D, unit_level); // calculate resource
33 cfg = SetResource(D, unit_level, resource);
34 if g ∈ D.ControlFlow then
35 return ScheduleControlFlow(g, D, unit_level, cfg);
36 else
37 for op ∈ g.TopoSort() do
38 ScheduleOperator(op, D, unit_level, cfg);
39 return cfg.uProg;

in uTask representation (including uOperators and sched-
uled control flow) or a control flow whose body has been
scheduled as uProgram. Therefore, ScheduleProgram calls
SetResource to configure the scheduling and leverages the
config to schedule the program with ScheduleOperator
and ScheduleControlFlow. The unit_level is maintained
as Constraint 1 during scheduling.

Several optimizations can be employed to reduce the
scheduling time. For conciseness, these optimizations are not
explicitly shown in the pseudo code. For example, trials on
different unit_levels (line 22) can be performed in parallel.

Scheduling optimizations There are three optimization op-
portunities during the scheduling, depending on the inputs
and the DNN programs.

Function inline. To remove function call overhead, COCK-
TAILER converts a function control flow without recursion to

1

2

4 5

3

6 7

(a) A tree structure recursion

node 1
node 2 node 3

node 1

ti
m

el
in

e

8 parallel units

node 4 node 5 node 6 node 7
node 2 node 3

(b) Schedule

Figure 8: Parallel execution of recursive calls

a sequence of computation. It removes the function control
flow boundary and applies DNN optimizations to a larger
program scope.

Loop unroll. COCKTAILER unrolls the loop control flow
with some steps to explore more optimization opportunities.
For example, unrolling the loops in a multi-layer RNN model
can expose parallelism between RNN cells. Loop unrolling is
applied during scheduling and is evaluated to decide whether
to enable this unroll.

Recursion unroll. It is similar to loop unroll in that the
recursion is also able to be unrolled to explicitly expose the
recursion tree structure. COCKTAILER applies this optimiza-
tion to DNN programs to unroll the recursion structure sev-
eral times to expose more optimization opportunities. For
example, the unrolled recursion tree can naturally expose
parallelism between recursive calls, which can be leveraged
for concurrent execution. Figure 8 shows an example of re-
cursion unroll. By unrolling the recursive calls, computation
without dependencies (e.g., nodes 2 and 3 in Figure 8) can
be executed concurrently. Recursion unroll is applied during
scheduling. The scheduler will evaluate the unrolled results to
decide whether to enable this unroll and schedule the unrolled
body to different computation units.

These optimizations are in ScheduleControlFlow. The
scheduler will try to enable these optimizations and evaluate
the performance with some sample data to decide whether to
enable optimizations or not.

4 Implementation

COCKTAILER is implemented by about 10000 lines of code
including Python and C++ on top of PyTorch [36] and Ram-
mer [28]. COCKTAILER does not require any effort from
model developers, who can still work on a native PyTorch
program. COCKTAILER first exports the PyTorch program
to an ONNX graph with built-in loop and branch operators
and an extended invoke operator for representing recursion.
With the converted ONNX graph, COCKTAILER automati-
cally performs the scheduling of data flow and control flow,
and applies control-flow-related optimizations described in
§3. Then, COCKTAILER wraps the generated code as a cus-
tomized PyTorch operator and replaces the PyTorch program
with a call to this operator.

We implemented COCKTAILER for NVIDIA GPUs and
AMD GPUs because they are the most popular accelerators

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 687

1 // y = matmul(x, w); out = tanh(y);
2 __device__ void UProg<NumUTask=2>(float* x,

float* w => float* out | char* tmp,int id) {
3 if (id == 0) {
4 float *y = (float*)tmp;
5 MatmulUOp.compute(x, w => y, id=0);
6 MatmulUOp.compute(x, w => y, id=2);
7 Barrier(blocks={0,1});
8 TanhUOp.compute(y => out, id=0);
9 } else if (id == 1) {

10 float *y = (float*)tmp;
11 MatmulUOp.compute(x, w => y, id=1);
12 MatmulUOp.compute(x, w => y, id=3);
13 Barrier(blocks={0,1});
14 TanhUOp.compute(y => out, id=1);
15 }
16 }

Figure 9: Example of uTask

for DNNs. In the rest of this section, we describe the de-
tails about implementing COCKTAILER for NVIDIA CUDA
GPUs, and briefly describe our implementation on AMD
GPUs. COCKTAILER can be ported to other accelerators if
they align with the hardware abstraction described in §3 and
expose APIs to control the units (e.g., Graphcore IPUs).

4.1 COCKTAILER on NVIDIA CUDA GPUs
As described in §3, an NVIDIA GPU can be abstracted
as a 3-level hardware. COCKTAILER implements the
ScheduleOperator interface on top of Rammer [28],
AutoTVM [6], Ansor [53], Roller [57], and manually-
implemented kernels. Specifically, COCKTAILER first ob-
tains the source code of each dataflow operator on the given
unit_level by choosing from existing manual implementa-
tions of simple operators like element-wise ones or by tuning
the operator with AutoTVM, Ansor, or Roller. COCKTAILER
then leverages Rammer to covert the data flow operators’ ker-
nel source code to a uOperator with multiple uTasks. After
that, COCKTAILER schedules the program and generates the
kernel code for the control flow body.

4.1.1 Code Generation for Nested-uTask

Overall structure A list of uOperators inside a function will
be scheduled to a uProgram with multiple Nested-uTasks. It
will be converted to a function with pointers to the related
tensors. Specifically, we use (A => B | C) to represent a
function with tensor A as input, tensor B as output, and tensor
C as a buffer saving intermediate results. The function also
accepts a uTask_id parameter for indexing the uTasks in the
uProgram. Figure 9 provides an example Function-uProgram
with a matmul uOperator implemented by 4 uTasks and a
tanh uOperator implemented by 2 uTasks. This Function-
uProgram contains 2 uTasks, each of which contains 2 matmul
uTasks and 1 tanh uTasks in the body_uTasks with proper
barrier inserted (line 5-8, 11-14). The barrier can be im-
plemented by using CUDA Cooperative Groups [1] or ex-
tending a lock-free GPU synchronization technique [48].

1 for i in range(10):
2 inpi = inp[i]
3 xi = matmul(inpi, wx)
4 h = tanh(xi + h)

(a) A simplified RNN model

1 __device__ void LoopUProg(float* inp, float* wx
, float* h_in => float* h_out | float* tmp) {

2 float *inpi = tmp, *xi = tmp + 1024;
3 CopyUOp(h_in => h_out); Barrier();
4 for (int i = 0; i < 10; i++) {
5 GatherUOp(inp, &i => inpi); Barrier();
6 MatmulUOp(inpi, wx => xi); Barrier();
7 AddTanhUOp(xi, h_out => h_out); Barrier();
8 }
9 }

(b) Loop-uTask for the RNN model

Figure 10: Example of Loop-uTask

The Function-uProgram allocates the storage for Tensor y
(line 4,10) and wraps the code with function name and sig-
nature (line 2). The __device__ function qualifier is used so
that this function can be called by other uTasks. We will omit
the uTask_id in the following sections and only show the
generated code of one uTask inside the uOperator for brevity.
Block alignment One challenge of scheduling multiple
DNN operators into a single GPU kernel comes from the
variance of thread count inside each GPU block (blockDim).
The blockDim of the kernel for a uProgram have to be set
to the maximum blockDim of its uOperators, so that kernels
with a large number of GPU blocks (gridDim) and small
blockDim will execute inefficiently when they are scheduled
into the same kernel of an operator with large blockDim.
To address this problem, we re-implement the uOperators
with configurable blockDim if possible (e.g., element-wise
ones, reduction, and transpose). During schedule, COCK-
TAILER collects the fastest kernel of uOperators with pre-
defined blockDim (e.g., matmul and convolution), and config-
ure the blockDim of configurable uOperators to the maximum
blockDim of the collected uOperators. If the blockDim of the
collected uOperators varies greatly, COCKTAILER will lever-
age an extended Roller [57] to re-generate kernels with a fixed
blockDim.
Register pressure The generated long-running GPU kernel
may face register pressure. To alleviate this problem, COCK-
TAILER uses the profiling in §3.2 to detect performance drop
due to register overuse and stop enlarging the current kernel.
For control flow graph with no back edges, COCKTAILER can
also utilize the branch reclustering technique in §4.1.3 to both
schedule the control flow to the accelerator side and reduce
the kernel size.

4.1.2 Code Generation for Loop-uTask

Overall structure Figure 10(a) shows a simplified RNN
model. It is scheduled to a Loop-uProgram with several
Loop-uTasks. Each Loop-uTask in the uProgram contains
body_uTasks from three types of uOperators, i.e., gather,

688 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 if (cond):
2 tmp1 = matmul(x, w1)
3 y = sigmoid(tmp1)
4 z = conv(y, w2)
5 else:
6 z = x + b

(a) A DNN model with branch

1 __device__ void BranchUProg(bool* cond, float*
x, float* w1, float* w2, float* b, float*
y_in => float* y_out, float* z_out | float*
tmp) {

2 if (*cond) {
3 float *tmp1 = tmp;
4 MatmulUOp(x, w1 => tmp1); Barrier();
5 SigmoidUOp(tmp1 => y_out); Barrier();
6 ConvUOp(y_out, w2 => z_out);
7 } else {
8 AddUOp(x, b => z_out); // no Barrier
9 CopyUOp(y_in => y_out);

10 }
11 }

(b) Branch-uTask for the DNN model

Figure 11: Example of Branch-uTask

matmul, and fused add-tanh operations. This Loop-uProgram
takes three input tensors named inp, wx, h (h_in in Fig-
ure 10(b)), and produces an updated tensor h (h_out in Fig-
ure 10(b)). The generated code of each Loop-uTask contains
a loop (line 4) and the uTasks (line 5-7) separated by barriers
for synchronization across GPU blocks.
Memory management Different from existing DNN frame-
works that allocate tensors at runtime, COCKTAILER needs to
statically allocate tensor memory to execute the control flow
operations on GPUs. The variables in the loop body can be
divided into four categories: (1) constants (wx, inp); (2) inter-
mediate results (inpi, xi); (3) iteration count (i); (4) loop-
carried dependencies (h). All these variables are represented
by pointers to the corresponding pre-allocated tensors and can
be obtained from get_input_data. Specifically, the pointer
to the constants are the corresponding function inputs, the
intermediate results are allocated from a tmp buffer (line 2 in
Figure 10(b)), and the pointer to the iteration count is &i. The
pointers to the loop-carried dependencies are a little complex
because the variable exists in both input tensors and output
tensors of the Loop-uOperator. First, some CopyUOperators
are inserted to copy the input tensors (h_in) to the corre-
sponding output tensors (h_out). Then, the body_uTasks
is generated via only visiting the output tensors. Additional
CopyUOperators and dependencies between uOperators in
the loop body are added to ensure the correctness of the over-
lapped input and output tensors.

4.1.3 Code Generation for Branch-uTask

Overall structure Figure 11(a) contains a DNN model with
two branches, The then branch takes tensors x, w1, and w2 as
inputs and produces tensors y and z; The else branch takes
tensors x and b as inputs and produces tensor z. The input
of the generated Branch-uProgram is the union of inputs of

Branch-uProgram

matmulthen:

sigmoid

conv

addelse:

copy

Branch-uProgram

matmulthen:

Branch-uProgram

sigmoidthen:

addelse: copy

Branch-uProgram

convthen:

(a) Single kernel (b) Branch reclustering

Figure 12: Optimize Branch-uProgram by branch reclustering

the two branches as well as the cond tensor. The output is
the union of the outputs of the two branches. If an output
only exists in one branch, CopyUOperators will be added to
the other branch to move the corresponding old value to the
output tensor (line 9 of Figure 11(b)). The intermediate results
are saved in tensors allocated from the tmp buffer. As only
one branch may be executed in each run, the intermediate
results of the two branches can use the same memory space.
Branch reclustering Scheduling a whole ControlFlow-
uProgram to a single GPU kernel is not always the best choice
because different operations prefer different GPU occupancy
(number of threads concurrently executed on an SM). For
example, matmul uses a large amount of shared memory and
registers for saving the tiles, resulting in limited occupancy,
while element-wise operations prefer large occupancy to im-
prove memory bandwidth. COCKTAILER also tries to sched-
ule a Branch-uProgram to multiple Branch-uPrograms with
each Branch-uProgram containing uOperators with similar
preferred occupancy and keeps the execution of branch con-
dition on the GPU. The example model in Figure 12 con-
tains limited-occupancy-uOperators matmul and conv (in
green) and large-occupancy-uOperators sigmoid, add, and
copy (in blue). These uOperators are scheduled into three
Branch-uPrograms for limited occupancy, large occupancy,
and limited occupancy, respectively. The two branches are co-
scheduled so each GPU kernel can contain uOperators from
both branches. This branch reclustering technique reduces the
kernel size, thus can also alleviate register pressure of large
GPU kernels.

4.1.4 Code Generation for uTask Reference

Overall structure uTask reference is a special case that
calls a uTask defined in another uProgram. It is designed
for recursions where a function may call its callers like Fig-
ure 13(a). To support recursion, the function declarations of all
uPrograms whose uTasks are referenced by uTask references
are generated at the start of the code (line 1 of Figure 13(b)).
Then, all uPrograms generate their function definitions. The
maximum stack depth of our recursion implementation cannot
be increased at runtime, so users need to manually set a limit
to the stack depth, or COCKTAILER will use all free memory
to save the intermediate results in the call stack. The base

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 689

1 def Recursion(l, r, is_leaf, inp, w, root):
2 cond = is_leaf[root]
3 if cond:
4 output = inp[root]
5 else:
6 a = Recursion(l, r, is_leaf, inp, w, l[root])
7 b = Recursion(l, r, is_leaf, inp, w, r[root])
8 c = a + b
9 output = matmul(c, w)

10 return output

(a) A recursive model

1 __device__ void RecursionUProg(float* l, float*
r, bool* is_leaf, float* inp, float* w, int*
root => float* output | char* tmp);

2 __device__ void BranchUProg(float* cond, float*
l, float* r, bool* is_leaf, float* inp,
float* w, int* root => float* output | char*
tmp) {

3 if (*cond) {
4 GatherUOp(inp, root => output);
5 } else {
6 float *a = tmp, *b = tmp+256, *c = tmp+512;
7 RecursionUProg(l, r, is_leaf, inp, w, l + (*

root) => a | tmp + 768); Barrier();
8 RecursionUProg(l, r, is_leaf, inp, w, r + (*

root) => b | tmp + 768); Barrier();
9 AddUOp(a, b => c); Barrier();

10 MatmulUOp(c, w => output);
11 }
12 }
13 __device__ void RecursionUProg(float* l, float*

r, bool* is_leaf, float* inp, float* w, int*
root => float* output | char* tmp) {

14 float *cond = tmp;
15 GatherUOp(is_leaf, root => cond); Barrier();
16 BranchUProg(cond, l, r, is_leaf, inp, w, root

=> output | tmp + 256);
17 }

(b) The generated code

Figure 13: Example of recursion with uTask reference

case check is kept in the function body as a branch operation.
Simulation of GPU stack Though NVIDIA GPUs have the
built-in support of recursion, the stack is slow and with very
limited supported depth. The reason is that GPU needs to save
the registers of all threads during function calls. However, in
a DNN program, we only need to save the pointers to tensors
and the program counter of the current stack frame before
performing a function call. Moreover, the same set of tensor
pointers are shared by multiple uTasks, and only a single
copy needs to be saved. Therefore, we have the opportunity
to reduce the size of saved information to both increase the
stack depth and reduce the time for saving the stack frame.

To achieve this, COCKTAILER implements a stack in global
memory to simulate the function call behavior. As it is dan-
gerous to directly update the program counter, COCKTAILER
choose to inline all uPrograms to a single function and use
“goto” together with “labels” inserted into the inlined func-
tion to simulate the update of the program counter. The labels
are placed at the start of the function and at the end of each
function call inside the function. Instead of maintaining pro-
gram counters, the stack saves the label of each stack frame.
Each stack frame only consumes tens of bytes of memory, so
COCKTAILER can also save the stack in GPU shared memory

Model Input shape Description
LSTM 64, BS, 256 hidden 256, length 64, layer 10

NASRNN 1000, BS, 256 hidden 256, length 1000, layer 1
Attention BS, 12, 64, 64 head 12, hidden 768, length 64

Seq2seq BS, 256 hidden 256, embed 3797×256, max length: 50
dataset: tatoeba-eng-fra

BlockDrop BS, 3, 32, 32 drop layers from ResNet-32, dataset: CIFAR-10
SkipNet BS, 3, 224, 224 drop layers from ResNet-101, dataset: ImageNet

RAE 127, 512 hidden 512, dataset: Stanford Sentiment Treebank

Table 1: Model configurations. BS refers to “batch size”.

to avoid the memory fence and inter-block barrier for main-
taining a synchronized stack across different uTasks when
possible.

4.2 COCKTAILER on AMD ROCm GPUs
AMD ROCm GPUs provide a HIP programming model [2],
which is similar to CUDA and is compatible with most CUDA
statements. Besides, AMD provides a hipify tool to convert a
CUDA kernel to a HIP kernel. COCKTAILER first generates a
CUDA kernel and then leverages the hipify tool to convert it
to the HIP version. Some uOperators are re-implemented due
to the difference between CUDA and ROCm architectures.

5 Evaluation

Platform Our evaluation is on two accelerators: (1) NVIDIA
Tesla V100-PCIE-32GB GPU with 2 Intel Xeon 5218 CPUs.
The compiler is CUDA 11.5. (2) AMD Instinct MI100 GPU
with 2 Intel Xeon 6338 CPUs. The compiler is ROCM 4.3.
Baselines We compare COCKTAILER with representative
state-of-the-art deep learning frameworks including the most
popular imperative framework PyTorch [36] v1.11 for CUDA
and v1.10 for ROCM with TorchScript [3] enabled, the repre-
sentative DAG-based framework TensorFlow v1.15 [4], and
JAX v0.3.20 [11] with just-in-time compilation (JIT) enabled.
ROCM 5.3 is used in JAX due to compatibility problems.
Note that the latest TensorFlow 2 is redesigned as an impera-
tive framework like PyTorch and JAX, therefore we choose
TensorFlow v1.15 to evaluate the DAG-based framework. We
also create a baseline that accelerates each basic block of the
DNN program with Rammer [28] and relies on PyTorch for
executing the control flow operations (COCKTAILERBASE).
COCKTAILERBASE uses the same kernel implementation of
each operator and the same compilation passes excluding the
control-flow-related ones as COCKTAILER.
Benchmarks Our evaluation includes a set of representative
DNN models that covers typical architectures like CNN, RNN,
and transformers, different application domains including CV,
NLP, and speech, and different types of control flow opera-
tions including loops, branches, and recursions. LSTM [16]
is a representative RNN model for NLP and speech, and has
been manually optimized by both deep learning frameworks
and libraries. We use the built-in LSTM operators when pos-
sible, which are linked to the manually optimized LSTM im-

690 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

20

tim
e

(m
s)

1.75x

LSTM
0

200

2.10x

NASRNN
0

2
2.82x

Attention
0

1

1.61x

Seq2seq
0

2

1.84x

BlockDrop
0

25
1.41x

SkipNet
0

2

8.22x

N
ot

 su
pp

or
t

RAE0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

TorchScript TensorFlow JAX+JIT CocktailerBase Cocktailer

(a) BS=1

0

20

tim
e

(m
s)

1.93x

LSTM
0

200

1.58x

NASRNN
0

10

1.01x

Attention
0

5

1.29x

Seq2seq
0

2
1.13x

BlockDrop0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

(b) BS=64. RAE and SkipNet cannot be batched for execution.
Figure 14: End-to-end DNN inference on NVIDIA V100 GPU

plementation in vendor libraries like cuDNN. NASRNN [58]
is another RNN-based model created by network architecture
search (NAS) that has not been manually optimized yet. Atten-
tion [43] is a widely used architecture in NLP and CV. We use
an auto-regressive attention mechanism to continue sentences.
The above three models contain loops with fixed iteration
counts. Seq2seq [40] is a sequence-generation model that
contains a while loop for continuously generating new tokens
until an end-of-sequence (EOS) token is emitted or the maxi-
mum sequence length limit is reached. BlockDrop [47] and
SkipNet [46] are two CNN-based CV models with branches
for skipping some layers. Recursive Autoencoder (RAE) [39]
is a well-known recursive model for NLP. The configuration
of these models is listed in Table 1.

We set the batch size (BS) of the experiments to 1 and 64 to
match the requirements for online inference and offline infer-
ence. The time is measured by averaging 100 tests after 100
warm-up runs. For models using real datasets, we randomly
sample 100×BS cases from the datasets.

5.1 End-to-end Evaluation on NVIDIA GPU
Figure 14 shows the inference performance of COCKTAILER
by comparing with TorchScript, TensorFlow, and JAX with
JIT enabled. All three frameworks support control flow op-
erations by executing them on CPU. Overall, COCKTAILER
outperforms the best baseline in each model by 1.85× in
geometric mean (up to 8.22×). Specifically, COCKTAILER
outperforms TorchScript by 3.98× on average (up to 9.35×),
TensorFlow by 18.45× on average (up to 196.85×), and JAX
by 3.05× on average (up to 327.62×). The time for compiling
each model (except kernel tuning by AutoTVM and Ansor)
is several seconds to minutes.
Models with loops LSTM has been manually optimized by
many frameworks and vendor libraries, and we use the fastest
built-in implementation in the baselines. The core control
flow operations of LSTM are two loops iterating over the
input sequence and the layers respectively. TensorFlow and
TorchScript use the manually-optimized LSTM in cuDNN
library, while JAX loops over manually-optimized LSTM
cell implementation. According to profiling, TensorFlow uses

the persistent-RNN [8] to optimize the loop over the input
sequence, but it does not accelerate the loop iterating over
the layers. TensorFlow with BS=64, TorchScript, and JAX
only optimizes the operators in one LSTM cell, and does
not perform joint optimizations on LSTM cells in different
iterations. Different from these systems, COCKTAILER fully
unrolls the static loop over layers and unrolls some steps of the
loop over inputs, so that it can expose a large set of operators
to the data flow optimization passes and benefit from the inter-
operator schedule of Rammer. COCKTAILER outperforms all
framework with handly-optimized implementations by 1.75×
when BS=1 and 1.93× when BS=64.

The computation of NASRNN and Attention has not been
manually optimized. These frameworks optimize the basic
block using only passes for compiling static data flow, and
execute the loop on CPU. COCKTAILER performs some loop
optimizations and schedules the loop to thread block level.
With such optimizations, COCKTAILER achieves 2.10× on
NASRNN model and 2.82× speedup on Attention model over
the fastest baseline when BS=1. However, COCKTAILER only
achieves 1.01× speedup over COCKTAILERBASE on Atten-
tion BS=64 because control flow only take a small portion of
execution time when the body computation is large enough.

Seq2seq is implemented with a while loop, and existing
frameworks need to copy the decision from the accelerator
to the CPU to decide whether to continue the loop. By exe-
cuting the loop on GPU, COCKTAILER can both use fewer
kernels and avoid such synchronization. The speedup over the
fastest baseline is 1.61× and 1.29× when BS=1 and BS=64,
respectively.

Models with branches BlockDrop and SkipNet drop some
layers from ResNet with decisions generated at runtime. The
baselines need to copy the decision from GPU to CPU to
decide whether to launch the next layer. COCKTAILER avoids
such synchronized copy by scheduling the branch to block
level for BlockDrop BS=1, and using branch reclustering for
BlockDrop BS=64 and SkipNet BS=1. COCKTAILER acceler-
ates BlockDrop by 1.84× and 1.13× over the best baseline
when BS=1 and BS=64, respectively, and accelerates SkipNet
by 1.41×.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 691

0 20 40
time (ms)

TorchScript

TensorFlow

JAX+JIT

Cocktailer

(a) LSTM

0 50
time (ms)

(b) NASRNN

0 2 4
time (ms)

TorchScript

TensorFlow

JAX+JIT

Cocktailer

(c) Attention

0 1 2
time (ms)

(d) Seq2seq

traced graph with control flow kernel time

Figure 15: Control flow overhead of models with loops.

Model with recursion RAE is a recursive model. Tensor-
Flow does not support recursion. PyTorch and JAX can only
run this model in Python, resulting in poor performance.
COCKTAILER schedules the recursion to block level with
parallel execution and executes the recursive calls efficiently
with the simulated stack, resulting in 9.35×, 327.62×, and
8.22× speedup over PyTorch, JAX, and COCKTAILERBASE
respectively.
Discussion Whether a model is control flow bound or data
flow bound depends on the ratio of control flow computa-
tion and data flow computation. According to the evaluation
among different models in Figure 14, it is clear that COCK-
TAILER can achieve higher speedup when model execution
has more control flow computation, e.g., NASRNN, RAE.
When the data flow occupies the most computation (e.g.,
Attention in BS=64), COCKTAILER can achieve similar per-
formance with the fastest baseline.

5.2 Control Flow Overhead Analysis

In this section, we evaluate the performance degradation
caused by control flow boundary in different systems when
BS=1. The results are shown in Figure 15, 16, and 18. For
each model, we choose an input with a typical execution trace
of the dataset. We compare the real scenario that executes con-
trol flow at runtime to executing the traced computation graph
with no control flow to evaluate the overhead. The traced
graph baseline of COCKTAILER is compiled by Rammer with
the same kernel implementations and compilation passes for
data flow as COCKTAILER.
Models with loops Figure 15 shows the control flow over-
head of models with loops. The input data of LSTM, NAS-
RNN, and Attention is a sequence with length provided in Ta-
ble 1, and the input to Seq2seq generates a 10-token-sequence
which is near to the average sequence length of the dataset.

For LSTM model, Rammer can explore the parallelism of

0 2 4
time (ms)

TorchScript

TensorFlow

JAX+JIT

Cocktailer

(a) BlockDrop

0 20 40
time (ms)

(b) SkipNet

no skip traced graph with control flow kernel time

Figure 16: Control flow overhead of models with branches.
"No skip" refers to running all layers of the ResNet model.

cells in different steps if all steps are unrolled. The dynamic
unrolling of COCKTAILER provides similar performance with
Rammer, but can support dynamic step count. Other systems
do not explore such parallelism and are slower than COCK-
TAILER. To expose the loop of TorchScript and TensorFlow,
we do not use their cuDNN LSTM here.

For NASRNN, Attention, and Seq2seq models, COCK-
TAILER schedules the loop to thread block level with only one
GPU kernel, and is faster than Rammer which uses a larger
number of kernels. A similar phenomenon also appeared in
the NASRNN model with JAX. JAX generates thousands of
different kernels for execution the unrolled loop and is slower
than looping over the NASRNN cell with 3 kernels for 1000
times. This indicates that an efficient implementation of con-
trol flow can sometimes be faster than running the unrolled
data flow.

For Seq2seq model, TorchScript, TensorFlow, and JAX
need to copy the decision back to CPU to decide whether
to execute the next iteration of the while loop, causing a syn-
chronization between CPU and GPU. Therefore, when control
flow is used, the increase of execution time is larger than that
of kernel time. COCKTAILER does not have such a problem
because all control flow operations are executed on GPU.
Models with branches Figure 16 shows the control flow
overhead of models with branches. The two models skip some
layers from a ResNet model, and we add a “no skip” which is a
normal ResNet without skipping layers. The ratios of executed
layers are 7/15 for BlockDrop and 23/33 for SkipNet, which
are similar to the average ratio of the models respectively.

Due to the synchronization between CPU and GPU, the
control flow operations of the baselines increase the execution
time by at least 34% over the traced version for BlockDrop,
while COCKTAILER only increases the execution time by 11%.
Therefore, though more than half of the layers are skipped, the
performance improvement of layer skipping compared with
the original ResNet model is only at most 1.44× in the base-
lines, while COCKTAILER achieves 1.79× speedup. In Skip-
Net, the network for making the skip decision is heavier and
the ratio of executed layers is larger, so the traced graph may
take longer execution time than the original ResNet model.
The slow execution of control flow makes the performance of

692 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0% 25% 50% 75% 100%
executed ratio

0.5

1.0

tim
e

(m
s)

(a) BlockDrop

0% 25% 50% 75% 100%
executed ratio

5

10

15

(b) SkipNet0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

JAX+JIT (no skip)
Cocktailer (no skip)

JAX+JIT (traced graph)
Cocktailer (traced graph)

JAX+JIT
Cocktailer

Figure 17: Different ratio of executed layers

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (ms)

PyTorch

JAX

Cocktailer

traced graph with control flow kernel time

Figure 18: Control flow overhead of RAE with recursion.

this model even worse in baselines, while COCKTAILER can
still provide reasonable performance.

Figure 17 shows the performance of BlockDrop and Skip-
Net at different ratios of executed layers. The results of JAX,
the fastest baseline of the two models are also included. When
the executed ratio is 0, the model executes all control flow
operations but runs no layers, and COCKTAILER achieves
3.00× and 2.68× speedup over JAX on BlockDrop and Skip-
Net, respectively. This proves the low control flow overhead
of COCKTAILER. In SkipNet, if the model is executed with
JAX, the layer-skipping can improve the performance only
when the ratio of executed layers is lower than 20%, while if
executed with COCKTAILER, this ratio becomes about 65%.

Model with recursion Figure 18 shows the control flow
overhead of the recursive RAE model. The input is a 65-node
tree from the Stanford Sentiment Treebank dataset. PyTorch
and JAX can only execute the recursion in Python and the
time is much longer than executing the traced graph. Rammer
processes nodes without dependencies in parallel with a static
schedule that only works for this tree, while COCKTAILER
executes the model by control flow operations on the GPU
side and only increases the time by 11%.

Discussion Compared with the traced graph baseline which
removes all the control flow operations in the models and can
be considered as the optimal status, COCKTAILER achieves
similar performance. Besides, the overall latency of COCK-
TAILER is similar to the kernel time, which indicates that
COCKTAILER can minimize the overheads introduced by con-
trol flow. Furthermore, the evaluations on BlockDrop and
SkipNet show that COCKTAILER also enables scenarios like
efficient computation by achieving real speedup. We hope
COCKTAILER can provide more flexibility for algorithm re-
searchers to design DNN architectures with control flow.

0

20

LSTM
0

50

NASRNN

0

2

Attention
0

1

Seq2seq0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

tim
e

(m
s)

CocktailerBase schedule optimize & schedule

(a) Models with loop

0

1

BlockDrop
0

10

SkipNet0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

tim
e

(m
s)

CocktailerBase schedule optimize & schedule

(b) Models with branch

0

2

RAE0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

tim
e

(m
s) CocktailerBase
serial schedule
stack in global memory
stack in shared memory
parallel schedule

(c) Model with recursion
Figure 19: Breakdown of models with BS=1

5.3 Breakdown of Optimizations

Figure 19(a) provides the breakdown of optimizations applied
on models with loops. On average, scheduling the loop to
block level provides 4.95× speedup over COCKTAILERBASE
that executes the loop in PyTorch runtime. And applying the
optimizations in §3.2, especially the dynamic loop unrolling
further improves the performance of LSTM by 2.22× and
Attention by 1.17×. In LSTM, the loop is re-scheduled to
kernel level after loop unrolling.

Figure 19(b) provides the breakdown for models with
branches. The branches of the two models are executed on
GPU, with branch reclustering used in SkipNet. The schedul-
ing provides 3.01× and 1.38× speedup over COCKTAILER-
BASE on BlockDrop and SkipNet, and the optimizations fur-
ther accelerate the two models by 1.21× and 1.02×.

Figure 19(c) shows the performance of the RAE model.
Executing the recursion on GPU provides 3.54× speedup over
COCKTAILERBASE. The simulation of stack using global
memory and shared memory are 1.45× and 1.99× faster than
using the built-in GPU stack. And the parallel scheduling of
uPrograms further improves the performance by 1.17×.

5.4 End-to-end Evaluation on AMD GPU

Figure 20 compares TorchScript, TensorFlow, JAX with JIT
enabled and COCKTAILER on AMD MI100 GPU with BS=1.
COCKTAILER outperforms the three frameworks on all bench-
marks by 2.97× over TorchScript on average (up to 5.86×),
21.28× over TensorFlow on average (up to 112.34×), and
3.22× over JAX on average (up to 272.63×).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 693

0

25

tim
e

(m
s)

1.73x

LSTM
0

200

1.27x

NASRNN
0.0

2.5
1.67x

Attention
0

2

1.28x

Seq2seq
0

2
1.61x

BlockDrop
0

20
1.41x

SkipNet
0.0

2.5

4.57x

N
ot

 su
pp

or
t

RAE0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

TorchScript TensorFlow JAX+JIT CocktailerBase Cocktailer

Figure 20: End-to-end DNN inference on AMD MI100 GPU with BS=1

6 Related Work

Supporting control flow in deep learning can be divided into
two categories. The first one, represented by TensorFlow
1.x [4] and TorchScript [36], executes control flow operations
in the framework runtime on CPU. Control flow is imple-
mented as special operators (NextIteration for loops [52],
Switch for branches [52], and InvokeOp for recursions [19])
or instructions in the runtime. The second one, represented
by Chainer [42], PyTorch [36], and JAX [11], leverages the
runtime of general-purpose language like Python to support
the control flow operations. The control flow operations are
expressed with Python statements and executed by the Python
interpreter. AutoGraph [31], Janus [18], and Terra [22] show
that the control flow operations expressed by general-purpose
languages can sometimes be converted to the control flow
operators in the framework runtime. Despite different ways of
supporting control flow, the control flow operations in these
works can only be executed by CPU.

Some special forms of control flow have been deeply opti-
mized. VersaPipe [55] optimized pipelines for general GPU
programs. Cortex [10] provides interfaces to describe recur-
sion with data patterns (i.e., the recursion tree structure). It
assumes that the jump direction of all control flow only de-
pends on the input recursion tree structure, so it does not apply
to control flow depending on dynamically computed data, e.g.,
the while loop with unknown iteration count in Seq2seq [40],
and the branches whose direction is decided at runtime in
BlockDrop [47] and SkipNet [46]. COCKTAILER does not
assume the availability of such tree structures and works on
these models.

Past works on batching (e.g., DyNet [33], Cavs [49],
Tensorflow Fold [27], BatchMaker [12], Program-counter-
autobatching [37], and ORCA [51]) enable the parallelization
in different control flow operations by introducing a sched-
uler to batch the ready-to-execute operators, which is another
applicable approach and is complementary to COCKTAILER.
Specifically, COCKTAILER can compile subgraphs of a model,
and then batching can be applied to these subgraphs. Applying
batching on the more coarse-grained subgraph granularity can
also reduce the scheduling cost in the batching scheduling.

There are many deep learning compilers for optimizing a
computation graph without control flow, including TVM [6],
TASO [20], Rammer [28], DNNFusion [35], PET [44], and
AStitch [56]. These optimizations are compatible with COCK-
TAILER. COCKTAILER even enlarges their optimization scope
because the boundary of control flow has been reduced. Com-

pilation optimizations like function inline [5], loop unroll [9]
have been introduced in general-purpose language compilers
on CPU programs and have been implemented in COCK-
TAILER. COCKTAILER further introduces the new uTask ab-
straction to represent both data flow and control flow op-
erations, which aligns with the parallelism of hardware ac-
celerators, enabling analyzing and optimizing both data flow
and control flow computation over heterogeneous accelerators
(i.e., GPU). To scale DNN models on distributed architectures,
frameworks and compilers like Tofu [45], FlexFlow [21],
GSPMD [50], PipeDream [32], Tutel [17], FasterMOE [14],
FlexMoE [34], BaGuaLu [29], Alpa [54] and SuperScaler [25]
parallelize the execution of deep learning models across multi-
ple hardware devices, but only focus on models with static ar-
chitectures or specific types of dynamic models (e.g., Mixture-
of-Experts [30]). COCKTAILER exposes the parallelism of
control flow operations, which can be leveraged to support
dynamic models over distributed devices.

7 Conclusion

DNN frameworks and compilers suffer from performance
issues when supporting sophisticated dynamic DNN mod-
els. The parallelism mismatch between control flow and data
flow results in separate execution of DNNs on the CPU and
accelerator, causing not only overheads but also missed opti-
mization opportunities. COCKTAILER supports sophisticated
DNN models by co-scheduling the execution of control flow
and data flow that (1) provides the fine-grained uTask ab-
straction for control flow and data flow in DNN programs
to open a holistic scheduling space on hardware accelera-
tors; (2) designs the scheduling mechanism and a heuristic
policy to exploit this scheduling space; (3) provides control
flow optimizations in both scheduling and code generation.
Evaluations demonstrate that COCKTAILER significantly out-
performs state-of-the-arts on sophisticated DNN models. By
enabling the co-optimizing of control flow and data flow in a
single space, COCKTAILER positions itself as a new enhance-
ment to the deep learning infrastructure.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Prof.
Wenjun Hu, for their extensive suggestions. This work is par-
tially supported by National Key R&D Program of China
under Grant 2021ZD0110104, National Natural Science Foun-
dation of China (62225206).

694 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Cooperative Groups. https://devblogs.nvidia.
com/cooperative-groups/.

[2] HIP Programming Guide. https://rocmdocs.amd.
com/en/latest/Programming_Guides/HIP-GUIDE.
html.

[3] TorchScript. https://pytorch.org/docs/stable/
jit.html.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, GA, 2016. USENIX Associ-
ation.

[5] Pohua P Chang and W-W Hwu. Inline function ex-
pansion for compiling c programs. In Proceedings of
the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pages 246–257,
1989.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association.

[7] An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan,
Wei Wei, and Min Sun. Instanas: Instance-aware neu-
ral architecture search. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages
3577–3584, 2020.

[8] Greg Diamos, Shubho Sengupta, Bryan Catanzaro,
Adam Coates Mike Chrzanowski, Erich Elsen, Jesse
Engel, Awni Y. Hannun, and Sanjeev Satheesh. Per-
sistent rnns: Stashing recurrent weights on-chip. In In
Proceedings of the 33nd International Conference on
Machine Learning, (ICML 16), pages 2024–2033, 2016.

[9] Jack J Dongarra and A_R Hinds. Unrolling loops in
fortran. Software: Practice and Experience, 9(3):219–
226, 1979.

[10] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd
Mowry. Cortex: A compiler for recursive deep learning
models. Proceedings of Machine Learning and Systems,
3:38–54, 2021.

[11] Roy Frostig, Matthew James Johnson, and Chris Leary.
Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 2018.

[12] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
latency rnn inference with cellular batching. In Proceed-
ings of the Thirteenth EuroSys Conference, pages 1–15,
2018.

[13] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(11):7436–7456, 2021.

[14] Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang,
Fuwen Luo, Shangfeng Shi, and Qin Li. Fastermoe:
modeling and optimizing training of large-scale dy-
namic pre-trained models. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 120–134, 2022.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural Comput., 9(8):1735–1780,
November 1997.

[17] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose,
Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts
at scale. arXiv preprint arXiv:2206.03382, 2022.

[18] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong
Jeong, Dong-Jin Shin, and Byung-Gon Chun. JANUS:
Fast and flexible deep learning via symbolic graph exe-
cution of imperative programs. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 453–468, 2019.

[19] Eunji Jeong, Joo Seong Jeong, Soojeong Kim, Gyeong-
In Yu, and Byung-Gon Chun. Improving the expres-
siveness of deep learning frameworks with recursion.
In Proceedings of the Thirteenth EuroSys Conference,
pages 1–13, 2018.

[20] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Opti-
mizing deep learning computation with automatic gen-
eration of graph substitutions. In Proceedings of the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 695

https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/cooperative-groups/
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html

27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 47–62, New York, NY, USA, 2019.
Association for Computing Machinery.

[21] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
Proceedings of Machine Learning and Systems, 1:1–13,
2019.

[22] Taebum Kim, Eunji Jeong, Geon-Woo Kim, Yunmo
Koo, Sehoon Kim, Gyeong-In Yu, and Byung-Gon Chun.
Terra: Imperative-symbolic co-execution of imperative
deep learning programs. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[24] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xi-
angyu Zhang, Xingang Wang, and Jian Sun. Learning
dynamic routing for semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8553–8562, 2020.

[25] Zhiqi Lin, Youshan Miao, Guodong Liu, Xiaoxiang
Shi, Quanlu Zhang, Fan Yang, Saeed Maleki, Yi Zhu,
Xu Cao, Cheng Li, et al. SuperScaler: Supporting flexi-
ble dnn parallelization via a unified abstraction. arXiv
preprint arXiv:2301.08984, 2023.

[26] Lanlan Liu and Jia Deng. Dynamic deep neural net-
works: Optimizing accuracy-efficiency trade-offs by se-
lective execution. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

[27] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins,
and Peter Norvig. Deep learning with dynamic compu-
tation graphs. arXiv preprint arXiv:1702.02181, 2017.

[28] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881–897, 2020.

[29] Zixuan Ma, Jiaao He, Jiezhong Qiu, Huanqi Cao, Yuan-
wei Wang, Zhenbo Sun, Liyan Zheng, Haojie Wang,
Shizhi Tang, Tianyu Zheng, et al. Bagualu: targeting
brain scale pretrained models with over 37 million cores.
In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 192–204, 2022.

[30] Saeed Masoudnia and Reza Ebrahimpour. Mixture of
experts: a literature survey. The Artificial Intelligence
Review, 42(2):275, 2014.

[31] Dan Moldovan, James Decker, Fei Wang, Andrew John-
son, Brian Lee, Zachary Nado, D Sculley, Tiark Rompf,
and Alexander B Wiltschko. Autograph: Imperative-
style coding with graph-based performance. volume 1,
pages 389–405, 2019.

[32] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. PipeDream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[33] Graham Neubig, Yoav Goldberg, and Chris Dyer. On-
the-fly operation batching in dynamic computation
graphs. Advances in Neural Information Processing
Systems, 30, 2017.

[34] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang,
Jilong Xue, Lingxiao Ma, Gang Cao, and Bin Cui. Flex-
MoE: Scaling large-scale sparse pre-trained model train-
ing via dynamic device placement. arXiv preprint
arXiv:2304.03946, 2023.

[35] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. DNNFusion: accelerating deep neural
networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Im-
plementation, pages 883–898, 2021.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing
systems, 32:8026–8037, 2019.

[37] Alexey Radul, Brian Patton, Dougal Maclaurin, Matthew
Hoffman, and Rif A Saurous. Automatically batch-
ing control-intensive programs for modern accelerators.
Proceedings of Machine Learning and Systems, 2:390–
399, 2020.

[38] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[39] Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of the 2011 confer-
ence on empirical methods in natural language process-
ing, pages 151–161, 2011.

696 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence
to sequence learning with neural networks. In Proceed-
ings of the 27th International Conference on Neural
Information Processing Systems, NIPS’14, pages 3104–
3112, Cambridge, MA, USA, 2014. MIT Press.

[41] Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. Improved semantic representations from tree-
structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[42] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clay-
ton. Chainer: a next-generation open source frame-
work for deep learning. In Proceedings of workshop on
machine learning systems (LearningSys) in the twenty-
ninth annual conference on neural information process-
ing systems (NIPS), volume 5, pages 1–6, 2015.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[44] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 37–54, 2021.

[45] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–17, 2019.

[46] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing
in convolutional networks. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
409–424, 2018.

[47] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio
Feris. Blockdrop: Dynamic inference paths in residual
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8817–
8826, 2018.

[48] Shucai Xiao and Wu-chun Feng. Inter-block gpu
communication via fast barrier synchronization. In
2010 IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS), pages 1–12. IEEE, 2010.

[49] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai,
Jin Kyu Kim, Zhijie Deng, Qirong Ho, Guangwen Yang,
and Eric P Xing. Cavs: An efficient runtime system

for dynamic neural networks. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
937–950, 2018.

[50] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
GSPMD: general and scalable parallelization for ml
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

[51] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-Based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 521–538,
2022.

[52] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo,
Mike Burrows, Andy Davis, Jeff Dean, Sanjay Ghe-
mawat, Tim Harley, Peter Hawkins, Michael Isard, Man-
junath Kudlur, Rajat Monga, Derek Murray, and Xiao-
qiang Zheng. Dynamic control flow in large-scale ma-
chine learning. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[53] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 863–879, 2020.

[54] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:
Automating inter-and Intra-Operator parallelism for dis-
tributed deep learning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 559–578, 2022.

[55] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen,
Youngmin Yi, and Wenguang Chen. Versapipe: a versa-
tile programming framework for pipelined computing
on gpu. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 587–
599. IEEE, 2017.

[56] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, et al. Astitch: enabling a
new multi-dimensional optimization space for memory-
intensive ml training and inference on modern simt
architectures. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 697

gramming Languages and Operating Systems, pages
359–373, 2022.

[57] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, et al. ROLLER: Fast and ef-
ficient tensor compilation for deep learning. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 233–248, 2022.

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8697–8710, 2018.

698 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
This artifact helps to reproduce the results of OSDI’23 paper:
COCKTAILER: Analyzing and Optimizing Dynamic Control
Flow in Deep Learning.

Usage
The input of COCKTAILER is a PyTorch program. COCK-
TAILER exports the PyTorch program to ONNX format with
ONNX loop and branch operators as well as an extended in-
voke operator for recursion. Then COCKTAILER generates
the code with optimizations described in the paper and wraps
the code to a PyTorch custom operator for execution.

Scope
The artifact can be used to reproduce the experiments of the
paper, including the end-to-end comparison (Figure 14 and
20), control flow overhead analysis (Figure 2, 15, 16, and 18),
performance of different ratio of executed layers (Figure 17),
and breakdown of optimizations (Figure 19).

Contents
This artifact includes the code of COCKTAILER, input data
of experiments, a guide for setting up the environment of the
experiments, and scripts for running the experiments. It helps
to reproduce the following Figures:

• Figure 2: Control flow overhead in JAX
• Figure 14: End-to-end DNN inference on NVIDIA V100

GPU
• Figure 15: Control flow overhead of models with loops
• Figure 16: Control flow overhead of models with

branches
• Figure 17: Different ratio of executed layers
• Figure 18: Control flow overhead of RAE with recursion
• Figure 19: Breakdown of models with BS=1
• Figure 20: End-to-end DNN inference on AMD MI100

GPU with BS=1

Hosting
The main contents of COCKTAILER are hosted
at https://github.com/microsoft/nnfusion/
tree/cocktailer_artifact/artifacts, branch
cocktailer_artifact.

Requirements
This artifact needs two machines:

• a machine with 8 NVIDIA V100 GPUs, with NVIDIA
driver properly installed. Users can either follow the
installation guide to setup the software environment or
install the NVIDIA Container Toolkit to reproduce the
results within the docker provided by the artifact.

• a machine with 1 AMD MI100 GPU, with ROCm driver
and docker properly installed. Users can then reproduce
the results within the dockers provided by the artifact.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 699

https://github.com/microsoft/nnfusion/tree/cocktailer_artifact/artifacts
https://github.com/microsoft/nnfusion/tree/cocktailer_artifact/artifacts

WELDER: Scheduling Deep Learning Memory Access via Tile-graph

Yining Shi†⋄∗ Zhi Yang† Jilong Xue⋄ Lingxiao Ma⋄ Yuqing Xia⋄

Ziming Miao⋄ Yuxiao Guo⋄ Fan Yang⋄ Lidong Zhou⋄
†Peking University ⋄Microsoft Research

Abstract
With the growing demand for processing higher fidelity
data and the use of faster computing cores in newer hard-
ware accelerators, modern deep neural networks (DNNs)
are becoming increasingly memory intensive. A disparity
between underutilized computing cores and saturated memory
bandwidth has been observed in various popular DNN models.
This inefficiency is caused by both the conventional treatment
of DNNs as compute-intensive workloads and the lack of
holistic memory access optimization in DNN models.

In this paper, we introduce WELDER, a deep learning
compiler that optimizes the execution efficiency from a
holistic memory access perspective. The core of WELDER
is tile-graph, an abstraction that facilitates fine-grained data
management at tile level. By leveraging the observation of
optimization independence across memory layers, WELDER
is able to decompose the whole combinatorial DNN opti-
mization space into several independent ones and effectively
trade off between intra- and inter-operator data reuse using a
tile traffic-based cost model. This allows WELDER to unify
previous ad-hoc memory optimizations into a single space,
generate efficient execution plans with 89 more optimization
patterns, and outperform state-of-the-art solutions signifi-
cantly. WELDER is also able to handle DNN models with
arbitrarily large input by combining the existing accelerator
memory and host memory as a whole system.

1 Introduction

Deep neural networks (DNNs) have been used in a wide
range of tasks like vision and language analysis and synthesis.
Conventional wisdom treats DNNs as compute-intensive
workloads. A DNN model is often defined as a dataflow
graph (DFG), where each node represents a compute-intensive
operator (e.g., matrix multiplication). These operators are
offloaded to modern accelerators with massive parallel com-
puting cores, such as GPUs and TPUs [23], to speed up com-

*Work is done during the internship at Microsoft Research.

putation. To utilize accelerators efficiently, DNN frameworks
and compilers explore various optimization techniques, such
as code specialization [15,50,52] and operator fusion [15,31].

Although these computation centric optimizations are
shown effective for classic DNN models, we observe that
modern DNNs are becoming increasingly memory intensive.
Our profiling on a range of state-of-the-art DNN models
reveals that the bottleneck of the end-to-end DNN compu-
tation is mostly on GPU memory. The memory bandwidth
utilization can be as high as 96.7% while the average utiliza-
tion of computing cores is only 51.6% (§2). Moreover, we
observe the disparity between the underutilized cores and the
saturated memory bandwidth could become even larger with
the evolution of both hardware and DNN models. Modern
models are processing higher fidelity data, e.g., larger images,
longer sentences, high-definition graphics, which consume
more memory bandwidth in the computation. Furthermore,
the faster computing cores (e.g., TensorCore [6]) impose an
even greater pressure on memory.

Optimizing memory intensive DNN workloads is challeng-
ing as it requires improving the sophisticated data access
and reuse patterns across multiple memory layers (e.g., GPU
DRAM and shared memory). From the memory perspective,
DNN computation comprises of a repetitive process for each
operator to 1) load input tensors across memory hierarchy, 2)
compute at the cores, and 3) store the resulting tensors across
memory hierarchy. To derive a good data access pattern, it
requires a careful calculation of the size of tile, a partition
of a tensor, along each tile dimension. Such a tiling strategy
is already difficult to obtain in existing practice [5, 50, 52].
As a further complication, due to the different algorithmic
semantics, each operator may require a different data access
patterns. Such diversity across operators makes inter-operator
data reuse especially challenging, and often infeasible. If the
derived tile shape of an operator at a certain memory layer
does not match that of a downstream operator, it is difficult to
reuse the tile at that layer. Consequently, existing approaches
either focus on intra-operator optimization and leave all inter-
operator intermediate tensors in the lowest memory layer

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 701

(e.g., GPU memory), or rely on rule-based operator fusions
to alleviate the inter-operator memory overhead. These rules
are only applicable for specific operator combinations (e.g.,
register fusion for element-wise operators [10, 13, 15], shared
memory fusion for a limited set of operator types [51]) and can
be suboptimal when having different input sizes or running
on different hardware configurations.

In this paper, we introduce WELDER, a deep learning com-
piler that holistically optimizes memory access for end-to-end
DNN models consisting of general operators. The design of
WELDER is based on three key observations. First, to resolve
potential tile shape conflicts between two adjacent operators,
we observe that their aligned tile shape can be automatically
inferred by propagating an output tile shape from back to front,
given that the computing logic in each operator can be accu-
rately preserved (e.g., through the tensor expression). Second,
to decide which tile shape will lead to better performance, by
enforcing the computation pattern to be aligned with hardware
feature (e.g., TensorCore), we can just minimize the data
traffic across all memory layers. Given the operators with
aligned tile configuration, we notice that their data traffic can
be easily modeled based on their input/output tile sizes and
the input/output tensor shapes. Finally, when considering the
whole memory hierarchy, we observe that the optimization
of memory traffic is inherently independent across memory
layers, i.e., inter-layer independence. Particularly, the above
traffic model is determined only by the tile configuration at
the memory layer of interest. These observations allow us to
optimize the whole space with an effective process: starting
from aligning two adjacent operators at independent memory
layers, deciding their optimal tiling size at the right memory
layer guided by traffic costs, and expanding the optimization
to include further operators.

WELDER incorporates these insights into a new DNN
compiler design. First, to facilitate fine-grained data man-
agement, WELDER proposes tile-graph, a tile-level data-flow
graph to model DNN computation. Each node in the graph
processes one data tile of a tensor at a time. To map DNN
computation to a multi-layered memory hierarchy, WELDER
allows the control of each node’s data tile size and the desired
memory layer to reuse the data tile between two nodes.
Specifically, WELDER provides a SetConnect interface to
set the data reuse layer for each edge and a Propagate
interface to infer the tile configurations within a group of
connected nodes. Second, to efficiently optimize the tile level
data-flow scheduling holistically, WELDER exploits the inter-
layer independence properties in the data-flow computation
to decouple the optimization space into multiple sub-spaces.
Based on this, WELDER proposes a two-layered scheduling
policy that enumerates different memory connection options
for each edge and decides on an efficient tile configuration for
each sub-space guided by the traffic cost model. Finally, the
optimized execution plan is mapped to executable code for
a specific hardware accelerator through four abstracted com-

puting interfaces defined in the hardware layer: Allocate,
LoadTiles, ComputeTile, and StoreTiles.

With the tile level holistic data-flow scheduling, WELDER
is the first to unify all common operator fusions (e.g., register-
based element-wise fusion, shared-memory fusion, etc.) into
a single framework. This generality allows WELDER to find
89 uncommon operator fusion patterns automatically that are
mostly unexplored by existing rule-based approaches (§5.2).
Interestingly, our approach can easily support new require-
ments for handling DNN models with arbitrarily large input
(e.g., high-resolution images), where even a single operator
may be too large to fit in the GPU memory. Specifically, by
extending the current memory hierarchy with additional layers
(e.g., host memory), WELDER can generate an optimized
execution plan across the combined hierarchy of host and
device memory.

We have implemented WELDER on top of TVM [15], Ram-
mer [31] and Roller [52]. Our evaluation is conducted on 10
state-of-the-art DNN models covering both classic and recent
model structures for various tasks including vision, NLP,
3D-graphics, etc. The evaluation results show that WELDER
significantly outperforms the state-of-the-art DNN framework
and compilers like PyTorch, ONNXRuntime, and Ansor on
both NVIDIA and AMD GPUs, with up to 21.4×, 8.7×, 2.8×
speedups, respectively. WELDER’s automatic optimization
even outperforms TensorRT [7] and Faster Transformer [2],
which are a highly optimized handcrafted DNN inference
library and a model-specific implementation from NVIDIA,
with up to 3.0× and 1.7× speedups. Furthermore, when
running these models on hardware with faster computing
cores such as TensorCore, we observe a larger improvement
in performance, highlighting the importance of memory
optimization for future AI accelerators.

2 Motivation

Modern DNNs are memory-bounded. Figure 1 presents
the average GPU utilization, including both computational
FLOPS and global memory throughput, for a representative
DNN benchmark running with ONNXRuntime [8]. As shown,
the average computation utilization is only 51.6% while
memory utilization is 96.7%. When examining the model
types, we find that ResNet and BERT, which are dominated
by convolution and matrix multiplication operators and can
achieve relatively high computation utilization (e.g., >80%),
are two representative classical models. However, the remain-
ing models, which are popular models proposed in recent
years, exhibit low computation efficiency due to introducing
more memory-intensive patterns beyond compute-intensive
operators. Additionally, we observe that the new DNN
models often have a higher ratio of memory store traffic to
load traffic compared to classical models. The primary reason
is these models tend to process high-fidelity data and generate
large activations across layers. However, current systems such

702 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 1: Computation FLOPS and memory bandwidth
utilization for different models on NVIDIA V100 GPU.

Figure 2: Latency numbers of unfused, fused, and each
individual kernels of Matmul and Softmax.

as ONNXRuntime have limited optimizations for reducing
inter-operator traffic. This indicates that these models will
frequently exchange large intermediate data across operators
through global memory. The results highlight the need for
optimizing memory access efficiency across operators.

Conflicted intra- and inter-operator data reuse patterns.
Optimizing intra-operator and inter-operator data reuse simul-
taneously is challenging. An operator is often implemented
as nested multi-level loops over all tensor dimensions. Within
the operator, the data reuse across multiple memory layers
are often implicitly optimized using sophisticated loop tiling
techniques [5, 50, 52]. We consider a typical pattern of two
consecutive operators, i.e., Matmul and Softmax. When the
two operators are optimized independently, their optimal
tile sizes in shared memory are different, e.g., [32×64] for
Matmul and [4×128] for Softmax. As a result, Softmax is
unable to reuse the intermediate data from Matmul in shared
memory, leading to a total latency of 0.36ms, as shown in
Figure 2. However, if we force them to take into account
both intra- and inter-operator data reuse, the fused operator
latency can be reduced to 0.29ms, achieving a 1.26x speedup.
Upon examining their aligned tile size (i.e., [16×128]), we
observe that both operators sacrifice their own efficiency (e.g.,
with 15% and 4% performance degradation when running
separately, due to suboptimal data tile for intra-operator data
reuse) in favor of overall efficiency. This demonstrates the
need for an efficient data reuse solution across intra-operator
and inter-operator to optimize memory access holistically.

Key observations. Through a further analysis on the ex-
ample in Figure 2, we have identified three key observations.
First, an aligned tile configuration across operators can be
deduced based on a chain of shape inference starting from
an output tile shape. For example, if we want to compute a
[4×128] output tile of Softmax, based on its computing logic
(e.g., tensor expression), we can deduce that its dependent

input tile shape is also [4×128]. Then, by using [4×128] as
the output tile of Matmul, we can further deduce that input
tile shapes of Matmul will be [4×k] and [k×128], where k is
an reduction size that can be set as any number not exceeding
the reduction dimension size of the Matmul. In this way, the
two operators can be fused by reusing the intermediate data
tile ([4×128]) in shared memory.

Second, given the aligned tile configuration and the original
tensor shapes, the total memory traffic can be easily derived
analytically. In this example, the Matmul takes input tensors A
in shape [98304×64] and B in [64×128] respectively, and an
output tensor C in [98304×128]. The Softmax then takes
C as input and produces an output tensor D in the same
shape. Input tensors A, B, and the output tensor D are in
global memory. Given these shapes, we can first calculate
the memory traffic when computing a single output tile (i.e.,
[4×128]) of tensor D. To do so, it will first load a tile of
shape [4×k] from tensor A and a [k×128] tile from tensor B
for Matmul, and then the intermediate tile [4×128] will be
consumed by Softmax in shared memory, and write a tile of
shape [4×128] to tensor D, where the k can be replaced as 64
given the input tensor shape of [98304×64]. Thus, the total
traffic incurred in global memory for an individual output
tile is 35KB ((4*64+64*128+4*128)*4Bytes(FP32)), where
the traffic of the intermediate tile [4×128] is saved due to
data reuse in shared memory. To compute the full output
tensor D, a total of 24,576 such computations are required
(i.e., (98304*128)/(4*128), resulting in a total global memory
traffic of 840MB (i.e., 24,576*35KB). Interestingly, changing
the output tile to [16×128] will reduce the total traffic to only
264MB, following the same calculation.

Finally, our traffic-cost calculation is only determined by
the tile configuration at the memory layer of interest, e.g., the
output tile shapes of [4×128] or [16×128] in shared memory,
once the tensor shapes are specified. This allows us to choose
the tile size for each layer independently in order to optimize
the traffic cost from the lower memory layers.

These observations together provide us an effective way to
optimize memory access holistically, i.e., aligning a group of
adjacent operators through an output tile shape, deciding on
the best tile shape based on memory traffic, and optimizing
for each memory layer independently. In this way, WELDER
is able to change the original coarse-grained inter-operator
dependency into a more fine-grained tile-level dependency,
which essentially removes some false barriers between opera-
tors and enables more concurrency.

3 WELDER Design
The observations in §2 motivate WELDER, a deep learning
compiler that aims to improve the performance of modern
DNNs in a holistic memory access scheduling space. Figure 3
shows the system overview. WELDER takes a full DNN model
as input and converts it into a data-flow graph of tile-based

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 703

Graph Connecting Sub-graph Scheduling

L0-Mem

L1-Mem

L2-Mem

Tile-graph Scheduling Interface

Hierarchical Tile-Graph
on Abstracted Accelerator

Tile-graph

DNN Model

Tile-graph
Scheduler

Memory
Info.

Hardware Accelerators

Figure 3: System overview of WELDER.

computing tasks (i.e., operator-tiles), which is called tile-
graph (§3.1). A tile-graph provides fine-grained control over
data tile configurations and memory placement. Given a tile-
graph, WELDER resolves the intra-operator and inter-operator
data-reuse conflicts through a "first-connect-then-schedule"
approach: it first assumes two adjacent operators can reuse
data tile at a certain memory layer (i.e., connect), and then
derives the best common tile shape to see if the total memory
traffic can be reduced. To facilitate this goal, WELDER
provides two tile-graph scheduling interfaces: SetConnect
and Propagate (for the chain of shape inference). Based on
this, we propose a two-step scheduling algorithm, i.e., graph
connecting and sub-graph scheduling, to recursively decide
an efficient tile-graph execution plan for multiple memory
layers, known as a hierarchical tile-graph (§3.2). Finally, this
plan is then mapped to an executable code for a specific hard-
ware accelerator using four abstracted computing interfaces
defined in the hardware layer, i.e., Allocate, LoadTiles,
ComputeTile, and StoreTiles (§3.3). The memory specifi-
cation of the abstracted accelerator is used by the tile-graph
scheduling layer to guide the optimization process.

3.1 Operator-tile and Tile-graph
WELDER defines DNN computation in a fined-grained task
granularity named operator-tile. A DNN operator, such as
convolution, can be implemented as multiple homogeneous
operator-tiles, which are executed either in a streaming or
parallel manner to compute all the data tiles in the output
tensors [31]. Each operator-tile takes as input a data tile sliced
from the input tensors and computes a data tile in the output
tensors, with the computing logic described by an index-based
tensor expression [15]. Figure 4(a) and (b) shows examples of
operator-tiles for Conv and MaxPool, where the Conv operator
computes a [1×1×C] data tile by taking a [3×3×C] data
tile as input, and the MaxPool operator takes an input tile of
[2×2×F] and computes an output tile of [1×1×F].

To improve the utilization of hierarchical memory re-

(a) Conv3x3

H

W

C

H

F

W

F

W/2
H/2 F

(b) MaxPool2x2

(c) Connected Conv-MaxPool

Conv
MaxPool

Conv MaxPool

W

H

C

H/2

W/2
F

H

W

Figure 4: Illustration of two operator-tiles: (a) Conv and
(b) MaxPool; and (c) connecting them into a tile-graph (the
weight tensor of Conv is omitted for simplicity).

sources, such as the shared memory, WELDER allows two
adjacent operator-tiles to be “connected” through a common
intermediate data tile, also known as a reuse-tile. This allows
the second operator-tile to consume the data produced by
the first operator-tile directly, without the need to materialize
it into a full intermediate tensor. Figure 4(c) illustrates an
example of this connection between two operator-tiles for
Conv and MaxPool, using a [2× 2×F] reuse-tile. Multiple
operator-tiles can be connected along each adjacent edge to
form a data flow graph of operator-tiles, known as a tile-graph.

Tile propagation. Once connected, most tiles in a tile-
graph are correlated, which can be automatically inferred
by propagating an output tile shape to the entire graph. This is
achieved by using a chain of shape inferences from the output
nodes to the inputs. For each operator-tile, the dependent
region of the input tensor can be accurately determined
by analyzing its tensor expression and output tile size. In
cases where the input region may contain irregular patterns
such as sparse or noncontinuous access (e.g., Gather or
Convolution with strides), our expression analysis provides
a conservative upper bound as the input tile shape. If the tile-
graph has multiple output nodes, their output shapes may also
be correlated, as they may share a common ancestor node in
the graph. In this case, after propagating the first output tile,
we propagate separate shapes for the remaining output nodes,
aligning them with the first one. If there is an inconsistent tile
shape between the two propagations, we do not connect the
latter output node to the current graph.

Memory traffic and footprint. After the tile propagation,
the memory traffic and footprint of a tile-graph can be
determined. First, the memory traffic for an individual tile-
graph can be calculated by summing its input and output tile
sizes. The total traffic is obtained through further multiplying
this value by the number of tile-graphs needed to compute the
full output tensor (e.g., through dividing the tensor size by the
output tile size). Second, the minimum memory footprint for
the tile-graph can be calculated using a memory allocation
algorithm (e.g., bestfit [19]) by allocating all data tiles in a
topological order. As a footprint optimization, input tiles that
contain reduction axes can be further partitioned into smaller

704 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Conv MaxPoolRelu

H

[4, 4, C]

[3, 3]

[1, 1]

[1, 1] [2, 2]

[1, 1, F]

H/2
Conv+Relu+MaxPool

Conv+Relu MaxPool

[1, 1]

MaxPoolConv Relu
L0 L1

reuse-tile

reuse-tile

[2, 2, F]

W/2
F

W
C

L2

L1

L0

tile-graph

tile-graph tile-graph

Figure 5: Map three consecutive operators to a three-layer
memory hierarchy (the weight of Conv is omitted).

ones, which can be loaded and consumed sequentially by
accumulating their results to the output tile. Specifically, a
particular policy can automatically try different tiling sizes
along the reduction axes during the tile propagation.

3.2 Tile-graph Scheduling
To map a DNN model represented by an inital data flow
graph to an accelerator, we can recursively partition each
operator into multiple operator-tiles to fit within each memory
layer, and connect operator-tiles at higher memory layers to
exploit inter-operator data reuse. As a result, an entire DNN
computation can be modeled as a data streaming pipeline
over a two-dimensional space, with data tiles moving up and
down the memory hierarchy vertically and being passed to
successor operators at different layers horizontally.

Figure 5 illustrates an example of mapping three consecu-
tive operators (Conv, ReLU, and MaxPool) to a three-layered
memory hierarchy (e.g., from L2 to L0). The input tile of the
Conv operator is repeatedly loaded from L2 to L1 and then L0
for computation. By connecting the Conv and ReLU operators
at L0, the output of the Conv operator can be reused as the
input for the ReLU operator, and the two operators form a tile-
graph at L0. At the same time, they are consolidated into a
virtual node (i.e., Conv+ReLU) in L1. The output of the ReLU
is then continuously spilled into the data tile at L1 and reused
as the input for the MaxPool, through further connection at L1.
This allows all three operators to form a single tile-graph at the
L1 layer, resulting in the virtual node Conv+ReLU+MaxPool
in L2. After this recursive process, all operators are connected
at the lowest layer as a single tile-graph.

Decoupling optimization space. Given the observation that
DNN computation is mostly memory-bounded, our major
optimization goal of the data streaming pipeline can be
transformed to minimizing the memory traffic. This allows us
to decompose the whole optimization space into several sub-
spaces by leveraging the inherent independence of optimizing

void SetConnect(Edge *edge , MemLevel level);
TileConfig Propagate(TileGraph g,

Map<Axis , Dim> config);
size_t MemFootprint(TileGraph g);
size_t MemTraffic(TileGraph g);

Figure 6: The scheduling interface in WELDER

traffic across memory layers. Specifically, the total data
traffic loaded from and stored to a lower memory layer for
a given tile-graph can be estimated by just its output tile
shape, i.e., used to deduce all the input and output tile shapes.
Based on this property, different tile-graphs from the same
or different memory layers can independently optimize their
memory traffic by searching for the optimal tile shapes. For
example, in Figure 5, the tile-graph of Conv and ReLU at
L0 can be optimized independently of the L1 tile-graph
(e.g., formed by the Conv+ReLU and MaxPool operators),
which is referred to as inter-layer independence. This further
implies that the optimal tile configurations of the sub-graphs
Conv-Relu and MaxPool at L0 are also independent, due
to their independence with the tile-graphs at L1, to which
we refer as intra-layer independence. In practice, the only
constraint is that the tile size at the lower memory level must
be larger than the tile size at the upper memory level. This is
often the case, as the lower memory level typically has greater
capacity than the upper memory level. With these properties,
we can independently schedule each tile-graph given a graph
connection plan.

Scheduling interface. WELDER provides two scheduling
interfaces to control graph connecting and sub-graph tiling,
as shown in Figure 6. First, the graph connecting is imple-
mented using the SetConnect interface, which assigns a
memory level for an edge in the tile-graph (the lowest level
by default). After connecting, the tile shapes in the graph
is inferred through the Propagate interface, by specifying
the dimensional sizes of the output tiles and the optional
reduction axes in input tiles. For example, in Figure 5,
we can use the SetConnect interface to connect Conv and
Relu at L0 and connect Relu and MaxPool at L1. After the
connection, for the sub-graph Conv+Relu, we can use the
Propagate to infer the intermediate reuse-tile shape (i.e., [1,
1]) by specifying the output tile shape of [1, 1]. Similarly,
we can also infer the intermediate reuse-tile shape of sub-
graph Conv+Relu+MaxPool (i.e., [2,2,F]) by specifying the
output tile shape of [1,1,F]. The two scheduling primitives
are essentially two interfaces to update the edges and vertices
of the tile-graph. Particularly, SetConnect is used to add a
connection between two nodes and Propagate is used to set
tile configuration for a node. They together form a complete
interface for updating the tile-graph. Note that these primitives
are only used by WELDER’s scheduling policy and transparent
to the end users. WELDER also provides two cost interfaces,
MemFootprint and MemTraffic, to calculate the memory

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 705

1 Func GraphConnecting(g:Graph, d:Device):
2 for node : TopologySort(g.nodes()) do
3 for edge : node.out_edges() do
4 for level : d.MemLevels() do
5 SetConnect(edge, level);
6 s = ExtractSubgraph(node, 0);
7 configs = SubGraphTiling(s, 0, tensor_shapes);
8 if t = Min(d.Profile(configs)) < best_latency
9 best_latency = t;

10 best_level = level;
11 SetConnect(edge, best_level);

12 Func SubGraphTiling(g:Graph, level:Memory, c: Config)
13 configs = PriorityQueue();
14 for subtile : EnumerateSubtiles(g, c) do
15 config = Propogate(g, subtile);
16 if MemFootprint(g) > level.capacity
17 continue;
18 configs.push(config, priority=MemTraffic(g));
19 results = Dict();
20 for config : TopK(configs, k) do
21 // return empty sub-graph at top level to exit recursion

subgraphs = unique([ExtractSubgraph(node, level+1)
for node in g.nodes()]);

22 for subgraph : subgraphs do
23 subgraph_configs = SubGraphTiling(subgraph,

level+1, config);
24 results[config].append(subgraph_configs);
25 Return results;

26 Func ExtractSubgraph(node:Node, level:Memory)
27 nodes = Set();
28 for edge : node.InOutEdges() do
29 if edge.connect_level > level
30 nodes.insert(ExtractSubgraph(edge.node, level));
31 return SubGraph(nodes);

Figure 7: Two-step tile-graph scheduling algorithm.

footprint and the total traffic of a tile-graph, which serve as
our cost models to guide the scheduling.

Scheduling policy. WELDER adopts a two-step scheduling
algorithm to optimize data flow computation effectively.
Specifically, a graph-connecting scheduler first enumerates
different graph connecting plans by setting different memory
reuse levels for each edge, and then a sub-graph scheduler
quickly searches for efficient tile configurations for each sub-
graph decoupled by the graph-connecting scheduler. Figure
7 shows the two-step scheduling algorithm in WELDER. First,
given a DNN data flow graph g and an accelerator device d,
the graph-connecting scheduler enumerates all graph nodes
and their output edges in a topological order (line 1-3). For
each edge, WELDER tries different connection levels (e.g.,
using the SetConnect interface) (line 5). It then extracts
the connected sub-graphs where all edges have connection

Allocate Allocate workspace in a memory layer
LoadTiles Load input tiles from lower memory layer
ComputeTile Compute an operator-tile at the top layer
StoreTiles Store result tiles back to lower memory layer
MemLevels Query memory hierarchy configurations

Table 1: Device interfaces in abstracted hardware accelerator.

levels higher than 0. Here, we use the number 0 to represent
the lowest memory level, and larger numbers for higher
levels. The ExtractSubgraph function is implemented in
line 26-31. For the extracted sub-graph, WELDER calls
the SubGraphTiling function to get several efficient tile
configurations and chooses the optimal one by profiling on
the hardware (line 7-10). After comparing with all other
connection levels, WELDER sets the best connection level
for the current edge.

Then, the sub-graph scheduler (i.e., the SubGraphTiling
function) takes as input a sub-graph and the last level tile
configuration and searches for efficient tile configurations for
the current level. First, WELDER enumerates the tile sizes (i.e.,
EnumerateSubtiles in line 14) for output dimensions using
a tile shape expanding approach similar to Roller [52], which
enlarges initial tile shape (e.g., size of 1) towards the shapes
that can reduce total traffic and align with hardware features.
After getting the output tile shapes, we can infer the complete
tile configuration using the Propagate interface and check
if it exceeds the memory capacity using the MemFootprint
interface, or appends it to a sorted result list with the memory
traffic as the key (e.g., using the MemTraffic interface)
(line 15-18). Finally, we choose the top K configurations
with the least memory traffic for the current level, and then
extract the upper-level sub-graphs and decide their best tile
configurations recursively by calling ExtractSubgraph and
SubGraphTiling (line 20-24).

Note that WELDER has no assumption on the memory size
on different memory hierarchies, as our scheduling policy
can always try its best to determine the optimal layer and
tile size to place intermediate data, so as to minimize the
overall latency. While WELDER always favors hardware with
large higher-level fast memory (e.g., shared memory) that
can hold a sufficiently large intermediate data tile, because
too small tile sizes could lead to worse intra-operator data
reuse. The scheduling result of a data flow graph in WELDER
is a hierarchical tile-graph, which starts as a full graph at
the lowest memory level and is recursively split into several
sub-graphs in the upper layers, all the way to the top level.

3.3 Mapping to Hardware Accelerator

The hierarchical tile-graph generated by WELDER is an
abstracted execution plan that can be mapped to an executable
code for a specific hardware accelerator. To facilitate this
mapping, WELDER provides an abstracted accelerator device
with hierarchical memory layers. The memory configura-

706 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

void ExecuteGraph(TileGraph g, MemLevel level ,
void *in, void *out) {

void *mem = Allocate(g.MemFootprint(), level);
LoadTiles(in, mem);
for (auto n : g.nodes()

if (level == MemLevel.top)
ComputeTile(n, mem.in[n], mem.out[n]);

else
ExecuteGraph(n.TileGraph(), level+1,

mem.in[n], mem.out[n]);
StoreTiles(mem, out);

}
// execute a full DNN graph at memory level 0
ExecuteGraph(graph , 0, inputs , outputs);

Figure 8: Compilation routine of hierarchical tile-graph.

tions, such as the number of layers, memory capacity, and
transaction width of each layer, can be obtained through
a MemLevels interface (e.g., used in Figure 7). With this
abstracted memory layer, it is easy to extend an existing
accelerator with additional memory layers (e.g., host memory
or SSD) as a new device, allowing it to handle very large
tensors that may not fit in the single device memory (§5.4 for
more details). WELDER’s performance gain mainly comes
from the bandwidth gap between memory layers. Thus, as
long as a lower-level memory becomes the bottleneck and
a high-level memory can hold the intermediate data tile,
WELDER can automatically pipeline the inter-operator data
transfer on the faster, high-level memory.

In order to execute a hierarchical tile-graph on a
hardware accelerator, WELDER provides four comput-
ing interfaces: Allocate, LoadTiles, ComputeTile, and
StoreTiles (listed in Table 1). The routine for executing
a hierarchical tile-graph using these interfaces is shown in
Figure 8. The process starts by executing the bottom-layer
tile-graph (i.e., the full DNN graph). For each tile-graph, it
first allocates the necessary workspace in the corresponding
memory layer (using the Allocate interface) and loads the
input tiles into this space (LoadTiles). Then, it executes all
the nodes in the sub-graph in a topological order. If the current
memory layer is the top level, the node is executed directly in
the computing cores (ComputeTile). Otherwise, the execu-
tion of the upper-level tile-graph is called recursively. Finally,
the result tiles in the current space are stored in the lower
memory layer (StoreTiles). This execution routine can be
used as both a code generation process or a runtime process,
depending on whether a specific accelerator implements these
computing interfaces as code emitters or executable function
calls. In WELDER, they are currently implemented as code
emitters to generate the accelerator-specific computing logic.
By executing this recursive routine, the entire hierarchical tile-
graph is unrolled and a full-model computation program with
all the necessary optimizations is generated automatically.

4 Implementation

WELDER is implemented based on open-source DNN com-
pilers, TVM [15], Roller [52] and Rammer [31]. It leverages
TVM for writing kernel schedule, Roller for enumerating
efficient tile configurations, and Rammer for the end-to-end
graph optimization. WELDER’s core mechanisms, includ-
ing the tile-graph, tile propagation, scheduling algorithm,
code generation, etc., are implemented in 5.2k lines of code.
WELDER takes an ONNX graph as input and performs com-
mon graph optimizations such as constant folding and simple
element-wise fusion. It then converts the optimized graph
into a tile-graph for holistic memory scheduling optimization.
WELDER is implemented on both CUDA and ROCm GPUs,
and GraphCore IPU through the unified device interface
(Table 1). For CUDA and ROCm GPUs, WELDER schedules
data tiles on three memory layers: global memory (DRAM),
shared memory, and register. To handle large images on
CUDA GPUs and GraphCore IPU, we also extend their device
memory by adding a host memory layer.

4.1 Hardware-aligned Tile Search

Enumerate efficient data tile size. WELDER takes into
account several hardware-related factors that could impact
the data access efficiency by introducing a penalty factor to
the traffic cost model. First, if there is uncoalesced memory
access, the total memory traffic will include the additional
transactions required for these accesses. For instance, in
CUDA GPUs, it is always preferable to use coalesced memory
access for a contiguous 128 bytes of data (one transaction).
Second, when there is insufficient parallelism due to a large
tile size, the memory traffic is increased proportionally based
on the utilization percentage of the computing cores. Finally,
we add an infinite penalty if the total memory footprint of
a given tile configuration exceeds the memory capacity. To
avoid enumerating inefficient candidates, WELDER searches
for output tiles by only enumerating the dimensions that
can reduce traffic the most according to the cost model, and
retrieves only top k candidates with the minimum traffic.

Decide aligned computation parallelism. In GPUs, the
top-level operator-tiles that are executed in the same thread-
blocks must agree on a unified block size (e.g., number of
threads). To ensure this alignment, WELDER first enforces
sufficient parallel tiles at the register level to align with the
hardware parallelism (i.e., by enumerating hardware-aligned
tiles). For example, in NVIDIA V100 GPUs, the tile number
should be greater than 128, as each SM has 4 warp schedulers
and each warp has 32 threads. We then determine the greatest
common divisor among the tile numbers of all operators as
the common thread-block size, if it is larger than the hardware
parallelism (e.g., 128) and less than the maximum limitation
(e.g., 1024). Otherwise, we set the block size to a number

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 707

that equals the hardware parallelism. Once the block size
is decided, we bind all operator-tiles at the register level to
these threads. If a single thread needs to run multiple tiles,
we use TVM’s virtual thread to bind them, thus allowing
concurrent data access over all memory banks and avoiding
bank conflicts.

Support TensorCore. WELDER leverages TensorCore to
accelerate certain operators such as GEMM, BatchMatmul,
and Convolution (using implicit GEMM [28]) on CUDA
GPUs. We add annotations to these operators indicating which
axes will be bound to CUDA’s Warp-Level Matrix Operations.
For top-level operator tiles, we bind them to warps (instead
of threads) to perform MMA operations. Additionally, we
introduce some extra constraints when enumerating tile sizes,
such as ensuring that the number of threads is an integral
multiple of the warp size and that the axes (M, N, and K) in
each tile are an integral multiple of the fragment size of the
MMA operations.

4.2 Code Generation and Compilation
WELDER’s kernel generation is based on TVM. In particular,
the register level tile connection is implemented using TVM’s
compute_inline schedule primitive. For shared memory
level connection, we only use TVM to generate standalone
kernels for each connected part above the shared memory,
and then apply several additional passes to compose these
standalone kernels into a single fused kernel.

Load/store rewriting. The standalone kernels generated by
TVM load and store data from global memory. We rewrite
these global memory accesses to shared memory accesses
by adding an additional TIR [11] pass to TVM’s lowering
procedure. Additionally, we add memory fences to prevent
race conditions and apply padding to handle bank conflicts
in the buffers. As a result, the original global kernel can be
transformed into a device function, which is included in the
final fused kernel.

Block/thread index remapping. Some operators cannot be
directly connected to others and require remapping of their
blockIdx and threadIdx values. The BlockIdx remapping
is used for operators such as Transpose. The remapping
relationship is deduced from their tensor expressions. The
ThreadIdx remapping is used to connect 2D thread blocks
to 1D thread blocks. This is necessary when inter-thread
reduction or TensorCore primitives require the use of a 2D
thread block (both threadIdx.x and threadIdx.y), while
others may use a 1D thread block (only threadIdx.x). A 2D
thread block can be mapped to a 1D thread block as long as
their total number of threads is equal.

Memory management. We manage all shared memory,
including that allocated in each standalone kernel and the inter-

operator reuse buffer, in a uniform manner. First, we analyze
the liveness of each buffer based on the topology execution
order and convert them into a sequence of allocation and free
operations. We then use the bestfit algorithm to compute the
offset for each shared memory allocation, taking into account
any alignment requirements for data types and TensorCore
operations (e.g., aligning to 32 bytes to avoid misaligned
address access).

Compilation speedup. WELDER optimizes the compilation
speed through parallel compilations and sub-graph caching.
First, by taking advantage of the independence between
configurations, WELDER can use multi-processes to build
and evaluate each configuration in parallel. Second, in most
DNN models, some sub-graph patterns often repeat for mul-
tiple times. To avoid the redundant optimization, WELDER
leverages a sub-graph signature to cache each unique graph
pattern. For example, in a 12-layer BERT model, we can cache
the optimization result (kernel code and profiled latency) for
the first layer and reuse it for all the remaining 11 layers.

5 Evaluation

5.1 Experimental Setup
We evaluate WELDER using three servers equipped with
different accelerators: NVIDIA GPU, AMD GPU, and Graph-
core IPU. Two servers are equipped with the NVIDIA GPUs.
The first one is an Azure NC24s_v3 VM with Intel Xeon
E5-2690v4 CPUs and NVIDIA Tesla V100 (16GB) GPUs,
running on Ubuntu 16.04 with CUDA 11.0. The second one is
a local workstation with Intel(R) Xeon(R) E5-2678 v3 CPUs
and NVIDIA GeForce RTX 3090 GPUs, running on Ubuntu
18.04 with CUDA 11.3. The AMD GPU server is equipped
with Intel Xeon CPU E5-2640 v4 CPU and AMD Radeon
Instinct MI50 (16GB) GPUs, running on Ubuntu 18.04 with
ROCm 5.2.3. The IPU server is an Azure ND40s_v3 VM with
Intel Xeon Platinum 8168 CPUs and 16 IPUs with Poplar-sdk
3.0.

DNN workloads. WELDER is evaluated on 10 DNN models
with different model types, including CNNs, Transformer,
CNN-Transformer and multilayer perceptrons (MLP), and
most of which are the state-of-art in the corresponding tasks.
Table 2 characterizes them with a comparison of their model
types, tasks, and the years of publication. For all models in the
table, we use their official PyTorch implementations without
modification.

Baselines. We compare WELDER with several DNN frame-
works, including PyTorch (v1.12) [10] and ONNXRuntime
(v1.12) [8], as well as state-of-the-art DNN compilers such
as Ansor (v0.9) [50] and Rammer [31]. We also compare
WELDER with TensorRT (v8.4) [7], a vendor-specific infer-
ence library for NVIDIA GPUs. For transformer models,

708 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: End-to-end model inference performance on NVIDIA V100 GPU (SIMT Core only). (left : batch size of 1, right :
batch size of 64).

Model Type Task Year

MobileNet [41] CNN Image Classification 2018
BERT [16] Transformer NLP 2018
ViT [17] Transformer Image Classification 2020

Conformer [20] CNN+Transformer Speech Recognition 2020
MobileViT [32] CNN+Transformer Image Classification 2021

Swin-Transformer [30] Transformer Image Classification 2021
NeRF [33] MLP 3D-scene Generation 2021

NAFNet [14] CNN Image Restoration 2022
Restormer [48] CNN+Transformer Image Restoration 2022

BSRN [29] CNN Image Super-resolution 2022

Table 2: DNN models evaluated in WELDER.

we further compare WELDER with NVIDIA’s FasterTrans-
former (v5.2) [2], a hand-crafted C++ library optimized for
transformer models. We also include BladeDISC (v0.3.0) [1]
that implements the latest AStitch [51] for the kernel fusion
optimization. We also include Nimble [25] which implements
multi-stream scheduling as a baseline on NVIDIA GPUs.

To evaluate a model on these baselines, we first trace the
model in PyTorch and export it to the ONNX format. We
then use this ONNX model as input to other frameworks,
including WELDER, Ansor, ONNXRuntime, and TensorRT.
For the ONNXRuntime, we use its CUDA execution provider
and set its graph optimization level to "ALL" to achieve the
best performance. For TensorRT, we use its Python API to
build an engine for the input ONNX model. For Ansor, we set
the total number of tuning trials to 800× the number of tasks
in each model. For all frameworks, we place the input and
output tensors in GPU device memory to avoid additional data
movement costs. During evaluation, we first performe some
warm-up iterations and then run each workload repeatedly
for at least 5 seconds. We only report the average speed for
each model, as we observe very little variation in all cases.
The average performance (e.g., speedup) across models is
calculated by geometric mean in all experiments.

5.2 Evaluation on NVIDIA GPUs
This section answers the following questions: 1) How does
WELDER perform in comparison with state-of-the-art DNN
frameworks or compilers? 2) To what extent can WELDER fur-
ther boost performance with TensorCores? 3) Can WELDER
automatically discover new optimization patterns beyond
previous expert-designed fusion rules? 4) How well does

WELDER improve both the memory and computational effi-
ciency? 5) What is the search efficiency of WELDER’s holistic
optimization?

End-to-end performance. Figure 9 shows the performance
of WELDER and other baselines for batch size of 1, expressed
as the normalized speedup relative to the best result. The
geometric mean speedup that WELDER achieves over DNN
frameworks is 4.29× for PyTorch and 2.07× for ONNXRun-
time. PyTorch does not perform well for models with batch
size 1 due to high Python overhead in its computation graph.
In contrast, ONNXRuntime is a more optimized framework
that removes Python overheads and implements pattern-based
graph optimizations. WELDER also outperforms Rammer by
1.96×, as Rammer can only fuse independent parallel kernels
instead of dependent ones through shared memory. When
evaluating BladeDISC (implementing AStitch), we notice
that it encounters "unsupported operator" failures and falls
back to PyTorch runtime for the majority of models. For
models without encountering any failure (including BERT,
MobileNet, BSRN and NeRF), WELDER is 2.70× faster
than BladeDISC. Regarding the Nimble baseline, WELDER
achieves an average speedup of 1.79×, excluding the models
where Nimble fails to execute.

Ansor improves DNN performance by generating high-
performance tensor programs and using rule-based fusion
across operators at the register level (e.g., Matmul+BiasAdd,
Conv2D+ReLU). However, it cannot exploit further memory
reuse opportunities, leading to an average performance gap
of 1.44× compared to WELDER. This is evident in CNN
models such as NAFNet (1.70×) and BSRN (1.43×), which
mainly consist of convolutions with relatively small channels
that can be well optimized by WELDER. WELDER also
outperforms Ansor by a significant margin on Transformer-
based models such as BERT (1.71×), Swin-Transformer
(1.45×), and ViT (1.56×), due to Ansor’s inability to fuse
patterns like LayerNorm or Softmax in the attention block.
Furthermore, WELDER performs well for CNN+Transformer
models, achieving speedups of 1.64×, 1.39×, and 1.29×
on MobileViT, Conformer, and Restormer, respectively, as
WELDER can cover fusion opportunities in both the CNN
and Transformer parts of these models. We also observe that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 709

WELDER only slightly outperforms Ansor on NeRF (1.09×),
mainly due to that the compute-intensive MLP dominates the
computation without further optimization opportunities.

Finally, TensorRT is a specialized DNN inference li-
brary provided by NVIDIA with highly optimized operators.
WELDER is comparable to TensorRT on popular transformer
models such as BERT (1.02×) and Swin-T (0.97×). This is
because TensorRT has incorporated expert-designed fusion
rules and in-house kernels for some popular models, including
transformer-based models, thereby leaving limited room for
further optimization. In contrast, WELDER identifies optimiza-
tion patterns automatically and achieves performance that is
on par with TensorRT, despite relying on less performant
kernels for compute-intensive operators. It is worth noting
that kernel optimization is complementary to WELDER, and
further optimized kernels may offer even greater benefits for
WELDER. Additionally, for newer and more diverse models
such as NAFNet, WELDER has demonstrated superior perfor-
mance to TensorRT, with speedups of up to 3.09× due to its
generality. Overall, our system outperforms TensorRT with
an average speedup of 1.47×.

Figure 9 also shows the normalized performance for a
larger batch size of 64. The last three models in Table 2 are
unable to be traced on PyTorch with large batch sizes due to
their use of large input size. Under this setting, WELDER con-
tinues to outperform all other baselines, providing an average
speedup of 1.83× over PyTorch, 1.90× over ONNXRuntime,
2.1× over Rammer, 1.57× over BladeDISC, 1.49× over Nim-
ble, 1.47× over Ansor, and 1.21× over TensorRT, respectively.
We observe that for large batch sizes, frameworks using
CUDA libraries perform much better, compared to the results
for a batch size of 1. This leads to smaller speedups over
PyTorch, ONNXRuntime, and TensorRT for WELDER, while
the speedup over Ansor remains similar to the results for a
batch size of 1.

Performance with TensorCore. The faster computing
throughput of TensorCore can put greater pressures on mem-
ory access. To understand the optimization behaviors when
running on TensorCore, we convert our benchmark models
(both weights and activations) to half-precision float type
(FP16) with PyTorch, as TensorCore only supports FP16.
This is done using the tools in the onnxconverter_common
package [9], with the exception for TensorRT, which converts
through its own converter as it often produces better results.

Figure 10 shows the performance comparisons of WELDER
with other frameworks using TensorCore for batch sizes of 1
and 64. For the 10 cases that use a batch size of 1, WELDER
outperforms PyTorch, ONNXRuntime, BladeDISC, Nimble,
Rammer, and TensorRT. The averaged speedup is 7.18× (up
to 21.4× on MobileNet) to PyTorch, 3.08× (up to 8.72× to
on Conformer) to ONNXRuntime, 5.29× (up to 16.9× on
MobileNet) to BladeDISC, 2.72× (up to 5.58× on NeRF) to
Nimble, 2.76× (up to 5.42× on NAFNet) to Rammer, and

Model DT BS WELDER(ms) FT-CPP(ms)

BERT FP32 1 3.13 3.15
BERT FP32 64 118.6 119.8
BERT FP16 1 1.49 1.50
BERT FP16 64 24.82 22.29
ViT FP32 1 1.33 1.96
ViT FP32 64 15.29 15.68
ViT FP16 1 1.09 1.89
ViT FP16 64 4.79 5.15

swin-T FP32 1 2.59 2.38
swin-T FP32 64 66.13 72.62
swin-T FP16 1 1.43 1.60
swin-T FP16 64 23.12 28.67

geometric mean 6.71 7.46

Table 3: Performance for WELDER and FasterTransformer

1.53× (up to 2.98× on NAFNet) to TensorRT, respectively.
For the remaining 7 cases in Figure 10 that uses a batch size

of 64, WELDER outperforms PyTorch by 1.98×, ONNXRun-
time by 2.13×, BladeDISC by 1.97×, Nimble by 3.84×,
Rammer by 3.45× and TensorRT by 1.16× respectively.

Some of the speedups are much larger than the ones
achieved on SIMT cores. Especially for the NeRF model,
WELDER outperforms TensorRT by 2.34× on TensorCore,
while the speedup on SIMT cores is only 1.16×. This
is mainly because TensorCore can greatly accelerate the
compute-intensive part of the model, making the optimization
of the remaining memory-intensive part more critical.

Note that Ansor is not included in this experiment as it
does not support TensorCore. For a fair comparison, we
disable WELDER’s TensorCore feature and evaluate these
FP16 models on SIMT cores by comparing with Ansor in
Figure 11. It shows a slightly higher speedups (1.74× on
average and up to 2.82×) compared with the ones in FP32.

Performance on another NVIDIA GPU We also conduct
evaluations on RTX-3090, another widely-used GPU, which
utilizes a distinct Ampere architecture. The RTX-3090 ex-
hibits various new features compared to the V100, including
advancements in memory load and TensorCore instructions,
as well as a different number of streaming multiprocessors
(SM). For the sake of conciseness, we solely compared
WELDER with TensorRT on the RTX-3090, as TensorRT
consistently delivers superior performance compared to other
baselines on NVIDIA GPUs. The results, depicted in Figure
12, illustrate that WELDER outperforms TensorRT with an
average speedup of 1.40×, calculated using the geometric
mean of all 34 test cases. Notably, this speedup is similar
to the one observed on the V100 GPU, which amounted to
1.36×, thereby highlighting WELDER’s adaptability across
diverse GPU architectures.

Patterns automatically discovered. WELDER automati-
cally discovers around 300 different fused subgraphs, which
is counted by unique operator types under all 34 compiled test
cases of the 10 models. Among them, 89 patterns contain at
least two reduction-based operators which cannot be covered

710 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: End-to-end model inference performance on NVIDIA V100 GPU (TensorCore enabled). (left : batch size of 1, right :
batch size of 64).

Figure 11: Comparing with Ansor under FP16 w/o Tensor-
Core

Figure 12: Comparing with TensorRT on NVIDIA RTX-3090

by simple element-wise fusion rule in Ansor. To the best
of our knowledge, many of these patterns are uncommon
fusion patterns that have not been explored by manually-
designed rules or automatic fusion optimizations. Figure 4
illustrates two examples of such patterns, which fuse multi-
ple Convolution or MatMul (i.e., Dot) operators with other
memory-intensive operators into a single kernel. The number
of operators fused in each pattern ranges from 2 to 48 and can
achieve an average speedup of 1.87× (up to 5.4×) compared
to basic fusion methods such as those used in Ansor. The
most common pattern has been used 191 times in all models.

Such a general fusion capability often allows WELDER
to outperform the model-specific implementations opti-
mized by experts. For example, FasterTransformer [2] is
a manually-optimized benchmark for transformer models
from NVIDIA. It supports both element-wise fusion, such
as BiasAdd+Transpose, and non-element-wise fusion, such
as Layernorm+Softmax. In WELDER, all these patterns can
be automatically fused. Even more, WELDER can further
fuse Q*K with the following Softmax in the attention block
when the sequence length is not long (e.g., they are fused

Fused operators # Ops

DepthwiseConv2dNative Broadcast Add Broadcast Di-
vide Erf Broadcast Add Multiply Broadcast Multiply Con-
volution Broadcast Add Broadcast Divide Erf Broadcast
Add Multiply Broadcast Multiply Convolution Broadcast
Add Broadcast Divide Erf Broadcast Add Multiply Broad-
cast Multiply Convolution Broadcast Add Broadcast
Divide Erf Broadcast Add Multiply Broadcast Multiply
Concat Convolution Broadcast Add

48

Dot Relu Dot Relu Dot Relu Dot Relu Dot Relu Dot Relu
Dot

13

Table 4: Examples of fusion patterns discovered by WELDER.

in BERT where the sequence length is 128, but are not
fused in Conformer where the sequence length is 512, this is
automatically decided by WELDER).

For the three models supported by FasterTransformer, we
compare its performance with WELDER in Table 3. In general,
WELDER achieves an average speedup of 1.11× (up to 1.73×
on ViT) over FasterTransformer. Based on our profiled data,
The notable speedup for ViT under batch size of 1 can be
attributed to a convolution operator with a non-conventional
shape, where both stride and kernel size are 32 (ViT’s patch
size). For this single operator, WELDER’s generated kernel
is 4.4x faster. This highlights WELDER’s adaptability in
managing new operator shapes or model patterns.

Another example is NeRF, a popular 3D scene generation
model that is typically implemented as a 7-layer MLP. To
take full advantage of GPUs, domain experts often need to
implement such models from scratch to achieve better fusion
result (e.g., fully-fused MLP in [35]). With WELDER, we
can automatically fuse this 7-layer MLP into a single GPU
kernel. The generated kernel uses TensorCore for the first
6 layers and uses SIMT Core for the output layer, with all
intermediate results stored in shared memory. We observe
that our automatic fusion result can achieve a similar speedup
(over 5×) to the values reported in [35] (we are unable to
evaluate their code [34] as it does not support V100 GPUs).

Finally, for CNN models such as NAFNet, BSRN, and
MobileNet, WELDER is able to fuse different types of con-
volutions with other operators (e.g., Pooling, PixelShuffle,
etc.). For example, in NAFNet, our system can fuse back-to-
back pointwise convolutions together with the normalization

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 711

Figure 13: Latency, GPU kernel count, global memory transac-
tion executed and intermediate result size (IRS) For 3 selected
models (FP32, batch size 64).

Figure 14: Varying input size, comparing with Welder-base.

operations between them. Another interesting pattern is in
models with multiple separable convolution layers, where
each layer consists of two operations: a depthwise convolution
(DWConv) and a pointwise convolution (PWConv). WELDER
is able to determine the optimal fusing order for these two
types of operators based on their operator configurations. For
example, on the top layers where the feature maps are large
and the number of channels is small, WELDER constructs a
DWConv+PWConv fusion group because it is better to cache
a complete feature map in shared memory. In contrast, on
the bottom layers, WELDER constructs a PWConv+DWConv
fusion group which caches a complete channel for DWConv
to reuse, as the feature map becomes smaller.

Ablation and sensitivity study. To demonstrate the benefits
of the holistic memory optimization provided by WELDER,
we create two variants of WELDER: “WELDER-none” dis-
ables all inter-operator tile connection and only searches for
intra-operator schedules, and “WELDER-base” only enables
inter-operator tile connection at the register layer. We also
include Ansor in this experiment, as it is another codegen-
based approach similar to ours. As shown in Figure 13,
enabling register layer tile connection, WELDER-base reduces
latency by an averaged 52% (i.e., 2.08× speedup), kernel
launch count by 67% , global memory transactions by 52%
and intermediate result size (IRS) by 66% compared with
WELDER-none. Note that the metrics of WELDER-base is
similar to that of Ansor, demonstrating the efficiency of our
general tile-based memory scheduling compared with the rule-
based fusion in Ansor. Moreover, by enabling tile connection
at shared memory layer, WELDER is able to further reduce
latency by an averaged 29% (with up to 1.82x speedup),
kernel launches by 60%, transactions by 25% and IRS by

Model Ansor time(s) Ansor Trials WELDER Time(s) WELDER Trials

BERT 15285 8000 244 651
Mobilenet 45527 25600 561 927

Table 5: Compilation time of Ansor and WELDER

Model Ansor WELDER TensorRT

Resnet50 2.403 2.327 2.351
Resnet18 1.071 1.094 1.158

UNet 8.670 9.251 4.429
VGG16 4.267 4.123 2.584

Table 6: Performance on compute intensive models

65% compared with WELDER-base. Note that the reduction
of memory transactions is less than the reduction of IRS,
because memory access on the model weights part cannot be
optimized by fusion.

In addition, we conducted a sensitivity study by varying
the input sizes of three selected models: BERT (128-512
text length), Conformer (128-512 audio frames), and NAFNet
(256x256-1024x1024 image input). The results, as depicted
in Figure 14, reveal that the fusion gain significantly increases
for NAFNet when employing larger images. Conversely, the
gain diminishes for the other two transformer-based models.
This discrepancy can be attributed to the fact that transformer-
based models exhibit quadratic computational growth with
respect to the input sequence length, thereby reducing their
memory-intensive nature.

Compilation time. Table 5 compares WELDER’s compila-
tion time against Ansor, which is a search-based compiler
requiring many tuning and profiling trails. We chose not to
include other baselines in the comparison since they directly
invoke library kernels, thereby eliminating the need for extra
time dedicated to tuning and code generation. It shows that
the end-to-end compilation speed of WELDER is more than
an orders of magnitude faster than Ansor. This is because
Ansor generates a very large search space for all the oper-
ators, and implicitly optimizes data reuse through machine
learning-based tuning. This often requires a large number of
tuning trials (e.g., 800 per operator in our evaluation) and
has additional overheads to train a cost model on the fly. In
contrast, WELDER decomposes the optimization space using
a layered scheduling policy and searches for efficient tiling
configurations using an analytic cost model to estimate traffic
costs. As a result, WELDER requires significantly fewer tuning
trials (20 per subgraph in our evaluation) than Ansor.

Performance on compute intensive models. Traditional
models like ResNet [21], VGG [43], and UNet [40] are
typically dominated by some large operators such as convolu-
tion. For these compute intensive models, although WELDER
mainly focuses on memory access optimization, WELDER
can mostly achieve comparable performance to state-of-
the-art baselines like TensorRT. This is because WELDER

712 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 15: End-to-end model inference performance on AMD ROCm MI50 GPU (left : batch size of 1, right : batch size of 64).

can still generate high performance single operators (using
the multi-level tiling abstraction, which is similar to Ansor
[50] or Roller [52]) although there might be few chances
to connect the tile at a higher memory level. However, for
some convolution operators, existing libraries like cuDNN [4]
implement them using an optimized numerical algorithm
(e.g., winograd [26]), which are difficult to automatically
derive from tensor expressions. This can result in WELDER
performing worse than TensorRT if there is no additional
memory optimization room to compensate for this gap. For
example, Table 6 compares the performance of WELDER,
Ansor, and TensorRT on four such models. For ResNet, both
systems achieve comparable performance, as the majority of
convolution operators in this model perform better when im-
plemented with the DirectConv algorithm (which is supported
by both Ansor and WELDER) instead of winograd. However,
for UNet and VGG16, the dominant convolution operators are
mostly implemented using winograd in TensorRT, and there
are no further fusion opportunities for WELDER to exploit,
resulting in better performance for TensorRT. Given that this
is orthogonal to WELDER’s optimization, we leave the support
of the winograd algorithm (by rewriting tensor expressions)
to our future work.

5.3 Evaluation on AMD ROCm GPUs
We evaluate the efficiency of WELDER on AMD ROCm GPUs
by comparing its performance with PyTorch, ONNXRuntime
and Ansor. TensorRT and AStitch are not included because
they are exclusive to NVIDIA GPUs. Figure 15 shows the
end-to-end performance of the 10 DNN models. Compared
with PyTorch, ONNXRuntime and Rammer, WELDER can
outperform them by an average of 2.62×, 1.71× and 2.14×,
respectively. Compared to Ansor, WELDER achieves an
average performance improvement of 1.53×. Figure 15 also
shows the performance comparison with a larger batch size of
64, where WELDER outperforms PyTorch, ONNXRuntime,
Rammer and Ansor by an average of 1.69×, 1.23×, 1.86×
and 1.47×, respectively. Note that we have excluded some
CNN models for ONNXRuntime as they fail to execute on
it. We notice that WELDER’s speedup on MI50 is slightly
smaller than that of V100, this is because MI50’s peak FLOPS
is weaker than V100’s, while its peak bandwidth is higher,

Model Image Size Device WELDERBase(s) WELDER(s)

UNet 8k*8k GPU 38.2 14.5
VGG16 8k*8k GPU 15.7 8.30
UNet 2k*2k IPU 31.1 8.56

VGG16 2k*2k IPU 4.98 1.61

Table 7: Scale-up large DNN models to host memory

according to the official data-sheet. Such difference makes
the workload more compute-intensive on MI50, leaving less
optimization chances for memory access optimization.

5.4 Scale-up with Host Memory
WELDER’s abstracted device layer allows us to extend the
memory hierarchy to support large DNN tasks. For example,
in cases where classical CNN models like UNet or VGG16
are used to process high-resolution medical images [42], a
single tensor from some layers is often too large to fit in
the GPU memory. In these scenarios, tensor-based memory
swapping optimization techniques, such as SwapAdvisor [22]
or Capuchin [37], may not be effective due to the large tensor
granularity. WELDER addresses this issue by generating a
tile-based execution plan on the extended memory hierarchy
through holistic traffic optimization. This approach allows
us to load a data tile from the host memory, compute several
connected operator tiles by reusing the data in device memory,
and store the result back, as if it was being processed on a
single device. To evaluate the efficiency of this scheduling
approach, we compared WELDER with a variant that only
disables data reuse at the device memory layer.

Scale-up GPUs. As a preliminary experiment, Table 7
shows the performance of WELDER when scaling up UNet
and VGG16 on large image data by augmenting the GPU
memory with a host memory layer. As the results show,
by enabling tile-connection at the device memory layer,
WELDER is able to achieve average speedups of 2.63×
and 1.89× for the two models, respectively. It also reduces
host memory transfer by 3.11× and 2.90×. Note that the
ratios of reduced memory traffic are higher than the actual
speedup, as we have implemented double buffering (along
with pinned memory and CUDA streams) to overlap some
memory transfer with computation.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 713

Scale-up GraphCore IPU. We also perform a preliminary
evaluation of WELDER’s ability to scale up on the Graphcore
IPU [3], which is a DNN accelerator with a distinct architec-
ture from NVIDIA and AMD GPUs. The IPU is equipped
with massively parallel MIMD processors and a relatively
small device memory (i.e., 300MB), which poses a challenge
for it to handle even medium-sized tasks. We apply the same
tile-based scheduling to the two models for the IPU and set
the input image size to 2048*2048 to adapt to the IPU’s
memory capacity. The results in Table 7 show that WELDER’s
optimization is able to achieve average speedups of 3.63× and
3.09× for the two models, respectively. This improvement
ratio is higher than that of the GPU, which is mainly due to
that we disable the double-buffer optimization for the IPU
due to its limited memory.

6 Discussion
WELDER’s design and implementation mainly focuses on
static models. For dynamic model execution, there are two
practical ways to address this. First, the dynamic graph can be
transformed into static sub-graphs through JIT compilation,
such as PyTorch JIT compile, which has become a standard
practice in PyTorch 2.0. Then, WELDER can concentrate
on optimizing the static sub-graphs, which are typically the
computationally dominant part. Second, even though tensor
shapes may be dynamic, the internal tile in each operator can
be statically determined. This presents an opportunity for
WELDER to generate a static tile-level fusion plan but leave
the number of parallel tasks determined by the input tensor
shape.

7 Related Work
Compiler optimization like operator fusion is a widely-used
technique in DNN computation to reduce kernel launch over-
head and improve data locality in faster memory. Compilers
such as TVM [15], Ansor [50], XLA [12], DNNfusion [36]
all support operator fusion at register level. Other compilers
try to further fuse operators at shared memory, relying on
either fusion rules for a set of known operator types (e.g.,
AStitch [51], Apollo [49], DeepCuts [24]) or specific template
for a few operator combinations (e.g., Bolt [47]). Specialized
DNN runtimes such as TensorRT [7] and ONNXRuntime [8]
have incorporated expert-designed fusion rules for some com-
mon patterns in popular models such as the transformer-based
models. In contrast, WELDER works for general operators
implemented in tensor expressions without the assumption on
operator types and decides on the best fusion memory layer
automatically. This is because an operator’s resource usage
behavior (memory- or compute-intensive) often depends on
its shape, and therefore the fusion decision.

Systems like Rammer [31], HFuse [27], Nimble [25], etc.,
exploit better hardware parallelism utilization and reduce
kernel launches by either horizontal fusion or scheduling par-

allel tasks through multi-stream and CUDA graph. WELDER
builds upon Rammer by further exploring a complementary
optimization to these systems, i.e., holistic memory optimiza-
tion with a vertical fusion, resulting in a further speedup for
memory-intensive models.

Ansor [50] and Roller [52] are representative tensor compil-
ers that are focusing on intra-operator optimization through
either loop optimization or tiling optimization. Especially,
Roller [52] and Triton [44] also utilize the concept of tile to
optimize kernel performance (e.g., intra-operator data reuse).
In contrast, WELDER complements them by optimizing for
intra- and inter-operator memory access holistically. WELDER
generalizes the tile concept in Roller into a tile-graph ab-
straction, exposes a holistic tile-level scheduling space, and
proposes an efficient scheduling mechanism over the holistic
space and the explicit memory hierarchy.

Some works optimize for a specific pattern regarding to
a type of models with more aggressive operator fusions,
such as fully-fused MLP for the NeRF model [35], manually
fused kernels for CNN models [46], and attention fusion
for transformer models [2, 18]. Our evaluation shows that
WELDER can achieve most of these fusions automatically and
even produce new fusion patterns to help further optimization.

Moreover, kernel fusion techniques have been used in
traditional image processing [38, 39] or HPC [45] areas.
These efforts usually leverage domain-specific fusion rules for
their workload. WELDER focuses on DNN workload, while
it is applicable for general operators represented by tensor
expressions. It is also potentially helpful for workload that
can be implemented in tensor expressions in other domains.

8 Conclusion
By observing that modern DNN models are becoming increas-
ingly memory intensive, we introduced WELDER, a DNN
compiler that optimizes the execution efficiency based on a
new tile-graph abstraction. WELDER is able to holistically
optimize efficient intra- and inter-operator data reuse across
multi-level memory hierarchy. WELDER is the first to unify all
common operator fusions into a single framework, allowing
for the discovery of 89 uncommon fusion patterns, with the
largest one fusing 48 operators into a single kernel. This
generality enables WELDER to significantly outperform state-
of-the-art baselines. More importantly, WELDER provides a
systematic approach to take advantage of emerging trends
in the memory hierarchy, such as larger and more connected
on-chip memory, in the future AI accelerators.

Acknowledgement
We thank anonymous reviewers and our shepherd, Prof.
Byung-Gon Chun, for their extensive suggestions. This work
was partially supported by the National Key Research and
Development Program of China (No. 2021ZD0110202).

714 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
WELDER provides end-to-end DNN model compilation with
its new tile-graph abstraction. This artifact reproduces the
main results of the evaluation on NVIDIA V100 GPU.

Scope
This artifact will validate the following claims:

• End-to-end model performances. By reproducing the
experiments of Figure 9, Figure 10, Figure 11, Table 3
and Table 6.

• Motivation experiments in Figure 1 and Figure 2.

• Ablation study in Figure 13.

• Compilation time in Table 5.

• GPU stale out experiments in Table 7.

Contents
This artifacts includes all the source code to implement
WELDER. We provide a docker file to setup environments. For
each figure and table mentioned above, we provide a script
to reproduce its result. Since there are more than 50 model
test cases to compile to fully reproduce the results, which will
cost a long time (especially for the Ansor’s baseline), we also
provide pre-compiled logs and models for NVIDIA V100
GPU. Please refer to the README.md file in the repository
for more details.

Hosting
The artifact is hosted at github repository1. Please use git to
clone the repository and checkout to the osdi2023welder
branch.

Requirements
This artifacts requires a NVIDIA V100 GPU with CUDA
driver supporting CUDA runtime larger than 11.0.

1https://github.com/microsoft/nnfusion/tree/osdi2023welder

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 715

References

[1] BladeDISC. https://github.com/alibaba/
BladeDISC.

[2] FasterTransformer. https://github.com/NVIDIA/
FasterTransformer.

[3] IPU PROGRAMMER’S GUIDE. https://www.
graphcore.ai/docs/ipu-programmers-guide.

[4] NVIDIA cuDNN. https://developer.nvidia.com/
cudnn.

[5] NVIDIA cutlass. https://github.com/NVIDIA/
cutlass.

[6] NVIDIA Tensor Cores. https://www.nvidia.com/
en-us/data-center/tensor-cores/.

[7] NVIDIA TensorRT. https://developer.nvidia.
com/tensorrt.

[8] ONNX Runtime. https://github.com/microsoft/
onnxruntime.

[9] onnxconverter_common. https://github.com/
microsoft/onnxconverter-common.

[10] PyTorch. https://pytorch.org/.

[11] TensorIR. https://discuss.tvm.apache.org/
t/rfc-tensorir-a-schedulable-ir-for-tvm/
7872.

[12] XLA. https://www.tensorflow.org/xla.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, GA, 2016. USENIX Associ-
ation.

[14] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian
Sun. Simple baselines for image restoration. arXiv
preprint arXiv:2204.04676, 2022.

[15] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, 2018. USENIX Association.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[18] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 389–402, 2021.

[19] M. R. Garey, R. L. Graham, and J. D. Ullman. Worst-
case analysis of memory allocation algorithms. STOC
’72, page 143–150, New York, NY, USA, 1972. Associ-
ation for Computing Machinery.

[20] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, et al. Conformer:
Convolution-augmented transformer for speech recogni-
tion. arXiv preprint arXiv:2005.08100, 2020.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[22] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvi-
sor: Pushing deep learning beyond the gpu memory limit
via smart swapping. In 25th International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 1341–1355, 2020.

[23] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft,
Mark Gottscho, Thomas B. Jablin, George Kurian,
James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zong-
wei Zhou, and David Patterson. Ten lessons from
three generations shaped google’s tpuv4i : Industrial
product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages
1–14, 2021.

[24] Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. Deep-
cuts: a deep learning optimization framework for versa-
tile GPU workloads. In 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design
and Implementation (PLDI’21), pages 190–205. ACM,
2021.

716 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/alibaba/BladeDISC
https://github.com/alibaba/BladeDISC
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://www.graphcore.ai/docs/ipu-programmers-guide
https://www.graphcore.ai/docs/ipu-programmers-guide
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxconverter-common
https://github.com/microsoft/onnxconverter-common
https://pytorch.org/
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://discuss.tvm.apache.org/t/rfc-tensorir-a-schedulable-ir-for-tvm/7872
https://www.tensorflow.org/xla

[25] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel gpu task
scheduling for deep learning. In NeurIPS, 2020.

[26] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4013–4021, 2016.

[27] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan
Long. Automatic horizontal fusion for gpu kernels.
In 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 14–27.
IEEE, 2022.

[28] Xiaqing Li, Guangyan Zhang, H. Howie Huang, Zhufan
Wang, and Weimin Zheng. Performance analysis of
gpu-based convolutional neural networks. In 2016 45th
International Conference on Parallel Processing (ICPP),
pages 67–76, 2016.

[29] Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai,
Jinjin Gu, Yu Qiao, and Chao Dong. Blueprint separable
residual network for efficient image super-resolution. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops,
pages 833–843, June 2022.

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. CoRR, abs/2103.14030, 2021.

[31] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 881–897.
USENIX Association, November 2020.

[32] Sachin Mehta and Mohammad Rastegari. Mobilevit:
Light-weight, general-purpose, and mobile-friendly vi-
sion transformer. arXiv preprint arXiv:2110.02178,
2021.

[33] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99–
106, 2021.

[34] Thomas Müller. tiny-cuda-nn, 4 2021.

[35] Thomas Müller, Fabrice Rousselle, Jan Novák, and
Alexander Keller. Real-time neural radiance caching for
path tracing. arXiv preprint arXiv:2106.12372, 2021.

[36] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: accelerating deep neural
networks execution with advanced operator fusion. In
42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI

’21), pages 883–898. ACM, 2021.

[37] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Capuchin:
Tensor-based gpu memory management for deep learn-
ing. In Proceedings of the 25th International Conference
on Architectural Support for Programming Languages
and Operating (ASPLOS’20), 2020.

[38] Bo Qiao, Oliver Reiche, Frank Hannig, and Jürgen Teich.
Automatic kernel fusion for image processing dsls. In
21st International Workshop on Software and Compilers
for Embedded Systems, (SCOPES’18), pages 76–85.
ACM, 2018.

[39] Bo Qiao, Oliver Reiche, Frank Hannig, and Jürgen Teich.
From loop fusion to kernel fusion: A domain-specific
approach to locality optimization. In 2019 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO’19), pages 242–253. IEEE, 2019.

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image seg-
mentation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, pages 234–241,
Cham, 2015. Springer International Publishing.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[42] Nahian Siddique, Sidike Paheding, Colin P. Elkin, and
Vijay Devabhaktuni. U-net and its variants for medical
image segmentation: A review of theory and applica-
tions. IEEE Access, 9:82031–82057, 2021.

[43] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[44] Philippe Tillet, H. T. Kung, and David Cox. Triton: An
Intermediate Language and Compiler for Tiled Neural
Network Computations, page 10–19. Association for
Computing Machinery, New York, NY, USA, 2019.

[45] Mohamed Wahib and Naoya Maruyama. Scalable kernel
fusion for memory-bound GPU applications. In Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC14), pages 191–
202. IEEE Computer Society, 2014.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 717

[46] Xueying Wang, Guangli Li, Xiao Dong, Jiansong Li,
Lei Liu, and Xiaobing Feng. Accelerating deep learning
inference with cross-layer data reuse on gpus. In
European Conference on Parallel Processing, pages 219–
233. Springer, 2020.

[47] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen,
Ang Chen, and Yibo Zhu. Bolt: Bridging the gap
between auto-tuners and hardware-native performance.
In Proceedings of Machine Learning and Systems, vol-
ume 4, pages 204–216, 2022.

[48] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan
Yang. Restormer: Efficient transformer for high-
resolution image restoration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5728–5739, 2022.

[49] Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang,
Deshi Chen, Lei Chen, Renwei Zhang, Zhen Geng, Bin
Cheng, and Xuefeng Jin. Apollo: Automatic partition-
based operator fusion through layer by layer optimiza-
tion. In Proceedings of Machine Learning and Systems,
volume 4, pages 1–19, 2022.

[50] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 863–879. USENIX Association,
November 2020.

[51] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, Shuaiwen Leon Song, and
Wei Lin. Astitch: Enabling a new multi-dimensional
optimization space for memory-intensive ml training
and inference on modern simt architectures. In Pro-
ceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2022, page 359–373,
New York, NY, USA, 2022. Association for Computing
Machinery.

[52] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong
Zhou, Asaf Cidon, and Gennady Pekhimenko. ROLLER:
Fast and efficient tensor compilation for deep learning.
In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 233–248,
Carlsbad, CA, July 2022. USENIX Association.

718 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Effectively Scheduling Computational Graphs of Deep Neural Networks
toward Their Domain-Specific Accelerators

Jie Zhao
Information Engineering University

Siyuan Feng
Shanghai Jiao Tong Univerisity

Xiaoqiang Dan, Fei Liu, Chengke Wang, Sheng Yuan, Wenyuan Lv, Qikai Xie
Stream Computing Inc.

Abstract
Fully exploiting the computing power of an accelerator spe-
cialized for deep neural networks (DNNs) calls for the synergy
between network and hardware architectures, but existing ap-
proaches partition a computational graph of DNN into multi-
ple sub-graphs by abstracting away hardware architecture and
assign resources to each sub-graph, not only producing re-
dundant off-core data movements but also under-utilizing the
hardware resources of a domain-specific architecture (DSA).

This paper introduces a systematic approach for effectively
scheduling DNN computational graphs on DSA platforms.
By fully taking into account hardware architecture when parti-
tioning a computational graph into coarse-grained sub-graphs,
our work enables the synergy between network and hardware
architectures, addressing several challenges of prior work: (1)
it produces larger but fewer kernels, converting a large number
of off-core data movements into on-core data exchanges; (2)
it exploits the imbalanced memory usage distribution across
DNN network architecture, better saturating the DSA memory
hierarchy; (3) it enables across-layer instruction scheduling
not studied before, further exploiting the parallelism across
different specialized compute units.

Results of seven DNN inference models on a DSA platform
show that our work outperforms TVM and AStitch by 11.15×
and 6.16×, respectively, and obtains throughput competitive
to the vendor-crafted implementation. A case study on GPU
also demonstrates that generating kernels for our sub-graphs
can surpass CUTLASS with and without convolution fusion
by 1.06× and 1.23×, respectively.

1 Introduction and Background

Due to the slowing down of Moore’s Law, moving to DSAs is
acknowledged as promising to meet the keen desire of DNNs
for computing power [24]. After several years of investigation
on accelerators specialized for DNNs [7,8,15,22,25,29,32,55,
58], a commonly used DSA abstraction depicted on the left
of Fig.1 has been formed for this application domain, based
on which most existing DNN accelerators are manufactured.

global buffer global buffer

in-cluster interconnect in-cluster interconnect

direct memory access (DMA)

CU1 CU1

· · · · · ·

CUu CUulo
ca

lb
uf

fe
r

lo
ca

lb
uf

fe
r

DDR

host device

u× u×

c×

d×

·· ·

Goya

d← 1;c← 9;u← 1
LB← Local Memory or N/A
GB← Shared Memory
CU1← GEMM engine/TPC

Ascend

d← 1;c← 8;u← 3
LB← Unified/L1 Buffer
GB← on-chip Buffer
CU1← scalar unit
CU2← vector unit
CU3← cube unit

IPU

d← 2;c← 1216;u← 1
LB← Local Memory
GB← N/A
CU1← core

Figure 1: DNN DSA and its vendor customization.

We take the Habana Goya accelerator [32], the customized
configuration of which is shown on the right of Fig.1, as an
example to explain this abstraction. It is composed of d = 1
cluster, each including c = 9 cores that contains u = 1 compute
unit (CU) for different DNN tasks. CUs are either a tensor-
processing core (TPC) with a scratchpad local buffer (LB) or
a general matrix multiplication (GEMM) engine with no LB.
Cores are connected using an in-cluster interconnect mecha-
nism, equipped with a scratchpad global buffer (GB). Clusters,
if d > 1, are stacked, communicating data with DDR via DMA.
We also show the customized configurations of a Huawei As-
cend 910 platform [29] and a Graphcore IPU device [22] in
Fig.1. The Graphcore IPU uses the term “tile” to denote a core
and its unique LB. Hardware architecture of others [7, 8, 15]
can also be deduced according to the abstraction in Fig.1.

Hence, effectively scheduling DNNs toward this abstrac-
tion is essential to exploit the computing power of DNN accel-
erators for DSA compilers. Specialized for machining learn-
ing (ML) applications, these accelerators exhibit a scratchpad-
based memory hierarchy and parallelism across both multiple
cores and several CUs, but prior work [5, 13, 31, 54] devised
to schedule DNNs on these DSA accelerators did not con-
sider hardware architecture when partitioning a computational
graph of DNN, introducing redundant off-core data move-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 719

ments (i.e., between LB and GB/DDR) and under-utilizing
both faster local memory and parallelism across CUs.

1.1 Concepts and Notations
To explain the issues of prior work, we first introduce com-
putational graphs, which are used by existing ML frame-
works [1, 38] to represent DNN models. Fig.2 is an example.
As it can contain a large number of nodes, each of which per-
forms a computation task on several tensors, a computational
graph usually references memory footprints that exceed the
local memory capacity of its target platform and thus cannot
be scheduled as a whole. Existing schedulers first partition it
into sub-graphs and next assign resources to each sub-graph.
A sub-graph, which is also known as a fused operator (op), is
first initialized by a graph node and next grouped according
to its producer-consumer relations with others, implemented
as a kernel function or kernel executable on target platform.

st
ag

e
le

ve
l

In
pu

t

ze
ro

pa
dd

in
g

co
nv

ol
ut

io
n

ba
tc

hn
or

m

R
eL

U

m
ax

po
ol

in
g

co
nv

bl
oc

k

id
en

tit
y

bl
oc

k×
2

co
nv

bl
oc

k

id
en

tit
y

bl
oc

k×
3

co
nv

bl
oc

k

id
en

tit
y

bl
oc

k×
5

co
nv

bl
oc

k

id
en

tit
y

bl
oc

k×
2

av
er

ag
e

po
ol

in
g

fla
tte

n

fu
lly

co
nn

ec
te

d

O
ut

pu
t

bl
oc

k
le

ve
l

Stage1 Stage2 Stage3 Stage4

(N,C,H,W)

conv: 1×1, C/2, /S
batchnorm, ReLU

conv: 3×3, C/2, /1
batchnorm, ReLU

conv: 1×1, 2C, /1
batchnorm

conv: 1×1, 2C, /S
batchnorm

+
ReLU

(N,2C,H/S,W/S)

conv block

(N,C,H,W)

conv: 1×1, C/4, /1
batchnorm, ReLU

conv: 3×3, C/4, /1
batchnorm, ReLU

conv: 1×1, C/4, /1
batchnorm

+
ReLU

(N,C,H,W)

identity block

la
ye

r
le

ve
l

conv batch
norm ReLU

Figure 2: Computational graph of ResNet-50 [16]. A node (a
circle) represents an op, and an edge (a solid arrow) denotes
a producer-consumer relation of two ops. An op is a function
that takes as inputs one to several tensors and outputs another.
At the bottom is a 3×3 convolution (conv) layer composed of
three nodes. A dashed arrow connects a stage/block with its
internal structure; a dotted box denotes a block. Other layers
can be expressed in a similar way.

We use the term “layer” to denote a set of nodes connected
in a straight-line manner, at most one out of which contains
parameters that should be learned using the gradients of the
loss. A graph node represents an op, which is traditionally
referred to as a neural layer in neural networks. Some neural
layers, however, do not require parameters to be learned (e.g.,
ReLU) or learned without using the gradients of the loss (e.g.,
batch normalization) during the training process, and they can
thus be considered as the auxiliary ops of those that indeed

require parameters, e.g., the convolution. We define layers as
such because this definition summarizes the op fusion rules
widely used by existing compilers [5, 53].

We also use the term “block” to represent an individual
layer or a component composed of multiple layers that is
recursively used in a DNN computational graph. For instance,
the conv block composed of five layers is used once in each
stage of Fig.2, while the identity block is used multiple times
within each stage.

The term “stage” is a logical, high-level abstraction used
in the architecture of the ResNet-50 model, taking the results
of its preceding stage as inputs and generating output tensors.
It is used to simplify the design of the network architecture
but usually not considered by optimizing compilers.

1.2 Challenges of Prior Work

By obscuring hardware architecture, prior work [5,19,54] con-
straints sub-graph grouping within a layer [39] (the bottom
level of Fig.2) and produces fine-grained sub-graphs. As each
sub-graph is implemented by one kernel, prior work produces
more kernels and requires more off-core data movements
between kernels. Going one level upper in Fig.2 can observe
five and four layers in the conv and identity blocks, so the en-
tire network may require hundreds to thousands of kernels and
off-core data movements of the same order of magnitude [21],
resulting in high pressure on the limited memory bandwidth
of a DSA platform. In addition, managing such a large number
of off-core data movements for DSA is non-trivial because,
unlike a general-purpose architecture reinforced by its mature
hardware mechanisms, the hierarchical scratchpad memory
of the later is still controlled by hand or software [37].

Even though managing the data movements across a DSA’s
memory hierarchy is possible, generating fine-grained sub-
graphs still misses the across-layer instruction scheduling
opportunities. Once formed, each sub-graph is lowered to a
loop nest pipeline, to which memory optimizations and loop
transformations like tiling and fusion are applied to better uti-
lize hardware resources. While their different compositions
constitute the search space that existing autotuners [2,6,26,57]
navigate to select the optimal scheduling, across-layer instruc-
tion scheduling opportunities, e.g., overlapping the memory
promotion statement of weights and the computation task of
a 3×3 conv layer with those of its preceding 1×1 conv layer
in Fig.2, are not covered by such spaces.

Finally, since the imbalanced memory usage distribu-
tion, which refers to a phenomenon where memory usages
vary across network architecture [30], is not exposed/ex-
ploited, the above scheduling paradigm also under-utilizes
the faster local memory of DSA. On the top of Fig. 2,
ResNet-50 is partitioned into four stages, each composed of
one conv block and two or more identity blocks. A conv block
converts its input with shape [N,C,H,W] into [N,2C,H/S,W/S],
performing a down-sampling operation when S > 1, but an

720 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

identity block does not change its tensor shapes. The memory
usage of stage1 is S2

2 × larger than that of stage2, and this
property also exists in stage3 and stage4. If the faster memory
of the target DSA is saturated when executing stage1, it will
be under-utilized when executing the remaining stages.

1.3 Our Solution and the Organization of the
Paper

To address the aforementioned issues on DSA platforms, we
introduce a novel scheduling approach in this paper. First,
as redundant off-core data movements are caused by fine-
grained sub-graphs produced by existing tools [5, 13, 19, 44],
our approach has to construct coarser-grained sub-graphs that
can generate larger kernels, which can change massive output
tensors originally exchanged through GB/DDR of Fig.1 into
intermediate tensors that can stay in LB of the later, thereby
converting many off-core data movements between kernels
into on-core data exchanges within kernels. Second, to enable
across-layer instruction scheduling outside the search spaces
of prior work [31,57,59], a sub-graph constructed by our work
must be able to group layers or even blocks like those of Fig.2,
thus better hiding memory latency and exploiting the paral-
lelism across CUs. Finally, to saturate the faster local memory
of a DSA platform in the presence of imbalanced memory
usage distribution [30], our method should consider the inter-
nal relations between coarser-grained sub-graphs such that a
better scheduling order can be obtained.

With these considerations in mind, we design and imple-
ment a novel scheduling approach–GraphTurbo. §2 exempli-
fies the core idea and presents the overview of GraphTurbo.
§3 explains how GraphTurbo constructs, splits and orders
coarse-grained sub-graphs, to the results of which §4 gener-
ates larger kernels. §5 reports the experimental results of seven
DNN inference models on a DSA platform, which demon-
strate that, while achieving performance close to the vendor-
crafted implementation, GraphTurbo outperforms TVM [5]
and AStitch [60] by 11.15× and 6.16×, respectively. A case
study on GPU also shows that GraphTurbo can surpass CUT-
LASS [27] with and without conv fusion by 1.06× and 1.23×,
respectively. Finally, §6 discusses the related work, and §7
concludes the work.

1.4 Contributions
In summary, this paper makes the following contributions.

• We recognize the importance of considering hardware
architecture at the graph partitioning level, enabling the
synergy between network and hardware architectures.

• This synergy reduces off-core data movements, better sat-
urates the valuable local memory, and empowers across-
layer instruction scheduling.

• We design and implement a novel scheduling approach
GraphTurbo, addressing the deployment of DNNs on
DSA chips and offering insight to other platforms.

• The experimental results demonstrate that GraphTurbo
can outperform two state-of-the-art tools and achieve
performance comparable to the vendor-crafted code.

2 Core Idea and Overview

This section first explains the core idea of GraphTurbo and
next presents its overview.

2.1 Exemplifying the Core Idea
We use Fig.2 that classifies a batch of input images into dif-
ferent categories as an example to explain our core idea. Data
parallelism is exploited across the d clusters of Fig.1, which
is always possible due to the multi-dimensional parallelism of
tensors. Decomposing the input tensors of a DNN model into
d clusters can be achieved by splitting one or multiple paral-
lelizable dimensions. We assume the batch dimension of size
N = 32 is split across these clusters, so each cluster processes
n = 8 images that have been offloaded to GB of Fig.1.

Our work studies how a DNN model is scheduled within
one cluster. The core idea is to maximally preserve the
input tensors in LB in order to convert as many off-core
data movements as possible into on-core data exchanges.
For the sake of clarity, we reproduce the stages of Fig.2 in
Fig.3a and assume that each stage performs a down-sampling
operation with S = 2.

stage1

stage2

stage3

stage4

= n×

= n×

= n×

= n×

(a) Under-utilized.

1 2 4 5 8 9 11 12

3 6 10 133 6 10 13

7 147 147 147 14

15 15 15 15 15 15 15 15 15

(b) Saturated.

tensor used to store a batch of images LB of Fig.1

images processed by the stage with the same color

Figure 3: Utilization of LB under different scheduling meth-
ods. Timestamps in (b) define the scheduling of GraphTurbo.

Existing approaches [5,13] can construct a sub-graph larger
than a layer by grouping smaller ones, but they do not know
when the grouping should terminate without hardware archi-
tectural information. Even though larger sub-graphs could
be constructed for each stage of Fig.3a, these methods only
schedule these sub-graphs according to their coarser-grained
dependencies as the arrows show in Fig.3a, which produces a
scheduling strategy that distributes each sub-graph of a stage
onto the c cores of Fig.1. Suppose that the batch dimension is

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 721

split, then each core processes one image. If an image satu-
rates LB when executing stage1, it will under-utilize this local
memory when its core executes the later three stages, since
their preceding stages reduce the tensor size by 2×, 4× and
8×, respectively, by performing down-sampling operations.

GraphTurbo can easily construct large sub-graphs for each
stage by synthesizing network and hardware architectures. It
splits these large sub-graphs into eight, four, two, and one in-
stance, respectively, converting the coarse-grained dependen-
cies between large sub-graphs into fine-grained ones between
sub-graph instances. By eliminating redundant fine-grained
dependencies, GraphTurbo executes two instances of stage1’s
sub-graph at timestamp 1 and 2 in Fig.3b, saturating LB while
exploiting the parallelism across cores by distributing other
parallelizable dimensions across them.

Next, GraphTurbo executes one instance of stage2’s sub-
graph at timestamp 3, which processes two images, both in LB,
as shown in Fig.3b, because the image size is decreased by 2×.
LB is thus not under-utilized. The parallelism across c cores
is exploited by distributing both the batch and other paralleliz-
able dimensions. Readers can follow the timestamps to infer
the scheduling order and find that LB is never under-utilized
while fully exploiting the parallelism between cores. In par-
ticular, this scheduling approach achieves a 7.97× speedup
over TVM on our experimental platform.

2.2 Overview of GraphTurbo

To obtain scheduling strategies similar to Fig. 3b, Graph-
Turbo takes in a computational graph simplified by some
standard graph optimizations [13,23] and schedules it at graph
level (§3). To construct coarser-grained sub-graphs, e.g., for
stages of Fig.3a, GraphTurbo first collects hardware informa-
tion (§3.1) to guide its grouping process (§3.2) by synthesizing
network and hardware architectures. These sub-graphs are
then split into instances, which are sorted (§3.3) to achieve the
scheduling order like in Fig.3b. How parallelism is exploited
and load balance is guaranteed across multiple cores are then
explained (§3.4), with core binding and memory scopes auto-
matically inferred. A concatenation step is then used to collect
the tensors of producer sub-graph instances (§3.5), followed
by some generalization discussions (§3.6).

The graph scheduler produces ordered sub-graph instances,
which are delivered to the kernel generator (§4), producing
kernels by combining loop fusion (§4.1) and buffer stitch-
ing (§4.2), with memory allocation and reuse automatically
managed (§4.3). For the example in §2.1, the graph scheduler
concentrates on input images. The convolution weights of
this model are getting larger but only used within layers and
do not result in communications between stages. GraphTurbo
only allocates a small, fixed size of buffers in LB to allow
for the promotion of such tensors to local memory when han-
dling each layer, and the overhead of such memory promotion
statements is hidden behind the computation (§4.4).

3 Scheduling Sub-graph Instances

This section constructs coarser-grained sub-graphs and sched-
ules their instances. To achieve this goal, we need to address
five issues and thus organize this section into five steps, with
the difficulties explained at the beginning of each.

3.1 Collecting Splitting Information
GraphTurbo relies on producer-consumer relations between
sub-graphs to group them into larger ones. This strategy, how-
ever, does not know when to stop without knowing hard-
ware architectural information. Hence, this section first col-
lects hardware knowledge for sub-graphs. As it will also
be used to split sub-graphs (§ 3.3), we refer to it as split-
ting information SplitInfo, which is a set of 4D tuples
(splitd ,nd , fd ,d). Algo.1 summarizes how to compute it.

Algorithm 1: Compute SplitInfo
1 SplitInfo←∅;
2 foreach d in [1,· · · ,depth←dimof (output of SG)] do
3 nd ← 0; splitd ← 0; fd ← ∞;

4 foreach v in [1, 2, 4, 8, 9, · · · , size(d)out put] do
5 if d peak

v e ≤sizeof (LB) then
6 nd ← nd +1; splitd ← 1; fd ← v; break;
7 foreach t in intermediates do
8 if splitd = 1 then
9 nd ← nd + num_of_op(t);

10 if match_dim(t, d) and size(d)t % fd = 0 then
11 SplitInfo←SplitInfo ∪{(splitd ,nd , fd ,d)};

Before grouped, a sub-graph SG is a node that represents
an op. When lowered, it may produce several loop nests since
the op it represents can be complex such that multiple interme-
diate tensors are used to realize its function [53]. Except the
last one that defines the output tensor, all remaining loop nests
write to intermediate tensors. Algo.1 computes SplitInfo
by first splitting the output tensor (lines 3-6) and next propa-
gating its splitting information to each of intermediate tensors
(lines 8-11) due to the following reasons.

First, a sub-graph has one output but its input tensors can
be many. Considering only the output tensor simplifies the al-
gorithmic design. Second, it is the output that determines how
the loop nests of this sub-graph should be split or tiled [41,52].
Once the information of the output and intermediate tensors is
determined, how input tensors should be split is also known.

Indeed, computing SplitInfo this way may introduce re-
computation of intermediate or input tensors, which would be
expensive when fusing multiple conv or matrix multiplication
ops. We thus use a simple cost model to prevent excessive
recomputations that offset the benefits brought by fusion.

depth represents the loop nest depth of the output tensor.
By iterating a loop dimension d from the outermost to inner
(line 2), Algo.1 makes use of the parallelism across cores as
early as possible. Next, Algo.1 defines three metrics (line 3),

722 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

splitd , fd , nd , that represent whether the current dimension
d can be split, the splitting factor of this dimension, and the
number of ops split by it, respectively.

v iterates the values of line 4 to instantiate fd . We consider
size(d)out put that denotes the loop extent of the current dimension

d as the upper bound because v > size(d)out put does not split the
current dimension d. The first three values decompose the di-
mension d into eight, four, and two cores, while guaranteeing
load balance across them. the first three stages in Fig.3b are
split this way. Values between 8≤ v≤ size(d)out put do not exploit
the parallelism of the current dimension d across cores but
parallelize other dimensions, with load balance across cores
fully considered. The splitting of stage1 in Fig.3b is an exam-
ple of this case. A value is used to instantiate fd (line 6) if the
size of memory footprints, d peak

v e, required by a sub-graph
instance does not exceed the memory capacity of LB (line 5).
peak is the size of memory footprints required by SG. nd and
splitd are also updated accordingly. As a smaller v partitions
peak into larger pieces, the v loop here is a greedy strategy.

t iterates each intermediate tensor (line 7). It takes in the
dimension d and first inspects whether the dimension can split
the output tensor (line 8). nd is increased by the number of
ops in t (line 9) if this condition is satisfied. In addition, the
4D tuple is added to SplitInfo (line 11) if the dimension d
matches one loop dimension of t and the loop extent of the
matched dimension size(d)t is dividable by fd (line 10).

By exactly computing SplitInfo for sub-graphs, Graph-
Turbo determines appropriate sizes for its generated kernels.
As SplitInfo usually has several elements and each one en-
codes a loop dimension that can be split, GraphTurbo needs
to select the best dimension for a sub-graph. We consider the
following criteria for this issue. First, a loop dimension is
better if it splits more ops. Second, a loop dimension with
a smaller splitting factor is preferred since it tends to better
saturate LB. Finally, a dimension with a smaller loop depth
is considered superior since it exhibits outer parallelism and
fewer communications. These criteria are modeled as comput-
ing the lexicographical maximum of an optimization problem

lexmax∀d∈SplitInfo (nd ,− fd ,−d) (1)

where the order of the three metrics defines the priorities.

3.2 Grouping Sub-graphs

Now we can group sub-graphs. GraphTurbo still performs
this step according to producer-consumer relations, but it con-
structs larger sub-graphs by leveraging SplitInfo to de-
termine the termination of grouping, which is not restricted
within layers [5, 19, 54]. Algo.2 outlines the process.

Algo.2 first sorts a computational graph G by topologically
ordering all of its g nodes (line 1), each of which is treated
as one sub-graph SG and delivered to Algo.1 to compute its

Algorithm 2: Group sub-graphs
1 SG[1, · · · ,g]←topological_order (G); b← g;
2 foreach i in [1, · · · ,g] do
3 SplitInfo[i]← Algo.1 (SG[i]);
4 BestSplit[i]← Eq. (1) (SG[i],SplitInfo[i]);
5 repeat
6 {G,s}←straight_merge(SG[1, · · · ,b],SplitInfo[1, · · · ,b]);
7 foreach i in [1, · · · ,s] do
8 BestSplit[i]← Eq. (1) (SG[i],SplitInfo[i]);
9 {G,d}←diamond_merge(SG[1, · · · ,s],SplitInfo[1, · · · ,s]);

10 foreach i in [1, · · · ,d] do
11 BestSplit[i]← Eq. (1) (SG[i],SplitInfo[i]);
12 {G,b}←branch_merge(SG[1, · · · ,d],SplitInfo[1, · · · ,d]);
13 foreach i in [1, · · · ,b] do
14 BestSplit[i]← Eq. (1) (SG[i],SplitInfo[i]);
15 until s, d and b all do not decrease;

SplitInfo (lines 2-3). Next, Algo.2 considers three differ-
ent merging patterns (lines 5-15) to group these sub-graphs,
which reduces the number of sub-graphs from g to s, d, and
b, respectively. The sub-graph index and BestSplit are up-
dated each time a merging pattern is grouped.

SG1

SG2

(a) Straight.

SG1

SG2 SG3

SG4

(b) Diamond.

SG1

SG2

SG3

(c) Branch.

Figure 4: Merging patterns considered by GraphTurbo. A
solid arrow is the producer-consumer relation, and a dashed
one denotes a possible connection with another sub-graph.

The merging patterns considered by Algo.2 are defined as
follows. First, two sub-graphs SG1 and SG2 form a straight
pattern (Fig.4a) if and only if (iff) SG1 is the unique producer
of SG2 and SG2 is the unique consumer of SG1. Second, four
sub-graphs make a diamond pattern (Fig.4b) iff there are only
one entry, one exit and at least two paths from the entry to the
exit. The entry (SG1)/exit (SG4) can be a consumer/producer
of multiple outside sub-graphs. Third, three sub-graphs con-
stitute a branch pattern (Fig.4c) iff there exists only one exit
and multiple paths to it, and SG1 could be but not necessarily
a producer of SG2.

Instead of grouping all components of a merging pattern,
Algo.2 fuses a subset of them into a larger sub-graph SG, as
shown by a red dotted box in Fig.4. Algo.2 uses two heuristic
rules to determine whether the grouping is allowed.

(i) SG1 and SG2 of Fig.4a (or SG2 and SG3 of Fig.4c) can
be merged if two preconditions are satisfied. First, the
splitting factor of SG2 of Fig.4a (or SG3 of Fig.4c) is no
less than that of SG1 (or SG2). As a larger splitting fac-
tor partitions peak into smaller pieces, this precondition

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 723

prohibits the propagation of a sub-graph’s large splitting
factor to its followers in the case of down-sampling op-
erations. Second, the splitting factor of SG is not larger
than that of SG2, ensuring that the grouping result does
not deteriorate the utilization of LB exploited by SG2.
SplitInfo of SG can be computed using Algo.1.

(ii) SG2, SG3 and SG4 of Fig.4b can be merged into SG if
the splitting factor of SG is not larger than the maximum
among the splitting factors of SG2, SG3 and SG4, which
is also used to guarantee good LB utilization.

We now explain how the conv and identity blocks of Fig.2
are grouped. First, Algo.2 identifies the straight patterns in
each layer and obtains Fig.5a. Specifically, the three layers
on the left of the conv block in Fig.2 is identified as a straight
pattern, fused into one sub-graph denoted using label 1. Nei-
ther of the conv and the ReLU layers of this conv block is
identified as a straight pattern; instead, they both form individ-
ual sub-graphs, represented using labels 2 and 3, respectively.
Similarly, the three conv layers of the identity block constitute
a straight pattern, depicted using the sub-graph with label 4;
and its ReLU layer is denoted using label 5.

1

2
3

4
5

(a) Branch pattern.

1 {2,3} {4,5}

(b) Straight pattern.

{1,2,3} {4,5}

(c) Straight pattern.

Figure 5: Merging the conv and identity blocks of Fig.2.

Next, Algo.2 finds two branch patterns (i.e., sub-graphs 3
and 5 in Fig.5a) and produces Fig.5b, the straight patterns of
which are first merged into Fig.5c and finally form a single
sub-graph {1, 2, 3, 4, 5}. The preconditions of the above two
rules are all satisfied when merging these patterns. In practice,
Algo.2 can also group the multiple identity blocks and a conv
block into a single sub-graph, thus producing four large sub-
graphs for stages in Fig.3a. These large sub-graph are no
longer grouped because the second precondition of Rule (i)
is not satisfied.

3.3 Ordering Sub-graph Instances
The synergy between network and hardware architectures
enabled by §3.1 and §3.2 partitions a computational graph
into larger sub-graphs. In addition, GraphTurbo also uses
SplitInfo to split each sub-graph into instances, the order
of which is determined in this section.

For instance, each stage in Fig.3a is converted into one
to multiple labeled sub-graph instances with the same color,
forming the new graph in Fig.6. All instances at the same
horizontal level are homogeneous and thus can be executed
in any other. The edges between these instances are inherited
from sub-graphs, but the gray ones are redundant and easily

eliminated. Specifically, we determine whether an edge is
redundant or not by checking whether the output of a producer
instance is used by one consumer instance. This is achievable
because combining SplitInfo and the shape of an output
tensor can perform this checking. The considered edge is
redundant and eliminated if the checking result is true.

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4

c1 c2

d1

Figure 6: Sub-graph instances of the four stages in Fig.3a.

GraphTurbo currently uses two approaches to schedule a
computational group G of sub-graph instances. First, it visits
sub-graph instances in a breadth-first search (BFS), producing
a schedule order shown in Fig.7a. Second, GraphTurbo visits
them in a depth-first search (DFS), as described in Algo.3. We
currently only use the BFS and DFS searches because they
simplify the algorithmic design of GraphTurbo. As will be
reported in §5, this choice achieves promising results. We are
currently working on an integer linear programming approach
to find a better solution than both of these search heuristics,
which will be released soon.

Algo.3 first instantiates a list visit by visiting G in any or-
ders (line 1) and next moves all of its sub-graph instances with
no in-degrees from visit to another list ready in order (lines
3-4). The in- and out-degrees of SGI are only determined by
the black edges in Fig.6. The last SGI with no in-degrees of
visit (lines 6-8) is extracted and added into the ordered list
order (line 9), with its consumers updated (lines 12-13) and
moved from visit to ready (line 14).

Algorithm 3: Schedule Sub-graph Instances
1 visit← get_subgraph_instances(G);
2 while visit 6=∅ do
3 foreach indegree(SGI) = 0 in visit do
4 ready← ready.push(SGI); visit← visit \SGI;
5 while ready 6=∅ do
6 p← sizeof(ready);
7 while indegree(SGIp) 6= 0 do
8 p← p−1;
9 order← order.push(SGIp); ready← ready\SGIp;

10 foreach SGI in visit and ready do
11 if SGIp is a producer of SGI then
12 remove_producer(SGI, SGIp);
13 indegree(SGI)← indegree(SGI) −1;
14 ready← ready.push(SGI); visit← visit \SGI;

As an example, Fig.7 illustrates how the three lists change
when Algo.3 is applied. In particular, as G can be visited
in any order, we assume that it is visited in a BFS order
for illustrative purpose. order is inspected from left to right.
GraphTurbo finally selects the better one (Fig.3b) between
the two results with respect to memory utilization. The labels

724 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of each circle in Fig.7f would change if G is visited in other
orders but the colors not, which does not matter because all
instances of the same sub-graph are homogeneous.

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 c1 c2 d1

(a) The schedule order of BFS.
b1 b2 b3 b4 c1 c2 d1

a1 a2 a3 a4 a5 a6 a7 a8

visit

ready

order

(b) The first step of DFS.

b1 b2 b3 c1 c2 d1

a1 a2 a3 a4 a5 a6 a7

a8

b4

visit

ready

order

(c) The second step of DFS.
b1 b2 b3 c1 c2 d1

a1 a2 a3 a4 a5 a6

a7a8

b4

visit

ready

order

(d) The third step of DFS.

b1 b2 b3 c1 d1

a1 a2 a3 a4 a5 a6

a7a8 b4

c2

visit

ready

order

(e) The fourth step of DFS.
a8 a7 b4 a6 a5 b3 c2 a4 a3 b2 a2 a1 b1 c1 d1order

(f) The schedule order of DFS.

Figure 7: Different schedule orders of Fig.6. We only show
the first four steps of Algo.3 for the sake of clarity.

3.4 Inferring Core Binding and Buffer Scopes
The next step is to bind each ordered sub-graph instance to
multiple cores. A sub-graph instance’s binding strategy can
be determined by inspecting the loop dimensions of its output
tensor. However, determining binding strategies individually
may introduce more communications due to the mismatching
between them. We use Algo.4 to infer binding strategies.

As Algo.4 can detect the mismatching between a pair of
producer-consumer sub-graph instances, it also uses such in-
formation to infer at which buffer scopes the output tensor
of a sub-graph instance should be declared. It first visits a
schedule order O like Fig.7f in a reverse order and records
all corresponding sub-graph instances in a list visit (line 1).
Defined by default as an empty tuple [] and LB, bind[i] and
scope[i] are used to record the binding strategy of a sub-graph
instance and at which buffer level its output tensor is declared,
respectively (line 2). As an output tensor is taken in by an-
other sub-graph instance, we do not care about where the
input tensors of a sub-graph instance should be declared. A
sub-graph instance also produces intermediate tensors not
considered by Algo.4, which GraphTurbo manages using its
kernel generator (see §4.1).

Algo.4 infers binding strategies and buffer scopes for each
sub-graph instance denoted by visit[i] (lines 3-16). If bind[i]
is empty (i.e., no information can be used for inference) or
scope[i] is not LB (i.e., the known information cannot be used
for inference) (line 4), Algo.4 instantiates bind[i] using a plain
strategy (line 5) and infers the binding strategy of the input
tensors of the current sub-graph instance. A plain binding
strategy is obtained by greedily allocating more cores from the
outermost to inner loop dimensions of a tensor. The binding
factors along multiple dimensions form a multi-dimensional

Algorithm 4: Infer Core Binding and Buffer Scopes
1 visit← DFS_visit_reverse_order(O); size← sizeof(visit);
2 bind[1, · · · ,size]←{[]}; scope[1, · · · ,size]←{LB};
3 foreach i in [1, · · · ,size] do
4 if bind[i] = [] or scope[i] 6= LB then
5 bind[i]← plain_binding (output of visit[i]);
6 if infer_binding (bind[i]) = [] or is invalid then
7 continue;
8 foreach producer[j] in visit do
9 if bind[j] = [] then

10 bind[j]← infer_binding (bind[i]);
11 else if bind[j] 6= infer_binding (bind[i]) then
12 scope[j]← GB;
13 else
14 continue;
15 else
16 bind[i]← update_binding (bind[i]) uses more cores than

plain_binding (output of visit[i]) ? update_binding
(bind[i]) : plain_binding (output of visit[i]);

tuple. Algo.4 tries to instantiate a binding factor by iterating
integers 8, 4, 2, and 1, which guarantees load balance across
cores. The iteration turns into its next value if a loop extent
sized is not dividable by current one. Note that some tensors
can have some specific requirements annotated to their loop
dimensions, which cannot be bound to cores.

Next, Algo.4 uses infer_binding to infer the binding strate-
gies of visit[i]’s input tensors, which are the output tensors
of visit[i]’s producers (line 8). The inference is achieved by
first matching loop dimensions of an input tensor as line 10 of
Algo.1 does and next propagating the binding factors of the
matched dimension from the output tensor. A binding strategy
can be invalid if it does not satisfy the annotated requirements.
Hence, Algo.4 falls into one of the following three cases when
the inferred binding strategy is neither empty nor invalid: (1)
bind[j] is instantiated by the inferred binding strategy if it
has not yet been defined (lines 9-10); (2) scope[j] is overwrit-
ten by GB if the already defined bind[j] does not match the
inferred binding strategy (lines 11-12), since a communica-
tion is required here (see §3.5); (3) no mismatching between
the already defined bind[j] and the inference succeeds, and
Algo.4 steps into next iteration (lines 13-14).

bind[i] is inferred and not empty in the else case (line 15),
for which Algo.4 tries to update bind[i] by reconsidering the
possibly annotated requirements of visit[i]’s output tensor and
computes a plain binding strategy for it. The one using more
cores between these two binding strategies is finally used to
rewrite bind[i] (line 16).

3.5 Concatenating Instance Outputs
As GraphTurbo splits a sub-graph into multiple instances, the
output tensor of a sub-graph is also partitioned into multiple
pieces. Hence, this section introduces the step to concate-
nate the outputs of these sub-graph instances.

To implement this step, GraphTurbo detects fine-grained

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 725

dependencies between sub-graph instances and introduces
concatenation ops before each consumer of multiple produc-
ers, obtaining Fig.8 for the running example. A concatenation
op is lightweight since its inputs and output stay in either LB
or GB. GraphTurbo needs to insert additional ops for moving
data across the memory hierarchy if the binding strategies and
memory scopes of the tensors taken in by a concatenation op
are different from each other and/or those of its output.

Fig.9 depicts two scenarios where such (gray) ops should
be inserted. A sub-graph instance or an auxiliary op is denoted
using an ellipse that displays the shape, scope and binding
strategy of its output tensor. On the left, a copying op is intro-
duced once mismatching between the memory scopes is cap-
tured, promoting data from its input (GB) to its output (LB).
On the right, a redistribution op is inserted due to the differ-
ence between binding strategies, triggering a communication
between cores. This can be achieved by resetting the tuple
using the smaller binding factors along each dimension.

a8 a7 a6 a5 a4 a3 a2 a1

b4 b3 b2 b1

c2 c1

d1

concat concat concat concat

concat concat

concat

Figure 8: Concatenate
instance outputs.

shape=[2,28,28,512],
scope=GB,
bind=[2,2]

shape=[2,28,28,512],
scope=LB,
bind=[2,4]

copy(LB,GB) redistribute([2,2])

shape=[4,28,28,512],
scope=LB,
bind=[4,2]

Figure 9: Insert data movement ops.

3.6 Generalizing the Approach

Now GraphTurbo can effectively schedule a DNN computa-
tional graph, but we made some assumptions in its design.
This section discusses how they can be generalized. First, §3.1
assumes that a sub-graph has one output tensor, which is often
the case in practice. One can repeat Algo.1 for each output
tensor of a sub-graph that with multiple output tensors.

Second, the rules defined in §3.2 take into account down-
sampling operations in a DNN model. However, our scheduler
can also be generalized to target up-sampling operations by
simply modifying Rule (i). A further split op, which can be
considered as the opposite of the concatenation op introduced
in §3.5 may be required to distribute the output of a sub-graph
instance to its multiple consumers. We did not experiment
with up-sampling operations in this work.

Third, §3.3 uses two methods to order sub-graph instances,
which are simple but effective, as will be demonstrated in
§5. We are now investigating another heuristic by allocating
higher priorities to sub-graph instances with heavier memory
footprints and plan to release it in the future.

Finally, GraphTurbo greedily uses LB, but, as a suggestion,
it could be replaced by GB to schedule a computational graph

across the d clusters of Fig.1. It could also be substituted
by faster memory of other platforms, e.g., shared memory
of GPU. Interestingly, much larger LB sizes would simplify
the algorithmic flow of GraphTurbo. Even when splitting a
sub-graph instance is unnecessary, GraphTurbo could obtain
a similar scheduling to TVM but with across-layer memory
optimizations (§4.4) fully considered. Moreover, making use
of the higher-level buffer, e.g., those residing in CUs of Fig.1
if any, is profitable, since data exchanges between such buffers
and LB may dominate the communications in such cases.

4 Kernel Generation for Sub-graph Instances

Once scheduled sub-graph instances are obtained, the ker-
nel generator can take each of them as input and lower them
into loop nest pipelines. The task of our kernel genera-
tor is to generate larger kernels by implementing loop
transformations and stitching the intermediate tensor in
the faster local memory of a DSA platform. To minimize
the engineering cost, we prototype our kernel generator in
TVM [5], but it may fail to produce a single kernel for one
sub-graph instance. Fig.10 exemplifies this issue by gradually
expanding one sub-graph instance, b3, of Fig.8.

LB buffer b3

read inputs

write output

conv block

identity block

identity block

identity block

layer #1

layer #2

layer #3 layer #4

layer #5

conv

batchnorm

ReLU

buffer stitching buffer stitching loop fusion

buffer stitching is performed between the components connected by
loop fusion is performed between the components connected by

an op that can be expressed using loop nests of arithmetic operations

Figure 10: Expand b3 to generate a single kernel for it. b3 is
sub-graph instance of stage2 of Fig.2. It is expanded to one
conv block and three identity blocks, each of which is then
expanded to multiple layers. How the conv block is expanded
is shown in the middle, which obtains five layers shown on the
left of the block level of Fig.2. These layers are labeled, and
how layer #2 is expanded is shown on the rightmost, which
produces the three ops shown at the layer level of Fig.2.

The rightmost part is what TVM’s kernel generator takes
in, but Fig.10 shows that b3 is composed of 38 ops (11 for the
conv block and 9 for each identity block), out of which 13 are
conv ops (4 for the conv block and 3 for each identity block).
Performing loop fusion across multiple conv ops is outside the
power of TVM’s kernel generator. Although CUTLASS [27]
was recently integrated into TVM to alleviate this problem for
GPU [50], the number of acceptable conv ops is still limited.
Furthermore, even if a similar vendor-crafted library can be
offered on a DSA platform, the kernel generator would still
put the output of a sub-graph instance in DDR, which in turn

726 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

would regress the benefit created by GraphTurbo.

4.1 Loop Fusion within Layers
The kernel generator can easily fuse ops within a layer. We use
layer #2 in Fig.10 as an example and lower it to the loop nest
pipeline shown in the middle of Fig.11. Since TVM requires
users to write schedule templates for these loop nests, simply
adopting its workflow cannot fully automate GraphTurbo.

b3

conv

bnorm

ReLU

1 # conv
2 for i in range_a:
3 for j in range_b:
4 out[i,j]=

conv(in[i,j],w[i,j])
5 # batchnorm
6 for i in range_a:
7 for j in range_b:
8 norm[i,j]=

bnorm(out[i,j])
9 # relu
10 for i in range_a:
11 for j in range_b:
12 res[i,j]=

relu(norm[i,j])

1 for ii in inter_tile_range_a:
2 for jj in inter_tile_range_b:
3 # promote weight to GB
4 for i in intra_tile_range_a:
5 for j in intra_tile_range_b:
6 w_llb[i,j]=w[32*ii+i,32*jj+j]
7 # promote weight to LB
8 for i in intra_tile_range_a:
9 for j in intra_tile_range_b:
10 w_l1[i,j]=w_llb[i,j]
11 # fused computation
12 for i in intra_tile_range_a:
13 for j in intra_tile_range_b:
14 out_l1[i,j]=conv(in[...],w_l1[...])
15 norm_l1[i,j]=bnorm(out_l1[...])
16 res_l1[i,j]=relu(norm_l1[...])

anchor op to perform fusion and tiling

fetch
scope

Figure 11: Loop fusion within a layer. Left: fetch the scope
information of the sub-graph instance b3 in Fig.8. Middle:
the loop nest pipeline of layer #2 in Fig.10. Right: the tiled
and fused loop nest, with memory promotion statements of
weights automatically inserted. Red arrows connect the an-
chor op with its tiled loop dimensions. Blue arrows represent
that the ops fetch the scope information from Relay IR.

To resolve this issue, GraphTurbo selects an anchor op out
of each layer and automatically performs loop tiling on this
op. An anchor op should be set using either conv/matrix multi-
plication if the later appears in the current layer, or the last op
of the layer otherwise. In the later case, the anchor op should
be an elementwise op. The outermost two loop dimensions
are selected for tiling because they are parallelizable in both
cases. The tile sizes along the two dimensions of an anchor
op are then selected in a similar way to that used to determine
a plain binding strategy in §3.4, which greedily maximizes
the memory utilization of LB. In other words, a tile size is
instantiated using a largest integer that not only divides the
current loop extent but also allows the resulted tiled tensors
to stay in LB. Once the tile shape and sizes of the anchor
op are determined, the loop bounds of other ops can be in-
ferred and fused with the anchor op, just like what existing
techniques [41, 52] did, producing the fused and tiled loop
nest shown in the red regions of Fig.11.

By converting the tensors written by the conv and batch-
norm ops into intermediate ones, this method automatically
allocates them in faster memory, as mentioned in §3.4. Before
doing so, the kernel generator fetches the scope information
of the current sub-graph instance, i.e., b3 in Fig.11, allocating
intermediate tensors at the defined memory level. Memory

promotion statements of a weight tensor are also automati-
cally injected in the same way, as shown by the blue region
of Fig.11. Note that some ops like batch normalization can be
folded, but we keep it here for illustrative purpose.

4.2 Buffer Stitching across Layers/Blocks
After the internal of a layer is fused, we do not put its output
back to DDR but still let it remain in LB, e.g., res_l1 in Fig.11.
Hence, all layers of the conv block can exchange their data via
LB, which we refer to as buffer stitching and the kernels used
to implement these layers can be wrapped into one. The input
tensors of the conv block are also put in LB, as declared by
scope in §3.4. An identity block can be handled in a similar
way. As the output tensors of each block’s last layer also stay
in LB, the four blocks can all be stitched together.

By targeting memory-intensive ops, AStitch [60] also im-
plements a similar functionality. However, our work also con-
siders compute-intensive ops. In addition, we also try to max-
imize faster local memory between sub-graph instances. By
combining loop fusion and buffer stitching, our implementa-
tion generates a single kernel for the sub-graph instance b3.
In contrast, TVM produces one kernel for each layer, increas-
ing the number of generated kernels (65 in total) and thus
requiring more off-core data movements.

4.3 Memory Allocation and Reuse
The remaining task is to allocate space at the memory levels
defined by scope for each tensor, which is trivial to implement.
However, by putting many tensors in the faster local memory,
GraphTurbo calls for a careful mechanism to reuse the limited
LB’s capacity. We always release the space consumed by an
output tensor of a layer/block/sub-graph instance once it is no
longer used. The space can thus be reused by other tensors. LB
only needs to hold a limited number of tensors simultaneously.
In case the total size of these tensors exceed LB’s capacity,
the one with the longest liveness across multiple computation
tasks is spilled to first GB and next DDR. Fig.12 depicts the
liveness of tensors across computation tasks.

Our heuristic is different from prior work [40, 46], which
always spills the tensor with the largest memory size to lower
memory hierarchy levels. Selecting the one with the longest
liveness has a higher probability to spill a smaller tensor,
which is likely to reduce the overhead of data movements.

4.4 Across-layer Instruction Scheduling
Combining loop fusion and buffer stitching not only produces
a single kernel for a sub-graph instance, but also allows for
overlaps of different layer computation tasks. On the right of
Fig.11, promoting a weight is implemented by first copying
its tensor from DDR to GB using DMA and next hoisting the
tensor from GB to LB, which is possibly further dispatched

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 727

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

(a) Execute ct1.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

(b) Execute ct4.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

(c) Execute ct5.

in1

ct1

out1

ct2

out2

ct3

out3

ct5

out5

ct4

out4

ct6

out6

ct7

out7

(d) Execute ct7.

Figure 12: Liveness of tensors across computation tasks. A
(ellipse) computation task (ct) can be a sub-graph instance,
a block or a layer. A (rectangle) tensor is live when colored
in green or released if in gray. A ct is in execution if colored
in yellow or finished when in gray. The space of tensor in1 is
released once it is not live, reused by out3. out1 is spilled to
GB or DDR in case LB is insufficient to hold four tensors in
(d), since it lives across seven cts but others across fewer.

to individual CUs of Fig.1. The latency of these promotion
statements can be hidden behind an earlier executed layer, and
multiple CUs can execute computation tasks simultaneously.

Fig. 13 shows how this optimization is performed. A
rounded rectangular represents a layer’s tiled computation
task. Across-layer memory latency hiding takes place be-
tween the two vertical lines, and CUs can execute different
computation tasks of two tiles. Our approach significantly
enhances the opportunities of such memory latency hiding
and parallelism by increasing the optimization granularity to
a degree beyond layers studied by prior work [5, 13, 31, 54].

hidden hidden

DMA hoisting dispatching

a layer’s computation

Figure 13: Across-layer instruction scheduling.

5 Experimental Results

We conduct experiments on STCP920 [51], an SoC DSA
platform customizing the abstraction in Fig.1 using

d← 4;c← 8;u← 3
LB← 64 KB L1
GB← 8MB last local buffer (LLB)
CU1← vector core;CU2← VME;CU3←MME

(2)

The eight cores connected bidirectionally using LLB. Each
core has a 32-bit RISC-V CPU with vector extension, a vector
MAC engine (VME) and a matrix MAC engine (MME) to
handle different types of ops. As the target shares the common
hardware abstraction of many existing DSA accelerators, one
can expect similar results on other DSA platforms.

GraphTurbo resorts to LLVM v12.0.0 to compile its gen-
erated kernels on STCP920. The repository will be made
publicly accessible soon. We experiment using ResNet-50
v1.5 [16], BERT [9], and DLRM [33], extracted from MLPerf
v2.0 [43] and use their standard configurations. For BERT, we
also consider three additional configurations. Other MLPerf
models are not considered because they involve dynami-
cally shaped tensors that GraphTurbo currently does not
support. We also take into account MobileNet v2 [17], Vi-
sion_Transformer [11], DenseNet [18], and Conformer [14]
that are not included in MLPerf. Except DLRM implemented
using Pytorch v1.8.1 [38], all remaining models are imple-
mented using TensorFlow v1.13 [1]. There are no funda-
mental reasons that limit the applicability of GraphTurbo to
training models, which we intend to experiment in the future.

GraphTurbo is prototyped in TVM v0.8 [5], implemented
using 19k Python, 44.2k C/C++ and 2k miscellaneous, among
which the code used to implement the graph scheduling ap-
proach is about 7k lines. As our algorithms operate on com-
putational graphs, it does not require much effort to target
GraphTurbo to a new platform. What the engineers need to
do is to feed these algorithms with necessary architectural
information required, and a target platform should share the
same properties as the DSA abstraction in Fig.1. The code to
be changed should be lightweight in such cases.

5.1 Task Decomposition across Clusters

We first discuss how the optimal batch size is selected for a
cluster of STCP920 using BERT-128, whose sequence length
is 128. Table 1 collects the data for both throughput and la-
tency. We report the results of TVM v0.8 for this model, and
also consider the result of highly-crafted C++ implementa-
tions provided by the vendor of STCP920, which schedules a
computational graph in a similar way to our idea and imple-
ments kernel generation by hand.

Table 1: Results of BERT-128 under different batch sizes.

approach batch configuration throughput latency
size iter. batches/cluster (sentences/s) (ms)

TVM

8 1 2 138 6.79
16 1 4 512 9.48
32 2 4 512 18.96
64 4 4 512 37.92

GraphTurbo

8 1 2 138 6.79
16 1 4 512 9.48
32 1 8 4052 7.67
64 1 16 2716 23.58
64 2 8 4052 15.34

crafted code 32 1 8 4048 7.62

728 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

For TVM, a cluster’s LLB is sufficient to retain four data
batches. As allocating four batches to each cluster makes two
clusters idle, we allocate two batches to each cluster when the
batch size is eight, which obtains a 138 sentences/s through-
put and a 6.79ms latency. When the batch size increases to 16,
TVM can allocate four batches to each cluster; the through-
put and latency grow to 512 sentences/s and 9.48ms, respec-
tively. As TVM cannot allocate more batches to a cluster,
the throughput cannot further scale with the growth of the
batch size. Instead, TVM introduces a loop execution within
each cluster, which guarantees the throughput but the latency
increases as proportional to the number of loop iterations.

GraphTurbo performs the same as TVM when the batch
size is 8 and 16, since a cluster’s LLB is sufficient to han-
dle the allocated batches and we do not need to create larger
sub-graphs or split them. This illustrates that the scheduling
of TVM can be considered as a special case of our work.
The difference is observed when the batch size increases to
32, for which GraphTurbo allocates eight batches to a clus-
ter but TVM only allocates four. GraphTurbo creates larger
sub-graphs and splits them into instances, achieving a higher
throughput of 4052 sentences/s and a lower latency of 7.67ms.

When the batch size increases to 64, GraphTurbo allocates
16 batches to each cluster but suffers from both throughput
degradation and latency increase, since such a batch allocation
requires larger tensors than the implementation in §4.3 spills
more of them to slower buffers. In this case, we also introduce
a loop execution within a cluster by allocating eight batches
to it. As a result, the throughput stays at 4052 sentences/s and
the growth of latency is also alleviated when compared with
the case of allocating 16 batches to each cluster.

Table 1 also indicates that GraphTurbo achieves very close
throughput and latency to the vendor-crafted implementa-
tion. In the following context, we report the results of TVM
and GraphTurbo by selecting their optimal numbers of al-
located batches for a cluster. Both optimal batch allocation
strategies are obtained after a round of beforehand autotuning
executions. For the sake of simplicity, we discuss throughout
numbers below but the results also apply to latency.

5.2 Performance Comparison

We now report the performance. BERT is configured using
four sequence lengths, 256, 384 (the default MLPerf config-
uration), and 512. Table 2 summarizes the configurations of
each model. TVM’s throughput is listed in the rightmost col-
umn, which is preceded by the throughput units. We show the
speedups of each approach over TVM’s data in Fig.14, where
we also report the results of AStitch [60].

TVM still fuses ops within a sub-graph and produces ker-
nels that exchange data via DDR, and it also misses the in-
struction scheduling opportunities across layers. By (1) pro-
ducing fewer kernels and reducing off-core data movements,
(2) better saturating L1, and (3) further exploiting across-

Table 2: Summary of the models.

label model batch batches per cluster throughput TVM’s
size TVM GraphTurbo unit result

A ResNet-50 64 2 16 images/s 1064
B BERT-128 32 4 8 sentences/s 512
C BERT-256 16 2 4 sentences/s 412
D BERT-384 8 1 2 sentences/s 36
E BERT-512 8 1 2 sentences/s 324
F DLRM 1024 64 256 queries/s 131000
G MobileNet-v2 128 2 32 images/s 1416
H Vision_Transformer 32 4 8 images/s 40
I DenseNet 32 4 8 images/s 456
J Conformer 12 1 3 sentences/s 184

A B C D E F G H I J
0

2

4

6

8

TVM

Sp
ee

du
p

AStitch vendor-crafted implementation GraphTurbo

25
.0

0×

18
.2

2×

Figure 14: Speedups of throughput over TVM.

layer instruction scheduling, GraphTurbo outperforms TVM
by 11.15× on average.

We reproduce the functionality of AStitch for STCP920
by maximally preserving tensors in L1. However, AStitch
does not split a sub-graph into instances and thus fails to
benefit from the imbalanced memory usage distribution en-
abled by better schedule orders of sub-graph instances. Hence,
GraphTurbo obtains a mean speedup of 6.16× over it. Its
performance falls behind that of TVM for ResNet-50 and
MobileNet-v2 because AStitch prefers to produce a single
kernel for compute-intensive conv ops in these models, which
spills data to DDR and results in heavier data movements.

The vendor-crafted implementation considers all the opti-
mization opportunities studied in this paper. Manually opti-
mizing a computational graph can better exploit the trade-off
between parallelism, load balance and locality, making crafted
code sometimes obtain better performance than GraphTurbo,
e.g., for BERT-512 and MobileNet-v2. However, a manual
scheduler is also non-trivial and thus sometimes misses the
imbalanced memory usage distribution, e.g., for BERT-384.
Due to the complexity of such a scheduling strategy, the ven-
dor implementation for the last three models is still under
construction till now, and their data are thus missing. On aver-
age, GraphTurbo achieves a 1.04× speedup over the vendor-
crafted implementation.

5.3 Performance Breakdown

This section studies how different factors contribute to the
overall speedup of GraphTurbo over TVM. We consider four
variants of GraphTurbo as follows. First, we only keep the
outputs of each kernel generated by GraphTurbo in LLB as

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 729

much as possible. Second, we let these outputs stay in L1 to
the greatest extent. Third, we split sub-graphs into instances
and schedule them based on the second variant, but across-
layer instruction scheduling is disabled. Finally, we turn on
all optimizations. Fig.15 shows the comparison results.

A B C D E F G H I J
0

2

4

6

8

TVM

Sp
ee

du
p

stay in LLB stay in L1 + instance ordering + instruction scheduling

16
.9

0× 16
.9

0× 25
.0

0×

10
.6

8× 18
.2

2×

Figure 15: Individual contributions of each optimization.

The results of the second variant illustrate that converting
off-core data movements into on-core data exchanges indeed
makes sense. By achieving an average speedup of 3.67× over
TVM, the green bars also outperform the red bars, which do
not always obtain positive speedups over TVM. This demon-
strates the importance of preserving tensors greedily in LB,
i.e., L1 of STCP920.

The third variant outperforms the green bars by 2.20× on
average. ResNet-50, BERT-256, BERT-512, MobileNet-v2,
and DesneNet, that exhibit imbalanced memory usage dis-
tribution caused by their down-sampling operations, benefit
more from the ordering of sub-graph instances. Other models
that either do not have such a network property (BERT-128
and Vision_Transformer) or introduce more concatenation ops
than the remaining ones (DLRM) observe insignificant im-
provements. Finally, across-layer instruction scheduling (§4)
obtains a mean speedup of 1.72× over the third variant.

5.4 Hardware Utilization

This section evaluates how effectively GraphTurbo can utilize
DSA hardware resources. First, as the core idea is to convert
off-core data movements to on-core data exchanges, we inves-
tigate how the memory hierarchy of STCP920 is utilized. To
this end, we report in Table 3 the frequencies of each memory
level that different approaches utilize.

Table 3: Comparison of buffer scopes.

label DDR LLB L1
TVM crafted GraphTurbo TVM crafted GraphTurbo TVM crafted GraphTurbo

A 58 1 1 0 11 11 0 291 284
B 242 2 1 0 0 0 0 304 305
C 242 2 1 0 25 110 0 401 240
D 515 2 1 0 49 75 0 968 967
E 242 2 1 0 25 76 0 474 337
F 76 1 0 0 0 0 0 75 76
G 56 1 0 0 7 3 0 619 608
H 214 - 24 0 - 60 0 - 340
I 247 - 0 0 - 3 0 - 389
J 1054 - 4 0 - 813 0 - 250

TVM always puts the output tensors of its sub-graphs in
DDR, resulting in abundant off-core data movements. In con-
trast, GraphTurbo maximizes the utilization of faster local
memory, converting many off-core data movements into on-
core data exchanges. The vendor-crafted implementation also
makes use of the faster local memory. Due to their familiarity
with the hardware, the architects of STCP920 sometimes can
better manage the memory hierarchy than our heuristics, but
this manual scheduler is also tedious.

Second, we evaluate how VME and MME are utilized using
ResNet-50 and BERT-128. We report in Fig.16 the data under
different batch sizes, with the quantization version of ResNet-
50 also considered, to validate the scalability of GraphTurbo.
Other models observe similar results. The utilization of both
VME and MME increases with the growth of batch size, which
is exploited by our work. BERT-128 suffers from a degrada-
tion when the batch size changes from 8 to 16, as explained
in §5.1.

Fig.17 shows the utilization of VME and MME when exe-
cuting the four stages in Fig.3a. GraphTurbo performs similar
to TVM for stage1, but it outperforms TVM for the other three
stages, which demonstrates exploiting the imbalanced mem-
ory usage distribution can better utilize hardware resources.

1 2 4 8 16

30%

60%

90%

usage of VME usage of MME

(a) ResNet-50 (FP16)

1 2 4 8 16

30%

60%

90%

(b) ResNet-50 (INT8)

4 8 16

30%

60%

90%

(c) BERT-128

Figure 16: Usage of VME/MME. x axis denotes batch sizes.

stage1 stage2 stage3 stage4
0%

20%

40%

60%

TVM GraphTurbo

stage1 stage2 stage3 stage4
0%

20%

40%

60%

80%

Figure 17: Utilization VME (left) and MME (right) when exe-
cuting the stages in Fig.3a. y axis is the utilization percentage.

5.5 Comparison of Compilation Overhead
As compilation time is also a major concern for scheduling
DNN models, this section reports the compilation overhead of
GraphTurbo and compares it with those of the baseline meth-
ods. Table 4 reports the data in seconds, which demonstrates
that GraphTurbo can achieve better performance than the state
of the art without significantly aggravating the compilation
overhead.

730 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 4: Comparison of compilation overhead in seconds.

label TVM AStitch GraphTurbo
A 102 66 139
B 159 128 199
C 170 136 224
D 312 290 699
E 171 143 282
F 25 22 23
G 74 57 248
H 189 146 340
I 173 129 189
J 382 238 296

5.6 Case Study on GPU
We now conduct a case study using the ResNet18-Tailor
model to validate that scheduling sub-graph instances can
be extended to NVIDIA A100 GPU. We use CUTLASS
v2.9 [27] to implement kernel generation, which is compiled
using CUDA toolkit v11.4 with -O3 flag. We did not consider
the conv and maxpooling ops at the start, and avgpooling and
softmax ops at the end of this model since they do not con-
tribute to imbalanced memory usage distribution, like those
before and after the stages of Fig.2. The other layers, each
composed of a conv and ReLU ops using a circle, are shown
in Fig.18a.

1 2 3 4 5 6 7 8

(a) Original layer pipeline;
scheduled by TVM.

1 1 2 2 3 3 4 4

(b) Larger sub-graph pipeline,
scheduled by CUTLASS.

1 2

3 4
5 6

1 2

3 4
5 6

(c) Sub-graph instance pipeline, scheduled by GraphTurbo.

Figure 18: Different schedule orders of ResNet18-Tailor. The
numbers define the schedule order of each method.

We let TVM wrap CUTLASS when generating kernels
for layers. CUTLASS fuses two conv layers, partitioning the
model into four larger sub-graphs (Fig.18b), the first two of
which is split by GraphTurbo into two instances (Fig.18c). The
output tensors of the (red) sub-graph instances are stitched via
GPU registers and those of the (orange) ones through GPU
shared memory. Table 5 summarizes the results.

Table 5: Execution time in milliseconds on A100 GPU.

batch
size TVM CUTLASS

fusion
graph

scheduling
Speedup over

TVM CUTLASS fusion
64 0.99 0.84 0.83 1.19× 1.01×

128 1.88 1.62 1.50 1.25× 1.08×
256 3.51 3.04 2.83 1.24× 1.07×
512 6.76 5.83 5.44 1.24× 1.07×

average 1.23× 1.06×

By scheduling sub-graph instances and exploiting GPU
registers and shared memory between them, GraphTurbo out-
performs TVM by 1.23× on average, which demonstrates that

our idea is also useful on GPU. GraphTurbo also achieves a
mean speedup of 1.06× over CUTLASS, because scheduling
sub-graph instances also brings about benefits by exposing
and exploiting imbalanced memory usage distribution.

The reasons why the performance improvements on GPU
is not promising as on STCP920 are two-folded. On the soft-
ware side, GraphTurbo can construct a larger sub-graph that
contains more than two layers, but CUTLASS, which we use
for kernel generation here, refused to accept three or more
conv layers. Enhancing the kernel generator of TVM in the
future can address this issue. We also did not apply instruction
scheduling here. On the hardware side, the higher memory
bandwidth of this GPU also makes the improvements caused
by reducing off-core data movements not significant as on
STCP920. While STCP920 only delivers a memory band-
width of 136GB/s, this GPU can reach more than 1500GB/s.

Nonetheless, other NVIDIA software-defined platforms
with limited memory bandwidth, e.g., NVIDIA DRIVE AGX
Orin [36], could benefit from GraphTurbo. We also believe
that the software-controlled inter-cooperative-thread-array
shared memory of the latest NVIDIA H100 GPU could be
better exploited by the idea presented in this paper. Hence,
our work also offers insights to the GPU micro-architectures.

6 Related Work

Scheduling its computational graph is the first step to de-
ploy a DNN model on platforms. The difference between our
scheduler and prior work is that we consider hardware archi-
tecture when grouping sub-graphs, which enables the synergy
between network architecture and DSA, while existing meth-
ods [13, 19, 44, 49] not. By generating coarser-grained sub-
graphs and splitting them into instances, GraphTurbo exposes
the imbalanced memory usage distribution, a network prop-
erty first studied by MCUNetV2 [30]. However, MCUNetV2
only discusses tiny DNN models on microcontroller units,
while this paper considers large-scale DNN models and tar-
gets a cloud DSA chip. Some optimizations that can only
be implemented when sub-graphs are lowered to loop nest
pipelines are not considered by MCUNetV2 but studied in §4.

When a sub-graph is lowered to a loop nest pipeline, ex-
isting methods like TVM [5] fuse loop nests with the help
of manually written schedule templates. As TVM does not
scale well with the increase of op numbers within a sub-graph,
we only use TVM’s loop fusion to group loop nests within a
layer. Our implementation also avoids the need to manually
write schedule templates and inject memory promotion state-
ments of weight tensors, the later of which is automated by
interacting with the graph scheduler.

By expanding a high-level sub-graph into individual low-
level ops, XLA [13] does not restrict fusion within layers.
Nonetheless, retrieving the high-level information via low-
level ops is critical to fuse low-level ops for XLA, and manu-
ally forming profitable high-level sub-graphs is considered as

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 731

more robust than through automatic pattern matching in this
compiler [45]. GraphTurbo fully automates this process and
achieves better performance than AStitch, which has already
been demonstrated as superior to XLA [60].

IREE [20] is another work that makes use of its graph
scheduling logic when communicating data between low-
level parallel pipelined hardware/APIs. Our work differs from
IREE by focusing on scheduling instances of larger sub-
graphs, which tends to produce fewer kernels. By managing
an internal map of op sequence on the fly, Zero-Infinity [42]
exploits the fine-grained overlaps by prefetching the parame-
ters required by future ops during the execution of the current
op. A layer considered by our work usually includes multiple
ops, the execution of which is more likely to fully hide the
data transfer overhead.

Some autotuning frameworks [6, 57, 59] are also devised
to enhance the power of TVM with fewer or no hand-written
schedule templates. These autotuners use their search heuris-
tics to tune memory optimizations to further improve the per-
formance of their generated code. Unfortunately, their search
spaces are all restricted within layers [39], while our work en-
ables across-layer instruction scheduling (§4.4). In particular,
Ansor [57] represents the state of the art of this kind, which
is orthogonal to our work by neither considering the schedul-
ing of GraphTurbo nor exploiting the fusion possibilities of
multiple conv/matrix multiplication operators. Loop fusion
is also investigated by polyhedral frameworks [3, 47, 54], but
they did not consider buffer stitching that has been discussed
in §4.2. Similar to GraphTurbo, DNNFusion [34] also studies
across-layer fusion for mobile devices. We fail to obtain its
repository to conduct an experimental comparison.

Another thread of works [10, 28, 35] investigate horizontal
fusion between ops with no producer-consumer relations to
better utilize the hardware resources of their targets. Graph-
Turbo tackles the same issue using a different idea. Our sched-
uler exploits parallelism within a sub-graph instance, which
is always homogeneous to other instances of the same sub-
graph. It always decomposes one or multiple dimensions of a
tensor to exploit parallelism. On the contrary, ops grouped by
horizontal fusion are heterogeneous, which calls for a more
complicated parallelization mechanism.

Recently, schedulers and code generators for DSA plat-
forms are widely studied. Rammer [31] and Roller [62] gener-
ate code for Graphcore IPU [22]. They maximize the utiliza-
tion of faster memory by combining ops that cannot saturate
hardware resources. AKG [54] targets code generation for As-
cend 910 [29] using the polyhedral model [4, 48] to perform
loop fusion. XLA [13] and NaaS [61] exploit the scheduling
of sub-graphs for generating code on TPU [25].

The distinction between our work and these approaches
is that GraphTurbo partitions a sub-graph along one output
tensor’s dimension while these methods partition tensors by
tiles along multiple dimensions. The primary reason why
GraphTurbo does this way is because cores in the DSA ab-

straction of Fig.1 are organized in 1D form. For instance, this
level corresponds to 32 hardware cores sharing the shared
memory of GPU. The partitioning approach of GraphTurbo
is also extensible to deal with a multi-dimensional core grid
organization by gradually partitioning and mapping multiple
loop dimensions to these hardware dimensions. Moreover,
as their targets share the DSA abstraction in Fig.1, the idea
presented in this paper could also be used on their targets.

7 Conclusion

GraphTurbo is a scheduler for DNN models that enables the
synergy between network and hardware architectures. This
significant difference from prior work produces fewer kernels
and thus reduces off-core data movements, better saturates
faster local memory of DSA platforms by exploiting the im-
balanced memory usage distribution, and opens opportunities
for across-layer instruction scheduling. Results of seven DNN
models demonstrate the effectiveness of our idea, whose ap-
plicability to GPU is also discussed.

GraphTurbo obtains sub-graph instances by selecting an
appropriate size to split a DNN computation graph. Indeed,
selecting the optimal size to perfectly model a DSA’s memory
hierarchy is challenging, and only making use of LB in Fig.1 is
not the optimal solution. Instead, our method is just a greedy
idea that has been demonstrated effective when compared
with vendor-crafted implementation, which we believe can be
considered as a good result. A more intelligent approach can
be explored to catch up or even beat the performance obtained
by hand for models like BERT-512 and MobileNet-v2.

GraphTurbo currently has two limitations. First, the optimal
batch size for a cluster is still selected by a simple autotuning
approach. We intend to develop an intellectual technique to
better address this issue. Second, GraphTurbo cannot han-
dle dynamically shaped tensors. Integrating with the recent
methods [12,56] along this direction may alleviate this issue.

Acknowledgments

We acknowledge Hyeontaek Lim for his shepherding and the
OSDI’23 reviewers for their constructive comments that im-
prove the quality of this work. We would also like to express
our gratitude to Bojie Li and Jun Yang for their suggestions
on the early versions of this paper, Zhongzhou Jiang, Yuqing
Wang, Di Mei, and many other toolchain team members of
the Streaming Computing Inc. for their help during the use
of their vendor-crafted implementation. Jie Zhao and Xiao-
qiang Dan are the corresponding authors of this paper, and the
work of Jie Zhao is partly supported by the National Natural
Science Foundation of China under Grant No. U20A20226.
The views and conclusions presented in this paper belong to
the authors. Interpreting them as the official policies of the
Chinese Government in any way is not acceptable.

732 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for Large-
Scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265–283, Savannah, GA, November 2016.
USENIX Association.

[2] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, and
Jonathan Ragan-Kelley. Learning to optimize halide
with tree search and random programs. ACM Trans.
Graph., 38(4):121:1–121:12, July 2019.

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, pages 193–205, Pis-
cataway, NJ, USA, 2019. IEEE Press.

[4] Uday Bondhugula, Albert Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral paral-
lelizer and locality optimizer. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, pages 101–113,
New York, NY, USA, 2008. ACM.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated End-
to-End optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, October 2018. USENIX Association.

[6] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In Advances in Neural Information Processing Systems,
pages 3389–3400, 2018.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architec-
ture (ISCA), pages 367–379, 2016.

[8] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
and Olivier Temam. Diannao family: Energy-efficient
hardware accelerators for machine learning. Commun.
ACM, 59(11):105–112, oct 2016.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics.

[10] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhi-
menko, and Song Han. Ios: Inter-operator scheduler for
cnn acceleration. In A. Smola, A. Dimakis, and I. Stoica,
editors, Proceedings of Machine Learning and Systems,
volume 3, pages 1–14, 2021.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In
International Conference on Learning Representations,
2021.

[12] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd
Mowry. The cora tensor compiler: Compilation for
ragged tensors with minimal padding. In D. Marculescu,
Y. Chi, and C. Wu, editors, Proceedings of Machine
Learning and Systems, volume 4, pages 721–747, 2022.

[13] Google. Xla: Optimizing compiler for machine learning.
https://www.tensorflow.org/xla, 2017.

[14] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
Conformer: Convolution-augmented Transformer for
Speech Recognition. In Proc. Interspeech 2020, pages
5036–5040, 2020.

[15] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A. Horowitz, and William J. Dally. Eie:
Efficient inference engine on compressed deep neural
network. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pages
243–254, 2016.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, June 2016.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 733

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 2261–2269,
2017.

[19] Intel. onednn graph specification 1.0-alpha.
https://spec.oneapi.io/onednn-graph/latest/index.html,
2020.

[20] IREE. Iree. https://iree-org.github.io/iree/, 2021.

[21] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. Data movement is all you need:
A case study on optimizing transformers. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 711–732,
2021.

[22] Zhe Jia, Blake Tillman, Marco Maggioni, and
Daniele Paolo Scarpazza. Dissecting the graphcore ipu
architecture via microbenchmarking. arXiv preprint
arXiv:1912.03413, 2019.

[23] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: Optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP’19,
pages 47–62, New York, NY, USA, 2019. ACM.

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, and David
Patterson. A domain-specific architecture for deep neu-
ral networks. Commun. ACM, 61(9):50–59, aug 2018.

[25] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,

Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. In-datacenter performance anal-
ysis of a tensor processing unit. In Proceedings of the
44th Annual International Symposium on Computer Ar-
chitecture, ISCA’17, pages 1–12, New York, NY, USA,
2017. ACM.

[26] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou,
Charith Mendis, Sudip Roy, Amit Sabne, and Mike Bur-
rows. A learned performance model for tensor pro-
cessing units. In A. Smola, A. Dimakis, and I. Stoica,
editors, Proceedings of Machine Learning and Systems,
volume 3, pages 387–400, 2021.

[27] Andrew Kerr, Duane Merrill, Julien Demouth, and
John Tran. Cutlass: Fast linear algebra in cuda
c++. https://developer.nvidia.com/blog/cutlass-linear-
algebra-cuda/, 2017.

[28] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel gpu task
scheduling for deep learning. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems,
volume 33, pages 8343–8354. Curran Associates, Inc.,
2020.

[29] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou,
Honghui Yuan, and Yuxing Hu. Ascend: a scalable and
unified architecture for ubiquitous deep neural network
computing : Industry track paper. In 2021 IEEE Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 789–801, 2021.

[30] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and
Song Han. Memory-efficient patch-based inference for
tiny deep learning. In M. Ranzato, A. Beygelzimer,
K. Nguyen, P.S. Liang, J.W. Vaughan, and Y. Dauphin,
editors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 1–13. Curran Associates, Inc.,
2021.

[31] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 881–897.
USENIX Association, November 2020.

[32] Eitan Medina. Habana labs presentation. In 2019 IEEE
Hot Chips 31 Symposium (HCS), pages 1–29, 2019.

734 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[33] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay
Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personal-
ization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

[34] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: Accelerating deep neural
networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Im-
plementation, PLDI 2021, pages 883–898, New York,
NY, USA, 2021. ACM.

[35] NVIDIA. Nvidia tensorrt.
https://developer.nvidia.com/tensorrt, 2016.

[36] NVIDIA. Nvidia introduces drive agx orin — advanced,
software-defined platform for autonomous machines.
https://nvidianews.nvidia.com/news/nvidia-introduces-
drive-agx-orin-advanced-software-defined-platform-
for-autonomous-machines, 2017.

[37] Young H. Oh, Seonghak Kim, Yunho Jin, Sam Son,
Jonghyun Bae, Jongsung Lee, Yeonhong Park, Dong Uk
Kim, Tae Jun Ham, and Jae W. Lee. Layerweaver: Max-
imizing resource utilization of neural processing units
via layer-wise scheduling. In 2021 IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), pages 584–597, 2021.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neu-
ral information processing systems, pages 8026–8037,
2019.

[39] Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil
Sarda, Karthik Srinivasa Murthy, Yanqi Zhou, Christof
Angermueller, Mike Burrows, Sudip Roy, Ketan
Mandke, Rezsa Farahani, Yu Emma Wang, Berkin
Ilbeyi, Blake Hechtman, Bjarke Roune, Shen Wang,
Yuanzhong Xu, and Samuel J. Kaufman. A flexible
approach to autotuning multi-pass machine learning

compilers. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques
(PACT), pages 1–16, 2021.

[40] Yury Pisarchyk and Juhyun Lee. Efficient memory man-
agement for deep neural net inference. arXiv preprint
arXiv:2001.03288, 2020.

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in im-
age processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’13, pages 519–530,
New York, NY, USA, 2013. ACM.

[42] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC ’21, New York, NY, USA, 2021. Association
for Computing Machinery.

[43] Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-
ter Mattson, Guenther Schmuelling, Carole-Jean Wu,
Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, Ramesh Chukka, Cody Coleman, Sam
Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick,
J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B.
Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David
Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa,
Peng Meng, Paulius Micikevicius, Colin Osborne, Gen-
nady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip
Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael
Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi
Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao
Zhang, and Yuchen Zhou. Mlperf inference benchmark.
In Proceedings of the ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’20,
pages 446–459. IEEE Press, 2020.

[44] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret
Catron, Summer Deng, Roman Dzhabarov, Nick Gibson,
James Hegeman, Meghan Lele, Roman Levenstein, et al.
Glow: Graph lowering compiler techniques for neural
networks. arXiv preprint arXiv:1805.00907, 2018.

[45] Bjarke Roune. Compiling ml with xla (slides).
https://www.c4ml.org/c4ml2019, pages 16–24, 2019.

[46] Taro Sekiyama, Takashi Imamichi, Haruki Imai, and
Rudy Raymond. Profile-guided memory optimiza-
tion for deep neural networks. arXiv preprint
arXiv:1804.10001, 2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 735

[47] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary Devito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. The next 700 accelerated layers: From math-
ematical expressions of network computation graphs
to accelerated gpu kernels, automatically. ACM Trans.
Archit. Code Optim., 16(4), October 2019.

[48] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen,
José Ignacio Gómez, Christian Tenllado, and Francky
Catthoor. Polyhedral parallel code generation for cuda.
ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan-
uary 2013.

[49] Richard Wei, Lane Schwartz, and Vikram Adve. Dlvm:
A modern compiler infrastructure for deep learning sys-
tems. arXiv preprint arXiv:1711.03016, 2017.

[50] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen,
Ang Chen, and Yibo Zhu. Bolt: Bridging the gap be-
tween auto-tuners and hardware-native performance. In
D. Marculescu, Y. Chi, and C. Wu, editors, Proceed-
ings of Machine Learning and Systems, volume 4, pages
204–216, 2022.

[51] Rongkai Zhan and Xiaobo Fan. Neuralscale: A risc-v
based neural processor boosting ai inference in clouds.
In Fifth Workshop on Computer Architecture Research
with RISC-V, CARRV, 2021.

[52] Jie Zhao and Peng Di. Optimizing the memory hierarchy
by compositing automatic transformations on computa-
tions and data. In Proceedings of the 53rd IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-
53, pages 427–441, Piscataway, NJ, USA, 2020. IEEE
Press.

[53] Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang,
Deshi Chen, Lei Chen, Renwei Zhang, Zhen Geng, Bin
Cheng, and Xuefeng Jin. Apollo: Automatic partition-
based operator fusion through layer by layer optimiza-
tion. In D. Marculescu, Y. Chi, and C. Wu, editors, Pro-
ceedings of Machine Learning and Systems, volume 4,
pages 1–19, 2022.

[54] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei
Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng,
Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. Akg:
Automatic kernel generation for neural processing units
using polyhedral transformations. In Proceedings of
the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation,
PLDI’21, pages 1233–1248, New York, NY, USA, 2021.
ACM.

[55] Yongwei Zhao, Zidong Du, Qi Guo, Shaoli Liu, Ling Li,
Zhiwei Xu, Tianshi Chen, and Yunji Chen. Cambricon-f:
Machine learning computers with fractal von neumann

architecture. In Proceedings of the 46th International
Symposium on Computer Architecture, ISCA’19, pages
788–801, New York, NY, USA, 2019. ACM.

[56] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen
Shen, Joshua Fromm, Yizhi Liu, Yida Wang, Luis Ceze,
Tianqi Chen, and Gennady Pekhimenko. Dietcode: Au-
tomatic optimization for dynamic tensor programs. In
D. Marculescu, Y. Chi, and C. Wu, editors, Proceed-
ings of Machine Learning and Systems, volume 4, pages
848–863, 2022.

[57] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 863–879. USENIX Association,
November 2020.

[58] Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin,
Qin Han, Liqiang Lu, Bingyang Wu, Xiuhong Li, Shen-
gen Yan, and Yun Liang. Amos: Enabling automatic
mapping for tensor computations on spatial accelerators
with hardware abstraction. In Proceedings of the 49th
Annual International Symposium on Computer Architec-
ture, ISCA ’22, pages 874–887, New York, NY, USA,
2022. Association for Computing Machinery.

[59] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor compu-
tation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS’20, pages 859–873, New York, NY,
USA, 2020. ACM.

[60] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, Shuaiwen Leon Song, and
Wei Lin. Astitch: Enabling a new multi-dimensional
optimization space for memory-intensive ml training
and inference on modern simt architectures. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2022, pages 359–373, New
York, NY, USA, 2022. ACM.

[61] Yanqi Zhou, Xuanyi Dong, Tianjian Meng, Mingxing
Tan, Berkin Akin, Daiyi Peng, Amir Yazdanbakhsh,
Da Huang, Ravi Narayanaswami, and James Laudon.
Towards the co-design of neural networks and accelera-
tors. In D. Marculescu, Y. Chi, and C. Wu, editors, Pro-
ceedings of Machine Learning and Systems, volume 4,
pages 141–152, 2022.

736 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[62] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong
Zhou, Asaf Cidon, and Gennady Pekhimenko. ROLLER:

Fast and efficient tensor compilation for deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 233–248,
Carlsbad, CA, July 2022. USENIX Association.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 737

EINNET: Optimizing Tensor Programs with Derivation-Based Transformations

Liyan Zheng⋄ Haojie Wang Jidong Zhai Muyan Hu Zixuan Ma Tuowei Wang
Shuhong Huang Xupeng Miao† Shizhi Tang Kezhao Huang Zhihao Jia†

Tsinghua University †Carnegie Mellon University

Abstract
Boosting the execution performance of deep neural networks
(DNNs) is critical due to their wide adoption in real-world
applications. However, existing approaches to optimizing the
tensor computation of DNNs only consider transformations
representable by a fixed set of predefined tensor operators,
resulting in a highly restricted optimization space. To address
this issue, we propose EINNET, a derivation-based tensor
program optimizer. EINNET optimizes tensor programs by
leveraging transformations between general tensor algebra ex-
pressions and automatically creating new operators desired by
transformations, enabling a significantly larger search space
that includes those supported by prior works as special cases.
Evaluation on seven DNNs shows that EINNET outperforms
existing tensor program optimizers by up to 2.72× (1.52×
on average) on NVIDIA A100 and up to 2.68× (1.55× on
average) on NVIDIA V100. EINNET is publicly available at
https://github.com/InfiniTensor/InfiniTensor.

1 Introduction

Fast execution of deep neural networks (DNNs) is critical in
a variety of tasks, such as autonomous driving [16, 21, 26],
object detection [15, 18], speech recognition [5, 17], and
machine translation [37, 39]. A DNN is generally represented
as a tensor program, which is a directed acyclic graph contain-
ing tensor operators (e.g., convolution, matrix multiplication)
performed on a set of tensors (i.e., n-dimensional arrays).

To improve the runtime performance of a DNN, exist-
ing frameworks (TensorFlow [3], PyTorch [31], and Ten-
sorRT [35]) rely on manually-designed rules to map an input
tensor program to expert-written kernel libraries. Although
widely used, these approaches require extensive engineering
efforts and miss optimization opportunities hard to manually
discover. To address these problems, recent works have
proposed a variety of automated approaches that optimize
DNN computation by searching over a set of candidate

⋄Tsinghua University and BNRist

Input
program

General Tensor Algebra Transformations

POR Trans.

General Tensor Algebra Expressions
Predefined operators
Conv Matmul Add

Prior
work

EINNET

Figure 1: Comparing EINNET’s search space with that
of prior work. “POR Trans.” indicates predefined operator
representable transformations.

program transformations or generating high performance
kernels on specific hardware. We classify these works into
two categories based on their search spaces.

The first category of work, including TVM [7] and An-
sor [40], is motivated by Halide’s idea of compute/schedule
separation [33] and optimizes tensor programs at the operator
level. For a given tensor operator, they automatically generate
high-performance kernels by searching over schedules, each
of which specifies an architecture-dependent execution plan
on particular hardware. To optimize the graph structure of a
tensor program, TVM and Ansor greedily apply a fixed set of
expert-designed program transformations.

The second category of work optimizes tensor programs
using graph-level transformations, which reorganize the DNN
computation in more efficient ways. As two representative
systems, TASO [20] and PET [38] adopt a superoptimization-
based approach to discovering graph transformations. They
generate candidate graph transformations by enumerating all
possible graphs over a given set of tensor operators up to a
fixed size, and search to apply these generated transformations
to an input tensor program.

Both operator- and graph-level optimizers only consider
program transformations whose nodes are tensor operators
predefined by optimizer developers, as shown in the grey box
of Figure 1. We call these transformations predefined operator
representable (POR) transformations. Despite the fact that

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 739

https://github.com/InfiniTensor/InfiniTensor

existing tensor program optimizers only use POR transforma-
tions to optimize tensor programs, POR transformations only
exhibit limited opportunities for performance optimizations.
In this paper, we propose to explore general tensor algebra
transformations whose nodes are general tensor operators 1.
Compared to POR transformations, general tensor algebra
transformations constitute a significantly larger optimization
space, which includes POR transformations as special cases,
as shown in the yellow box of Figure 1.

To discover general tensor algebra transformations, we
present EINNET, a derivation-based tensor program optimizer.
A key difference between EINNET and prior work (e.g.,
TASO and PET) is that EINNET reveals operator computation
semantics in automated graph transformations by applying
derivation rules to tensor algebra expressions. By deriving
computation at the expression level, EINNET can reorga-
nize computation into arbitrary tensor expressions and map
them into both predefined operators with highly optimized
implementations and new auto-generated operators desired
by derivations. Expression-level derivations allow EINNET to
discover a variety of novel program transformations missing
in existing frameworks, since these transformations require
highly customized tensor operators not predefined in existing
optimizers. Example transformations newly discovered by
EINNET include: (1) modifying the computation semantics
of an operator to improve efficiency, (2) replacing inefficient
operators with highly-optimized alternatives and customized
tensor operators to bridge the gap, and (3) aggressively
reorganizing computation graphs to enable subsequent graph-
level optimizations.

EINNET mainly addresses the following three challenges:
The first challenge is automatically discovering transfor-

mation opportunities between general expressions. TASO
and PET only consider a fixed set of predefined operators,
but there are infinitely many possible general expressions.
Hence, directly applying superoptimization (i.e., enumerating
all possible graphs over general expressions) is infeasible.
EINNET addresses this challenge by presenting a derivation-
based mechanism that automatically transforms an expres-
sion to equivalent alternatives by applying a collection of
derivation rules. Since most derived expressions cannot be
simply represented as predefined operators, we introduce
eOperators (expression as an operator) to represent non-POR
computation. eOperators enable EINNET to discover a variety
of optimizing transformations between expressions.

The second challenge is converting expressions back
to kernels that can be executed on DNN accelerators, a
process we term expression instantiation. Although exist-
ing kernel generators (e.g., TVM and Ansor) can generate
kernels for a given expression, doing so is suboptimal since
existing vendor-provided libraries (e.g., cuDNN [10] and
cuBLAS [11]) offer highly-optimized kernels for a set of

1An operator is a tensor operator if it can be represented using the tensor
algebra expression in Equation (1)

Input tensor program

Program splitter

A set of subprograms

Program translator

A set of expressions (§3)

Transformed subprograms

Post-optimization

Optimized tensor program

Derivation-based optimizer (§6)

EINNET

eOperator

Predefined operator

Derivation rules

Intra-expression
derivation (§4.1)

Inter-expression
derivation (§4.2)

Expression
instantiation (§5)

Figure 2: EINNET overview

predefined operators. EINNET opportunistically matches
a part of an expression with predefined operators to take
advantage of the highly-optimized kernels from vendor-
provided libraries; the remaining part of the expression is
lowered to an off-the-shelf kernel generator (i.e., TVM [7]).

The third challenge is quickly finding optimizing trans-
formations in the search space of general tensor algebra
transformations. In particular, optimizing a tensor program
normally requires applying a long sequence of derivation
rules (e.g., up to 12 in our evaluation), which cannot be
efficiently discovered by a traversal-based search algorithm.
To address this challenge, EINNET employs a two-stage
search approach to applying derivations, where an explorative
derivation stage considers applying all possible derivations
to the current expression to create a comprehensive collec-
tion of expressions, and a converging derivation stage uses
expression distance to guide the search towards promising
candidates. This distance-guided approach allows EINNET to
discover complex optimizations requiring long sequences of
derivations under a reasonable search budget.

We evaluate EINNET on seven real-world DNN models
covering a variety of machine learning tasks. We compare
EINNET with state-of-the-art frameworks on two GPU plat-
forms, NVIDIA A100 and V100. Evaluation shows that
EINNET is up to 2.72× faster than existing tensor program op-
timizers. The significant performance improvement indicates
that EINNET benefits from the new optimization opportunities
enabled by derivation-based optimizations.

This paper makes the following contributions:
• We extend the POR optimization space to the general

tensor algebra optimization space by combining operator
computation semantics and computation graphs with tensor
algebra expressions.

740 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OffsetReduce
+Relu

Conv3x3Conv1x1

Relu

T0

T1

Conv3x3

Add

Relu

Matmul

Split

T0

T1

Conv3x3
+Add+Relu

Matmul Matmul

T1

Relu

Conv3x3

Add

Relu

W0 W1 W0 W1 W0 W1

(i) Original
(ii) Intra-expression

derivation
(iii) Inter-expression

derivation

w

h

C
o
n
v

(ii) Split weight

(i) Conv

Split weight
along r and s

s
r

M
at
m
u
l

M
at
m
u
l

M
at
m
u
l…

O
ff
se
tR
ed

u
ce

s

r
w

h

C
o
n
v

(ii) Duplicate input

…

M
at
m
u
l

O
ff
se
tC
o
n
ca
tOffsetReduce

DLT DLT DLT+Concat
T0

DLT

(iii) Transform Conv to Matmul
using im2col algorithm

(iii) Transform Conv to
Matmul with OffsetReduce

(a) Optimizations found by EINNET

(i) Conv

DLT

(b) Optimization of Convolution found by EINNET (c) Im2col Optimization for Convolution

Figure 3: Optimization examples of EINNET. Figure (a) shows the optimization that transforms a Conv3×3 operator into a
Matmul and an eOperator OffsetReduce, and a Conv1×1 operator into a Matmul. Then, inter-expression derivation is performed
to fuse multiple operators into one. Figure (b) shows the optimization details performed by EINNET for the Conv3×3 operator,
which first splits the weight tensor into 9 tensors, then multiplies each tensor with the input, and finally adds the nine results
together with certain offsets (illustrated by the dashed boxes and red blocks). The Matmuls in Figure (b) are further fused into
a single one. As a comparison, Figure (c) shows the typical im2col [36] optimization for Conv, which performs a different
transformation from that in Figure (b) and can also be automatically found by EINNET.

• We present the first attempt to explore a significantly
larger expression search space using a derivation-based
mechanism.

• We build EINNET, an implementation of the above tech-
niques with over 23K lines of C++ and Python code, which
achieves up to 2.72× speedup over existing tensor program
optimizers.

2 Overview and Motivating Example

Figure 2 shows an overview of EINNET, a tensor program
optimizer with derivation-based transformations. For an input
tensor program, EINNET first splits it into multiple subpro-
grams consisting of predefined operators. Each subprogram
is translated to a tensor algebra expression (§3) by a program
translator. Then, EINNET’s derivation-based optimizer uses
different derivation rules, including inter- and intra-expression
derivation rules (§4) and expression instantiation rules (§5), to
generate optimized subprograms for each expression, which
consists of both predefined operators and eOperators. Finally,
EINNET selects the best discovered transformation for each
subprogram and post-optimizes the expressions to construct
an efficient tensor program (§6).

Motivating example. As a motivating example, Figure 3(a)
shows an optimization found by EINNET. It first performs
an intra-expression derivation to transform convolutions into
matrix multiplications, and then performs inter-expression
derivation to fuse multiple operators into one. The red opera-
tors, such as OffsetReduce, DLT (data layout transformation),
and OffsetReduce+Relu, are eOperators automatically dis-
covered and generated by EINNET. Figure 3(b) shows the
details of the new optimization discovered by EINNET for

Conv3x3 in Figure 3(a). Figure 3(c) illustrates the classic
im2col [36] optimization for convolution, which is widely
implemented in existing libraries and also covered by the
automatic optimization space of EINNET. Different from
copying input tensors for the kernel size times in im2col,
the newly discovered transformation copies output tensors
the same number of times. It can be more efficient when the
output size is smaller than the input size, and achieves a 2×
speedup compared with cuDNN on the NVIDIA A100 GPU
for certain convolutions in ResNet-18 [19] in our evaluation.

Existing tensor program optimizers cannot automatically
discover such transformations because: (1) the transforma-
tions require eOperators (e.g., adding intermediate tensors
with offsets), which are outside of the POR transformation
space explored by superoptimization-based frameworks such
as TASO [20] and PET [38], and (2) the transformations
modify the computation semantics instead of the schedule,
and thus cannot be found by schedule-based optimizers like
TVM [7] and Ansor [40].

3 Tensor Algebra Expression

EINNET represents a tensor program as tensor algebra expres-
sions, which defines how to compute each element of output
tensors from input tensors. Figure 4 shows the expression of
multiplying three matrices (i.e., A×B×C). We now describe
the components of an expression. For simplicity, we assume
an expression has one output. EINNET’s expression can be
easily generalized to multiple outputs.

Traversal and summation notations. A traversal notation,
denoted as Lx1

x=x0
, consists of an iterator x and an iterating

space [x0,x1). The traversal notation corresponds to a dimen-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 741

ScopeTraversal notation Summation notation

(a)

(b)

Figure 4: A tensor algebra expression example for two matrix
multiplications A×B×C. The red box highlights a scope that
instantiates the intermediate result of A×B.

sion of the output tensor, where the iterating space is the range
of the dimension. The order of the traversal notations indicates
the layout of the output tensor. For example, in Figure 4, LC

c=0
followed by LR

r=0 indicates that the expression’s output is a
two-dimensional tensor with a shape C×R.

A summation notation, denoted as ∑
x1
x=x0

, computes
the summation iterating over dimension x with {x0,x0 +
1, . . . ,x1 − 1}, which is hereinafter represented by a range
[x0,x1) for brevity. Note that an EINNET expression under
different orders of summation notations are considered the
same but corresponds to different schedules of an expression.
Therefore, it is excluded from the expression search space.

Tensors are indexed by an arithmetic combination of
multiple iterators, including add(+), sub(−), mul(∗), div(/)
and mod(%). For simplicity, we may merge multiple iterators
into an iterator vector, whose iterating space can be denoted
by an integer set or omitted in the expression. For example,
LC

c=0 LR
r=0 can be represented as Lcr or LX

x⃗ , where x⃗ = (c,r)
is the iterator vector, and X= C×R is the iterating space.

Scope. For a tensor program with multiple operators (e.g.,
two consecutive matrix multiplications A×B×C), a common
optimization is to instantiate and reuse intermediate results
(e.g., caching the output of A×B), which avoids repetitive
computation for these results. EINNET introduces scopes to
represent the instantiation of intermediate results to reuse
them later. Formally, a tensor algebra expression is a scope,
denoted by a surrounding

{}
, if the output of the expression

is instantiated into a tensor, which allows subsequent com-
putation to refer to this tensor and therefore avoids repeated
computation. In Figure 4(b), the expression corresponding to
A×B is a scope, allowing subsequent computation to directly
refer to the output of this expression. Many of EINNET’s
derivation rules are based on transformations between scopes,
including generating new scopes from existing ones, trans-
forming a scope to another form, and merging multiple scopes
into one (§4). Transformations between scopes are essential
to EINNET’s optimizations.

Padding. Some computations access an input outside of its
region, which we call paddings. E.g., a 3×3 convolution may
have paddings. Paddings are set to 0 if not specified.

General format. We represent a one-scope expression as:

Table 1: Derivation rules for tensor algebra expressions.

Rules Descriptions

Intra-expression derivation §4.1
Summation splitting Split summation from one scope into two
Variable substitution Replace traversal iterators with new ones
Traversal merging Merge two scopes by merging traversals
Boundary relaxing Relax the range of iterators
Boundary tightening Tighten the range of iterators

Inter-expression derivation §4.2
Expression splitting Split an expression into independent ones
Expression merging Merge multiple independent expressions
Expression fusion Fuse multiple dependent expressions

Expression instantiation §5
Operator matching Match a scope with predefined operators
eOperator generation Generate an eOperator for a scope

X

L⃗
x

Y

∑
y⃗

f (T[τ(⃗x, y⃗)]) (1)

where T = {T0,T1, ...} is a list of input tensors, τ(⃗x, y⃗) is the
indexing function that computes element indexes for tensors
in T using iterators x⃗ and y⃗, and f is the computation taking
on the indexed elements of T.

4 Derivation Rules

To discover highly-optimized expressions for an input tensor
program, EINNET uses derivation rules to apply transfor-
mations on an input expression. Table 1 summarizes the
derivation rules used by EINNET. Note that the mathematical
equivalence of derivation rules guarantees the equivalence of
derived expressions discovered by EINNET.

Different from schedule primitives of kernel generators
that are designed to discover optimized schedules of a given
expression on specific hardware, EINNET ’s derivation rules
focus on transform the computation semantics of tensor
expressions, such as reorganizing computation into efficient
operators.

4.1 Intra-Expression Derivation

Intra-expression derivation rules transform an expression into
other functionally equivalent forms, which is essential for
constructing a comprehensive search space of expressions for
a tensor program. Figure 5 shows the optimization details in
Figure 3(b). It splits the expression of Conv3x3 into two parts,
derives one part toward a predefined operator Matmul, and
then converts the other part to an eOperator. We now describe
these intra-expression derivation rules.

Summation splitting divides a summation notation ∑s⃗ into
two separate summations ∑s⃗1 and ∑s⃗2 and instantiates the
result of the inner summation by converting it to a scope:

742 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Summation splitting

Variable substitution: 𝑡1 = ℎ + 𝑟, 𝑡2 = 𝑤 + 𝑠

Boundary relaxing

Traversal merging

Boundary tightening

Operator matching: 𝑇1 = 𝐾 𝑟𝑠𝑓, 𝑐 × 𝐴 𝑐, 𝑡1𝑡2

eOperator generation: 𝑇2 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑎 𝑚𝑒𝑚𝑜𝑟𝑦 𝑏𝑜𝑢𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

E1

E2

E3

E4

E5

E6

E7

E8

(a)

w

h
s

r

Conv

(b)
…

Σ along 𝑐 Σ along 𝑐

Σ along 𝑟𝑠

(c)
…

Σ along 𝑐 Σ along 𝑐

Σ along 𝑟𝑠

(d)
…

Σ along 𝑐 Σ along 𝑐

Σ along 𝑟𝑠

(e)Matmul

OffsetReduce

Figure 5: The derivation process of the example in Figure 3(b), which transforms Conv with Matmul and eOperators

L⃗
x

∑
s⃗1,s⃗2

f (T[τ(⃗x, s⃗1, s⃗2)])⇒ L⃗
x

∑
s⃗1

{
L⃗
xs⃗1

∑
s⃗2

f (T[τ(⃗x, s⃗1, s⃗2)])
}
[⃗x, s⃗1]

where τ is a mapping from (⃗x, s⃗1, s⃗2) to an input position.
EINNET divides the iterators of a summation into two disjoint
groups, s⃗1 and s⃗2, which splits the summation into two nested
scopes S1 and S2, where S1 is the highlighted part in the above
expression and S2 = Lx⃗ ∑s⃗1 S1 [⃗x, s⃗1]. Note that in summation
splitting, EINNET converts the result of the inner summation
into a scope, whose output is reused by the outer summation.

To transform a 3×3 convolution to a batch of nine matrix
multiplications, as shown in Figure 5, EINNET first transforms
the initial expression E1 to E2 by splitting the summation
∑crs into two summations ∑rs and ∑c, and instantiating the
output of the inner summation (i.e.,

{
Lrshw f ∑c A[h+ r,w+

s,c]K[r,s, f ,c]
}

). The inner scope only sums along the c
dimension; as a result, an intermediate five-dimensional tensor
is instantiated since the summation along the r and s dimen-
sions is not performed but converted to traversal notations.
The outer scope computes the remaining summation over
the r and s dimensions, which produces a three-dimensional
tensor. Figure 5 (a) and (b) show the change in computation
graph.

Variable substitution substitutes a set of traversal iterators
Lx⃗ with a new set of iterators Ly⃗ by applying a bijective
function Φ (i.e., y⃗ = Φ(⃗x)). This transformation allows the
expression to be computed using a different set of traver-
sal iterators. In particular, for an expression LX

x⃗ f (T[τ(⃗x)]),
variable substitution introduces an intermediate scope that
computes LY

y⃗ f (T[τ(Φ−1(⃗y))]), where Φ is a bijective func-
tion that maps the iterating space X to Φ(X), and Φ−1 is the
reverse function of Φ:

X

L⃗
x

f (T[τ(⃗x)])⇒
X

L⃗
x
{

Φ(X)

L⃗
y

f (T[τ(Φ−1(⃗y))])}[Φ(⃗x)].

A variable substitution constructs an intermediate scope with
new traversal iterators. To preserve functional equivalence,
the original iterator x⃗ is used to construct the final result using
the output of the intermediate scope.

Although numerous possible variable substitutions exist
for an expression, EINNET infers legal ones by analyzing
indexing functions in expressions and checking whether
they can form bijections. In Figure 5, EINNET applies a
variable substitution to transform the expression from E2 to
E3 using a bijective function Φ that maps (r,s, f ,h+ r,w+ s)
to (r,s, f , t1, t2). Specifically, h+ r and w+ s are substituted
with t1 and t2 in E3. To automatically identify promising
variable substitutions among all alternatives, §6.1 introduces
expression distance, a novel technique for efficiently explor-
ing the search space.

Traversal merging combines the traversal notations in two
separate scopes into one scope using an indexing function Φ:

X

L⃗
x

Y

∑
y⃗
{

Z

L⃗
z

f (T[τ(⃗z)])}[Φ(⃗x, y⃗)]⇒
X

L⃗
x

Y

∑
y⃗

f (T[τ(Φ(⃗x, y⃗))])

where indexing function Φ maps the outer scope iterators x⃗, y⃗
to the inner scope iterators z⃗ and satisfies Φ(X×Y)⊆ Z.

In the example of Figure 5, EINNET applies traversal
merging to transform E4 to E5. For this transformation,
the outer traversal and summation notations and the inner
traversal notation both include five iterators (i.e., x⃗ = (h,w, f),
y⃗ = (r,w), and z⃗ = (r,s,h,w, f)). Traversal merging is applied
with an identity mapping function Φ and an indexing func-
tion τ(r,s,h,w, f) = (r,s, f ,h+ r,w+ s). Traversal merging
removes a scope and preserves the same computation graph.

Boundary relaxing and tightening. Boundary tightening
inspects whether the computation for some output elements
can be avoided if these elements are constants for arbitrary

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 743

C
on

v
5
×
5

s

r

(a) Conv 5 × 5

w

h

(b) Split weight

C
on

v
3
×
3

Sp
lit

 &
C

ha
nn

el
R

ed
uc

e

(c) Conv 3 × 3 with ChannelReduce

Enlarge & Split

Figure 6: Conv5×5 to Conv3×3 transformation

inputs. EINNET executes constant propagation on expressions
to deal with constant numbers in expressions and paddings
in tensors. If an output region has constant values, EINNET
converts it into an attribute of tensors to avoid unnecessary
computation. In contrast, boundary relaxing enlarges tensors
by adding extra paddings and redundant computations to
explore more optimizations. Figure 6 shows the optimization
that pads a Conv5×5 to a Conv6×6 and then converts it to
a Conv3×3 with quadrupled output channels. The following
formula shows how relaxing and tightening are performed:

X

L⃗
x

f (T[τ(⃗x)])⇐⇒
X′

L⃗
x

f (T[τ(⃗x)]),

where X⊂ X′, and T has a constant value in X′ \X.

To limit the number of possible candidate parameters
for this rule, EINNET relaxes and tightens boundaries to
a common constant. In the running example in Figure 5,
the formula in E4 performs boundary relaxing on t1 and
t2, transforming their ranges from [r,H + r) and [s,W + s)
to [−1,H + 1) and [−1,W + 1), respectively, as the ranges
of r and s are [−1,1] for a 3× 3 convolution kernel. After
boundary relaxing, the computation graph is transformed from
Figure 5 (b) to (c). If multiple plans exist, the most strict one
is selected to prevent extra redundant computing. Meanwhile,
EINNET is still able to find the transformations introducing
more redundancy by applying the rule multiple times.

EINNET performs boundary tightening to transform E5
into E6. In E5, as the computation performed on t1 = −1,
t1 = H, t2 =−1 and t2 =W falls in the paddings of tensor A,
the computation result is zero as well. Hence, the ranges of
t1 and t2 are tightened from [−1,H +1) and [−1,W +1) to
[0,H) and [0,W), respectively. After boundary tightening, the
computation graph is transformed from Figure 5 (c) to (d).

Derivation search space. The derivation rules allow EINNET
to explore a large search space of expressions. Figure 7
illustrates the derivation search space of a 3x3 convolution.
By applying different derivation rules, the initial expression
is derived into various equivalent expressions, shown as the
computation graphs in Figure 7. The motivating example
shown in Figure 5 is identified by the derivation path

(a)→ (b)→ (c)→ (d)→ (e). The figure also shows many
other expressions discovered by EINNET: By deriving the
expression in (d) to Conv1x1 instead of Matmul, EINNET
discovers a new expression in (f). By merging summation
iterators, expression (i) adopts an eOperator to concatenate
multiple inputs with offsets for the following Matmul, which
represents the conventional Im2col optimization [36]. Ex-
pression (k) shows a group convolution is equivalent to the
original one by duplicating its input. Expressions (n) and (p)
show two additional candidate expressions, both of which
decompose the 3×3 convolution into smaller convolutions
while preserving output using derived eOperators.

4.2 Inter-Expression Derivation
We now introduce the inter-expression derivations rule in
EINNET for splitting, merging, and fusing expressions.

Expression splitting divides an expression into two indepen-
dent ones by partitioning the original expression’s traversal
space X into two subspaces X1 and X2, where X⊆ X1 ∪X2:

X

L⃗
x

f (T[τ(⃗x)]) =⇒
X1

L⃗
x

f (T[τ(⃗x)])∼
X2

L⃗
x

f (T[τ(⃗x)])

where ∼ denotes the independence of the two expressions.

Expression merging is the reverse of expression splitting. It
merges two independent expressions with the same computa-
tion by merging their traversal spaces X1 ∪X2 ⊆ X:

X1

L⃗
x

f (T[τ(⃗x)])∼
X2

L⃗
x

f (T[τ(⃗x)]) =⇒
X

L⃗
x

f (T[τ(⃗x)])

Expression fusion fuses multiple dependent expressions into
one using the following rule:
Y

L⃗
y

g(T′[π(⃗y)])◦
X

L⃗
x

f (T[τ(⃗x)]) =⇒
Y

L⃗
y

g({
X

L⃗
x

f (T[τ(⃗x)])}[π(⃗y)])

where T′ is equal to the computation result of the highlighted
part in the above expression, and E1 ◦E2 denotes that the
result of expression E2 is fed as inputs to expression E1.

Figure 3(a) shows a sequence of derivations involving inter-
expression derivation. EINNET first applies intra-expression
derivation rules to transform Conv3x3 and Conv1x1 to two
Matmuls and an eOperator. Since the two Matmuls share the
same input and computation pattern, EINNET is able to apply
the expression merging rule upon them. As shown in the
dashed box, EINNET transposes and concatenates the two
weight tensors as the input for Matmul. The outputs of Matmul
are split to get two equivalent outputs. Furthermore, EINNET
applies the expression fusion rule to perform vertical operator
fusion, an optimization fusing a chain of operators into a
single kernel to reduce data movement and kernel launch
overhead. In the solid boxes in Figure 3(a), EINNET fuses
memory-bound operators (e.g., OffsetReduce and Relu)
into one eOperator by applying expression fusion.

744 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

T0 W

Σ(𝑐) Σ(𝑐)

…

Σ(𝑟𝑠)

...

Σ(𝑘)

…

Convert to
Expression

SS

VS

BR

VS+BR+…

VS+TM+…

VS+SS+…

BR

Matmul

T0 W

OffsetReducers

(e)

Conv1x1

T0 W

OffsetReducek

Transpose

(f)

T0 W

Matmul

OffsetConcat

(i)

Conv2x2

T0 W

OffsetReducer2s2

Pad+Split

(n)

Conv2x2

T0 W

OffsetAdd

Split

Conv2x1 Conv1x2 Conv1x1

(p)

(a)

Σ(c𝑟𝑠)

(b)

Σ(𝑐) Σ(𝑐)

…

Σ(𝑟𝑠)

(c)

...

Σ(𝑘)

(g)

Σ(c𝑟𝑠)

(l)

(d)

(h)

…

Σ(𝑟2𝑠2)

Σ(𝑐𝑟1𝑠1) Σ(𝑐𝑟1𝑠1)

(m)

…

Σ(𝑟2𝑠2)

Σ(𝑐𝑟1𝑠1) Σ(𝑐𝑟1𝑠1)

(o)

Conv3x3

…

…

T0 W

Group Conv3x3

Duplicate

(k)
VS+TM+…

Σ(𝑐′𝑟′𝑠′)

(j)

Summation splitting

Variable substitution

SS

VS

Derivation rules Traversal merging

Boundary relaxing

Boundary tightening

TM

BR

BT

eOp

Op Operator

eOperator

Sum along iterator 𝑥

Derivation

Expression instantiation

Σ(𝑥)

…

…

f

Figure 7: Derivation procedure for a subgraph of a convolution. Data layout transformation operators and intermediate derivation
steps are omitted for conciseness. The output channel dimension of convolution kernel is only shown in (j) and denoted by f .

5 Expression Instantiation

Although EINNET can treat all expressions as eOperators
and use an off-the-shelf kernel generator (e.g., TVM in our
implementation) to generate executable programs, doing so
would result in suboptimal performance. This is because exist-
ing vendor-provided tensor libraries such as cuDNN [10] and
cuBLAS [11] include a collection of highly optimized tensor
algebra kernels that outperform their counterparts generated
by tensor compilers. The performance and expressiveness
trade-off between hand-tuned and auto-generated kernels
introduces both challenges and opportunities: we should
opportunistically lower some expressions to vendor-provided
kernels to realize their performance advantages and use kernel
generators to generate executable programs for remaining
expressions. We refer to this task as expression instantiation.

EINNET considers two derivation rules for expression
instantiation: (1) operator matching allows EINNET to op-
portunistically use existing highly optimized kernels (e.g.,
cuDNN [10] and cuBLAS [11]) to achieve high performance,
and (2) eOperator generation enables flexible kernel genera-
tion for an arbitrary eOperator. After applying these rules, the
instantiated scopes are replaced with tensors in the original
expression and are separated from the following derivation.

To lower expressions to kernels, EINNET uses a strategy
that maps compute-intensive expressions to predefined op-
erators and employs a kernel generator for memory-bound
expressions. This strategy allows EINNET to benefit from
existing vendor libraries and maintain low compilation time,
since memory-bound expressions usually involve a small
schedule space in existing code generation frameworks [7].
While a more aggressive utilization of kernel generators
has the potential to outperform the opportunistic strategy, it
introduces significant kernel tuning overhead for millions of

(c)

(d)

Y/Y/Y Y/Y/NY/N/YN/Y/Y

(a)

(b)

Iterator
group

Figure 8: Match an expression to BatchMatmul. Expression
(a) and (b) show iterator groups and Expression (c) and (d)
show matching attributes with flattened expressions.

possible expressions during the program optimization. This is
due to the difficulty in accurately estimating the performance
of a kernel without actually tuning and profiling it.

To determine whether an expression is compute-intensive
or memory-bound, EINNET analyzes its arithmetic intensity,
calculated as the ratio between its FLOPs and tensor sizes.
Expressions with arithmetic intensity lower than a threshold (4
in our evaluation) are considered memory-bound eOperators.
EINNET decides whether to perform operator matching or
eOperator generation for this expression based on this metric.
The following introduces these two instantiation rules.

5.1 Operator Matching
Mapping an expression to a predefined operator is challenging
since an operator can be represented in various expressions.
For example, while expressions in Figure 8(a-b) have dis-
tinct forms, they can both be instantiated as batched matrix
multiplication kernels in cuBLAS as it supports tensors with
flexible data layouts.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 745

Table 2: Iterator mapping table. Iterators are categorized by where they appear in expressions. For each iterator group, Y and N
indicate whether the iterators appear in the index of corresponding tensors.

Operators Tensor algebra expressions
Iterator groups (I0/I1/O0)

Y/Y/Y Y/N/Y N/Y/Y Y/Y/N
Add O0[m,n] = Lmn I0[m,n]+ I1[m,n] m,n

BatchMatmul O0[b,m,n] = Lbmn ∑k I0[b,m,k]I1[b,k,n] b m n k
Conv O0[n,h,w, f] = Lnhw f ∑crs I0[n,h+ r,w+ s,c]I1[r,s, f ,c] n,h,w f c,r,s
G2BMM O0[b,m,w] = Lbmw ∑k I0[b,m,k]I1[b,k,m+D∗ (w−W)] b,m w k

EINNET uses an iterator mapping table to determine if
a given expression can be mapped to a predefined operator,
where iterators of each operator are grouped based on whether
the iterator appears in the operator’s input/output tensors.
Table 2 shows the iterator mapping table for several operators
with two input and one output tensors, including element-
wise operators, batched matrix multiplication, convolution,
and G2BMM [23] (general to band matrix multiplication).
Each row in the table corresponds to an operator, while each
column shows an iterator group. The iterator mapping table
also records the coefficients of iterators in the index of each
tensor for operator matching. It can be extended to support
operators with an arbitrary number of inputs and outputs.

The iterator mapping table allows EINNET to determine if
an expression can be mapped to an operator as follows:
1. Match tensors. To map a given expression to an operator,

EINNET enumerates all possible one-to-one mappings
between the expression and operator’s input/output tensors.
For example, to map the expression in Figure 8 (b) to BMM
(i.e., expression in Figure 8 (a)), there exist two possible
mappings, {A → X ,B → Y} and {A → Y,B → X}).

2. Match iterators. For each tensor mapping, EINNET
further enumerates all possible ways to match iterators
between the expression and operator using the iterator
mapping table described above. For example, assuming
a tensor mapping {A → X ,B → Y} in Figure 8, iterators
{u,v,x,w} in (b) are mapped to iterators {b,m,k,n} in
(a) based on the iterator mapping table (iterators in the
same group are marked in the same color). When there are
multiple iterators in the same group, EINNET enumerates
all possible mappings between these iterators.

3. Match operator attributes. Many predefined operators
contain attributes to specify computation. E.g., modern
BLAS libraries use lda and ldb to control the data layouts
for input tensors in matrix multiplication. To match these
attributes, EINNET flattens the input and output tensors
(i.e., reshapes them into one-dimensional tensors) to hide
the complexity of tensor shapes. EINNET then matches the
operator attributes by examining the variable coefficients
of the flattened tensors. Figure 8(c-d) show how EINNET
determines the attributes lB0 and lB1 for a BMM operator.
It flattens the tensor B in both expressions and compares
their coefficients: lB0 = lY 0 + lY 1, lB1 = lY 2, where lY n is
the stride of n-dimension of tensor Y . The coefficient of w
in Expression (d) is also checked to be equal to that of n

T1 = tvm.te.compute((H, W, F), lambda h, w, f:
tvm.te.sum(T1[r, s, h+r, w+s, f], axis=[r, s]))

Figure 9: Lowering E7 in Figure 5 to TVM.

in Expression (c), as they are a pair of matched iterators.

5.2 eOperator Generation
For expressions that cannot be mapped to vendor-provided
predefined operators, EINNET converts them into eOperators.
Since an eOperator precisely defines its computation, EINNET
can directly feed it to an off-the-shelf kernel generation
framework (e.g., TVM [7]). For example, for expression E7
in Figure 5, which corresponds to OffsetReduce in the
transformed computation graph, EINNET feeds it to TVM by
converting its iterator space into a tensor and the computation
expression into a lambda function. Figure 9 shows the TVM
code generated by EINNET for expression E7, which can be
an input program to TVM to generate an executable kernel.

6 Program Optimizer

This section describes EINNET’s program optimizer, which
uses the expression derivation and instantiation techniques
described in §4 and §5 to optimize input tensor programs.
These derivation rules create a large and complex search space
of programs functionally equivalent to the input. EINNET uses
a distance-guided search algorithm to explore the space (§6.1)
and develops a fingerprinting technique to prune redundancy
(§6.2). Finally, §6.3 describes how EINNET orchestrates these
techniques to perform end-to-end optimizations.

6.1 Distance-Guided Search
To explore the search space created by EINNET’s derivations,
a purely randomized search strategy can only explore either
a limited set of paths or small searching depths, leading to
suboptimal performance. To address this challenge, EINNET
develops a two-stage distance-guided search algorithm to
apply derivations. It includes an explorative derivation stage
and a converging derivation stage, as shown in Figure 10.

Explorative derivation. During explorative derivation,
EINNET iteratively applies all derivation rules to the cur-
rent expression. A hyperparameter MaxDepth determines

746 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Explorative
derivation

Converging
derivation Matched states

All possible
searching states

Initial expression

MaxDepth

Figure 10: Distance-guided search

the maximum number of derivation rules EINNET applies
during explorative derivation. As described in §5, EINNET
opportunistically uses vendor-provided kernel libraries to
maximize performance. Thus, EINNET leverages converging
derivation to quickly derive an expression toward a target
operator (e.g., operators in cuDNN and cuBLAS). EINNET
automatically generates necessary eOperators to bridge the
gap between the current expression and target operator.

Converging derivation. During converging derivation,
EINNET first selects a target operator and uses a novel metric,
expression distance, to guide the applications of derivation
rules in this stage. Expression distance measures the dif-
ference between a given expression E1 and the canonical
expression of a given operator E2. To calculate the distance
between E1 and E2, EINNET first matches all iterators in E1
and E2 using the iterator mapping table (see §5.1) and counts
the total number of mismatched iterators as their distance.

Specifically, each iterator mismatch between the current ex-
pression and target operator indicates that the two expressions
have a different number of iterators in an iterator group (see
Table 2). EINNET applies derivation rules to fix mismatches,
such as variable substitution rules to merge/split iterators,
resulting in reduced expression distances. For example, to
derive the expression in the inner scope of E6 in Figure 5
to a Matmul, EINNET compares their iterators (Table 2) and
obtains the following matches: t1, t2 → m;r,s, f → n;c → k.
To fix mismatches, EINNET applies variable substitutions to
merge iterators t1 and t2 into m and merge r,s, f into n.

After all iterators are matched, EINNET infers the shape of
each input/output tensor according to the target operator and
constructs new tensors from existing ones by adding eOpera-
tors. For example, the new input tensor A′ and weight tensor
K′ for Matmul are constructed by the following expressions:

A′[m,k] = A′[t1 ×W + t2,c] = A[t1, t2,c] (2)

K′[k,n] = K′[c,r×S×F + s×F + f] = K[r,s, f ,c], (3)

where the mapping functions are (m,k) = ΦA(t1, t2,c) = (t1×
W + t2,c) and (k,n) = ΦK(r,s, f ,c) = (c,r×S×F + s×F +
f), and W , S, and F are the range of the iterators w, s and f .
EINNET automatically generates Expression (2) and (3) to
fix the mismatch and reduce the expression distance.

During converging derivation, EINNET only considers
derivations that reduce the expression distance of the current
expression and target operator, allowing EINNET to prune

most derivations and quickly converge to the target operator.
By enumerating operators in the iterator mapping table as
the target operator, EINNET finds transformations involving
different operators.

Delayed code generation. To accelerate the search, EINNET
estimates the performance of derived programs to avoid
frequent code generation for eOperators. Specifically, the
execution time of a predefined operator is measured by
profiling its kernel on hardware. Meanwhile, the run time of
an eOperator is estimated based on its input/output sizes and
hardware memory bandwidth. We observe that this estimation
is accurate since eOperators are memory-bound and usually
account for a small part of the total execution time.

6.2 Redundancy Pruning
Applying different sequences of derivations may result in the
same expression. For example, splitting an iterator into two
and then merging them results in the original one. To prune
redundancy, EINNET uses a fingerprint technique to detect
duplicate expressions. A fingerprint is a hash of an expression
and can eliminate the following sources of redundancy:
• Summation reordering: summations can be reordered,

e.g., ∑x⃗ ∑y⃗ f (⃗x, y⃗) is equivalent with ∑y⃗ ∑x⃗ f (⃗x, y⃗). Note that
traversal reordering does not imply equivalence since it
involves layout transformations.

• Operand reordering: operands of commutative binary
operations can be reordered, e.g., Lx⃗(T1 [⃗x]+T2 [⃗x]) is equal
to Lx⃗(T2 [⃗x]+T1 [⃗x]). Operand reordering should be applied
for both iterator computation and tensor computation.

• Iterator renaming: iterators should be distinguished by
their iterator space instead of names, e.g., LN

x=0 LM
y=0 f (x,y)

and LN
y=0 LM

z=0 f (y,z) are equivalent, and (x,y) in the former
one should be mapped to (y,z) in the latter one.

• Tensor renaming: tensors introduced by different scopes
may have the same value.
To eliminate the above sources of redundancy, EINNET

adopts the following methods to calculate fingerprints. For a
traversal iterator, EINNET uses its iterator space and its order
relative to all other traversal notations in the current scope
as its fingerprint. Since order is considered, fingerprint can
differentiate traversal iterators with the same iterator spaces
but in different locations of the traversal notations. For a
summation iterator, EINNET only uses its iterator space as
its fingerprint. Thus expressions under summation reordering
have the same fingerprint. To account for operand reordering,
EINNET uses the operation type and an order-independent
hash for commutative operations (e.g., addition) and an order-
dependent hash for other operations. The fingerprint of a
tensor depends on its source. For an input tensor, EINNET
calculates its fingerprint by hashing its name. For an interme-
diate tensor generated by a scope, its fingerprint is identical
to that of the expression that produces the tensor.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 747

Algorithm 1 Program-level optimizer.
1: Input: An input tensor program P
2: Output: An optimized tensor program Popt
3:
4: I R = inter-expression rule set
5: SP = split P and translate subprograms into expressions
6: Popt =∅
7: for E0 ∈ SP do
8: Q = {E0}
9: for E ∈ Q do

10: for r ∈ I R do
11: Q = Q + r(E)

12: Q = Q + DISTANCEGUIDEDSEARCH(E)
13: Add the best transformation in Q into Popt

14: POSTOPTIMIZATION(Popt)
15: return Popt

(a) Original

Strided Conv
Transposed

Selective
OffsetReduce

Strided Conv
Transposed

𝐾

Output

Matmul

Matmul

𝐾

Output

Selective
OffsetReduce 𝑬𝟎

DLT 𝑬𝟏 DLT 𝑬𝟐

(b) Before post-optimization

Selective
OffsetReduce

Matmul

Matmul

𝑬𝟐 𝐾

Output

𝑬𝟏 ∘ 𝑬𝟎

(c) After post-optimization

Figure 11: Post-optimization for InfoGAN. Red blocks
represent eOperators. DLT means data layout transformation.

6.3 End-to-End Workflow
Algorithm 1 shows EINNET’s workflow for optimizing an
input tensor program in an end-to-end fashion. For an input
program, EINNET first splits it into multiple subprograms
using non-linear activation operators as the splitting points.
This is because activation operators often do not provide
further optimization opportunities other than fusion, as dis-
covered by prior work [38]. For each subprogram, EINNET
translates it into expressions using the canonical expression
of each operator. Since a subprogram may include multiple
operators and thus multiple expressions, EINNET applies
inter-expression derivation rules (Line 11) and feeds each
expression to the distance-guided search (§6.1) for performing
intra-expression derivations (Line 12). Instead of integrat-
ing intra- and inter-expression optimizations in a unified
search space and performing them jointly, the separate search
prioritizes the transformations that can map expressions
into operators. Thus, EINNET is able to find promising
transformations quickly and prune unnecessary search states
according to the execution time of transformed results.

Finally, EINNET selects the best-discovered expression of
each subprogram, performs post-optimization, and generates
an optimized tensor program. Figure 11 shows two types
of post-optimization: eOperator fusion and compile-time
expression evaluation. EINNET generates eOperators to
facilitate optimizing transformations when optimizing a sub-
program. During post-optimization, consecutive eOperators
are fused into a single eOperator by applying inter-expression

derivations. The dashed boxes in Figure 11(b) and (c) show
such cases. EINNET also detects compile-time computable
expressions to reduce runtime overhead. For example, the
data layout transformation E2 in Figure 11 can be processed
during post-optimization.

7 Evaluation

7.1 Experimental Setup

Implementation of EINNET. EINNET is built with over
23K lines of C++ and Python code. We realize the tensor
expression derivation system from scratch and implement an
execution runtime for tensor programs. Users can both define
tensor programs in EINNET directly and load existing ones in
the ONNX format [29]. To support an operator in derivation,
EINNET requires its tensor expression and operator attribute
constraints to automatically convert it between expressions
and operators. We set the default maximum search depth of ex-
plorative derivation to 7, which is an empirical configuration
satisfying both optimization quality and search time.

Platform. We evaluate EINNET on a server with dual
Intel Xeon E5-2680 v4 CPUs, NVIDIA A100 40GB and
V100 32GB PCIe GPUs. All experiments use CUDA 11.0.2,
cuBLAS 11.1.0, and cuDNN 8.0.3.

Workloads. We evaluate EINNET on seven DNN mod-
els, spanning various fields and covering both classic and
emerging DNNs. InfoGAN [9] is a generative adversarial
network learning disentangled representations from objects.
DCGAN [32] leverages deep convolution structures to get
hierarchical representations. FSRCNN [13] is used for fast
image super-resolution. GCN [30] is an image semantic
segmentation model. ResNet-18 [19] is a famous image
classification network. CSRNet [25] adopts dilated convo-
lution for congested scene analysis. LongFormer [6] is an
improved Transformer model dealing with long-sequence
language processing. We adopt typical input shapes based
on the papers and implementations of models to keep the
evaluation meaningful in real scenarios.

7.2 End-to-End Performance

We first compare the end-to-end inference performance
of EINNET against today’s DNN frameworks, including
TensorFlow v2.4 [4], TensorFlow XLA [2], Nimble [22],
TVM v0.10 with Ansor [7], TensorRT v8.2 [35], and PET
v0.1 [38]. All frameworks use the same version of cuBLAS
and cuDNN as their backend and the same data type FP32
in computation for a fair comparison. For the new attention
operator in Longformer, we provide an auto-tuned kernel
for TVM, TensorRT, PET, and EINNET, and implement it by

748 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A B C D E F G
0

2

4
45

.7×
47

.3×
2.2x

InfoGAN

A B C D E F G
0

2

4

30
.5×

30
.9×

1.6x

DCGAN

A B C D E F G
0

2

4

69
.0×

75
.7×

17
.9×

17
.6×

1.7x

FSRCNN

A B C D E F G
0

2

4

10
.2×

11
.6×

2.7x

GCN

A B C D E F G
0

2

4

7.3
×

8.7
×

1.1x

ResNet-18

A B C D E F G
0

2

4

4.8
×

6.2
×

1.1x

CSRNet

A B C D E F G
0

2

4

27
.9×

14
.8×

O
O
M 1.4x

Longformer

A B C D E F G
0

2

4

20
.1×

20
.6×

1.4x

A B C D E F G
0

2

4

11
.2×

12
.9×

1.4x

A B C D E F G
0

2

4

40
.8×

44
.8×

18
.9×

18
.9×

1.9x

A B C D E F G
0

2

4

7.3
×

7.5
×

1.2x

A B C D E F G
0

2

4

1.0x

A B C D E F G
0

2

4

1.0x

A B C D E F G
0

2

4

31
.6×

25
.6×

O
O
M 1.5x

A B C D E F G
0

2

4

29
.0×

33
.0×

2.1x

A B C D E F G
0

2

4
23

.2×
20

.7×

1.7x

A B C D E F G
0

2

4

50
.2×

51
.7×

16
.9×

18
.9×

1.4x

A B C D E F G
0

2

4

9.2
×

10
.6×

2.7x

A B C D E F G
0

2

4

7.9
×

9.2
×

1.2x

A B C D E F G
0

2

4

4.7
×

1.1x

A B C D E F G
0

2

4

20
.5×

12
.6×

O
O
M 2.2x

A B C D E F G
0

2

4

13
.7×

13
.3× 4.4
×

1.4x

A B C D E F G
0

2

4

4.9
×

4.2
×

1.0x

A B C D E F G
0

2

4

30
.3×

28
.0×

18
.2×

19
.9×

1.4x

A B C D E F G
0

2

4

5.6
×

1.3x

A B C D E F G
0

2

4

1.0x

A B C D E F G
0

2

4

1.1x

A B C D E F G
0

2

4

22
.5×

23
.5×

O
O
M 2.2x

Re
la

tiv
e

Ex
ec

. T
im

e

A
10

0
Ba

tc
h

Si
ze

 1
A

10
0

Ba
tc

h
Si

ze
 1

6
V1

00
Ba

tc
h

Si
ze

 1
V1

00
Ba

tc
h

Si
ze

 1
6

(A)TensorFlow (B)TensorFLow-XLA (D)Nimble (E)TVM (C)TensorRT (F)PET (G)EinNet

Figure 12: End-to-end performance comparison with other systems on an A100 and a V100 GPU with batch sizes of 1 and 16.
OOM means out of memory. Bars over 4× are truncated, and their relative execution times to EINNET are marked on the bars.
The numbers above EINNET’s bars show EINNET’s speedups over the best baseline.

A B C
0

2

4

4.
4×

2.5x

InfoGAN

A B C
0

2

4

1.3x

FSRCNN

A B C
0

2

4

1.3x

GCN

A B C
0

2

4

0.8x

ResNet-18

Re
la

tiv
e

Ex
ec

. T
im

e (A)TensorRT (B)EinNet-Base (C)EinNet

Figure 13: End-to-end performance comparison with Ten-
sorRT on an A100 with TF32 and batch sizes of 1. The
numbers above EINNET’s bars show EINNET’s speedups
over the best baseline.

einsum in other frameworks. Figure 12 shows the results on
NVIDIA A100 and V100 GPUs under batch sizes 1 and 16.

EINNET outperforms the best existing baseline by up to
2.72× on A100 and 2.68× on V100. For both CNNs (e.g.,
GCN) and language models (e.g., Longformer), EINNET is
able to improve their performance by more than 2×. Among
the seven models, ResNet-18 has been heavily optimized by
existing tensor program frameworks and optimizers; how-
ever, EINNET still outperforms existing optimizers by 1.2×
on V100, by applying the novel transformations shown in
Figure 3. For CSRNet, a typical optimization case of PET,
EINNET discovers similar transformations by derivations
and eliminates extra introduced transposes, indicating that
EINNET’s derivation rules can perform PET’s optimizations
and uncover additional improvements.

Figure 13 shows the speedup with the computation data
type of TF32 and Tensor Cores on A100. To show the benefits
provided by EINNET, we create a baseline EINNET-Base
which executes models in EINNET with derivation optimiza-
tions disabled. As shown in Figure 13, while EINNET usually
brings significant speedups over EINNET-Base and TensorRT,
TensorRT can have better performance in models like ResNet-
18. Though TensorRT is not open source, the profiling results

Table 3: Performance studies on the cases in §7.3. The Algo
column shows the best convolution algorithm for cuDNN,
where IGEMM, FFT, and WINO refer to implicit GEMM, Fast
Fourier Transform, and Winograd [24] algorithms. The
DRAM and L2 columns show the amount of memory access.

Input shape Conv
Algo

Time
(ms)

DRAM
(MB)

L2
(MB)

Conv3x3 [1,512,7,7] Original WINO 0.126 56.7 70.6
Figure 3 (b) Optimized N/A 0.046 10.5 27.5

Conv- [16,448,2,2] Original IGEMM 0.136 7.74 122
Transpose Optimized N/A 0.032 8.07 27.8

Conv5x5 [16,32,224,224] Original FFT 0.854 547 579
Figure 6 Optimized WINO 0.528 368 499

G2BMM [8,10000,64] Original N/A 7.14 20.9 19750
Figure 14 Optimized N/A 1.57 20.6 817

show that it leverages many efficient GPU kernels besides
cuBLAS and cuDNN. This can be an important source of its
high performance, which is beyond the current search space
of EINNET.

7.3 Optimization Analysis

This section analyzes the optimizations discovered by EIN-
NET on these DNNs. To highlight transformations beyond
the scope of existing tensor program optimizers, we focus on
transformations involving eOperators.

Transforming operator types. EINNET is able to op-
portunistically substitute an inefficient operator with well-
optimized operators of different types. In ResNet-18 and Info-
GAN, the transformations from Conv and ConvTranspose to
Matmul are profitable. Table 3 shows a detailed performance
analysis. As shown in Figure 3(b), EINNET transforms a
Conv3x3 to a Matmul and an eOperator (OffsetReduce),
which significantly reduces GPU DRAM accesses from 56.7
MB to 10.5 MB and achieves a 2.7× speedup. As another

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 749

G2BMM

1 2 1 2 1 2 1 2 1 1 1 1 2 2 2 2

1
2

1
2

1
2

1
2

1
1

1
1

2
2

2
2

G2BMM

(a) G2BMM w/ dilation (b) G2BMM w/o dilation

Data Layout Transform

Mask and Data
Layout Transform

G2BMM SoftmaxT1 GBMMT2Mask T1 T2Mask

G2BMM SoftmaxT1 GBMMMask T2Mask

Dilated G2BMM Softmax Dilated GBMM(c)

(d)

(e)

Figure 14: Optimization for Longformer Attention block. T1
and T2 are two reciprocal data layout transformations.

example, EINNET also derives a strided ConvTranspose to
a Matmul and another eOperator that selectively aggregates
the output of Matmul according to the derived expression.
This transformation significantly reduces L2 access, a key
contribution to performance optimization.

Transforming operator attributes. EINNET can also trans-
form operator attributes by leveraging eOperators. Figure 6
shows such an optimization for convolution, which converts
its kernel size from 5×5 to 3×3, allowing EINNET to use
more advanced convolution algorithms best suited for 3×3
convolutions. To realize this transformation, an eOperator is
added to split the output of Conv3x3 across the channel dimen-
sion and reduce the intermediate results with corresponding
offsets. Although padding the convolution kernel introduces
additional computation, Table 3 shows it enables using the
Winograd algorithm for convolution, which further reduces
compute time and memory access.

Transforming tensor layouts. eOperators allow EINNET to
accelerate DNN computation by optimizing tensor layouts.
Figure 14 shows such a layout optimization for Longformer,
which uses a dilated G2BMM (general to band matrix mul-
tiplication) to compute sparse attention. G2BMM has the
same computation pattern as Matmul and only computes a
subset of output. The blue boxes in Figure 14(a) show the
output locations with a dilation of 2. EINNET discovers an
optimizing layout transformation that reorders the odd and
even rows or columns, converting the dilated G2BMM to a non-
dilated one, as shown in Figure 14(b), which greatly reduces
non-contiguous memory accesses at the cost of introducing
two redundant elements (marked as red in the figure). As
shown in Table 3, this transformation can reduce L2 cache
access by 95.9% and execution time by 78.0%.

Transforming graph structures. For the Longformer case
shown in Figure 14(d), four data layout transformations are

Conv 1x5

Relu

T0

T1

Conv 5x1

Add

T0

T1

T0

T1

Matmul

Add

(a)

Relu
OffsetReduce

Relu

Matmul

OffsetReduce

Relu

Matmul

OffsetReduce
+Relu

Split
W0

[f,c,5,1]

Conv 5x1

Relu

Conv 1x5

Relu

Stack(dim=0)

DLT

W0

[f,c,5,1]

W2[5f,c]

DLT

W3[5f,c]

DLT

W0

[f,c,5,1]

W2[5f,c]

DLT

W1

[f,c,1,5]

W3[5f,c]

W4[2,5f,c]

Matmul

OffsetReduce
+Relu

BatchMatmul

Add

OffsetReduce
+Relu

T[2,nhw,c]

W1

[f,c,1,5]

(b) (c)

W1

[f,c,1,5]

Figure 15: Optimization for the spatial separable convolutions
in GCN. c and f are the numbers of input and output channels.

Conv3x3
0.0

0.5

1.0

ConvTranspoe
0.0

0.5

1.0

Conv5x5
0.0

0.5

1.0

G2BMM
0.0

0.5

1.0

N
ot

 S
up

po
rte

d
N

ot
 S

up
po

rte
d

N
ot

 S
up

po
rte

d
N

ot
 S

up
po

rte
d

Re
la

tiv
e

Ex
ec

. T
im

e

cuBlas/cuDNN
EinNet + cuBlas/cuDNN

AutoTVM
EinNet + AutoTVM

Ansor
EinNet + Ansor

Figure 16: Operator performance before and after optimiza-
tion (opt) on the math libraries and code generation frame-
work Ansor. The input settings are shown in Table 3.

introduced to accelerate dilated G2BMM. While they are not
predefined operators, EINNET finds that the middle two are
reciprocal through expression fusion and eliminates them
since they do not affect the Softmax computation in between.

A more complex example is in GCN, which has a repeated
structure of spatially separable convolutions (i.e., sequential
Conv1xKs and ConvKx1s). As shown in Figure 15(b), EINNET
first transforms convolutions to Matmuls and eOperators, and
then merges the first two Matmuls into a single Matmul. While
the two following Matmuls do not share common inputs, they
have an identical computation pattern and can be merged
into a BatchMatmul by applying the expression merging and
operator matching rules. Note that the left part of Figure 15(c)
is computed at compile-time by EINNET since it only involves
weight tensors. These transformations optimize subgraph
execution time by 4.9× on A100 with batch size of one.

7.4 Integration with Different Backends

Since EINNET searches expression space, it can cooper-
ate with different backends, including math libraries and
schedule-based code generation frameworks. To show the
improvements of EINNET on these backends, we evaluate
EINNET with cuBLAS/cuDNN, AutoTVM [7], and TVM
auto-scheduler Ansor [8]. The evaluation is carried out on the
same transformations illustrated in §7.3.

Figure 16 shows EINNET can optimize tensor programs
on different backends. For the Conv3x3 in ResNet-18 and
the ConvTranspose in InfoGAN, transforming them to
Matmuls and eOperators has significant speedup over all
three platforms. While the transformation from Conv5x5 to
Conv3x3 is beneficial for cuDNN, it does not have perfor-

750 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 2 4 6 8
Depth

0

1

2

3

Sp
ee
du

p
InfoGAN

0 2 4 6 8
Depth

0

1

2

3

Sp
ee
du

p

Longformer

Figure 17: Speedup under different maximum search depths

mance improvement on AutoTVM and Ansor even if efficient
algorithms such as Winograd [24] are adopted. This result
shows while many transformations are effective on different
backends, customizing transformations for each backend is
beneficial. For the G2BMM operator in Longformer, which
is not a predefined operator in current math libraries, the
transformation on Ansor brings a speedup of 4.54× since
less non-contiguous memory access happens.

7.5 Analysis of Automated Derivation
The search space of EINNET is determined by heuristic
parameters, e.g., the maximum search depth for the distance-
guided search algorithm (§6.1), which specifies the largest
steps of derivation applied to an expression. A larger search
depth enables more potential optimizations but introduces
larger searching overhead. Figure 17 analyzes the speedup
EINNET can achieve with different maximum search depths
on InfoGAN and Longformer. On InfoGAN, EINNET has
improvement when the searching step increases from 2 to
4, as new transformations are explored with a deeper search.
While for Longformer, the major speedup comes from the
transformation found in a 4-step derivation. In conclusion,
the key takeaway is that EINNET can achieve most of the
performance improvement at moderate depth.

To evaluate the proposed techniques for derivation, we eval-
uate the searching process on the four cases in Table 3 with
and without converging derivation and expression fingerprint.

Distance-guided derivation (§6.1) provides a deterministic
derivation direction to reduce search overhead. As shown in
Figure 18(a), the search time grows exponentially with the
maximum depth of explorative derivation (i.e., MaxDepth in
Figure 10). EINNET adopts converging derivation to reduce
the search depth of explorative derivation. Figure 18(b) shows
the number of applied explorative derivations in these cases.

In the case of ConvTranspose, the explorative derivation
requires a search with MaxDepth = 12 to discover the target
expression. But with converging derivation, EINNET only
requires a search with MaxDepth = 6, which means that
matching a vendor-provided operator needs a six-step (12−6)
search and converging derivation can reduce this unnecessary
search. Thus, this optimization leads to a significant reduction
of the search time by more than 99.0%.

Expression fingerprint (§6.2) prunes redundant searching
states. Figure 19 shows the intermediate states and search
time with and without the fingerprint mechanism. During

2 4 6 8 10
MaxDepth

(a)

10−3

10−1

101

103

105

Se
ar

ch
 T

im
e

(s)

Conv3x3
ConvTranspose
Conv5x5
G2BMM

Conv3x3
ConvTranspose

Conv5x5
G2BMM

(b)

0

6

12

18

Ex
pl

or
at

iv
e

D
er

iv
at

io
n

D
ep

th

w/o converging derivation
w/ converging derivation

Figure 18: (a) Search time with different MaxDepth. (b)
The number of explorative derivation steps with and without
converging derivation.

Conv3x3
ConvTranspoe

Conv5x5
G2BMM

104

105

106

107

108

Th
e

N
um

be
r o

f
In

te
rm

ed
ia

te
 S

ta
te

s

Conv3x3
ConvTranspoe

Conv5x5
G2BMM

10−1

100

101

102

103

104

Se
ar

ch
 T

im
e

(s)

EinNet w/ fingerprint pruning EinNet w/o fingerprint pruning

Figure 19: Ablation study of expression fingerprint pruning

the derivation, fingerprint effectively prunes 98.0% of in-
termediate states by recognizing and eliminating duplicate
expressions and reduces 98.2% of search time on average.

With the distance-guided derivation and expression fin-
gerprint, EINNET finishes searching within two minutes for
most subprograms and is on par with existing frameworks like
TASO and PET. The search spends no more than two hours
for most models, which depends on the number of operators
contained in models. EINNET is able to be deployed in real
production environment since the search cost is one-off for a
model and brings persistent benefits.

8 Related Work

Rule-based approaches such as TensorFlow XLA [2], Ten-
sorRT [35], and Grappler [1], are widely used and perform
optimizations like constant folding and layout optimization.
While they can efficiently optimize computation graphs, it
requires extensive expert efforts and only performs manu-
ally discovered optimizations. For operator fusion, DNNFu-
sion [28] adopts operator-level mathematical-property-based
graph rewrite rules, such as associative and commutative
properties. However, such rewriting rules are mainly designed
for element-wise operators and cannot be easily extended to
arbitrary operators since many complex operators, such as con-
volution and matrix multiplication, do not follow associative
and commutative properties. EINNET derives tensor programs
at expression level to exploit general program transformations,
including splitting, fusing, and reorganizing computation into
operators and eOperators. This avoids manually summarizing
rules for each operator.

Superoptimization-based approaches. TASO [20] and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 751

PET [38] use superoptimization techniques to generate graph
transformations for a given set of operators. TASO adopts
formal verification techniques to assure the equivalence of
transformations. PET further introduces partially-equivalent
transformations and correction mechanism to find more
optimizations. Compared with these frameworks, EINNET
extends the search space from POR transformations to general
expressions by tensor algebra expression derivation.

Schedule-based approaches. Halide [24] decouples a pro-
gram into computation and schedule and performs schedule
space transformations. This idea is widely adopted by code
generation frameworks, including TVM [7], FlexTensor [42],
and Ansor [40]. Orthogonal to schedule-based optimizers,
EINNET focuses on high-level graph transformation space
and designs the architecture-independent expression deriva-
tion rules to reorganize computation into efficient operators.

Task-based approaches. Task, an abstraction of computation
and memory operation workload, is introduced into tensor pro-
grams recently to optimize their performance. Rammer [27]
divides operators into fine-grained tasks and proposes a
sub-operator-level task scheduling method to exploit both
intra- and inter-operator parallelism. Hidet [12] leverages
task mapping in kernel generation to explore more aggressive
optimizations. EINNET is compatible with these optimizers
by utilizing them as execution and kernel generator backend.

Tensorization. TensorIR [14], AMOS [41], and Glen-
side [34] aim to generate tensorized code on tensor accel-
erators. While computation mapping is stressed in their
workflows, these works focus on generating performant native
code leveraging special circuits, such as fixed-shape matrix
multipliers Intel AMX and NVIDIA TensorCore. In contrast,
EINNET adopts expression matching to match arbitrary linear
tensor algebra expressions, which are more flexible and
contain undetermined parameters in the pattern expressions.

9 Conclusion

We propose EINNET, a derivation-based tensor program
optimizer, which extends the optimization space of tensor
programs from predefined operator representable transforma-
tions to general expressions and can create new operators
desired by transformations. EINNET can outperform state-of-
the-art frameworks by up to 2.72× on NVIDIA GPUs.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Dr. Lidong Zhou, for their valuable comments
and suggestions. This work is supported by National Key
R&D Program of China under Grant 2021ZD0110202, NSFC

for Distinguished Young Scholar (62225206), the Young
Scientists Fund of the National Natural Science Foundation
of China (62202259), and China Postdoctoral Science Foun-
dation (2022M711810). Haojie Wang is supported by the
Shuimu Tsinghua Scholar Program. Jidong Zhai is the corre-
sponding author of this paper (zhaijidong@tsinghua.edu.cn).

References

[1] Tensorflow graph optimization with grappler; tensorflow
core.

[2] Xla: Optimizing compiler for tensorflow. https://www.
tensorflow.org/xla, 2017.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems
design and implementation (OSDI 16), pages 265–283,
2016.

[5] Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, et al. Deep speech 2: End-to-end speech recog-
nition in english and mandarin. In International con-
ference on machine learning, pages 173–182. PMLR,
2016.

[6] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: an automated end-
to-end optimizing compiler for deep learning. In
Andrea C. Arpaci-Dusseau and Geoff Voelker, editors,

752 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mailto:zhaijidong@tsinghua.edu.cn
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla

13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, pages 578–594. USENIX Associa-
tion, 2018.

[8] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In Advances in Neural Information Processing Systems
31, NeurIPS’18. 2018.

[9] Xi Chen, Yan Duan, Rein Houthooft, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable
representation learning by information maximizing
generative adversarial nets. In Proceedings of the
30th International Conference on Neural Information
Processing Systems, pages 2180–2188, 2016.

[10] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning.
CoRR, abs/1410.0759, 2014.

[11] Dense Linear Algebra on GPUs. https://developer.
nvidia.com/cublas, 2016.

[12] Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu,
Yida Wang, and Gennady Pekhimenko. Hidet: Task-
mapping programming paradigm for deep learning
tensor programs. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pages 370–384, 2023.

[13] Chao Dong, Chen Change Loy, and Xiaoou Tang. Ac-
celerating the super-resolution convolutional neural
network. In European conference on computer vision,
pages 391–407. Springer, 2016.

[14] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin,
Junru Shao, Ruihang Lai, Zihao Ye, Lianmin Zheng,
Cody Hao Yu, Yong Yu, et al. Tensorir: An abstraction
for automatic tensorized program optimization. arXiv
preprint arXiv:2207.04296, 2022.

[15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages
1440–1448, 2015.

[16] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and
Gigel Macesanu. A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics,
37(3):362–386, 2020.

[17] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, et al. Conformer:
Convolution-augmented transformer for speech recogni-
tion. arXiv preprint arXiv:2005.08100, 2020.

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages
2961–2969, 2017.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2016.

[20] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[21] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick
Mannion, Ahmad A Al Sallab, Senthil Yogamani, and
Patrick Pérez. Deep reinforcement learning for au-
tonomous driving: A survey. IEEE Transactions on
Intelligent Transportation Systems, 2021.

[22] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel gpu task
scheduling for deep learning. Advances in Neural
Information Processing Systems, 33:8343–8354, 2020.

[23] Johannes Langer. Band Matrices in Recurrent Neural
Networks for Long Memory Tasks. PhD thesis, 2018.

[24] Andrew Lavin and Scott Gray. Fast algorithms for
convolutional neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4013–4021, 2016.

[25] Yuhong Li, Xiaofan Zhang, and Deming Chen. Csrnet:
Dilated convolutional neural networks for understanding
the highly congested scenes. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1091–1100, 2018.

[26] Liangkai Liu, Sidi Lu, Ren Zhong, Baofu Wu, Yongtao
Yao, Qingyang Zhang, and Weisong Shi. Computing
systems for autonomous driving: State of the art and
challenges. IEEE Internet of Things Journal, 8(8):6469–
6486, 2020.

[27] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rTasks. In
Proceedings of the 14th USENIX Conference on Operat-
ing Systems Design and Implementation, pages 881–897,
2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 753

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

[28] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: accelerating deep neural
networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and
Implementation, pages 883–898, 2021.

[29] Onnx. https://onnx.ai/, 2019.

[30] Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo,
and Jian Sun. Large kernel matters–improve semantic
segmentation by global convolutional network. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4353–4361, 2017.

[31] Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://pytorch.org,
2017.

[32] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, 2013.

[34] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky,
Scott Davidson, Joseph McMahan, Michael Taylor, Luis
Ceze, and Zachary Tatlock. Pure tensor program
rewriting via access patterns (representation pearl). In
Proceedings of the 5th ACM SIGPLAN International
Symposium on Machine Programming, MAPS 2021,
page 21–31, New York, NY, USA, 2021. Association
for Computing Machinery.

[35] NVIDIA TensorRT: Programmable inference acceler-
ator. https://developer.nvidia.com/tensorrt,
2017.

[36] Aravind Vasudevan, Andrew Anderson, and David
Gregg. Parallel multi channel convolution using general
matrix multiplication, 2017.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in neural information processing systems,
pages 5998–6008, 2017.

[38] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. Pet: Optimizing tensor
programs with partially equivalent transformations and
automated corrections. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 37–54, 2021.

[39] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[40] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: generating
high-performance tensor programs for deep learning. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 863–879, 2020.

[41] Size Zheng, Renze Chen, Anjiang Wei, Yicheng Jin, Qin
Han, Liqiang Lu, Bingyang Wu, Xiuhong Li, Shengen
Yan, and Yun Liang. Amos: enabling automatic mapping
for tensor computations on spatial accelerators with
hardware abstraction. In ISCA, pages 874–887, 2022.

[42] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule
exploration and optimization framework for tensor com-
putation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 859–873, 2020.

754 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://onnx.ai/
https://pytorch.org
https://developer.nvidia.com/tensorrt

A Artifact Appendix

Abstract
This artifact appendix helps the readers reproduce the main
evaluation results of the paper: EINNET: Optimizing Tensor
Programs with Derivation-Based Transformations.

Scope
This artifact can be used for evaluating and reproducing the
main results of the paper, including the model-level evaluation,
operator-level evaluation, and the ablation studies and hyper-
parameter studies on search strategies.

Contents
The following evaluation results are contained in the artifact:

E1: An end-to-end performance comparison between EinNet
and other frameworks. (Figure 12)

E2: Performance studies on the cases in §7.3. (Table 3)

E3: Operator performance before and after optimization
on the math libraries and code generation framework Ansor.
(Figure 15)

E4: Speedup under different maximum search depths. (Figure
16)

E5: Search time with different MaxDepth and the number
of explorative derivation steps with and without converging
derivation. (Figure 17)

E6: Ablation study of expression fingerprint pruning. (Figure
18)

Hosting
The source code of this artifact can be found on GitHub:
https://github.com/zhengly123/OSDI23-EinNet-AE, the main
branch, with the commit ID 26a47d9.

Requirements
Hardware dependencies

Dual Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz,
NVIDIA A100-PCI-40GB GPU, NVIDIA V100-PCIE-32GB

GPU.

Software dependencies

The artifact is evaluated on Ubuntu 22.04 LTS (Linux kernel
5.15.0-58). The artifact relies on CUDA 11.0.2 and cuDNN
8.0.3. The following frameworks are required as baselines:

1. TensorFlow 2.4
2. TensorRT 8.0
3. PET 1.0
4. Nimble with the commit ID bac6d10
5. TVM v0.10.0

Experiments workflow
The installation instruction and the following experiments are
included in this artifact. All DNN benchmarks use synthetic
input data in GPU device memory to remove the side effects
of data transfers between CPU and GPU.

End-to-end performance (E1)

This experiment reproduces Figure 12 in the paper. Refer
to OSDI23-EinNet-AE/0_model/README.md to prepare
the environment and data. The detailed commands for each
baseline are provided in separate run.sh and readme files in
subdirectories.

Performance studies on the cases in §7.3 (E2)

See README.md and run.sh in OSDI23-EinNet-AE/1_op.

Operator performance (E3)

See README.md and run.sh in OSDI23-EinNet-
AE/2_kernel_generator.

Speedup & Depth (E4)

See README.md and evaluate_max_depth.py in OSDI23-
EinNet-AE/3_search_depth.

Search Time (E5)

See README.md and run.sh in OSDI23-EinNet-
AE/4_search_time.

Ablation Study (E6)

See README.md and run.sh in OSDI23-EinNet-
AE/5_fingerprint.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 755

Hydro: Surrogate-based Hyperparameter Tuning Service in Datacenters

Qinghao Hu1,2,3 Zhisheng Ye3,4 Meng Zhang1,2,3 Qiaoling Chen3,5

Peng Sun3,6 Yonggang Wen1 Tianwei Zhang1

1Nanyang Technological University 2S-Lab, NTU 3Shanghai AI Laboratory
4Peking University 5National University of Singapore 6SenseTime Research

Abstract

Hyperparameter tuning is an essential step in deep learning
model development that provides better model performance
at the cost of substantial resources. While existing systems
can improve tuning efficiency, they still fail to handle large
models with billions of parameters and efficiently leverage
cluster resources. Motivated by these deficiencies, we intro-
duce Hydro, a surrogate-based hyperparameter tuning service
that optimizes tuning workloads in both the job-level and
cluster-level granularities. Specifically, it consists of two key
components: (1) Hydro Tuner automatically generates and
optimizes surrogate models via scaling, parametrization and
fusion; (2) Hydro Coordinator improves tuning efficiency
and cluster-wide resource utilization by adaptively leveraging
ephemeral and heterogeneous resources. Our comprehensive
experiments on two tuning algorithms across six models show
that Hydro Tuner can dramatically reduce tuning makespan
by up to 78.5× compared with Ray Tune and no reduction in
tuning quality. Hydro’s source code is publicly available at
https://github.com/S-Lab-System-Group/Hydro.

1 Introduction
Over the years, we have witnessed the incredible performance
and rapid popularity of Deep Learning (DL) across many do-
mains, such as vision and speech. However, it is non-trivial
to acquire a qualified DL model because its performance is
highly sensitive to the hyperparameters, which control the
training process and require to be set before training [71].
Poor hyperparameters result in training instability and infe-
rior model quality. Conversely, well-tuned hyperparameters
can significantly improve model performance. For instance,
PyTorch [91] recently applies a new hyperparameter recipe
on ResNet-50 [41] and achieves 80.9% ImageNet classifi-
cation accuracy [18], which is 4.8% higher than the former
version (76.1%). Besides, RoBERTa [75] also demonstrates
the critical impact of hyperparameters on the performance of
large language models. Accordingly, hyperparameter tuning
becomes a common practice during DL model development.

Due to the high dimensionality of the search space, a hy-
perparameter tuning job typically contains a large group of
trials, each with a unique configuration [125]. To accelerate
the tuning process, tech companies and researchers build hy-
perparameter tuning systems as cloud services [1, 8, 39, 92]

or standalone frameworks [32, 71, 72, 82, 125, 127] (Table 1).
However, we argue that state-of-the-art tuning systems are
still expensive and inefficient in practice, as they suffer from
several fundamental problems:
• Unacceptable cost of tuning large models. The extraordi-
nary performance of large foundation models (e.g., BERT
[30], GPT-3 [24]) attracts wide downstream applications
[3, 4, 6]. Meanwhile, the hyperparameter tuning demand for
these models increases rapidly. However, all of the existing
tuning systems require training multiple trials using several
times of resources, which is unaffordable for large models
with billions of parameters. For example, training a SOTA
language model PaLM [27] of Google takes over 6,000 TPU-
v4 [59] for around 2 months. Performing a hyperparameter
sweep on such model is intractable [23]. Consequently, hy-
perparameters of most large models are not well-tuned and
can lead to subpar performance [75].
• Inefficient hardware utilization. Recent scheduling works
[46, 114, 115, 124] report that GPUs are commonly underuti-
lized in DL clusters due to massive training jobs involving
mid- or small-scale models. Moreover, despite the growing
trend of foundation models being employed in clusters, large-
scale models often fail to fully utilize hardware resources due
to the huge communication overhead and the presence of bub-
bles in the pipeline parallelism [106]. To improve resource
utilization, some novel tuning systems incorporate features
such as elastic training [32, 71, 82], GPU sharing [125], and
inter-trial fusion [110]. However, these systems have certain
limitations (§8) and often require substantial resources to ex-
plore trivial trials, which results in limited resources being
contributed to the final model.
• Agnostic to cluster-wide resources. Hyperparameter tun-
ing jobs are pervasive and occupy enormous resources in
GPU clusters. As reported by Microsoft [50, 78], “approxi-
mately 90% of models require hyperparameter tuning, with
each tuning job containing 75 trials in median.” However,
existing tuning systems only manage trials over the requested
resources and lack interaction with cluster schedulers. Mean-
while, DL schedulers [36,40,46,87,94,114,123] also overlook
the distinct characteristic of gradually diminishing hardware
demand inherent in hyperparameter tuning jobs [71]. Conse-
quently, the cluster encounters imbalanced resource problem:
the active tuning jobs consistently occupy static resources,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 757

https://github.com/S-Lab-System-Group/Hydro

leaving some of them vacant, while the queued jobs are un-
able to request these idle resources from the scheduler. This
leads to severe queuing delay, which is exacerbated when
long-term large-scale model training jobs coexist and they
occupy the majority of cluster resources.

To bridge these gaps, we design Hydro, a surrogate-based
hyperparameter tuning service that optimizes tuning jobs in
both the job-level and cluster-level granularities via automated
model scaling, fusion and interleaving. The core design of
Hydro derives from the following three insights. First, it is
feasible to search hyperparameters with a smaller model. In-
stead of tuning hyperparameters directly on the target model,
we find it is possible to tune a model with a much smaller
surrogate model by applying a novel hyperparameter transfer
theory [117, 121]. Second, cross-model fusion can be used
to improve resource utilization. Since the scaled surrogate
model is prone to incur GPU underutilization, we can utilize
the model architecture consistency of different trials to fuse
them into a single one, achieving much higher GPU utilization
and training throughput. Third, ephemeral bubble resources
in the datacenter can be leveraged for tuning. Large model
training jobs exist in the long term and occupy the majority of
resources, which incurs the starvation of other jobs. We can
leverage pipeline bubbles of large models to greatly extend
the tuning job resources in an interleaving execution way,
without hurting the training throughout of large models.

Incorporating the above insights, we build Hydro service
to minimize the makespan of tuning workloads and improve
the cluster-wide resource utilization. It consists of two key
system components: (1) Hydro Tuner is the user interface
that automatically generates surrogate models by scaling and
parametrization. It optimizes tuning efficiency via inter-trial
and intra-trial fusion, which involve combining multiple mod-
els into a single entity and subsequently performing compiler-
based optimization. Besides, it efficiently orchestrates the
tuning process with adaptive fusion and eager transfer mecha-
nisms. (2) Hydro Coordinator is the datacenter interface that
interacts with the scheduler to dynamically allocate resources
and execute trials. It extends tuning resources by interleaving
training with pipeline-enabled large model training tasks, ef-
fectively utilizing idle time intervals on each node known as
bubbles, which are caused by the gaps between the forward
and backward processing of microbatches [106]. Besides, it
improves resource utilization and cluster-wide performance
by heterogeneity-aware allocation.

To extensively assess the performance of Hydro, we con-
duct evaluations across 6 models, such as GPT-3 XL [24] and
ResNet [41]. Experiments on Hydro Tuner show that it sub-
stantially outperforms Ray by 8.7∼78.5× on makespan reduc-
tion with single-fidelity tuning algorithm, while obtaining bet-
ter final model quality. Besides, our experiments on Hydro Co-
ordinator demonstrate that interleaving with a large pipelined
model can further extend the resource of tuning workload,
without sacrificing the throughput of the large model.

Features
Cloud Services HPO Frameworks

Hydro
Vizier SageMaker NNI Ray

Distributed Environment ✔ ✔ ✔ ✔ ✔

Elastic Training ♦ ♦ ♦ ✔ ✔

Auto Model Scaling ✘ ✘ ✘ ✘ ✔

Surrogate HP Transfer ✘ ✘ ✘ ✘ ✔

Inter-Trial Fusion ✘ ✘ ♦ ✘ ✔

Intra-Trial Fusion ✘ ✘ ✘ ✘ ✔

Heterogeneity Awareness ✘ ✘ ✘ ✘ ✔

Interleaving Training ✘ ✘ ✘ ✘ ✔

Table 1: Comparison between Hydro and existing popular
HPO systems: Google Vizier [39, 105], Amazon SageMaker
[28, 92], Microsoft NNI [9, 127] and Anyscale Ray [72, 84].
♦ denotes system cannot support the feature for many cases.

Table 1 compares Hydro with existing tuning systems. To
summarize, we make the following contributions:
★ We build a holistic system that automatically applies the
novel hyperparameter transfer theory together with multiple
system techniques to jointly improve the tuning efficiency.
★ We identify the opportunities for cluster-wide optimization
in the datacenter, including squeezing bubble resources with
interleaving and heterogeneity-aware trial allocation.
★ We demonstrate the excellent performance of surrogate-
based hyperparameter tuning across general models.

2 Background and Motivation
2.1 Hyperparameter Tuning
Hyperparameter Tuning (i.e., Hyperparameter Optimization,
HPO) aims to identify the optimal hyperparameters via mas-
sive configuration exploration [71, 82]. In the general work-
flow of an HPO job: (1) the user designates a search space of
hyperparameters to explore; (2) the tuning algorithm creates
a set of training trials and each trial contains one unique hy-
perparameter configuration sampled from the search space;
(3) the HPO system coordinates trials execution until the best
hyperparameter configuration is found.

Existing research works typically optimize HPO efficiency
from the tuning algorithm [33, 47, 63, 64, 67, 68, 70, 79, 104]
or system [32, 60, 69, 71, 82, 110, 125, 127] aspects:
Algorithm taxonomy. Depending on whether to enable early
stopping, tuning algorithms can be divided into two categories
[100]: (1) single-fidelity (e.g, Random [22], Bayes [104])
algorithms require each trial to be fully trained, which is
accurate but inefficient; (2) multi-fidelity (e.g., ASHA [63],
BOHB [33]) algorithms stop unpromising trials via successive
halving [53] or curve fitting [31] strategies. They are efficient
but may miss the best hyperparameter configuration due to
the use of “low-fidelity” evaluations. Hydro well supports
both the single- and multi-fidelity algorithms.
System optimization. To further improve the tuning effi-
ciency and resource utilization, there are two advanced tech-
niques applied in state-of-the-art HPO systems: (1) elastic
training dynamically allocates more GPU resources to the top

758 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

performing trials [71] and further adjusts the entire requested
resources [32, 82, 94]. (2) GPU sharing (i.e., trial packing)
allows multiple trials to share the GPU using the NVIDIA
MPS [13] or MIG [12] technologies to achieve higher uti-
lization [125]. Different from them, Hydro combines scaling,
fusion and interleaving for ultimate efficiency.

2.2 Hyperparameter Transfer Theory
Recently, the remarkable success of foundation models has
ignited a keen interest in exploring the relationship between
model size and its optimal hyperparameter. Scaling Laws [42,
43,52] empirically study the power-law functions of batch size
and learning rate across varying model sizes. Nevertheless, the
authors [52] candidly admit that only limited configurations
are tested and the rule-of-thumb formulas break down when
dealing with models that exceed one billion parameters.

Beyond heuristic exploration, some novel hyperparameter
transfer strategies [49, 117, 121] are proposed by DL theo-
rists. For simplicity, we call them parametrization, the rule
of how to adjust hyperparameters accordingly when models
grow/shrink in both the width and depth. Different from exist-
ing HPO systems, Hydro enables automatic hyperparameter
transfer based on parametrization. To make the obscure theory
more accessible, we present a concise background overview
of the underlying theory. [116] systematically builds a coher-
ent theoretical framework for parameterization: the feature
learning effect γ of a MLP model is proportional to

γ≡ L
w1−p , p ∈ [0,1] (1)

where w, L indicates the width and depth of the neural network
respectively. For the purpose of simplicity, we assume that the
numbers of the hidden-layer neurons are all of similar order,
w1,w2, ...wL−1 ∼ w. p is a metaparameter that interpolates
different parametrization strategies into a unified framework,
which is determined by inherent strategy. The objective is two-
fold: first, to maintain a fixed γ that allows hyperparameters
transfer across different model sizes, and second, to strive for
a larger γ that facilitates better feature learning. To this end,
there are two directions of parametrization:

(1) Neural Tangent (NT) parametrization (p = 0) [49]. It
naturally arose from the study of infinite-wide neural network
as Neural Tangent Kernel (NTK) [49, 89], which can keep
γ fixed by scaling the depth along with the width as L ∼ w.
NTK is a kernel method to explain the evolution of neural
networks during training, which is derived by applying the
first-order Taylor expansion to linearized models. It belongs
to the lazy training regime where the weights move very
little [121], so that linearization approximately holds around
the initial parameters and does not learn features, which is a
fatal weakness of the NTK theory in practice. Moreover, NT
parametrization does not make sense since the wider model
does not always perform better in this context [117], which
conflicts with common observations [43, 52].

(2) Maximal Update (MU) parametrization (p = 1) [121].

2−11 2−8 2−5 2−2

(a) Learning Rate

0

1

2

Lo
ss

MLP
w/o Hydro

2−11 2−8 2−5 2−2

(b) Learning Rate

0

1

2

MLP
w/ Hydro

Consistent Best LR

2−16 2−13 2−10 2−7

(c) Learning Rate

1

3

5

7

Lo
ss

Transformer
w/o Hydro

2−15 2−11 2−7

(d) Learning Rate

1

3

5

7 Consistent Best LR

Transformer
w/ Hydro

Scaling Ratio: S=16 S=8 S=4 S=2 S=1

Figure 1: Effect of Hydro parametrization. The training loss
against the learning rate on MLP (a, b) and Transformer (c,
d) with different widths. S denotes the model scaling ratio.

It generalizes the mean-field limit of the 1-hidden-layer case
[25, 80] and should be the unique parametrization that re-
tains the representation-learning capability (non-rigorously
referred to active training, in contrast to lazy training of
NT parametrization) for a large-scale neural network, which
means training does not become trivial or stuck at the initial-
ization in the large width limit. Colloquially, it is designed
to solve the issue that the input layer is updated much more
slowly than the output layer, and make all hidden activations
update with the same speed in terms of width [117].

Hydro adopts the MU parametrization, which will be fur-
ther elaborated in §4.1 and we refer readers to [98, 117–122]
for a comprehensive review of the theory.

2.3 Opportunities for Efficient Tuning
Lightweight surrogate-based tuning. Current HPO systems
search hyperparameters directly on the target model, which is
intuitive but inefficient. In contrast, Hydro makes it possible
to tune a model with a much smaller surrogate model via
applying a novel hyperparameter transfer technique (afore-
mentioned in §2.2). For a clearer illustration of the surrogate-
based tuning effect, we employ Hydro parametrization on two
toy models and plot their converged training loss against a
range of learning rates as shown in Figure 1. Specifically, the
target MLP model contains two hidden layers (width=4096)
and we train it with SGD on CIFAR-10. Similarly, the tar-
get Transformer model contains two TransformerEncoder
layers (width=4096, i.e., dmodel) and we train it with Adam
on WikiText-2. Besides, we generate surrogate models with
different scaling (shrinking) ratios S, and the smaller model
is depicted by the lighter blue line. For instance, S=2 repre-
sents the model with width=2048. Obviously, the conventional
training paradigm (Figure 1 (a, c)) cannot share the best hy-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 759

0 20 40 60 80 100
GPU Utilization (%)

0

20

40

60

80

100

CD
F

(%
)

(a)

Shanghai AI Lab
Alibaba

K40
2013

M40
2015

P100
2016

V100
2017

A100
2020

H100
2022

0.0

0.4

0.8

1.2

1.6

2.0

FP
32

 C
or

es

×104

(b)

FP32 Cores
Memory (GB)

0

18

36

54

72

90

M
em

or
y

(G
B)

Figure 2: (a) GPU utilization distribution of one partition in
our cluster and a GPU production cluster in Alibaba [115]. (b)
Exponential growth of NVIDIA datacenter GPU capability.
x-axis: GPU model name & release year.

12 4 8 16 32
Scaling Ratio S

0

2

4

6

G
FL

O
Ps

GFLOPs» 6=S 2

(a)

Exact GFLOPs
Approximate Curve

12 4 8 16 32
Scaling Ratio S

0

20

40

60

80

M
em

or
y

(G
B)

Memory» 70=S+4

(b)

Exact Memory
Approximate Curve

Figure 3: Model scaling effect of WideResNet-50. (a) Model
GFLOPs (Giga Floating Point Operations). (b) GPU memory.

perparameter across different sizes of models and there are
orders of magnitude optimal learning rate shifts. However,
Hydro parametrization (Figure 1 (b, d)) makes surrogate mod-
els stay approximately the same optimal learning rate as the
target model, which implies the feasibility of surrogate-based
tuning. Furthermore, Hydro parametrization can deliver better
performance since both tuned MLP and Transformer achieve
lower training loss than their counterparts. An intuitive expla-
nation is that the learning rate of the conventional paradigm
must tame logits’ surge, but preceding layers do not learn ap-
preciably. We perform a comprehensive evaluation of several
models in §6.3 and demonstrate the superiority of Hydro.
Fusion of numerous repetitive models. GPUs are commonly
underutilized in DL clusters [45, 46, 115, 124, 125]. Figure 2
(a) plots the Cumulative Distribution Function (CDF) of one-
week GPU utilization in one partition of our cluster, as well
as an Alibaba trace [115] for reference. We find there are only
16% and 35% of GPUs achieving higher than 50% GPU uti-
lization in Alibaba and Shanghai AI Laboratory respectively.
This issue will be exacerbated if the Hydro surrogate-based
tuning technique is applied. For instance, Figure 3 presents the
model scaling effect of training WideResNet-50 on ImageNet,
where GFLOPs follows approximately inverse-square (c1/S2)
trend drop and memory footprint follows roughly c1/S+ c2
trend decrease (ci indicates constant). This implies model
scaling can significantly reduce the computation overhead,
but resources are more prone to be underutilized. To this end,
inspired by JAX vmap function [35, 112], Hydro implements
an inter-trial fusion mechanism to automatically combine
multiple models into one. Operators of multiple trials can be

fused owing to the property of HPO tasks: essential is a set
of identical models (or with minor mutation). Compared with
the conventional GPU sharing mechanism (e.g., MPS), Hydro
can achieve higher training throughput, GPU utilization and
lower memory footprint (Figure 8).
Cluster resource awareness. Although HPO jobs are perva-
sive in GPU datacenters, cluster schedulers typically regard
them as general training workloads without any specific de-
sign. On the other hand, HPO systems [9,72,84] are cluster re-
source agnostic. This causes cluster-level inefficiency, such as
long job queuing delay and low GPU utilization. However, the
unique features of HPO jobs bring opportunities for more effi-
cient tuning. (1) Trial throughput insensitivity. Unlike general
DL jobs, HPO jobs are more tolerant to throughput slowdown
of partial trials. Therefore, we can run more trials by lever-
aging ephemeral bubble resources of large language model
training jobs, which are long-term existing in our datacenter
(§5.1). (2) Diminishing resource requirements. Multi-fidelity
HPO jobs usually explore plenty of trials at the beginning
and gradually decrease the search concurrency [32,71,82]. At
the final stage, only a few trials are exploited. Therefore, we
can not only reduce the total resource amount progressively,
but also properly leverage the heterogeneous GPU resource
(§5.2). With the rapid evolution of GPU computing capability
as shown in Figure 2 (b), they become more prone to be un-
derutilized for most small-scale trials [87]. Allocating trials
to appropriate GPUs can significantly improve cluster-wide
efficiency without hurting a single HPO job makespan.

3 Hydro Overview
Design principles & goals. For practical adoptions, Hydro
follows three design principles: (a) Automatic and simple.
Manually converting surrogate models is tedious and error-
prone. Hence, the whole tuning workflow should be auto-
mated and easy to use, which requires minimum user code
modification. (b) Incentive and interference-free. Although
our system focuses on optimizing HPO jobs, it does not sacri-
fice other workload performance. Instead, it is altruistic and
requires fewer resources than conventional systems, which
benefits all cluster users. (c) Modular and extensible. Each
component in Hydro can work independently to support more
scenarios (e.g., cloud). Moreover, Hydro can be applied to
general HPO tasks, and more tuning algorithms can be easily
integrated. In addition, Hydro has two primary objectives: (1)
minimizing the makespan of HPO workloads; (2) improving
the cluster-wide resource utilization.
System architecture. Figure 4 depicts the architecture of
the Hydro service. It consists of two key system components:
Hydro Tuner (blue block) as a user interface to automati-
cally generate surrogate models and optimize tuning trials,
and Hydro Coordinator (purple block) for improving tun-
ing efficiency and datacenter-level resource utilization. Each
component contains several modules for different purposes.
Specifically, there are three main modules in Hydro Tuner:

760 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1Hydro Tuner

Search Space Target ModelUser Config:

Hydro Coordinator

Symbolic Trace ParametrizationModel Shrinker

Inter-Trial Fusion Intra-Trial FusionTrial Binder

Surrogate Model Trial Profiler

Adaptive Fusion Eager TransferTrial Planner

Cluster
Scheduler

Dynamic Split

Distributed Training

Elastic ExecutorBubble
Squeezer

Heterogeneity-Aware
Allocator

Execution Backend:

2

3

Job Creation

Resource Allocation

Tuning Execution

Figure 4: Overview of Hydro architecture and workflow.

• Model Shrinker: to obtain surrogate models by automati-
cally tracing, scaling and parametrization.

• Trial Binder: to better utilize accelerators by binding multi-
ple trials and fusing internal operators.

• Trial Planner: to adaptively determine the tuning strategy
based on the profiling information and intermediate results.

Additionally, Hydro Coordinator also includes three modules:
• Bubble Squeezer: to extend tuning workload resources by

interleaving training with a pipeline-enabled large model.
• Heterogeneity-Aware Allocator: to improve resource uti-

lization and cluster-wide performance by allocating proper
accelerators on different tuning stages.

• Elastic Executor: to dynamically execute trials by splitting
fused trials and enabling distributed training.

API Design. Hydro enables high-efficient surrogate-based
hyperparameter tuning with a few lines in the developer’s
code, as shown in Figure 5. It follows the Ray Tune [72] API
to define the search space and invoke the fit() function. To
support Hydro functions, developers only require to wrap their
model, dataloader and optimizer with the prepare_xxx()
API (lines 6∼8). Hydro traces the whole function to control
the trial execution, convert surrogate model, enable model
fusion and elastic training.
Tuning Workflow. The system workflow of Hydro is pre-
sented by black arrows in Figure 4. Specifically, when a devel-
oper wants to tune a model, she only needs to define the search
space and invoke the Hydro APIs (❶). After job creation, Hy-
dro Tuner automatically generates and optimizes surrogate
models by scaling and fusion. Furthermore, it adopts Trial
Planner to efficiently orchestrate the tuning process. Then
Hydro Coordinator is responsible for contacting the cluster

1 import ray, hydro
2 import hydro.train as ht
3

4 def train_func(config):

5 # Wrap model, dataloader and optimizer

6 model = ht.prepare_model(model)

7 data_loader = ht.prepare_data_loader(data_loader)

8 optimizer = ht.prepare_optimizer(SGD, lr=config["lr"])

9 for _ in range(1): # User defined training loop

10 train_epoch(...)

11 result = validate_epoch(...)

12 ray.session.report(result)

13

14 search_space = {"lr": ray.qloguniform(1e-4, 1, 1e-4)}

15 trainer = hydro.Trainer(train_func)

16 tuner = hydro.Tuner(trainer, search_space, scaling_num=8)

17 results = tuner.fit()

Figure 5: A code example of how to use Hydro APIs to define
the search space and perform hyperparameter tuning.

scheduler to dynamically allocate resources and execute tri-
als (❷). It supports two novel mechanisms, which leverage
ephemeral bubbles and heterogeneous resources to further
improve datacenter efficiency. Finally, the tuning job is suc-
cessfully scheduled and starts running, where Ray [84] and
PyTorch [91] serve as the execution backend (❸). More de-
tails are introduced in the following sections (§4 & §5).

4 Hydro Tuner
Hydro Tuner is a core component of the Hydro service for
job-level optimization. It consists of three modules: Model
Shrinker, Trial Binder and Trial Planner.

4.1 Model Shrinker
Model Shrinker aims to obtain surrogate models by automati-
cally tracing, scaling and parametrizing the target model. The
upper part of Figure 6 depicts its workflow. It first traces
the target model and edits each layer’s configuration to build
a scaled model (①). To enable hyperparameter transfer, it
then automatically parametrizes the scaled model by reini-
tializing the weight and adjusting the learning rate of each
layer accordingly (②). Below we first summarize the MU
parametrization theory that Hydro parametrization relies on,
and then introduce how Hydro brings it into practice.
Maximal Update parametrization. As introduced in §2.2,
Hydro employs the MU parametrization theory [117, 121] to
search hyperparameters on a small surrogate model and trans-
fer them to the large target model. The theory is built atop
Tensor Programs [117–122], a unified theoretical framework
that formulates the computation of common neural networks
components as Gaussian Processes (GPs), including multi-
layer perceptrons (MLPs), recurrent neural networks (RNNs)
(e.g., Long-Short Term Memory (LSTM) [21]), skip connec-
tions [41], convolutions [62] or graph convolutions [55], pool-
ing [62], batch normalization [48], layer normalization [20],

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 761

Target Model

Trace & Scale Parametrize

Inter-Trial
Fusion

Intra-Trial
Fusion

Surrogate Model

1 2

3

4

Figure 6: Illustration of Model Shrinker (①, ②) and Trial
Binder (③, ④). The length of each bar represents layer width.

and attention [108]. As a result, many practical models like
ResNet [41] and Transformer [108] can be expressed as GPs
and apply MU parametrization, since they inherently consist
of these basic components.

➤ Theory assumption. In contrast to prior works such
as NTK [49] that necessitate unnatural conditions, MU
parametrization only requires standard Gaussian initializa-
tion for the model, which is easily achievable in practice. In
terms of data, MU parametrization requires i.i.d. samples,
which is typically present in the same dataset. However, this
requirement also limits its ability to support fine-tuning (§7).

➤ Key insight and mechanism. The main idea of MU
parametrization is: every activation vector has roughly i.i.d.
coordinates at any time during training neural networks in
the infinite-width limit. It aims to overcome the imbalanced
per-layer learning speed issue in practice. To this end, MU
parametrization performs layer-wise fine-grained adjustment,
including per-layer initialization variance, learning rate and
other optimizer-related hyperparameters (e.g., SGD momen-
tum, Adam beta). Specifically, since the output layer is up-
dated much faster than the input layer, MU parametrization
suppresses the learning rate and initialization variance of out-
put weights by w (width) times. In addition, for SGD-like
optimizers (linear tensor update), the learning rate of input
weights and all biases is multiplied by w. For Adam-like op-
timizers (non-linear tensor update, normalizes the gradient
coordinate-wise), the learning rate of hidden weights is di-
vided by w. Hence, MU parametrization ensures consistent
magnitude updates for each layer during training regardless
of its width so that hyperparameters can be transferred across
models with different widths at any time (i.e., same converge
speed across scaled models).

To summarize, in the large width limit, MU parametrization
reveals that hyperparameters yielding lower training losses for
narrower models also result in better performance for wider
models through a specific transfer mechanism. Hydro lever-
ages this effect to obtain better test accuracy efficiently via
surrogate-based tuning, albeit without a rigorous theoretical
guarantee for every model.

➤ Instructive example. To provide a clearer explanation of
why parametrization is necessary and how it operates, we reca-
pitulate the key insights of [121] with an instructive example
[117]. Consider a 1-hidden-layer linear model f (x) =V⊤Ux
with scalar inputs and outputs, as well as w-width layer
weights V,U ∈ Rw×1. In common practice (e.g., Xavier ini-
tialization [37]), we initialize them with V ∼N (0,1/w) and
U ∼ N (0,1), which ensures f (x) = Θ(|x|) at initialization
(Θ(·) indicates asymptotically tight bound). After one step of
SGD with learning rate 1, the new weights are V ′←V +θU
and U ′ ←U + θV , where θ is some scalar of size Θ(1) de-
pending on the inputs, labels, and loss function. Then

f (x) =V ′⊤U ′x

=
(

V⊤U +θU⊤U +θV⊤V +θ
2U⊤V

)
x

(2)

which will blow up with width w in the infinite limit because
U⊤U = Θ(w) by Law of Large Numbers. In other word, it
only allows O(1/w) learning rate so as to avoid float overflow,
and yield kernel limits (§2.2). Consequently, it fails to perform
feature learning (learning rate→ 0) to update weights after
random initialization.

However, by applying maximal update parametrization, we
have V ∼ N

(
0,1/w2

)
, U ∼ N (0,1), learning rates ηV =

1/w and ηU = w. After one step of SGD, now we have

f (x) =
(

V⊤U +θw−1U⊤U +θwV⊤V +θ
2U⊤V

)
x (3)

and one can verify this is Θ(1) and remains bounded. In
contrast to common practice, MU parametrization has Θ(1)
learning rate and admits feature learning maximally, which
allows every parameter to be updated maximally (in terms of
scaling with width) without leading to float overflow.

➤ Heuristic adaptation. While Tensor Programs support
more versatile model components (e.g., convolution), obtain-
ing a closed-form solution for arbitrary models is infeasible.
The efficacy of the MU parametrization has been rigorously
demonstrated on a 2-hidden-layer MLP trained with SGD
for multiple steps, and the proof can be readily extended to
deeper MLPs [121]. For more general models in practice,
some heuristic tricks are adopted to enhance their hyperpa-
rameter transferability. For example, Transformer [108] mod-
els require two additional operations in the self-attention: (1)
scaling the attention logit by 1/dk rather than 1/

√
dk, where

dk is the attention head size; (2) zero initialization on query
layer q. We also empirically find that using a larger sequence
length provides a better transfer effect for Transformer mod-
els. For models with some special components or architecture
(e.g., MoE [101]), hyperparameters may not well transfer with
MU parametrization alone. Hence, additional analysis and
tailored adjustments may be required.
Hydro parametrization. It is arduous and error-prone to
implement MU parametrization manually to generate a surro-
gate model. Developers are required to not only thoroughly
understand the MU parametrization theory, but also manually

762 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Output Layer:
1. Zero-Variance Initialization
2. Layer Input Multiply S
3. If SGD Optimizer, Layer LR Divide S

Hidden Layer:
1. Init Variance Multiply S
2. SGD & Adam Optimizer LR Multiply S

Input Layer:
1. Init Variance Multiply S
2. If SGD Optimizer, Layer LR Divide S

Figure 7: Hydro parametrization implementation. Illustration
on a simple 4-layer model with SGD or Adam-like optimizer.

adjust the model width, initialization function and learning
rate layer by layer. Any incorrect adjustment may directly
incur hyperparameter transfer failures. To this end, we im-
plement Hydro parametrization, an automated and simplified
parametrization strategy based on MU parametrization. We
demonstrate the excellent effect of Hydro parametrization
with visualized results in Figures 1 and 10.

For a clearer illustration, we present the Hydro parametriza-
tion process in Figure 7, which applies different strategies to
the input, hidden and output layers. Developers only need to
specify their desired scaling ratio S (S= 8 by default) and then
Hydro will parametrize the model accordingly. Concretely, at
the model initialization stage, we apply zero-variance initial-
ization to the output layer instead of 1/w2, which will not be
detrimental to performance and can remove this mismatch is-
sue between the surrogate model and target model in the initial
Gaussian process [117]. Moreover, we apply zero initializa-
tion to all biases, and weights as well as learning rate scaling
strategies are annotated in the figure, which is invoked by
the prepare_optimizer API to build a hydro_optimizer.
Besides, we insert a Multiply layer in front of the output
layer to scale its input by S.

Applicable Scope: Hydro parametrization works well for
most ubiquitous hyperparameters that control model ini-
tialization and training, including learning rate, batchsize,
lr_scheduler, momentum, etc. However, it has limited support
on regularization-related hyperparameters, such as weight de-
cay and dropout, because they naturally depend on both the
model size and data size. Although parametrization cannot
be applied to all hyperparameters, it is sufficient to achieve
qualified performance in most cases. After most hyperpa-
rameters are tuned with the surrogate model, developers can
further tune the regularization hyperparameters within a much
smaller search space on the target model if needed. Moreover,
we provide a comprehensive summary of additional limita-
tions associated with Hydro parametrization in Section 7.
Trace and scale. Before performing the above parametriza-
tion, we need to first trace the target model and build a scaled
model. Since there are various model definition styles in the
PyTorch ecosystem, it is necessary to obtain a uniform and
equivalent modality from disparate community model codes.
We implement HydroTracer based on torch.fx [97], which

allows developers to trace and edit the model. Specifically,
we replace call_function nodes (e.g., torch.nn.functional)
with the corresponding call_module nodes (e.g., torch.nn)
for subsequent layer scaling and fusion (§4.2). We apply dif-
ferent scaling rules to the input, output and hidden layers.
For instance, we parse nn.Linear kwargs and modify both
the in_features and out_features values by dividing S for hid-
den layers. In addition, we only scale the out_features of
input and in_features value of output layers. To handle the
data-dependent control-flow, we use proxy nodes along with
developer-provided concrete values to determine the execu-
tion flow [61]. According to our evaluation of notable models,
including TorchVision [18] (e.g., ResNet [41], MobileNet
[44], VGG [103]) and HuggingFace Transformers [113] (e.g.,
BERT [30], GPT [95], Swin [76]), developers can trace and
scale these models with Hydro without modifying the code.
Correctness check. While Hydro has achieved automatic
parameterization, there are still potential failures due to cer-
tain special model components that require heuristic adapta-
tion as previously mentioned, as well as other corner cases
that have not been considered. To this end, we further im-
plement a safeguard mechanism to check the correctness of
the parametrization and notify users whether they should use
Hydro to prevent misleading hyperparameters and resource
wastage. Firstly, Hydro performs a simple per-layer width
check when scaling to avoid too narrow layers (e.g., only 1
neuron width for a Linear layer). Additionally, taking inspira-
tion from gradient checking as a simple method for verifying
the correctness of an autograd implementation, Hydro has a
quick parameterization profiling stage that checks whether the
average size (L1 value) of each activation vector is bounded
to avoid possible parameterization failure based on [117]. It
only lasts for very few steps at the beginning of the HPO job.

4.2 Trial Binder
Although Model Shrinker dramatically reduces the computa-
tion of each trial (Figure 3), it inevitably incurs the resource
underutilization issue, which deteriorates small- or mid-size
target models (e.g., deployed on edge devices). To address
this problem, Trial Binder further optimizes surrogate mod-
els by binding multiple trials and fuses internal operators
to better utilize accelerators. We illustrate its mechanism in
the bottom part of Figure 6. It merges a set of fusible trials
into a HydroTrial with grouped operators and optimizer (③).
To further accelerate training, we automatically just-in-time
(JIT) compile the fused (inter-) surrogate model to obtain
fast and flexible fusion (intra-) kernels (④). Note that the
last model with closer layer distance represents the reduced
memory-bounded operations through intra-trial fusion.
Inter-trial fusion. There are plenty of trials with the same
or similar model structure in a HPO job. Inspired by JAX
vmap [35, 112], which returns a batched version of the target
function by vectorizing each input along the axis specified, we
can batch multiple trials into a single one by fusing their opera-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 763

Fusion
Memory
V2

Framework
Input Data
Model States

MPS Fusion Only Hydro

1

5

…

1

5

…

1

5…

(c)

Figure 8: Inter-trial fusion effect on ResNet-18. (a) Accu-
mulated throughout of fused surrogate model w.r.t the target
model. (b) GPU memory footprint of different fusion counts.
Red horizontal line denotes the A100 memory bound. (c)
Schematic diagram of memory occupation detail of 5 models
GPU sharing with MPS, Hydro and Fusion (w/o Scaling).

tors. Hydro implements an inter-trial fusion mechanism to au-
tomatically bind surrogate models. Specifically, Trial Binder
traverses the traced surrogate model and replaces the torch.nn
operators with grouped hydro.nn operators according to
the predefined fusion rule and fusion count F determined
by Trial Planner. hydro.nn provides mathematically equiva-
lent implementations of batched original PyTorch operators
based on HFTA [110]. For instance, hydro.nn.Linear is
implemented atop torch.baddbmm (i.e., batch matrix-matrix
product and add), which adds an additional dimension batch
(i.e., F) compared with torch.nn.Linear (addmm). Besides,
for each hydro.nn operator, we reimplement the initializa-
tion function to support independent model-wise Hydro
parametrization and realize the defusion mechanism to ex-
tract a specific sub-model. Additionally, hydro_optimizer
and hydro_lr_scheduler are designed to support both the
model fusion and parametrization simultaneously. These are
performed automatically, and developers typically do not need
to understand the rationale and modify codes.

Figure 8 plots the extraordinary effect of integrating model
scaling with inter-trial fusion on ResNet-18 (S = 8), tested
on CIFAR-10 with batchsize=256. It is evident that Hydro
is capable of concurrently training impressive 676 models
on a single A100 GPU. Compared with the conventional
GPU sharing mechanism MPS [13] (MIG [12] has similar
performance), Hydro achieves over 10× training throughput
improvement and over 20× GPU memory conservation. If
we directly apply inter-trial fusion to the target model (with-
out scaling), the throughput improvement is relatively much
limited. Furthermore, we provide an intuitive interpretation

of how memory footprint reduction occurs in Figure 8 (c).
The model states (blue blocks) encompass all aspects asso-
ciated with model training such as model weights, gradients,
activations, and optimizer states [96]. MPS has repetitive
memory overheads incurred by CUDA context of DL frame-
work (purple blocks) and independent data loading (pink
blocks). In contrast, Hydro avoid such redundancy and further
reduce model-related memory footprint. Note that here we
only compare with vanilla training paradigm without consid-
ering more advanced memory optimization techniques like
Salus [124]. Moreover, beyond the better GPU utilization and
higher throughput, inter-trial fusion also alleviates the I/O
pressure owing to the accompanied data-loading fusion.
Lazy intra-trial fusion. Hydro supports automatic model
fusion to further accelerate training based on the nvFuser
[10] compiler backend. Although plenty of previous works
[51, 107, 129] demonstrate that operator fusion can improve
training throughput via better memory locality, it does not al-
ways bring benefits to HPO workloads due to its high compil-
ing overhead. For instance, nvFuser [10] takes approximately
2-epoch time to compile a ResNet-18 model to deliver around
10% speedup per epoch, which means a trial needs to run at
least 20 epochs to avoid slowdown. However, most trials will
end up in a few epochs for multi-fidelity tuning algorithms.
To this end, Hydro apathetically adopts the intra-trial fusion.
For simplicity, Hydro currently only applies to trials with
deterministic training steps, such as all HydroTrials when
applying single-fidelity tuning algorithms and the trial that
trains the target model with transferred hyperparameters.

4.3 Trial Planner
Trial Planner is the key module that interacts with the tuning
algorithm and trial executor. We introduce two mechanisms
that improve the surrogate-based tuning efficiency.
Adaptive fusion. The trial count and resource amount vary
significantly across different HPO jobs. Hence, the fusion
count F of each HydroTrial should be adaptively determined
to achieve the desired performance. Hydro contains the fol-
lowing steps to fuse trials and assign GPUs: (1) Trial Planner
invokes the tuning algorithm to generate a set of hyperparam-
eter configurations (trials). (2) Since inter-trial fusion requires
trials with the same operator shapes, we split them into differ-
ent trial groups according to their batchsizes. (3) Based on the
linear growth of GPU memory shown in Figure 8 (b), we can
profile the trials with F = 1 and F = 2 for each trial group
and estimate the upper bound of the fusion count Fmax. (4)
Hydro assigns all available GPUs to each trial group accord-
ing to group’s weight, which equals to B×N (denoted as the
product of batchsize and trial count of the group). (5) Each
trial group evenly distributes trials based on the group GPU
amount and Fmax, and Hydro fuses them as a HydroTrial on
each GPU. In this way, Hydro can leverage as many GPUs as
possible and achieve the optimal global throughput.
Eager transfer. As the HPO job progresses, more and more

764 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 3 4 1 2 3 4 5 6 7 8

1 2 3 1 4 2 3 4 5 6 7

1 2 1 3 2 4 3 4 5 6

1 1 2 2 3 3 4 4 5 5

W1

W2

W3

W4

1 2 3 4 5

(a) 1F1B (Most Popular Pipeline Schedule)

1 2 3 4 Trial 1 1 2 3 4 5 6 7 8 T1

1 2 3 Trial 2 1 4 2 3 4 T2 5 6 7 T2

1 2 T3 1 3 2 4 3 4 Trial 3 5 6 T3

1 1 2 2 3 3 4 4 Trial 4 5 5

W1

W2

W3

W4

Memory

1 2 3 4 5

(b) Hydro Trials Interleave with 1F1B Workload

Memory

Forward
Pass

Backward
Pass

Bubble
Model & Framework
Memory

Activation
Memory

Hydro
Trial

Hydro
Memory

Resume

Resume Pause

FlushPause

Flush

Figure 9: Illustration of (a) 1F1B Pipeline and (b) Hydro
Bubble Squeezer, with four pipeline stages and four micro-
batches. Note the right-side memory diagrams can only reflect
the relative relation of the same color blocks across workers.

trials terminate and the degree of the parallelism gradually
decreases, resulting in underutilized or idle resources. On
the other hand, the best hyperparameter configuration some-
times appears in the early stage. Therefore, instead of training
the target model after all the surrogate-based tuning trials
are done, we can eagerly transfer the intermediate best hy-
perparameters and leverage vacated resources to validate the
configuration on the target model. Hydro records all evaluated
hyperparameters and schedules a TargetTrial for the target
model training when 50% (customizable) of the surrogate-
based tuning trials are done and there exist idle resources.
If a better hyperparameter is searched, Hydro terminates the
on-going TargetTrial or starts a new TargetTrial depending on
the resource utilization. This mechanism efficiently shortens
the job makespan and improves the resource utilization.

5 Hydro Coordinator
Hydro Coordinator focuses on cluster-level optimization. It
consists of three modules: Bubble Squeezer, Heterogeneity-
Aware Allocator and Elastic Executor. It is important to high-
light that the first two modules are tailored for specific cluster
scenarios. Specifically, Bubble Squeezer can only be acti-
vated when a pipeline-enabled foundation model pretraining
job is running within the cluster. The Heterogeneity-Aware
Allocator is meticulously designed to better leverage multiple
generations of GPUs coexisting in the cluster.

5.1 Bubble Squeezer
In addition to HPO jobs, there are many kinds of workloads
that coexist in the GPU datacenter, such as inference, debug-
ging and large-scale distributed training jobs [45, 50, 111].
With the rapid popularity of foundation models (e.g., GPT-
3 [24]) in recent years, some large model pretraining work-
loads exist in our datacenter in the long term. As complained
by many users, the majority of machines are occupied by
large model training jobs that usually last for days to weeks,

which incurs the starvation of other jobs. Additionally, the
pipeline parallelism [85, 88] is usually adopted to support a
larger model by splitting it into several stages and placing
them across multiple workers. However, bubbles inherently
exist in the synchronous pipeline parallelism [106], such as
the commonly used 1F1B [34,86] strategy. Besides, the imbal-
ance peak memory issue (Figure 9) between different pipeline
stages further exacerbates the resource inefficiency [65].

Hydro designs Bubble Squeezer, which leverages bubbles
to greatly extend the tuning job resources in an interleaving
execution way, almost without hurting the training throughout
of large models. HydroTrials are perfectly suitable for the
bubble interleaving execution due to the following unique fea-
tures: (1) Throughput insensitivity. Unlike general DL training
jobs, tuning jobs are more tolerant of the slowdown of partial
trials. This inspires us to squeeze the spare resources of the
bubbles and execute trials in a pause-and-resume way. (2) De-
terministic resource pattern. General small-scale workloads
(e.g., debugging) have unknown and unpredictable resource
requirements. However, Hydro profiles and records the re-
source consumption of HydroTrials, mitigating the potential
out-of-memory (OOM) issues if they are colocated with large
models. (3) Elastic trial size. Based on Model Shrinker, the
scaled model has a much smaller memory footprint (Figure
3) than the original model, which means we typically do not
need to swap out its GPU memory during colocation. Besides,
we can dynamically adjust the trial fusion count according to
the remaining GPU memory with Trial Binder.

To clearly illustrate how Bubble Squeezer works, we first
introduce the 1F1B pipeline parallelism in Figure 9 (a). It
transfers intermediate activations of the partial model at the
forward and backward passes between different workers using
point-to-point communication [130], thus each worker cannot
continuously utilize the GPU. For Worker 1, after the forward
pass of the last micro-batch (blue block 4), it has to wait for
the backward pass of the first micro-batch (green block 1),
leaving GPU idle for a long time. Other workers also present
similar bubble patterns but occupy less GPU memory since
fewer activations of micro-batch needed to store.

In Figure 9 (b), Hydro interleaves four HydroTrials of
different sizes with the large model training workload. Each
trial executes in a pause-and-resume paradigm to squeeze the
bubbles. Since Hydro Tuner has traced and canonicated each
layer with hydro.nn, we further register hooks on each mod-
ule of the trial to support on-demand pause and resumption in
the forward and backward passes of each layer. When a large
model training job exists, Hydro coordinates with datacenter
scheduler to acquire more GPUs from this model and tags
them as ephemeral resources. For the large model, we also im-
plement a corresponding hook inside its training framework
(i.e., DeepSpeed [96]) to report its training progress and re-
source consumption. Each worker executes its corresponding
pipeline under DeepSpeed’s pipeline parallelism. Therefore,
we implement a fine-grained synchronization mechanism to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 765

guarantee that HydroTrials only could be executed within
the bubbles, by intercepting the status of the CUDA streams
of the NCCL kernels. Hydro can further adjust the fusion
count to adaptively fit in the remaining memory and improve
GPU utilization. At the beginning and end of the bubble of
large model training, we control the resumption and pause
of trial model training by Linux signals. The fine-grained
suspend-resume control eliminates the performance interfer-
ence caused by CUDA kernels running simultaneously.

In general, the effectiveness of Bubble Squeezer varies de-
pending on multiple factors, and we present the scenarios
where it works best. Regarding the HPO job aspect, Hydro
is more effective when using (1) multi-fidelity tuning algo-
rithms because they allow most trials to be terminated in a few
epochs using the ephemeral resources and execute immediate
top trials on exclusive resources to avoid possible blocking
caused by interleaving slowdown. In addition, (2) models with
fewer layers are preferred as they are prone to complete the en-
tire iteration within the bubble time and require relatively less
memory to support a higher fusion number. As for pipelined
large model aspect, Hydro can achieve better performance
when the pretraining job has (3) more pipeline stages across
more servers, which implies a higher bubble ratio and more
ephemeral resources. A large model pretraining job typically
can support multiple different HPO jobs interleaving simulta-
neously and accelerate dozens, even hundreds of HPO jobs
(depending on its resources and duration scale) during its
pretraining process. In addition, there may be cases where
some scaled models are still too large to be allocated on any
GPU of the pretraining model. Due to the high memory swap
overhead in our scenario, Hydro does not support offloading
techniques like Bamboo [106]. As a result, Bubble Squeezer
is unable to support such models.

5.2 Heterogeneity-Aware Allocator
HPO workloads generally have diminishing resource require-
ments [71]. They usually explore plenty of trials at the begin-
ning and gradually decrease the search concurrency. At the
final stage, only a few trials are exploited. Hence, tuning with
fixed GPU resources can lead to underutilization. Existing
HPO systems [32, 82] support autoscaling to dynamically ad-
just the tuning resources. However, they do not consider the
GPU heterogeneity in the datacenter.

Inspired by Gavel [87], a novel heterogeneity-aware cluster
scheduler for general DL jobs, we design a resource allocator
to allocate appropriate GPUs to trials, which can improve the
cluster-wide efficiency without sacrificing the job makespan.
Hydro supports both resource autoscaling and heterogeneity-
aware allocation. Specifically, if there is any node or GPU idle
for over 1 minute (customizable), Hydro will interact with
the cluster scheduler to release the resource. Other affiliated
resources like CPU will also be released as a bundle. Ad-
ditionally, Hydro creates TargetTrial with the eager transfer
mechanism and makes the target model training process well

hidden inside the tuning time. Since the TargetTrial typically
trains alone without fusion, it may not be able to fully utilize
the GPU resources. So Hydro will place it on an GPU of
old version (e.g., V100) if its SM Activity rate (measured
by NVIDIA DCGM [11]) is lower than 50% (customizable).
Similar action will be applied to surrogate models if their al-
located resources are underutilized and there exist other HPO
jobs pending in our service queue.

5.3 Elastic Executor
Elastic Executor is designed to improve the job efficiency by
leveraging all assigned GPU resources. It supports two elastic
mechanisms: (1) dynamic split and (2) automated distributed
training. Specifically, when an idle GPU emerges, the fused
HydroTrial will not directly increase its GPU count by con-
ventional distributed training. Instead, Hydro will evenly split
this HydroTrial into multiple HydroTrials and exclusively
place them on the idle GPUs to reduce the communication
overhead. Furthermore, since the memory footprint of some
large models is high even though scaled, Hydro supports two
types of elastic strategies for unfused surrogate models: (a)
Evenly distribute: allocating idle GPU resources to all unfused
surrogate models evenly. (b) Performance-aware (default):
allocating idle GPU resources to the top performing trial. For
the target model, Hydro automatically increases the number
of workers to enable distributed training.

6 Evaluation
Hydro is implemented on top of Ray [72, 84] with about 12K
LoC. For Hydro Tuner, Model Shrinker relies on torch.fx [97]
and mup [117], while Trial Binder is built with HFTA [110]
and nvFuser [10]. As for Hydro Coordinator, we modify Deep-
Speed [96] to further support Bubble Squeezer and validate
the interleaving execution as a prototype. And the Elastic
Executor based on Ray Train as well as PyTorch FSDP [17].

We evaluate Hydro Tuner and Hydro Coordinator indepen-
dently for a fair comparison. Our experiment search space
does not include weight decay because Hydro is unable to
transfer regularization hyperparameters, but it is sufficient to
achieve qualified performance without tuning it.

6.1 Experiment Setup
Testbed. We conduct our experiments on a GPU datacenter
of Shanghai AI Laboratory. Each node has 8 NVIDIA A100
80GB GPUs, 2 AMD EPYC 7742 CPUs (128 cores) [2]
and 1TB memory. GPUs are interconnected to each other by
NVLink and NVSwitch [14], and inter-node communication
is achieved via NVIDIA Mellanox 200Gbps HDR InfiniBand
[7]. All the experiments are conducted on A100 GPUs, unless
explicitly stated in §6.5.
Workloads and search spaces. We evaluate Hydro tuning
performance over six popular CV/NLP models, as listed in
Table 2. Specifically, GPT-3 XL is a large language model
architecture belonging to GPT-3 family. It contains 1.3B pa-
rameters and we use an open source implementation by GPT-

766 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Task Search Space Model Dataset Optimizer # of GPU # of Trial
Avg. Time
Reduction

Avg. Quality
Difference

Size

GPT-3 XL [24] OpenWebText [38] AdamW 128 100 78.5 × −0.48 ppl XL∗Language
Modeling

lr: UQ log(10−5, 10−1, 10−5)
gamma: UQ(0.01, 0.9, 0.01) Transformer [108] WikiText-103 [81] Adam 8 200 8.7 × −0.15 ppl M

WideResNet-50 [126] ImageNet [29] SGD 32 200 20.3 × +1.18% acc XL∗

MobileNetV3 Large [44] Flowers102 [90] Adam 16 500 12.3 × +0.05% acc L

VGG-11 [103] CIFAR-100 [57] SGD 8 500 10.8 × +0.09% acc M

Image
Classification

lr: UQ log(10−4, 1.0, 10−4)
momentum: UQ(0.5, 0.999, 10−3)
batchsize: [128, 256, 512]
gamma: UQ(0.01, 0.9, 0.01)

ResNet-18 [41] CIFAR-10 [57] SGD 8 1000 16.2 × +0.02% acc M

Table 2: Summary of (1) workloads used in the evaluation and (2) single-fidelity tuning improvements over Ray. Model Quality:
ppl indicates perplexity (the lower the better) and acc denotes accuracy (the higher the better). ∗ For XL tasks, we estimate the
time cost of Ray based on simulation and use the official hyperparameter setting as the model quality baseline.

60 70 80 90
Val. Accuracy (%, S=1)

J
I

H
G
F
E
D
C
B
A

69.64
78.16
79.25
79.80

83.52
84.38
84.42

87.18
92.20
92.32

(a)

60 70 80 90
Val. Accuracy (%, S=2)

J
I

H
G
F
E
D
C
B
A

69.49
76.52

78.43
78.87

83.22
83.68
83.76

85.81
90.31
90.84

(b)

60 70 80 90
Val. Accuracy (%, S=4)

J
I

G
H
F
E
D
C
B
A

68.23
74.64

76.68
76.83

80.91
81.26
81.61

83.22
86.78
86.92

(c)

60 70 80 90
Val. Accuracy (%, S=8)

J
I

G
H
F
E
D
C
B
A

64.04
66.78

71.79
72.27

75.14
76.15
76.16

77.72
82.13
82.54

(d)

0 2000 4000 6000 8000 10000
Training Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

(e)

C (lr=0.01)
C with Fusion
E (lr=0.005)
E with Fusion
H (lr=0.002)
H with Fusion

A: [256, 0.05, 0.95]
B: [128, 0.3, 0.6]

C: [512, 0.01, 0.9]
D: [128, 0.005, 0.6]

E: [512, 0.005, 0.9]
F: [256, 0.01, 0.5]

G: [256, 0.001, 0.9]
H: [512, 0.002, 0.9]

I: [128, 0.2, 0.99]
J: [512, 0.0004, 0.95]

Figure 10: Hydro Tuner mechanisms validation. (a)∼(d) Scaling validation: randomly select 10 hyperparameter sets ([batchsize,
lr, momentum]) to visualize the transfer effect of multi-dimensional hyperparameters across different scaling ratios S = 1,2,4,8
on model ResNet-18. (e) Fusion validation: loss curves of the standard model (solid line) and inter-trial fused model (dash line).

Neo [5, 23]. We further enable mixed precision training for
WideResNet-50 and two language modeling tasks. For the
dataset, we crop Flowers102 into 224×224 images, whose
input size is the same as ImageNet. And we swap its train and
test dataset split to get a larger training dataset to make it sim-
ilar to more general jobs. Moreover, we denote single-node
tasks as M-size, and distributed tuning tasks as L/XL-size.

We adopt three kinds of optimizers for above models, in-
cluding SGD [99], Adam [54], and AdamW [77]. We use
StepLR to decay the learning rate (lr) of each parameter
group by gamma at every fixed step for all tasks. Additionally,
we design two groups of search spaces for CV and NLP tasks
respectively (Table 2), where UQ(lower,upper,q) represents
uniformly sampling a quantized (increment of q) float value
between lower and upper. Similarly, UQ log uniformly sam-
ples in different orders of magnitude. Note that the search
space of MobileNetV3 Large excludes momentum due to the
incompatibility of Adam.

Tuning algorithms. Hydro supports multiple popular single-
fidelity and multi-fidelity tuning algorithms, such as Random
[22], HyperBand [64], ASHA [63]. Since our work focuses
on system aspect optimization instead of tuning algorithms,
we select two representative tuning algorithms in our evalu-
ation: (1) Random (single-fidelity): fully evaluates each ran-
domly generated trial; (2) ASHA (multi-fidelity): eliminates

unpromising trials via asynchronous successive halving strat-
egy. They are common hyperparameter tuning paradigms in
practice. Besides, their asynchronous and prior-independent
nature makes them more suitable for large-scale distributed
tuning with numerous trials [71].
Baselines. We consider the following two systems as baseline:
(1) Ray [72, 84]: performs HPO with the vanilla Ray Tune
library; (2) Ray+ES: applies two advanced techniques in Ray
Tune (Elastic training and GPU Sharing). Our implementa-
tion of Ray+ES refers to HyperSched [71] and Fluid [125].
Specifically, we place multiple trials on the same GPU us-
ing NVIDIA MPS [13] and allocate more GPU resources to
the top performing trials if idle GPUs are available. We do
not employ A100 MIG [12] sharing due to its similar perfor-
mance with MPS but less flexibility [110]. Additionally, since
existing popular HPO systems (Table 1) mainly differ in the
application scenario and API design, and their system perfor-
mance on the same tuning algorithm is similar, the Ray-based
systems are sufficient for representing SOTA.

6.2 Surrogate-based Tuning Validation
Before performing end-to-end evaluations, we first give an
intuitive experiment to validate the effect of surrogate-based
tuning, which is the foundation of Hydro. As shown in Figure
10 (a)∼(d), we randomly choose 10 hyperparameter configu-
rations (denoted as A∼J) on the ResNet-18 model and build

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 767

Model # of GPU # of Trial
Avg. Time

Improvement
Avg. Quality
Difference

GPT-3 XL 64 100 33.4 × −0.43 ppl

Transformer 4 200 5.8 × −0.09 ppl

WideResNet-50 16 200 9.7 × +0.87% acc

MobileNetV3 Large 8 500 8.0 × +0.08% acc

VGG-11 4 500 9.4 × +0.19% acc

ResNet-18 4 1000 14.5 × +0.05% acc

Table 3: Summary of multi-fidelity tuning improvements.

Deadline (s) # of GPU Model
Avg. Accuracy

Ray Ray+ES Hydro

900 4
VGG-11 65.42% 66.39% 68.68%

ResNet-18 89.66% 90.71% 91.32%

Table 4: Summary of tuning performance with a deadline.

surrogate models with Hydro using different scaling ratios
S = 2,4,8, where S = 1 represents the target model. We train
each model for 100 epochs on the CIFAR-10 dataset with
a fixed seed=1. Since the HPO job is essentially a ranking
problem of hyperparameter configurations, we mainly care
about whether the order is maintained especially for the top
configurations, namely hyperparameter transfer effect. From
the result, it is obvious that the performance ranking of hy-
perparameters transfers well across different scaling ratios.
Admittedly, configurations G and H are swapped when S≥ 4,
but it has no influence on the final tuning result since they per-
form poorly and top configurations keep a consistent ranking.
Besides, the wider model always outperforms the narrower
one under the same hyperparameters, which is inline with MU
parametrization theory and demonstrates that surrogate model
can effectively transfer multi-dimensional hyperparameters.

Additionally, we also validate the inter-trial fusion effect,
which is another key mechanism of Hydro. Figure 10 (e)
shows the training loss curves of trials C, E, H and their fused
versions. We select these three trials because their batchsize
and momentum are consistent and only differ in lr. As we can
see, the convergence curves of the fused model well overlap
with the original standalone training curves, which demon-
strates that inter-trial fusion is a mathematically equivalent
transformation and does not affect the model convergence.

6.3 End-to-End Performance of Hydro Tuner
To cover most hyperparameter tuning scenarios in practice, we
conduct end-to-end experiments across 6 workloads with dif-
ferent settings and 3 common tuning paradigms (case I∼III).
Note that Hydro Tuner adopts a fixed resource size (without
enabling Hydro Coordinator) for fair comparisons.
Case I: single-fidelity tuning. When a user seeks for ex-
tremely excellent model performance with ample resources,
single-fidelity tuning is applied to avoid missing the best hy-
perparameter configuration. Table 2 summarizes the Hydro

VGG11 ResNet18 VGG11 ResNet18
0

5

10

15

20

M
ak

es
pa

n
(h

ou
rs

)

Single-fidelity Multi-fidelity

Ray
Ray+ES
Hydro

40

60

80

100

Ac
cu

ra
cy

69.33

92.69

68.49

91.91

69.42

92.71

68.68

91.96Ray
Hydro

Figure 11: Summary of the end-to-end results. Bars indicate
tuning makespan and points represent final model accuracy.

improvement on single-fidelity tuning over different sizes of
workloads, where we apply S = 16 for XL models and S = 8
(default value) for other models. Since HPO jobs require com-
pletely training massive trials, we perform each experiment
twice and report their average results on time reduction and
tuned model quality over Ray. Besides, we obtain Ray tuning
time of XL experiments based on simulation due to their un-
acceptable tuning cost, and adopt the official hyperparameter
configurations [16, 24] to train the model as quality baselines.
The target model training time is included in Hydro.

From the table, we can see that Hydro substantially outper-
forms Ray by 8.7∼78.5× in time reduction, while obtaining
better final model quality. The time reduction mainly derives
from two aspects: (1) Less resource demand of trials. For
instance, the scaled GPT-3 XL trials do not require distributed
training. For smaller models, Hydro further applies inter-trial
fusion to improve trial concurrency and resource utilization.
(2) Smaller model trains faster. Each trial has fewer FLOPs
(Figure 3) to compute, which is more obvious on larger mod-
els. Additionally, we also observe that the effect of Hydro
is more evident for larger models, with more intensive trials
and fewer resources. This reflects Hydro is more suitable for
large-scale HPO jobs with limited resources, which is hard to
handle by existing systems.
Case II: multi-fidelity tuning. When a user desires to obtain
a good model with a relatively lower cost, multi-fidelity tun-
ing is applied to search hyperparameters efficiently. Table 3
reports the Hydro performance on multi-fidelity tuning. We
keep the same experiment settings as Case I, except using
half GPU resources. Besides, we configure ASHA [63] with
bracket = 1,grace = 3,reduction = 3. We observe that Hy-
dro can achieve 5.8∼33.4× reduction over Ray. Hydro can
further benefits ASHA due to its much higher concurrency,
which prevents the inaccurate promotion issue of ASHA [66].
Furthermore, we find that Hydro can also slightly improve
the final model quality, which is mainly due to the different
model initialization and more balanced layer-wise training
rate configuration by Hydro parametrization. The results are
also in line with Figure 1 that Hydro delivers a lower loss.
Case III: tuning with a deadline. When a user wants to
get a model as good as possible by a fixed deadline, budget-
bounded ASHA is applied. We simply evaluate two models
with a deadline of 15 minutes as shown in Table 4. Hydro

768 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

VGG-11 ResNet-18
0

5

10

15

20

M
ak

es
pa

n
(h

ou
rs

)

(a) Fusion Effect

Ray
Hydro
w/o Inter-fusion
Hydro
w/o Intra-fusion
Hydro

VGG-11 ResNet-18
0

2

4

6

8

10

(b) Scaling Effect

S=1 (w/o Scaling)
S=2

S=4

S=8 (Default)
S=16

Figure 12: Ablation study. (a) Effect of inter- or intra-trial
fusion. (b) Makespan of different scaling ratios.

0 250 500 750 1000
Inter-Trial Fusion Number

0

10

20

30

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(a)

0 250 500 750 1000
Inter-Trial Fusion Number

0

20

40

60

80

M
em

or
y

(G
B)

(b)

S=8 S=8 (AMP) S=4 S=4 (AMP) S=2 S=2 (AMP)

Figure 13: Sensitivity analysis of S and AMP on ResNet-18.
(a) Accumulated throughout. (b) GPU memory footprint.

outperforms other baselines in final model accuracy within a
limited time since it can well hide the target model training
time inside the surrogate model tuning with Eager Transfer.
End-to-end result visualization. Figure 11 summarizes the
makespan and accuracy of VGG-11 and ResNet-18 across
different tuning algorithms and baselines. We note that Ray
and Ray-ES share the same accuracy point since elastic and
GPU sharing have no effect on the final model quality. The
surrogate-based tuning (Hydro) can significantly reduce the
search makespan without sacrificing the model accuracy. Due
to the page limit, we only select these two models for presen-
tation because of their relatively obvious efficacy of Ray-ES.
Ray-ES has less improvement over Ray for larger models like
WideResNet-50, since it cannot benefit from GPU sharing
and the elastic improvement is limited (only for later stage).

6.4 More Evaluation on Hydro Tuner
Ablation study of fusion. Figure 12 (a) reveals an interest-
ing observation that Hydro can only achieve very limited
improvement over Ray if inter-trial fusion is disabled, even
though we have scaled the model by 8×. This is because
GPUs are underutilized for such small models and there is no
evident training speedup although we scale the model. Hence,
it is important to combine Model Shrinker and Trial Binder
to achieve the desired performance. Additionally, we also
evaluate the effect of intra-trial fusion. However, we find its
improvement is limited on small models.
Sensitivity analysis of scaling. Figure 13 clearly presents the
effect of the scaling ratio S on GPU memory and accumulated
fused trial throughput, where the normalization base is the
throughput of the target model. We find that the peak through-
put increases linearly alone with S. GPU memory also shows

0 50 100 150 200 250 300 350 400
Time (s)

0

20

40

60

80

100

SM
 A

ct
iv

ity
 (%

)

Ray Ray+ES Hydro

Figure 14: GPU utilization of HPO systems on ResNet-18.

500 1000 1500 2000 2500
Time (ms)

0

25

50

75

100

SM
 A

ct
iv

ity
 (%

) HydroTrial

LLM LLM + Bubble Squeezer

Figure 15: Visualizing Bubble Squeezer effect via DCGM.
Two iterations of the first pipe stage are presented. The execu-
tion periods of the HydroTrial are highlighted by red arrows.

a similar pattern. In Figure 12 (b), we further evaluate the
effect of the scaling ratio S on the overall tuning time. Hydro
can continuously obtain benefits from higher scaling ratios.
Besides, the final model accuracy maintains stable.
Sensitivity analysis of AMP. Figure 13 analyzes the effect
of mixed precision training (i.e., AMP [15]), where solid and
dashed lines represent the settings without and with AMP, re-
spectively. We can find that the peak throughput can be further
improved via enabling AMP. Besides, its effect on memory is
also obvious, improving nearly 2× maximum fusion count.
Impact on GPU utilization. Figure 14 plots the GPU uti-
lization traces on one GPU for 300 seconds using different
HPO systems. We employ NVIDIA DCGM [11] to record
SM Activity as GPU utilization. It is obvious that Hydro
can achieve much higher GPU utilization than other baselines
owing to the superior capability of inter-trail fusion [110].
Overhead analysis. We perform the overhead analysis on
the ResNet-18 multi-fidelity tuning workload. Its overhead
mainly derives from two aspects: (1) profiling accounts for
0.8%; (2) defusion (including trial restart) accounts for 3.3%.
The associated overhead is minor when weighed against the
substantial enhancements in the tuning efficiency of Hydro.

6.5 Hydro Coordinator Evaluation
Bubble Squeezer. To evaluate the impact of Bubble Squeezer,
we interleave HydroTrials with a large GPT model over 32
A100 GPUs containing 4 pipeline stages on 4 nodes, which
is implemented based on DeepSpeed [96] along with Mega-
tronLM [56, 88, 102]. We measured the SM activity with and
without Bubble Squeezer in Figure 15. Two traces are col-
lected separately and we align them at the beginning of the
figure. For the original GPT training, since the only active

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 769

kernel in the bubble is NCCL kernel for communication, the
SM activity is extremely poor (about 2%) during the bubble.
Hydro utilizes the unused SMs and achieves a relatively high
SM utilization at about 50%, with no evident slowdown to
the GPT model training. Here the HydroTrial is ResNet-18
model with fusion count F = 16, obtaining around 15% of ex-
clusive throughput. We also measure the throughput influence
of direct colocation and find it causes unacceptable interfer-
ence (about 12% slowdown for the large model). Additionally,
we further simulate the end-to-end performance of Bubble
Squeezer. Here we set that the Hydro tuning job can only
apply 1 exclusive GPU since most resources are occupied by
the large model. We find the makespan of the tuning job can
be greatly reduced by 2.7× with the free lunch.
Heterogeneity-Aware Allocator. We create a tiny cluster
partition with 2 A100 and 2 V100 nodes (32 GPUs in to-
tal) to evaluate the impact of Heterogeneity-Aware Alloca-
tor. Besides, we uniformly sample 20 middle-size HPO jobs
from Table 3 and randomly generate their job arrival time
within one hour. Compared to resource-agnostic allocation,
we find Heterogeneity-Aware Allocator achieves approxi-
mately a 1.3x reduction in the average job completion time.

7 Discussion
Limitations. Despite the extraordinary performance, Hydro’s
surrogate-based tuning paradigm does have three limitations:
(1) Hydro parametrization does not support regularization
hyperparameters, such as weight decay and dropout, as eluci-
dated in §4.1. (2) Hydro does not allow for any customized
initialization techniques because Hydro implements its own
automatic layer-wise re-initialization mechanism, which plays
a crucial role in parameterization. (3) Hydro does not sup-
port fine-tuning since its theory is built atop i.i.d. samples
(requiring the same dataset). Nevertheless, Hydro can deliver
qualified models for most cases.
Future work. In the future, we plan to improve our work in
following directions. (1) Supporting more DL frameworks
like TensorFlow [19] and JAX [35]. (2) Considering more re-
source dimensions like CPU and network bandwidth besides
GPU [83, 128], such as implementing the dataloader fusion
of trials to further alleviate I/O contention. (3) Expanding the
application scenarios such as cloud environments. It presents
an opportunity for dynamic selection of heterogeneous spot
instances, which can yield substantial cost savings [82, 106].
(4) Enabling partial model fusion across trails with minor
architectural differences (e.g., add/remove/modify a few lay-
ers/blocks). Furthermore, Hydro can integrate model match-
ing technique from ModelKeeper [60] to identify the models
with similar architectures across jobs from different users
and achieve cross-job level fusion, which can significantly
improve cluster efficiency.

8 Related Work
AutoML systems. Automated Machine Learning (AutoML)
refers to the process of automating the tasks associated with

optimizing ML model performance. In general, AutoML com-
prises two essential components: HPO and Neural Architec-
ture Search (NAS). NAS systems (e.g., Retiarii [127], Modu-
larNAS [74]) aim to discover the optimal model architecture
for a specific task. On the other hand, HPO focuses on opti-
mizing the hyperparameters of a fixed architecture, usually
separate from NAS. Our work primarily concentrates on HPO.

Prior HPO systems like HyperSched [71], Rubberband [82]
and Seer [32] support elastic training to allocate more GPU re-
sources to promising trials, which is also supported in Hydro.
Elastic training can make use of idle GPUs but fails to improve
single GPU utilization. On the other hand, Fluid [125] further
leverages NVIDIA MPS [13] technique to allocate multiple
trials on a single GPU. HFTA [110] achieves inter-trail fusion
on a shared accelerator. They can improve hardware utiliza-
tion but only work well on tiny models (e.g., AlexNet [58],
PointNet [93]). Based on the unique surrogate-base tuning na-
ture, Hydro significantly extends the fusion application scope
via model scaling and achieves automatic model fusion with
minimum manual effort.
Pipeline parallelism and interleaving execution. Recent
studies exploit bubbles induced by pipeline parallelism from
multiple angles. Bamboo [106] fills redundant computations
into bubbles to provide resilience and fast recovery for pre-
emptible cloud instances. EnvPipe [26] selectively lowers
the SM frequency of bubble periods to save energy. Unlike
them, Hydro leverages bubbles to train HPO trials via inter-
leaving execution, which is inspired by some prior works.
For instance, Wavelet [109] and Zico [73] reduce the GPU
peak memory based on interleaving. Muri [128] supports
multi-resource interleaving to reduce contention.

9 Conclusion
This paper presents Hydro, a surrogate-based hyperparameter
tuning service that provide job and cluster level optimization
via automated model scaling, fusion and interleaving. Our
experiments show that Hydro can dramatically reduce the
tuning makespan and improve the cluster resource utilization.

Acknowledgments
We sincerely thank our shepherd, Mathias Lécuyer, and the
anonymous OSDI reviewers for their valuable comments on
this paper. We also want to thank Greg Yang from Microsoft
for the theory part support, Richard Liaw and Antoni Baum
from Anyscale for the system development assistance, Shang
Wang and Xin Li from UofT for their insightful discussion
on inter-trial fusion, Shenggan Cheng and Shenggui Li from
NUS for their constructive feedback on bubble squeezer. Ad-
ditionally, we thank Li Ma and Shixin Yu for their technical
support, as well as generous hardware resources from Shang-
hai AI Laboratory. This study is supported under the RIE2020
Industry Alignment Fund - Industry Collaboration Projects
(IAF-ICP) Funding Initiative, as well as cash and in-kind con-
tributions from the industry partner(s). Zhisheng Ye, Meng
Zhang and Qiaoling Chen contribute equally to this work.

770 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Alibaba machine learning platform for ai. https:

//www.alibabacloud.com/product/machine-lea
rning, 2023.

[2] Amd epyc 7742 cpu. https://www.amd.com/en/p
roducts/cpu/amd-epyc-7742, 2023.

[3] Chatgpt. https://openai.com/blog/chatgpt,
2023.

[4] Duolingo. https://www.duolingo.com/, 2023.

[5] Eleutherai gpt-neo 1.3b. https://huggingface.co
/EleutherAI/gpt-neo-1.3B, 2023.

[6] Github copilot. https://github.com/features/co
pilot/, 2023.

[7] Infiniband networking. https://www.nvidia.com/e
n-us/networking/products/infiniband/, 2023.

[8] Microsoft azure automated machine learning. https:
//azure.microsoft.com/en-us/products/machi
ne-learning/automatedml, 2023.

[9] Microsoft neural network intelligence. https://gith
ub.com/microsoft/nni, 2023.

[10] Nvfuser. https://github.com/pytorch/pytorch
/projects/30, 2023.

[11] Nvidia data center gpu manager. https://develope
r.nvidia.com/dcgm, 2023.

[12] Nvidia multi-instance gpu. https://www.nvidia.c
om/en-us/technologies/multi-instance-gpu/,
2023.

[13] Nvidia multi-process service. https://docs.nvidi
a.com/deploy/mps/index.html, 2023.

[14] Nvlink and nvswitch. https://www.nvidia.com/e
n-us/data-center/nvlink/, 2023.

[15] Pytorch automatic mixed precision training. https:
//pytorch.org/docs/stable/amp, 2023.

[16] Pytorch examples. https://github.com/pytorch
/examples, 2023.

[17] Pytorch fullyshardeddataparallel. https://pytorch.
org/docs/stable/fsdp, 2023.

[18] Torchvision new training recipe. https://pytorc
h.org/blog/how-to-train-state-of-the-art-m
odels-using-torchvision-latest-primitives/,
2023.

[19] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system for
large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, OSDI ’16, 2016.

[20] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. Layer normalization. CoRR, 2016.

[21] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. In 3rd International Conference on
Learning Representations, ICLR ’15, 2015.

[22] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. Journal of Machine
Learning Research, 2012.

[23] Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Wein-
bach. Gpt-neox-20b: An open-source autoregressive
language model. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics — Workshop on Challenges & Perspectives in Cre-
ating Large Language Models, ACL-BigScience ’22,
2022.

[24] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, NeurIPS ’20, 2020.

[25] Lénaïc Chizat and Francis Bach. On the global con-
vergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural
Information Processing Systems, NeurIPS ’18, 2018.

[26] Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae
Jeon, and Youngjin Kwon. Envpipe: Performance-
preserving dnn training framework for saving en-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 771

https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://www.amd.com/en/products/cpu/amd-epyc-7742
https://openai.com/blog/chatgpt
https://www.duolingo.com/
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://huggingface.co/EleutherAI/gpt-neo-1.3B
https://github.com/features/copilot/
https://github.com/features/copilot/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://azure.microsoft.com/en-us/products/machine-learning/automatedml
https://azure.microsoft.com/en-us/products/machine-learning/automatedml
https://azure.microsoft.com/en-us/products/machine-learning/automatedml
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://github.com/pytorch/pytorch/projects/30
https://github.com/pytorch/pytorch/projects/30
https://developer.nvidia.com/dcgm
https://developer.nvidia.com/dcgm
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://pytorch.org/docs/stable/amp
https://pytorch.org/docs/stable/amp
https://github.com/pytorch/examples
https://github.com/pytorch/examples
https://pytorch.org/docs/stable/fsdp
https://pytorch.org/docs/stable/fsdp
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

ergy. In 2023 USENIX Annual Technical Conference,
USENIX ATC ’23, 2023.

[27] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard,
Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexan-
der Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele
Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways. CoRR,
2022.

[28] Piali Das, Nikita Ivkin, Tanya Bansal, Laurence Roues-
nel, Philip Gautier, Zohar Karnin, Leo Dirac, Lakshmi
Ramakrishnan, Andre Perunicic, Iaroslav Shcherbatyi,
Wilton Wu, Aida Zolic, Huibin Shen, Amr Ahmed, Fela
Winkelmolen, Miroslav Miladinovic, Cedric Archem-
beau, Alex Tang, Bhaskar Dutt, Patricia Grao, and Ku-
mar Venkateswar. Amazon sagemaker autopilot: a
white box automl solution at scale. In Proceedings of
the Fourth International Workshop on Data Manage-
ment for End-to-End Machine Learning, DEEM ’20,
2020.

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, NAACL ’19, 2019.

[31] Tobias Domhan, Jost Tobias Springenberg, and Frank
Hutter. Speeding up automatic hyperparameter opti-
mization of deep neural networks by extrapolation of
learning curves. In Proceedings of the International

Joint Conference on Artificial Intelligence, IJCAI ’15,
2015.

[32] Lisa Dunlap, Kirthevasan Kandasamy, Ujval Misra,
Richard Liaw, Michael Jordan, Ion Stoica, and
Joseph E. Gonzalez. Elastic hyperparameter tuning
on the cloud. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’21, 2021.

[33] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB:
Robust and efficient hyperparameter optimization at
scale. In Proceedings of the 35th International Confer-
ence on Machine Learning, ICML ’18, 2018.

[34] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and
Wei Lin. Dapple: a pipelined data parallel approach for
training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’21, 2021.

[35] Roy Frostig, Matthew James Johnson, and Chris Leary.
Compiling machine learning programs via high-level
tracing. In Proceedings of Machine Learning and
Systems, MLSys ’18, 2018.

[36] Wei Gao, Qinghao Hu, Zhisheng Ye, Peng Sun, Xiaolin
Wang, Yingwei Luo, Tianwei Zhang, and Yonggang
Wen. Deep learning workload scheduling in gpu dat-
acenters: Taxonomy, challenges and vision. CoRR,
2022.

[37] Xavier Glorot and Yoshua Bengio. Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, ICML ’10,
2010.

[38] Aaron Gokaslan and Vanya Cohen. Openwebtext cor-
pus. https://skylion007.github.io/OpenWebTe
xtCorpus/, 2023.

[39] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. Google
vizier: A service for black-box optimization. In Pro-
ceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’17, 2017.

[40] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang
Liu, and Chuanxiong Guo. Tiresias: A GPU cluster
manager for distributed deep learning. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’19, 2019.

772 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://skylion007.github.io/OpenWebTextCorpus/
https://skylion007.github.io/OpenWebTextCorpus/

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR ’16, 2016.

[42] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B.
Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy,
Benjamin Mann, Alec Radford, Aditya Ramesh, Nick
Ryder, Daniel M. Ziegler, John Schulman, Dario
Amodei, and Sam McCandlish. Scaling laws for au-
toregressive generative modeling. CoRR, 2020.

[43] Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Oriol Vinyals, Jack William Rae,
and Laurent Sifre. An empirical analysis of compute-
optimal large language model training. In Advances in
Neural Information Processing Systems, NeurIPS ’22,
2022.

[44] Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. Searching for mobilenetv3.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, ICCV ’19, 2019.

[45] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen,
and Tianwei Zhang. Characterization and prediction of
deep learning workloads in large-scale gpu datacenters.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis, SC ’21, 2021.

[46] Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen,
and Tianwei Zhang. Lucid: A non-intrusive, scalable
and interpretable scheduler for deep learning training
jobs. In Proceedings of the 28th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’23, 2023.

[47] Yimin Huang, Yujun Li, Hanrong Ye, Zhenguo Li, and
Zhihua Zhang. Improving model training with multi-
fidelity hyperparameter evaluation. In Proceedings of
Machine Learning and Systems, MLSys ’22, 2022.

[48] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning, ICML
’15, 2015.

[49] Arthur Jacot, Franck Gabriel, and Clement Hongler.
Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information
Processing Systems, NeurIPS ’18, 2018.

[50] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference, USENIX ATC ’19, 2019.

[51] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP
’19, 2019.

[52] Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models. CoRR, 2020.

[53] Zohar Karnin, Tomer Koren, and Oren Somekh. Al-
most optimal exploration in multi-armed bandits. In
Proceedings of the 30th International Conference on
International Conference on Machine Learning, ICML
’13, 2013.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations, ICLR ’15, 2015.

[55] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representations,
ICLR ’17, 2017.

[56] Vijay Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation
recomputation in large transformer models. CoRR,
2022.

[57] Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. 2009.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems, NeurIPS ’12, 2012.

[59] Sameer Kumar, Yu Wang, Cliff Young, James Brad-
bury, Naveen Kumar, Dehao Chen, and Andy Swing.
Exploring the limits of concurrency in ml training on
google tpus. In Proceedings of Machine Learning and
Systems, MLSys ’21, 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 773

[60] Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and
Mosharaf Chowdhury. ModelKeeper: Accelerating
DNN training via automated training warmup. In 20th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’23, 2023.

[61] Zhiquan Lai, Shengwei Li, Xudong Tang, Keshi Ge,
Weijie Liu, Yabo Duan, Linbo Qiao, and Dongsheng Li.
Merak: An efficient distributed dnn training framework
with automated 3d parallelism for giant foundation
models. CoRR, 2022.

[62] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

[63] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Eka-
terina Gonina, Jonathan Ben-tzur, Moritz Hardt, Ben-
jamin Recht, and Ameet Talwalkar. A system for mas-
sively parallel hyperparameter tuning. In Proceedings
of Machine Learning and Systems, MLSys ’20, 2020.

[64] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research, 2018.

[65] Shigang Li and Torsten Hoefler. Chimera: efficiently
training large-scale neural networks with bidirectional
pipelines. In Proceedings of the International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, SC ’21, 2021.

[66] Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jix-
iang Li, Ji Liu, Ce Zhang, and Bin Cui. Hyper-tune:
towards efficient hyper-parameter tuning at scale. Pro-
ceedings of the VLDB Endowment, 2022.

[67] Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Zhi
Yang, Ce Zhang, and Bin Cui. Transbo: Hyperparam-
eter optimization via two-phase transfer learning. In
Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22,
2022.

[68] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao,
Ce Zhang, and Bin Cui. Mfes-hb: Efficient hyperband
with multi-fidelity quality measurements. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
AAAI ’21, 2021.

[69] Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huai-
jun Jiang, Mingchao Liu, Jiawei Jiang, Jinyang Gao,
Wentao Wu, Zhi Yang, Ce Zhang, and Bin Cui. Open-
box: A generalized black-box optimization service. In
Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, KDD ’21,
2021.

[70] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin
Ding, Yaliang Li, Jingren Zhou, Zhi Yang, Wentao Wu,
Ce Zhang, and Bin Cui. Volcanoml: speeding up end-
to-end automl via scalable search space decomposition.
Proceedings of the VLDB Endowment, 2021.

[71] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian
Zou, Joseph E. Gonzalez, Ion Stoica, and Alexey Tu-
manov. Hypersched: Dynamic resource reallocation
for model development on a deadline. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC
’19, 2019.

[72] Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E. Gonzalez, and Ion Stoica. Tune: A
research platform for distributed model selection and
training. CoRR, 2018.

[73] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao,
Youngjin Kwon, and Myeongjae Jeon. Zico: Efficient
GPU memory sharing for concurrent DNN training. In
2021 USENIX Annual Technical Conference, USENIX
ATC ’21, 2021.

[74] Yunfeng Lin, Guilin Li, Xing Zhang, Weinan Zhang,
Bo Chen, Ruiming Tang, Zhenguo Li, Jiashi Feng,
and Yong Yu. Modularnas: Towards modularized and
reusable neural architecture search. In Proceedings of
Machine Learning and Systems, MLSys ’21, 2021.

[75] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized bert pretraining approach. CoRR,
2019.

[76] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, ICCV ’21,
2021.

[77] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, ICLR ’19, 2019.

[78] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella,
Amar Phanishayee, and Shuchi Chawla. Themis: Fair
and efficient GPU cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20, 2020.

[79] Ruben Martinez-Cantin. Bayesopt: A bayesian opti-
mization library for nonlinear optimization, experimen-
tal design and bandits. Journal of Machine Learning
Research, 2014.

774 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[80] Song Mei, Andrea Montanari, and Phan-Minh Nguyen.
A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of
Sciences, 2018.

[81] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations,
ICLR ’17, 2017.

[82] Ujval Misra, Richard Liaw, Lisa Dunlap, Romil Bhard-
waj, Kirthevasan Kandasamy, Joseph E. Gonzalez, Ion
Stoica, and Alexey Tumanov. Rubberband: Cloud-
based hyperparameter tuning. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, 2021.

[83] Jayashree Mohan, Amar Phanishayee, Janardhan
Kulkarni, and Vijay Chidambaram. Looking beyond
GPUs for DNN scheduling on Multi-Tenant clusters.
In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, 2022.

[84] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, OSDI ’18, 2018.

[85] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream:
generalized pipeline parallelism for dnn training. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, 2019.

[86] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel dnn training. In Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML ’21,
2021.

[87] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-Aware Cluster Scheduling Policies
for Deep Learning Workloads. In 14th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI ’20, 2020.

[88] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Za-
haria. Efficient large-scale language model training
on gpu clusters using megatron-lm. In Proceedings

of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21,
2021.

[89] Radford M. Neal. Priors for Infinite Networks.
Springer New York, 1996.

[90] Maria-Elena Nilsback and Andrew Zisserman. Au-
tomated flower classification over a large number of
classes. In Sixth Indian Conference on Computer Vi-
sion, Graphics & Image Processing, 2008.

[91] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. Pytorch: An impera-
tive style, high-performance deep learning library. In
Advances in Neural Information Processing Systems,
NeurIPS ’19, 2019.

[92] Valerio Perrone, Huibin Shen, Aida Zolic, Iaroslav
Shcherbatyi, Amr Ahmed, Tanya Bansal, Michele
Donini, Fela Winkelmolen, Rodolphe Jenatton,
Jean Baptiste Faddoul, Barbara Pogorzelska, Miroslav
Miladinovic, Krishnaram Kenthapadi, Matthias
Seeger, and Cédric Archambeau. Amazon sagemaker
automatic model tuning: Scalable gradient-free
optimization. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21, 2021.

[93] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J.
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’17, 2017.

[94] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Sub-
ramanya, Willie Neiswanger, Qirong Ho, Hao Zhang,
Gregory R. Ganger, and Eric P. Xing. Pollux: Co-
adaptive cluster scheduling for goodput-optimized
deep learning. In 15th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI
’21, 2021.

[95] Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners. 2019.

[96] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. Zero: Memory optimizations toward
training trillion parameter models. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20,
2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 775

[97] James Reed, Zachary DeVito, Horace He, Ansley
Ussery, and Jason Ansel. torch.fx: Practical program
capture and transformation for deep learning in python.
In Proceedings of Machine Learning and Systems, ML-
Sys ’22, 2022.

[98] Daniel A. Roberts, Sho Yaida, and Boris Hanin. The
Principles of Deep Learning Theory. Cambridge Uni-
versity Press, 2022.

[99] Sebastian Ruder. An overview of gradient descent
optimization algorithms. CoRR, 2017.

[100] David Salinas, Matthias Seeger, Aaron Klein, Vale-
rio Perrone, Martin Wistuba, and Cedric Archambeau.
Syne tune: A library for large scale hyperparameter
tuning and reproducible research. In First Conference
on Automated Machine Learning, AutoML ’22, 2022.

[101] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In Interna-
tional Conference on Learning Representations, ICLR
’17, 2017.

[102] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. CoRR, 2020.

[103] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Repre-
sentations, ICLR ’15, 2015.

[104] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning
algorithms. In Proceedings of the 25th International
Conference on Neural Information Processing Systems,
NeurIPS ’12, 2012.

[105] Xingyou Song, Sagi Perel, Chansoo Lee, Greg Kochan-
ski, and Daniel Golovin. Open source vizier: Dis-
tributed infrastructure and api for reliable and flexible
blackbox optimization. In First Conference on Auto-
mated Machine Learning, AutoML ’22, 2022.

[106] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-
fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali,
and Guoqing Harry Xu. Bamboo: Making preemptible
instances resilient for affordable training of large dnns.
In 20th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’23, 2023.

[107] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep
Baines, Carlos Efrain Quintero Narvaez, Vinay Ra-
makrishnaiah, Nirmal Prajapati, Pat McCormick, Ja-
maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,

Jongsoo Park, Misha Smelyanskiy, and Alex Aiken.
Unity: Accelerating DNN training through joint opti-
mization of algebraic transformations and paralleliza-
tion. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI ’22, 2022.

[108] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems,
NeurIPS ’17, 2017.

[109] Guanhua Wang, Kehan Wang, Kenan Jiang, XI-
ANGJUN LI, and Ion Stoica. Wavelet: Efficient dnn
training with tick-tock scheduling. In Proceedings of
Machine Learning and Systems, MLSys ’21, 2021.

[110] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li,
and Gennady Pekhimenko. Horizontally fused training
array: An effective hardware utilization squeezer for
training novel deep learning models. In Proceedings
of Machine Learning and Systems, MLSys ’21, 2021.

[111] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in Large-Scale heterogeneous GPU
clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’22, 2022.

[112] William F. Whitney. Parallelizing neural networks on
one gpu with jax, 2023.

[113] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, EMNLP
’20, 2020.

[114] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-
spective cluster scheduling for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’18, 2018.

[115] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In 14th USENIX Symposium on

776 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Operating Systems Design and Implementation, OSDI
’20, 2020.

[116] Sho Yaida. Meta-principled family of hyperparameter
scaling strategies. CoRR, 2022.

[117] Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor,
Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pa-
chocki, Weizhu Chen, and Jianfeng Gao. Tuning large
neural networks via zero-shot hyperparameter trans-
fer. In Advances in Neural Information Processing
Systems, NeurIPS ’21, 2021.

[118] Greg Yang. Wide feedforward or recurrent neural net-
works of any architecture are gaussian processes. In
Advances in Neural Information Processing Systems,
NeurIPS ’19, 2019.

[119] Greg Yang. Tensor programs ii: Neural tangent kernel
for any architecture. CoRR, 2020.

[120] Greg Yang. Tensor programs iii: Neural matrix laws.
CoRR, 2021.

[121] Greg Yang and Edward J. Hu. Tensor programs iv:
Feature learning in infinite-width neural networks. In
Proceedings of the 38th International Conference on
Machine Learning, ICML ’21, 2021.

[122] Greg Yang and Etai Littwin. Tensor programs iib: Ar-
chitectural universality of neural tangent kernel train-
ing dynamics. In Proceedings of the 38th International
Conference on Machine Learning, ICML ’21, 2021.

[123] Zhisheng Ye, Peng Sun, Wei Gao, Tianwei Zhang, Xi-
aolin Wang, Shengen Yan, and Yingwei Luo. Astraea:
A fair deep learning scheduler for multi-tenant gpu clus-
ters. IEEE Transactions on Parallel and Distributed
Systems, 2021.

[124] Peifeng Yu and Mosharaf Chowdhury. Fine-grained
gpu sharing primitives for deep learning applications.
In Proceedings of Machine Learning and Systems, ML-
Sys ’20, 2020.

[125] Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury.
Fluid: Resource-aware hyperparameter tuning engine.
In Proceedings of Machine Learning and Systems, ML-
Sys ’21, 2021.

[126] Sergey Zagoruyko and Nikos Komodakis. Wide resid-
ual networks. In British Machine Vision Conference,
BMVC ’16, 2016.

[127] Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang,
Zhe Liu, Mao Yang, and Lidong Zhou. Retiarii: A deep
learning Exploratory-Training framework. In 14th
USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’20, 2020.

[128] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu,
Xuanzhe Liu, and Xin Jin. Multi-resource interleaving
for deep learning training. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’22, 2022.

[129] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance ten-
sor programs for deep learning. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI ’20, 2020.

[130] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, 2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 777

MGG: Accelerating Graph Neural Networks with Fine-Grained Intra-Kernel
Communication-Computation Pipelining on Multi-GPU Platforms

Yuke Wang, Boyuan Feng, Zheng Wang, †Tong Geng, ∗Kevin Barker, ∗Ang Li, and Yufei Ding
†University of Rochester, ∗Pacific Northwest National Laboratory

University of California, Santa Barbara

Abstract
The increasing size of input graphs for graph neural networks
(GNNs) highlights the demand for using multi-GPU platforms.
However, existing multi-GPU GNN systems optimize the
computation and communication individually based on the
conventional practice of scaling dense DNNs. For irregularly
sparse and fine-grained GNN workloads, such solutions miss
the opportunity to jointly schedule/optimize the computation
and communication operations for high-performance delivery.

To this end, we propose MGG , a novel system design to ac-
celerate full-graph GNNs on multi-GPU platforms. The core
of MGG is its novel dynamic software pipeline to facilitate
fine-grained computation-communication overlapping within
a GPU kernel. Specifically, MGG introduces GNN-tailored
pipeline construction and GPU-aware pipeline mapping to fa-
cilitate workload balancing and operation overlapping. MGG
also incorporates an intelligent runtime design with analytical
modeling and optimization heuristics to dynamically improve
the execution performance. Extensive evaluation reveals that
MGG outperforms state-of-the-art full-graph GNN systems
across various settings: on average 4.41×, 4.81×, and 10.83×
faster than DGL, MGG-UVM, and ROC, respectively.

1 Introduction

Over the recent years, graph-based deep learning has attracted
lots of attention from the research and industry communi-
ties. Among various graph-learning methods, graph neural
network (GNN) [21, 43, 49] gets highlighted most due to its
success in many deep learning tasks (e.g., node feature vector
(embedding) generation for node classification [11, 13, 19]
and link prediction [7,22,42]). GNNs consist of several layers,
where layer k+1 computes the embedding for a node v based
on the embeddings at the previous layer k (k ≥ 0) by applying

a(k+1)
v = Aggregate(k+1)(h(k)u |u ∈ N(v)∪h(k)v)

h(k+1)
v = Update(k+1)(a(k+1)

v)

where h(k)v is the embedding of node v at layer k. The
Aggregate function accumulates neighbors’(N(v)) embed-
dings of node v. The Update function consists of a fully-
connected NN layer. The neighbor aggregation (Aggregate)
is the key bottleneck that dominates the overall computation
due to its high computation sparsity and irregularity [46, 50].
Compared with conventional graph analytics (e.g., random
walk [14, 39]), GNN features higher accuracy [21, 49] and
better generality [16, 55] on various applications.

GNN computation on large input graphs (millions/billions
of nodes and edges) usually counts on powerful multi-GPU
platforms (e.g., NVIDIA DGX [35]) for scaling up the perfor-
mance. The multi-GPU system (that can potentially store all
data required for the computation in the aggregate memory
of all GPUs on a single machine) can benefit from aggre-
gated memory capacity and bandwidth (HBM and NVLinks)
with more GPUs. There is also a popular trend for state-of-
the-art hyper-scale systems employing GPU-centric building
blocks. For example, the recent NVIDIA DGX SuperPod [33]
consists of 32×DGX-H100 servers (each with 8×H100). Un-
fortunately, the runtime performance of GNNs does not scale
proportionally with the aggregated compute capability and
memory capacity of the platform. This is mainly because
the irregular and sparse local memory access of neighbor ag-
gregation in the single-GPU settings now “scales” to more
expensive inter-GPU communication (i.e., remote memory ac-
cess). Such intensive inter-GPU communication becomes the
new critical path of multi-GPU GNN execution and offsets the
performance gains from multi-GPU computation parallelism.

Based on this observation, we highlight a more promising
way of formalizing GNN computation on multi-GPU systems.
Our key insight is that GNN execution can be more precisely
abstracted as a fine-grained dynamic software pipeline to en-
courage communication and computation overlapping, which
will largely hide the communication cost. The opportunities
for building such fine-grained pipelines widely exist at dif-
ferent granularities in GNNs. For instance, on a single graph
node, the remote neighbor access can be overlapped with the
local neighbor computation. Among different graph nodes,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 779

Kernel & Runtime Manager

GNN-tailored
Pipeline

Construct. (§)

GPU-aware
Pipeline

Mapping (§)

MGG

SHMEM Library
(e.g., NVSHMEM)

Optimized
Param.

Graph Loader &
Model Initializer

Runtime
Param.

Optimizer(§)

Performance Feedbacks

GNN
Model

Node
Embe-
dding

Graph
Struc-
ture

NVIDIA DGX
Multi-GPU Platform

Optimized
Design

Hybrid Data
Placement

Warp-based
Mapping &
Pipelining

Specialized
Memory Design
& Optimization

Pipeline-aware
Workload

Management

Figure 1: Overview of MGG.

the remote neighbor access for certain nodes would poten-
tially be overlapped with the local neighbor computation of
some other nodes. However, prior research could hardly ex-
ploit such benefits since they rely on hardware and software
infrastructures tailored for coarse-grained [18,28] and regular
communication patterns [12, 26]. To capitalize on the fine-
grained pipelining benefits, there are three major challenges.

The first challenge is how to craft the pipeline structure. A
work-efficient pipeline for GNNs demands comprehensively
considering multiple factors (e.g., the operations and the num-
ber/granularity of each pipeline stage) to best fit the GNN
algorithm and multi-GPU computation/communication. The
second challenge is how to map the pipeline to the GPU pro-
cessing units. Given the GPU’s architectural complexity (e.g.,
multi-granular processing units and multi-layer memory hier-
archy), different mapping and primitive choices would bring
performance and design flexibility tradeoffs. The third chal-
lenge is how to find and adapt toward the “optimal” pipeline
configuration swiftly. Given the diversity of GNN inputs (e.g.,
graph structures) and hardware (e.g., different types/numbers
of GPUs), pinpointing the best-off design configuration with
high-performance delivery relies on combined insights from
the properties of the software pipeline, GNN inputs, and GPU
programming and execution paradigms.

To this end, we introduce a set of principles for multi-
GPU GNN acceleration via a fine-grained dynamic software
pipeline. To construct fine-grained pipelines, the original
coarse-grained irregular GNN computation should be break-
down into fine-grained operations. The joint optimization of
the GNN workload granularity and data layout should be car-
ried out to facilitate operation overlapping. To map pipelines
to GPUs, the proper GPU logical processing units (e.g., thread,
warp, and block) should be selected for promoting GPU kernel
efficiency and design flexibility. In addition, the right choice
of communication primitives (e.g., NVSHMEM [36]) should
be determined to provide fine-grained inter-GPU communi-
cation support. To adapt pipelines dynamically, customized
kernel templates with tunning knobs should be devised. This
will help to maintain pipelining effectiveness across a diverse
range of GNN inputs and hardware platform settings.

We crystallize the above principles into MGG1, a holistic
system design and implementation for multi-GPU GNNs (Fig-
ure 1). Given the GNN models and inputs, MGG will automat-

1https://github.com/YukeWang96/MGG-OSDI23-AE.git

ically generate pipeline-centric GPU kernels for multi-GPU
platforms and dynamically improve the kernel performance
based on runtime feedback. The core of MGG is its Ker-
nel & Runtime Manager, which constructs GNN-tailored
pipelines and maps such pipelines to proper communication
primitives and GPU logical processing units. It can also dy-
namically orchestrate GPU kernels based on new configura-
tions. MGG also incorporates a Runtime Parameter Op-
timizer, which will monitor the performance (e.g., latency)
from the actual execution and generate new configurations for
the next iteration based on the analytical performance model
and optimization heuristics. To the best of our knowledge,
we are the first to explore the potential of GPU kernel oper-
ation pipelining for accelerating irregular GNN workloads.
Moreover, MGG can be generalized to other applications (e.g.,
deep-learning recommendation model (DLRM) [31]) that are
sharing similar irregular communication demands (§7.3).

Overall, we make the following contributions in this paper:

• We propose a GNN-tailored pipeline construction tech-
nique (§4) with pipeline-aware workload management
and hybrid data placement, for efficient communication-
computation pipelining in a GPU kernel.

• We introduce a GPU-aware pipeline mapping strategy
(§5), encompassing warp-based mapping and pipelining,
and specialized memory designs and optimizations to
comprehensively promote kernel performance.

• We devise an intelligent runtime with lightweight analyt-
ical modeling and optimization heuristics to dynamically
improve the performance of GNN training (§6).

• Comprehensive experiments demonstrate that MGG can
outperform state-of-the-art multi-GPU GNN systems
across various GNN benchmarks. Additionally, MGG
can be generalized to other DL applications, like DLRM.

2 Related Work

Recent deep-learning applications expand their scope from
handling structured dense inputs (e.g., images) to unstructured
sparse inputs (e.g., graphs). Along with such algorithmic/ap-
plication expansion is the exploration of new system designs
and optimizations for more efficient deep learning. One of
the most important topics is the ability to handle large-scale
inputs, which are usually out of the computation and memory
capacity of one GPU. For scaling regular deep-learning ap-
plications, like dense DNNs, various abstractions (e.g., data
and model parallel) and high-performance communication
libraries (e.g., NCCL [34]) have been developed. While the
scaling approach for irregular GNN applications is still initial
and suffers from unsatisfactory performance.

Compared to scaling dense DNNs, scaling sparse GNNs
is significantly more challenging. The irregular fine-grained
sparse GNNs workload cannot fit the regular coarse-grained

780 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/YukeWang96/MGG-OSDI23-AE.git

B C

C

A

F

G D

D

A

(b) Compute + Regular Comm. (c) Comm. -Compute Overlapping.

time

DE

CA

C

E

F D

F

B

G

Partial
Compute

Partial
Compute

P2P Embed.
Comm.

D E

C G

D

ABD

A C

B C

E

F

G

A

F D

D E

F

C

CA

Overlapped Compute &
Comm

SMMSMMSMM

time

D

C

A
B
C

E
F
G

D

G
PU

-0
G

PU
-1

C

E

G F

D

B

A

Local Compute

DEFG

swap

ABC

DEFGABC

B CD

A C

C

A
B
C A BE

E
F
G

F

FA

G D

Compute

D

D C G

E

F D

(a) Irregular Comm + Compute.
Comm.

G
PU

-0
G

PU
-1

time

D

E D

A C

C

Remote Fetch SMSMSM

SMSMSM SMSMSM

Local Compute
SMSMSM

SM

Figure 2: Different Multi-GPU GNN strategies for compu-
tation and communication. Note that red and green boxes
indicate aggregation workload on remote and local neighbors.
“SM” boxes with grey areas indicate potential idleness.

workload abstraction for dense DNNs. The cost of irregu-
lar communication in GNNs cannot be easily amortized by
simply batching more requests as dense DNNs due to their
randomness and sparseness. Scaling strategies largely vary
among different GNN inputs while tiling/schedule strategies
would be reused across different inputs of dense DNNs. There-
fore, an array of dedicated designs have been introduced to
scale the sparse GNNs, focusing on three major directions.

Operator Specialization for Sparse Communication:
This is the mainstream solution that treats the communication
as a standalone operator for irregularly sparse GNN commu-
nication (Figure 2(a)). DGL [45] is the state-of-the-art GNN
framework and its most recent update incorporates PyTorch-
Direct [28] (a GNN-tailored communication design based on
zero-copy memory [41]) for large-scale GNN training across
GPUs. Work from [6] introduces a communication planning
algorithm for distributed GNNs by considering links, com-
munication, contention, and load balancing. However, these
efforts optimize the communication standalone and thus miss
the opportunities to jointly optimize computation and commu-
nication operations/schedules which can potentially reduce
the overall latency and improve GPU utilization.

Algorithm Modification for no Communication: The
second typical type is to eliminate irregular communication
by altering algorithms [25, 45, 51]. They harness various al-
gorithmic adaption solutions, such as neighbor sampling and
mini-batch to prefetch the remote neighbors to local devices,
and then train the GNN model in a data-parallel fashion as
the traditional dense DNN. However, existing research [8,18]
shows that such an algorithmic modification would compro-
mise the accuracy of GNN models compared to the original

GNNs. It would also destabilize the algorithmic performance
(e.g., the lower convergence speed and final accuracy) under
different inputs and sampling configurations.

Schedule Transformation for Dense Communication:
The third type is to transform irregular communication to reg-
ularized communication (e.g., AlltoAll, P2P), which has been
optimized by existing communication kernels (Figure 2(b)).
ROC [18] delegates communication to its underlying NVIDIA
Legion runtime [5], which manages irregular remote neigh-
bor access via a DMA engine. It batches fine-grained em-
beddings into large embedding tiles on CPUs to facilitate
coarse-grained data movement between the host and GPUs.
NeuGraph [26] tiles the large node embedding matrices by
rows (as embedding chunks) and then forwards each chunk
to GPUs sequentially via coarse-grained P2P communication.
P3 [12] spots the potential of transforming irregular embed-
ding communication to regular all-to-all communication for
embedding column tiles. However, this type of effort would
introduce many unnecessary data movements and non-trivial
overhead to transform original algorithms and data inputs.

To sum up, existing designs explore solutions in a limited
scope and have yet to extend their solution search to a broader
context by exploring the synergy between the multi-GPU
GNN workloads, GPU execution paradigms, and communica-
tion patterns. Therefore, these designs could hardly enjoy the
full potential of multi-GPU platforms.

3 Motivation

Different from prior solutions, we propose a new view for
multi-GPU GNN workload. We spot that by removing the
explicit barrier between the computation and communication
stage in multi-GPU GNNs, we can co-schedule the operations
from both stages in a holistic way that can reduce the GPU
resource idleness and promote performance (Figure 2(c)). For
example, when GPUs initiate remote access requests and are
waiting for the arrival of remote data, the idle cycles of GPUs
can be fulfilled by other local computing workloads. Such in-
sight enables us to abstract the multi-GPU GNN workload as
a fine-grained dynamic software pipeline for communication
and communication overlapping. Specifically, “Fine-grained”
means that the operations at each pipeline stage are tiny (e.g.,
the aggregation of one neighbor’s embeddings) versus DNN
layers.“Dynamic” means that the division of computation into
pipeline stages would vary among different inputs in contrast
to DNNs with a relatively fixed pipeline. Such a new design
is motivated by our three major observations.

GNN Workload Speciality: The first observation reveals
the specialty of GNN workloads, which feature two major
types of partial dependency that facilitate pipelining [1]. The
first type is the fine-grained neighbor aggregation dependency,
where the neighbor embeddings of individual graph nodes
are aggregated either sequentially or in parallel with proper
synchronization. The second type is the dynamic execution

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 781

Listing 1: NVSHMEM APIs in CUDA C.
1 // Initialize an NVSHMEM context on CPUs.
2 nvshmem_init();
3 // Get the current GPU device ID on CPUs.
4 int gpu_id = nvshmem_team_my_pe(NVSHMEMX_TEAM_NODE);
5 // Set the GPU based on its device ID on CPUs.
6 cudaSetDevice(gpu_id);
7 // Define NVSHMEM memory visible for all GPUs on CPUs.
8 d_shared_mem = (void*) nvshmem_malloc (num_bytes);
9 // Define global memory visible only for the current GPU.

10 cudaMalloc((void**) &d_mem, num_bytes);
11 // Remote access API called by a thread/warp/block.
12 __device__ nvshmem_float_get_{warp/block}(void *dst, const

void *src, size_t nelems, int src_gpu_id);
13 // Sync all GPUs within an NVSHMEM context on CPUs.
14 nvshmem_barrier_all();
15 // Release NVSHMEM objects on CPUs.
16 nvshmem_free(d_shared_mem);
17 // Terminate the current NVSHMEM context on CPUs.
18 nvshmem_finalize();

dependency on limited processing units, where different oper-
ations would compete for limited GPU resources (e.g., SMs)
during the runtime. Such two types of dependencies expose
new opportunities for us to amortize communication costs by
overlapping neighbor aggregation from different nodes.

GPU Execution Characteristics: The second observation
highlights the characteristics of the GPU execution paradigm.
One key design principle of GPUs is their massive computa-
tion/communication parallelism to amortize the unit cost of
individual computation/communication operations [40]. The
underlying mechanism of GPU hardware design to facilitate
this is to simultaneously schedule multiple logical process-
ing units (e.g., threads/warps/blocks) to share the hardware
processing units (i.e., GPU SMs). Such a design provides
the essential ingredient for pipelining, which is that computa-
tion and communication operations can co-run on the same
units at the same time to fulfill the idle GPU cycles and max-
imize the utilization of the GPU hardware processing units.
Moreover, with the precise control of GPU kernel launching
parameters (e.g., the size of the block and shared memory),
the effectiveness of co-running heterogeneous operations can
be adjusted so that we can flexibly accommodate different
inputs while maintaining high-performance delivery.

Multi-GPU Programming Support: The third observa-
tion features the recent advancement of the GPU commu-
nication technique and its programming support. The one
highlighted most is the NVSHMEM [36], which provides
GPU intra-kernel APIs for fine-grained (several to tens of
bytes) inter-GPU communication (Listing 1). NVSHMEM
is the main communication backend for MGG. Other exist-
ing techniques such as Zero-copy memory can also serve
as an alternative to NVSHMEM for fine-grained communi-
cation. The performance will be similar while NVSHMEM
offers better programmability. Some other traditional strate-
gies for inter-GPU communication, would either offer too

coarse-grained communication solutions (e.g., unified virtual
memory [38] uses KB-level communication granularity) or
resort to the default communication strategies of existing
multi-GPU-based runtime system (e.g., NVIDIA Legion [5])
without GNN-tailored communication optimization.

These observations and insights motivate MGG, a holistic
multi-GPU GNN system with a novel view of GNN work-
loads as an operation pipeline. MGG automates the pipeline
construction, detailed pipeline mapping, and dynamic input-
driven pipeline adaption, to improve the GNN scaling.

4 GNN-tailored Pipeline Construction

Constructing a GNN-tailored pipeline are facing two ma-
jor challenges: 1) How to effectively partition and schedule
multi-GPU GNN workloads so that pipeline efficiency can be
maximized; 2) How to properly layout input so that the hier-
archy of GNN inputs and the memory/storage of multi-GPU
systems can be carefully matched to facilitate pipeline execu-
tion. MGG addresses these challenges with Pipeline-aware
Workload Management and Hybrid GNN Data Placement.

4.1 Pipeline-aware Workload Management
Managing irregularly sparse GNN workloads for pipelining is
challenging and could hardly benefit from the prior practice
and exploration of the DNN pipeline [29, 30].

Difference from DNN pipeline First, balancing the GNN
workloads among GPUs has to jointly optimize the computa-
tion capacity and the computation/communication irregularity.
While the DNN pipeline only needs to balance the compu-
tation/memory capacity, since its pipeline stages are well-
structured and their inputs are regularly dense. Distributed
DNNs require dense regular communication (e.g., Allreduce)
that is naturally fit for existing GPU interconnects optimized
for throughput and has been optimized by many libraries (e.g.,
NCCL). In contrast, distributed full-graph GNN (with the en-
tire graph cached on GPUs) is much more challenging since
it requires sparse irregular communication that is naturally
at odds with the existing hardware interconnects, and fewer
efforts have optimized its performance. Second, the GNN
pipeline workload is more irregular and non-structural and
can easily cause pipeline stalls/bubbles. For example, remote
neighbor aggregation would have different stages (remote
access + aggregation) compared with local neighbor aggre-
gation (local access + aggregation), making it challenging to
mix those two heterogeneous workloads. While in the DNN
pipeline, all inputs should consistently pass through the same
pipeline stages. Third, GNN pipeline stages are more fine-
grained (e.g., fetching individual embeddings) compared with
coarse-grained layers (e.g., GEMMs and Convolutions) in
the DNN pipeline. Such small workload granularity enables
different pipeline stages to overlap with each other on GPU
processing units, like Streaming Multiprocessors (SMs). In

782 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5

GPU-0: 0-5

GPU-0
CSR

0 6 10

1 854 5 7 10 0 31

...

11
0 4 6

2 4 0 31

Remote
CSR

0 2 4

7 10

5

96
RNP-1

LNP-0 LNP-1 LNP-2
1 5
LNP-3

1
2

2

edge
split

neighbor
partitioning

neighbor
partitioning

962
Local
CSR

...
GPU-2: 6-11

... ...

7 10

10

0
30

3

6

6

1
21

2

7

7 4
54

10

10

(c) Heterogeneity-aware Workload Split and its pipeline.

(d) Heterogeneity & Granularity-aware Workload Split and its pipeline.

(b) Node-aware Workload Split and its pipeline.

6

6 9

9

...

RNP-0
118

RNP-2

9

9

1
21

2 4
54

5
6 9

6 9

6

6
0

8

0
30

3 1
51

54
54

5

time

0
0

3
3

1
1

5
5

21 54
51 2 4

LR

1
51

5

8

8

11

11 50
3

3 8 1 5

11

11
...

...
1 5 ...AC

LR

AC
LL

8

8

11

110
3

3 ...
...

time

LR
LL
AC

time

7

7

10

10

6

6

9

9

7

7

10

101
21

2 4
4

5
5

6 9

6 9
0

...
time

7

7

10

101
21

24
4

50
30

31
51

6

6

98

8

11

time

5 9 11 ... time

LR
LL
AC

LR
LL

AC

7

8

8

11

11 AC
LL
LR

(a) Pipeline-aware Workload Management.

LL

10

1
2

3

0
45

6

7

8

9

11

Node-0

Node-2 Node-1

LNP

RNP

RNP-0

LNP-1
7

7

10

10

8

8 11

11

RNP-1 RNP-2

(1)

(2)

(1)

(2)

(1)

(2)

1
21

2
LNP-0 LNP-2 LNP-3

Figure 3: (a) Pipeline-aware workload management. “LNP”/“RNP” indicate local/remote workload partitions. (b)(c)(d) Different
strategies of workload decomposition and pipelining. Each box indicates a certain (local/remote) aggregation workload and
its length indicates its relative latency. “LR”: loading remote neighbors, “LL”: loading local neighbors, “AC”: aggregation
computation. Each grey rectangular shadow indicates a workload partition to be processed by one GPU processing unit. (1) and
(2) indicate that the same pipeline is chunked into two parts along its time axis due to space limitations.

contrast, DNN pipelines can only overlap layer-wise compu-
tation and communication operations among different GPUs.

With the above insights, we propose a three-stage dynamic
software pipeline design. The three stages include loading
remote neighbors (LR), loading local neighbors (LL), and ag-
gregation computation (AC). Aggregation of a certain neigh-
bor will only take two stages. The remote neighbor aggre-
gation will take the stage LR and AC while local neighbor
aggregation will take the stage LL and AC. The stage-wise
pipelining is achieved with two steps: 1) assigning aggre-
gation workload to different GPU logical processing units
(LPUs), like warps and blocks, and 2) scheduling different
LPUs on the same GPU SM to overlap their execution. Three-
phase pipeline can generalize to different GNN models, which
essentially consist of the different numbers of basic remote
and local operations. For example, GCN has a lower local-
vs-remote operation ratio while GAT features a higher local-
versus-remote operation ratio. Three-phase pipeline can also
capture differences among inputs. For instance, a more sparse
graph will have a higher remote-to-local operation ratio.

However, the direct construction and execution of such
three-stage pipelines would be inefficient, because of its
ignorance of GNN workload heterogeneity and irregular-
ity on multi-GPU platforms. To address these challenges,
MGG highlights a GNN-tailored pipeline construction strat-
egy to build and optimize the software pipeline in three steps.

Step-1: Workload-aware inter-GPU pipeline workload
balancing. This step aims to construct the “raw” pipeline
and balance workloads among pipelines on different GPUs.
Our insight is that GPUs with massive processing units (e.g.,
SMs) will serve many pipelines concurrently, and the key
to maximizing GPU performance and utilization is to en-

sure that each pipeline will get a similar amount of work-
load, thereby avoiding execution critical path on certain “long”
pipelines. We, therefore, develop a range-constrained binary
search algorithm (Algorithm 1) based on prior graph parti-
tioning exploration [3]. Our solution features a lower runtime
cost to split the GNN input graph into chunks (one chunk
per GPU) while balancing the number of edges within each
chunk. Then the workload from the same chunk is grouped by
nodes as workload partitions mixed local and remote neigh-
bors (Figure 3(b)). From its potential execution pipeline, we
can see many idle cycles (indicated by blank spaces in dif-
ferent pipeline stages) which would result in low pipeline
efficiency and GPU resource occupancy. Note that in the soft-
ware pipeline, workloads from different partitions can be over-
lapped as they will be processed by different LPUs. While the
workloads from the same partition are sequentially processed
by one LPU and their relative order should be maintained
even after being mixed with other partitions.

Step-2: Heterogeneity-aware pipeline bubble reduction.
The pipeline constructed from the previous step is still inef-
ficient due to its scattered workloads among stages, namely
pipeline bubbles. The optimization in this step is to minimize
such pipeline bubbles for better pipeline efficiency. The key
is to reduce the heterogeneity of workload partitions that hin-
ders effective overlapping. To achieve this, we categorize the
sparse multi-GPU GNN computation into two types. The first
type has local neighbor access only, which has shorter exe-
cution latency. The second type has remote neighbor access,
which features high latency overhead. We delicately handle
different types of workloads via grouping (Figure 3(a)- 1),
where two separate CSRs for local and remote subgraphs
will be built. The aggregation will be conducted on local and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 783

Algorithm 1: Range-constrained Binary Search.
input :Graph node pointer array (nPtr), edge list array

(eList) , and the number of GPUs (numGPUs).
output : list of graph edge split points (numGPUs−1).

1 outList = {};
2 lastPos = 0;
/* Compute approximated #edges per GPU. */

3 ePerGPU = (len(eList)+numGPUs−1)/numGPUs;
4 for sId in [0, 1, ..., numGPUs−1] do
5 nid = binSearch(nPtr,ePerGPU, lastPos,numNodes);
6 lastPos = nid;
7 outList[sId] = nid;
8 end
9 return outList;

/* Search split points on nPtr. */

10 Function binSearch(nPtr, ePerGPU, lastPos,
numNodes):

11 i = lastPos;
12 j = numNodes;
13 target = min(nPtr[i]+ ePerGPU,nPtr[numNodes]);
14 while i < j do
15 mid = (nPtr[i]+nPtr[j])/2;
16 if mid > target then
17 j = (i+ j)/2;
18 else
19 i = (i+ j)/2;
20 end
21 return i;

remote subgraphs separately and followed by a result synchro-
nization at the end. Such a remote-local split is also backed by
the fact that on platforms with all-to-all GPU interconnections
(e.g, DGX-A100/H100), accessing different GPUs under the
same data granularity has approximately equal communica-
tion cost [24]. Such heterogeneity awareness in workload
partitioning (Figure 3(c)) enables a more densely overlapped
workload between the stage LR and LL/AC.

Step-3: Granularity-aware intra-GPU pipeline enhance-
ment. While the second optimization improves pipeline effi-
ciency by reducing the workload heterogeneity, there is still
plenty of room for further enhancement. The optimization in
this step is to facilitate a more balanced workload distribution
among pipeline stages. This key is to find the proper work-
load granularity for local and remote subgraphs so that those
originally sequentially processed workload partitions can be
overlapped. Our key observation is that nodes in the local/re-
mote subgraphs would have a diverse number of neighbors.
Such a specialty makes it challenging for massively parallel
GPUs to harvest the real performance gains due to the imbal-
ance workload and diverged execution flow. Therefore, we
approximate such coarse-grained irregular workloads with
fine-grained fixed-sized partitions so that the workload im-
balance across nodes can be amortized. For example, with 2
neighbors per partition (Figure 3(a)- 2), we can get a more
balanced workload among nodes in their local and remote

neighbor aggregation. With such granularity awareness, the
individual pipeline can be further condensed along its time
axis with more overlapping of the LL and AC stage. (Fig-
ure 3(d)). Meanwhile, the irregular workload can be more
evenly distributed to GPU SMs for higher GPU utilization.
On the other side, partition granularity should also be bal-
anced with synchronization overhead, since more fine-grained
partitioning can bring more parallelism at the cost of more
synchronization overhead. This is because workloads from
different partitions for the same target node need to be reduced
via synchronization, like inter-thread shuffling and atomics.

MGG design can also be generalized to multiple machines
with a minor adaptation. For example, in Figure 3(d), when
there are inter-node (over Inifite-Band) remote neighbors
(longer latency due to lower inter-node communication speed),
the size of remote neighbor partitioning (RNP) should be ad-
justed to a smaller size (e.g., from 2 to 1 remote neighbor) to
facilitate better overlapping with local computation.

4.2 Hybrid GNN Data Placement

In collaboration with our multi-step pipeline construction, we
introduce a hybrid GNN data placement strategy to exploit
the benefits of different types of memory in SHMEM-enabled
multi-GPU systems. The major impact of such hybrid place-
ment on pipelining is two-fold. First, placing GNN data in
different memory spaces will lead to different ratios of lo-
cal and remote workloads, thus, affecting workload balance
among pipelines. Second, different memory spaces will offer
different access performances (e.g., latency), thereby, affect-
ing the execution efficiency of the individual pipelines, such
as the number of pipeline bubbles.

Our strategy focuses on two major aspects. Firstly, for
workload balance among pipelines, we leverage NVSHMEM
“shared” global memory to store the node embeddings (NEs)
of the whole graph (Figure 4 left). Our major consideration
here is that such shared global memory space can be accessed
by all GPUs with the approximated equal access speed, which
is vital to facilitate a more even distribution of remote work-
loads to GPUs in terms of their size and unit access costs.
In addition, NEs are generally large in terms of size (due to
high dimensionality), which are beyond the device memory
limit of a single GPU. Therefore, NEs are ideal to be placed
in shared global memory space with sufficient space (with
aggregated memory of different GPUs), which also provides
direct remote access support across GPUs. Specifically, we
will partition the NEs of input graphs into n equal-sized par-
titions (where n is the number of GPUs) and place each of
them in one GPU’s shared global memory space.

Secondly, for the efficiency of individual pipelines, we allo-
cate the “private” global memory space for storing partitioned
graph structure (GP) data, which is only visible to kernels on
the current GPU. Our key insight is that GP (e.g., edge lists),
is all scalar values and usually small in size, and will only

784 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GPU-0 GPU-1 GPU-2

Remote
Offset

Targeted
GPU id

Local
Offset

Remote
Node id

Local
Node id

GPU-0
[lb, ub]

Address Trans.

GPU-1
[lb, ub]

GPU-2
[lb, ub]

GPU-0
[lb, ub]

Shared Global Memory

NE-0

GP-0

NE-1

GP-1 GP-2

NE-2

Local
Agg.

Rem.
Agg.

Local
Agg.

Rem.
Agg.

Local
Agg.

Rem.
Agg.

Figure 4: MGG Storage Layout and Communication Pattern.
Note that “NE-i” is the node embedding partition stored on the
i-th GPU. “GP-i” is the neighbor partition processed by the
i-th GPU. “GPU-i [lb, ub]” is the node-id range [lowerbound,
upperbound] of the node embeddings on the i-th GPU.

be accessed by the local GPU. Therefore, GP is ideal to be
placed in individual GPUs’ DRAM. Such a placement is also
important to reduce unnecessary and inefficient remote access
on those tiny scalars for fewer pipeline bubbles. In our design,
GP data (e.g., edges) from private GPU global memory will
be processed by a address translation unit for fetching correct
NEs on local/remote GPU since the NE indices are rebased
to zero on each GPU (Figure 4 right).

5 GPU-aware Pipeline Mapping

Efficient pipelining also demands effective mapping of well-
constructed pipeline workload and their schedules to the low-
level GPU logical processing units (e.g., GPU threads/warp-
s/blocks) to overlap computation and communication. To
achieve this, we propose Warp-based Mapping & Pipelining
and Specialized Memory Design & Optimization to jointly
optimize the pipeline execution efficiency, GPU utilization,
and end-to-end design flexibility.

5.1 Warp-based Mapping & Pipelining
An effective pipeline mapping demands comprehensive con-
sideration of two major aspects. 1) Which type of GPU logi-
cal processing units (e.g., warps, blocks) should be used for
pipeline workload partitions? We choose GPU warp as the
basic working unit to handle the workload of each partition.
This is because threads in a warp can collaboratively work
on different dimensions of a node embedding simultaneously.
Whereas using a single or several threads (less than the size
of a warp, 32 threads) would hardly explore the computation
parallelism and would cause warp-level divergence. Besides,
NVSHMEM remote access initiated by a warp of threads
would merge the requests into one remote memory transac-
tion to amortize the overhead. 2) Which pattern of mapping
should be used for benefiting pipeline execution efficiency?
The most straightforward way is to continuously map the
neighbor partitions from the local and remote workload list
to GPU warps with continuous IDs (Figure 5). However, this
strategy would easily suffer from workload imbalance among
GPU SMs. This is because warps with continuous IDs are

LNP-0 LNP-1 LNP-2 RNP-0 RNP-1 RNP-2 RNP-3 RNP-4 RNP-5

LNP-0 LNP-1 LNP-2RNP-0 RNP-1 RNP-4 RNP-5

LNP-3

LNP-3

w/o Interleaving

Interleaving
(dist=1)

1 Warp-based Mapping on dist=1

GPU
SM-0

GPU
SM-1

...

...

... ...

... ...

RNP-2 RNP-3
2

LNP-0 LNP-1 LNP-2RNP-0 RNP-1 RNP-3 RNP-4 RNP-5LNP-3Interleaving
(dist=2)

...RNP-2

Mapping
2-to-1

Warp-0 Warp-1 Warp-2 Warp-3 Warp-4
...
...

GPU
SM-2 ...

... GPU
SM-3 ...

...

Mapping
1-to-1

Warp-0 Warp-1 Warp-2 Warp-3 Warp-4 Warp-5 Warp-6 Warp-7 Warp-8 Warp-9

...

...
...

...

...
...

Figure 5: Warp-based Mapping and Pipelining. Note that
“LNP” refers to the local neighbor partitions; “RNP” refers
to the remote neighbor partitions. Workload and Warps are
matched based on colors. Tiny boxes in GPU SM indicate
decomposed workload operations for overlapped execution.

more likely to be placed into the same thread block, which is
assigned to one SM for processing. Therefore, SMs assigned
with warps for handling remote neighbor partitions would
lead to much longer latency than SMs assigned with warps
for processing local neighbor partitions. Such a workload
imbalance would lead to poor GPU utilization and runtime
execution performance.

To this end, we introduce our novel workload interleav-
ing strategy to balance the workload among SMs on GPUs.
Each warp of threads running on GPU would handle one or
more pairs of local/remote workload partitions. To more pre-
cisely calibrate the warp-to-SM mapping for different pipeline
stages to achieve efficient pipelining, we introduce a new met-
ric – interleaving distance. We give examples with the inter-
leaving distance equals 1 and 2 for illustration (Figure 5). By
mixing different types (both local and remote) of workload
together, better GPU utilization can be achieved since when
one warp is blocked for high-cost remote access, other warps
that are working on local computation can still be served by
the SMs warp scheduler for filling up these idle GPU cycles.
Moreover, such a design would improve design flexibility.
For instance, given an input graph with a selected neighbor
partition size, we can adjust the size of interleaving distance
and the workload per warp so that waiting cycles of the re-
mote access can be hidden by the computation cycles of the
neighbor aggregation. Thus, each warp can be fully utilized
while the design can achieve sufficient parallelism.

MGG currently processes the neighbors of adjacent nodes
(based on node-ids) to the same thread block where the same
block will be scheduled on the same SM. If there are com-
mon remote neighbors for those adjacent nodes, their remote
requests will be merged. Improving such locality requires
reordering the graph nodes to maximize their common neigh-
bors. Such an exploration is orthogonal to our current contri-
bution. In future GPUs, there is a trend to explore the locality
among independent processing units. For instance, in Hopper,
several thread blocks can be grouped together as thread-block
groups. We can explore the tradeoff between the locality ben-
efits and group synchronization overhead.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 785

5.2 Specialized Memory Design & Optim.

Efficient software pipelining also demands careful manage-
ment of high-bandwidth shared memory for promoting data
access efficiency and asynchronized primitives for exploiting
intra-warp operation pipelining.

GPU SM Shared Memory Layout: Based on our MGG’s
warp-based workload design, we propose a block-level shared
memory orchestration to maximize the performance gains.
We have several key insights for such a dedicated memory
layout design within each thread block. First, our neighbor-
partition-based workload will generate the intermediate re-
sults that can be cached at the high-speed shared memory
for reducing the frequent low-speed global memory access.
Second, NVSHMEM-based remote data access demands a
local scratch-pad memory (e.g., registers, shared and global
memory) to hold the remote data for local operations.

For the local neighbor aggregation, we reserve a shared
memory space with D (D is the embedding dimension)
floating-point numbers for embeddings of the target node
in each neighbor partition so that threads from a warp can
cache the intermediate results of partial reduction in shared
memory. For the remote neighbor aggregation, the shared
memory space is doubled 2×wpb×D (wpb is the warps per
block). The reason is that we need the first half wpb×D for
caching the partial aggregation results of each warp and the
remaining for the remotely accessed neighbor embeddings.
For each MGG kernel design, we will first identify the warp-
level information, like warp IDs. Then within each thread
block, we define the customized shared memory layout by
splitting the contiguous shared memory address into three dif-
ferent parts for neighbor ids, partial aggregation results, and
the remotely-fetched node embeddings. We use the dynamic
shared memory for design flexibility since those parameters
(e.g., wpb and D) can only be determined at runtime. During
execution, we will first calculate the total shared memory size
per block and then pass it as a kernel launching parameter.

Pipelined Memory Operation: §5.1 have discussed as-
signing local (LNP) and remote (RNP) neighbor aggregation
workloads to warps so that different warps can overlap their
computation and communication to fully saturate the active
cycles of the GPU SM scheduler. However, only exploiting
the inter-warp communication-computation overlap is not
enough to maximize the utilization of GPU resources. We
further explore the overlapping of the computation and com-
munication at the intra-warp level by carefully scheduling
the memory operations. Figure 6(a) shows the case with two
LNPs and two RNPs by using the synchronized remote ac-
cess, we can just sequentially process the two LNPs and the
two RNPs. The long-latency remote access can happen only
after the completion of its preceding LNP. This could lead to
a longer GPU stall for memory operations and low GPU SM
utilization. Our profiling also shows that without overlapping,
the remote access usually dominates the overall execution

time

time

Aggregation
Computation

Local
Access

Remote
Access

1 Launch sync local access
and async remote access

2 Start the remote-aggregation
once the remote data arrives

3 Proceed to the next
pair of workload

(a)

(b)

LNP RNP

Figure 6: Illustration of (a) w/o and (b) w/ asynchronized
primitives for overlapping computation and communication
of an individual warp. Note that the length of each rectangular
box indicates the estimated latency cost of each operation.

(around 60% of overall latency) compared to the time for
local data access plus the time for aggregation computation
(around 40% of overall latency). Such observation justifies
our design to mainly hide the latency from remote access.

To amortize the cost of remote access for each warp, we
introduce asynchronized remote memory operations (Fig-
ure 6(b)). This improved design consists of two major steps.
First, we can simultaneously launch the local memory access
while initializing the remote memory access for fetching the
node embedding (1), therefore, the time for remote access
can be amortized by the processing of LNP. Second, once
the remote access is completed, the current warp will start
aggregation on the remotely-fetched node embedding data
(2). The next step will start the new iteration of the previous
two steps, which will process a new pair of LNP and RNP.

6 Intelligent Runtime Design

In this section, we will discuss our intelligent runtime design
with performance/resource analytical modeling and heuristic-
based cross-iteration optimization strategy.

Performance-Resource Analytical Modeling: The per-
formance/resource model of MGG has two variables: work-
load per warp (WPW) and shared memory usage per block
(SMEM), which can be measured by

WPW = 2 ·ps ·D ·dist,

SMEM = ps ·wpb · IntS+2 ·wpb ·D ·FloatS
(1)

where ps, wpb, and D are the sizes of neighbor partition, warp
per block, and node embedding dimension, respectively; dist
is the interleaved distance of local/remote workloads (§5.1);
IntS and FloatS are both 4 bytes on GPUs. To determine the
value of the ps, wpb, and dist of a given input graph, we will
first compute the total number of warps by using

numWarps =
max{local,remote}

dist
(2)

where local and remote are the number of local and remote
partitions, respectively. Then we compute the total number of

786 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

blocks and the estimated block per SMs by using

numBlocks =
numWarps

wpb
,

blocksPerSM =
numBlocks
numSMs

(3)

Later, based on our micro-benchmarking results on diverse
datasets, we define our parameter search space and constraints:
1) ps ∈ [1 . . .32] to balance the computation parallelism and
synchronization overhead; 2) dist ∈ [1 . . .16] to effectively
overlap the computation and remote memory access; 3) wpb∈
[1 . . .16] to maintain SM warp scheduling flexibility for better
occupancy and throughput; 4) numSMs ≤ c1, SMEM ≤ c2,
where c1 and c2 are hardware constraints [48], e.g., NVIDIA
A100 has 108 SMs and 164KB shared memory per SM.

Heuristic-based Cross Iteration Optimization To opti-
mize the design of MGG, the parameter ps, dist, and wpb are
initialized as the value 1 at the beginning. Then we optimize
one parameter in each of the following iterations. First, we in-
crease the ps to maximize the warp utilization. When further
increasing the ps would also increase the latency, we would
stop the search on ps and switch to dist. Second, we apply a
similar strategy to locate the value of dist that can maximize
the overlap of local computation and remote access. Third,
we increase wbp to maximize the utilization of the entire
SM. If any increase of wpb would increase the latency, we
know that there may be too large thread blocks or too heavy
workloads on individual warps that lower SM warp schedul-
ing efficiency or computation parallelism. We would “retreat”
(i.e., decrease) ps to its second-highest value if necessary and
restart the increase of wpb. This optimization algorithm will
stop when any decrease of ps and increase of wpb would lead
to higher latency than the top-3 lowest latency. The latency
of each iteration during the optimization will be recorded by
a configuration lookup table. Finally, the configuration with
the lowest latency will be applied.

This particular optimization order of parameters (ps, dist,
and wpb) is based on two major aspects: (i) Spatially speaking,
the granularity is from coarse-grained algorithm-level parti-
tioning through ps, to medium-grained pipeline construction
through dist (according to the partition plan), to fine-grained
pipeline-to-warp fine-tuning through wpb (according to the
pipeline design). (ii) Temporally speaking, the three optimiza-
tions are applied at loading-time (ps to decide layout), kernel
initialization (dist to decide pipeline), and runtime (wpb to
decide pipeline mapping), respectively.

The above parameter adaption for dynamic pipelining is
vital for design/optimization generality. This is because the
characteristics of graphs (#nodes/edges and embedding sizes)
would lead to different efficiency of kernel pipelines. Our later
experimental studies (as shown in Figure 11) demonstrate its
benefits with up to 70% of performance improvements.

Table 1: Datasets for Evaluation.
Dataset #Vertex #Edge #Dim #Class
reddit(RDD) [45] 232,965 114,615,892 602 41
enwiki-2013(ENWIKI) [23] 4,203,323 202,623,226 300 12
it-2004 (IT04) [10] 41,291,594 1,150,725,437 256 64
ogbn-paper100M(PAPER) [12] 111,059,956 1,615,685,872 128 64
ogbn-products(PROD) [17] 2,449,029 61,859,140 100 47
ogbn-proteins(PROT) [17] 132,534 39,561,252 8 112
com-orkut(ORKT) [23] 3,072,441 117,185,083 128 32

7 Evaluation

Benchmarks & Datasets Despite the diversity of GNN
models, the fundamental computation and communication
paradigm (vector-based scatter-gather operation) in multi-
GPU GNNs remains the same. We evaluate two distinctive
and representative GNN models on node classification tasks:

The first type of GNN model uses a non-discriminated
neighbor aggregation strategy, where all neighbors contribute
equally when doing the aggregation. We choose Graph Con-
volutional Network (GCN) [21], which is the most popular
GNN model and is also the key backbone network for many
other GNNs, such as GraphSAGE [16] and Differentiable
Pooling [52]. We use 2 layers with 16 hidden dimensions for
GCN, which is also the setting from the original paper [21].
The computation of a 2-layer GCN can be expressed as

Z = Softmax(Â ReLU(ÂXW 1)W 2). (4)

where Â is the adjacent matrix of the input graph with self-
loop edges, and X is the input node embedding matrix, where
X ∈ RN×D; N is the number of nodes in a graph; D is the
size of node embedding dimensions. W 1 and W 2 are trainable
weight matrices in layer-1 and layer-2, respectively.

The second type uses a discriminated neighbor aggregation
strategy, where neighbors would contribute differently de-
pending on their calculated edge-specific features. We choose
Graph Isomorphism Network (GIN) [49], which aims to
distinguish the graph structure that cannot be identified by
GCN. Each layer of GIN can be expressed as

hl+1
v = MLPl((1+ ε

l)ḣl + ∑
u∈N(v)

hl
u). (5)

where l is the layer ID and l ∈ {0,1}, MLP is a fully-
connected neural network, hv is the node embedding for node
v, and N(v) stands for the neighbors of node v. GIN mainly dif-
fers from GCN in its aggregation function, which introduces
a weight parameter as the ratio of contribution from its neigh-
bors and the node itself. In addition, GIN is the reference
architecture for many other advanced GNNs with more edge
properties, such as Graph Attention Network [43]. For GIN
evaluation, we use 5 layers with 64 hidden dimensions, which
is also the setting used in the original paper [49]. Graphs
(Table 1) used in our evaluation are large in their number
of nodes and edges that demand multi-GPU capability for
effective GNN computation. #Class is the output dimension

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 787

1.
51

1.
29 1.
45 2.

66 2.
72

3.
17 4.

19

3.
92

1.
66 3.

38 8.
47 5.
15 10

.0
1

9.
98

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKTNo
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(a) GCN Model.

1.
97

1.
68 5.
52

8.
65

1.
47

0.
94

4.
05

3.
76

3.
27 5.

33 13
.5

3

3.
20

2.
19

8.
44

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKTNo
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(b) GIN Model.

Figure 7: Performance comparison with DGL. Note that full-
graph PAPER on DGL requires A100-80GB.

(#labels) for the node classification task. #Dim is the embed-
ding dimension of the input graph.

Baselines In this evaluation, we compared MGG with sev-
eral existing systems that support large full-graph GNN (i.e.,
caching the entire graph on GPUs) on multi-GPU platforms.
1) Deep Graph Library (DGL) [45] is the state-of-the-art
framework for large-scale GNNs across GPUs. It leverages
PyTorch-Direct [27] as the communication backend for GPU-
initiated zero-copy memory access [41] to fetch neighbors
embedding from the CPU host. 2) MGG-UVM [20] is a
GNN design by adapting MGG to leverage unified virtual
memory (UVM). UVM has been highlighted in handling
irregular graph computations (such as PageRank) on large
graphs [20]. However, [20] is not open-sourced, we thus gen-
eralize the pipeline kernel designs and optimizations (§4 and
§5) of MGG to build such a UVM baseline and incorpo-
rate optimizations from [20]. Note that UVM and zero-copy
memory are different communication backends [1]. Thus,
MGG-UVM does not implement zero-copy data transfer. We
remark UVM is the key communication protocol before the
new hardware support for fine-grained direct GPU-GPU com-
munication (e.g., NVSHMEM). UVM is more coarse-grained
and will require the engagement of CPUs (e.g., host memory
management) for communication. The reason to use MGG-
UVM is to show that if there is no advanced hardware support
(e.g., NVSHMEM) for fine-grained direct GPU-GPU com-
munication, the benefits of our elaborated pipeline can be
offset by UVM communication overhead. 3) ROC [18] is
a popular distributed multi-GPU system for full-graph com-
putation. ROC highlights its learning-based partitioning and
leverages NVIDIA Legion [5] runtime for communication
and task scheduling.

Other multi-GPU GNN designs, like NeuGraph [26] and
P3 [12], are not publicly available. Initially, we plan to evalu-
ate MGG on AMD ROC_SHMEM [2]. However, as indicated
in its document, the existing ROC_SHMEM is an experimen-
tal prototype and is not officially ready to be applied in prac-

tice due to very strict software limitations (e.g., only supports
ROCm v4.3) and hardware (e.g., only supports AMD GFX9
GPUs), which are quite challenging to find and deploy and not
supported by any existing GNNs frameworks [6, 18, 28] for
comparison. We believe that once ROC_SHMEM becomes
ready and generally applicable, MGG can be easily migrated
to AMD multi-GPU platforms.

There is no existing design that can leverage GPU-to-GPU
communication only for distributed full-graph GNN compu-
tation. We try our best to measure the best-possible baseline
performance. DGL and ROC have longer latency in the ear-
lier iteration due to cache warmup for node embedding on
GPU memory. We thus perform warm up iterations until their
per-iteration latency becomes stable, and then measure their
performance with minimized CPU-GPU data movements.

Platforms & Tools The implementation of MGG consists
of ∼9K LoC. We compile and link MGG with CUDA (v11.2),
OpenMPI (v4.1.1), NVSHMEM (v2.0.3), and cuDNN (v8.2)
library. Our major platform is an NVIDIA DGX-A100 with
dual AMD Rome 7742 processors (each with 64 cores, 2.25
GHz), 1TB host memory, and 8×A100 GPUs (40 GB) con-
nected via NVSwitch, which offers 600 GB/s GPU-to-GPU
bi-directional bandwidth. For the modeling study, we also
leverage DGX-1 with 4×V100 GPUs connected via NVLinks.
We use NVIDIA NSight Compute to get the kernel-level pro-
filing metrics. Speedup is averaged over 100 runs.

7.1 End-to-End Performance

Compared with DGL In this section, we will compare
with the state-of-the-art DGL framework, which leverages
PyTorch-Direct for cross-GPU communication. We evaluate
different datasets and platform settings (with 4 and 8 A100
GPUs). As shown in Figure 7, MGG outperforms DGL with
averaged 4.25× and 4.57× speedups on GCN and GIN mod-
els, respectively. We also notice a trend that MGG demon-
strates a more pronounced speedup with more GPUs. With the
increasing number of GPUs, DGL suffers from heavy memory
access contention, since multiple GPUs are initiating massive
requests to access the neighbor embeddings on the CPU host
memory. Another observation is that on GIN (D = 64) with
higher hidden dimensionality for smaller datasets (e.g., PROD
and PROT), the performance gap between DGL and MGG is
smaller compared to GCN (D = 16) since as indicated in [28],
zero-copy memory would be beneficial from more coarse-
grained data movement (with larger embedding vector) that
can saturate the PCIe cache line (128 Bytes). While such
an advantage of DGL diminishes for those larger datasets
(e.g., IT04 and PAPER) on GIN due to significantly increased
sparsity and irregularity. In addition, compared with MGG,
DGL assumes the one-size-fits-all communication strategy
would work well for all input datasets. Therefore, it ignores
the importance of the inputs and hardware properties, which
would bring non-trivial (more than 30%) benefits (§7.2).

788 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1.
53

1.
72

6.
60

6.
53

1.
85 2.
30

1.
93

2.
27

7.
26 8.

17

8.
06

7.
03

3.
09

5.
79

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKT

No
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(a) GCN Model.

2.
56

2.
05

10
.0

0

8.
22

2.
23

2.
43 2.
73

2.
39

8.
17 11

.7
4

8.
03

3.
76

2.
87 3.
32

0

5

10

RDD ENWIKI IT04 PAPER PROD PROT ORKT

No
rm

 S
pe

ed
up

 (x
)

4xA100 8xA100

(b) GIN Model.

Figure 8: Performance comparison with MGG-UVM.

Table 2: Additional performance comparison of MGG and
DGL on GraphSAGE and GAT.

Model RDD ENWIKI IT04 PAPER PROD PROT ORKT

SAGE 4.97× 1.76× 1.99× 3.53× 7.05× 3.39× 3.53×
GAT 2.65× 1.62× 2.06× 3.04× 2.06× 3.39× 3.04×

MGG can also be extended to cover other GNN models.
The following results show the speedups of MGG over DGL
on GraphSAGE with layerwise node neighbor sampling and
GAT with dot-product edge attention. Table 2 shows that
the performance results of GAT and SAGE also agree with
our prior observations on the GCN and GIN, demonstrating
the generality and effectiveness of our proposed design and
optimizations to handle more complex dataflow (e.g., edge
attention and softmax) in multi-GPU GNN computation.

Despite that MGG (NVSHMEM) and DGL (with CPU-
GPU zero-copy memory [41]) both rely on GPU-initiated
communication and overlap communication with computa-
tion, their underlying mechanism is different, and MGG shows
more performance advantages. MGG can leverage inter-GPU
communication while DGL can only rely on CPU-GPU com-
munication with limited bandwidth. This makes the communi-
cation costs pronounced in DGL and offsets the performance
gains from massive thread-level parallelism. This experiment
also shows that MGG can serve as a drop-in replacement
for the existing communication backend of DGL to improve
large-scale full-graph GNN computation.

Compared with MGG-UVM In this experiment, we com-
pare MGG with its UVM-based counterpart, MGG-UVM,
which uses UVM in place of NVSHMEM for remote commu-
nication. Figure 8 shows that MGG achieves 4.58× speedup
and 5.04× speedup on average compared to MGG-UVM on
GCN and GIN, respectively. The MGG-UVM leverages the
page-faulting-based remote data access that is more coarse-
grained (around 4 KB) in comparison with a single node
embedding size (less than 0.4KB), which leads to higher over-
head and lower effective bandwidth usage per embedding

5.
93

3.
51

37
.7

2

14
.2

3

6.
77

6.
54 11

.4
1

4.
27 6.

46 21
.9

4

13
.2

0

4.
41 6.
02 9.

14

0

10

20

30

RDD ENWIKI IT04 PAPER PROD PROT ORKT

No
rm

 S
pe

ed
up

 (x
)

GCN GIN

Figure 9: Performance comparison with ROC with 8×A100.

transfer. Such an overhead would exacerbate with more GPUs
and also make MGG-UVM challenging for GPU SM sched-
ulers to effectively dispatch instructions for the next available
warps. This is mainly because most of the warps wait for the
long-cycle page-faulting and migration.

We notice that with the increase of the dimension size
(i.e., data movement granularity), the speedup over MGG-
UVM becomes higher. We later found out that the increase of
data-movement granularity actually increases the overall page-
fault counts. This is because embedding vectors are generally
stored continuously for memory efficiency instead of aligning
with the size of memory pages. Therefore, increasing the
size of individual embedding also increases the likelihood of
triggering multiple pagefaults per embedding transfer.

Comparing among datasets, for graphs (e.g., PAPER)
with more nodes/edges and lower average node degree,
MGG would demonstrate more speedups since these graphs
exhibit more irregular and sparse access that can not well
fit into regular fix-sized pages. This also indicates the im-
portance of amortizing communication overhead. Thanks to
pipeline-centric workload management, we can effectively
amortize such costs with careful operation scheduling.

We further measure two performance-critical GPU kernel
metrics that are the key indicators of our pipeline efficiency
(§4.1): Achieved Occupancy (the ratio of the average active
warps per active cycle to the maximum number of warps sup-
ported in an SM) and SM utilization (the utilization of all
available SMs on a single GPU). MGG improves SM uti-
lization (by 21.15% on average) and occupancy (by 39.20%
on average) compared to MGG-UVM. This indicates that
MGG can effectively 1) distribute irregular workloads to SMs
to balance workloads among pipelines and improve the over-
all GPU utilization, and 2) overlap the remote access and
local aggregation computation from different warps to reduce
pipeline bubbles and maximize SM occupancy.

Compared with ROC In this experiment, we compare
MGG with ROC [18] on their officially released GCN model
implementation. We originally plan to evaluate both 4 and 8
GPU settings. However, ROC reports many out-of-memory
(OOM) errors for those large graphs on GCN/GIN model
and medium graphs on the GIN model due to its aggressive
caching of those intermediate tensors on GPUs. Therefore, we
keep our comparison to 8 GPUs. Performance-critical ROC
runtime configurations (e.g., #CPU cores, GPU/host memory
size) are optimized to fully utilize the DGX-A100.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 789

0
50

100
150
200
250

RDD ENWIKI PROD

La
te

nc
y

(m
s) w/o_NP

w/_NP

2.36x

2.78x

1.65x

(a)

0
10
20
30
40
50

RDD ENWIKI PROD

La
te

nc
y

(m
s) w/o_WL

w/_WL

2.90x

1.22x
1.53x

(b)

0.31 0.41 0.36 0.33 0.51 0.43

0.0
0.3
0.5
0.8
1.0
1.3
1.5

RDD ENWIKI PROD

N
or

m
. L

at
en

cy Thread Warp Block

(c)

Figure 10: Optimization Analysis: (a) Neighbor Partitioning; (b) Workload Interleaving; (c) Choice of Communication Primitives.

Figure 9 shows that MGG achieves averaged 12.30× and
9.35× speedups over ROC on GCN and GIN, respectively.
MGG demonstrates a more pronounced speedup over ROC
on the larger graph (e.g., IT04 and PAPER), which has more
irregular neighbor embedding access. The Legion runtime of
ROC relies on the DMA engine for bulky data (batched em-
beddings) transfer between host and GPU memory, leading to
higher throughput but inferior latency performance. Besides,
ROC relies on a separate communication-computation design,
where computation happens after the full completion of com-
munication. Such a design eliminates the opportunity to fill
idle GPU cycles with computation during communication. In
addition, the learning-based partitioning (to reduce communi-
cation) of ROC shows benefits on relatively smaller datasets
(e.g., RDD and PROT) but hard to find optimal partition plans
for large graphs due to the input structure complexity.

7.2 Optimization Analysis

Neighbor Partitioning (NP) We compare MGG with a base-
line design without applying the neighbor partitioning tech-
nique (i.e., each aggregation workload consists of all local/re-
mote neighbors) on 4×A100. We apply the workload inter-
leaving for both implementations and fix the warp-per-block
size to 2 to eliminate the impact from other performance-
related factors. Figure 10(a) shows higher latency (averaged
2.26×) for designs without applying neighbor partitioning,
since the workload imbalance becomes more severe across
different warps without neighbor partitioning, especially for
those graphs with many remote access demands, leading to
limited computing parallelism and GPU underutilization.

Workload Interleaving (WL) We compare MGG with
a baseline design without workload interleaving (i.e., re-
mote neighbor aggregation and local neighbor aggregation are
mapped separately to the GPU warps. We fix the neighbor par-
tition size to 16 and the warp-per-block size to 2. Figure 10(b)
shows that MGG consistently outperforms the non-interleaved
baseline with an average of 1.89× speedup. Without inter-
leaving the local/remote workload, the workload distribution
would be highly skewed, where the heavy and intensive re-
mote aggregation would be gathered on certain warps close to
each other while the lightweight local aggregation would be
gathered on some other warps close to each other. This leads
to inefficient warp scheduling and higher latency.

36.51ms

ps
dist

34.84ms

(a)

(b)
31.51ms

30.24ms

40.03ms

40.93ms

(c)

dist

ps
dist

ps
dist

43.46ms

16.53ms

30.45ms

10.12ms

40.21ms

wpb

wpbdist

28.19ms

wpb
dist

1 1

1

E

E

E E

1 2

E

1 2

E

1

Figure 11: Parameter selection for three different settings. (a),
(b), and (c) are for setting I, II, and III, respectively. Note that
the left-side figures show the runtime latency for different
combinations of ps and dist, while the right-side figures show
the latency for different combinations of wpb and dist. The
solid black triangle with “E” is the searched “optimal” com-
bination for ps and dist, while the black solid star with “E” is
the searched “optimal” wpb given dist and ps.

Communication Primitives We adopt MGG with different
NVSHMEM primitives at the thread, warp, and block levels.
We fix the number of GPUs to 2, the hidden dimension to 16,
the neighbor partition size to 2, and the distance of workload
interleaving to 2. Figure 10(c) shows that warp-level NVSH-
MEM primitives (e.g., nvshmemx_float_warp_get) for re-
mote accessing can bring the lowest latency. For thread-level
NVSHMEM primitives (e.g., nvshmem_float_get), it would
not coalesce the remote memory access to reduce unnecessary
transactions. For the block-level NVSHMEM primitives (e.g.,
nvshmemx_float_block_get), the higher overhead comes
from collaborating a block of threads for remote access, since
thread blocks (usually consisting of multiple warps) is larger
than a single warp, thus, leading to higher synchronization
and scheduling cost. This study also shows that our choice of
warp-level primitives strikes a good balance between memory
access efficiency and scheduling flexibility.

Modeling and Optimization We further analyze the effec-
tiveness of our lightweight analytical model for design space

790 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 3: Accuracy-Latency of GNNs w/ and w/o sampling.

Dataset Accuracy w/
sampling

Accuracy w/o
sampling

Latency (w/o vs.
w/ sampling)

RDD 0.937 0.957 1.07×
PROT 0.776 0.825 1.25×

search. Specifically, three key parameters are studied, the size
of neighbor partitioning (ps), the interleaving distance (dist),
and the warps per block (wpb). We consider three different
settings on a 2-layer GCN model: I: RDD on 4×A100 as
the basic setting. II: RDD on 8×A100 to demonstrate the
adaptability toward the different numbers of GPUs. III: RDD
on 4×V100 [37] to demonstrate the adaptability toward the
different types of GPUs. We decompose searching results into
two parts corresponding to the output of the second and third
steps of the optimization discussed in §6.

Figure 11 shows that our performance modeling and pa-
rameter selection strategy can pinpoint the low-latency design
for the above three settings. The overall searching process
only requires about 10 iterations to reach the final “optimal”
settings. Note that here we show latency results for all possi-
ble settings for comparison. While in practice, we only need
to traverse a small part of the whole design space (as indi-
cated by the boxes touched by the dot lines). By comparing
the final optimal runtime configuration setting and the initial
configuration, we can see that modeling and cross-iteration
optimization can decrease the execution time by up to 68%.
In the end-to-end GNN training (usually more than 100 itera-
tions), such a latency saving would also be significant.

7.3 Additional Study
Accuracy-latency Tradeoff This study will analyze the
accuracy-latency tradeoff between GNNs with sampling and
full-graph (w/o sampling) on 8×A100. Table 3 shows an ev-
ident node classification accuracy increase (2% to 5%) of
GNN w/o sampling over GNN w/ sampling. The accuracy
of sampling-based GNN would be affected by many factors
(e.g., sampling rate at each GNN layer and graph structure).
It is thus highly tricky to choose the “optimal” value for
those factors. Here we follow the conventional way for GNN
sampling [45]. The accuracy difference agrees with previous
GNN algorithmic work [16]. In many real-world applications
(e.g, e-commerce), such an accuracy advantage of full-graph
GNNs are be more preferred by users. Because even 1% ac-
curacy would make significant profit gains when deploying
services at scale while the latency penalty is relatively minor.

Generality to other applications The design of MGG can
be generalized to other similar applications. We demonstrate
the typical and popular deep-learning recommendation model
(DLRM) [31,47,54] that has been widely used in the industry.
In multi-GPU DLRM, the large embedding tables are par-
titioned by rows and stored in different GPUs. The DLRM
inputs (embedding access queries) will request embeddings

Table 4: DLRM [31] with MGG in Embedding Lookup.

Implementation DLRM [31] DLRM (MGG)

Time (ms) 315.27 119.66

from tables on different GPUs and then apply operations (e.g.,
elementwise addition or dot product) on those fetched embed-
dings. Such embedding lookup is highly sparse and irregular
and dominates (> 80% latency [15, 54]) the overall DLRM
computation. We improve the mainstream DLRM system [31]
with the design and optimizations of MGG to accelerate em-
bedding lookup and element-wise addition and compare with
the original system (which relies on NCCL) [31] under 4-GPU
settings on the popular Criteo Kaggle [9] dataset. Table 4
shows that DLRM with MGG effectively reduces the lookup
time (2.64×). The fine-grained remote access of MGG can
reduce redundant inter-GPU traffic by using NCCL and offset
the cost by massively parallel GPU-initiated communication.

8 Discussion

Deep Learning Pipelines: Despite the popularity of the
pipeline concept in the conventional dense DL, the generaliza-
tion of such a technique in sparse GNN computation is yet to
be explored in-depth. PiPAD [44] overlaps the communication
(CPU-to-GPU) and processing (on GPUs) between adjacent
graph partitions. Adopting this strategy, we will get designs
as Figure 3(c), which would still suffer from pipeline bubbles
due to workload imbalance. vPipe [56] dynamically assigns
a DNN layer to certain pipeline stages during the runtime. It
improves pipeline efficiency and GPU utilization for DNN
models. However, adopting this approach in our fine-grained
kernel pipeline would incur high overhead due to frequent
workload reassignment and context switching. In addition,
the pipeline bubbles in dense DNN are predictable, input-
agnostic, and can be reduced offline. However, the pipeline
bubble for GNN can only be figured out at runtime due to
input dependency. It, therefore, demands careful online work-
load balance and a pipeline schedule/mapping.

Graph Partitioning Strategies: Besides our current ID-
based graph partitioning, our designs/optimizations could also
be extended to support other graph partitioning strategies
from prior graph processing and GNN work. There are sev-
eral major categories. 1) Locality-driven partitioning (e.g.,
Gemini [57] and Rabbit order [4]) minimizes the commu-
nication/synchronization cost in distributed graph process-
ing/GNN computing. Such partition strategies are orthog-
onal to our current design optimization. Despite it will re-
duce the total size of communication, the communication
pattern remains the same with irregular, sparse, and fine-
grained data movements. Our MGG design can be modified
to accommodate such reduced-communication cases through
dynamic kernel re-configuration (e.g., fine-tuning the inter-
leaving distance and warp-to-block mapping) to maximize

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 791

communication and computation efficiency. 2) Workload-
driven partitioning (e.g., NeuGraph [26] and CUBE [53])
balances the irregular graph/GNN workload among different
devices. This type of strategy typically maintains multiple
replicas of nodes and node properties on different devices
and synchronizes partial results in replicas after local com-
putation on each device. Our current design be adapted to
handle such cases by inserting device synchronization primi-
tives (NVSHMEM collective communication primitives, such
as nvshmem_float_sum_reduce) for maintaining data con-
sistency among different replicas. 3) Learning-based par-
titioning (e.g., ROC [18]) dynamically learns an “optimal”
partitioning strategy that can maximize the computation per-
formance. Our current design/optimization can also support
this partitioning strategy by incorporating the overhead of
NVSHMEM remote memory access in the runtime prediction
model when optimizing partitioning strategies online.

9 Conclusion

This paper presents MGG, a novel multi-GPU system design,
and implementation to exploit the potential of leveraging
GPU intra-kernel software pipeline for accelerating GNNs.
MGG consists of GNN-tailored pipeline construction and
GPU-aware pipeline mapping to facilitate workload balancing
and operation overlapping, and an intelligent runtime design
to dynamically improve the GNN runtime performance. Ex-
periments show the advantages of MGG over state-of-the-art
solutions and its generality towards other DL applications.

10 Acknowledgment

We would like to appreciate the great help and support from
OSDI shepherd and anonymous reviewers. This work was
supported in part by NSF-2124039 and CloudBank [32]. We
also appreciate the generous help and support from Amazon
Faculty Research Award 2021 for Professor Yufei Ding and
NVIDIA Graduate Fellowship 2022-2023 for Yuke Wang.

References

[1] Mythri Alle, Antoine Morvan, and Steven Derrien. Run-
time dependency analysis for loop pipelining in high-
level synthesis. In Proceedings of the 50th Annual De-
sign Automation Conference (DAC), 2013.

[2] AMD. Rocm openshmem. https://github.com/
ROCm-Developer-Tools/ROC_SHMEM.

[3] Konstantin Andreev and Harald Räcke. Balanced graph
partitioning. In Proceedings of the sixteenth annual
ACM symposium on Parallelism in algorithms and ar-
chitectures (SPAA), 2004.

[4] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and
S. Iwamura. Rabbit order: Just-in-time parallel reorder-
ing for fast graph analysis. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), 2016.

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and
Alex Aiken. Legion: Expressing locality and indepen-
dence with logical regions. In Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

[6] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James
Cheng, and Fan Yu. Dgcl: an efficient communication
library for distributed gnn training. In Proceedings of the
Sixteenth European Conference on Computer Systems
(EuroSys), 2021.

[7] Hsinchun Chen, Xin Li, and Zan Huang. Link predic-
tion approach to collaborative filtering. In Proceedings
of the 5th ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL), 2005.

[8] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast
learning with graph convolutional networks via impor-
tance sampling. In International Conference on Learn-
ing Representations (ICLR), 2018.

[9] Criteo. Criteo display ad challenge. https://kaggle.
com/c/criteodisplay-ad-challenge.

[10] Timothy A Davis and Yifan Hu. The university of florida
sparse matrix collection. ACM Transactions on Mathe-
matical Software (TOMS), 2011.

[11] Alberto Garcia Duran and Mathias Niepert. Learn-
ing graph representations with embedding propagation.
In Advances in neural information processing systems
(NeurIPS), 2017.

[12] Swapnil Gandhi and Anand Padmanabha Iyer. P3: Dis-
tributed deep graph learning at scale. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2021.

[13] Jaume Gibert, Ernest Valveny, and Horst Bunke. Graph
embedding in vector spaces by node attribute statistics.
Pattern Recognition, 2012.

[14] Aditya Grover and Jure Leskovec. node2vec: Scalable
feature learning for networks. In Proceedings of the
22nd ACM international conference on Knowledge dis-
covery and data mining (SIGKDD), 2016.

[15] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim M. Hazelwood, Mark Hempstead, Bill Jia,

792 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ROCm-Developer-Tools/ROC_SHMEM
https://github.com/ROCm-Developer-Tools/ROC_SHMEM
https://kaggle.com/c/criteodisplay-ad-challenge
https://kaggle.com/c/criteodisplay-ad-challenge

Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudi-
gere, Mikhail Smelyanskiy, Liang Xiong, and Xuan
Zhang. The architectural implications of facebook’s
dnn-based personalized recommendation. In IEEE In-
ternational Symposium on High Performance Computer
Architecture (HPCA), 2020.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In
Advances in neural information processing systems
(NeurIPS), 2017.

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. Advances in neural information
processing systems (NeurIPS), 33, 2020.

[18] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and
Alex Aiken. Improving the accuracy, scalability, and
performance of graph neural networks with roc. In
Proceedings of the 3rd MLSys Conference, 2020.

[19] Riesen Kaspar and Bunke Horst. Graph classification
and clustering based on vector space embedding. World
Scientific, 2010.

[20] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Ha-
didi, and Hyesoon Kim. Batch-aware unified memory
management in gpus for irregular workloads. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[21] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In-
ternational Conference on Learning Representations
(ICLR), 2017.

[22] Jérôme Kunegis and Andreas Lommatzsch. Learning
spectral graph transformations for link prediction. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning (ICML), 2009.

[23] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. https://snap.
stanford.edu/data, 2014.

[24] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R Tallent, and Kevin J Barker. Eval-
uating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect. IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2019.

[25] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and
Yinlong Xu. Pagraph: Scaling gnn training on large
graphs via computation-aware caching. In Proceedings
of the 11th ACM Symposium on Cloud Computing, 2020.

[26] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue,
Ming Wu, Lidong Zhou, and Yafei Dai. Neugraph: par-
allel deep neural network computation on large graphs.
In USENIX Annual Technical Conference (ATC), 2019.

[27] Seung Won Min, Kun Wu, Sitao Huang, Mert Hi-
dayetoğlu, Jinjun Xiong, Eiman Ebrahimi, Deming
Chen, and Wen-mei Hwu. Pytorch-direct: Enabling
gpu centric data access for very large graph neural net-
work training with irregular accesses. arXiv preprint
arXiv:2101.07956, 2021.

[28] Seung Won Min, Kun Wu, Sitao Huang, Mert Hi-
dayetoğlu, Jinjun Xiong, Eiman Ebrahimi, Deming
Chen, and Wen-mei Hwu. Large graph convolutional
network training with gpu-oriented data communication
architecture. Proc. VLDB Endow., 2021.

[29] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[30] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel dnn training. In International Conference on
Machine Learning (ICML), 2021.

[31] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay
Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personal-
ization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

[32] Michael Norman, Vince Kellen, Shava Smallen, et al.
Cloudbank: Managed services to simplify cloud access
for computer science research and education. In Prac-
tice and Experience in Advanced Research Computing.
2021.

[33] Nvidia. Dgx superpod. https://nvidia.com/en-us/
data-center/dgx-superpod/.

[34] Nvidia. Nvidia collective communication library (nccl).
https://developer.nvidia.com/nccl.

[35] Nvidia. Nvidia dgx a100. https://nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
nvidia-dgx-a100-datasheet.pdf.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 793

https://snap.stanford.edu/data
https://snap.stanford.edu/data
https://nvidia.com/en-us/data-center/dgx-superpod/
https://nvidia.com/en-us/data-center/dgx-superpod/
https://developer.nvidia.com/nccl
https://nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf

[36] Nvidia. Nvshmem communication library. https://
developer.nvidia.com/nvshmem.

[37] Nvidia. Tesla v100. https://nvidia.com/en-us/
data-center/v100/.

[38] NVIDIA. Unified memory for cuda begin-
ners. https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/.

[39] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
walk: Online learning of social representations. In The
20th ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD), 2014.

[40] Shane Ryoo, Christopher I Rodrigues, Sara S Bagh-
sorkhi, Sam S Stone, David B Kirk, and Wen-mei W
Hwu. Optimization principles and application perfor-
mance evaluation of a multithreaded gpu using cuda. In
The 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming (PPoPP), 2008.

[41] Tim Schroeder. Peer-to-peer & unified virtual address-
ing. https://developer.download.nvidia.com/
CUDA/training/cuda_webinars_GPUDirect_uva.
pdf.

[42] Tomasz Tylenda, Ralitsa Angelova, and Srikanta Be-
dathur. Towards time-aware link prediction in evolving
social networks. In Proceedings of the 3rd workshop on
social network mining and analysis, 2009.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations (ICLR), 2018.

[44] Chunyang Wang, Desen Sun, and Yuebin Bai. Pipad:
Pipelined and parallel dynamic gnn training on gpus.
28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2023.

[45] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma,
Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin,
Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng
Zhang. Deep graph library: Towards efficient and scal-
able deep learning on graphs. ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds, 2019.

[46] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li,
Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An
efficient runtime system for gnn acceleration on gpus.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2021.

[47] Zheng Wang, Yuke Wang, Boyuan Feng, Dheevatsa
Mudigere, Bharath Muthiah, and Yufei Ding. El-rec:

efficient large-scale recommendation model training via
tensor-train embedding table. In 2022 SC22: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2022.

[48] wikipedia. Nvidia gpu micro-architecture. https://
en.wikipedia.org/wiki/CUDA.

[49] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations
(ICLR), 2019.

[50] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing
Feng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, and
Yuan Xie. Hygcn: A gcn accelerator with hybrid archi-
tecture. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

[51] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang,
Qiang Yin, Rong Chen, Wenyuan Yu, and Jingren Zhou.
Gnnlab: a factored system for sample-based gnn training
over gpus. In Proceedings of the Seventeenth European
Conference on Computer Systems (EuroSys), 2022.

[52] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
William L. Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pool-
ing. In The 32nd International Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[53] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai
Qian, Xue Li, and Weimin Zheng. Exploring the hidden
dimension in graph processing. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[54] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep
learning based recommender system: A survey and new
perspectives. ACM Computing Surveys (CSUR), 2019.

[55] Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. Every document owns its struc-
ture: Inductive text classification via graph neural net-
works. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL), 2020.

[56] Shixiong Zhao, Fanxin Li, Xusheng Chen, Xiuxian
Guan, Jianyu Jiang, Dong Huang, Yuhao Qing, Sen
Wang, Peng Wang, Gong Zhang, et al. vpipe: A vir-
tualized acceleration system for achieving efficient and
scalable pipeline parallel dnn training. IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 2021.

[57] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xi-
aosong Ma. Gemini: A computation-centric distributed
graph processing system. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

794 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
https://nvidia.com/en-us/data-center/v100/
https://nvidia.com/en-us/data-center/v100/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA

A Artifact Appendix

MGG is a holistic runtime for exploiting intra-GPU-kernel
communication-computation pipelining to accelerate multi-
GPU GNNs. MGG consists of two parts. The first part is the
host-side CPU program. It is responsible for dataset loading,
runtime configuration generation, and invoking the GPU-side
program. The second part is the device-side GPU program,
called kernels. It is responsible for the major computation
and communication of the GNN model on sparse neighbor-
aggregation across GPUs and dense node-update phase within
each GPU. MGG introduces GNN-tailored pipeline construc-
tion and GPU-aware pipeline mapping to facilitate workload
balancing and operation overlapping.

• Code repository: Github2 and Zenodo3.

• Hardware, OS & Compiler:

– NVIDIA DGX-A100 with dual AMD Rome 7742
processors (each with 64 cores, 2.25 GHz), 1TB
host memory, and 8×A100 GPUs (40 GB) con-
nected via NVSwitch (600 GB/s).

– Operating systems: Ubuntu 20.04+.
– Compilers: NVCC (v11.2), GCC (v7.5.0),
– Libraries: CUDA (v11.2), OpenMPI (v4.1.1),

NVSHMEM (v2.0.3), cuDNN (v8.2).
– Datasets: SNAP [23] and OGB [17].

Environment Setup
Step-1: Download libraries and datasets.

– 1.1. Download libraries.
wget storage.googleapis.com/mgg_data/local.tar.gz
tar -zxvf local.tar.gz
tar -zxvf local/nvshmem_src_2.0.3-0/build_cu112.tar.gz

– 1.2. Download datasets and Setup Baselines.
wget storage.googleapis.com/mgg_data/dataset.tar.gz
tar -zxvf dataset.tar.gz
cd dgl_pydirect_internal/
wget storage.googleapis.com/mgg_data/graphdata.tar.gz
&& tar -zxvf graphdata.tar.gz
&& rm graphdata.tar.gz
cd ..
gsutil cp -r gs://mgg_data/roc-new/ .

– 1.3. Launch Docker for MGG.
cd docker
./launch.sh

– 1.4. Compile MGG implementations.
mkdir build && cd build && cmake .. && cd ..
./0_mgg_build.sh

2https://github.com/YukeWang96/MGG-OSDI23-AE.git
3https://doi.org/10.5281/zenodo.7853945

Step-2. Run Initial Tests.

Please try below Section-3.4 and Section-3.5.

Step-3: Experiments.
– 3.1. Compare with UVM (Fig.8a and Fig.8b).

./0_run_MGG_UVM_4GPU_GCN.sh

./0_run_MGG_UVM_4GPU_GIN.sh

./0_run_MGG_UVM_8GPU_GCN.sh

./0_run_MGG_UVM_8GPU_GIN.sh

Results can be found at Fig_8_UVM_MGG_4GPU_GCN.csv,
Fig_8_UVM_MGG_4GPU_GIN.csv,
Fig_8_UVM_MGG_8GPU_GCN.csv,
Fig_8_UVM_MGG_8GPU_GIN.csv

– 3.2. Compare with DGL (Fig.7a and Fig.7b).

cd dgl_pydirect_internal/
./launch_docker.sh
cd gcn/
./0_run_gcn.sh
cd ../gin/
./0_run_gin.sh

Results of DGL can be found at 1_dgl_gin.csv and
1_dgl_gcn.csv. MGG reference is in MGG_GCN_8GPU.csv
and MGG_8GPU_GIN.csv.
– 3.3. Compare with ROC on 8xA100 (Fig.9).

cd roc-new/docker
./launch.sh

Results can be found at Fig_9_ROC_MGG_8GPU_GCN.csv,
Fig_9_ROC_MGG_8GPU_GIN.csv.
– 3.4. Compare NP with w/o NP (Fig.10a).

python 2_MGG_NP.py

Note that the results can be found at MGG_NP_study.csv.
– 3.5. Compare WL with w/o WL (Fig.10b).

python 3_MGG_WL.py

Note that the results can be found at MGG_WL_study.csv.
– 3.6. Compare API (Fig.10c).

python 4_MGG_API.py

Note that the results can be found at MGG_API_study.csv.
– 3.7. Design Space Search (Fig.11a).

python 5_MGG_DSE_4GPU.py
python 5_MGG_DSE_8GPU.py

Results can be found at Reddit_4xA100_dist_ps.csv,
Reddit_4xA100_dist_wpb.csv,
Reddit_8xA100_dist_ps.csv,
Reddit_8xA100_dist_wpb.csv.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 795

https://github.com/YukeWang96/MGG-OSDI23-AE.git
https://doi.org/10.5281/zenodo.7853945

Optimizing Dynamic Neural Networks with Brainstorm

Weihao Cui1∗, Zhenhua Han2, Lingji Ouyang3∗, Yichuan Wang1, Ningxin Zheng2, Lingxiao Ma2

Yuqing Yang2, Fan Yang2, Jilong Xue2, Lili Qiu2, Lidong Zhou2, Quan Chen1, Haisheng Tan3, Minyi Guo1

1Shanghai Jiao Tong University, 2Microsoft Research Asia,
3University of Science and Technology of China

Abstract
Dynamic neural networks (NNs), which can adapt sparsely
activated sub-networks to inputs during inference, have shown
significant advantages over static ones in terms of accuracy,
computational efficiency, and adaptiveness. However, exist-
ing deep learning frameworks and compilers mainly focus on
optimizing static NNs with deterministic execution, missing
optimization opportunities brought by non-uniform distribu-
tion of activation in dynamic NNs. The key to optimizing
dynamic NNs is the traceability of how data are dynamically
dispatched to different paths at inference. Such dynamism
often happens at sub-tensor level (e.g., conditional dispatch-
ing tokens of a tensor), thus hard for existing tensor-centric
frameworks to trace due to misaligned expression granularity.

In this paper, we present Brainstorm, a deep learning frame-
work for optimizing dynamic NNs, which bridges the gap by
unifying how dynamism should be expressed. Brainstorm
proposes (1) Cell, the key data abstraction that lets model de-
velopers express the data granularity where dynamism exists,
and (2) Router, a unified interface to let model developers
express how Cells should be dynamically dispatched. Brain-
storm handles efficient execution of routing actions. This
design allows Brainstorm to collect profiles of fine-grained
dataflow at the correct granularity. The traceability further
opens up a new space of dynamic optimization for dynamic
NNs to specialize their execution to the runtime dynamism
distribution. Extensive evaluations show Brainstorm brings
up to 11.7× speedup (3.29× on average) or leads to 42% less
memory consumption for popular dynamic neural networks
with the proposed dynamic optimizations.

1 Introduction

As deep neural network models become large and complex, it
is more and more challenging to sustain the growth of model
size due to the increased computing requirement. The key

∗This work is done while Weihao Cui and Lingji Ouyang are interns in
Microsoft Research

limitation is the static activation of a whole network regard-
less of inputs, which is much less efficient than a human brain
that can dynamically and sparsely activate neurons related to
perceived information. Therefore, there have been numerous
efforts by machine learning researchers to design dynamic
neural networks that can feed inputs into different sub-neural
structures or parameters of a large model during inference.
Dynamic neural networks have shown favorable properties
including efficiency [1–8], adaptiveness [1, 9, 10], general-
ity [1, 9, 11, 12], and interpretability [9, 13]. For example, by
designing a large number of expert sub-networks but only
conditionally activating a small subset of them, Mixture-of-
Expert (MoE) has helped to scale Transformer to trillions of
parameters and achieve superior performance [14, 15].

Unfortunately, existing deep learning (DL) frameworks are
not yet effective for running dynamic neural networks. Their
optimization mainly focuses on static neural networks, whose
operator execution order is deterministic for all inputs. It has
been widely studied in compilers for general programs (e.g.,
Java, C#) to leverage runtime characteristics of programs to
dynamically optimize their execution [16, 17]. By analyzing
runtime profiles of dynamism, we find many dynamic NNs
have similar opportunities due to their non-uniform distribu-
tion of branch activation or token dispatching, which can be
further utilized for dynamic optimization.

However, existing tensor-centric programming models can-
not support dynamic optimization well. The major challenge
is the misaligned expression granularity, i.e., tensor-centric
compilers can only trace how data flows at the tensor level
in a static dataflow graph (DFG), but dynamism often hap-
pens at the sub-tensor level in dynamic NNs. For example,
Mixture-of-Experts (MoE) networks use hidden dimensions
within input tensors to represent the concept of “tokens”,
which are dynamically reordered to activate parallel expert
sub-networks with different tokens. It is critical for dynamic
optimizations to collect profiles of dynamism, which is hard
for existing compilers because they have no knowledge about
what “tokens” are and how they are dynamically dispatched.

In this paper, we present Brainstorm, the first framework to

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 797

Token 1

Token 2

Token 3

We

Love

OSDI

Expert 1

Expert 2

Expert 3

Input Tensor

R
o

u
ter

Image Tensor

R
o

u
te

r

Simple

Medium

Hard

……

……

……

Super-Resolution Modules

(1) Mixture-of-Expert (2) Adaptive Image Super-resolution

Frame t-1 Frame t

Output of
Previous Frames

……

R
o

u
ter

Complex Sub-network
For New Region

(3) Reusing Temporal Result in Video Tasks

New Region

Figure 1: Examples of dynamic neural networks routing at
token-level, patch-level, and pixel-level.

optimize the execution of dynamic NNs. Brainstorm unifies
the expression of dynamic NNs to make their dynamism easy
to trace. At the core of Brainstorm is a new data abstraction
called Cell that lets model developers describe the granularity
of dynamism, e.g., a token inside a tensor. To make Cell-level
dataflow traceable, Brainstorm unifies the Router interface
to let model developers express how Cells should be dynam-
ically dispatched among multiple branches. Brainstorm can
collect the runtime profiles of Routers with negligible over-
head. Inspired by profile-guided optimization of programming
languages [16–20], Brainstorm proposes four dynamic opti-
mizations with statistical analysis of Cell-level dataflow: (1)
by analyzing the number of Cells routed to branches, horizon-
tally fuses multiple branches with GPU kernels optimized for
frequent Cell loads; (2) with cross-layer Cell-level analysis,
optimizes distributed placement of parallel branches to mini-
mize inter-GPU communication; (3) with branch activation
profiles, speculatively launches branch operators to hide rout-
ing overhead; and (4) speculatively preloads branch weights
to save GPU memory.

We implement Brainstorm based on PyTorch by extending
it with Cell and Router. We have implemented 6 state-of-the-
art dynamic NNs using Brainstorm’s APIs, which are exten-
sively evaluated on Nvidia GPUs. With the proposed dynamic
optimizations, our evaluation shows Brainstorm achieves up
to 11.7× speedup (3.29× on average) or reduces memory con-
sumption by 42%, compared with state-of-the-art solutions.
We open-source Brainstorm to encourage more optimizations
for dynamic NNs1. The key contributions are as follows.

• We identify a new space of optimization for dynamic NNs
by leveraging the statistical profiles of dynamism to spe-
cialize model execution to runtime dynamism distribution.

• We identify the major challenge of optimizing dynamic NNs
in existing DL frameworks is the misaligned granularity
between the tensor-level programming and the fine-grained
dataflow required to trace.

1Code available at https://github.com/Raphael-Hao/brainstorm

• We unify the programming of dynamic NNs with Cell and
Router abstraction, making dynamism easy to trace.

• We propose multiple dynamic optimization strategies, lever-
aging the Cell-level dataflow analysis, which are shown
effective for popular dynamic NNs.

We explain background and motivation in §2. We introduce
Brainstorm’s key abstraction in §3. Four dynamic optimiza-
tions are proposed in §4. We present Brainstorm’s Cell-level
dataflow analysis in §5. We explain the implementation in §6.
We show the evaluation results in §7. We discuss handling
distribution drift and other opportunities in §8. We compare
with related works in §9. We conclude this paper in §10.

2 Background and Motivation

Dynamic Neural Networks. To mimic how the human
brain works, the machine learning community actively works
on how dynamic NNs should be designed. Various types of
dynamism have been proposed to adapt the model structures
and parameters to different inputs. Figure 1 illustrates repre-
sentative patterns of dynamic NNs. The most common way
of building a dynamic NN is to adaptively dispatch (parts
of) inputs to different sub-networks with a routing mecha-
nism. A common functionality, referred to as a router in this
work, predicts which sub-network the input values should go
through. Many routing policies have been proposed for dif-
ferent tasks, e.g., top-k router [3]. Sub-networks in different
branches could have different weights, architectures, or the
number of parameters to better fit the routed inputs. For exam-
ple, MoE networks train parallel experts and dispatch input
tokens into different expert sub-networks, each of which is ex-
pected to specialize in certain input categories [14, 15, 21, 22].
ClassSR [10] routes image patches to heterogeneous branches
based on super-resolution difficulty. Skip-Conv [23] routes
new pixels to computation and skips duplicated pixels of pre-
vious frames. Model developers often use a tensor to store
multiple tokens/patches/pixels, and program sub-tensor dy-
namism using data movement operators like einsum [24].

Dynamic optimization opportunities. It has been widely
studied in programming languages [25, 26] to leverage sta-
tistical profiles of program dynamism for just-in-time (JIT)
optimization, e.g., HotSpot JVM speculatively trims paths
never executed in collected runs [16]. However, optimizations
in existing DL frameworks mainly focus on static NNs. They
miss a lot of dynamic optimization opportunities brought by
neural network dynamism.

Figure 2 illustrates routing distribution of four dynamic
NNs. Figure 2a and Figure 2b are two dynamic NNs dispatch-
ing tokens and patches to different branches, respectively. We
observe their distribution of tokens/patches is imbalanced:
some branches receive non-negligibly more data than oth-
ers. They have opportunities to tune efficient GPU kernels to

798 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/Raphael-Hao/brainstorm

0 20 40 60
Expert ID

0

50

100

150

200
N

um
be

ro
fT

ok
en

s

(a) SwitchTransformer [14]

1 2 3 4 5 6 7 8
Branch ID

0

5

10

15

20

N
um

be
ro

fP
at

ch
es

(b) LiveSR

1 4 8 12 16
Experts of Layer-0

1
4

8
12

16
E

xp
er

ts
of

La
ye

r-
1

0

2k

4k

6k

(c) TaskMoE [27]

Router 0
Router 1

Router 2
Router 3

0

100

200

300

400

500

N
um

be
ro

fI
m

ag
es Branch-0

Branch-1
Branch-2

(d) DynamicRouting [28]

Figure 2: Distribution of routing in four dynamic NNs.

fit their shapes to load distribution, which could potentially
bring over 10× speedup. Also, these parallel branches can be
horizontally fused for concurrent execution (§4.1).

We also identify optimization opportunities by analyzing
statistics of multi-layer correlation. Figure 2c illustrates the
multi-layer correlation of TaskMoE [27], which is the portion
of tokens from an expert at Layer-0 routed to another expert
at Layer-1. We find the branch activation of two consecutive
layers is correlated, e.g., it has a high probability that Expert-
14/15 of Layer-1 will be activated after Expert-0 of Layer-0.
Up to 87% of inter-GPU communication can be saved by
co-locating correlated experts on the same GPU (§4.2).

Figure 2d shows branch activation of selected routers from
DynamicRouting [28], which has 186 routers trained to for-
ward images to one or two branches among three branches.
Our measurement shows it spent over 44% time on routing.
However, many routers have a biased distribution that tends to
activate the same branch at different runs. E.g., Router-3 has
a high probability of choosing Branch-1 and Branch-2. They
create an opportunity for speculative execution, e.g., skipping
routing computation to reduce routing overhead (§4.3), or
opportunistically preload weight to GPU memory (§4.4).

Moreover, we find many dynamic NNs can be optimized
by multiple dynamic optimizations simultaneously. The key
requirement of these optimizations is the ability to collect
statistical profiles at the granularity where dynamism happens,
which is not explored by existing DL frameworks.

Misaligned programming model. The misaligned pro-
gramming model is the major obstacle to tracing dynamism
profiles in existing frameworks. As shown in Figure 1, lan-
guage tasks typically route at the granularity of tokens from
input sentences; vision tasks route patches from input images;
video models partially reuse previous pixels depending on
inter-frame similarity. All the dynamism happens inside the
tensor of sentences, images, or frames. Existing frameworks

optimize models with a static dataflow graph, which expresses
only the relation of tensors and operators. They have no abil-
ity to collect necessary profiles at runtime. Without explicit
specification by model developers, they cannot understand
what tokens are and how they are dynamically dispatched,
let alone trace the complex token-level dataflow as Figure 2c
requires. Moreover, tensor-level programming can only be
applied with operator-level optimization (e.g., operator fu-
sion) without the ability to optimize more fine-grained data
movement or computation. These challenges motivate Brain-
storm to propose a principled design to let model developers
expose the information that needs to be traced and leverage
the collected profiles for dynamic optimizations.

3 Cell and Router as the Core Abstraction

For model developers to express dynamic NNs in a traceable
manner, Brainstorm unifies the model expression with Cell
and Router to build dynamism at the correct granularity.

Cell. To let model developers define the data granularity
where dynamism happens, Brainstorm augments a traditional
tensor with a data abstraction called Cell. The Cell is the
basic unit to be dynamically dispatched among multiple
branches. Model developers can annotate any tensor using the
brt.annotate_cell API to specify the granularity of Cells
in a tensor (brt is the package name of Brainstorm).

brt.annotate_cell(tensor, dims, shape)

Model developers need to specify the values in which dimen-
sions (dims) and which shape (granularity) to route. Figure 3
shows three examples that route values in Cells at the gran-
ularity of token, patch, and pixel, respectively. The first ex-
ample routes a tensor with three tokens located at the 0-th
dimension (dims=(0)), each represented by a vector of 768
float values (shape=(1,768)). The second and third exam-
ples route 32x32 patches (shape=(32,32)) and 1x1 pixels
(shape=(1,1)) in a 2D image tensor (dims=(0,1)).

Router. To dynamically dispatch Cells, Brainstorm intro-
duces a unified Router API that supports customized rules
via router_fn to decide the dynamic placement of Cells
among multiple branches. The API definition of Router and
router_fn are elaborated as follows2.

class Router:
def __init__(router_fn : Func)
def forward(x : Tensor, kwargs) : Tuple[Tensor], Routes

def router_fn(x : Tensor, kwargs) : Routes

When initializing a Router, the router_fn should be speci-
fied to define the routing rule, i.e., how Cells should be routed
among multiple branches. The router_fn takes the tensor

2We only show routing Cells of a single tensor. Multi-tensor routing has
similar APIs, which are omitted due to the limited space.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 799

RouterRouter

Token 0
Token 1
Token 2

router_fn
0 0 0 1 0 0
0 0 2 2 1 0
0 0 2 2 1 0
0 1 1 1 1 0

… … …

Frame t-1

-1 0

annotate_cell
dims=(0)
shape=(1, 768)

Token 0
Token 2

Token 1

Input Tensor

dims=(0, 1)
shape=(32, 32)

Input Tensor

dims=(0, 1)
shape=(1, 1)

Input Tensor

(1) Token in Sentence (2) Patch in Image (3) Pixel in Frame

JIT P
ro

filer

Runtime Profiles

Router

router_fn router_fn

0
1
0

R
o

u
te

s

annotate_cell annotate_cell

Figure 3: Examples of routing Cells at token-level, patch-
level, and pixel-level. router_fn generates routing decisions
indicating branch IDs should Cells be routed to (-1 for drop-
ping), collected by the JIT profiler for dynamic optimization.

annotated with Cells as inputs and generates a special ten-
sor Routes, whose value indicates which branch should Cell
go. The shape of Routes has the same layout as Cells of the
source tensor to route. E.g., the second example in Figure 3
has 6×4 patches, thus router_fn should also generate 6×4
Routes. Auxiliary inputs can be set in kwargs when making
routing decisions. In the forward process of a model, Router
feeds the input tensor to router_fn to get routing decisions
for Cells, then dispatch Cells to corresponding branches. It is
easy to port existing code of dynamic NNs to Brainstorm, e.g.,
we modify only 12 lines of code to port the official PyTorch
implementation of SwitchTransformer [14] to Brainstorm.

Brainstorm’s Router abstraction decouples control-flow of
deciding how Cell should be dynamically dispatched from its
execution. Depending on runtime profiles, the optimal execu-
tion strategy varies greatly. Brainstorm eases model develop-
ers from challenging execution optimizations. They only need
to focus on designing routing logic and leave execution op-
timizations to Brainstorm. The Routes given by router_fn
are collected by JIT Profiler to get statistical profiles. Brain-
storm’s dynamic optimizations analyze these statistics to find
the most efficient execution strategy (§4).

Behind Router are a series of efficient GPU operations to
realize the routing actions specified by router_fn. When
branches receiving Cells are located on the same GPU, Brain-
storm uses an efficient data rearrangement GPU kernel to gen-
erate multiple tensors containing Cells routed to each branch.
Unlike existing solutions that heavily use computation opera-
tors (e.g., einsum) for fine-grained dynamic data rearrange-
ment, Brainstorm uses a GPU kernel to directly move data to
avoid unnecessary computation. When Cells are distributed
to multiple GPUs, Brainstorm has a sparse communication
primitive to efficiently scatter and gather Cells. Compared
with the commonly used all-to-all primitive in existing DL

Single layer
Cell Loads

Multi-layer
Cell Correlation

Branch
Activation

Dynamic
Horizontal Fusion "

Profile-Guided Placement " "

Speculative Routing "

Speculative Preloading "

Table 1: The statistical information used by different dynamic
optimization strategies in Brainstorm.

frameworks [22, 29], Brainstorm’s sparse communication is
more efficient when Cells are routed unevenly to multiple
GPUs because it avoids unnecessary communication due to
padding (refer to §6 for implementation details).

Comparison to IR with control-flow. Different from inter-
mediate representations (IR) of existing DL frameworks that
mix control-flow and dataflow together, Brainstorm chooses
a decoupled design with Router. Brainstorm’s dataflow graph
hides complex control-flow of Router behind router_fn. A
Router can be regarded as a data distribution operator dynam-
ically dispatching Cells of tensors to multiple branches. This
greatly eases the tracing and analysis of Cell-level dataflow be-
cause compilers no longer need to separate dynamism-related
operators from dataflow graphs, which is hard for DL frame-
works [30–32]. Actually, instead of knowing how routing
logic is constructed, it is more useful for compilers to know
statistical information about routing decisions, which is suffi-
cient to be captured by Brainstorm’s Router.

Moreover, Brainstorm further enhances control-flow opera-
tors in existing IR with Cell-level routing ability. Brainstorm’s
Router itself can be regarded as a switch-case operator to route
Cells to different branches for conditionally applying different
functions. Together with a while-loop operator, a dynamic NN
can route some Cells back to loop entry for the next iterations,
and drop others to the output, which is commonly used by
auto-regressive decoding of language tasks.

4 Dynamic Optimizations

Brainstorm analyzes the collected program execution profiles
to improve runtime performance. Different from traditional
dynamic optimization that analyzes the invocation of program
functions or code blocks, the key for optimizing dynamic
NNs is to profile and analyze Cell-level dataflow to specialize
model execution to runtime dynamism distribution. In this
section, we introduce four dynamic optimizations we identi-
fied for dynamic NNs. More optimizations are possible with
Brainstorm’s Cell and Router abstraction.Table 1 lists the
required information to conduct each dynamic optimization.

4.1 Dynamic Horizontal Fusion
Horizontal fusion is a compiler optimization to fuse concur-
rent branches of a model into a fused operator to improve

800 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Conv 3x3

Router

Conv 3x3 BatchMatMul

60 Cells 30 x

Input Tensor: 105 Cells

BatchMatMul

15

Router

60+4 Cells 30+2

Input Tensor: 105 Cells

15+1

Horizontally Fused Kernel

Conv 3x3
Conv 3x3 BatchMatMul Conv 3x3 (64)

Conv 3x3 (32)
BatchMatMul (16)

TimeC
U

 U
ti

l.

C
U

U
ti

l.

Time

(1) sequential execution (2) horizontally fused

Figure 4: Operators of multiple branches are horizontally
fused into one kernel. Only activated operators are executed.
Each branch uses the nearest tuned kernel for least padding.

GPU Compute Unit (CU) utilization and reduce launching
overhead. Existing approaches [33, 34] cannot be applied to
dynamic NNs, because they assume a static dataflow graph
whose branches are all activated with the same input. Brain-
storm introduces a dynamic horizontal fusion optimization
that supports dynamically and sparsely activated branches so
that they can be executed on GPU simultaneously.

Especially, as we have shown in Figure 2, the Cell distri-
bution can be very imbalanced for dynamic NNs. Even for
large batch size, it can still accelerate the model execution
by dynamical horizontal fusion of branches receiving a few
numbers of Cells. Brainstorm leverages the profiles collected
from Router to extract the statistical loads of each branch,
i.e., how many Cells are routed to each branch. Brainstorm
finds multiple percentiles (e.g., 50%, 90%, 100%) of the Cell
load distribution, and tunes GPU kernels for these shapes.
All tuned kernels are fused into one operator. At inference,
Brainstorm pads the input of each branch to the nearest tuned
kernel. This requires the traceability of the dynamic Cell-level
dataflow at runtime that we explain how Brainstorm achieves
it in §5.2. Note that the dynamically fused GPU kernel only
uses the weights of activated branches without needing to
load the weights of all branches into the GPU memory.

Figure 4 shows an example of routing 112 Cells among four
parallel branches. Only three of the branches (only known
at runtime) are activated. Before horizontal fusion, the three
activated branches have to be executed sequentially, which
may not saturate the GPU CU utilization. After fusing all
branches into one GPU kernel, GPU can execute the activated
branches simultaneously at a higher CU utilization. Each
branch is executed with the tuned kernel of the least padding
for the most efficient execution. For example, the fused kernel
contains two tuned kernels of Conv 3x3 for 32 Cells and 64
Cells, which is used by the first two Conv 3x3 branches in the
network by padding 4 and 2 Cells, respectively.

4.2 Profile-Guided Model Placement
The cerebral cortex of human brain is organized into distinct
areas, whose neurons of a function are located closely [35].
By analyzing statistical routing decisions, we observe similar
effects in artificially designed dynamic NNs. As shown in Fig-

Branch 1

Branch 2 Branch 2

Branch 1

Branch 2

Branch 2

Branch 1

GPU 0

GPU 1

GPU 0

GPU 1

Default Placement Optimal Placement

Branch 1 90%

90%

Figure 5: Profile-guided model placement. The example
shows the default placement has 90% inter-GPU traffic, which
is reduced to 10% by the optimized placement.

Router

Branch ?

CPU

GPU

Branch 0

CPU

GPU

Router

Predict = 0
Actual = 0

Branch 1

Router

√ 0 1 2P
(a

ct
iv

at
e)

unroll & relaunch

Branch 2

Predict = 1
Actual = 2

Router

Branch ?

X

Default
Execution

Speculative
Routing

0 1 2P
(a

ct
iv

at
e)

Branch ID Branch ID

Figure 6: Speculative routing: skip routing computation and
speculatively launch the branch w/ highest probability; unroll
and relaunch to correct branches when mispredicted.

ure 2c, experts from two layers are activated together with a
high probability. The Cell-level communication between these
highly-correlated experts is higher than the others. Figure 5
illustrates an example that, by analyzing the multi-layer corre-
lation, Brainstorm can co-locate correlated sub-networks on
the same GPU to reduce inter-GPU communication. Note that,
in addition to dynamic Cell-level dataflow collected at run-
time, the multi-layer correlation also needs to analyze static
Cell-level dataflow to infer correct placement constraints. Our
analysis in §5.1 shows each Cell of a sentence tensor depends
on all Cells from the previous MoE layer. This implies a
placement constraint that all Cells of a sentence should be
gathered at the same GPU so that its self-attention operator
can generate correct outputs. This presents a challenge requir-
ing both dynamic and static Cell-level dataflow analysis to
understand the inter-layer correlation of Cells. We explain
Brainstorm’s static Cell-level dataflow analysis in §5.1.

In addition to cross-layer analysis, we find single-layer Cell
distribution like Figure 2a can also help model placement.
Some branches could take more Cells than others. Heavy
branches can be co-located with light branches to balance the
overall communication to avoid stalling on some GPUs.

4.3 Speculative Routing

Model developers often build routing logic involving control
flows, which may require CPU processing and incur CPU-
GPU synchronization overhead. Compared to their theoret-
ical performance (based on FLOPs), routing overhead may
dominate the inference latency. Our measurement shows MS-
DNet [1] and DynamicRouting [28] spend 65% and 44%
time in routing. We find these model often has a biased
probability when selecting branches at inference. Our analy-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 801

CPU
On-demand
Loading

GPU

G
P

U
M

e
m

.

Speculative
Loading

Predict = 0,2
Actual = 0,2

√

P
(a

ct
iv

at
e)

0 1 2

Branch ID

Router

Branch 0
Pre-routing Weight Loading

Weight Loading

Branch 2

Router
CPU

GPU

Weight Loading

Branch 0
Branch 2

G
P

U
M

e
m

.

Pre-routing Weight Loading

Figure 7: Speculatively preload weights with the highest prob-
ability; fallback to on-demand loading when mispredicted.

sis of Brainstorm’s Router profiles shows many Routers are
highly predictable. Brainstorm can predict the decisions of
DynamicRouting [28] with an accuracy over 90% by just
choosing the most frequently appeared branches (§7.4.6). As
Figure 6 shows, Brainstorm can predict the routing decisions
of Routers in advance (based on statistical profiles) and skip
router_fn to hide the routing overhead. To guarantee the
correctness, Brainstorm uses a parallel thread to check the
result of router_fn. When misprediction happens, the model
execution will be unrolled to re-execute the correct branch
with negligible misprediction overhead (§7.3).

4.4 Speculative Weight Preloading
To run inference of a large model on a limited size of GPU
memory, it often requires swapping weights of layers between
GPU memory and host memory to reduce the GPU memory
requirement [36]. To hide the memory migration latency, ex-
isting solutions need to know the execution order of layers to
preload necessary weights while executing previous layers in
a pipelined manner [37, 38]. However, dynamic NNs do not
have a static order of layer execution. The execution of dy-
namically activated branches is only known when the routing
decisions are made. This makes it hard for existing solutions
to preload weights of dynamic layers. As shown in Figure 7,
similar to speculative routing, Brainstorm leverages the statis-
tical profiles of branch activation distribution to speculatively
preload weights of branches that can be activated with a high
probability. It falls back to on-demand loading with negligible
overhead (§7.3) when the predictive preloading misses.

5 Tracing Cell-level Dataflow

To realize optimizations in §4, it is important to understand
how Cells are transmitted along a network so that the com-
piler can leverage the Cell-level dataflow to optimize model
execution. In dynamic NNs, there are two types of Cell-level
dataflow: (1) static dataflow existing in most static operators
(e.g., Conv2D), which is fixed for all inputs; and (2) dynamic
dataflow, which is determined by Routers at runtime. The
former is to understand Cell’s relationship across static layers;
the latter is to identify the Cell routing among branches.

x =
B0 B1

A0 A1

1 1

1 1
x =

A0+B0 A1+B1

A0 A1

B0 B1

x =(1)

(2)

(3)

A1 A0

B1 B0

A0 A1

B0 B1

0 1

1 0

0 1
1 0

A0+B0 A1+B1A0 A1

B0 B1

(a) Matrix multiplication

Self-Attention

X0 X1 X2

Y0 Y1 Y2

MoE Layer 1

MoE Layer 2

annotate_cell

X0 ● X1 ● X2

(b) Self-attention

Figure 8: Different types of static dataflow at Cell-level.

5.1 Static Cell-level Dataflow

Tensor-centric dataflow graphs only preserve relations be-
tween tensors without the information of Cells. To trace all
possible Cell-level dataflow of static operators, Brainstorm
uses symbolic execution at Cell-level to extract finer-grained
relations in ahead-of-time compiling. With the annotated
Cells of a tensor, Brainstorm initializes a symbolic version of
the tensor, whose Cells are symbols. Tensor values belonging
to one Cell share the same symbol. Brainstorm leverages the
tensor expression of operators (widely used in DL compil-
ers [39]) to build computation logic of operators. By checking
the results of symbolic computation, Brainstorm understands
how Cells are transmitted in static operators.

Figure 8a illustrates three examples of matrix multiplica-
tion between a tensor of multiple Cells and a constant matrix.
The tensor has two Cells annotated as A and B. The first pre-
serves Cell positions; the second reorders Cells; the third
mixes all Cells in the output. This example shows the static
Cell-level dataflow could vary when the tensor values are dif-
ferent. It is hard for tensor-level dataflow analysis to obtain
this finer-grained relation. Figure 8b demonstrates the static
Cell-level dataflow of the self-attention operator between two
MoE layers. Because there is a matrix multiplication between
two tensors in the self-attention operator and both tensors
contain Cells of Xi, this self-attention operator mixes all Cells
from input X to generate the output Y . With symbolic execu-
tion of Cells, we can derive the relations between the Cells in
X and Y, i.e., every Cell in Y is derived from all Cells in X.

The static Cell-level dataflow analysis is necessary to de-
rive cross-layer relations of Cells, which is important in data
movement-related optimization. It allows Brainstorm to ex-
plore data movement at the Cell-level, breaking the limitation
of tensor-level data movement when optimizing multi-GPU
execution. For example, if Cells are only reordered without
mixing (e.g., the first two types in Figure 8a), the frame-
work has more freedom to dispatch Cells among multiple
GPUs based on their data locality for better performance. For
MoE-based models, because the tokens are mixed up in the
self-attention layer, it introduces a constraint that requires
aggregating all tokens of a sentence to the same GPU before
self-attention to derive the output. As we have shown in §4.2,
this requirement creates constraints of how Cells should be

802 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Dynamic NN Model
Cell Tensor

Router Operator

Static Cell-level
Dataflow Analysis

Dynamic Cell-level
Dataflow Analysis

Model Compiler
Static Optimization

Dynamic Optimization

Executor
JIT Profiler

Figure 9: The system architecture of Brainstorm. Shaded
components are introduced by Brainstorm for dynamic NNs.

dynamically placed in optimization, which is only known
after the static Cell-level dataflow is analyzed.

5.2 Dynamic Cell-level Dataflow
In Brainstorm, model developers express dynamism using
Router. The routing logic is defined in router_fn, which
generates routing decisions of Cells at runtime. Brainstorm’s
Router abstraction makes it easy to trace the necessary in-
formation. Similar to dynamic optimization of traditional
programming languages, Brainstorm focuses on collecting
statistical profiles of routing decisions without caring about
how they are generated.

If Cell-level profiling is enabled, when each time a Router
is called, Brainstorm records its routing decision into a buffer.
Brainstorm has a separate thread to stream the buffer to a
profile file. Brainstorm supports multi-level profiling. Some
optimizations only require local statistical profile of Router
(e.g., branch load of Cells). Some optimizations require Cell-
level dataflow across multiple layers, thus needing to dump
raw decisions directly. As control signals, routing decisions
are much smaller than other data tensors in dynamic NNs. Our
evaluation in §7.3 shows the profiling overhead is negligible.

6 Implementation

We implement Brainstorm on Pytorch with 13,000 LOC:
3,000 lines for Brainstorm core abstraction, 3,000 lines for
dynamic optimizations, 3,000 lines of C++ code for kernel
scheduling and sparse Cell communication, and 1,500 lines
for auto-transformation to support dynamic optimizations.

Figure 9 summarizes Brainstorm’s architecture. In addition
to widely-used Tensor and Operator in existing frameworks,
Brainstorm introduces Cell and Router to express dynamic
NNs in a unified abstraction (§3). The programmed dynamic
NNs will be optimized by the compiler with both static and dy-
namic optimizations (§4). Brainstorm’s dynamic optimization
needs both static and dynamic Cell-level dataflow analysis
(§5). Brainstorm first infers the static Cell-level dataflow in
static operators (§5.1) in an ahead-of-time manner. When
executing the compiled model, a JIT profiler collects Router
profiles for further dynamic dataflow analysis (§5.2).

Efficient Cell routing. Brainstorm is responsible for dy-

0-0
0-1

0-2
0-3

1-0
1-1

1-2
1-3

0-0

0-1
1-0

1-1

0-2

0-3
1-2

1-3

0-0
0-1
1-0

1-1

0-2
0-3

1-2
1-3

1-0Cells on Node1 for Bracnh 0:

All-to-All Permute Sparse All-to-All

Dense distributed routing Brainstorm sparse distributed routing

Extra Padding:

Permute

0-0
0-1

0-2
0-3

1-0
1-1

1-2
1-3

0-0

0-1
1-0

1-1

0-2

0-3
1-2

1-3

Figure 10: Sparse All-to-All for distributed Cell routing. It
saves redundant communication of extra padding.

namic Cell dispatching that is aware of dynamic optimization
applied, leaving model developers to focus on designing the
routing algorithm. For Cell routing on a single GPU, we
use a custom GPU kernel to rearrange Cells inside a ten-
sor according to the routing decisions. We borrow the idea
from Tutel [22] for MoE models by rearranging Cells for
all branches in parallel with a custom GPU kernel. But our
implementation is general to all dynamic NNs in addition
to MoE models. Moreover, our implementation is aware of
the dynamic optimization applied. For instance, a dynamic
horizontal fused operator may contain GPU kernels of varied
sizes, thus requiring variable padding. For Cell routing across
multiple GPUs, we provide a more flexible sparse commu-
nication primitive. As shown in the left of Figure 10, model
developers often combine dense all-to-all primitive and per-
mutation operations for distributed Cell routing. Its efficiency
is restricted to balanced routing. With Brainstorm’s sparse
communication, it only transmits Cells without extra padding.
The underlying implementation of sparse communication is a
collection of point-to-point communication. However, it can
adapt to the dynamic optimization’s requirements and provide
the most efficient communication mechanism.

Excessive Candidates for Kernel Fusion. Brainstorm
fuses multiple branches into one kernel function, each com-
prising several potential candidates. At runtime, Brainstorm
triggers suitable candidates based on the dispatched Cells.
However, excessive kernel candidates derived from profiling
analysis can lead to considerable time overhead when search-
ing for them using auto-tuning tools [39]. To avoid issues in
this case, Brainstorm only fuses a limited set of candidates
of each branch. Meanwhile, kernel candidates are shared be-
tween branches if the fused branches are homogeneous (the
same operator only with different weights). For instance, since
SwitchTransformer uses the same feed-forward layer for its
experts, Brainstorm only needs six candidate kernels to opti-
mize the execution of 256 experts per layer (§7.4.1).

Optimization Passes. Most automatic transformations in
Brainstorm are implemented with torch.fx. With the
dataflow graph traced by torch.fx, Brainstorm uses the
statistical profiles collected from Routers to manipulate the
dataflow graph for optimization. E.g., in dynamic horizon-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 803

Model Dataset Fusion Place Route Load

Switch [14] MNLI [40] "

TaskMoE [27] Synthetic "

SwinV2-MoE [41] ImageNet22k [42] "

LiveSR Iowa-DOT [43] "

DRouting [28] Cityscapes [44] " "

MSDNet [1] Imagenet [42] " "

Table 2: Benchmark specifications. (Fusion: Dynamic Hori-
zontal Fusion; Place: Profile-Guided Placement; Route: Spec-
ulative Routing; Load: Speculative Weight Preloading.)

tal fusion, we replace operators of multiple branches in the
dataflow graph with the generated fused kernel of multiple
shapes and change Router to pad tensors to supported shapes
while routing Cells. For speculative routing, we reorder opera-
tors in the dataflow graph to skip and unroll routing logic. For
speculative weight loading, we collect parameters of branches,
and insert extra operators for loading and unloading them at
runtime. The profile-guided model placement is an excep-
tional case, as the loading of model weights falls outside the
scope of torch.fx. Before inference, Brainstorm loads cor-
responding weights given by the placement plan derived from
the statistical profiles. At runtime, Brainstorm’s Router will
translate routing decisions given by router_fn according to
the placement to route Cells to the appropriate devices.

Selecting Dynamic Optimizations. Given a dynamic
model, we use a rule-based policy to select dynamic opti-
mizations. Dynamic horizontal fusion is used for models with
parallel branches when a single branch cannot saturate GPU
cores. Profile-Guided model placement is used for multi-GPU
inference. Speculative routing and weight preloading are en-
abled when routers block GPU kernel submission. Speculative
weight preloading is used when GPU memory is limited, and
paging is used. Table 2 has listed the dynamic optimizations
applied to each model. For example, LiveSR is a lightweight
super-resolution model, and a single branch may not satu-
rate a GPU. Thus we apply dynamic horizontal fusion to it.
Also, MoE-based models are usually large language mod-
els requiring multi-GPU deployment. Therefore we apply the
placement optimization. The input for TaskMoE is sufficiently
large for high GPU utilization, thus no need for horizontal
fusion.

7 Evaluation

We evaluate the performance of Brainstorm (BRT) on six repre-
sentative dynamic NNs. We compare Brainstorm with various
approaches to execute and optimize dynamic NNs, including
PyTorch-native static optimizations and model-specific opti-
mizations (e.g., Tutel for MoE). Overall, Brainstorm achieves
up to 11.7× speedup (3.29× on average) or reduces GPU
memory usage by 42%.

Model Switch TaskMoE SwinV2-MoE

LOC 12 24 14

Model LiveSR DRouting MSDNet

LOC 6 18 14

Table 3: Lines of code for porting the model to Brainstorm.

7.1 Experimental Setup

Testbed. We evaluate Brainstorm with two separate setups
for single-GPU and multi-GPU experiments. The single-GPU
evaluations use a server with AMD-EPYC-7V13 CPUs and
one NVIDIA A100 (80GB) GPU running CUDA 11.3 and
cuDNN 8.6. The multi-GPU evaluations use a server with
Intel Xeon CPU E5-2690 v4 CPU and eight NVIDIA V100
(32GB) GPUs running CUDA 11.3 and cuDNN 8.2.

Benchmarks and datasets. Our evaluations are performed
to run inference of six representative dynamic NNs, covering
vision and natural language processing (NLP) tasks. Table 2
lists evaluated models, datasets, and dynamic optimizations
we apply in Brainstorm. SwitchTransformer (Switch) [14]
and TaskMoE [27] are two MoE models for NLP, whose Cells
are defined at token level and sentence level, respectively;
SwinV2-MoE [22, 41], LiveSR, DynamicRouting (DRout-
ing) [28], and MSDNet [1] are four models for vision tasks.
SwinV2-MoE and LiveSR define a Cell at image patch level.
DynamicRouting and MSDnet use an image as a Cell. Statis-
tical profiles used for Brainstorm’s dynamic optimizations are
collected from training datasets and evaluated in test datasets.

Baselines. We mainly compare Brainstorm with PyTorch
and Tutel in all experiments. As far as we know, PyTorch is a
state-of-the-art framework that can flexibly support dynamic
neural networks (thanks to the expressiveness of Python).
The official implementation of all models we evaluated are
based on PyTorch and thus are compared in all evaluations in
this paper. Tutel is designed specifically for MoE. Thus we
only compared Brainstorm with Tutel on MoE-based models.
To evaluate the benefit of the new proposed dynamic opti-
mizations, Brainstorm and all baselines use the same static
optimizations (e.g., vertical kernel fusion) in all experiments.

7.2 Effectiveness of Brainstorm Abstraction

Expressiveness of Brainstorm. Brainstorm’s abstraction
can express various dynamic neural networks in a simple and
concise manner. Table 3 shows the lines of code for porting
the six dynamic neural network models to Brainstorm. Brain-
storm unifies the API of expressing routing logic through
Router and Cell. This only adds a marginal extra coding effort
to porting existing models and building new dynamic models.
Brainstorm eases the programming by providing common

804 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ThorMoE
LiveSR

MSDNet
SwinMoE

TaskMoR
DRouting

0

50

100

150
Ti

m
e

(m
s) BRT

BRT+Profile

Figure 11: Latency of Brainstorm with or without profiling.

1 2 4 8 16

2

4

6

8

Ti
m

e
(m

s)

2GPUs

Torch
BRT

1 2 4 8 16
Number of Branches

15

30

45

60

4GPUs

Torch
BRT

1 2 4 8 16

40

80

120

160

8GPUs

Torch
BRT

(a) Variable Branches

32 64 128 256 512 10242048
Cell Size

1.0

1.5

2.0

2.5
S

pe
ed

up

2GPUs
4GPUs
8GPUs

(b) Variable Cell Sizes

Figure 12: Performance comparison of sparse all-to-all be-
tween PyTorch and Brainstorm.

router_fns (e.g., Top-K) and allows model developers to
construct more complex ones atop them.

Overhead of Tracing Dynamic Cell-level Dataflow. This
micro-benchmark presents the overhead of tracing dynamic
Cell-level dataflow. Figure 11 shows the latency variation
when tracing is on and off. The latencies of all models are
almost equal before and after tracing is enabled. The average
overhead is less than 1.0% for all models.

When routing actions are calculated at GPU, major over-
head comes from GPU kernels for statistics. The synchro-
nization overhead is negligible because Brainstorm dumps
profiles to the CPU periodically and asynchronously.

Effectiveness of Cell Routing. Brainstorm’s Router de-
couples routing logic from execution. Brainstorm has effi-
cient implementations to conduct dynamic data movement for
sparse communication. Figure 12 demonstrates two micro-
benchmarks for sparse communication, which is a multi-gpu
experiment. We randomly generate 1024 Cells routed from
one GPU to multiple GPUs. Figure 12a measures the la-
tency of PyTorch’s all-to-all collective (nccl [45] as backend)
and Brainstorm’s sparse communication with varied numbers
of branches and GPUs. Each Cell has 512 Float32 values
(same as TransformerBase [46]). Brainstorm achieves 1.88×
to 2.78× speedup from 2 to 8 GPUs. Figure 12b shows Brain-
storm’s speedup with a varied Cell size from 32 to 2048
Float32 values, with 4 branches on each GPU. Brainstorm
achieves 2.13× to 2.66× speedup on 2 to 8 GPUs. Overall,
Brainstorm performs better than PyTorch in all experiments.
The root cause is the extra communication for padding us-
ing PyTorch’s all-to-all communication, which is avoided by
Brainstorm’s sparse communication.

2 4 8 16 32 64 128 256
Number of Branches

10−2

10−1

100

101

Ti
m

e
(m

s)

Torch BRT+VF BRT+HF

Figure 13: Latencies of serial execution, vertical fusion, and
dynamic horizontal fusion with variable branches

7.3 Micro Benchmarks

Dynamic Horizontal Fusion. In the micro-benchmark of
Brainstorm’s dynamic horizontal fusion, we build a simple
multi-branch network, each of which contains a Conv2D op-
erator. A Router dispatches 32x32 image patches to different
branches based on image content. Brainstorm tunes kernels
from 4 patches to 9 patches based on the collected Router
profiles. It is conducted on the single-GPU server.

Figure 13 presents the latencies of PyTorch’s serial exe-
cution (Torch), Brainstorm’s serial execution but with tuned
kernels (BRT+VF), and Brainstorm’s dynamic horizontal fu-
sion (BRT+HF).

Vertical fusion (VF) is the commonly used fusion of consec-
utive operators to reduce kernel launching overhead [39, 47].
Compared to Torch, BRT+HF achieves up to 41.8× speedup.
The improvement comes from two sources: the improved CU
utilization with concurrent execution of multiple branches,
and efficient kernels tuned for frequently appeared Cell loads.
By comparing BRT+VF and Torch, we identify the statistically
tuned GPU kernels that bring 13.1× speedup. The concurrent
execution of multiple branches further brings 3.18× speedup
(BRT+HF/BRT+VF). Since dynamic horizontal fusion has an
overhead of extra GPU kernels to calculate input pointer ad-
dresses, we find BRT+HF performs slightly worse than BRT+VF
(12.3µs on average) when the number of branches is small.

Profile-Guided Placement. In §4.2, we show that profile-
guided model placement can save inter-GPU communication
for dynamic NNs. In this micro-benchmark, we compare the
communication latency of default placement in PyTorch with
Brainstorm’s optimized placement. We conduct this experi-
ment on the multi-GPU server. We replace PyTorch’s commu-
nication with Brainstorm’s sparse communication to isolate
the improvement from efficient sparse communication. In the
default placement, each GPU-i routes 1024 tokens to each
branch on GPU-(i+1) and 10 tokens per each other branch.
In the optimized placement, Brainstorm can route 1024 to-
kens to the same GPU without inter-GPU communication. In
Figure 14a, the Cell size is fixed to 512 Float32 values for
evaluation with variable branches. Brainstorm achieves 2.45×
to 6.23× speedup on 2 to 8 GPUs. In Figure 14b, the number

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 805

1 2 4 8 16

2

4

6

8

Ti
m

e
(m

s)

2GPUs

BRT
BRT+P

1 2 4 8 16
Number of Branches

4

8

12

16

4GPUs

BRT
BRT+P

1 2 4 8 16

8

16

24

32

8GPUs

BRT
BRT+P

(a) Variable Branches

32 64 128 256 512 10242048
Cell Size

1

3

5

7

S
pe

ed
up

2GPUs
4GPUs
8GPUs

(b) Variable Cell Sizes

Figure 14: Performance comparison of sparse communication
of Brainstorm with (BRT+T) and without (BRT) the placement
optimization.

0.1 0.2 0.3 0.4
Router Latency (ms)

0.0

0.5

1.0

1.5

Ti
m

e
(m

s)

Default Hit Miss

(a) Variable Router latencies

0 10 20 30
Weight Size (MB)

0

2

4

6

Ti
m

e
(m

s)

Default Hit Miss

(b) Variable weight sizes

Figure 15: Performance comparison of default execution and
hit/miss cases in speculative optimizations.

of branches on a single GPU is fixed to 4 with variable Cell
sizes. Brainstorm achieves 3.89× to 6.65× speedup on 2 to 8
GPUs. Brainstorm achieves the improvement due to reduced
communication in the optimized placement. More branches
and larger Cell further increase inter-GPU communication
volume amplifying the gap between the default placement
and Brainstorm’s optimized placement.

Hit or Miss of Speculative Optimization. §4.3 and §4.4
introduce two speculative optimizations for dynamic NNs,
i.e., speculative routing and weight preloading. The following
two micro-benchmarks demonstrate a comparison between
default execution and Brainstorm’s speculative optimization,
conducted on the single-GPU server. We build a simple net-
work routing an input tensor to 8 branches. Each branch has
20 gemm operators. Brainstorm speculatively executes Branch-
0 or loads Branch-0’s weights in the speculative routing and
weight preloading, respectively. Figure 15a shows inference
time with varied Router latency. When prediction hits, Router
latency can be hidden by gemm operators on the correct branch.
When prediction misses, these gemm operators will be un-
rolled. Brainstorm achieves a constant inference time when
prediction hits, and a similar inference time with the default
execution when prediction misses.

Figure 15b shows weight preloading overhead of the same
model but with varied weight sizes. Since only weights of the
activated branch are loaded, the GPU memory requirement
is reduced by 8×. When Brainstorm’s prediction hits, the

8 16 32 64 128 256
Number of Experts

0

200

400

600

Ti
m

e
(m

s)

x

Torch Tutel BRT

Figure 16: Latencies of SwitchTransformer.

weights are speculatively preloaded before Router, whose
latency is hidden by previous computation and Router latency.
When prediction misses, Brainstorm falls back to the default
execution that loads weights of the correct branch. Brainstorm
achieves a consistent latency when prediction hits, and similar
latency with the default execution when prediction misses.

7.4 End-to-end Model Execution
7.4.1 SwitchTransformer

In SwitchTransformer, each expert has a capacity of 64 tokens
for each sentence. By analyzing Router profiles, we find an
imbalanced distribution of the number of tokens routed to
each expert (shown in Figure 2a). This motivates us to apply
dynamic horizontal fusion to execute experts in parallel with
GPU kernels tuned for different loads. We use the official
weights trained by Google with 8 to 256 experts per MoE
layer. The batch size is 8, and each sentence has 128 tokens.
The experiment is conducted on the single-GPU server.

Figure 16 shows latencies of SwitchTransformer with of-
ficial implementation in PyTorch (Torch), replacing MoE
layers with an optimized implementation from Tutel (Tutel),
and Brainstorm with dynamic horizontal fusion. The official
implementation executes experts in serial. Tutel runs experts
concurrently with BatchMatmul, which requires padding to
the same number of tokens for all experts. Brainstorm outper-
forms by 3.63×, and 3.33× compared to Torch, and Tutel,
respectively. The speedup increases with more experts in
each MoE layer. In addition to improved utilization of con-
currently executed experts, Brainstorm also benefits from
imbalanced token distribution. Because many experts only
receive a few tokens, Tutel pads many dummy tokens in all
paths, leading to vast wasted computation on padding. The
excessive padding also uses more GPU memory leading to
out-of-memory in Tutel when there are 256 experts. By
analyzing loads of different branches, Brainstorm compiles
multiple GPU kernels to minimize the padding.

7.4.2 LiveSR

LiveSR is our internal model for super-resolution, which slices
a single image into 32x32 patches and routes them to differ-
ent branches. It uses a ResNet-18 model to extract patterns,
which are then routed by K-nearest neighbor (kNN) to multi-
ple branches. By collecting the routing distribution of patches,

806 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 6 8 10
Number of branches

0

40

80

120

Ti
m

e
(m

s)
BRT BRT+VF BRT+HF

8 12 16 20
Number of channels

Figure 17: Latencies of LiveSR in Brainstorm with vertical
fusion and dynamic horizontal fusion.

we find a distribution in the number of patches routed to each
branch (as shown in Figure 2b). This creates the opportunity
for Brainstorm to tune GPU kernels for frequently Cell loads.
Also, since different patches of an image are routed to differ-
ent branches, Brainstorm can horizontally fuse these branches
to concurrently execute them to improve CU utilization.

Figure 17 shows latencies of LiveSR with different opti-
mizations, while being executed on the single-GPU server.
BRT-HF applies dynamic horizontal fusion of both multiple
branches and multiple tuned kernels of different loads. To
dissect the improvement of both types of fusion, we evaluate
BRT-VF that only fuses Conv2D, BatchNorm, and ReLU oper-
ators in each branch but with statistically tuned GPU kernels.
In Figure 17, we vary both the number of branches with a
fixed number (8) of channels and the number of convolution
channels with a fixed number (10) of branches.

Overall, BRT+HF achieves up to 8.62× speedup compared
to BRT. BRT+VF brings a speedup up to 3.5× compared
with BRT. BRT+HF further brings 1.79× to 2.48× gains over
BRT+VF with an increasing number of branches because of
the improved CU utilization with more branches. When in-
creasing the number of channels, we find the latency of Brain-
stormBRT+HF remains the same until it reaches 20 channels
as it goes beyond the upper bound of GPU CUs.

7.4.3 TaskMoE

TaskMoE routes input tensors at the granularity of the sen-
tence. Each MoE layer has 16 experts. Each sentence is routed
to 2 experts. The key difference of TaskMoE is its routing
algorithm: it decides expert of a sentence based on task type.
Sentences of the same task will be routed to the same expert
branches. Therefore, as we have shown in Figure 2c, TaskMoE
has a strong inter-layer expert correlation that experts of the
same task are activated together with a high probability, which
brings the opportunity for profile-guided placement.

Brainstorm optimizes placement by reordering experts of
MoE layers for the most efficient communication. Brain-
storm’s Routers are aware of reordering and dispatch sen-
tences to correct GPUs in the optimized placement. We con-
duct this experiment with three input settings: 256 sentences
on each GPU with 32/64 tokens in each sequence; 512 se-
quences on each GPU with 32 tokens in each sequence. The

2GPUx8E
4GPUx4E

8GPUx2E
0

1k

2k

Th
ro

ug
hp

ut
(S

eq
/s

)

256 Seqs x 32 Tokens

2GPUx8E
4GPUx4E

8GPUx2E

256 Seqs x 64 Tokens

2GPUx8E
4GPUx4E

8GPUx2E

512 Seqs x 32 Tokens
Torch BRT BRT+P

Figure 18: Throughput of TaskMoE. Torch: routing with Py-
Torch’s native communication primitive. BRT: routing with
Brainstorm’s sparse communication primitive. BRT+P: place-
ment optimized routing over BRT.

1.25 2.0 3.0 4.0
0

200

400 2Gx8E
DeepSpeed Tutel BRT BRT+P

1.25 2.0 3.0 4.0
0

200

400

Th
ro

ug
hp

ut
(I

m
g/

s)

4Gx4E

1.25 2.0 3.0 4.0
Capacity Factors

0

200

400 8Gx2E

Figure 19: Throughput of SwinV2-MoE. G: the number of
GPUs. E: the number of experts per GPU.

task ID of each sequence is randomly generated. Since routing
of TaskMoE only works on task ID, the synthetic dataset does
not affect the optimal placement and evaluation conclusion.

Figure 18 shows the per-GPU throughput on 2-8 GPUs.
The experiment is conducted on the multi-GPU server. Com-
pared with Torch, BRT first brings up to 1.17× speedup with
efficient sparse communication. The speedup of BRT grows
with more GPUs because of the increased data volume for
inter-GPU transmission. Brainstorm’s sparse communication
saves unnecessary communication due to padding. On top
of this, BRT+P further achieves up to 1.34× speedup with the
optimized placement. The optimized placement derived from
runtime profiles helps BRT+P to reduce 42 ∼ 87% inter-GPU
communication, speeding up routing of MoE layers.

7.4.4 SwinV2-MoE

SwinV2-MoE is the MoE-version of SwinTransformer [41]
for image tasks, introduced in Tutel [22]. It defines tokens as
Cells, each of which contains 384 float32 values tokenized
from a 48x48 image patch. SwinV2-MoE uses a capacity
factor to control the number of patches each expert receives.
When the capacity is exceeded, extra patches are dropped dur-
ing routing. The capacity factor varies in [1.25,2.0,3.0,4.0]
in the experiments. We evaluate SwinV2-MoE with 16 ex-
perts on the multi-GPU server by evenly placing the experts
on 2 GPUs, 4 GPUs, and 8 GPUs, respectively. The batch size
per GPU is 128 images for each inference.

Figure 19 shows throughput of four approaches: a PyTorch

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 807

1 2 3 4 5 6 7 8 9 10
Layer ID

1.0

1.1

1.2

1.3
S

pe
ed

up
1.25 2 3 4

Figure 20: Gaps between the best and the worst placement
for MoE Layers in SwinV2-MoE with varied capacity factors.

implementation using DeepSpeed-MoE [48] (DeepSpeed),
optimized version with Tutel’s MoE kernels [22] (Tutel),
optimized version with Brainstorm’s Router (BRT), and
Brainstorm’s profile-guided placement optimization (BRT+P).
Brainstorm’s efficient Router first brings up to 5.04× and
1.52× speedup over DeepSpeed and Tutel, respectively.
Both BRT and Tutel use custom GPU kernels for efficient
routing inside a GPU, thus greatly outperforming DeepSpeed,
which uses einsum. With an increased capacity factor, BRT
brings higher speedup over Tutel because of saved inter-GPU
communication due to increased padding.

By optimizing expert placement via runtime profiles, we
find BRT+P only brings marginal improvement. After us-
ing Brainstorm’s efficient Router, SwinV2-MoE model only
spends up to 35% of time on inter-GPU communication,
which reduces the potential by further reducing communica-
tion overhead. Similar to TaskMoE, we do observe different
expert placements have greatly varied efficiency. Figure 20
shows our evaluation of a single SwinV2-MoE layer to com-
pare the performance of the best placement and the worst
placement with 8 GPUs and 2 experts per GPU. The gap is up
to 1.26× speedup for ten SwinV2-MoE layers. The smaller
the layer id is, the more imbalance appears in token distri-
bution, creating more space for improvement by placement.
It shows great potential for larger MoE models with more
experts, whose communication latency dominates [22].

7.4.5 MSDNet

MSDNet [1] is a dynamic network that can adapt this exe-
cution path to the computational resource limits at test time.
The network contains 5 exits that allow the inference of an
image to end in the middle, if the output quality is higher than
the predefined thresholds. Users can configure the thresh-
old of each exit to control the inference cost. For instance,
[0,0,0,0.4,0.6] represents that 40% of the inferences in the
dataset end at the 4th exit and 60% end at the last exit. There
are no inferences ending at the other exits.

Figure 21 shows the experiment results with 6 kinds of
exit configurations applying different optimizations, running
on the single-GPU server. We set the batch size to a single
image at inference. We first tune the GPU kernels with verti-
cal fusion (BRT+VF) as the baseline. On top of that, we first

0 2 4 6 8 10
Time (ms)

[1.0, 0.0, 0.0, 0.0, 0.0]
[0.5, 0.5, 0.0, 0.0, 0.0]
[0.5, 0.3, 0.2, 0.0, 0.0]
[0.5, 0.2, 0.2, 0.1, 0.0]
[0.1, 0.1, 0.2, 0.3, 0.3]
[0.0, 0.0, 0.3, 0.3, 0.4]
[0.0, 0.0, 0.0, 0.4, 0.6]
[0.0, 0.0, 0.0, 0.0, 1.0]

Exit Portion

BRT+VF
BRT+SP
BRT+HF

Figure 21: Latencies of MSDNet with vertical fusion, specu-
lative routing, and dynamic horizontal fusion.

A B C Raw
Model Architectures

0
20
40
60
80

Ti
m

e
(m

s)

Torch BRT+SP

Figure 22: Latencies of DynamicRouting.

apply speculative routing (BRT+SP) and then dynamic hori-
zontal fusion (BRT+HF) to evaluate the benefits of dynamic
optimizations. Compared with BRT+VF, Brainstorm achieves
up to 8.44×, 11.7× speedup by BRT+SP and BRT+HF, respec-
tively. We observe BRT+SP reduces higher latency when the
inferences end at either very early exists or very last exits,
due to the speculative routing making more correct predic-
tions. If the inference has a similar opportunity to end at
each exit, BRT+SP has a similar performance with BRT+VF
(e.g., for [0.1,0.1,0.2,0.3,0.3]). For dynamic horizontal fu-
sion (BRT+HF), Brainstorm performs better when the infer-
ences prefer ending at the last exits, further bringing up to
1.57× gain over BRT+SP. The root cause is the uncertain
routers break many horizontal fusion opportunities. MSDNet
has some operators that can be executed in parallel if the in-
ference does not end at an exit. If a Router may terminate in
the middle, Brainstorm cannot determine whether it is safe to
horizontally fuse them, thus falling back to BRT+VF.

7.4.6 DynamicRouting

DynamicRouting [28] is a semantic segmentation model
for images that introduces a lot of Routers. It contains 186
Routers and 186 computation operators, leading to a very high
routing overhead. At each Router, input images are routed
to 1 or 2 branches among 3 designed branches with convolu-
tion operators for down-sampling, up-sampling, or keeping-
resolution, respectively. DynamicRouting proposes four ar-
chitecture configurations (A, B, C, and Raw for short, in order
of growing computation). By analyzing Routers’ runtime pro-
files collected by Brainstorm, we find many Routers exhibit a
high probability of making consistent routing decisions, which
brings opportunities for speculative optimizations. The fol-
lowing experiments are conducted on the single-GPU server.

808 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A B C Raw
Model Architectures

0

30

60

90

120

La
te

nc
y

(m
s)

On-demand
Speculative

(a) Latencies

A B C Raw
Model Architectures

0

200

400

600

M
em

or
y

(M
B

) Original

On-demand
Speculative

(b) Memory Consumption

Figure 23: Speculative weight preloading of DynamicRouting
with variable model architectures.

Figure 22 presents the latency of four configurations opti-
mized by Brainstorm’s speculative routing (BRT+SP), where
batch size is set to a single image. Brainstorm achieves up
to 1.7× speedup compared to the official implementation in
PyTorch (Torch). BRT+SP achieves 1.7×, 1.58×, 1.57×, and
1.29× speedup compared with Torch in the four architecture,
respectively. With statistical distribution derived from the run-
time profiles, BRT+SP can predict the routing decisions of the
186 routers with an accuracy of 90% ∼ 95%. This greatly
reduces the routing overhead in the four model architectures.
As we have shown in the micro-benchmark of Figure 15a, the
overhead of speculative routing is negligible even when the
prediction is wrong.

Figure 23 shows the inference latency and the GPU mem-
ory usage of DynamicRouting optimized by Brainstorm’s
speculative weight preloading. In the baseline (on-demand
loading), Brainstorm only loads the weight of a branch after
the routing decision is made. Brainstorm will preload the
weights of the branch to be activated with the highest proba-
bility, and falls back to on-demand loading if the prediction is
wrong. Because the weight loading latency is hidden, Brain-
storm’s speculative optimization can accelerate the model
inference by up to 1.97× than on-demand loading. Moreover,
the official implementation needs to load all model weights to
the GPU memory for single-image inference (i.e., 604.5MB
of Original in Figure 23). With on-demand loading and
speculative preloading, memory usage is greatly reduced by
50.7% and 43.5%, respectively. This creates the opportunity
to infer large models on GPUs with limited GPU memory.
Brainstorm’s speculative weight preloading requires slightly
lower GPU memory than on-demand loading. This is because
speculative weight preloading also releases some GPU mem-
ory in advance speculatively.

8 Discussion

Handling distribution drift. The profiling data is ana-
lyzed offline by dynamic optimization policies. Profiling data
should be statistically representative of reality; otherwise, it
could mislead Brainstorm’s optimization and result in reduced
or even negative gain. As shown in Figure 24, the impact de-

0 0.2 0.4 0.6 0.8 1
Distribution Drift Ratio

1

2

3

4

5

S
pe

ed
up

32 Branches
64 Branches
128 Branches

Figure 24: Speedup of Brainstorm’s dynamic horizontal fu-
sion when the distribution of branch loads drifts from the
statistics used for tuning GPU kernels.

pends on the models and the degree of drifts.
Figure 24 evaluate the impact of distribution drift on dy-

namic horizontal fusion. Based on the collected profiles,
Brainstorm only tunes Conv2D kernels with 4 and 27 patches.
Therefore, when a branch receives more than 4 patches, it
needs to be padded to 27 patches running with the non-optimal
27-patch kernel. An initial dispatch of 4 patches per branch
is made so that no padding is needed. To simulate increasing
distribution drift, we add loads of some branches to 8 patches,
which are less frequently appearing in the profile and thus not
tuned by Brainstorm. We define the distribution drift ratio as
the fraction of branches whose received patches differ from
the tuned shapes (4 and 27 in this experiment). In Figure 24,
we find the speedup of Brainstorm’s dynamic horizontal fu-
sion BRT+HF diminishes with an increasing drift ratio, from
4.65× to 2.11×, compared with applying only vertical fusion.
This is due to the wasted computation from the padding on
branches receiving 8 patches.

The optimization policy needs to monitor profiles contin-
uously collected by Brainstorm and triggers re-optimization
when distribution drifts. It takes time for re-optimization (usu-
ally a few minutes), e.g., searching for a new placement, and
tuning new GPU kernels. Therefore, during cold-start or re-
optimization, the model execution does not use dynamic opti-
mization. Currently, Brainstorm focuses on the mechanisms
of enabling dynamic neural optimizations. We hope to inspire
more advanced solutions to be robust to distribution drifts.

More dynamic optimization opportunities. Brainstorm
can also be applied to training. When fine-tuning MoE-based
Large Language Models, the statistics of expert activation
can be leveraged similarly with inference, e.g., re-arranging
the expert placements across GPUs to reduce communication
volume. Moreover, many algorithms in Neural Architecture
Search also design dynamic architectures (e.g., DARTS [49],
SPOS [50]), whose activation is known only at runtime. Their
latter stage of training may show more stable branch activa-
tion, which can be potentially exploited by Brainstorm.

To support training, there are still some engineering ef-
forts that need to be resolved. Firstly, backward propagation

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 809

is needed for automatic differentiation in training, which is
missed in the current implementation. Secondly, some oper-
ators may invalidate Brainstorm’s tracing for dynamic opti-
mization. For instance, Batchnorm performs cross-Cell com-
puting different from the Cell-level computation at inference,
which requires manual specification.

Brainstorm can also be applied to dynamic sparsity, which
uses different value/block-level sparsity patterns for differ-
ent inputs (e.g., Longformer). To optimize their execution,
Brainstorm needs to collect pattern statistics at a fine granu-
larity. Then we can compile multiple specialized GPU kernels
for different sparsity patterns (e.g., using SparTA [51]), and
activate the most efficient one at runtime.

9 Related Works

Deep Learning Frameworks for Dynamic NNs. Popu-
lar DL frameworks can express dynamic neural networks
via control-flow operators in static DFGs (e.g., TensorFlow
1.x [52]) or Python native control-flows (e.g., PyTorch [32],
JAX [53], TensorFlow Eager [54]). They are capable of ex-
pressing dynamic neural networks in very flexible ways. How-
ever, their tensor-centric DFGs are hard to be analyzed at the
sub-tensor level. As shown in §5.1, many dynamic NNs re-
quire Cell-level dataflow analysis, which the tensor-centric
programming model misses. Brainstorm unifies how dynamic
NN should be expressed so that the required information for
dynamic optimization can be easily traced.

Optimization of dynamic NNs has also been studied in
recent years, which mainly focuses on specific types of dy-
namism. Cavs [55], DyNet [56], BatchMaker [57],TensorFlow
Fold [58], DVABatch [59], ICE [60], and PAME [61] focus
on dynamic batching [62] for the cases when the batch size
is dynamic. Cortex [63] is a framework for recursive neural
networks with compiler optimization. DietCode [64] is an
auto-scheduler framework for optimizing dynamic shapes.
Nimble [65] and DISC [66] are compilers to express and exe-
cute dynamic neural networks. Brainstorm is orthogonal to
them by exploring a new optimization space that leverages
runtime statistics of Cell-level dynamism.

Optimization of deep neural networks. Most optimiza-
tions of existing DL compilers and frameworks are proposed
for optimizing static neural networks. TVM [39] expresses
operators as loop optimization schedule primitives and search
for efficient kernels. Ansor [67] enlarges the search space via
a hierarchical representation of the search space. Roller [68]
uses a cost model to reduce the overhead of searching efficient
kernels. XLA [47], Rammer [33], TASO [69], Tacker [70],
TVM [39] also performs graph-level optimization on static
DFGs, e.g., operator fusion. Pathways [71] proposes asyn-
chronous distributed dataflow for large-scale distributed train-
ing. Brainstorm differs from these works in that it introduces

new optimization spaces for dynamic NNs through sub-tensor-
level profiling. Brainstorm’s dynamic optimizations focus on
exploring the runtime dynamism distribution of dynamic NNs,
which are orthogonal to these works.

Moreover, Brainstorm’s Router separates the dynamic con-
trol flow from the dataflow graphs, which makes it easier to
extract the static sub-networks for applying existing static
optimizations. Brainstorm focuses on optimizing dynamic
fragments in dynamic NNs and leaving optimizations of static
sub-networks to existing compilers. With statistics of sub-
tensor-level profiles, Brainstorm employs TVM [39] for ker-
nel autotuning. Brainstorm can also leverage Pathways [71]
to build an efficient execution plan to better fit the runtime
dynamism, e.g., partition models with better affinity.

Profile-guided optimization in modern programming
languages. Compilers for programming languages, e.g.,
HotSpot JVM [16], Dot-Net Core 2.0 [17], Clang [25], have
supported dynamic optimization by collecting runtime statis-
tics of programs and then compiling new optimized versions
for future execution. Brainstorm is inspired by them and iden-
tifies new dynamic optimizations specific for dynamic NNs.

10 Conclusion

In this paper, we identify a new space of dynamic optimiza-
tions for dynamic NNs by collecting and analyzing runtime
profiles to specialize the model execution to dynamism distri-
bution. We propose Brainstorm, the first deep learning frame-
work that optimizes the execution of dynamic NNs. The core
of Brainstorm is Cell and Router, that lets model develop-
ers express dynamic NNs at the granularity of dynamism
so that the necessary information for dynamic optimizations
can be traced. Model developers can focus on designing the
dynamic model architecture while leaving the optimization
to the Brainstorm framework. In Brainstorm, we propose
four dynamic optimizations leveraging the runtime profiles at
different granularity. Our evaluation shows Brainstorm can
accelerate popular dynamic neural networks by up to 11.7×
(3.29× on averge) or reduces GPU memory usage by 42%.

Acknowledgments

This work is partially sponsored by the National Natural Sci-
ence Foundation of China (62232011, 62022057, 61832006),
and Shanghai international science and technology collab-
oration project (21510713600). We thank the anonymous
reviewers and our shepherd, Junfeng Yang, for their construc-
tive feedback and suggestions. Zhenhua Han, Quan Chen, and
Minyi Guo are the corresponding authors.

810 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau-
rens Van Der Maaten, and Kilian Q Weinberger. Multi-
scale dense networks for resource efficient image classi-
fication. arXiv preprint arXiv:1703.09844, 2017.

[2] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Run-
time neural pruning. Advances in neural information
processing systems, 30, 2017.

[3] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[4] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized con-
volutions for efficient inference. Advances in Neural
Information Processing Systems, 32, 2019.

[5] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution:
Attention over convolution kernels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11030–11039, 2020.

[6] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7132–
7141, 2018.

[7] Yue Guan, Zhengyi Li, Zhouhan Lin, Yuhao Zhu, Jing-
wen Leng, and Minyi Guo. Block-skim: Efficient ques-
tion answering for transformer. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pages 10710–10719, 2022.

[8] Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin, and
Minyi Guo. Transkimmer: Transformer learns to layer-
wise skim. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pages 7275–7286, 2022.

[9] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai,
and Gao Huang. Resolution adaptive networks for effi-
cient inference. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
2369–2378, 2020.

[10] Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao
Dong. Classsr: A general framework to accelerate super-
resolution networks by data characteristic. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12016–12025, 2021.

[11] Michael Figurnov, Maxwell D Collins, Yukun Zhu,
Li Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
1039–1048, 2017.

[12] Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy,
and Xiaoou Tang. Not all pixels are equal: Difficulty-
aware semantic segmentation via deep layer cascade. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3193–3202, 2017.

[13] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song,
Le Yang, and Gao Huang. Glance and focus: a dynamic
approach to reducing spatial redundancy in image clas-
sification. Advances in Neural Information Processing
Systems, 33:2432–2444, 2020.

[14] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(120):1–39, 2022.

[15] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[16] Java hotspot vm. https://www.
oracle.com/java/technologies/javase/
javase-core-technologies-apis.html. Ac-
cessed: 2022-11-11.

[17] Profile-guided optimization in .net core 2.0.
https://devblogs.microsoft.com/dotnet/
profile-guided-optimization-in-net-core-2-0/.
Accessed: 2022-11-11.

[18] Mark Leone and R Kent Dybvig. Dynamo: A staged
compiler architecture for dynamic program optimization.
Technical report, Citeseer, 1997.

[19] John Whaley. Partial method compilation using dy-
namic profile information. ACM SIGPLAN Notices,
36(11):166–179, 2001.

[20] Lukas Stadler, Thomas Würthinger, and Hanspeter
Mössenböck. Partial escape analysis and scalar replace-
ment for java. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Opti-
mization, pages 165–174, 2014.

[21] Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng
Gao. Taming sparsely activated transformer with
stochastic experts. arXiv preprint arXiv:2110.04260,
2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 811

https://www.oracle.com/java/technologies/javase/javase-core-technologies-apis.html
https://www.oracle.com/java/technologies/javase/javase-core-technologies-apis.html
https://www.oracle.com/java/technologies/javase/javase-core-technologies-apis.html
https://devblogs.microsoft.com/dotnet/profile-guided-optimization-in-net-core-2-0/
https://devblogs.microsoft.com/dotnet/profile-guided-optimization-in-net-core-2-0/

[22] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose,
Prabhat Ram, et al. Tutel: Adaptive mixture-of-experts
at scale. arXiv preprint arXiv:2206.03382, 2022.

[23] Amirhossein Habibian, Davide Abati, Taco S Cohen,
and Babak Ehteshami Bejnordi. Skip-convolutions
for efficient video processing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2695–2704, 2021.

[24] Albert Einstein. Zur Elektrodynamik bewegter Körper.
(German) [On the electrodynamics of moving bodies].
Annalen der Physik, 322(10):891–921, 1905.

[25] Profile guided optimization in llvm. https:
//clang.llvm.org/docs/UsersManual.html#
profile-guided-optimization. Accessed: 2022-
11-11.

[26] Dehao Chen, David Xinliang Li, and Tipp Moseley.
Autofdo: Automatic feedback-directed optimization for
warehouse-scale applications. In Proceedings of the
2016 International Symposium on Code Generation and
Optimization, pages 12–23, 2016.

[27] Sneha Kudugunta, Yanping Huang, Ankur Bapna,
Maxim Krikun, Dmitry Lepikhin, Minh-Thang Lu-
ong, and Orhan Firat. Beyond distillation: Task-level
mixture-of-experts for efficient inference. arXiv preprint
arXiv:2110.03742, 2021.

[28] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xi-
angyu Zhang, Xingang Wang, and Jian Sun. Learning
dynamic routing for semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8553–8562, 2020.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing
systems, 32, 2019.

[30] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong
Jeong, Dong-Jin Shin, and Byung-Gon Chun. Janus: fast
and flexible deep learning via symbolic graph execution
of imperative programs. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 453–468, 2019.

[31] Taebum Kim, Eunji Jeong, Geon-Woo Kim, Yunmo
Koo, Sehoon Kim, Gyeongin Yu, and Byung-Gon Chun.
Terra: Imperative-symbolic co-execution of imperative
deep learning programs. Advances in Neural Informa-
tion Processing Systems, 34:1468–1480, 2021.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing
systems, 32, 2019.

[33] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881–897, 2020.

[34] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li,
and Gennady Pekhimenko. Horizontally fused training
array: An effective hardware utilization squeezer for
training novel deep learning models. Proceedings of
Machine Learning and Systems, 3:599–623, 2021.

[35] Suzana Herculano-Houzel, Bruno Mota, Peiyan Wong,
and Jon H Kaas. Connectivity-driven white matter scal-
ing and folding in primate cerebral cortex. Proceedings
of the National Academy of Sciences, 107(44):19008–
19013, 2010.

[36] Nvidia cuda: Unified memory program-
ming. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#
um-unified-memory-programming-hd. Accessed:
2022-11-11.

[37] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapad-
visor: Pushing deep learning beyond the gpu memory
limit via smart swapping. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 1341–1355, 2020.

[38] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
891–905, 2020.

[39] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm: An au-
tomated end-to-end optimizing compiler for deep learn-
ing. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594,
2018.

[40] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-

812 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

task benchmark and analysis platform for natural lan-
guage understanding. arXiv preprint arXiv:1804.07461,
2018.

[41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
10012–10022, 2021.

[42] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[43] Milind Naphade, Shuo Wang, David C. Anastasiu,
Zheng Tang, Ming-Ching Chang, Xiaodong Yang, Yue
Yao, Liang Zheng, Pranamesh Chakraborty, Christian E.
Lopez, Anuj Sharma, Qi Feng, Vitaly Ablavsky, and Stan
Sclaroff. The 5th ai city challenge. In The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2021.

[44] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understand-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3213–3223, 2016.

[45] Nvidia nccl. https://developer.nvidia.com/nccl.
Accessed: 2022-11-11.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[47] Xla architecture. https://www.tensorflow.org/
xla/architecture. Accessed: 2022-11-11.

[48] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[49] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, Computer Vision - ECCV
2020 - 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part XVI, volume 12361

of Lecture Notes in Computer Science, pages 544–560.
Springer, 2020.

[50] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: differentiable architecture search. In 7th Inter-
national Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019.

[51] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma,
Yuqing Yang, Fan Yang, Yang Wang, Mao Yang, and
Lidong Zhou. SparTA: Deep-Learning model sparsity
via Tensor-with-Sparsity-Attribute. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 213–232, Carlsbad, CA,
July 2022. USENIX Association.

[52] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283,
2016.

[53] Jax: composable transformations of python+numpy pro-
grams. http://github.com/google/jax. Accessed:
2022-11-11.

[54] Akshay Agrawal, Akshay Modi, Alexandre Passos,
Allen Lavoie, Ashish Agarwal, Asim Shankar, Igor
Ganichev, Josh Levenberg, Mingsheng Hong, Rajat
Monga, et al. Tensorflow eager: A multi-stage, python-
embedded dsl for machine learning. Proceedings of
Machine Learning and Systems, 1:178–189, 2019.

[55] Shizhen Xu, Hao Zhang, Graham Neubig, Wei Dai,
Jin Kyu Kim, Zhijie Deng, Qirong Ho, Guangwen Yang,
and Eric P Xing. Cavs: An efficient runtime system
for dynamic neural networks. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
937–950, 2018.

[56] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia
Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Ad-
higuna Kuncoro, Gaurav Kumar, Chaitanya Malaviya,
Paul Michel, Yusuke Oda, Matthew Richardson, Naomi
Saphra, Swabha Swayamdipta, and Pengcheng Yin.
Dynet: The dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980, 2017.

[57] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
latency rnn inference with cellular batching. In Proceed-
ings of the Thirteenth EuroSys Conference, pages 1–15,
2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 813

https://developer.nvidia.com/nccl
https://www.tensorflow.org/xla/architecture
https://www.tensorflow.org/xla/architecture
http://github.com/google/jax

[58] Tensorflow fold. https://github.com/tensorflow/
fold. Accessed: 2022-11-11.

[59] Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui
Li, Deze Zeng, Chao Li, and Minyi Guo. Dvabatch:
Diversity-aware multi-entrymulti-exit batching for effi-
cient processing of {DNN} services on gpus. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 183–198, 2022.

[60] Kaihua Fu, Jiuchen Shi, Quan Chen, Ningxin Zheng,
Wei Zhang, Deze Zeng, and Minyi Guo. Qos-aware
irregular collaborative inference for improving through-
put of dnn services. In 2022 SC22: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 993–1006. IEEE Com-
puter Society, 2022.

[61] Shulai Zhang, Weihao Cui, Quan Chen, Zhengnian
Zhang, Yue Guan, Jingwen Leng, Chao Li, and Minyi
Guo. Pame: precision-aware multi-exit dnn serving
for reducing latencies of batched inferences. In Pro-
ceedings of the 36th ACM International Conference on
Supercomputing, pages 1–12, 2022.

[62] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins,
and Peter Norvig. Deep learning with dynamic compu-
tation graphs. arXiv preprint arXiv:1702.02181, 2017.

[63] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd
Mowry. Cortex: A compiler for recursive deep learning
models. Proceedings of Machine Learning and Systems,
3:38–54, 2021.

[64] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen
Shen, Joshua Fromm, Yizhi Liu, Yida Wang, Luis Ceze,
Tianqi Chen, and Gennady Pekhimenko. Dietcode: Au-
tomatic optimization for dynamic tensor programs. Pro-
ceedings of Machine Learning and Systems, 4:848–863,
2022.

[65] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong
Wu, Mu Li, Vin Sharma, Zachary Tatlock, and Yida
Wang. Nimble: Efficiently compiling dynamic neural
networks for model inference. Proceedings of Machine
Learning and Systems, 3:208–222, 2021.

[66] Kai Zhu, WY Zhao, Zhen Zheng, TY Guo, PZ Zhao,
JJ Bai, Jun Yang, XY Liu, LS Diao, and Wei Lin. Disc:
A dynamic shape compiler for machine learning work-
loads. In Proceedings of the 1st Workshop on Machine
Learning and Systems, pages 89–95, 2021.

[67] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning. In

14th USENIX symposium on operating systems design
and implementation (OSDI 20), pages 863–879, 2020.

[68] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, et al. Roller: Fast and efficient
tensor compilation for deep learning. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 233–248, 2022.

[69] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In Tim Brecht and Carey
Williamson, editors, Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019, pages
47–62. ACM, 2019.

[70] Han Zhao, Weihao Cui, Quan Chen, Youtao Zhang,
Yanchao Lu, Chao Li, Jingwen Leng, and Minyi Guo.
Tacker: Tensor-cuda core kernel fusion for improving
the gpu utilization while ensuring qos. In 2022 IEEE In-
ternational Symposium on High-Performance Computer
Architecture (HPCA), pages 800–813. IEEE, 2022.

[71] Paul Barham, Aakanksha Chowdhery, Jeff Dean, San-
jay Ghemawat, Steven Hand, Dan Hurt, Michael Isard,
Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan
Saeta, Parker Schuh, Ryan Sepassi, Laurent El Shafey,
Chandramohan A. Thekkath, and Yonghui Wu. Path-
ways: Asynchronous distributed dataflow for ML. In
Diana Marculescu, Yuejie Chi, and Carole-Jean Wu, ed-
itors, Proceedings of Machine Learning and Systems
2022, MLSys 2022, Santa Clara, CA, USA, August 29 -
September 1, 2022. mlsys.org, 2022.

814 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/tensorflow/fold
https://github.com/tensorflow/fold

A Artifact Appendix

Abstract
Brainstorm unifies the progrming of dynamic NNs with Cell
and Router abstraction which enables a new space of dy-
namic optimizations for dynamic NNs. This artifact repro-
duces the main results of the evaluation in both single-GPU
and multiple-GPU environments.

Scope
This artifact will validate the following claims:

1. Effectiveness of Brainstorm Abstraction: By reproduc-
ing the experiments of Figure 12, we can validate the
effectiveness of Brainstorm’s abstraction.

2. Micro Benchmarks: By reproducing the experiments of
Figures 13–15, we can validate the proposed dynamic
optimizations with micro benchmarks.

3. End-to-end Model Execution: By reproducing the exper-
iments of Figures 16–23, we can validate the end-to-end
latency of Brainstorm claimed in §7.

Contents
In this artifact, we will reproduce the Figures 12–23. Each
figure has a shell script to reproduce and visualize the eval-
uation results automatically. In addition, we also provide a
pre-built Docker image hosted on Github Container Registry.
Users can quickly initiate a container with this image, which
has preconfigured experimental environments.

Hosting
The artifact is hosted at https://github.com/Raphael-
Hao/brainstorm/tree/osdi2023ae. To get the code, please
git clone the Brainstorm repository and checkout to the
osdi2023ae branch.

Requirements
1. Hardware Requirements: Figures 13, 15–17 and 21–

23 requires a server with a NVIDIA A100 (80GB) GPU,
Figures 12, 14 and 18–20 requires a server with eight
NVIDIA V100 GPUs.

2. Software Requirements: Please use docker to build
the docker/Dockerfile.update to setup the environ-
ment for single and multiple-GPU experiments. A one-
click script python scripts/docker_gh_build.py -
-type latest is also provided to build the image.

3. CUDA Driver: Larger than 11.3

Tutorial
Please follow the instructions in README.md to reproduce the
main results.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 815

https://github.com/Raphael-Hao/brainstorm/pkgs/container/brt
https://github.com/Raphael-Hao/brainstorm/tree/osdi2023ae
https://github.com/Raphael-Hao/brainstorm/tree/osdi2023ae

AdaEmbed: Adaptive Embedding for Large-Scale Recommendation Models

Fan Lai2*, Wei Zhang1, Rui Liu1, William Tsai1, Xiaohan Wei1, Yuxi Hu1, Sabin Devkota1, Jianyu Huang1, Jongsoo Park1,
Xing Liu1, Zeliang Chen1, Ellie Wen1, Paul Rivera1, Jie You1, Chun-cheng Jason Chen1, Mosharaf Chowdhury2

1Meta 2University of Michigan

Abstract
Deep learning recommendation models (DLRMs) are using
increasingly larger embedding tables to represent categori-
cal sparse features such as video genres. Each embedding
row of the table represents the trainable weight vector for a
specific instance of that feature. While increasing the num-
ber of embedding rows typically improves model accuracy
by considering more feature instances, it can lead to larger
deployment costs and slower model execution.

Unlike existing efforts that primarily focus on optimizing
DLRMs for the given embedding, we present a complemen-
tary system, AdaEmbed, to reduce the size of embeddings
needed for the same DLRM accuracy via in-training embed-
ding pruning. Our key insight is that the access patterns and
weights of different embeddings are heterogeneous across
embedding rows, and dynamically change over the training
process, implying varying embedding importance with respect
to model accuracy. However, identifying important embed-
dings and then enforcing pruning for modern DLRMs with up
to billions of embeddings (terabytes) is challenging. Given
the total embedding size, AdaEmbed considers embeddings
with higher runtime access frequencies and larger training
gradients to be more important, and it dynamically prunes
less important embeddings at scale to automatically deter-
mine per-feature embeddings. Our evaluations in industrial
settings show that AdaEmbed saves 35-60% embedding size
needed in deployment and improves model execution speed
by 11-34%, while achieving noticeable accuracy gains.

1 Introduction
Deep learning recommendation models (DLRMs) are impor-
tant to many online services, including Google advertisement
display [9, 10], Netflix movie recommendations [15, 27], and
Amazon e-commerce [40], and comprise up to 65% of AI
cycles in Meta’s datacenters [13, 18]. Unlike conventional
machine learning (ML) counterparts that train models on con-
tinuous input features (e.g., color values of images), DLRM in-
puts consist of continuous dense features (e.g., timestamp) and
categorical sparse features (e.g., video genres). Each sparse
feature is often associated with an embedding table, where
each instance of that feature is represented by a trainable em-
bedding row (weight vector). In the forward and backward

*Work done while the author was working at Meta.

passes of model execution, the model reads and updates the
embedding weights of accessed rows.

Because the accuracy of a DLRM typically increases with
larger embeddings (e.g., by considering more feature in-
stances), modern DLRM embedding size is ever growing
(up to terabytes and billions of embeddings [13, 50]). This
introduces multiple challenges. First, DLRMs often have strin-
gent throughput and latency requirements for (online) train-
ing and inference [26, 45], but gigantic embeddings make
computation [34], communication [4, 39] and memory op-
timizations [13, 52] challenging. To achieve desired model
throughput, practical deployments often have to use hundreds
of GPUs to hold embeddings [35]. Meanwhile, designing
better embeddings (e.g., number of per-feature embedding
rows and which embedding weights to retain) remains chal-
lenging because the exploration space increases with larger
embeddings and requires intensive manual efforts [32, 49].

Unlike existing DLRM efforts that have primarily focused
on optimizing the model’s execution speed for the given em-
beddings – e.g., by balancing embedding sharding [35, 52],
accelerating embedding retrieval [39, 44], compressing em-
beddings [19, 48], or elastic resource scaling [45, 51] – we
explore a complementary opportunity: Can we fundamentally
reduce the size of embedding needed for the same accuracy,
by dynamically optimizing the per-feature embedding during
model training? Or, equivalently, can we improve model ac-
curacy for the given embedding size? This is because unlike
classic ML models, the DLRM model output (accuracy) is de-
termined by the input data (e.g., accessed instances) and their
embedding weights, and the input data is typically organized
chronologically during training to account for the diverse and
non-stationary user preferences [53]. Therefore, the access
patterns and the weights of embeddings vary across embed-
dings rows and the training process (§2.2). This implies an
opportunity to admit and prune embedding rows based on
their heterogeneous importance to improve model accuracy.

In this paper, we introduce an automated in-training prun-
ing system to Adaptively optimize per-feature Embeddings
(AdaEmbed) for better model accuracy. For the given em-
bedding size, AdaEmbed scalably identifies and retains em-
beddings that have larger importance to model accuracy at
particular times during training. As a result, not only does
it reduce human effort in embedding design, but it also cuts
down the embedding size, thus the computational, network,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 817

and memory resources, needed to achieve the same accuracy.
AdaEmbed is complementary to and supports existing DLRM
efforts with a few lines of code changes (§3).

Unfortunately, identifying important embeddings out of
billions is non-trivial. To maximize the overall model accu-
racy, we should retain the embedding rows that affect model
inputs more often (e.g., are frequently accessed) and that af-
fect model outputs the most (e.g., have larger weights) (§4.1).
However, the non-stationary data distribution during training
leads to the spatiotemporal variation in the access frequency
of different embeddings. e.g., new videos are posted and be-
come popular, while some old ones lose popularity. Moreover,
embedding weights change over training iterations and so
does their impact. Once we prune an embedding’s weights
from the GPU memory, we cannot accurately capture their
importance to model accuracy as training moves on. Based
on our analytical insights, embeddings with larger runtime
gradients and higher access frequencies tend to accumulate
larger embedding weights, and AdaEmbed prioritizes them
when deciding which ones to retain. Moreover, we group fea-
tures with similar feature-level characteristics (e.g., vector
dimensions), and then identify important embeddings across
feature groups to optimize the per-feature embedding size and
which embedding to retain (§4.1).

Enforcing in-training pruning after identifying important
embeddings is not straightforward either. Pruning for practi-
cal DLRMs can require reallocating millions of embedding
rows and tens of gigabytes of embedding weights per training
iteration, whereas each iteration takes only a few hundred
milliseconds [4,35]. While frequent pruning allows admitting
important embeddings in a timely manner, thereby improving
model accuracy, it can slow down model training by many
hundred times (§4.2). To achieve a sweet spot between timely
pruning and low overhead, AdaEmbed initiates pruning selec-
tively when perceiving big changes in the importance distribu-
tion of all embeddings, thus reducing the number of pruning
rounds needed while ensuring high accuracy. However, exist-
ing DLRM systems face difficulty in dynamically admitting
and pruning embeddings at scale because they often rely on
static and/or fixed-size embedding storage [1–3, 44]. AdaEm-
bed introduces a shim layer, Virtually Hashed Physically In-
dexed (VHPI) embedding, to support various embedding de-
signs. VHPI decouples the management of embeddings from
their physical weights, whereby it recycles the weight vector
of embeddings to avoid intense memory allocation (§4.3).

We have implemented a system prototype of AdaEmbed
(§5) and evaluated it using five industry models and months
of data across hundreds of GPUs (§6). Our evaluations show
that AdaEmbed can reduce 35-60% embedding size, imply-
ing comparable resource savings, and improve model execu-
tion speed by 11-34% without compromising model accuracy.
Meanwhile, it achieves noticeable accuracy gains under the
same embedding size, thus being able to reducing manual ef-
forts by automatically finding better per-feature embeddings.

Outputs
(e.g., like/do

not like)

Continuous Inputs
(e.g., time)

Categorical Inputs
(e.g., User IDs)

Embedding Table 1

Embedding Table N

Feature Integration
(e.g., concatenate)…

Predictor D
N

N

IDs=[6, 10]
hash(IDs)=[1,3]

[0.12, 0.34, …, …, 0.42]

[0.64, 0.86, …, …, 0.32]
[0.24, 0.61, …, …, 0.23]

Lookup to Emb Table N

Pooled Embedding Weights

Pooling

128 Dims

[0.76, 1.20, …, …, 0.74]

Multi-Layer Perceptron

Figure 1: DLRM models consist of large embedding tables.

Overall, we make the following contributions in this paper:
1. We propose an in-training pruning system, AdaEmbed, to

automatically optimize DLRM embeddings.
2. We introduce embedding importance to capture impor-

tant embeddings and employ VHPI embedding to enforce
scalable pruning, with few changes to existing designs.

3. We evaluate AdaEmbed in various real-world settings to
show its resource savings and accuracy gains.

2 Background and Motivation
We start with a quick primer on DLRMs (§2.1), followed by
the challenges it faces and inefficiencies of the state-of-the-art
based on our analysis of real-world experiments (§2.2). Next,
we highlight the opportunities that motivate our work (§2.3).

2.1 Deep Learning Recommendation Models

As shown in Figure 1, a DLRM consists of a combination
of fully connected multiple-layer perceptrons (MLPs) to cap-
ture continuous dense features (e.g., timestamp), and a set of
embedding tables to map various categorical sparse features
(e.g., user and video IDs) to a dense representation. DLRMs
can contain up to thousands of sparse features: each feature is
typically associated with an embedding table, and each table
can have millions of rows [15, 35, 52]. Each embedding row
is a multi-dimensional weight vector (e.g., 128 floats) corre-
sponding to a specific feature instance (e.g., a specific user
ID of feature "User IDs").

DLRMs differ from traditional computer vision (CV) and
natural language processing (NLP) models in that they require
training on large volumes of data organized chronologically,
to keep up with the latest recommendation trends. Hence, the
distribution of training data changes over the training process.
In the forward pass of model computation, each input sample
includes a set of embedding IDs for each table to extract the
corresponding embedding weights (vectors). To reduce the
computation complexity, embedding weights of a sample will
be pooled per table using the element-wise pooling operator,
which typically takes the sum or maximum along each vector
dimension (Figure 1). The pooled embedding weights of mini-
batch samples are packed together with their intermediate
outputs of dense features, forming a batch input to deeper
layers. In the backward pass, the weights of the accessed
embeddings are updated using the gradient.

818 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 5 10 15
ID Lifespan (Days)

0.0

0.5

1.0

CD
F

ac
ro

ss
 ID

s

(a) Lifespan of instances.

0 5 10 15
Date

0.0

0.5

1.0

No
rm

. #
 o

f I
Ds

(b) Number of instances.

Figure 2: The number of sparse feature instances (IDs) increases
rapidly over time, while the lifespan of instances is heterogeneous.

Due to the enormous number of sparse feature instances,
their embedding weights can occupy more than 99% size of a
commonly used model (up to several terabytes) [21]; so DL-
RMs exhibit much larger memory intensity than conventional
ML models (e.g., ResNet). As such, practical DLRM deploy-
ments use a combination of model parallelism for sparse
feature layers and data parallelism for MLPs. The former allo-
cates different embedding partitions across workers to avoid
replicating them, and the latter enables concurrent processing
of dense feature inputs [13]. Even so, model deployments
often require hundreds of GPUs to achieve the desired model
throughput (a few hundred milliseconds per iteration) [4, 35].

2.2 Challenges in DLRM Deployment

Due to its significant impact on revenue and numerous iter-
ations needed to train a DLRM model, DLRM deployments
follow the “achieve better accuracy and run as fast as pos-
sible” paradigm [35, 45, 52]. The execution speed and accu-
racy of a DLRM model are respectively measured by Query-
Per-Second (QPS) throughput and Normalized Entropy (NE)
loss [22]. Larger QPS and smaller NE indicate better perfor-
mance, and any relative > 0.02% NE gain is considered to be
significant [13, 46]. However, optimizing both aspects leads
to novel tussles and challenges in real-world deployments.

Larger embedding sizes improve NE Embedding size of
modern DLRMs is ever-growing to accommodate more em-
bedding rows for sparse features and their instances [35, 44].
Figure 2 reports the size of the instance set over 15 days’ data
in a real-world DLRM system. We observe that even though a
small portion of the trained instances will seldom be accessed
again in later days (Figure 2(a)), the total number of unique
instances increases by 1.5× every week (Figure 2(b)). As DL-
RMs are often trained on months of data and retrained over
time, the size of the instance set will eventually far exceed the
embedding size. To cap the embedding size, existing designs
often perform hashing on the raw instance IDs, and then use
the hashed IDs to access their embedding rows [3].

Intuitively, using more embedding rows implies more in-
stances are considered, thus enabling better data coverage for
better NE. Figure 3(a) reports the impact of the embedding
size on the NE regression at different times of training. NE re-
gression denotes the accuracy degradation of using a smaller

Training Day

(a) Large embeddings improve NE.

1.7

1.4

1.8

1.5

1

2

0.25X 0.5X

Q
PS

 S
pe

ed
up

 (
X

)

 Training
 Inference

2.8

1.4

2.9

1.6

1

2

3

0.25X 0.5X

Q
PS

 S
pe

ed
up

 (
X

)

 Training
 Inference

1

1.51.4

2.4

0

1

2

3

1X Model 0.5X Model

N
or

m
. Q

PS
 T

hr
ou

gh
pu

t W/o Cache+Prefetch
W/

1

1.51.4

2.4

1.7

2.9

0

1

2

3

W/o Caching W/ Caching

N
or

m
. Q

PS
 T

hr
ou

gh
pu

t 1X Model
0.5X Model
0.25X Model

(b) Large embeddings hurt QPS.

Figure 3: Compared to the full (1×) model, smaller embedding
sizes hurt model NE (i.e., larger NE regression), but improve QPS.
0.25× and 0.5× denote using 25% and 50% of the full model size.

embedding size w.r.t. the full-size model.We notice that (i)
using a smaller embedding size can greatly hurt NE. For ex-
ample, reducing the number of embedding rows by 75% (i.e.,
0.25× model) results in ∼0.02% NE regression on Day 2;
Worse, (ii) this NE regression inflates as the training evolves
over time as more instances are spawned.

Large embedding sizes hurt QPS However, using more
embeddings can slow down model execution and consume
more machine resources in multiple execution phrases: (i)
slower embedding access if we can not retain all embed-
dings in high-bandwidth GPUs; (ii) longer communication
as we may need to transfer more embeddings over the net-
work [4, 50]; and (iii) longer computation as more embed-
dings need to be computed on. Figure 3(b) shows, compared
to the full model, 0.5× model achieves 1.4× QPS speedup in
the same resource setting. Here, we note that state-of-the-art
DLRM optimizations [35, 44], which cache and prefetch the
embeddings to be accessed in future batches, cannot eliminate
the QPS drop (Figure 3(b)). More importantly, they can be
insufficient for online training and model serving as we may
not know the input data in advance.

2.3 Opportunities for In-Training Pruning

For a given DLRM, recent advances have made considerable
progress for efficient communication [4, 19, 39] and/or com-
putation [13, 26, 35]. Instead, we focus on a complementary
opportunity that reduces the embedding size needed with-
out NE regression, by adaptively pruning embeddings during
model training. Our approach is based on the following ob-
servations.

Handcrafted embeddings are suboptimal Designing op-
timal embeddings (e.g., deciding the number of per-feature
embedding rows and which embedding weights to retain) is
as yet an open problem in the ML community [14]. Hence,
DLRM systems often decide the embedding size using human-
defined rules, e.g., by estimating the feature popularity [14]
and/or hyper-parameter tuning by model experts before train-
ing takes place [52]. Not only does this require great human
effort and resources to explore, but it can also be suboptimal
due to limited adaptivity at runtime (e.g., deciding which in-
stance’s embedding to retain if many instances are generated).

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 819

0 25 50 75 100
Table Utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

ac
ro

ss
 T

ab
le

s

1X
0.25X

(a) Utilization of embedding tables.

0 100 200 300
Sampled IDs

0.0

0.5

1.0

No
rm

. A
cc

es
s F

re
q.

Day 1
Day 2
Day 5

(b) Heterogeneous ID access.

Figure 4: Embedding access varies across IDs and over time, lead-
ing to distinct table utilization in existing embedding designs.

Worse, existing DLRM systems often treat per-feature em-
bedding tables individually for ease of management. This can
underutilize or overload individual tables as data distribution
changes over time. Indeed, when we analyze the table utiliza-
tion in a one-day training window (i.e., number of accessed
embeddings over the total number of embeddings on that
day), we notice large heterogeneity (Figure 4(a)). Intuitively,
tables that are fully utilized can degrade NE because many
instances are hashed to the same embedding row, leading to
hash collisions. However, underutilized tables cannot trade
in their space during training because of the suboptimal pre-
determined embedding size and inelastic embedding designs.

Embeddings have heterogeneous characteristics Fig-
ure 4(b) zooms into individual embedding rows, where the
sampled IDs (i.e., x-axis) are ordered based on their access
frequency on Day 1. We notice that the access frequency of
embeddings varies across embedding IDs and over time, since
user preferences change over time. We have similar obser-
vations on embedding weights too (§4.1). Since the model
output (accuracy) is determined by the input instance (e.g.,
which embedding is accessed) and embedding weights, this
implies a potential to identify and retain more important em-
beddings during training to maximize final model accuracy.

3 AdaEmbed Overview
In this paper, we introduce an automated in-training prun-
ing system, AdaEmbed, to adaptively optimize per-feature
embeddings at scale for better model accuracy. Unlike exist-
ing efforts for model pruning, which focus on conventional
models [8,11,20] and/or prune model size when training com-
pletes [32], AdaEmbed automatically identifies and retains
important embeddings for the given embedding size to im-
prove performance while training is ongoing. Our evaluations
in industrial settings show that in addition to saving resource
throughout training, AdaEmbed provides superior model ac-
curacy to its post-training pruning counterparts (§6.4).

AdaEmbed is a complementary system that acts as a shim
layer atop today’s embedding designs (Figure 5). It has a
central coordinator and a set of distributed on-worker agents:

• AdaEmbed Coordinator: It gathers the embedding infor-
mation from agents, determines the global pruning deci-
sion, and orchestrates the agent to enforce the pruning.

AdaEmb Agent

AdaEmb
Coordinator

Worker N

AdaEmb
Agent

1

3a

Training Coordinator

…

]

Memory Manager Emb
Monitor

Lookup Table

Profiler

Metadata

Memory

43b2

Emb weights

Resource
Manager

Engine
Backend

Input data
(e.g., feature N)

Worker 1

AdaEmb
Agent

Engine
Backend

Input data
(e.g., feature 1&2)

Figure 5: AdaEmbed overview and its in-training execution flow.
AdaEmbed components are in red.

• Memory Manager: It is located inside each AdaEmbed
agent and manages the physical memory for today’s em-
bedding designs. At runtime, it receives the pruning deci-
sion from the coordinator and executes pruning on local
embedding weights.

• Embedding Monitor: It resides along with the memory
manager to track embedding importance and reports the
profiling results of the importance to the coordinator.

Figure 6 illustrates the interface of AdaEmbed, which sup-
ports existing DLRM systems in a few lines of code.

1 import AdaEmbed
2
3 def dlrm_model_training():
4 # Wrap existing embedding modules
5 emb_agent = AdaEmbed.create_agent(
6 emb_tables=model.embs , pruning_config=config)
7
8 for _ in range(num_iterations):
9 input_ids = get_next_data_batch()

10
11 # Look up physical embedding address
12 emb_physical_ids = emb_agent.look_up(input_ids)
13 feedback = model.train_step(emb_physical_ids)
14
15 # Update embedding importance with feedback
16 emb_agent.update_importance(input_ids , feedback)

Figure 6: AdaEmb supports existing DLRMs with minor changes.

Training Lifecycle Similar to current DLRM deployments,
1 each worker is in charge of a subset of sparse features,

which is determined by the embedding partition of model
parallelism. The worker processes the input data (i.e., a list of
embedding IDs) of those features. 2 However, the inputs are
first forwarded to AdaEmbed agent to look up the physical ad-
dress of each embedding’s weights (Line 12). 3 The physical
address is then used to fetch the embedding weights for read
and write operations. The rest of model training adheres to ex-
isting designs. 4 After each training iteration, the embedding
monitor updates the embedding importance with the training
feedback (Line 16). Periodically, it samples the importance of
different embedding rows and notifies the coordinator of the
profiling results. The coordinator determines how to prune
embeddings subject to the total embedding size and guides the

820 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

memory manager to admit and prune embeddings at scale.

4 AdaEmbed Design
Practical DLRMs often contain hundreds of sparse features
and up to billions of embedding rows [13, 50]. They run
across hundreds of GPUs on non-stationary model inputs to
get the desired model execution speed [4, 35]. These lead to
the following challenges toward practical in-training pruning
of embedding rows:

• Heterogeneity: The characteristics of embeddings (e.g.,
data distribution and embedding weights) vary across
instances of the same feature. This, as well as the physical
size of the embedding row, differs across features too.
How to measure which embeddings are important to retain
for better model accuracy (§4.1)?

• Dynamics and Scalability: The importance of individual
embeddings varies over iterations at a sub-second speed.
As such, improving model accuracy requires pruning in
a timely manner to maximize the number of important
embeddings. However, identifying important embeddings
out of billions distributed across hundreds of workers,
and then pruning on terabytes of embedding weights can
lead to large overhead. How to orchestrate pruning un-
der training dynamics (§4.2)? Additionally, how to effi-
ciently enforce pruning on each worker’s memory to avoid
throughout degradation (§4.3)?

• Extensibility: Existing systems are built atop a variety of
embedding designs, such as key-value storage [44, 52] or
highly optimized but fixed-size tensors [2, 3]. How to pro-
vide generic systems support to minimize modifications
to existing DLRM systems (§4.3)?

4.1 Embedding Monitor: Identify Important
Embeddings

Given the embedding size, we aim to trade the less important
embedding rows for the more important ones. This requires us
to consider the importance of each embedding row in terms of
the contribution of its embedding weights to model accuracy,
as well as its physical size. However, determining the opti-
mal pruning strategy during training is challenging. First, the
model output (accuracy) is affected by the complex interplay
between input feature instances (e.g., which item IDs appear)
and their embedding weights. Even with full model informa-
tion after training completes, pruning is still a fundamental
open problem in the ML literature [11, 32]. Second, during
model training, this interplay becomes more intractable be-
cause of the large spatiotemporal variations in the distribution
of model inputs and embedding weights (Figure 7(a)). Worse,
once we prune an embedding’s weight vector, it is difficult
to assess its impact on model accuracy as training moves on.
These challenges are amplified by the need to account for
feature-level heterogeneity too (e.g., different weight vector
sizes across features).

AdaEmbed employs the embedding monitor to capture the

0 25 50
Sampled Embedding ID

0.00

0.25

0.50

0.75

1.00

No
rm

ali
ze

d V
alu

e Weight Norm
Gradient Norm
Access Freq.

(a) Heterogeneous emb. characteristics.0.
01
4 0.
01
8

0.
00
5

0.
02
9

0.
02
6

0.
01
1

0.
02
5 0.
03
2

0.
01
9

0

0.01

0.02

0.03

Model-XS Model-M Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) EmbStore ES w/o Norm ES w/o Group Pruning

Breakdown

0.12
0.18

0.43

0

0.25

0.5

Freq. G-NormPe
ar

so
n

C
or

re
la

tio
n

to
 W

ei
gh

t N
or

m

Freq. x G

Higher is
better

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model Size

0.
02
4

0.
01
60.
01
9

0.
01
5

0.
02
2

0.
01
3

0.
01
4

0.
00
4

0

0.01

0.02

0.03

Model-XS Model-XL

N
E

R
eg

re
ss

io
n

(%
)

w/o reset weight restore
original init zero init initialization

Smaller is
better

AdaEmb AE AE

(b) Pearson analysis.

Figure 7: (a) Embedding gradient and access frequency are hetero-
geneous, (b) while their combination reports a larger correlation
to the embedding weights. A correlation value > 0.4 indicates a
positive and medium to strong association.

embedding importance of individual rows within the feature,
and then extends it to identify important rows across features.

Intra-Feature Embedding Importance For embeddings
of the same feature, we introduce a data- and model-aware
importance metric EI(i) to capture the importance of each
row i to model accuracy. Instead of relying on the embedding
weights that become stale after being pruned, EI(i) is the
runtime combination of access frequency and gradient, i.e.,
EI(i) = f reqt(i)×∥∇gt(i)∥. ∥∇gt(i)∥ is the L2-norm of i’s
gradient in iteration t, and f reqt(i) is the access frequency.
So the embedding with a higher access frequency and a larger
gradient norm is deemed more important. Here, collecting
EI(i) introduces negligible overhead, because the embedding
gradient is already generated during back-propagation of train-
ing regardless of AdaEmbed. Since the gradient is generated
and shared by mini-batch samples [35], the importance of
pruned-but-accessed embeddings will continue to be updated.

Our importance design is motivated by multiple factors:
• Intuitively, the output of sparse feature layers (i.e., pooled

embedding weights) is often derived by taking the sum
or maximum of input embedding weights (§2.1); so we
should retain the embeddings that affect many model in-
puts (i.e., frequently accessed) and that affect model out-
puts more (i.e., larger weights). While we do not have
information about future weights after pruning an em-
bedding, we observe a strong correlation between our
frequency-gradient combined metric and the final embed-
ding weights when training converges (Figure 7). This
is because frequent weight updates with large gradients
typically result in larger weights.

• Theoretically, embedding rows are designed for training
different bins of data instances: each bin holds only one
type of category instance (i.e., a specific ID), and bins can
have different data volumes (i.e., different access frequen-
cies of IDs). Now, we want to select and retain certain
bins (embeddings). This, in concept, is similar to the im-
portance sampling problem in the ML literature [17, 25]:
To improve model convergence by selecting the right bins
to train the model, the optimal solution is to select bin i
with a probability proportional to the aggregate gradients

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 821

100 103 106

Avg. Freq./ID

0.0

0.5

1.0

CD
F

ac
ro

ss
 F

ea
tu

re
s

(a) Heter. frequency.

0 101 103

Avg. G-Norm/ID

0.0

0.5

1.0

CD
F

ac
ro

ss
 F

ea
tu

re
s

(b) Heter. grad. norms.

0 32 64 96 128
Embedding Dim.

0.0

0.5

1.0

CD
F

ac
ro

ss
 F

ea
tu

re
s

(c) Heter. dimensions.

Figure 8: Magnitudes of embedding access frequencies and gradi-
ents vary across features, making it hard to compare EI(i).

of training all that bin’s data. In our formulation, the train-
ing samples within the same bin are identical, because
they correspond to the same specific ID. Therefore, the
aggregate gradients herein is equivalent to the product of
the number of training samples and the gradient of the
individual sample (i.e., EI(i) = f reqt(i)×∥∇gt(i)∥).

Empirically, our fleet-wide evaluations show that our impor-
tance design outperforms its alternatives (§6.4).

Since the gradient and access frequency can fluctuate
during training (e.g., due to the randomness in sampling
mini-batches), we need to account for these uncertainties
in EI(i). Here, the embedding monitor considers EI(i)t =
f reqt(i)×∥∇gt(i)∥+EI(i)t−1, whereby we reduce uncertain-
ties in individual iterations and only need to update the impor-
tance of accessed embeddings. This is because the importance
of not accessed embeddings remains unchanged as f reqt(i)
= 0. In reality, only a subset of embeddings are accessed, so
we can reduce the overhead significantly (§4.2). Moreover, to
account for the temporal variation, we use a moving average
that decays EI(i) by a factor of 0.8 every T iterations.

Inter-Feature Group Pruning Retaining important em-
beddings subject to the total size naturally leads to a global
pruning design, in which we hope to allocate different em-
bedding sizes to individual features. However, the values of
embedding importance can vary across features by orders of
magnitude. This can be due to features with fewer instances
often having larger average access frequencies per embedding,
and/or different initialization mechanisms of the embedding
weights leading to gradients of different magnitudes (Fig-
ure 8). As such, directly using the intra-feature embedding
importance for comparison across features can result in a
large bias, as embeddings with greater importance values are
not necessarily more important than those of other features.
Moreover, as the dimension of embedding vectors of different
features can vary (Figure 8(c)), deciding which embeddings
are more valuable to retain becomes intricate when large
embedding importance and vector size are in conflict.

Because we rely on the relative ranking of importance
to determine pruning (e.g., prune the tail 40% less impor-
tant embeddings), we can tackle the comparison bias across
features using the popular normalization philosophy [16];
i.e., by normalizing each embedding’s importance by that

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
ve

rh
ea

d
(m

s)

Er
ro

r(
%

)

Sample Size

Error (%)
Overhead

66
.1
2

7.64
0.24 0.08 0

0

2

4

6

8192 16384 32768 65536
O

pe
ra

tio
n

La
te

nc
y

(m
s)

Batch Size

Address Lookup
Importance Update

0

0.2

0.4

0.6

0.8

0 150 300 450

#_
In

pu
t_

ID
s(

bi
lli

on
)

Training iteration
0

21.1s

0

0.2

1 10 20 30 40 50

#_
In

pu
t_

ID
s(

bi
lli

on
)

Pruning Interval0 0

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Model SizeAv

g.
 E

m
b.

 to
 P

ru
ne

/In
te

rv
al

 (G
B)

85.9
171.8

343.8

679.2

0

200

400

600

800

8192 16384 32768 65536
Batch Size

Av
g.

 #
_I

np
ut

_I
D

s(
m

ill
io

n)
/it

er

(a) Number of accessed IDs.

27
.6

40
.3 45

.8

0

5

10

15

20

0

20

40

60

0.7X 0.5X 0.3X

R
eallocation O

verhead (s)

Target Model Size

Pruning Size
Overhead

9.1

13.6
15.2

Av
g.

 E
m

b.
 to

 P
ru

ne
/It

er
(G

B)

(b) Size of weights to prune.

Figure 9: (a) Each iteration accesses millions of embeddings. (b)
Pruning needs to reallocate a large amount of embedding weights.

feature’s distribution of all embeddings’ importance. This
way, the embedding importance of different features takes
on similar ranges of values, and the more important embed-
dings of each feature are still prioritized because of having
larger relative importance values after normalization. The
embedding monitor normalizes the embedding importance
of each feature by the 95th percentile of its distribution (i.e.,
EI(i)/EI95th(f eature(i))) to avoid outliers.

Next, to account for different weight vector sizes across fea-
tures, AdaEmbed groups features with the same embedding
dimension and then performs global pruning within the fea-
ture group. In reality, DLRMs are configured with only a hand-
ful of distinct embedding dimensions (Figure 8(c)) to reduce
hyper-parameter tuning and/or to achieve better parallelism
(e.g., balancing embedding sharding [35, 52]). This implies a
big opportunity to group many features, which already forms
a large shared embedding size for inter-feature group pruning.
By default, AdaEmbed initializes the per-group embedding
size based on the number of in-group features and the to-
tal embedding size (i.e., num_group_ f eatures×group_ f eature_dim

num_ f eatures×avg_ f eature_dim ×
total_size) to uniformly allocate the space to each dimension.
Note that unused embedding storage will be picked up by
other groups (§4.3). When developers have more advanced
information about features (e.g., feature importance), AdaEm-
bed provides APIs for customizing feature groups and sizes
(§5).

Our evaluations show that with importance normalization
and group pruning, AdaEmbed achieves better resource sav-
ings and model accuracy (§6.3).

4.2 AdaEmbed Coordinator: Prune at Right Time

In real-world DLRM systems, each training iteration involves
updating the importance of millions of embedding rows in
terabyte-sized models (Figure 9(a)). At that scale, orchestrat-
ing hundreds of workers to prune leads to a trade-off between
the pruning overhead and quality. Frequent pruning allows
for better decision quality, i.e., maximizing the number of im-
portant embeddings all the time for potentially better model
accuracy. Yet, pruning can require cleaning up and creating
tens of gigabytes of embedding weights, which can take many
seconds and significantly slow down the sub-second train-
ing iterations (Figure 9(b)). This trade-off becomes more

822 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Pseudo-code of AdaEmbed runtime
1: weight_table← EmbWeights() ▷ Physical weight tables
2: emb_meta← Init(weight_table) ▷ VHPI metadata
3: pruning_start← false ▷ Enforce pruning or not

4: Function UpdateEmbs(input_ids, feedback):
/* Monitor: Update embedding importance

asynchronously to model training. */
5: UpdateImport(input_ids, feedback)
6: if pruning_start == true then
7: EnforcePruning() ▷ Stall training
8: pruning_start← false

9: Function MonitorImportance(ProfilingInterval ∆):
/* Coordinator: asynchronously inspect big changes on

the importance distribution via profiling across
workers. */

10: last_dist← null
11: while training == true do
12: if mod(current_time, ∆) == 0 then
13: cur_dist← ProfileImportance()
14: pruning_start←Diff(last_dist, cur_dist) > p
15: last_dist← cur_dist

16: Function EnforcePruning():
/* Memory manager: Identify embedding rows to admit

and prune subject to the given embedding size. */
17: admit_emb, evict_emb← IdentifyRecycleEmbs(
18: emb_meta, weight_table.size)

/* Redistribute the lookup mapping from the embedding
ID to the weight vector, whereby admitted embedding
rows can recycle the weight vector of pruned ones. */

19: RedistLookup(emb_meta, admit_emb, evict_emb)

/* Reset embedding weights for admitted embeddings. */
20: weight_table.ResetEmbs(admit_emb)

intractable as a result of training dynamics; e.g., stochastic
gradient descent can introduce large noise to embedding gra-
dients, thus the embedding importance. As such, pruning too
frequently can also be suboptimal (§6.4).

To find the sweet spot between pruning overhead and qual-
ity, AdaEmbed Coordinator decides the right time to prune to
reduce the number of pruning rounds needed, and instructs
the memory manager to minimize the overhead in each prun-
ing round when pruning embedding weights (§4.3). Algo-
rithm 1 outlines how AdaEmbed Coordinator orchestrates
efficient embedding pruning. The embedding monitor updates
the importance of accessed embeddings after each training
iteration (Line 4), and periodically profiles embedding impor-
tance (Line 9). The results of the profiling will be sent to the
coordinator. In the event of big changes in the importance
distribution, the coordinator initiates a new pruning round and
notifies the memory manager of the pruning decision (Line 9).
The memory manager on each worker then executes pruning
and admits new embedding weights at scale (Line 16).

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
verhead (m

s)Er
ro

r
(%

)

Sample Size

Error (%)
Overhead

0.08 0

21.1s

66
.1
2

118 ms

Figure 10: Profiling can get accurate results with little overhead.

Intuitively, pruning cares about the importance ranking
of individual embeddings instead of their dynamic impor-
tance. Therefore, AdaEmbed coordinator relies on the im-
portance distribution of all embeddings again, and initiates
pruning if the importance distribution has changed greatly
since the last pruning round. To effectively gather the im-
portance distribution across hundreds of machines, each lo-
cal agent samples a small portion, P, of embedding impor-
tance values on that agent. The coordinator then can esti-
mate how many embeddings have crossed the pruning bound-
ary, i.e., the number of embedding rows whose importance
ranking has fallen below or risen above the Xth percentile
of the distribution since the last pruning round. Xth is the
cut-off importance boundary determined by the size limit
(i.e., ∑emb∈top_Xth size(emb)< total_size), and the agent will
prune the weight vector of the embeddings whose importance
value is smaller than the cut-off importance.

As shown in Figure 10, while more samples, P, allow for
a more precise estimate of Xth importance, this will also in-
crease the coordination overhead, such as in collecting im-
portance distributed across hundreds of machines and then
computing distribution changes. In fact, we can use the con-
centration theorem in the probability sampling [47] to decide
the right number of samples.1 This gives us∼ 5M embedding
rows out of billions to sample on each machine, in order to
ensure a deviation from the global ground truth of less than
1%. In addition to having a smaller computation overhead,
this results in negligible network traffic, 5M× 4bytes ∼ 20
megabytes as EI(i) is a 4-byte float, over tens of Gbps network
to the coordinator. As suggested by today’s data validation
systems [7, 33], we consider a big change to have occurred
and initiate pruning when more than c =5% of the total em-
beddings cross the boundary (i.e., we need to prune and admit
more than c% embeddings), and issue this lightweight pro-
filing per minute. This avoids the large overhead caused by
pruning in each training iteration, while ensuring that the cur-
rent embedding allocation is at most c% worse than what we
can achieve through pruning in each iteration. We show that
profiling achieves a small deviation and little overhead (i.e.,
the 5M sample size in Figure 10).

Convergence Analysis As described in §4.1, our design of
embedding importance draws inspiration from importance

1The minimum number of samples P needed to ensure Pr[|X̄−E[X̄]|<
ε]> δ is P = (Xmax−Xmin)

2 ln(2/δ)

2ε2 for the distribution of variable X . E[X̄], Xmax
and Xmin are the expectation, maximum and minimum of X , respectively.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 823

Lookup Table
(has more entries
than weight table)

physical address
(e.g., 0x08)

Emb IDs
to prune

0x08
Emb IDs
to admit

Address Stack
(recycles weigh

physical address)

…

Retained Emb Pruned Emb Dummy Weights

emb importance
(e.g., 0.12)

Shared Weight Table
(same as existing embs)

1 Address lookup Reclaim Address2

Link Address 3

Figure 11: VHPI employs lookup table to link each embedding to
the weight vector, and recycles the vector of pruned embeddings
without intense memory allocation.

sampling, which has been shown in ML theory [17, 25, 31]
for its ability to reduce gradient variance and accelerate train-
ing convergence. Empirically, our extensive evaluations us-
ing months of real-world data and models demonstrate that
AdaEmbed consistently improves model accuracy by prun-
ing at the right time, as opposed to pruning too frequently or
infrequently (§6.4).

4.3 Memory Manager: Prune Weights at Scale

As the reallocation of embedding weights is hundreds of times
slower than each training iteration (Figure 9(b)), reducing the
number of pruning rounds needed is still far from achieving
negligible overhead in practice (§6.2). To avoid intense mem-
ory reallocation, the memory manager of AdaEmbed employs
a Virtually Hashed Physically Indexed (VHPI) design to de-
couple the management of embeddings from their physical
weight vectors, whereby AdaEmbed can recycle the weight
vectors of different embeddings to enable efficient pruning
for a variety of existing embedding designs.

VHPI primarily consists of two parts (Figure 11):
• Lookup table: It stores the metadata information of each

embedding instance, including the embedding importance
(a float32), and the physical address (a int64) to that
embedding’s weight vector. Compared to the weight vec-
tor, often a vector of 128 float, this payload information
introduces a negligible memory footprint (3

128 ∼ 2%).
• Weight table: It is a monolithic physical table for embed-

ding weight vectors. It remains the same as the embedding
table of today’s DLRM systems, but it is shared across
features under the orchestration of the memory manager.

Weights vectors of the pruned embeddings are not retained,
while the metadata of all embeddings is always maintained in
the lookup table. So the lookup table can include more entries
(i.e., embedding IDs) than the weight table. This allows us
to adaptively determine the link between embeddings and
weight vectors to recycle weight vectors. Moreover, this can
improve model accuracy by reducing hash collision (§6.4),
as we can make the lookup table very large to accommodate

0.12
0.18

0.43

0

0.25

0.5

Freq. G-NormPe
ar

so
n

C
or

re
la

tio
n

to
 W

ei
gh

t N
or

m

Freq. x G

Higher is
better

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model Size

0.
02

4

0.
01

6

0.
01

9

0.
01

50.
02

2

0.
01

3

0.
01

4

0.
00

4

0

0.01

0.02

0.03

Model-XS Model-XL

N
E

R
eg

re
ss

io
n

(%
)

W/o Reset

Weight Restore

Original Init

Zero Init

initialization

Smaller is better

Figure 12: Zero initialization performs better (0.5× model).

many embedding entries without expanding the weight table.
The memory manager performs two primitive operations

for weight pruning at runtime (Figure 11):
• Address lookup: It looks up the physical weight address

for each embedding ID to access its embedding weights.
1 If that embedding row is pruned, to avoid breaking

existing designs (e.g., missing weights due to pruning),
lookup returns a shared physical address that points to a
weights vector containing constant zeros. Access to this
dummy vector will be folded on the execution backend
due to the same entry, reducing redundant execution.

• Weight allocation: It executes the pruning decision to
prune and admit embeddings. 2 To prune an embed-
ding row, VHPI first de-links and reclaims the current
physical address of that embedding’s weight. It then sets
the address of the pruned embedding’s lookup entry to
the address of the shared dummy vector, redirecting the
future access. 3 To admit an embedding, VHPI pops
an available physical address and links this address with
the lookup entry, thereby recycling the physical memory.
Meanwhile, the memory manager resets the weight vector
values to clean up the previously pruned weight state.

However, it is not straightforward to reset (i.e., reinitialize)
the weight values for admitted embeddings, because the model
herein is partially trained and the values of embedding weights
already differ by orders of magnitude (Figure 7(a)). Improper
initialization (e.g., random initialization) can introduce a large
amount of noise to the retained embeddings. Eventually, this
will hurt model accuracy, especially considering the noise
from millions of admitted embeddings in each pruning round.

Here, we investigated four popular strategies to reset weight
vectors (Figure 12): (1) w/o reset: inherit the weights of
pruned embeddings without resetting them; (2) weight re-
store: evict previously pruned weights to extra storage (e.g.,
disk) and reinstate the weights when that embedding is re-
claimed; (3) original initialization: randomly initialize em-
bedding weights as at the start of training; and (4) zero ini-
tialization: reset embedding weights to zeros. Intuitively, the
restored weights will become too stale since they were pruned
(often thousands of iterations ago). Original initialization and
w/o reset can introduce large noise, as the weights have al-
ready been of differing magnitudes. Here, we advocate reset-
ting the weight vector values to zeros, as this can avoid large
noise while allowing the admitted embedding to learn from
scratch. Indeed, our real-world evaluations report that zero
initialization outperforms its alternatives (Figure 12).

824 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
verhead (m

s)

Er
ro

r(
%

)

Sample Size

Error (%)
Overhead

66
.1
2

7.64
0.24 0.08 0

0

2

4

6

8192 16384 32768 65536

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Batch Size

Address Lookup
Importance Update

0

0.2

0.4

0.6

0.8

0 150 300 450

#_
In

pu
t_

ID
s(

bi
lli

on
)

Training iteration
0

21.1s

0 0

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model SizeAv

g.
 E

m
b.

 to
 P

ru
ne

/In
te

rv
al

 (G
B)

85.9
171.8

343.8

679.2

0

200

400

600

800

8192 16384 32768 65536
Batch Size

Av
g.

 #
_I

np
ut

_I
D

s(
m

ill
io

n)
/it

er
117

162
175

0

50

100

150

200

0.7X 0.5X 0.3X
Target Model Size

O
ve

rh
ea

d
of

 P
ru

ni
ng

 O
pt

(m
s)

(a) Control-plane overhead.

0

50

100

150

0

20

40

60

10K 100K 1M 10M All

O
ve

rh
ea

d
(m

s)

Er
ro

r(
%

)

Sample Size

Error (%)
Overhead

66
.1
2

7.64
0.24 0.08 0

0

2

4

6

8192 16384 32768 65536

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Batch Size

Address Lookup
Importance Update

0

0.2

0.4

0.6

0.8

0 150 300 450

#_
In

pu
t_

ID
s(

bi
lli

on
)

Training iteration
0

21.1s

0 0

27.6

40.3
45.8

0

15

30

45

60

0.7X 0.5X 0.3X
Target Model SizeAv

g.
 E

m
b.

 to
 P

ru
ne

/In
te

rv
al

 (G
B)

85.9
171.8

343.8

679.2

0

200

400

600

800

8192 16384 32768 65536
Batch Size

Av
g.

 #
_I

np
ut

_I
D

s(
m

ill
io

n)
/it

er

117

162
175

0

50

100

150

200

0.7X 0.5X 0.3X
Target Model Size

O
ve

rh
ea

d
of

 P
ru

ni
ng

 O
pt

(m
s)

(b) Data-plane overhead.

Figure 13: VHPI operations introduce little overhead.

Overhead Analysis Among all the operations involved in
VHPI, address lookup and importance update to the lookup ta-
ble take place every iteration and consume a few milliseconds
(Figure 13(a)). Weight pruning to the weight table consumes
a few hundred milliseconds (Figure 13(b)), but it occurs every
hundreds of iterations. Overall, these operations lead to little
end-to-end overhead in large-scale deployments (§6.2).

5 Implementation
We implemented a system prototype of AdaEmbed to support
distributed DLRM deployment across GPUs. Our implemen-
tation requires minor changes to existing DLRM systems.

AdaEmbed Backend AdaEmbed backend is implemented
as GPU operators for fast execution. The VHPI metadata (e.g.,
embedding importance and weight address) are hosted on
GPUs to process embeddings in parallel. The address lookup
and importance update operations require no change to exist-
ing DLRM systems. As we need to reset the weight vector,
the weight allocation operation requires existing frameworks
to expose an API to access their weight table, but this requires
a few lines of code change. The local agent interacts with the
coordinator via TCP connections.

Fault Tolerance As a shim layer, AdaEmbed can be inte-
grated into existing DLRM checkpoints by adding its state
information to the model state. This not only minimizes the
modification to existing designs, but also ensures that the
saved AdaEmbed state conforms to the embedding weights
at that time. When training is resumed, the model reloads
the checkpoint, which restores the AdaEmbed state too. At
runtime, AdaEmbed runs a lightweight daemon to back up
VHPI metadata after each pruning round, and to resume its
components if the current instances crash.

Interfaces AdaEmbed exposes Python APIs as the frontend
(Figure 6), and it can also take json as input (Figure 14).

6 Evaluation
We evaluate AdaEmbed in real-world DLRM systems across
hundreds of GPUs. Our evaluation results on different indus-
trial models and months of data are summarized as follows:

• AdaEmbed can reduce 35-60% embedding size and im-
prove model execution speed by 11-34% without compro-
mising model accuracy (§6.2).

1 "adaembed_configs": {
2 "total_emb_size": "1 TB",// Total embedding size
3 "feature_configs": {
4 "default_group": {...},
5 "group_1": { // Features to use group pruning
6 "features": ["feature1", ...],
7 "total_emb_size": "200 GB",
8 } ... // Other feature groups
9 }

10 }

Figure 14: Example embedding configuration in AdaEmbed.

• AdaEmbed can reduce manual efforts by automatically
finding better per-feature embeddings, achieving notice-
able accuracy improvements (§6.2-§6.3);

• AdaEmbed improves performance over a wide range of
settings and outperforms its design counterparts (§6.4);

6.1 Methodology

Experimental setup We use models and data from industry
DLRM systems in the evaluation. Table 1 depicts high-level
statistics of the model. They span different scales and rec-
ommendation tasks, including click-through rate prediction
and ranking. We train each model on 14 days’ data to obtain
the model lifetime NE, which indicates the cumulative model
accuracy throughout training, and then test the model on the
15th day’s data to get the evaluation NE. Each day has many
terabytes of data input.

The training batch size of each model is 65536, requiring
tens of GPU nodes for the desired QPS. Each GPU node has
8 A100 GPUs with 40 GB of GPU memory. The GPUs are
interconnected using 200 Gbps RoCE NICs.

Baselines To the best of our knowledge, AdaEmbed is the
first system to support in-training embedding pruning, and is
complementary to existing DLRM efforts. Our evaluations
cover two primary baselines: (i) w/o AdaEmbed: an industry
DLRM system without AdaEmbed support. Based on the ac-
cess frequency of embedding rows in previous days, rows that
are less frequently accessed are removed before training starts.
This generates a pruned model derived from the full model;
and (ii) different variants of AdaEmbed with changes in the
pruning algorithm (§6.4). Here, we focus on the performance
improvement of the w/ AdaEmbed setup, i.e., the setup using
AdaEmbed.

Metrics We care about the (i) memory saving to achieve
the same model accuracy as with the full model (i.e., without
NE regression)2, because we want to minimize the embed-
ding size for better model throughput and resource savings in
deployment; (ii) NE gain that we can achieve using the same
embedding size, since it not only minimizes manual efforts
in configuring DLRM embeddings, but also implies higher
revenues; and (iii) overhead that AdaEmbed introduces in
model execution speed (i.e., QPS).

2A smaller Normalized Entropy (NE) loss indicates better model accuracy.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 825

Model
of Sparse Features Raw Emb Size

of GPUs
w/ Same Model NE w/ Same Emb Size

(Approximate Value) (Approximate Value) Memory Saving QPS Speedup Avg. NE Gain (%) QPS Overhead

Model-XS 1000 200 GB 32 ≈ 35% 1.1× 0.015 0.4%

Model-S 600 350 GB 32 ≈ 45% 1.2× 0.018 0.2%

Model-M 1000 1 TB 64 ≈ 40% 1.2× 0.028 1.6%

Model-L 1000 1.1 TB 64 ≈ 55% 1.3× 0.021 1.3%

Model-XL 800 1.5 TB 128 ≈ 60% 1.3× 0.026 1.1%

Table 1: Summary of improvements. AdaEmbed reduces the embedding size needed for the same model accuracy (NE), while improving
NE using the same embedding size. We report the approximate memory saving, since evaluating all memory settings is unaffordable.

6.2 End-to-End Performance

Table 1 summarizes the key memory saving, NE gain, and
overhead of five models at different scales. Meanwhile, Fig-
ure 16 zooms into three representative models and reports
their performance under different target embedding sizes. In
our evaluations, NE regression measures the accuracy loss
w.r.t. the full model (i.e., 1× model), and any > 0.02% NE
gap is considered to be significant [13, 30, 52].

AdaEmbed cuts resource needs and improves QPS We
first evaluate how many embedding sizes we can reduce with-
out sacrificing model NE. Yet, evaluating all embedding sizes
to get accurate memory saving is unaffordable because train-
ing with each setup takes thousands of GPU hours. So, we
enumerate 0.7× (i.e., cut the embedding size by 30%), 0.6×,
0.5×, 0.4×, and 0.3× of the full model size to approximate
this embedding saving with no accuracy drop. Table 1 re-
ports that (i) AdaEmbed reduces the model embedding size
by 35-60% with no reduction in model accuracy. This implies
that we can reduce the machine usage by nearly the same
amount (e.g., using 50% fewer GPUs); (ii) the resource sav-
ings are more encouraging for large models (e.g., Model-XL
vs. Model-XS). One reason behind this is that large models
provide gigantic GPU memory for AdaEmbed to reallocate
embeddings via inter-feature group pruning (§6.3); and (iii)
alternatively, reducing the fundamental embedding size pro-
vides 1.1-1.3× faster model execution speed (i.e., QPS) when
running the model on the same machines.

AdaEmbed achieves better NE under the same size Fig-
ure 16 illustrates that with AdaEmbed, models can achieve
0.011-0.077% better NE using the same embedding size. We
notice that (i) AdaEmbed achieves consistently better NE
across models and under different target embedding sizes
than the baseline; (ii) we can achieve NE gains with smaller
embedding sizes (e.g., 0.7× models) even when compared to
the full model. This is because AdaEmbed can automatically
learn better per-feature embeddings, like the size and which
embeddings to retain. Meanwhile, pruning less important em-
beddings can reduce model overfitting, thereby improving
model generalization (accuracy) [6]; and (iii) the lifetime NE

0.
00
3

0.
01
6 0.
04
8

0.
03
6

0.
07
4

0.
13
1

0

0.04

0.08

0.12

0.7X 0.5X 0.3X

Li
fe

tim
e

N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
05 0.
01
4

0.
04
7

0.
02
8

0.
05
9

-0.02

0.01

0.04

0.07

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

0.
00
6

SNN-model

Lower is better Lower is better

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(a) Model-XS (Lifetime NE).
0.
00
3

0.
01
6 0.
04
8

0.
03
6

0.
07
4

0.
13
1

0

0.04

0.08

0.12

0.7X 0.5X 0.3X
Li

fe
tim

e
N

E
R

eg
re

ss
io

n
(%

)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
05 0.
01
4

0.
04
7

0.
02
8

0.
05
9

-0.02

0.01

0.04

0.07

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

0.
00
6

SNN-model

Lower is better Lower is better

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(b) Model-XS (Eval NE).MTML

-0
.0
13

0.
00
2 0.
03
1

0.
03
2

0.
06
6

0.
10
8

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Li
fe

tim
e

N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
11

0.
01
8

0.
05
1

0.
02
6

0.
06
7

0.
11
9

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(c) Model-M (Lifetime NE).

MTML
-0
.0
13

0.
00
2 0.
03
1

0.
03
2

0.
06
6

0.
10
8

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Li
fe

tim
e

N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

-0
.0
11

0.
01
8

0.
05
1

0.
02
6

0.
06
7

0.
11
9

-0.02

0.02

0.06

0.1

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

w/ EmbStore
w/o EmbStore

AdaEmbed
AdaEmbed

AdaEmbed
AdaEmbed

(d) Model-M (Eval NE).

0.
00
1

0.
00
9 0.
01
7

0.
01
3

0.
02
7

0.
04
2

0

0.02

0.04

0.7X 0.5X 0.3X

Tr
ai

n
N

E
R

eg
re

ss
io

n
(%

)

Target Model Size

EmbStore
Baseline

-0
.0
14 0.
00
5 0.
01
80.
03
1

0.
04
9

-0.02

0.01

0.04

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

EmbStore
Baseline

0.
02
3

CTR

w/ AdaEmbed
w/o AdaEmbed w/ AdaEmbed

w/o AdaEmbed

(e) Model-XL (Lifetime NE).

0.
00
1

0.
00
9 0.
01
7

0.
01
3

0.
02
7

0.
04
2

0

0.02

0.04

0.7X 0.5X 0.3X

Tr
ai

n
N

E
R

eg
re

ss
io

n
(%

)

Target Model Size

EmbStore
Baseline

-0
.0
14 0.
00
5 0.
01
80.
03
1

0.
04
9

-0.02

0.01

0.04

0.7X 0.5X 0.3X

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Target Model Size

EmbStore
Baseline

0.
02
3

CTR

w/ AdaEmbed
w/o AdaEmbed w/ AdaEmbed

w/o AdaEmbed

(f) Model-XL (Eval NE).

Figure 16: AdaEmbed achieves better lifetime NE and evaluation
NE. Better lifetime NE implies potentially better model accuracy
for online learning deployment, while better evaluation NE indi-
cates better accuracy after offline training (i.e., prior to launching
online training). Both NEs are important metrics.

gain is more prominent than that of the evaluation NE, because
the former is closer to the online deployment (i.e., retraining
on real-time data), where AdaEmbed is able to adapt to the
latest data distribution.

AdaEmbed introduces negligible overhead As shown in
Table 1, compared to the same-size model in the baseline,

826 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

AE
AE AE

AE

(a) Model-XS

AE
AE
AE
AE

(b) Model-M

AE
AE
AE

AE

(c) Model-XL

Figure 15: Models with AdaEmbed achieve consistently better NE over time. Troughs are due to data distribution shifting over days.

AE

(a) Model-XS (norm. value)

AE

(b) Model-XL (norm. value)

Figure 17: For the same NE w.r.t. 1× model, AdaEmbed learns
better per-feature embedding configuration using smaller size.

AdaEmbed introduces negligible (< 2%) QPS overhead across
scales of the deployment (e.g., from 32 to 128 GPUs and 200
GB to 1.5 TB models), because (i) AdaEmbed largely paral-
lelizes operations (e.g., asynchronous importance update and
multi-threading); (ii) coordinator selectively initiates pruning
rounds; and (iii) the memory manager introduces VHPI to
avoid intense reallocation of the physical weight. Note that
the memory overhead is ∼2% as AdaEmbed introduces only
two small buffers (i.e., the lookup address and embedding
importance) in VHPI lookup table (§4.3).

6.3 Performance Breakdown

We next break down AdaEmbed performance by time, the
characteristics of sparse features, and design components.

Breakdown by Time Figure 15 breaks down model NE
by time, with each data point on the line representing the
moving average of the NE over hourly data (i.e., window NE
regression). The training encompasses 14 days of data. We
observe that with AdaEmbed, we can achieve consistently
small NE regression than the baseline over time.

Moreover, we notice that this NE regression exhibits di-
urnal variation (e.g., in Model-XS and Model-M). This is
because the data distribution (e.g., user preference) of recom-
mendation tasks can change drastically over days. As such,
at the beginning of training on a new day’s data, the smaller
model (e.g., 0.3× model) will experience a larger NE regres-
sion as it has less space to accommodate new embedding IDs.
However, as the model gradually adapts to the new distribu-
tion, this regression tones down. We note that AdaEmbed
experiences less NE fluctuation due to its ability to identify

AE

(a) AE learns per-feature config.

Emb-breakdown

Pe
r-F

ea
tu

re
 A

vg
. E

m
b

Im
po

rt.

(b) AE gathers larger importance.

Figure 18: For the same size (0.5× model), AdaEmbed retains
more important embeddings to achieve better NE (Model-XS).

0.
01
4 0.
01
8

0.
00
5

0.
02
9

0.
02
6

0.
01
1

0.
02
5 0.
03
2

0.
01
9

0

0.01

0.02

0.03

Model-XS Model-M Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) EmbStore ES w/o Norm ES w/o Group Pruning

Breakdown

AdaEmb AE AE

Figure 19: Performance breakdown of AdaEmbed (AE) design.

and retain important embeddings on the fly.

Breakdown by Embedding Features We next investigate
whether AdaEmbed can reduce manual efforts by learning to
use better embedding configurations. First, in achieving the
same NE as the 1× model, AdaEmbed learns to use smaller
embeddings for many features (Figure 17). Moreover, using
the same embedding size w.r.t. the 0.5× model, AdaEmbed
gathers larger average embedding importance on each feature
than the handcrafted setup (Figure 18), implying that more
important embeddings are retained under the same total size.
More importantly, we notice that (i) our group pruning shares
similar preferences to the handcrafted configuration. Specifi-
cally, AdaEmbed tends to allocate more embeddings to those
features that the model expert also values highly. However, (ii)
some features are allocated fewer embeddings but AdaEmbed
eventually achieves better NE, indicating that AdaEmbed can
automatically find better embedding configurations.

Breakdown by Components We break down our design
into two variants (i) (AdaEmbed w/o Norm): disable impor-
tance normalization in group pruning; and (ii) (AdaEmbed

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 827

Different pruning interval
0.
02
3

0.
01
1

0.
03
7

0.
01
7

0.
01
4

0.
00
5

0

0.01

0.02

0.03

0.04

Model-XS Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) One-minute data

One-day data
ES probingAdaEmbed Profiling

(a) Impact of pruning interval.

Different pruning interval

0.
02
3

0.
01
1

0.
03
7

0.
01
7

0.
01
4

0.
00
5

0

0.01

0.02

0.03

0.04

Model-XS Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) One-minute data

One-day data
ES probingAdaEmbed Profiling

Pruning performance (Training NE)

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

-0.03

0

0.03

0.06

0.7X 0.5X 0.3X

07/01-07/10
07/14-07/24
07/30-08/08

0.
04

1

0.
03

3

0.
03

7

0.
00

2

-0
.0

05

0.
00

8

-0
.0

14

-0
.0

19

-0
.0

21

Target Model Size

(b) Impact of dataset.

Figure 20: AdaEmbed achieves improvement across settings.

Different emb importance

0.
02
8

0.
01
4

0.
03
8

0.
01
9

0.
01
4

0.
00
5

0

0.01

0.02

0.03

0.04

Model-XS Model-XL

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

Frequency

Gradient

EmbStoreAdaEmbed

Figure 21: AdaEmbed outper-
forms importance alternatives.

-0.016

0.008

0.036

-0.019

-0.005

0.033

-0.014

0.002

0.041

-0.03

-0.01

0.01

0.03

0.05

30% 50% 70%

Ev
al

 N
E

R
eg

re
ss

io
n

(%
) 07/01-07/10

07/14-07/24

-0.02

-0.01

0

0.01

0.02

0.7X 0.6X 0.5X 0.4X
Model Size

EmbStore
PTP

Ev
al

 N
E

R
eg

re
ss

io
n

(%
)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Model-S Model-L
Zero out Reload Collision

AdaEmb

Figure 22: AE outperforms
post-training pruning (PTP).

w/o Group): completely disable group pruning, so the per-
feature embedding size is resized to X% of the full model. We
notice that both normalization and group pruning contribute
to better NE (Figure 19). This is because (i) group pruning
allows greater flexibility to resize the per-feature embedding
using the shared gigantic weight table; and (ii) importance
normalization helps to reduce the inter-feature heterogeneity
by prioritizing important embeddings of each feature when
comparing embedding importance globally.

6.4 Sensitivity and Ablation Studies

Impact of pruning frequency AdaEmbed Coordinator ini-
tiates a pruning round when the importance distribution rad-
ically changes. Next, we evaluate the impact of pruning fre-
quency by deterministically enforcing pruning after training
every-minute (∼ 50 training iterations) and every-day data (∼
70K training iterations). Figure 20(a) reports that pruning too
frequently and infrequently (i.e., pruning every one-minute
and one-day data) both lead to suboptimal NE. The former is
due to large training noise affecting instantaneous embedding
importance, while the latter is due to AdaEmbed missing to
admit important embeddings in a timely manner. Instead, the
selective pruning of AdaEmbed achieves better performance
by relying on the overall importance distribution at runtime.

Impact of different data Figure 20(b) reports the NE per-
formance of model-S on three distinct datasets. Each training
spans 10 days’ training data, and we report the evaluation NE
on the data of day 11. While the NE gain varies slightly as the
data distribution varies across dates, AdaEmbed consistently
achieves 50% memory savings with no NE regression.

Alternatives of embedding importance We next experi-
ment with different embedding importance designs in training
10 days’ data. Here, we consider using the frequency, gra-
dient, and their combination (i.e., AdaEmbed design) as the
embedding importance. We notice our frequency-gradient
combination outperforms the alternatives. We note that this
is consistent with the results of our Pearson analysis too, i.e.,
their combination has a stronger correlation to final embed-
ding weights (Figure 8(b)). Instead, the access frequency and
gradient only consider the data distribution and model char-
acteristics, respectively, while DLRM accuracy depends on
both aspects.

In-training vs. post-training pruning We compare
AdaEmbed to its post-training pruning (PTP) counterpart
like [20]. After model training is complete, PTP reduces the
embedding size by pruning less important embeddings, as
measured by our importance design. In fact, deploying PTP
in real is often impractical (e.g., due to the need for online
learning), and cannot achieve memory savings and/or QPS
improvement during model training. Moreover, Figure 22 re-
ports that AdaEmbed (i.e., in-training embedding pruning)
can achieve better NE than PTP under the same embedding
size, as the in-training design can adapt to the model perfor-
mance at runtime and continuously optimize embeddings.

7 Related Work
Deep Learning Recommendation Systems Existing sys-
tems primarily focus on accelerating DLRM execution.
NEO [18] co-optimizes embedding sharding and data par-
allelism. AIBox [52] and HierPS [51] overlap training execu-
tion on CPUs (using solid-state drives) and GPUs. Ekko [39]
accelerates DLRM training over wide-area networks. TT-
Rec [48] replaces embedding tables with matrix products
to reduce memory footprints. Check-N-Run [13] reduces the
bandwidth consumption for model checkpoints. Fleche [44]
and Kraken [45] share the idea of sharing the weight table
across features, but they focus on caching frequently accessed
embeddings. AdaEmbed goes one step further by identifying
the heterogeneous embedding importance to improve model
accuracy during model training.

Optimizations for Deep Learning Recent ML advances
have proposed various innovations for deep learning.
TASO [23] and PET [41] perform tensor optimizations
to improve model computation. Superneurons [42] and
PipeSwitch [5] optimize instantaneous GPU memory by
prefetching model layers based on their computation or-
der. Similarly, ByteScheduler [37] and BytePS [24] accel-
erate the communication of distributed DNN training. Model-
Keeper [28] warms up model training to reduce the amount
of training execution needed. Egeria [43] adaptively freezes
the training of model layers and bypasses their computation.
These existing works focus primarily on conventional models,
whereas DLRM models are often bottlenecked by memory-

828 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

intensive embeddings. Moreover, AdaEmbed is complemen-
tary to these efforts as AdaEmbed can further improve their
optimized DLRM models.

Model Pruning Model pruning has been extensively stud-
ied to reduce model computation during training [11, 32], or
to generate smaller models after training completes [8, 38].
Importance sampling [17,29] performs weighted sampling on
training data to achieve faster training convergence. Existing
pruning systems and theories primarily focus on conventional
CV and/or NLP counterparts by pruning only the dense lay-
ers [12, 20, 36]. However, in DLRMs, the gigantic embedding
tables have become the bottleneck. This difference introduces
novel challenges since the dense layers and embedding ta-
bles are distinct components with unique characteristics. For
instance, dense layers are shared and accessed by all input
samples, whereas each embedding row corresponds to a spe-
cific feature instance and is only accessed by it, leading to the
heterogeneous importance of embeddings. Therefore, existing
solutions are ill-suited for DLRMs.

8 Conclusion
This paper introduces AdaEmbed, an in-training embedding
pruning system for better DLRM accuracy. AdaEmbed identi-
fies embedding rows with larger importance to model accu-
racy, and then adaptively prunes less important embeddings to
cap the total embedding size at scale. Our evaluations demon-
strate that AdaEmbed can reduce manual efforts by automati-
cally learning to use better per-feature embeddings, whereby
it saves 35-60% embedding size needed in deployment, and
achieves noticeable improvements on model accuracy and
model execution speed.

Acknowledgments
We thank our shepherd, Deepak Narayanan, and the anony-
mous reviewers for their insightful feedback that significantly
improved the final paper. Further, we thank Hagay Lupesko
and Jigar Desai for their continuous support throughout this
project at Meta. This work was supported in part by NSF
grants CNS-1909067, CNS-1900665, and CNS-2106184.

References
[1] HugeCTR: a high efficiency GPU framework designed

for Click-Through-Rate (CTR) estimating training.
https://developer.nvidia.com/nvidia-merlin/
hugectr.

[2] TensorFlow. https://www.tensorflow.org/.

[3] TorchRec. https://github.com/pytorch/
torchrec.

[4] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkatara-
man. Bagpipe: Accelerating deep recommendation
model training. arXiv preprint arXiv:2202.12429, 2022.

[5] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin.
Pipeswitch: Fast pipelined context switching for deep
learning applications. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 499–514. USENIX Association, November
2020.

[6] Brian R. Bartoldson, Ari S. Morcos, Adrian Barbu, and
Gordon Erlebacher. The generalization-stability tradeoff
in neural network pruning. In NeurIPS, 2020.

[7] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven
Whang, and Sudip Roy. Data validation for machine
learning. In SysML, 2019.

[8] Shih–Kang Chao, Zhanyu Wang, Yue Xing, and Guang
Cheng. Directional pruning of deep neural networks. In
NeurIPS, 2020.

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,
Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu,
and Hemal Shah. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, DLRS 2016,
page 7–10, New York, NY, USA, 2016. Association for
Computing Machinery.

[10] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Rec-
Sys, 2016.

[11] Xiaocong Du, Bhargav Bhushanam, Jiecao Yu, Dhruv
Choudhary, Tianxiang Gao, Sherman Wong, Louis Feng,
Jongsoo Park, Yu Cao, and Arun Kejariwal. Alternate
model growth and pruning for efficient training of rec-
ommendation systems. In arxiv.org/abs/2105.01064,
2021.

[12] Xiaocong Du, Bhargav Bhushanam, Jiecao Yu, Dhruv
Choudhary, Tianxiang Gao, Sherman Wong, Louis Feng,
Jongsoo Park, Yu Cao, and Arun Kejariwal. Alternate
model growth and pruning for efficient training of rec-
ommendation systems. In 2021 20th IEEE Interna-
tional Conference on Machine Learning and Applica-
tions (ICMLA), 2021.

[13] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-n-run: a checkpointing system for train-
ing deep learning recommendation models. In NSDI,
2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 829

https://developer.nvidia.com/nvidia-merlin/hugectr
https://developer.nvidia.com/nvidia-merlin/hugectr
https://www.tensorflow.org/
https://github.com/pytorch/torchrec
https://github.com/pytorch/torchrec

[14] A.A. Ginart, Maxim Naumov, Dheevatsa Mudigere,
Jiyan Yang, and James Zou. Mixed dimension embed-
dings with application to memory-efficient recommen-
dation systems. In ISIT, 2021.

[15] Carlos A. Gomez-Uribe and Neil Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Trans. Manage. Inf. Syst., 6(4), De-
cember 2016.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. 2016.

[17] Siddharth Gopal. Adaptive sampling for sgd by exploit-
ing side information. In ICML, 2016.

[18] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, and et al. The architectural implications of
facebook’s dnn-based personalized recommendation. In
HPCA, 2020.

[19] Vipul Gupta, Dhruv Choudhary, Peter Tang, Xiaohan
Wei, Xing Wang, Yuzhen Huang, Arun Kejariwal, Kan-
nan Ramchandran, and Michael W. Mahoney. Train-
ing recommender systems at scale: Communication-
efficient model and data parallelism. KDD, 2021.

[20] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neu-
ral networks. In NIPS, 2015.

[21] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, and et al. Applied machine learning at face-
book: A datacenter infrastructure perspective. In HPCA,
2018.

[22] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu,
Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich,
Stuart Bowers, and Joaquin Quiñonero Candela. Prac-
tical lessons from predicting clicks on ads at facebook.
In Proceedings of the Eighth International Workshop
on Data Mining for Online Advertising, ADKDD’14.
Association for Computing Machinery, 2014.

[23] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In SOSP, 2019.

[24] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
gpu/cpu clusters. In OSDI, 2020.

[25] Angelos Katharopoulos and François Fleuret. Not all
samples are created equal: Deep learning with impor-
tance sampling. In ICML, 2018.

[26] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Young-
jae Cho, Mark Hempstead, Brandon Reagen, Xuan
Zhang, David Brooks, Vikas Chandra, Utku Diril, Amin
Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S.
Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim
Naumov, Martin Schatz, Mikhail Smelyanskiy, and Xi-
aodong Wang. Recnmp: Accelerating personalized rec-
ommendation with near-memory processing. In ISCA,
2020.

[27] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[28] Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and
Mosharaf Chowdhury. ModelKeeper: Accelerating dnn
training via automated training warmup. In NSDI, 2023.

[29] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In OSDI, 2021.

[30] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: a
hybrid system scaling deep learning based recom-
menders up to 100 trillion parameters. arXiv preprint
arXiv:2111.05897, 2021.

[31] Rui Liu, Tianyi Wu, and Barzan Mozafari. Adam with
bandit sampling for deep learning. In NeurIPS, 2020.

[32] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong
Li. Learnable embedding sizes for recommender sys-
tems. In ICLR, 2021.

[33] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri
Joshi. Matchmaker: Data drift mitigation in machine
learning for large-scale systems. MLSys, 2022.

[34] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, and
et al. Software-hardware co-design for fast and scalable
training of deep learning recommendation models. In
KDD, 2021.

[35] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xi-
aodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng,
Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang,
Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Ki-
ran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen,
Manoj Krishnan, Avinash Nayak, Krishnakumar Nair,

830 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Bharath Muthiah, Mahmoud khorashadi, Pallab Bhat-
tacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews,
Lin Qiao, Mikhail Smelyanskiy, Bill Jia, and Vijay Rao.
Software-hardware co-design for fast and scalable train-
ing of deep learning recommendation models. ISCA,
2022.

[36] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xue-
hai Qian, Xue Lin, Yanzhi Wang, and Bin Ren. Patdnn:
Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning. In ASPLOS, 2020.

[37] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In SOSP, 2019.

[38] Victor Sanh, Thomas Wolf, and Alexander M. Rush.
Movement pruning: Adaptive sparsity by fine-tuning. In
NeurIPS, 2020.

[39] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong,
Feng Lin, Junyu Wu, Yongsheng Li, Haidong Rong,
Pierre-Louis Aublin, and Luo Mai. Ekko: A Large-Scale
deep learning recommender system with Low-Latency
model update. In OSDI, 2022.

[40] Brent Smith and Greg Linden. Two decades of rec-
ommender systems at amazon.com. In IEEE Internet
Computing, 2017.

[41] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In OSDI, 2021.

[42] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
Superneurons: Dynamic gpu memory management for
training deep neural networks. In PPoPP, 2018.

[43] Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and
Mosharaf Chowdhury. Egeria: Efficient dnn training
with knowledge-guided layer freezing. In EuroSys,
2023.

[44] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian
Gao, Kai Ren, and Jiwu Shu. Fleche: An efficient gpu
embedding cache for personalized recommendations.
EuroSys, 2022.

[45] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: Memory-efficient
continual learning for large-scale real-time recommen-
dations. In SC, 2020.

[46] Li Yan, Choudhary Dhruv, Wei Xiaohan, Yuan Baichuan,
Bhushanam Bhargav, Zhao Tuo, and Lan Guanghui.
Frequency-aware sgd for efficient embedding learning
with provable benefits. ICLR, 2022.

[47] Ying Yan, Liang Jeff Chen, and Zheng Zhang. Error-
bounded sampling for analytics on big sparse data. 2014.

[48] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing
Liu. TT-Rec: Tensor train compression for deep learning
recommendation models. In MLSys, 2021.

[49] Zi Yin and Yuanyuan Shen. On the dimensionality of
word embedding. NIPS’18, 2018.

[50] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong
Han, Yuhang Jiang, Ding Tang, Zilong Wang, Kai Chen,
and Chuanxiong Guo. FAERY: An FPGA-accelerated
embedding-based retrieval system. In OSDI.

[51] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Rui-
quan Ding, Mingming Sun, and Ping Li. Distributed
hierarchical gpu parameter server for massive scale deep
learning ads systems. MLSys, 2020.

[52] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. AIBox: CTR prediction model
training on a single node. CIKM, 2019.

[53] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In KDD, 2018.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 831

BWoS: Formally Verified Block-based Work Stealing for Parallel Processing

Jiawei Wang1,2,3, Bohdan Trach1,2, Ming Fu1,2,∗, Diogo Behrens1,2, Jonathan Schwender1,2,
Yutao Liu1,2, Jitang Lei1,2, Viktor Vafeiadis4, Hermann Härtig3, and Haibo Chen2,5

1Huawei Dresden Research Center 2Huawei Central Software Institute
3Technische Universität Dresden 4Max Planck Institute for Software Systems

5Shanghai Jiao Tong University

Abstract
Work stealing is a widely-used scheduling technique for paral-
lel processing on multicore. Each core owns a queue of tasks
and avoids idling by stealing tasks from other queues. Prior
work mostly focuses on balancing workload among cores, dis-
regarding whether stealing may adversely impact the owner’s
performance or hinder synchronization optimizations. Real-
world industrial runtimes for parallel processing heavily rely
on work-stealing queues for scalability, and such queues can
become bottlenecks to their performance.

We present Block-based Work Stealing (BWoS), a novel
and pragmatic design that splits per-core queues into multiple
blocks. Thieves and owners rarely operate on the same blocks,
greatly removing interferences and enabling aggressive opti-
mizations on the owner’s synchronization with thieves. Fur-
thermore, BWoS enables a novel probabilistic stealing pol-
icy that guarantees thieves steal from longer queues with
higher probability. In our evaluation, using BWoS improves
performance by up to 1.25x in the Renaissance macrobench-
mark when applied to Java G1GC, provides an average 1.26x
speedup in JSON processing when applied to Go runtime,
and improves maximum throughput of Hyper HTTP server
by 1.12x when applied to Rust Tokio runtime. In microbench-
marks, it provides 8-11x better performance than state-of-the-
art designs. We have formally verified and optimized BWoS
on weak memory models with a model-checking-based frame-
work.

1 Introduction
Many language runtimes and similar systems (e.g., JVM [104],
Go [36], Rust’s Tokio [38]) divide their work into smaller
units called tasks, which are executed asynchronously on mul-
tiple cores and whose execution can generate further tasks. To
achieve good performance, the task scheduler has to ensure a

*Ming Fu (ming.fu@huawei.com) is the corresponding author.

Flame Graph

testing.(*B).doBench.func1

ru..

r..
r..

runtim..

runt..

runtime.gcBgMarkWorker.func2

foo

runtim..

github.com/..

runt..

sy.. runt..

runtim..
ru..

swapper

ru..

ru..

runtime.p..
__sec..runtime.systemstack.abi0

testing.(*B).launch

github.com/goccy/go-json.unmarshal
runtime.mallocgc

r..
github.com..

ru..

ru..
runtime.newobject

github.com/goccy/go-json/internal/decoder.(..

testing.(*B).runN

ru..

runtime...

runtime.goexit.abi0

cpu..benchmark.Benchmark_Decode_SmallStruct_Unmarshal_GoJson

arc..

cpu_s..

github.. github.com/g..

runtime...

runt..
g..

def..

do_idle

runtime.m..

runtime.gcDrain
runt..

secon..

Flame Graph

r..

github.com/goccy/go..

runtime.goexit.abi0
foo

a..
r..

github.com/goccy/..

runtime.gcDr..

runtim.. runtime.systemstack..
n..

sy..

testing.(*B).launch

sw..

github.com/goccy/go-json.unmarshal
run..

testing.(*B).doBench.func1

d..
g..g..

github.com/goccy/g..
g..

se..

run..

r..

github.com/goccy/go-json/internal/decoder.(*structDecoder).Decode

runtime.gcBg..

c..

cp..
do..

benchmark.Benchmark_Decode_SmallStruct_Unmarshal_GoJson

github.c..

runti..
runtim..

runtime.mallocgc

__..
runti..

runtime.newobject

run..

r.. testing.(*B).runN runti..

Decoding Scheduling

GC Worker CPU Idle

51%

71%

7%

5% 9%

20%

3%

5%

Figure 1: Profiling results for go-json complex object decod-
ing (~1µs/op) benchmark [9], with the original work stealing
queue (up) and with BWoS (down).

good workload distribution (preventing idle cores while there
are pending tasks) with a low scheduling overhead.

Achieving these goals, however, is non-trivial. Storing the
tasks in a single queue shared by all cores achieves optimal
workload distribution, but incurs a huge overhead due to con-
tention. Using per-core task queues minimizes the overhead
per operation, but can easily lead to a skewed workload dis-
tribution, with some cores remaining idle while others have
queued work.

Work stealing [51] is a trade-off between these two ex-
tremes: each core owns a queue (owner) and acts as both
the producer and the consumer of its own queue to put
and get tasks. When a core completes its tasks and the
queue is empty, it then steals another task from the queue
of another processing core to avoid idling (thief). A num-
ber of stealing policies [69, 76, 77, 83, 88, 100] have been
proposed to choose the proper queue (victim) to steal from,
which can bring significant speedups depending on the use-
cases. Due to these features, work stealing is widely used
in parallel computing [22, 35, 56, 64, 65, 85, 93, 97], par-
allel garbage collection [60, 68, 69, 96, 101], GPU envi-
ronment [52, 54, 99, 102, 103], programming language run-
times [26,36,38,50,63,80,81], networking [86] and real-time
systems [82].

However, as parallel processing is applied to more work-
loads, current implementations of work stealing become a bot-
tleneck, especially for small tasks. For example, web frame-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 833

mailto:ming.fu@huawei.com

works running over lightweight threading abstractions, such
as Rust’s Tokio and Go’s goroutines, often contain many very
small tasks, leading the Tokio runtime authors to observe
that “the overhead from contending on the queue becomes
significant” and even affects the end-to-end performance [28].
Similarly, high-performant garbage collectors, such as Java
G1GC [13], rely on work stealing for parallelizing massive
mark/sweep operations, which comprise only a few instruc-
tions. The work stealing overhead becomes a performance
bottleneck for GC [68, 69, 96, 101].

As a third example, in Fig. 1, we profile the GoJson ob-
ject decoding benchmark, which uses goroutines both for GC
workers and for parsing complex objects. Only 51% of all
CPU cycles constitute the useful workload (JSON decoding).
The remaining cycles are spent on the runtime code, includ-
ing 7% on lightweight thread scheduling, 20% on GC, 5%
on kernel code idling the CPUs, etc. As both the scheduler
and the GC code rely on work stealing, improving its perfor-
mance can result in massive efficiency gains. Furthermore, the
benefit is not limited to the above-mentioned scenarios, but
expands to all fine-grained tasks parallel processing scenarios.
Thus, we ask the following question: How can we improve
performance of work-stealing queues for fine-grained tasks
to the benefit of a large range of common applications?

Existing work-stealing queues suffer from four main
sources of inefficiency:

P1: Synchronization overhead. Due to the possibility of
a steal, local queues must use stronger atomic primitives (e.g.,
atomic compare-and-swap and memory barriers) than a purely
sequential queue. Queues with a FIFO policy are generally
implemented as single-producer multiple-consumer (SPMC)
queues [8, 17, 39, 47], thereby treating steal similarly to get,
and thus distributing the costs of stealing equally between
owner and thieves. This also applies to the existing block-
based queues [106], which lack any optimizations specific to
the work-stealing use case to achieve high performance in the
presence of thieves (§6.2, §7). Queues with a LIFO policy,
such as the well-known and widely-used ABP queue [35, 48,
104], suffer from memory barrier overhead [83, 98] to avoid
the conflict between the owner and thieves, even when they
operate on different tasks.

P2: Thief-induced cache misses. Since steals update the
metadata shared between the owner and the thieves, they cause
cache misses on subsequent accesses to the queue by its owner.
This problem is especially apparent on unbalanced workloads,
which feature high steal rates—for example, in the JVM Re-
naissance benchmarks [95], 10% of all items are stolen on
average. Although strategies such as batching (e.g., steal-
half [66]) can reduce the frequency of steals, they often cause
overstealing which introduces additional overhead (§2.1.3).

P3: Victim selection. To improve the workload distribu-
tion, advanced policies for selecting the victim queue to steal
from require scanning the metadata of several queues, e.g., to

find the longest queue. Doing so, however, causes contention
for its owner and severely limits the improvement from ad-
vanced victim selection policies (§2.1.3).

P4: Correctness under weak memory models (WMMs).
Correctly implementing concurrent work-stealing queues on
weak memory architectures, such as Arm servers for datacen-
ters [46,70], is very challenging because it requires additional
memory barriers to prevent unwanted reordering. Using re-
dundant barriers can greatly reduce the performance of work-
stealing [79], while not including enough barriers can lead
to errors, such as in the C11 [6] version of the popular un-
bounded Chase-Lev deque translated from formally verified
ARMv7 assembly [90]. Even the popular Rust Tokio runtime
required a fix to its implementation of work stealing [2].

Contribution. In response, we introduce BWoS, a block-
based work stealing (BWoS) bounded queue design, which
provides a practical solution to these problems, drastically re-
ducing the scheduling overhead of work stealing. Our solution
is based on the following insights.

First, we split each per-core queue into multiple blocks
with independent metadata and arrange for the owner and
the thieves to synchronize at the block level. Therefore, in
the common case where operations remain within a block,
we can elide synchronization operations and achieve almost
single-threaded performance (§3.2). Similarly, since a queue
owner and the thieves share only block-local metadata, they
do not interfere when operating on different blocks (§2.1). We
can arrange for that to happen frequently by allowing stealing
tasks from the middle of the queue.

Second, we improve victim selection with a probabilistic
policy, which approximates selecting the longest queue (§3.4),
while avoiding the severe interference typical of the prior state-
of-the-art (§2.1), to which we can integrate NUMA-awareness
and batching.

Finally, we ensure correctness under WMMs by verifying
BWoS with the GenMC model checker [74,75] and optimizing
its choice of barriers with the VSync toolchain [92] (§5).

As a result, BWoS offers huge performance improvements
over the state-of-the-art (§6). In microbenchmarks, BWoS
achieves up to 8-11x throughput over other algorithms. In
representative real-world macrobenchmarks, BWoS improves
performance of Java industrial applications by up to 25%
when applied to Java G1GC, increases throughput by 12.3%
with 6.74% lower latency and 60.9% lower CPU utilization for
Rust Hyper HTTP server when applied to the Tokio runtime,
and speeds up JSON processing by 25.8% on average across
9 different libraries when applied to the Go runtime.

Returning to our motivating example (Fig. 1), applying
BWoS to the Go runtime removes 29% of scheduling time,
55% of GC time, and 40% of CPU idle time, while increasing
the CPU time ratio for useful work from 51% to 71%.

834 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FI
FO

_s
eq

LI
FO

_s
eq

to
ki

oq ab
p

go
ro

ut
in

eq bb
q

ei
ge

nq
co

ro
ut

in
eq

0

2

4

6

Th
ro

ug
hp

ut
 (o

p/
s)

×108

(a)

abp-ideal same numa diff numa

0.00 0.05 0.10
Thief (op/s) ×108

0.0

0.5

1.0

Ow
ne

r (
op

/s
)

×108

17.8%

25.2%

(b)

0.00 0.05 0.10
Getsize (op/s) ×108

0.0

0.5

1.0

Ow
ne

r (
op

/s
)

×108

7.5%

34.4%

(c)

.. 8 4 2
Stealing Batch Size

0

2

4

6

Re
q.

 th
ro

ug
hp

ut
 (r

eq
/s

) ×105

0

2

4

6

St
ea

l o
p.

 fr
eq

ue
nc

y
(o

p/
s)

×105

40

50

60

70

Ta
sk

 st
ol

en
 p

er
ce

nt
ag

e
(%

)

(d)

same numa <1>
same numa <64>

diff numa <1>
diff numa <64>

0.00 0.25 0.50
t1: Write (op/s) ×108

0.0

2.5

5.0

t0
: W

rit
e

(o
p/

s)

×108

(e)

0.00 0.25 0.50
t1: Read (op/s) ×108

0.0

2.5

5.0

t0
: W

rit
e

(o
p/

s)

×108

(f)

Figure 2: Motivating benchmarks: (a) Sequential performance of state-of-the-art work stealing algorithms. (b,c) Performance of
the ABP queue owner depending on the frequency of (b) steal and (c) getsize operations. (d) Hyper HTTP server performance
with different stealing batch sizes with the original Tokio work stealing queue: S is the victim queue size and S/2 refers to the
default steal half policy [66]. (e,f) Interference between two threads for two sizes of cacheline sets.

2 Background
Task processing. Tasks vary a lot among benchmarks. Their
processing time ranges from a few nanoseconds (e.g., Java
G1GC [13]), to microseconds (e.g., RPC [55, 73, 108]), and
even to seconds (e.g., HPC tasks [35]). In this paper, we
mainly focus on the nanosecond- and microsecond-scale tasks.
Ignoring steals, tasks may be processed either:

• in FIFO (first-in-first-out) order, when minimizing process-
ing latency is important (e.g., network connections), or

• in LIFO (last-in-first-out) order, when only the overall exe-
cution time matters, as is often the case with multithreaded
fork-join programs [57].

We use the term queue to refer to the instances of work steal-
ing data structures without implying a specific task ordering.

Victim selection. There are multiple policies for selecting the
victim queue to steal from. Random [51] chooses one of the
remaining queues uniformly at random: it has the least com-
plexity but achieves poor load balancing. Size-based policies
(e.g., best of two [88] and best of many [69]) scan the queues’
size to improve the load balance by stealing from a large
queue. The NUMA-aware policy [77] was proposed to opti-
mize the remote communication cost, by tending to steal from
the queues in the local cache domain. Batch-based policies
(e.g., steal half [66] is used in Go and Rust’s Tokio runtimes)
allow thieves to steal multiple tasks at once to reduce their
interference with the owner. Later in this section (§2.1.3),
we will quantify these overhead sources to guide our queue
design.

2.1 Performance Overhead Breakdown
Next, we analyze the state-of-the-art work stealing algorithms
to dissect their performance issues, and motivate the design
decisions of BWoS. Fig. 2 contains our experimental results
on an x86 server [71].

2.1.1 Cost of Synchronization Operations
As steals may happen at any time, strong atomic primitives
are introduced for local queue manipulation. To quantify their
cost, we first measure the throughput of the state-of-the-art

Thief: cost of
communication

Victim: cost of
interference Overhead

reduction
1− Cs+Is

Cd+Id

same
node
(Cs)

diff
node
(Cd)

same
node
(Is)

diff
node
(Id)

abp
15ns 141ns

170ns 278ns 56%
ideal – – 90%

Table 1: Reducing the stealing overhead with a NUMA-aware
policy.

work stealing algorithms on a sequential setup where an owner
puts and gets data from its local queue, without any tasks ever
being stolen (§6.2). We compare the results with the the-
oretical performance upper bound: a single-threaded FIFO
(FIFO_seq) or LIFO (LIFO_seq) queue implementation [72]
without support for steals. Although there is no owner-thief in-
terference, these synchronization operations pose a huge over-
head (Fig. 2a): throughput of these work stealing algorithms
is less than 0.25x for FIFO-based (0.19x for LIFO-based)
compared to the upper bound.

2.1.2 Interference Cost with Thieves

To estimate how thieves affect the throughput of the owner,
we consider an ABP queue benchmark with an owner and
one thief, which steals tasks from the queue with various
frequencies (one queue and two threads in total). As the “ideal”
baseline, we take the single-threaded performance of the ABP
queue (i.e., with no steals). To account for any NUMA effects
in this measurement, we use two configurations, running the
thief in the same or in different NUMA nodes.

As we can see in Fig. 2b, the thief significantly degrades the
owner’s throughput: e.g., by stealing only 1% of the tasks, the
owner’s throughput drops by 17.8% when the thief is in the
same NUMA node, and by 25.2% when it runs in a different
NUMA node. This degradation happens because of the cache
interference between the owner and the thief on the shared
metadata. We will further explain this in §2.2.

2.1.3 Overhead due to Victim Selection

There are two main sources of stealing overhead: first, a sub-
optimal victim selection can lead to workload imbalance trig-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 835

gering more stealing; second, the cost of steal operations.

Size-based policies. Policies like best of two [88] or best
of many [69] read global metadata of multiple queues (their
length) to determine the victim. Somewhat surprisingly, as
shown in Fig. 2c, these reads introduce significant overhead
for the owner, especially in the cross-NUMA scenario: even
with a getsize frequency of only 1%, the owner throughput
drops by 34.4%. This is further amplified as getsize is called
multiple times for a single steal.

Therefore, for size-based policies, although reading more
queues’ sizes (e.g., best of many [69]) can achieve better load
balance, it inevitably induces more slowdown to the owners
of these queues (§6).

NUMA-aware policies. NUMA-aware policies [77] try to
reduce the overhead of each steal by prioritizing the stealing
from queues in the same NUMA node. We observe that al-
though such NUMA-aware policies can reduce the overhead
of steals by 56% in the case of our ABP queue benchmark,
they fail to achieve their full potential.

In Table 1, we break down the overhead of stealing in the
ABP queue into its two main parts: the thief’s communication
cost and the owner’s interference penalty. The former is 141ns
when the thief and owner run on different NUMA nodes (mea-
sured by Intel MCA [21]), and reduces to 15ns (consistent
with the L3 cache access latency [7]) when they are at the
same NUMA node. The victim’s interference penalty is 170ns
and 278ns for cases of thief and victim running on the same
(Is) and different (Id) NUMA domains respectively. NUMA-
aware policies with existing queues can typically eliminate
the first communication overhead, while leaving the second
interference overhead not sufficiently optimized.

With long enough queues, steals could ideally happen at a
different part of the queue and cause no interference to the
victim. This would reduce Is and Id to zero, resulting in a 90%
improvement due to NUMA-awareness (rather than 56%).

Batch-based policies. Batch-based policies steal more tasks
at once with the aim of reducing the frequency of steals. In-
deed, in the Hyper HTTP server benchmark (see Fig. 2d),
choosing larger batch sizes leads to a reduction in the number
of steal operations. These larger steal operations, however,
make the workload even less balanced (i.e. percentage of
stolen tasks increases), which results in additional overhead
(e.g., task ping-pong), canceling out the overhead reduction
due to the fewer steals: the end-to-end throughput remains
roughly the same.

2.2 Recap to Motivate BWoS
In summary, the owner’s performance suffers both from the
synchronization cost, and the interference with thieves (due to
victim selection and task stealing). This interference occurs
because of cache contention on the queue metadata: write-
write interference with steal, and read-write interference with
getsize in size-based stealing policies.

To better understand the effects of these types of cache
contention, we conduct a simple microbenchmark with two
threads: thread t0 continuously writes to a cacheline, while
thread t1 either reads or writes to a cacheline with a specified
frequency (Figs. 2e and 2f). The cachelines for t0 and t1 are
independently and randomly chosen on each iteration out of
the cacheline sets of two sizes: 1 or 64.

In both cases, the cache contention on a single cacheline
significantly harms the throughput of t0, regardless of the
NUMA domain proximity. Introducing multiple cachelines
(64 in this case) reduces the contention and significantly im-
proves the throughput. Therefore, in the design of BWoS we
separate the metadata.

3 Design

BWoS is based on a conceptually simple idea: the queue’s
storage is split into a number of blocks, and the global mutable
metadata shared between thieves and owner is replaced with
the per-block instances.

The structure of BWoS queue facilitates abstracting the op-
erations into block advancement that works across blocks, and
fast path that operates inside of the block chosen by the block
advancement (§3.1). Moving most of the synchronization
from the fast path to the block advancement allows BWoS
to fully reap the performance benefit indicated by our pre-
vious observation (§2.1.1) thus approaching the theoretical
upper bound. get and steal always happen on different blocks.
We carefully construct the algorithm such that thieves cannot
obstruct the progress of get, while get can safely takeover a
block from thieves operating on it without waiting for them.
For complexity consideration, we don’t prohibit put and steal
in the same block1, as they can synchronize with the weak
barriers without losing performance (§6.2).

As metadata is also split per block, thieves and the owner
are likely to operate on different blocks and thus update dif-
ferent metadata. As explained in §2.2, this reduces the in-
terference between thieves and the owner. For FIFO-based
BWoS, block-local metadata allows stealing from the middle
of the queue, without enforcing the SPMC queue restriction
of always stealing the oldest task, which is not required by
the workloads.

BWoS can benefit from NUMA-aware policies more than
other queues because the reduction in interference for the
victim makes both constituents of cross-NUMA-domain steal-
ing overhead negligible (Table 1). Furthermore, unlike batch-
based policies, stealing policies integrated with BWoS can fo-
cus on balancing the workload itself without worrying about
the interference from frequently called steal.

1Nevertheless, it is guaranteed automatically in LIFO BWoS.

836 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 bool queue<E>::put(E e){
2 again:
3 blk = blk_to_put();
4 switch(blk.put(e))
5 case success():
6 return true;
7 case blk_done(rnd):
8 if (adv_blkput(blk,rnd))
9 goto again;
10 else return false;
11 }
12 E queue<E>::get(){
13 again:
14 blk = blk_to_get();
15 switch(blk.get())
16 case success(e):
17 return e;
18 case empty:
19 return null;
20 case blk_done(rnd):

21 if (adv_blkget(blk,rnd))
22 goto again;
23 else return null;
24 }
25 E queue<E>::steal(){
26 again:
27 v, blk = blk_to_steal();
28 switch(blk.steal())
29 case success(e):
30 return e;
31 case empty:
32 return null;
33 case conflict:
34 goto again;
35 case blk_done(rnd):
36 if (adv_blksteal(v,
37 blk,rnd))
38 goto again;
39 else return null;
40 }

Figure 3: Pseudocode of put, get, and steal operations.

3.1 Bird’s-Eye View of the Queue
To better understand the block-based approach, let’s consider
the put, get, and steal operations of the BWoS queue (Fig. 3).
For each of these operations, the first step is to select a block
to work on (lines 3, 14, and 27). The owner uses the top block
for put and get for the LIFO BWoS, and gets from the front
block and puts to the back block for the FIFO BWoS. In this
case, top, back, and front block pointers are owner-exclusive
metadata which is unavailable to the thieves. For steal, the
choice of the block is more complicated and we will explain
it in a later section (§3.4).

After selecting the block, operations execute the fast path
(lines 4, 15, and 28), which may return one of the three results:
(1) The fast path succeeds, returning the value for get and steal.
(2) The fast path fails because there is no data to consume
(lines 18 and 31) or because a thief detects a conflict with
other thieves or with the owner due to the takeover (line 33).
In case of a conflict, the fast path is retried (line 34), otherwise
null value is returned. (3) The margin (beginning or end) of
the current block is reached (lines 7, 20, and 35). In this case,
the operation tries to move to the next block by performing
the block advancement, and retries if it succeeds, otherwise
returns the empty or full queue status.

Splitting the global metadata into block-level instances
enables splitting the operations into the fast path and block ad-
vancement, which increases the performance by keeping the
fast path extremely lightweight. However, the lack of global
mutable metadata shared between owner and thieves raises
additional challenges, which are mostly delegated to the block
advancement—it is now responsible for maintaining complex
block-level invariants. We introduce the following invariants:
(1) put never overwrites unconsumed data;
(2) steal and get never read the same data;
(3) steal and get never read data that has been read before;
(4) steal in progress cannot prevent get from reading from
a thieves’ block. Before explaining fast path and block ad-

0

1

2

3

4

5

adv_blkputadv
_blk

get

adv_blksteal

blk_to_steal()

blk_to_get()

blk_to_put()

top

bottom

e
m
p
ty

e
m
p
ty

(a) LIFO BWoS

0

1

2

3

4

5

adv_blkput

adv_blkget

blk_to_put()

blk_to_get()

back

front

blk_to_steal()

e
m
p
ty

e
m
p
ty

(b) FIFO BWoS

Figure 4: Block-level synchronization in BWoS.

START

round
b0 b1 … bn

+
…

ad
v_b

lk(b
0,_)

ad
v_b

lk(b
n-1
,_)

1 …0 0
b0 b1 … bn

1 …1 0

1 0 0…
+

1 0 0…

ad
v_b

lk(b
1,_)

b0 b1 … bn
1 …1 1

+
1 0 0…

ad
v_b

lk(b
n,_)

b0 b1 … bn

+
2 …1 1

1 0 0…

…

Figure 5: Update of round numbers in each block.

vancement implementations, we introduce two key concepts
we rely on to ensure that the abovementioned invariants hold:
block-level synchronization (§3.2) and round control (§3.3).

3.2 Block-level Synchronization
Block-level synchronization is the key responsibility of the
block advancement and ensures that thieves never steal from
the block currently used for get operations. Each block is
owned either by the owner or by the thieves. For example,
in Fig.4, blocks with lighter and darker colors belong to the
owner and thieves respectively. The owner grants a block to
the thieves, or takes a block back from them with block ad-
vancement. More specifically, for LIFO BWoS, get advances
to the preceding block (3 to 2) and takes it over from thieves;
put grants the current one and advances to the following block
(3 to 4). For FIFO BWoS, get (resp. put) advances and takes
over (resp. grants) the following block.

The grant and takeover procedures are based on the thief
index—an entry in the block metadata that indicates the steal-
ing location inside the block. Takeover sets this index to the
block margin with an atomic exchange, and uses the old value
as the threshold between the owner and the ongoing thieves in
this block. This ensures that owner is not blocked by thieves
when it takes over the block. Moreover, concurrent owner
and thieves never read the same data because the threshold
between them is set atomically. Similarly, the grant procedure
transfers the block to thieves by writing the threshold to the
thief index. We will introduce the details in §4.2.1.

3.3 Round Control
Each block also records round numbers of the last data access.
When advancing block, the current block’s round is copied
over to the next block; except in the case of a wrap-around,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 837

where the block number is increased by 1 (Fig. 5).
In fact, there are producer, consumer, and thief round num-

bers in each block. When the producer tries to write round
r’s data into a block, the consumer and thieves must have
finished reading all data with round r−1 from that block; so
that the producer never overwrites any unread data. Similarly,
when the consumer or a thief tries to read round r’s data from
a block, the producer’s round at that block must already be r;
this prevents reading any data twice, or reading data that was
never written. Details can be found in §4.2.2.

3.4 Probabilistic Stealing
As discussed in §2.1.3, size-based policies can achieve better
load balance at the cost of degrading the performance of the
owner of each queue. Calculating the size is even harder in
our setting because the appropriate metadata is distributed
across all blocks. However, BWoS brings an opportunity to
have a new size-based, probabilistic stealing policy, which
can provide strong load balance without adversely affecting
the owner’s performance.

We ensure strong load balancing by making the probability
of choosing a queue as a victim proportional to its size. We
implement this approach with a two-phase algorithm: the
Pselect phase first selects a potential victim randomly, and
then the Paccept phase decides whether to steal from it with
probability S/C , where S is the selected queue’s size and C
is its capacity; otherwise (with probability 1−S/C) it returns
to Pselect for a new iteration.

Therefore, given a pool of N queues each with the same
capacity and a selector in Pselect that selects each queue with
equal probability, Paccept can guarantee that the probability of
a thief stealing from a queue is proportional to its size.

To minimize the impact on the owner’s performance, in-
stead of measuring S , we estimate S/C directly by sampling.
The thief chooses a random block from all blocks of the queue
and checks if it has data available for stealing, where the prob-
ability of returning true is close to S/C . As the thief reads
only one block’s metadata, its interference with the owner is
minimal (cf. §2.2).

For FIFO BWoS, the above approach can achieve zero-
overhead for steals: after the estimation returns true, we can
steal from the block used for estimation directly, as block-
local metadata enables thieves to steal from any block which
has been granted to thieves. We call this instance of applying
our probabilistic stealing policy to FIFO BWoS a randomized
stealing procedure.

For LIFO BWoS, stealing still happens from the bottom
block (Fig. 4). Thieves advance to the following block when
they finish the current one. For FIFO BWoS, thieves do not
advance block when randomized stealing is enabled, and fall
back to the stealing policy for selection of the new queue and
block instead (§3.4). In this case, the operation to advance to
the next block on stealing (Fig. 3 line 36) becomes a no-op.

f_pos b_pos

blk s_cnt = …

get putbget f
b_pos

put
s_pos

blk

steal
0 NE 0 NE

Figure 6: Put, get, and steal operations inside the block.

Moreover, we can further combine the probabilistic steal-
ing policy with a variety of selectors for Pselect phase (e.g.,
from NUMA-aware policy), to benefit from both better work-
load balance and reduced stealing cost. Results show that
the hybrid probabilistic NUMA-aware policy brings the best
performance to BWoS (§6).

4 Implementation

4.1 Single-Block Operations (Fast Path)
Let’s consider how put, get, and steal operations inside the
block are implemented (lines 4, 15, and 28 in Fig. 3). Because
get and steal always happen on different blocks, we only
need to consider two cases of multiple operations in a block:
producer-consumer and producer-thieves (Fig 6).

To support these cases, each block has 4 metadata variables:
entries which are ready for the consumer in the block are
between the front position (f_pos) and back position (b_pos),
while thieves use the stealing position (s_pos) and a counter
of finished steals in the block (s_cnt) for coordinating among
themselves and with the producer respectively.

To produce a value, put first checks whether it reaches the
block margin NE (number of entries), if not, writes the data
into the producer position (b_pos), and lets it point to the next
entry.

To consume a value, there are two get operations, get f

and getb, which correspond to the FIFO and LIFO BWoS
respectively. get checks whether the block margin has been
reached, or if the block has run out of data (f_pos has reached
b_pos), if not, it reads the data and updates the consumer
position variable in the block metadata. The two variants of
get differ in which position variables and boundaries they use.
get f uses f_pos as consumer position variable, NE as block
margin, and b_pos as boundary of valid data. getb uses b_pos,
zero position of the block, and f_pos for the same purposes,
respectively.

Thieves follow a similar pattern: steal first checks if it
has reached the block margin, or if the block has run out
of data (s_pos has reached b_pos). Then, it updates s_pos
using an atomic compare-and-swap (CAS) to point to the next
entry, reads the data, and finally updates s_cnt with an atomic
increment. If the CAS fails, steal returns conflict. (CAS is
used because multiple thieves can operate in the same block.)

All of these operations return block_done when they reach
a block margin. Otherwise, if the block runs out of data, get
and steal return empty.

838 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

LI
FO

s_pos

s_cnt = 0

bottom

f_pos

top
b0 b1

b_pos

a b c d

b_pos

e f

f_pos b_pos

top

s_pos

s_cnt = 0

bottom
b0

a b c d

b_pos

b1

s_pos

s_cnt = 0

bottom
b0

a b c d

b_pos

top

f_pos
s_pos

s_cnt = 1

bottom
b0

? ? c g

b_pos

top

f_pos s_pos

s_cnt = 1

bottom
b0

? ? c g

b_pos f_pos b_pos

top
b1

h i

s_pos b_pos

bottom
b0

s_cnt = 4

put(a
..f)

get(
f,e

)

tak
eo

ver

get(
d)

ste
al(a

,b)

put(h
,i)

gran
t

ste
al’(

?,?,?)

put(g
)

 ste
al’(

?)

ste
al(c

,g)

① ② ③ ④ ⑤ ⑥

FI
FO

f_pos

s_cnt = 0

front

s_pos

back
b0 b1

b_pos

a b c d

b_pos

e f

b_pos

back

f_pos

s_cnt = 1

front
b0

? ? g

b_pos

b1

s_pos

s_cnt = 3

front
b1

? ? g

b_pos

back

f_pos f_pos

s_cnt = 3

front
b1

? ? g h

b_pos b_pos

back
b2

i

 b_pos

front
b1

s_cnt = 4

put(a
..g

)

get(
a..d

)

tak
eo

ver

ste
al(e

,f)

put(h
,i)

gran
t

ste
al’(

?)
g

ste
al’(

?)

s_pos b_pos

b2

s_pos

s_cnt = 0

s_poss_pos

get(
g,h)

f_pos
s_pos

① ② ③ ④ ⑤

Figure 7: Takeover and grant procedures in block advancement.

4.2 Block Advancement
In case a block margin is reached, put, get, and steal move to
the next block: They first check whether advancing is permit-
ted by the round control, and if so, they call takeover (by get)
or grant (by put) procedures, and reset block-level metadata.

4.2.1 Takeover and Grant Procedures
We explain the takeover and grant procedures using a queue
with 4-entry blocks as an example (Fig. 7).

LIFO. Let us assume that 6 elements (a-f) were put into the
queue. Thus, the owner is in the block b1; b_pos in b0 and b1
becomes 4 and 2 respectively, while f_pos and s_pos remain
at the initial value (0) (state 1⃝). Then, two actions happen
concurrently: two thieves try to steal entries, updating s_pos
in b0 to 2, and start to copy out the data (steal on Fig. 7), while
the owner gets 3 values, consuming f, e (state 2⃝), and advanc-
ing to b0, thus starting the takeover. To perform the takeover,
the owner atomically exchanges s_pos with the block mar-
gin (4), and then sets f_pos to the previous s_pos value (2)
(state 3⃝). After the takeover, the owner gets d and puts g.
Meanwhile, one ongoing steal completes (steal’ on Fig. 7),
increasing s_cnt by 1 (state 4⃝). It does not matter which of
the two completes first. When the owner puts new items h and
i, it grants b0 to thieves and advances to b1. To perform the
grant, it sets s_pos to the f_pos value (2), indicating to thieves
that the block is available (state 5⃝). After thieves steal all
entries in b0, s_cnt reaches the block margin (state 6⃝). Thus,
b0 can be reused in the next round.

FIFO. First, the producer puts 7 elements (a-g) into the queue.
The producer and the consumer are in b1 and b0 respectively,
and thieves can steal from b1 (state 1⃝). Then, the consumer
gets all elements in b0, and advances to b1 (state 2⃝). This re-
quires taking over b1 from thieves: for this purpose, it updates
s_pos and f_pos in the same way as the LIFO BWoS, but also
adds the difference between the new f_pos (2) and the block
margin (i.e. length of the block) to s_cnt (state 3⃝). This way,
when all thieves finish their operation in b1, its s_cnt will be
equal to the block margin. After that, the producer puts a new
item h, and advances to b2 granting it to thieves (state 4⃝).

Finally, both thieves and the consumer have read all entries
from b1, its f_pos and s_cnt are equal to the block margin
(state 5⃝). The producer uses this condition to check if the
block can be reused for producing new values into it.

4.2.2 Round Control and Reset Procedure
To implement round control (§3.3), the position variables
in block metadata (f_pos, b_pos, s_pos, s_cnt) contain both
the index or counter (idx field) as described in §4.2.1 and
the round number (rnd field). We fit both components into a
64-bit variable that can be updated atomically.

Consider, for example, the put operation of FIFO BWoS
(Fig. 8). In put, when the producer idx reaches the block
margin NE of the block blk (step 1⃝), the new round x of
the next block nblk is calculated as described in §3.3 (step
2⃝). When advancing to the block nblk with the producer

round x, the producer checks that the consumer and the thieves
have finished reading all data from the previous round in nblk
by checking if their idx fields are equal to NE and their rnd
fields are x−1 (step 3⃝). When the check succeeds, the new
value with the index 0 and the round x will be written into
the producer position variable (step 4⃝), thus resetting the
block for the next round producing. Otherwise, a “queue full”
condition is reported.

The get operation of the FIFO BWoS is similar. To de-
cide whether get can use a next block, it checks whether the
block’s next consumer’s round is equal to the producer round
(step 3⃝), and resets the round and index fields if the check
succeeds.

Each operation resets only a subset of position variables
(b_pos, f_pos, s_pos, s_cnt). We carefully select which vari-
ables each operation resets so that takeover and grant proce-
dures by the owner have no write conflict with the reset done
by thieves.

5 Verification and Optimization
The complexity of the BWoS algorithm necessitates the use
of formal verification techniques to ensure that there are no
lurking design or implementation bugs, and to optimize the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 839

rnd …
③

① ②

adv_blkput

producer

consumer

rnd idx

=
N

E

start+

thieves
c/

t.
rn

d
 =

=
 x

 -
 1

&

&
 c

/t
.id

x
=

=
 N

E

<x, 0>

blk nblk

rnd idx

rnd idx

…

… …

… …

④

entries entries

adv_blkget

①

②
…

start+

p
.r

nd
 =

=
 x

 <x, 0>

blk nblk

… …

… …

…

rnd idx

… …

④

entries entries

= NE

③

… …

Figure 8: Round control in FIFO BWoS.

use on WMMs. One can easily imagine several tricky cases
with block advancements. For example, for LIFO BWoS, when
the owner calls puts and gets and advances to the next block,
it may easily trigger ABA [67] bugs during the round control
and takeover.

Unlike simpler algorithms like ABP [79], it is virtually
impossible to justify the correctness of an optimal memory
barrier placement by inspection. Luckily, model checking
tools [62, 74, 84, 92] are widely used to check the correctness
of concurrent algorithms and optimize the memory barrier
under WMMs automatically, improving both performance and
developer confidence. For example, the Tokio library uses the
model checker Loom [27, 91], which has helped them find
more than 10 bugs [28].

5.1 Verification Client
A model checker takes as input a small verification client
program that invokes queue operations. It verifies that all pos-
sible executions of the input program satisfy some generic
correctness properties, such as memory safety and termina-
tion [45], as well as any algorithm-specific properties that are
included in the verification client as assertions. Whenever ver-
ification fails, the model checker returns a concrete erroneous
execution as a counterexample.

To be able to generalize the verification result beyond the
specific client program verified, the client program must trig-
ger all possible contending scenarios and cover all desired
properties. Because of the symmetry of BWoS (each owner
operates on its own queue and steals from others), it suffices
to verify the use of one queue owned by one thread and con-
tended by several thief threads.

Verified properties. We have verified the following properties
with the GenMC model checker [74, 75]:
• Memory safety: The program does not access uninitialized,

unallocated or deallocated memory.
• Data race freedom: there are no data races on variables that

are marked as non-atomic.
• Consistency: Each element written by the producer is read

only once by either the consumer or thieves. No data cor-
ruption or loss occurs.

• Loop termination: Every unbounded spinloop and bounded
fail-retry-loop in the program will eventually terminate even
under weak memory models.

1 class stat {
2 u64 sum = 0, buf = 1;
3 void put(queue<u64> q){
4 if (q.put(buf))
5 sum += buf;
6 buf <<= 1;
7 }
8 bool get(queue<u64> q){
9 data = q.get(buf);
10 if (data != null) {
11 sum += data;
12 return true;
13 }
14 return false;
15 }
16 void steal(queue<u64> q){

17 data = q.steal(buf);
18 if (data != null)
19 sum += data;
20 }
21 }
22 stat f, b, s1, s2;
23 queue<u64> q; // 2 * 2
24 T0: b.put(q)*3; f.get(q)*2;
25 b.put(q)*4; f.get(q)*3;
26 b.put(q)*5; f.get(q)*4;
27 T1: s1.steal(q);
28 T2: s2.steal(q)*2;
29 T3: while (f.get(q));
30 assert (b.sum == f.sum +
31 s1.sum + s2.sum);
32 (T0 ∥ T1 ∥ T2) ; T3

Figure 9: Verification and optimization client code.

VERI/OPT
time

memory barriers #executions
explored#SEQ #ACQ #REL #RLX

LIFO
BWoS 62 min. 0 2 2 14 1.39 M

FIFO
BWoS 53 min. 0 3 3 16 1.43 M

ABP 16 min. 4 3 1 7 2.05 M

Table 2: Statistics of the verification and optimization.

All possible executions, including those that occur due to
weak memory reordering under the IMM [94] and RC11 [78]
memory models, have been explored, and the aforementioned
properties hold for each of them. With GenMC we were able
to verify safety properties and termination of loops, but not
the properties of individual operations.

Contending scenarios. As in any model checking verifica-
tion, our models have a limited size within which the above
properties hold. The client code for verifying and optimizing
put, get, steal operations of BWoS is shown in Fig. 9. We con-
figure the queue to have two blocks, each with the capacity
of two entries (line 23). It is thus sufficient to put 5 entries
to trigger the queue wraparound. We then launch 3 threads
that run in parallel: The owner thread T0 has 3 rounds of
put and get (lines 24-26) with different numbers of entries,
trying to trigger block advancement for both producers and
consumers in each round. Thief threads T1 and T2 steal one
and two entries respectively, and thus together with T0, they
trigger the queue empty condition, takeover, grant, and reset
procedures, as well as conflicts between thieves.

Assertion and properties. After threads T0–T2 exit, thread
T3 gets all remaining entries, and asserts that the sum of put
elements is equal to the sum of elements read via get and
steal (lines 30-31). Notice that the elements are generated as
powers of two (line 6), therefore this assertion ensures that
each element written by the producer has been read only once.

5.2 Results
We have optimized and verified the C code of LIFO and FIFO
BWoS with the VSync framework and the GenMC model

840 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

checker. We have also verified the ABP queue using our
verification client as a baseline. The statistics are shown in
Table 2, broken down by memory barrier type: sequentially
consistent (SEQ), acquire (ACQ), release (REL), and relaxed
(RLX, i.e. plain memory accesses).

For BWoS, barrier optimization and verification finished in
about an hour on a 6-core workstation [59], with over 1 million
execution explorations. For ABP, the checking finishes in 16
minutes. More executions are explored for ABP since thieves
and owner synchronize for every operation, which brings more
interleaving cases.

Verification confidence. By adding one thread and discover-
ing that no further barriers were required, we conclude that
further increasing the thread count is unlikely to discover
some missing barrier. Hence, we can avoid the state space
explosion that happens with larger thread counts. On the other
hand, discovering that an existing barrier had to be stronger
would have forced us to review the algorithm in general.

Experience. Model checking proved itself to be invaluable
during BWoS’s development. For example, an early version
of LIFO BWoS had a bug where thieves would reset the s_pos
variable when advancing to their following block (blk). In
the case when the owner is advancing to its preceding block
which also happens to be blk, it would update s_pos in the
takeover procedure, which conflicts with the thieves’ reset
procedure, resulting in data loss. This data loss was detected
by GenMC with the verification client assertion (lines 30-
31). We have fixed it by delegating the thieves’ s_pos reset
procedure to the owner, thus removing this conflict.

Optimization. For BWoS, most concurrent accesses are con-
verted to relaxed barriers, with the few remaining cases being
release or acquire barriers. For the owner’s fast path that de-
termines the performance, we have only one release barrier in
the FIFO BWoS. In contrast, the highly optimized ABP [79]
contains many barriers. In particular, owner operations con-
tain 2 sequentially consistent, 1 acquire, and 1 release barriers,
which significantly degrade its performance.

We note that these optimization results are optimal: re-
laxing any of these barriers produces a counterexample. To
further increase our confidence in the verification result, we
added another thief thread stealing one entry, and checked the
optimized BWoS with GenMC. BWoS passes the check in 3
days with around 200 million execution explorations.

Barrier analysis. LIFO BWoS does not contain any barriers
in the fast path because the owner and the thieves do not
synchronize within the same block. An acquire-release pair
is related to s_pos in the owner’s slow path and thieves’ fast
path that ensures the correctness of the takeover procedure.
Another acquire-release pair is related to s_cnt which ensures
the owner doesn’t overwrite ongoing reading when it catches
up with a thieves’ block (wraparound case). For FIFO BWoS,
besides the above barriers, since producer and thieves need to
synchronize within a block, an additional acquire-release pair

in their fast path is required.

6 Evaluation

Experimental setup. We perform all experiments on two x86
machines connected via 10Gbps Ethernet link, each with 88
hyperthreads (x86) [71], and one Arm machine with 96 cores
(arm) [70]. The operating system is Ubuntu 20.04.4 LTS with
Linux kernel version 5.7.0.

6.1 Block Size and Memory Overhead
In comparison with other queues, BWoS has extra parameters
that the user needs to chose when initializing a data structure,
namely the block size and the number of blocks. In our expe-
rience with both micro- and macro-benchmarks, the system’s
throughput remains mostly contants regardless of the block
size or the number of blocks as long as they are above certain
minimal values: 8 or more blocks in the queue and 64 or more
elements in the block, both for our x86 and arm machines.

The reason for this insensitivity to block size change is
twofold: first, since a single thread is responsible for advanc-
ing the blocks of its own queue, the block size does not in-
troduce any contention-related overhead. Larger block sizes
cause the queue owner to advance the block less often, but
after a certain block size, the overhead of advancing the block
becomes negligible. Second, since BWoS forbids the owner
and thieves consuming items in the same block with block-
level synchronization, the contention of them on a queue is
largely independent from the number of blocks. These in-
sights guide the block size selection for our benchmarks: we
set the number of blocks to 8 and calculated the block size
based on the queue capacity.

Therefore, selecting an appropriate block size is straight-
forward. Further fine-tuning of these parameters may be ben-
eficial for extreme scenarios where memory-size constraints
are present or the overly large block size becomes detrimental
to stealing (§8).

BWoS contains three pointers for each queue, and four
atomic variables, two pointers, and one boolean variable for
each block as its metadata. The actual memory usage also
includes cache padding added to prevent false sharing. The
memory overhead from this metadata is static and thus negli-
gible for most use-cases.

6.2 Microbenchmarks
To verify our claims, we have designed a microbench-
mark which supports both LIFO and FIFO work stealing
and compared BWoS with the state-of-the-art algorithms:
an off-the-shelf ABP [48] implementation from Taskflow
v3.4.0 [35] with barrier optimization [79] (abp), the block-
based bounded queue [106] (bbq), work stealing queues
from Tokio v1.17.0 [38] (tokioq), Go’s runtime v1.18 [36]

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 841

x86

0 1 2 5 10 20
Stolen Percentage

108

Th
ro

ug
hp

ut
 (o

p/
s)

arm

0 1 2 5 10 20
Stolen Percentage

bwos_opt
bwos_sc
abp_opt
abp_sc
ideal

Figure 10: Throughput of LIFO BWoS and ABP with (opt) or
without (sc) memory barrier optimization on x86 and arm
running with different stolen percentages.

x86

0 1 2 5 10 20
Stolen Percentage

107

108

Th
ro

ug
hp

ut
 (o

p/
s)

bwos_cpp
bwos_rust
bwos_go
bwos_kotlin
bbq

coroutineq
goroutineq
tokioq
eigenq
ideal

Figure 11: Throughput of FIFO BWoS and other state-of-the-
art FIFO work stealing algorithms.

(goroutineq), Kotlin coroutines v1.6.4 [26] (coroutineq), and
Eigen v3.3 [8] (eigenq).

Each queue has a capacity of 8k entries, with 8-byte data
items; BWoS is configured to have 8 blocks. We perform the
following three experiments:

• Single queue without stealing (§6.2.1): The owner thread
executes the workload in a loop: it first puts until the queue is
full and then gets until the queue is empty.

• Single queue with stealing (§6.2.2): An additional thief
thread calls steal operations on the queue in a loop. We adjust
the put/get ratio, and the idle time between each steal to
perform the experiment at varying stolen percentages2.

• Pool consisting of 8 queues (§6.2.3): 8 threads perform
the following operations in a loop: put items to its queue until
it is full, then get until it is empty, and then attempt to steal
k ∗C items from the pool, where k is the balancing factor
(in percent), and C is the queue capacity. The threads are
distributed equally between two NUMA domains, and within
each NUMA domain between two L3 cache groups [58].

In each experiment, we measure the total throughput: the
sum of put, get, and steal operation throughputs (ops/sec).

6.2.1 Queue without Stealing

Overall performance. Figures 10 and 11 for stolen percent-
age equal to 0 show the performance of the queue without
stealing. BWoS outperforms other algorithms by a signifi-
cant margin. For example, LIFO BWoS (bwos_opt) has 4.55x
higher throughput than ABP (abp_opt) on x86, and FIFO
BWoS written in C/C++, Rust, Go, and Kotlin outperform
bbq in C, eigenq in C++, tokioq in Rust, goroutineq in Go,

2The thief thread is located in the same L3 cache group as the owner; the
results are similar when putting the thief thread elsewhere.

coroutineq in Kotlin by 8.9x, 10.15x, 3.55x, 1.61x, and 1.82x
accordingly.

Impact of the memory barrier optimization. abp and LIFO
BWoS get 1.65x and 5.39x speedup on x86, and 2.03x and
3.38x speedup on arm respectively due to the memory bar-
rier optimization. We observe similar results for FIFO work
stealing algorithms3. The much greater speedup of BWoS
compared to ABP is possible in particular due to the separa-
tion of fast path and block advancement, where most of the
barriers in the fast path become relaxed.

Effectiveness of the block-level synchronization. Results
show that on x86 LIFO and FIFO BWoS are only 10.7% and
5.4% slower than ideal, respectively. On arm the results are
similar. Thus, block-level synchronization allows BWoS to ap-
proach the theoretical upper bound by removing the consumer-
thief synchronization from the fast path.

6.2.2 Queue with Stealing

Overall performance. As the stolen percentage increases,
BWoS continues to outperform other work-stealing algo-
rithms. For example, with 10% stolen percentage, LIFO BWoS
outperforms abp by 12.59x, while FIFO BWoS outperforms
bbq, eigenq, tokioq, goroutineq, coroutineq by 11.2x, 30.1x,
9.41x, 2.78x, and 1.64x respectively.

Effectiveness of the block-based approach. Unlike other al-
gorithms, BWoS suffers only a minor performance drop as the
stolen percentage increases. For example, for 20% stolen per-
centage, the throughput of LIFO and FIFO BWoS drops only
by 0.53% and 9.35%, while for abp_opt, tokioq and goroutineq
it degrades by 71.9%, 80.2%, and 59.3% respectively. Note
that the BBQ concurrent FIFO queue [106], which is also a
block-based design, does not reach performance comparable
to BWoS, stressing the importance of our design decisions for
the work stealing workloads.

6.2.3 Pool with Different Stealing Policies

Stealing policies. We perform this experiment with 6 stealing
policies, namely the random choice policy (rand), a policy that
chooses the victim based on a static configuration (seq), a pol-
icy that chooses the last selected one as the victim [104] (last),
best of two (best_of_two), best of many (best_of_many), and
NUMA-aware policy (numa). For best_of_many we choose
best of half (i.e. best of four).

Overall performance. In this experiment, we compare BWoS
only with the second-best algorithm from the previous ex-
periments: abp and tokioq for LIFO and FIFO work stealing
respectively. Fig. 12 shows that BWoS performs consistently
better than other algorithms. When the balancing factor is 0%,
BWoS outperforms abp by 4.69x and tokioq by 2.68x. As the

3Notice here bwos_go does not have barrier optimization because Go
does not expose an interface for relaxed atomics. However, for the mac-
robenchmarks we apply the barrier optimization by using the Go internal
atomic library.

842 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

LIFO

0 1 10 20 50 100
Balancing factor

107

108

109

Th
ro

ug
hp

ut
 (o

p/
s)

FIFO

0 1 10 20 50 100
Balancing factor

bwos+numa
bwos+numa+prob
bwos+rest
abp+numa
abp+numa+prob
abp+rest
tokioq+numa
tokioq+numa+prob
tokioq+rest

Figure 12: Throughput of the pool (8 queues) with different
stealing policies and different balancing factors on x86. rest
refers to all non-numa policies with and without probabilistic
stealing.

sca
la-

stm
-be

nch
7

rea
cto

rs

rx-
scr

ab
bledo

tty

mne
mon

ics

pa
r-m

ne
mon

ics

akk
a-u

ct

fj-k
mea

ns

scr
ab

ble

de
c-t

ree

fut
ure

-ge
ne

tic

sca
la-

km
ea

ns

sca
la-

do
ku

ga
uss

-m
ix

log
-re

gre
ssi

on

chi
-sq

ua
re

ph
ilos

op
he

rs als

pa
ge

-ra
nk

na
ive

-ba
ye

s

fin
ag

le-
htt

p

mov
ie-

len
s

fin
ag

le-
chi

rpe
r0.95

1.00

1.05

1.10

Sp
ee

du
p

1.25

Figure 13: Speedup of 23 benchmarks from Renaissance
benchmark suite on x86.

balancing factor increases, the throughput of BWoS variants
is 7.90x higher than of abp and 6.45x higher than of tokioq.

Impact of the NUMA-aware policy. LIFO and FIFO BWoS
with numa policy outperform BWoS with other policies by at
most 2.21x and 1.73x respectively. For other work stealing
algorithms, best_of_two brings the best performance. Thus,
BWoS benefits from numa policy while other algorithms do
not. On the other hand, in many cases best_of_many brings
the worst performance, proving that interference with the
owner can outweigh its improvements to the load balance.

Effectiveness of the probabilistic stealing. BWoS can ad-
ditionally benefit from the probabilistic stealing. When the
balancing factor is 100%, numa with probabilistic stealing
(bwos+numa+prob) brings 1.34x, 1.53x performance improve-
ment on average to LIFO and FIFO BWoS.

6.3 Macrobenchmarks
6.3.1 Java G1GC
We replace the task queue [24] in Java 19 HotSpot [37]
with LIFO BWoS, and run the Renaissance benchmark suite
v0.14.0 [33], which consists of 25 modern, real-world, and
concurrent benchmarks [95] designed for testing and opti-
mizing garbage collectors. Two database benchmarks are
omitted since they don’t support JDK 19. JVM enables
-XX:+DisableExplicitGC [30,68] and -XX:+UseG1GC flags
when running the benchmark. All other parameters (e.g., num-
ber of GC threads, VM memory limit) are default. We run
10 iterations for each benchmark with the modified and the

0.6 0.8 1.0
Throughput (op/s) ×106

0

5

10

15

La
te

nc
y

(m
s)

bwos original

0.6 0.8 1.0
Throughput (op/s) ×106

10

20

30

40

50

CP
U

us
ag

e
(%

) bwos original

Figure 14: Throughput and latency results of Hyper HTTP
server with BWoS and the original algorithm.

avg
0

1

2

Th
ro

ug
hp

ut
 (o

p/
s)

×104

avg p10 p25 p50 p75 p90 p95 p99
0

2

4

6

8

La
te

nc
y

(m
s)

bwos original

Figure 15: Throughput and latency of Tonic gRPC server with
BWoS and the original algorithm.

original JVM, and measure the end-to-end program run time
via the Renaissance testing framework.

Figure 13 shows the speedup of all 23 benchmarks on x86.
When BWoS is enabled, 17 of them get performance improve-
ment. The average speedup of all benchmarks is 3.55% and
the maximum speedup is 25.3%. The applications that bene-
fit more from concurrent GC also get greater speedup from
BWoS. Results on arm are similar where the average speedup
is 5.20%, 18 benchmarks are improved and the maximum
speedup is 17.2%.

On the other hand, several Renaissance benchmarks did
not get any performance improvement from using BWoS.
We have investigated this issue by running JVM with flags
-Xlog:gc+cpu and -Xlog:gc+heap+exit to collect GC-
related statistics. These experiments have shown that appli-
cations that trigger GC often demonstrate improvement from
BWoS, while applications that don’t trigger GC or triggered it
only rarely (e.g. at JVM exit) see no speedup. For the bench-
marks which never or seldomly trigger the GC, the slowdown
is most likely due to the longer queue initialization.

6.3.2 Rust Tokio Runtime
We replace the run queue [39] in Tokio v1.17.0 [38] with FIFO
BWoS, and run Hyper HTTP server v0.14.18 [20] and Tonic
gRPC server v0.6.2 [40] with the modified runtime. Tokio
runtime (also Go runtime) provides a batch stealing interface.
Based on observations from benchmarks similar to Fig. 2d,
we configured the thief of BWoS to steal all available entries
from its block at once. Benchmarks are performed on two x86
machines, one running the server, the other running the HTTP
benchmarking tool wrk v4.2.0 [43] or the gRPC benchmarking
and load testing tool ghz v0.017 [14]. All parameters of Hyper
and Tonic are default. Each benchmark runs 100 seconds and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 843

axum poem salvo viz warp
0.0

0.5

1.0

1.5

2.0
No

rm
al

ize
d Req.Throughput (Req/Sec)

Latency.Avg
Task stolen percentage

Figure 16: Request throughput, average latency, and task
stolen percentage comparison results of 5 Rust web frame-
works of BWoS (normalized to the original algorithm results)
with rust-web-benchmarks workload on x86.

has 10 iterations. The latency and throughput are measured by
wrk or ghz, while the CPU utilization of the server is collected
through the Python psutil library [32]. wrk and ghz run the
echo workload and SayHello protocol respectively and are
configured to utilize all hyperthreads of their machine.

Figure 14 shows the throughput-latency and throughput-
CPU utilization results of Hyper with different connection
numbers (100, 200, 500, 1k, 2k, 5k, and 10k). Before the sys-
tem is overloaded, BWoS provides 1.14×106 op/s throughput
while dropping 60.4% CPU usage with similar latency, the
original algorithm provides only 9.44×105 op/s throughput.
With 1k connections, BWoS increases throughput by 12.3%
with 6.74% lower latency and 60.9% lower CPU utilization.

Figure 15 shows the throughput and latency results of Tonic.
Using BWoS increases throughput by 32.9%, with 32.8%
lower average latency and 36.6% lower P95 latency.

To prove the generality of BWoS when applied to web
frameworks, we also benchmark another 5 popular Rust web
frameworks [4, 31, 34, 41, 42] that used Tokio runtime with
rust-web-benchmarks [5] workload on x86 (Fig. 16). Results
show that BWoS increases the throughput by 82.7% while
dropping 45.1% of average latency. In addition, the task stolen
percentage drops from 69.0% to 49.2%. We have made our
implementation for the Tokio runtime available to the open-
source community [3].

6.3.3 Go Runtime

We replace the runqueue [17] in the Go programming lan-
guage [36] v1.18.0 runtime with BWoS and benchmark 9
JSON libraries [1, 9–12, 15, 18, 19, 25]. The benchmark
suite [16] comes from the go-json library and runs 3 iter-
ations with default parameters. We record the latency of each
operation (e.g., encoding/decoding small/medium/large JSON
objects) reported by the benchmark suite, and calculate the
speedup.

As shown in Fig. 17, when BWoS is enabled, operations
get 25.8% average performance improvement on x86. arm
produces similar results with 28.2% speedup on average. In
general, encoding operations have better speedup compared
to decoding operations. We observe no improvement for en-
coding booleans and integers.

7 Related Work
Block-based queues. Wang et al. proposed a block-based
bounded queue [106] (BBQ) that splits the buffer into mul-
tiple blocks, thus reducing the producer-consumer interfer-
ence. BWoS differs from BBQ in the following ways: (1)
although BBQ also applies metadata separation, the producer-
consumer interference it reduces is not an issue for work
stealing as these always execute on the same core. By intro-
ducing block-level synchronization, steal-from-middle prop-
erty, and randomized stealing, FIFO BWoS outperforms BBQ
by a large margin (§6). (2) For the round control in BWoS, the
new round of a block is determined only by the round of its
adjacent block instead of relying on global metadata, as the
version mechanism in BBQ does. This design simplifies the
round updating and reduces its overhead.

Owner-thief interference and synchronization costs. Attiya
et al. proved that work stealing in general requires strong
synchronization between the owner and thieves [49]. BWoS
overcomes this issue by delegating this synchronization to
the block advancement, thus removing it from the fast path.
Acar et al. used a sequential deque with message passing
to remove the owner’s barrier overhead [44]. However, this
design relies on explicit owner-thief communication, thus
the steal operation cannot run to completion in parallel with
the owner’s operations. Dijk et al. proposed a deque-based
LIFO work-stealing algorithm which splits the deque into
owner and thief parts, thus reducing the owner’s memory
fences when they do not reach the queue split point [61].
However, the entries read by thieves cannot be reused until
the whole deque is empty. Horie et al. proposed a similar
idea, where each owner has a public queue that is accessible
from other threads and a private queue that is only accessible
by itself [68]. However, it requires more effort to deal with
load balancing, e.g., introducing global statistics metadata
which causes more cache misses for the owner. In contrast,
BWoS reduces the interference using techniques of block-level
synchronization, and probabilistic and randomized stealing.
Morrison et al. introduced work stealing algorithms which
rely on the bounded TSO microarchitectural model, which
x86 and SPARC CPUs were shown to possess [89]. Michael
et al. reduced the thief-owner synchronization by allowing
them to read the same task [87], which requires reengineering
of tasks to be idempotent. BWoS exhibits correct and efficient
execution on a wide range of CPU architectures without any
additional requirements.

Stealing policies. Yang et al. gave a survey of scheduling
parallel computations by work stealing [107]. Kumar et al.
benchmarked and analyzed variations of stealing policies [76].
Mitzenmacher proposed to give the thief two choices for
selecting the victim to have a better load balancing [88]. Most
of the analyzed policies are size-based, and thus aim to reach
the same goal as our probabilistic stealing policy—namely,
better load balance. Hendler et al. allow thieves to steal half

844 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

De
co

de
Sm

al
lS

tru
ct

Un
m

ar
sh

al
De

co
de

Sm
al

lS
tru

ct
St

re
am

De
co

de
M

ed
iu

m
St

ru
ct

Un
m

ar
sh

al
De

co
de

M
ed

iu
m

St
ru

ct
St

re
am

De
co

de
La

rg
eS

tru
ct

Un
m

ar
sh

al
De

co
de

La
rg

eS
tru

ct
St

re
am

En
co

de
Sm

al
lS

tru
ct

En
co

de
Sm

al
lS

tru
ct

Ca
ch

ed

En
co

de
M

ed
iu

m
St

ru
ct

En
co

de
M

ed
iu

m
St

ru
ct

Ca
ch

ed

En
co

de
La

rg
eS

tru
ct

En
co

de
La

rg
eS

tru
ct

Ca
ch

ed

En
co

de
In

te
rfa

ce
En

co
de

Bo
ol

En
co

de In
t

En
co

de
M

ar
sh

al
JS

ON

De
co

de
Sl

ow
Re

ad
er

16
38

4/
40

96
/

10
24

/2
56

/6
4

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

EncodingJson FastJson SegmentioJson JsonIter GoJay GoJson FFJson EasyJson Jettison

Figure 17: Speedup in the go-json library benchmark on x86 from using BWoS.

of the items in a given queue once to reduce interference [66].
BWoS supports batched stealing, but the maximum amount
of data that can be stolen atomically is a block. However,
the stealing policy can be configured to steal more than one
block. Kumar et al. proposed a NUMA-aware policy for work
stealing [77]. This policy is fully orthogonal to BWoS and can
be combined with its probabilistic stealing policy.

Formally verified work stealing. Lê et al. [79] manually
verified and optimized the memory barriers of Chase-Lev
dequeue [53] on WMMs. Unlike the verification of BWoS
which relies on model checking, manual verification is a high-
effort undertaking. In the context of concurrent queues, Meta’s
FollyQ was verified using interactive theorem prover [105].
While this approach provides the highest levels of confi-
dence in the design, it works only with sequentially consistent
memory model, and is also a high-effort endeavor. Recently,
GenMC authors have verified the ABP queue as part of evalu-
ation of their model checker [74]. The authors of BBQ have
relied on VSync to simultaneously verify and optimize the bar-
rier for weak memory models [106]. BWoS also uses VSync
for this purpose, but instead of many hand-crafted tests, which
exercise the individual corner cases in BBQ, we create one
comprehensive client that covers several corner cases and
their interactions at once. We further verify the optimization
results by adding one more thief into the verification client
and checking it with GenMC.

8 Conclusion
To conclude, we explore two of our learnings from this work.

The benefit of the block-based design is manyfold. First,
by replacing the global mutable metadata with block-level
metadata, it is possible to eliminate the interference between
the owner and the thieves that operate on different blocks.
Second, by ensuring exclusive access to a block for owner’s
get operation through block-level synchronization, it is pos-
sible to relax most of the barriers from the operation’s fast
path, increasing its performance up to the theoretical upper
bound. Although being unnecessary in our current algorithm,
a third benefit is the verification modularity given by the
block-based design, e.g., allowing the verification of blocks

and their composition in separate steps. Finally, the block-
based design opens possibilities for holistic optimization of
the data structure use, as we do with our probabilistic stealing
policy.

BWoS can also be applied to GPU and hybrid CPU-GPU
computations, as well as in HPC schedulers, where work
stealing is common. We plan to explore this direction in the
future. More generally, the BWoS design can be applied to
other use cases, where the data structure is mostly accessed
by a single thread, and only rarely by multiple. In this case,
the decisions demonstrated in BWoS can act as design and
implementation guidelines.
Verified software can be faster than unverified software.
The more hardware details and tweaks are mirrored in the
software, the more complex and opaque that piece of code
becomes. The interaction of this complexity with concurrency
and weak memory consistency is a major challenge. We be-
lieve that practical verification tools (i.e., tools applied to
increase confidence in correctness) are a key enabler in the
development of efficient, and inevitably complex, concurrent
software such as BWoS.
Future Work There are several directions for further work:
We plan to contribute BWoS to more open-source projects,
e.g., openJDK [23, 29], and Golang, as well as investigate
how to use BWoS in HPC runtimes. We also plan to better
explore the performance trade-offs for BWoS: if the number of
outstanding work items is smaller than the block size, BWoS
can prevent stealing and thus limit the achieved parallelism.
Furthermore, if the queue capacity has to be very small (due to
space requirements), it may be necessary to reduce the block
size and thus incur more block advancement that leads to
performance drop. These situations would benefit from more
exploration in the system design. In other cases, BWoS is
expected to outperform existing state-of-the-art work-stealing
algorithms due to its implementation of several performance-
enhancing techniques.

Acknowledgments
We thank our shepherd Phillip Gibbons and the anonymous
reviewers for their insightful comments.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 845

References
[1] A high-performance 100% compatible drop-in replace-

ment of "encoding/json". https://github.com/
json-iterator/go.

[2] ABA in local queue. https://github.com/
tokio-rs/tokio/issues/5041.

[3] Add BWoS-queue backend to tokio. https://
github.com/tokio-rs/tokio/pull/5283.

[4] axum: Ergonomic and modular web framework built
with Tokio, Tower, and Hyper. https://github.
com/tokio-rs/axum.

[5] Benchmarking web frameworks written in rust with
rewrk tool. https://github.com/programatik29/
rust-web-benchmarks.

[6] C++ Atomic operations library. https://en.
cppreference.com/w/cpp/atomic/atomic.

[7] Cascade Lake - Microarchitectures - Intel.
https://en.wikichip.org/wiki/intel/
microarchitectures/cascade_lake.

[8] Eigen: a C++ template library for linear algebra.
https://eigen.tuxfamily.org/.

[9] Fast JSON encoder/decoder compatible with encod-
ing/json for Go. https://github.com/goccy/
go-json.

[10] Fast JSON parser and validator for Go. https://
github.com/valyala/fastjson.

[11] Fast JSON serializer for golang. https://github.
com/mailru/easyjson.

[12] faster JSON serialization for Go. https://github.
com/pquerna/ffjson.

[13] Garbage First Garbage Collector Tuning. https:
//www.oracle.com/technical-resources/
articles/java/g1gc.html.

[14] ghz: gRPC benchmarking and load testing tool. https:
//github.com/bojand/ghz.

[15] Go package containing implementations of efficient
encoding, decoding, and validation APIs. https://
github.com/segmentio/encoding.

[16] GoJson benchmarks. https://github.com/goccy/
go-json/tree/master/benchmarks.

[17] golang run-queue. https://github.com/golang/
go/blob/master/src/runtime/proc.go.

[18] high performance JSON encoder/decoder with
stream API for Golang. https://github.com/
francoispqt/gojay.

[19] Highly configurable, fast JSON encoder for Go. https:
//github.com/wI2L/jettison.

[20] Hyper: An HTTP library for Rust. https://github.
com/hyperium/hyper.

[21] Intel Memory Latency Checker v3.9a.
https://www.intel.com/content/www/
us/en/developer/articles/tool/
intelr-memory-latency-checker.html.

[22] Intel oneAPI Threading Building Blocks.
https://www.intel.com/content/www/us/
en/developer/tools/oneapi/onetbb.html.

[23] Java Development Kit. https://jdk.java.net/.

[24] JDK task queue. https://github.com/openjdk/
jdk/blob/master/src/hotspot/share/gc/
shared/taskqueue.hpp.

[25] json package - encoding/json. https://pkg.go.dev/
encoding/json.

[26] Library support for Kotlin coroutines. https://
github.com/Kotlin/kotlinx.coroutines.

[27] Loom: Permutation testing for concurrent code. https:
//docs.rs/crate/loom/0.2.4.

[28] Making the Tokio scheduler 10x faster. https://
tokio.rs/blog/2019-10-scheduler.

[29] OpenJDK. https://openjdk.org/.

[30] Performance Tuning Guide. https://docs.oracle.
com/cd/E19159-01/819-3681/abeih/index.
html.

[31] Poem Framework: A full-featured and easy-to-use
web framework with the Rust programming language.
https://github.com/poem-web/poem.

[32] psutil - PyPI. https://pypi.org/project/.

[33] Renaissance Suite. https://renaissance.dev/.

[34] Salvo: A powerful and simplest web server framework
in Rust world. https://github.com/salvo-rs/
salvo.

[35] Taskflow: A General-purpose Parallel and Heteroge-
neous Task Programming System. https://github.
com/taskflow/taskflow.

[36] The Go programming language. https://go.dev/.

846 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/json-iterator/go
https://github.com/json-iterator/go
https://github.com/tokio-rs/tokio/issues/5041
https://github.com/tokio-rs/tokio/issues/5041
https://github.com/tokio-rs/tokio/pull/5283
https://github.com/tokio-rs/tokio/pull/5283
https://github.com/tokio-rs/axum
https://github.com/tokio-rs/axum
https://github.com/programatik29/rust-web-benchmarks
https://github.com/programatik29/rust-web-benchmarks
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://eigen.tuxfamily.org/
https://github.com/goccy/go-json
https://github.com/goccy/go-json
https://github.com/valyala/fastjson
https://github.com/valyala/fastjson
https://github.com/mailru/easyjson
https://github.com/mailru/easyjson
https://github.com/pquerna/ffjson
https://github.com/pquerna/ffjson
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://github.com/bojand/ghz
https://github.com/bojand/ghz
https://github.com/segmentio/encoding
https://github.com/segmentio/encoding
https://github.com/goccy/go-json/tree/master/benchmarks
https://github.com/goccy/go-json/tree/master/benchmarks
https://github.com/golang/go/blob/master/src/runtime/proc.go
https://github.com/golang/go/blob/master/src/runtime/proc.go
https://github.com/francoispqt/gojay
https://github.com/francoispqt/gojay
https://github.com/wI2L/jettison
https://github.com/wI2L/jettison
https://github.com/hyperium/hyper
https://github.com/hyperium/hyper
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://jdk.java.net/
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/gc/shared/taskqueue.hpp
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/gc/shared/taskqueue.hpp
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/gc/shared/taskqueue.hpp
https://pkg.go.dev/encoding/json
https://pkg.go.dev/encoding/json
https://github.com/Kotlin/kotlinx.coroutines
https://github.com/Kotlin/kotlinx.coroutines
https://docs.rs/crate/loom/0.2.4
https://docs.rs/crate/loom/0.2.4
https://tokio.rs/blog/2019-10-scheduler
https://tokio.rs/blog/2019-10-scheduler
https://openjdk.org/
https://docs.oracle.com/cd/E19159-01/819-3681/abeih/index.html
https://docs.oracle.com/cd/E19159-01/819-3681/abeih/index.html
https://docs.oracle.com/cd/E19159-01/819-3681/abeih/index.html
https://github.com/poem-web/poem
https://pypi.org/project/
https://renaissance.dev/
https://github.com/salvo-rs/salvo
https://github.com/salvo-rs/salvo
https://github.com/taskflow/taskflow
https://github.com/taskflow/taskflow
https://go.dev/

[37] The HotSpot Group. http://openjdk.java.net/
groups/hotspot.

[38] Tokio: A runtime for writing reliable asynchronous
applications with Rust. https://github.com/
tokio-rs/tokio.

[39] Tokio run-queue. https://github.com/tokio-rs/
tokio/blob/master/tokio/src/runtime/
scheduler/multi_thread/queue.rs.

[40] Tonic: A native gRPC client & server implementation
with async/await support. https://github.com/
hyperium/tonic.

[41] Viz: Fast, flexible, lightweight web framework for Rust.
https://github.com/viz-rs/viz.

[42] warp: A super-easy, composable, web server frame-
work for warp speeds. https://github.com/
seanmonstar/warp.

[43] wrk: Modern HTTP benchmarking tool - GitHub.
https://github.com/wg/wrk.

[44] ACAR, U. A., CHARGUÉRAUD, A., AND RAINEY,
M. Scheduling parallel programs by work stealing
with private deques. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of
parallel programming (2013), pp. 219–228.

[45] ALPERN, B., AND SCHNEIDER, F. B. Defining live-
ness. Information processing letters 21, 4 (1985), 181–
185.

[46] AMAZON WEB SERVICES. AWS Graviton Proces-
sor – Enabling the best price performance in Ama-
zon EC2, 2020. https://mysqlonarm.github.io/
ARM-LSE-and-MySQL/.

[47] ARNAUTOV, S., FELBER, P., FETZER, C., AND
TRACH, B. FFQ: A fast single-producer/multiple-
consumer concurrent FIFO queue. In 2017 IEEE Inter-
national Parallel and Distributed Processing Sympo-
sium, (IPDPS 2017) (2017), pp. 907–916.

[48] ARORA, N. S., BLUMOFE, R. D., AND PLAXTON,
C. G. Thread scheduling for multiprogrammed multi-
processors. Theory of computing systems 34, 2 (2001),
115–144.

[49] ATTIYA, H., GUERRAOUI, R., HENDLER, D.,
KUZNETSOV, P., MICHAEL, M. M., AND VECHEV,
M. T. Laws of order: expensive synchronization
in concurrent algorithms cannot be eliminated. In
Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL 2011, Austin, TX, USA, January 26-28, 2011
(2011), T. Ball and M. Sagiv, Eds., ACM, pp. 487–498.

[50] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C.,
LEISERSON, C. E., RANDALL, K. H., AND ZHOU, Y.
Cilk: An efficient multithreaded runtime system. ACM
SigPlan Notices 30, 8 (1995), 207–216.

[51] BLUMOFE, R. D., AND LEISERSON, C. E. Scheduling
multithreaded computations by work stealing. J. ACM
46, 5 (1999), 720–748.

[52] CEDERMAN, D., AND TSIGAS, P. On dynamic load
balancing on graphics processors. In Proceedings of
the 23rd ACM SIGGRAPH/EUROGRAPHICS sympo-
sium on Graphics hardware (2008), pp. 57–64.

[53] CHASE, D., AND LEV, Y. Dynamic circular work-
stealing deque. In Proceedings of the seventeenth an-
nual ACM symposium on Parallelism in algorithms
and architectures (2005), pp. 21–28.

[54] CHATTERJEE, S., GROSSMAN, M., SBÎRLEA, A.,
AND SARKAR, V. Dynamic task parallelism with a
GPU work-stealing runtime system. In International
Workshop on Languages and Compilers for Parallel
Computing (2011), Springer, pp. 203–217.

[55] CHO, I., SAEED, A., FRIED, J., PARK, S. J., AL-
IZADEH, M., AND BELAY, A. Overload Control for
µs-scale RPCs with Breakwater. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20) (2020), pp. 299–314.

[56] CONG, G., KODALI, S., KRISHNAMOORTHY, S.,
LEA, D., SARASWAT, V., AND WEN, T. Solving large,
irregular graph problems using adaptive work-stealing.
In 2008 37th International Conference on Parallel Pro-
cessing (2008), IEEE, pp. 536–545.

[57] CONWAY, M. E. A multiprocessor system design. In
Proceedings of the November 12-14, 1963, fall joint
computer conference (1963), pp. 139–146.

[58] DE LIMA CHEHAB, R. L., PAOLILLO, A., BEHRENS,
D., FU, M., HÄRTIG, H., AND CHEN, H. CLOF: A
compositional lock framework for multi-level NUMA
systems. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (2021),
pp. 851–865.

[59] DELL. Precision 5820 Tower Spec.
https://i.dell.com/sites/csdocuments/
Shared-Content_data-Sheets_Documents/en/
us/Precision-5820-Tower-Spec-Sheet.pdf.

[60] DETLEFS, D., FLOOD, C., HELLER, S., AND PRINT-
EZIS, T. Garbage-first garbage collection. In Proceed-
ings of the 4th international symposium on Memory
management (2004), pp. 37–48.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 847

http://openjdk.java.net/groups/hotspot
http://openjdk.java.net/groups/hotspot
https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tokio/blob/master/tokio/src/runtime/scheduler/multi_thread/queue.rs
https://github.com/tokio-rs/tokio/blob/master/tokio/src/runtime/scheduler/multi_thread/queue.rs
https://github.com/tokio-rs/tokio/blob/master/tokio/src/runtime/scheduler/multi_thread/queue.rs
https://github.com/hyperium/tonic
https://github.com/hyperium/tonic
https://github.com/viz-rs/viz
https://github.com/seanmonstar/warp
https://github.com/seanmonstar/warp
https://github.com/wg/wrk
https://mysqlonarm.github.io/ARM-LSE-and-MySQL/
https://mysqlonarm.github.io/ARM-LSE-and-MySQL/
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/us/Precision-5820-Tower-Spec-Sheet.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/us/Precision-5820-Tower-Spec-Sheet.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/us/Precision-5820-Tower-Spec-Sheet.pdf

[61] DIJK, T. V., AND POL, J. C. Lace: non-blocking split
deque for work-stealing. In European Conference on
Parallel Processing (2014), Springer, pp. 206–217.

[62] GAVRILENKO, N., PONCE-DE LEÓN, H., FURBACH,
F., HELJANKO, K., AND MEYER, R. BMC for weak
memory models: Relation analysis for compact SMT
encodings. In International Conference on Computer
Aided Verification (2019), Springer, pp. 355–365.

[63] HALSTEAD JR, R. H. Implementation of Multilisp:
Lisp on a multiprocessor. In Proceedings of the 1984
ACM Symposium on LISP and functional programming
(1984), pp. 9–17.

[64] HARRIS, T., AND KAESTLE, S. Callisto-RTS: Fine-
grain parallel loops. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15) (2015), pp. 45–56.

[65] HARRIS, T., MAAS, M., AND MARATHE, V. J. Cal-
listo: Co-scheduling parallel runtime systems. In Pro-
ceedings of the Ninth European Conference on Com-
puter Systems (2014), pp. 1–14.

[66] HENDLER, D., AND SHAVIT, N. Non-blocking steal-
half work queues. In Proceedings of the twenty-first
annual symposium on Principles of distributed com-
puting (2002), pp. 280–289.

[67] HERLIHY, M., AND SHAVIT, N. The Art of Multi-
processor Programming. Morgan Kaufmann, USA,
2011.

[68] HORIE, M., HORII, H., OGATA, K., AND ONODERA,
T. Balanced double queues for GC work-stealing on
weak memory models. In Proceedings of the 2018
ACM SIGPLAN International Symposium on Memory
Management (2018), pp. 109–119.

[69] HORIE, M., OGATA, K., TAKEUCHI, M., AND HORII,
H. Scaling up parallel GC work-stealing in many-
core environments. In Proceedings of the 2019 ACM
SIGPLAN International Symposium on Memory Man-
agement (2019), pp. 27–40.

[70] HUAWEI. 2280 Balanced Model - Huawei En-
terprise. https://e.huawei.com/uk/products/
servers/taishan-server/taishan-2280-v2.

[71] HUAWEI. FusionServer Pro 2288X V5 Rack Server.
https://support-it.huawei.com/server-3d/
res/server/2288xv5/index.html?lang=en.

[72] KNUTH, D. E. The Art of Computer Programming,
vol. 3. Pearson Education, 1997.

[73] KOGIAS, M., PREKAS, G., GHOSN, A., FIETZ, J.,
AND BUGNION, E. R2P2: Making RPCs first-class

datacenter citizens. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19) (2019), pp. 863–880.

[74] KOKOLOGIANNAKIS, M., RAAD, A., AND
VAFEIADIS, V. Model checking for weakly
consistent libraries. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA,
2019), PLDI 2019, Association for Computing
Machinery, pp. 96–110.

[75] KOKOLOGIANNAKIS, M., AND VAFEIADIS, V.
GENMC: A model checker for weak memory models.
In International Conference on Computer Aided
Verification (2021), Springer, pp. 427–440.

[76] KUMAR, S., AND SAHU, A. Benchmarking and anal-
ysis of variations of work stealing scheduler on clus-
tered system. In 2014 15th International Conference
on Parallel and Distributed Computing, Applications
and Technologies (2014), IEEE, pp. 28–35.

[77] KUMAR, V. PufferFish: NUMA-Aware Work-stealing
Library using Elastic Tasks. In 2020 IEEE 27th Inter-
national Conference on High Performance Computing,
Data, and Analytics (HiPC) (2020), IEEE, pp. 251–
260.

[78] LAHAV, O., VAFEIADIS, V., KANG, J., HUR, C., AND
DREYER, D. Repairing sequential consistency in
C/C++11. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017 (2017), A. Cohen and M. T. Vechev, Eds.,
ACM, pp. 618–632.

[79] LÊ, N. M., POP, A., COHEN, A., AND NARDELLI,
F. Z. Correct and efficient work-stealing for weak
memory models. In 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP 2013 (2013), Association for Computing Ma-
chinery, pp. 69–79.

[80] LEA, D. A Java fork/join framework. In Proceedings
of the ACM 2000 conference on Java Grande (2000),
pp. 36–43.

[81] LEIJEN, D., SCHULTE, W., AND BURCKHARDT, S.
The design of a task parallel library. Acm Sigplan
Notices 44, 10 (2009), 227–242.

[82] LI, J., DINH, S., KIESELBACH, K., AGRAWAL, K.,
GILL, C., AND LU, C. Randomized work stealing
for large scale soft real-time systems. In 2016 IEEE
Real-Time Systems Symposium (RTSS) (2016), IEEE,
pp. 203–214.

848 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://e.huawei.com/uk/products/servers/taishan-server/taishan-2280-v2
https://e.huawei.com/uk/products/servers/taishan-server/taishan-2280-v2
https://support-it.huawei.com/server-3d/res/server/2288xv5/index.html?lang=en
https://support-it.huawei.com/server-3d/res/server/2288xv5/index.html?lang=en

[83] LIU, C., SONG, P., LIU, Y., AND HAO, Q. Efficient
work-stealing with blocking deques. In 2014 IEEE
Intl Conf on High Performance Computing and Com-
munications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Em-
bedded Software and Syst (HPCC, CSS, ICESS) (2014),
IEEE, pp. 149–152.

[84] LORCH, J. R., CHEN, Y., KAPRITSOS, M., PARNO,
B., QADEER, S., SHARMA, U., WILCOX, J. R., AND
ZHAO, X. Armada: Low-effort verification of high-
performance concurrent programs. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (2020), pp. 197–
210.

[85] MARTÍNEZ, M. A., FRAGUELA, B. B., AND CA-
BALEIRO, J. C. A parallel skeleton for divide-and-
conquer unbalanced and deep problems. International
Journal of Parallel Programming 49, 6 (2021), 820–
845.

[86] MCCLURE, S., OUSTERHOUT, A., SHENKER, S.,
AND RATNASAMY, S. Efficient scheduling policies
for microsecond-scale tasks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 22) (2022), pp. 1–18.

[87] MICHAEL, M. M., VECHEV, M. T., AND SARASWAT,
V. A. Idempotent work stealing. In Proceedings of
the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming (2009), pp. 45–54.

[88] MITZENMACHER, M. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems 12, 10 (2001), 1094–
1104.

[89] MORRISON, A., AND AFEK, Y. Fence-free work steal-
ing on bounded TSO processors. In Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS 2014, Salt Lake City, UT, USA, March
1-5, 2014 (2014), R. Balasubramonian, A. Davis, and
S. V. Adve, Eds., ACM, pp. 413–426.

[90] NORRIS, B., AND DEMSKY, B. CDSchecker: check-
ing concurrent data structures written with C/C++
atomics. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA,
October 26-31, 2013 (2013), A. L. Hosking, P. T. Eug-
ster, and C. V. Lopes, Eds., ACM, pp. 131–150.

[91] NORRIS, B., AND DEMSKY, B. CDSchecker: check-
ing concurrent data structures written with C/C++

atomics. In Proceedings of the 2013 ACM SIG-
PLAN international conference on Object oriented pro-
gramming systems languages & applications (2013),
pp. 131–150.

[92] OBERHAUSER, J., CHEHAB, R. L. D. L., BEHRENS,
D., FU, M., PAOLILLO, A., OBERHAUSER, L., BHAT,
K., WEN, Y., CHEN, H., KIM, J., AND VAFEIADIS,
V. VSync: Push-button verification and optimization
for synchronization primitives on weak memory mod-
els. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY,
USA, 2021), ASPLOS 2021, Association for Comput-
ing Machinery, pp. 530–545.

[93] OUYANG, K., SI, M., HORI, A., CHEN, Z., AND
BALAJI, P. CAB-MPI: Exploring interprocess work-
stealing towards balanced MPI communication. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis (2020),
IEEE, pp. 1–15.

[94] PODKOPAEV, A., LAHAV, O., AND VAFEIADIS, V.
Bridging the gap between programming languages and
hardware weak memory models. Proc. ACM Program.
Lang. 3, POPL (2019), 69:1–69:31.

[95] PROKOPEC, A., ROSÀ, A., LEOPOLDSEDER, D., DU-
BOSCQ, G., TUMA, P., STUDENER, M., BULEJ, L.,
ZHENG, Y., VILLAZÓN, A., SIMON, D., ET AL. Re-
naissance: benchmarking suite for parallel applications
on the JVM. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (2019), pp. 31–47.

[96] QIAN, J., SRISA-AN, W., LI, D., JIANG, H., SETH,
S., AND YANG, Y. Smartstealing: Analysis and opti-
mization of work stealing in parallel garbage collec-
tion for Java VM. In Proceedings of the Principles
and Practices of Programming on The Java Platform.
2015, pp. 170–181.

[97] SCHMAUS, F., PFEIFFER, N., HÖNIG, T., NOLTE, J.,
AND SCHRÖDER-PREIKSCHAT, W. Nowa: A wait-free
continuation-stealing concurrency platform. In 2021
IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS) (2021), IEEE, pp. 360–371.

[98] SCHWEIZER, H., BESTA, M., AND HOEFLER, T. Eval-
uating the cost of atomic operations on modern archi-
tectures. In 2015 International Conference on Parallel
Architecture and Compilation (PACT) (2015), IEEE,
pp. 445–456.

[99] STEINBERGER, M., KAINZ, B., KERBL, B.,
HAUSWIESNER, S., KENZEL, M., AND SCHMAL-
STIEG, D. Softshell: dynamic scheduling on GPUs.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 849

ACM Transactions on Graphics (TOG) 31, 6 (2012),
1–11.

[100] SUKSOMPONG, W., LEISERSON, C. E., AND
SCHARDL, T. B. On the efficiency of localized work
stealing. Information Processing Letters 116, 2 (2016),
100–106.

[101] SUO, K., RAO, J., JIANG, H., AND SRISA-AN, W.
Characterizing and optimizing hotspot parallel garbage
collection on multicore systems. In Proceedings of the
Thirteenth EuroSys Conference (2018), pp. 1–15.

[102] TOSS, J. Work stealing inside GPUs.

[103] TZENG, S., PATNEY, A., AND OWENS, J. D. Task
management for irregular-parallel workloads on the
GPU.

[104] VENNERS, B. The Java Virtual Machine. Java and
the Java virtual machine: definition, verification, vali-
dation (1998).

[105] VINDUM, S. F., FRUMIN, D., AND BIRKEDAL, L.
Mechanized verification of a fine-grained concurrent
queue from meta’s folly library. In Proceedings of
the 11th ACM SIGPLAN International Conference on
Certified Programs and Proofs (2022), pp. 100–115.

[106] WANG, J., BEHRENS, D., FU, M., OBERHAUSER, L.,
OBERHAUSER, J., LEI, J., CHEN, G., HÄRTIG, H.,
AND CHEN, H. BBQ: A block-based bounded queue
for exchanging data and profiling. In 2022 USENIX An-
nual Technical Conference (USENIX ATC 22) (2022),
pp. 249–262.

[107] YANG, J., AND HE, Q. Scheduling parallel computa-
tions by work stealing: A survey. International Journal
of Parallel Programming 46, 2 (2018), 173–197.

[108] ZHANG, Y., KUMAR, G., DUKKIPATI, N., WU, X.,
JHA, P., CHOWDHURY, M., AND VAHDAT, A. Ae-
quitas: admission control for performance-critical
RPCs in datacenters. In Proceedings of the ACM SIG-
COMM 2022 Conference (2022), pp. 1–18.

850 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Spoq: Scaling Machine-Checkable Systems Verification in Coq

Xupeng Li
Columbia University

Xuheng Li
Columbia University

Wei Qiang
Columbia University

Ronghui Gu
Columbia University

Jason Nieh
Columbia University

Abstract
System software is often large and complex, resulting in

many vulnerabilities that can potentially be exploited to com-
promise the security of a system. Formal verification offers
a potential solution to creating bug-free software, but a key
impediment to its adoption remains proof cost. We present
Spoq, a highly automated verification framework to construct
machine-checkable proofs in Coq for system software with
much less proof cost. Spoq introduces a novel program struc-
ture reconstruction technique to leverage LLVM to trans-
late C code into Coq, supporting full C semantics, including
C macros, inline assembly, and compiler directives, so that
source code no longer has to be manually modified to be veri-
fied. Spoq leverages a layering proof strategy and introduces
novel Coq tactics and transformation rules to automatically
generate layer specifications and refinement proofs to sim-
plify verification of concurrent system software. Spoq also
supports easy integration of manually written layer specifica-
tions and refinement proofs. We use Spoq to verify a multipro-
cessor KVM hypervisor implementation. Verification using
Spoq required 70% less proof effort than the manually written
specifications and proofs to verify an older implementation.
Furthermore, the proofs using Spoq hold for the unmodified
implementation that is directly compiled and executed.

1 Introduction

System software such as operating systems and hypervi-
sors [7] forms the software foundations of our computing
infrastructure. However, modern system software is large,
complex, and imperfect, with vulnerabilities that can be
exploited to compromise the security of a system. Formal
verification offers a potential solution to this problem by
mathematically proving that system software can provide
critical security guarantees. This typically involves veri-
fying that the software implementation satisfies a formal
high-level specification of its behavior, then proving that the
specification guarantees the desired security properties.

The former, referred to as functional correctness, is gen-
erally the most challenging part to do, given the complexity
of system software implementations. Implementations are
commonly written in C, which has complex semantics and
language features, many unsupported by verification tools.
Verification tools powerful enough to verify real-world
system software are difficult and tedious to use to write
specifications and proofs. Furthermore, a high-level spec-
ification that is useful for verifying higher-level properties
such as security often has a significant semantic gap from
the implementation, requiring substantial manual proof effort
to bridge this gap. However, without functional correctness
to ensure that the proofs hold on the actual implementation,
formally verified guarantees can be meaningless in practice.

We introduce Spoq (Scaling Proofs in Coq), a new verifica-
tion framework to reduce proof costs for machine-checkable
verification of system software. Spoq focuses on simplifying
formal verification of functional correctness to reduce proof
costs while ensuring that all proofs are machine-checkable
by a theorem prover and verified down to the actual software
implementation. It operates on widely used unmodified C
code and leverages the Coq proof assistant [55] to enable
machine-checkable verification of complex systems. Its
key feature is making Coq easier to use by automating
many aspects of writing Coq specifications and proofs. This
reduces the amount of Coq code that needs to be manually
written, which significantly reduces the time to conduct
machine-checkable verification.

Spoq is the first system that can automatically translate
unmodified C systems code, such as found in the Linux kernel,
into a Coq representation so that it can be verified. Previous
approaches such as CompCert’s ClightGen [35] only support
a subset of the C language. Systems that use ClightGen such
as CertiKOS [18, 20] require significant manual effort to
retrofit the systems implementation before it can be verified,
extra effort to develop and maintain the retrofitted version,
and still cannot provide any verified guarantees on the actual
running version. Spoq address this problem by leveraging the
widely used Clang compiler front end to parse C code into

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 851

LLVM’s language-independent intermediate representation
(IR). Because LLVM IR represents functions as control flow
graphs, Spoq introduces a novel program reconstruction
technique that translates control flow graphs back into a Coq
representation using program-style functions with if-then-else
and loop statements that is more amenable to verification.
This approach enables Spoq to support full C language
semantics, including GNU C-specific extensions and inline
assembly code, yet work with an IR with clean semantics de-
signed for automated translation into another representation.

Spoq then leverages a layering proof strategy based on
Concurrent Certified Abstraction Layers (CCAL) [19, 21]
to modularize and decompose verification into smaller steps
to make each verification step easier. This involves defining
the layer structure of the implementation, where each layer
consists of a group of functions that define the layer’s in-
terface. Higher layers can call the functions exposed by a
lower layer’s interface, but not the other way around. The top
layer is a high-level specification of the behavior of the entire
implementation, while the bottom layer is a machine model
whose interface is designed to support LLVM IR semantics.
Verification involves proving that the layers compositionally
refine the top layer specification of the entire implementation.
While layering makes each verification step easier to accom-
plish, if done manually, it has the disadvantage of requiring
a user to construct additional layer specifications, including
both low-level and high-level specifications, and refinement
proofs for each layer, which can involve tediously writing
thousands of lines of additional Coq code. That code then has
to be manually rewritten each time the program implementa-
tion is updated, imposing significant, time-consuming proof
costs. Spoq instead takes advantage of layering and the easier
verification steps it affords to make it possible to automati-
cally generate the Coq layer specifications and mechanized
refinement proofs from the layer structure definition. It is the
first system that can automate the generation of layered spec-
ifications and proofs in Coq for concurrent system software.

Spoq constructs a machine-checkable proof object for each
layer showing its implementation built on top of a lower layer
interface refines its own layer interface. It decomposes the
proof for a layer into two tasks. The first task is to prove that
the layer’s implementation, namely its Coq abstract syntax
tree (AST) representation, refines a low-level specification
that is closer to the source code and independent of the state
of the machine model. The second task is to prove that the
low-level specification, built on top of a lower layer interface,
refines a high-level specification that defines the layer’s
interface and is self-contained. By self-contained, we mean
that the specification does not contain any calls to functions
in any other layer other than the bottom layer machine model.
Making the high-level specification self-contained simplifies
verification because refinement proofs of any layers built on
top of this layer can effectively ignore any layers below it.

Spoq introduces a library of Coq tactics to automatically

generate low-level specifications and refinement proofs
between the implementation and low-level specification.
Functions with loops are synthesized into Coq recursive
specifications, then refined to their specifications using an
induction proof template. To generate the specification for
a function with loops, a ranking function is provided for each
loop, which is monotonically decreasing and non-negative
during loop iterations. Spoq leverages the ranking functions
to generate loop termination proofs.

Spoq introduces transformation rules to automatically
generate high-level specifications and refinement proofs
between low-level and high-level specifications. Trans-
formation rules include unfolding function definitions,
syntactically reorganizing program structures, eliminating
pre-determined branches and assertions, and performing
mathematical simplification. Refinement proofs are done
by introducing automatically generated annotations to track
how transformations are applied, then using Coq tactics to
prove the sequence of transformations preserves specification
semantics. Automatic generation of specifications and proofs
is only done for high-level specifications that do not introduce
data abstractions to hide low-level data representation details,
such as abstracting an array into a Coq Map. High-level
specifications that introduce data abstractions or have
very complex functions require manual assistance from
the user to complete the specifications and proofs. Our
experience indicates that the vast majority of functions can
be automatically specified and refined without manual effort.

Spoq reduces the trusted computing base (TCB) for per-
forming source code-level mechanized verification. There is
no need to trust Spoq for generating specifications or proofs.
Incorrect specifications will be rejected during refinement
proofs, and incorrect proofs will be rejected by the Coq proof
checker. Although Spoq relies on Clang which is not verified,
most system software already needs to trust either widely used
Clang or unverified alternatives such as the GNU C compiler
to generate the executable code that actually runs. Using a ver-
ified compiler such as CompCert [35] is not viable in practice
since it cannot even compile C code such as Linux kernel code.
The only part of Spoq that is unverified yet needs to be trusted
is its translator from LLVM IR to Coq, which is minimal by de-
sign. This TCB is much smaller than CompCert’s ClightGen,
which is larger and more complex since it has to directly parse
and translate C code, a more difficult and involved process.

We have implemented Spoq and evaluated its effectiveness
on commodity system software. We show that Spoq
automatically translates over 99% of functions in unmodified
C systems code into Coq representations, including the
source code for the Linux kernel, while ClightGen fails to
translate the vast majority of functions, including almost
complete failure on the Linux kernel. We use Spoq to verify
a multiprocessor KVM hypervisor implementation. Although
an older version of the hypervisor was previously verified
in Coq without Spoq, the proofs no longer work with the

852 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 1: Spoq workflow.

updated version that supports additional hardware platforms.
Previously, using ClightGen to translate the C implementation
into a Coq representation required modifications to the source
code, creating a gap between the verified and running code.
Verifying the updated hypervisor using Spoq required much
less proof effort, reducing the amount of manually written
Coq code by over 70% compared to the verification of the
older implementation. The proofs using Spoq are done on
the unmodified source code of the hypervisor that is directly
compiled and executed. Spoq even automatically generates
the top layer specification, which we then use to verify the
overall security properties of the hypervisor hold on the
actual running software implementation.

2 Spoq Usage Model

To use Spoq, a user compiles the source code into LLVM
IR and writes a layer configuration file defining the layer
structure for the proof. The layer structure is defined to
modularize the proof, with the additional constraint that a
layer can only call functions in lower layers. For example,
if the source code has three functions A, B and C such that
A calls B and B calls C, at least three layers must be used.
The configuration file specifies the name of each layer, the
name of each function in each layer, the path to the source
IR code, and the path to the Coq project. The configuration
file should include the bottom layer abstract machine model,
including its machine state definition. Spoq then generates
the Coq project, including all specifications and proofs for
each layer. If the source code or layer structure are changed,
the user can rerun Spoq to update the Coq project. Spoq will
regenerate the specifications and proofs for the parts affected
by the changes, while other parts will remain unchanged.

Spoq guarantees that all generated specifications have
exactly the same behavior as their source code implemen-
tations, but some generated high-level specifications may
be too complex to be useful, and some refinement proofs
may fail. Spoq makes it easy to integrate manually written
specifications and proofs, which are simply annotated in
the layer configuration file so that Spoq uses the provided
specifications or proofs instead of generating them directly.
If Spoq generates a high-level specification for a layer that is
not concise enough, especially in how it updates the machine

state, the user can manually write the specification and rerun
Spoq with the provided high-level specification. If Spoq fails
in generating refinement proofs for a layer, the user will see
the resulting compilation errors of the generated Coq project
identifying the specific functions with errors. If the error
occurs for a generated specification, it is most likely due to
a failed loop termination proof. The user can manually write
the loop termination proof that failed and rerun Spoq with the
provided termination proof. If the error occurs for a manually
written specification, the user can check if there is an error
in the specification or if the refinement proof also needs to
be manually written, then rerun Spoq again.

Spoq is useful for both verifying functional correctness as
well as higher-level system properties such as security. In ver-
ifying functional correctness, Spoq can generate the top-level
specification, which will be guaranteed to have exactly the
same behavior as the source code implementation. This no-
tion of functional correctness ensures that the implementation
satisfies the specification, but not necessarily that the code has
no bugs. If the code is buggy, the generated top-level specifi-
cation will still have the same behavior, including any buggy
behavior. To provide a stronger notion of correctness, a user
can use the generated top-level specification to verify higher-
level properties such as security, which will identify bugs in
the specification. Alternatively, a user can manually write the
top-level specification and leverage Spoq to generate interme-
diate layer specifications and refinement proofs to verify that
the implementation is functionally correct with respect to a
manually written specification, though such a specification
can also have bugs. The key benefit of Spoq is ensuring that
whatever verification is done holds not just for a specification,
but all the way down to the source code implementation.

3 Spoq Workflow

Figure 1 shows the workflow of Spoq. We use the example
in Figure 2 to explain each step in the workflow and show
how Spoq scales machine-checkable verification for systems
code. This example contains a simplified C function alloc to
allocate a free page by scanning the array of page descriptors
page. The main computation is implemented as a statement
expression in a macro definition ALLOC, in which we use a
loop to iterate all elements of page and set the page status of

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 853

// Layer interface L1
uint page[MAX_PAGE];
uint get_page (uint i) { return page[i] }
void set_page (uint i, uint s) { page[i] = s; }
// Layer interface L2
#define ALLOC() ({ \
uint i; \
for (i = 0; i < MAX_PAGE; i++){ \
if (get_page(i) == 0) { \
set_page(i, 1); \
break; \

} \
} \
i;})

uint alloc() { return ALLOC(); }

Figure 2: A running example to allocate a free page.

the first free page to 1. The accesses to page are encapsulated
into functions get_page and set_page. This coding style is
quite common in systems software such as Linux kernel code.
Generating Coq representations. To conduct mechanized
verification, the first step is to translate the implementation
into a representation in theorem provers, which is challenging
even for simple and common C systems code like alloc;
ClightGen cannot parse this simple example. Spoq leverages
the Clang compiler front end to parse C into LLVM IR, and
provides a code analyzer to parse LLVM IR code into an AST
representation defined in Coq (Step 1 in Figure 1). We use
LLVM IR because it is language- and machine-independent,
supports full C language semantics and most extensions of
C, can be easily integrated with assembly code semantics,
and is much simpler and more rigorously defined than C.
However, LLVM IR does not keep program structures, such
as if-then-else and loop statements, making it hard to conduct
proofs in a structural and inductive manner. Spoq resolves
this issue by analyzing the control flow graphs of the LLVM
IR code and reconstructing program structures. For example,
Spoq reconstructs the loop, branch, and break statements in
the Coq representation for the LLVM IR generated from the
alloc function in Figure 2:

Definition f_alloc :=
{| fname := "alloc"; rettype := ...; fargs := ...;

fbody := ... ::
(ILoop (... :: (IIf ... IBreak) :: ...))... |}.

Spoq also models the semantics of Armv8 instructions [4]
and parses assembly code into a list of assembly instructions
in their Coq representations.
Defining layer structure. Spoq takes as input a layer
configuration file which it uses to scale constructing
mechanized proofs using CCALs. Using CCALs, we can
construct a machine-checkable proof object “M@L ⊑R L′,”
showing that the implementation M, built on top of a lower
layer interface L, refines the interface L′ with the refinement
relation R. The file defines the layers and at which layer each
function should be verified (Step 2 in Figure 1). For example,
the layer configuration for the running example in Figure 2
defines that get/set_page should be verified on top of layer
L0, while alloc should be verified on top of layer L1.

The layer structure presumes a bottom layer machine
model, which Spoq automatically generates in part by identify-
ing each global memory object in the source code and generat-
ing a corresponding machine state in Coq. Spoq also generates
memory load/store primitives for each element in the state.
The primitives take a memory pointer as an argument and cal-
culate based on offset the array indices and structure elements
to be accessed. Index boundary and data range checks are
also included. The initial generated machine model does not
include concurrency-related structures, such as an event log
and oracle [40], which need to be manually added to complete
the model to support CPU-local concurrency reasoning.

Given the layer configuration file, Spoq will automate gen-
erating the CCALs. It will build a CCAL “Mpage@L0 ⊑R1 L1”
to abstract the page array into a Coq Map object from natural
numbers to integers, such that its elements can only be
accessed through getter and setter methods, get_page and
set_page, respectively, rather than arbitrary memory opera-
tions which may lead to unexpected behavior. The refinement
relation R1 defines how the page array is abstracted into the
Map object. It will then build a CCAL “Malloc@L1 ⊑id L2”
to verify the alloc function on top of L1 using the Map object
without the need to worry about concrete implementation
details of page. Here, id is an identical refinement relation
since no data abstraction is needed when verifying alloc.

To make building CCALs easier, Spoq decomposes the
required proofs into an identical refinement and a lifting
refinement. The identical refinement refines M to a low-level
specification Slow that is closer to the code and does not
introduce any data abstraction, i.e., “M@L ⊑id Slow.” The
lifting refinement refines the low-level specification to a
high-level specification L′, i.e., “Slow ⊑R L′.” The high-level
specification is self-contained and may introduce abstractions
to some data in lower layers.

Synthesizing identical refinements. Spoq generates
low-level specifications and identical refinement proofs
for each layer. The low-level specification of a function
aggregates the small-step transition of each instruction in
the function into a big-step transition of the entire function
while preserving the semantics. For assembly code and C
code without loops, generating the specifications and proofs
is straightforward (Step 3 in Figure 1). Spoq provides a Coq
tactic library to generate the identical refinement proofs;
a tactic is a pre-defined decision procedure to generate
proof scripts in Coq. Neither the specification generator nor
tactic library needs to be trusted, since incorrect low-level
specifications will be rejected by refinement proofs, and
incorrect proofs will be rejected by the Coq proof checker.

For C code with loops, Spoq requires the user to provide
a ranking function for each loop, which is non-negative and
monotonically decreasing during the loop iterations. This is
necessary because a termination proof is needed for each loop
to prove refinement, and automating such termination proofs
without user input is generally undecidable. With the input

854 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Definition rank (i: nat) := MAX_PAGE - i.(*user input*)
Fixpoint alloc_loop_low (r i: nat) (st: ST) :=
match r with
| O => Some (MAX_PAGE, st)
| S r’ =>
match get_page_high i st with (* spec from L1 *)
| Some 0 => match set_page_high i 1 st with

| Some st’ => Some (i, st’)
| None => None
end

| Some _ => alloc_loop_low r’ (i+1) st
| _ => None
end

end.
Definition alloc_low (st: ST) :=
let r := rank 0 in alloc_loop_low r 0 st.

Figure 3: Low-level specification for the alloc function.

ranking function, Spoq automatically synthesizes a recursive
function as the low-level specification using the Fixpoint

construction in Coq, which requires an argument that de-
creases for each recursive call. For example, Figure 3 shows a
recursive function alloc_loop_low synthesized for the loop
in the alloc function with a user-provided ranking function
(MAX_PAGE-i) as the decreasing argument for the Fixpoint

construction. Note that the low-level specification of alloc is
not self-contained and depends on functions get_page_high
and set_page_high provided by the high-level specification
at a lower layer. Spoq generates the refinement proof using
a uniform induction-proof template (Step 4 in Figure 1).
Synthesizing lifting refinements. Spoq generates high-level
specifications and lifting refinement proofs for each layer.
This is done automatically when data abstractions are not
used to hide low-level data representation details to simplify
proofs at higher layers. If data abstractions are needed, users
need to formulate the refinement relations, define abstract
operations, and conduct the refinement proofs manually.

For example, the layer L1 abstracts the array page into a
Coq Map st.page, and transforms the memory operations
load_mem and store_mem—offered by the bottom layer
L0’s machine model—into Map operations (st.page#i and
st.page#i<-s) with boundary checks:

(* Low-level specifications *)
Definition get_page_low (i: nat) (st: ST) :=
load_mem st ("page", i * 4) u32.

Definition set_page_low (i s: nat) (st: ST) :=
store_mem st ("page", i * 4) s u32.

(* High-level specifications in L1 *)
Definition get_page_high (i: nat) (st: ST) :=
if 0 <=i< MAX_PAGE then Some st.page#i else None.

Definition set_page_high (i s: nat) (st: ST) :=
if 0 <=i< MAX_PAGE then Some st.page#i<-s else None.

Because of the data abstraction, the lifting refinement proof
for layer L1 is not automated and has to be provided manually.

On the other hand, the layer L2 does not use data abstrac-
tions. For layer L2, Spoq automatically generates the high-
level specification of alloc from its low-level specification by
applying a sequence of transformation rules, including unfold-
ing definitions, merging near-duplicate sub-expressions, elim-
inating pre-determined branches and assertions, and perform-
ing mathematical simplification. The latter two rules are ap-

Fixpoint alloc_loop_high (r i: nat) (st: ST) :=
match r with
| O => (MAX_PAGE, st) (* no need of Some anymore *)
| S r’ => if st.page#i =? 0 then (i, st.page#i<-1)

else alloc_loop_high r’ (i + 1) st’
end.

Figure 4: High-level specification for the alloc function.

plied by using the Z3 SMT solver [16]. For alloc_loop_low
in Figure 3, Spoq first unfolds the definitions provided by L1
and simplifies the representation as shown below:

Fixpoint alloc_loop_low’ (r i: nat) (st: ST) :=
match r with
| O => Some (MAX_PAGE, st)
| S r’ =>
if 0 <= i < MAX_PAGE then (* <- always true *)
if st.page#i =? 0 then
if 0 <= i < MAX_PAGE then (* <- redundant *)
Some (i, st.page#i<-1)

else None
else alloc_loop_low’ r’ (i + 1) st’

else None
end.

Spoq then applies rules to eliminate an inner if statement
which is redundant and eliminate the outer if statement by
inferring that i is always within the range, resulting in the
high-level specification in L2 shown in Figure 4. Unlike the
low-level specification, the high-level specification in L2 is
self-contained and does not refer to anything from L1. Thus,
any modules depending on L2 can be reasoned about using
L2 alone without the need to look at lower layers. Otherwise,
after building dozens of layers, the specification at a higher
layer may wrap many levels of definitions from various lower
layers, making the verification non-modular and much harder.

Spoq automatically generates refinement proofs to verify
the transformations that are applied to transform low-level
into high-level specifications (Steps 5-6 in Figure 1). Since
all specifications are guarded by machine-checkable proofs in
Coq, there is no need to trust Spoq’s specification generation
algorithms or any Z3 results.

4 Generating Coq Representations
Spoq uses Clang to compile C code to LLVM IR, enabling it
to support full C semantics and various extensions, including
arbitrary type casting, integer-pointer conversion, inline as-
sembly code, C macros that use GNU C extensions, and GNU
C compiler directives. Spoq then translates LLVM IR code
into an AST defined in Coq. IR code consists of structs, global
variables, and functions. Spoq literally translates IR structs,
similar to C structs, and global variables into their Coq rep-
resentations, but does additional program reconstruction for
IR functions. An IR function can be viewed as a control flow
graph (CFG) over a set of basic blocks with an entry point. All
instructions in a basic block are sequentially executed, and the
last instruction either jumps to another block or returns from
the function. Since systems code may contain goto statements
and IR code is compiled with optimizations enabled, the CFG

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 855

	𝑃 	𝐴𝑒 	𝑃 𝑒; 𝐴𝑅!

	𝑃 	𝐴𝑒! 	𝑆𝑒" 	𝑃 	𝑆𝑒!; 𝐴; 𝑒"𝑅"

𝑖𝑓 𝑐! 				𝑒!
𝑒𝑙𝑖𝑓 𝑐" 	𝑒"
𝑒𝑙𝑖𝑓 𝑐# 	𝑒#

	𝐴 	𝑆

𝑒!
𝑒"

𝑐!
	𝐴 	𝑆𝑅#

	𝑃!

	𝑃"
	𝐴

𝑒!

𝑒"

𝑒 	𝑃!
	𝑃"

𝑒!; 𝐴; 𝑒

𝑒"; 𝐴; 𝑒

𝑅$

𝑐"
𝑐# 𝑒#

	𝑆 	𝑆

𝑒"; 𝐴; 𝑒

	𝑃!

	𝑃"
	𝐴

𝑒!

𝑒"

𝑒 	𝑃!
	𝑃"

𝑒!; 𝐴; 𝑒
𝑅′$

Figure 5: Rewrite rules for program CFGs without loops.

can be very complex and hard to reason about directly.
Spoq introduces a novel algorithm to merge each function’s

CFG of basic blocks into one code block and reconstruct
program structure using if-then-else, loop, continue, break,
and return statements. Spoq only uses these statements to
construct a program structure that is amenable to proof decom-
position, which may not be the same as the program structure
of the original source code. For example, any goto statements
in the original source code will be eliminated. The algorithm
reconstructs program structure by repeatedly applying a set
of rewrite rules to reduce the size of the CFG by merging
blocks and deleting edges. Spoq performs the reconstruction
in IR. No attempt is made to reconstruct the original C code,
which would bloat an otherwise minimal implementation.

Reconstructing programs without loops. For programs
without loops, Spoq uses four rewrite rules to reconstruct
programs from CFGs, shown in Figure 5. Each node denotes a
code block and each edge denotes a change in control flow. A,
P, and S in the nodes denote the instructions inside the respec-
tive blocks. c1, c2, and c3 at the beginning of edges denote
the conditions to jump through the respective edges. Unlike
regular CFGs, e, e1, and e2 denote instructions attached to
edges which will be executed when jumping through the
respective edges. A blue edge ending with a rhombus denotes
an edge without a destination, whose attached instructions
must end with a continue, break, or return statement.

The CFG of a function without loops has no cycles, so
Spoq can repeatedly apply the rewrite rules to reduce the
graph to a single node. Rule R1 deletes a dangling node,
a node with only one incoming edge e and no outgoing
edge, and moves its instructions A to its incoming edge,
which becomes an edge without a destination and has
instructions “e;A.” Rule R2 deletes a bridge node A, a node
with exactly one incoming edge e1 and one outgoing edge e2,
and redirects the incoming edge from its predecessor node P
to its successor node S with instructions “e1;A;e2.” If all the
outgoing edges of a node A either point to the same node S or
do not have destinations, rule R3 merges all the edges into one

𝐴

𝑅5

𝐶

𝐷

E

𝐴

𝐶

𝐷

E
𝐵𝑘(𝐴, 𝐸)

𝐶𝑡(𝐴)

𝐶𝑡(𝐴)𝐵𝑘(𝐴, 𝐸)

𝐴
𝑅6

𝐶

𝐷

E

𝐴

𝐶

𝐷

𝐴

𝐶

𝐷

E

𝑅7
𝐴

𝐶

𝐷

E 𝐵𝑘(𝐴, 𝐸)

𝐶𝑡(𝐴)

𝐶𝑡(𝐴)𝐵𝑘(𝐴, 𝐸) 𝐶

𝐷

E

𝐵𝑘(𝐴, 𝐸)

𝐴. 𝑐 = 𝑡𝑟𝑢𝑒;
𝐵𝑘 𝐶, 𝐹

𝐴. 𝑏 = 𝑡𝑟𝑢𝑒;
𝐵𝑘(𝐶, 𝐹)

𝐶𝑡(𝐴)

𝐴

A. 𝑏 = 𝐴. 𝑐 = 𝑓𝑎𝑙𝑠𝑒

𝐶𝑡(𝐶)

𝐵𝑘(𝐶, 𝐹)

𝐹

𝐹 = 𝑖𝑓 𝐴. 𝑏 𝐵𝑘 𝐴, 𝐸
𝑒𝑙𝑖𝑓 𝐴. 𝑐 𝐶𝑡 𝐴
𝑒𝑙𝑠𝑒 𝑔𝑜𝑡𝑜 𝐷

𝐶;
𝑖𝑓 . . 𝐵𝑘 𝐶, 𝐹
𝑒𝑙𝑠𝑒 𝐶𝑡(𝐶)

𝐹

𝐿𝑜𝑜𝑝(𝐶; 𝑖𝑓 . . 𝐵𝑘)

𝐹

𝑅8

Figure 6: Rewrite rules for program CFGs with loops.

edge with branch statements. Since only the last instruction
in a node changes the control flow, when a node has more
than one outgoing edge, each edge must have a condition c.
If a node has multiple incoming edges but only one outgoing
edge, rule R4 deletes the node and redirects all incoming
edges to its successor node S with aggregated instructions.
Rule R′

4 is logically the same as R4, but shows the case when
the only outgoing edge does not have a destination.

The reconstruction algorithm prioritizes applying the first
three rules and only applies R4 to the farthest valid node from
the entry point if no other rules are applicable. We prove that
this algorithm can rewrite any CFGs without loops into a
single code block. The following example shows a sequence
of rewrites to reconstruct the program structure from its CFG:

	𝑃

	𝐴 	𝐵

S

𝑅!
	𝑃

	𝐴

	𝑆

𝐵
	𝑃

	𝐴

	𝑆

𝐵
𝐵 𝑖𝑓 …

	𝑃

	𝑆

𝐵
𝐴; 𝑖𝑓 …

𝑅" 𝑅# 𝑅"
	𝑃

	𝑆

𝑖𝑓 …
𝑅$

	𝑃

𝑖𝑓 … ; 𝑆

Reconstructing programs with loops. Loops introduce
cycles into CFGs. For CFGs with cycles, Spoq computes
the strongly connected components (SCCs). An SCC is the
largest set of nodes in which every node is reachable from
every other node. One node with self-pointed edges can
also be an SCC. Spoq then uses four additional rewrite rules
shown in Figure 6 to convert SCCs (marked by dotted orange
circles) into loop-related statements.

Rule R5 breaks cycles in an SCC which only has one
incoming edge (pointing to node A in the SCC), and all its
outgoing edges point to the same destination (node E outside
SCC). It redirects any edge to A in the SCC to having no
destination, and appends Ct(A) (a continue statement for the
loop A) to the edge. It also redirects any edge to E in the
SCC to having no destination, and appends Bk(A,E) (a break
statement from the loop A to E) to the edge. After the rewrite,
there is no longer a cycle back to node A and the size of the
SCC becomes smaller. When an SCC has incoming edges
from more than one node, rule R6 duplicates the SCC for
each node with incoming edges so that each SCC has only

856 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

one incoming edge. For nested loops in which the inner loop
may directly jump out of the outer one, rule R7 converts such
an SCC into one in which the jump target remains within the
outer loop. Rule R7 inserts a new node F , and all outgoing
edges from the inner loop are redirected via break statements
to F . Flags are also appended to the outgoing edges. Node
F contains instructions to jump to different destinations
depending on the flag. Flag A.b means breaking the outer
loop A, A.c means going back to the beginning of the outer
loop A, and no flag means breaking the inner loop. Once
cycles are removed, rule R8 converts a node’s instructions into
a single Loop statement, and re-establishes the edge from the
loop node to its successor indicated by the break statement.

Assembly code. Spoq also handles assembly code, repre-
senting assembly instructions as parameterized inductive
types in Coq. Each instruction corresponds to one construct
with the operand as the parameter. Since assembly is not a
structured language, Spoq simply translates each assembly
procedure or inline assembly statement into a list of assembly
instructions in their Coq representation. For inline assembly,
LLVM IR already encapsulates it as a function. Spoq extracts
the assembly code into a separate assembly procedure, and
replaces the original function body with a call to the assembly
procedure, decoupling the inline assembly from the LLVM
IR in the Coq representation. The current implementation
only handles Armv8 assembly code.

Semantics of Coq representations. Once LLVM IR and
assembly code is translated to its Coq representation, it can
then be verified. This requires defining the semantics of
LLVM IR and assembly instructions in Coq, to specify the
behavior of the Coq representation. Semantics are defined
with respect to a layer interface for a bottom layer machine
model. The interface contains a machine state st and getter
and setter methods that access objects in the machine state
through object pointers. An object pointer is a pair (base,
ofs), where base specifies the object and ofs specifies the
field or offset within the object. In other words, the semantics
of LLVM IR and assembly instructions define how those
instructions use the getter and setter methods and how they
update the underlying machine state. The machine state
contains memory blocks and registers, as discussed below.

LLVM IR semantics only depend on memory objects,
each of which is a set of disjoint memory blocks that can be
accessed using load_mem and store_mem methods through
object pointers with boundary checks. A memory block is
contiguous and its size is defined by the type of the respective
structure or global variable. For example, the page array
in Figure 2 is a memory block with (MAX_PAGE× 4) bytes
and can be accessed using an object pointer ("page", i),
where 0 ≤ i < MAX_PAGE× 4. The layer interface contains
a variable environment providing a one-to-one mapping of
variable names to corresponding addresses in memory.

For assembly code, Spoq models the semantics of the

Armv8 instructions based on not only memory block objects,
but also register objects. For example, the register objects
model that clearing the VM bit in HCR_EL2 register will disable
the stage-2 translation for EL1 and EL0. Since an assembly
procedure is just a list of assembly instructions, the semantics
of an assembly procedure is defined as applying the semantics
for each assembly instruction in the list one after the other.

Based on CCALs, Spoq uses CPU-local reasoning and
distinguishes memory objects as CPU-private memory, lock-
synchronized memory, and lock-free memory. Each CPU-
private memory object belongs to and can only be accessed
by a particular CPU. Each lock-synchronized memory object
is associated with a lock. When accessing a lock-synchronized
memory object, Spoq checks that the corresponding lock is
held by the local CPU. Accessing a lock-free memory ob-
ject generates an event appended to a global log, and an event
oracle is queried to simulate other CPUs’ behavior before gen-
erating each event. Correct concurrent behavior is guaranteed
in the same way as previous work using CCALs [38,40]. This
event-based machine model assumes sequential consistency
(SC). To propagate proof results for a system to Arm’s relaxed
memory hardware, users can follow the methods introduced
by VRM [54] to verify that the system satisfies six weak-data-
race-free conditions. This implies that the system exhibits no
more behaviors when running on Arm relaxed memory hard-
ware versus an SC model. Thus, any guarantees proven using
the SC model still hold on Arm’s relaxed memory hardware.

5 Synthesizing Identical Refinements

Low-level specifications without loops. Spoq recursively
aggregates the small-step semantics of every IR statement
in a function and generates a Coq definition to reflect the
entire transition as the low-level specification of the function.
Leveraging the reconstructed program structure, Spoq simply
scans through the Coq AST representation, conducts case
analysis starting with the first statement, and generates the
corresponding Coq definition as a string based on the defined
LLVM IR semantics. A small piece of Python pseudocode
for assignment and branch statements is shown below:

def spec_gen (ast, spec):
for n in range(len(ast)):
i = ast[n]
if isinstance(i, IAssign): # Assignment case
s = f"let {coq_name(i.asg)} := {val(i.v)} in"
spec.append(s)

elif isinstance(i, IIf): # Branch case
spec.append(f"if {coq_name(i.cond)} then")
spec_gen(i.true_body + ast[n+1:], spec)
spec.append(f"else")
spec_gen(i.false_body + ast[n+1:], spec)

...

For an IAssign statement, which assigns a value to a
temporary variable, Spoq generates a let binding in
Coq. For an IIf statement, Spoq recursively invokes its
specification generator spec_gen for each branch in the code
and concatenates the branch body with the rest of the AST.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 857

Identical refinements without loops. Spoq automatically
generates identical refinement proofs by using a Coq tactic
lrefine. The idea is to do case analysis for each conditional
by recursively decomposing each conditional into two
sub-proofs, one for when the conditional is true and another
for when it is false. Once a branch body is reached with no
further conditionals, the proof can simply show that if the
low-level specification transforms the machine state from st

to st’, then the small-step semantics of the Coq AST also
transforms the machine state from st to st’. Spoq aggregates
the sub-proofs for all the branch cases to form the overall
refinement proof. Take the following pseudo-specification
generated from an if statement as an example:

Definition foo_low (st: ST) :=
if cond then foo_true_low st else foo_false_low st

The lrefine tactic will conduct case analysis over cond,
which generates two sub-proof goals. The first goal is to
prove that the AST transfers st to “foo_true_low st” with
an additional hypothesis “H0: cond = true.” The lrefine

tactic then executes the semantics of AST for one step by
showing that the branch condition will be evaluated to true

when H0 holds and finally invokes lrefine recursively to
prove that the first branch implementation will transfer st
to “foo_true_low st,” a specification generated using the
first branch. The second goal can be proved similarly.
Low-level specifications for loops. Spoq generates low-level
specifications for loops using a recursive Fixpoint construc-
tion in Coq. A Fixpoint definition requires a decreasing
argument, which has the type nat and decreases for each re-
cursive call of the function. Spoq requires the user to provide
a ranking function for each loop as the decreasing argument.
It then generates low-level specifications for loops by filling
in the parts marked with {{ }} in the template below:

1 Fixpoint _loop (n: nat) (bk rt: bool) {{Vi Vo}} st:=
2 match n with
3 | O => Some (bk, rt, {{Vo}}, st)
4 | S n’ =>
5 match _loop n’ bk rt {{Vi Vo}} st with
6 | Some (bk’, rt’, {{Vo’}}, st’) =>
7 if bk’ then Some (bk’, rt’, {{Vo’}}, st’)
8 else if rt’ then Some (bk’, rt’, {{Vo’}}, st’)
9 else {{low-level spec of the loop body}}

10 | _ => None
11 end
12 end.
13 Definition _low {{args}} (st: ST):=
14 {{low-level spec before the loop}}
15 let n := {{rank i_Vi}} in
16 match _loop n false false {{i_Vi i_Vo}} st with
17 | Some (bk, rt, {{Vo}}, st’) =>
18 if rt then Some ({{Vo}}, st’)
19 else {{low-level spec after the loop}}
20 | _ => None
21 end.

For the loop, Spoq generates a Fixpoint construction
such that one recursive call of the Fixpoint construction
corresponds to one iteration of the loop, so its body is
the low-level specification of the loop body (line 9). Five
Fixpoint arguments track the state of the loop (line 1). Vi are

the input variables initialized before the loop and accessed by
the loop body; they have initial values i_Vi. Vo are the output
variables accessed after the loop that were also accessed in
the loop body; they have initial values i_Vo. For example,
the loop in alloc in Figure 2 simply has i for both Vi and
Vo, with initial values 0 and MAX_PAGE, respectively. Spoq
determines input and output variables and their initial values
from syntactic analysis of the IR code. n is the decreasing
argument, which is a natural number that is determined by the
user-provided ranking function, which takes as input all the
input variables of the loop. n is initialized using the ranking
function over the initial value of input variables i_Vi, which
sets the maximum number of “loop iterations” (line 15), and
decreases by one for each “loop iteration” (line 4). Flags bk
and rt indicate whether the loop has already been terminated
by a break or return statement. The loop body (line 9) sets
bk to true when executing a break statement or exiting when
the loop condition becomes false, and sets rt to true when
executing a return statement. Fixpoint will not make further
changes once bk or rt is set to true (lines 7 and 8).

For the function containing the loop, Spoq generates
low-level specifications for the code before the loop (line 14);
invokes the Fixpoint with the initial values of the ranking
function, flags, and variables (line 16); skips the rest of
the function if rt is true (line 18); and generates low-level
specifications for the code after the loop if not returned
(line 19). Spoq will syntactically analyze the IR code and
produce Vi, Vo, and their initial values i_Vi and i_Vo. Note
that Figure 3 shows a simplified low-level specification that
omits the bk and rt flags and uses a tail recursion style.

Identical refinement proofs for loops. Spoq proves
identical refinements for loops using induction. The base
case is trivial because the input machine states are the same.
Spoq only needs to prove that the initial ranking function is
non-negative. This is automated using a tactic xlia, extended
from Coq’s tactic lia, a decision procedure for arithmetic.
The induction step is to show that when the input machine
states for the low-level specification and Coq AST are the
same after the i-th iteration and both bk and rt are false, the
output machine states are still the same after the (i+ 1)-st
iteration. The (i + 1)-st iteration may have one of three
outcomes: 1) continue to the next iteration, 2) break the loop
due to a break statement or the loop condition becoming
false), and 3) return from the function. For all three outcomes,
Spoq first proves that the loop body and Fixpoint body have
the same semantics by recursively invoking lrefine. Spoq
then proves additional properties for each outcome. For the
first outcome, Spoq proves that the ranking function decreases
by at least one and is still greater than zero using xlia. This
guarantees that the loop must terminate after at most the
number of iterations indicated by the initial ranking function.
For the second outcome, Spoq proves that bk is true after the
iteration, and the ranking function is still non-negative when
the loop condition becomes false using xlia. For the third

858 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

outcome, Spoq proves that rt is true after the iteration. Note
that the Fixpoint function continues the iteration after bk
or rt is true but will not make any changes to the state.

Spoq automatically generates the identical refinement proof
for a loop if the loop is not contained within a conditional
in the function. However, if the loop is contained within a
conditional, or a series of conditionals, this results in the loop
being used in multiple branches of execution, which Spoq
currently does not automatically handle. In this case, the user
will see that the loop termination proof failed in one or more
branches, and needs to copy and paste the induction proof
template into the other branches of execution with possible
minor modifications; this is generally straightforward to do.

Assembly code. Spoq generates low-level specifications
for assembly code by evaluating the assembly instruction
list. The current implementation only supports automatic
generation of low-level specifications for assembly code
without jumps. Spoq simply evaluates instructions sequen-
tially and outputs the machine state of the last instruction.
If the destination of a call instruction is a C function, Spoq
uses registers according to the Procedure Call Standard for
the Arm 64-bit Architecture (AAPCS64) [5]. Spoq sets the
arguments to the values in the argument registers according
to AAPCS64. After the function call, Spoq checks the linker
register of the machine state and evaluates the assembly
instruction from where the linker register points. After
returning from the function call to assembly code, Spoq sets
the value of the caller-saved registers to UNKNOWN because the
caller cannot assume any value in the caller-saved registers
according to AAPCS64. Spoq disallows reads from any
register with value UNKNOWN; assembly code must write to
the caller-saved register first before it can be read. This helps
prevent unexpected information leakage from registers.

By using the AAPCS64 calling conventions for assembly
code functions so that arguments and return values are
treated the same as C code functions, Spoq provides a unified
approach to generating low-level specifications for assembly
and C code. This includes using the same type value used
in the IR semantics for assembly code. This unified approach
makes it possible to link the proofs for assembly and C code.

Spoq generates low-level specifications for inline assembly
in the same manner as other assembly code, since it already
extracts the inline assembly into a separate assembly code
procedure. However, Spoq requires that the operands used in
inline assembly are C variables specified in the input or output
operand list, system registers, and constants. Directly reading
or writing general-purpose registers is disallowed to ensure
proof correctness when linking inline assembly and C code,
as the compiler may use them for temporary variables [40].

Spoq automatically generates identical refinement proofs
for assembly code, which is straightforward without jumps
as there are also no loops. The proof simply shows that
the low-level specification and assembly instruction list
transform the machine state in the same way.

6 Synthesizing Lifting Refinements

High-level specifications. Spoq generates high-level
specifications by applying a set of transformation rules to
low-level specifications to make them self-contained and
simple. Spoq uses 12 transformation rules shown in Figure 7,
though additional rules can easily be added. Spoq uses the Z3
SMT solver to apply rules involving symbolic execution or
mathematical simplification. The goal of the transformation
rules is to simplify the required control flow and eliminate
as much as possible unnecessary operations.

T1 unfolds a function’s definition in an expression. Func-
tions defined in lower layers that are called in the low-level
specification are generally unfolded as part of the high-level
specification to make it self-contained. Unfolding may also
provide opportunities to apply other transformation rules to
eliminate unnecessary operations to further simplify the spec-
ification. T2 eliminates a let assignment by substituting the
variable with its value, which helps find opportunities for
simplifying expressions. T3 eliminates an if branch if both
branches are the same. T4 eliminates a match statement by syn-
tactically determining which pattern matches the source value.
T5 eliminates a match statement if both the source and return
values are of Option type, and if the source value is None, the
return value is None. It eliminates the match by making body

the return value for all source values that are not None. T6 trans-
forms a match statement in which the source value matches
the pattern and is used in the return value by substituting the
pattern in the return value. This can provide more opportu-
nities for simplification since patterns are more specific. T7
moves the control flow of the source value to the outside of
the match statement. Spoq tries to simplify the source value
of match statements to make it easier to determine matching
patterns. T8 moves the control flow within an expression to the
outside of the expression to aggregate computations within
the expression, which helps find opportunities for simplifying
expressions. T9 does various simplifications for getter and set-
ter methods. Here i and j indicate different fields. Whether i
equals j can be determined syntactically (if they are structure
names), or by Z3 (if they are integer indices). T10 performs
symbolic execution using Z3 to identify whether the assertion
of a rely is valid or invalid. If the assertion is always true,
then rely is redundant and can be removed. If the assertion
is always false, the statement can simply return None. T10 will
do nothing if Z3 cannot decide if the assertion is true or false.
T11 performs symbolic execution using Z3 to simplify if

statements. T12 simplifies math expressions using Z3. For ex-
ample, Spoq applies T1, T2, and T11 to generate the high-level
specification in Figure 4 from its low-level specification.

While the transformation rules can be applied in different
orders to yield the same result, the order in which the rules are
applied can have a significant impact on the execution time
required. Spoq reduces execution time by applying the rules
in stages. In the first stage, it applies rules T2 - T8 and the T9

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 859

𝑇𝑇1 def F a b := a + b
…
F (x+1) (y+1)

let a := x + 1 in
let b := y + 1 in
a + b

𝑇𝑇2 let a := x + y in
a + b (x + y) + b

𝑇𝑇5 match
(if c then

Some (a+1, b)
else None)

with
| Some (x, y) => body
| None => None
end

if c then
let x := a+1 in
let y := b in
body

else
None

𝑇𝑇3 if c then X else X X

𝑇𝑇7 match
(if c then A
else B)

with
| …
end

if c then
match A with
| …
end

else
match B with

| …
end

𝑇𝑇6 match V with
| P1 => … V …
| P2 => … V …
end

match V with
| P1 => … P1 …
| P2 => … P2 …
end

𝑇𝑇4
match
(e1 :: e2 :: L)

with
| [] => X
| e :: lst => Y
end

let e := e1 in
let lst := e2 :: L in
Y

𝑇𝑇8 (if c then x
else y) + a

if c then x + a
else y + a

𝑇𝑇9 (st # i v) # j st # j
(st # i v) # i

(st # i u) # i # j v
(st # i # j u) # i v

(st # i u) # j v
(st # i (st # i))

v

st

(st # j v) # i u

st # i (u # j v)

st # i v

𝑇𝑇10 rely (p); body bodyP is true

rely (p); body NoneP is false

𝑇𝑇11 if c then A else B Ac is true

if c then A else B Bc is false

𝑇𝑇12 A + 2 * 3 + 4 A + 10

Figure 7: Transformation rules for high-level specifications.

syntactic transformations. In the second stage, it applies rule
T1, then repeats applying the rules from the first stage. Spoq
unfolds only one function, and only when no other syntactic
rules can apply, because unfolding multiple functions too
early can cause extra work. In the extreme case, unfolding
all functions first will cause the size of the specification
to explode and result in many unnecessary tests on each
expression in each unfolded function body. In the third stage,
it applies rules that use Z3, specifically rules T9 - T12, then
repeats applying the rules from the first and second stages.
Spoq applies syntactic rules first to simplify the specification
as much as possible before applying Z3 rules because Z3 rules
take much longer to process. To avoid long Z3 processing
times, Spoq enforces a short timeout on Z3 operations, which
is set to half a second by default. Essentially, Spoq repeatedly
applies all rules until the high-level specification converges,
meaning the rules no longer change the specification.

Using transformation rules to make the high-level
specification of each layer self-contained generally results
in the high-level specification being of larger size than its
corresponding low-level specification. However, this size
increase is outweighed by the ability to use the self-contained
specification to simplify reasoning for higher layers, espe-
cially with regard to reasoning about higher-level properties
based on the top layer high-level specification.

Lifting refinement proofs. Spoq automatically generates
lifting refinement proofs to prove that the low-level spec-
ification refines the high-level specification generated by
the transformation rules. This will necessarily be the case
for transformation rules done in Coq, so the task reduces to
reconstructing the proofs in Coq for all transformations done
by Z3; there is no need to trust any results from Z3. Spoq
uses a Coq tactic library to enable the proof automation.

Spoq simplifies the construction of refinement proofs
by introducing annotated high-level specifications, which
are the same as high-level specifications except that they
have additional annotations that encapsulate the results
of all of the Z3 transformations applied. For example, if
T11 is applied, there will be an annotation showing that
A+2∗3+4 = A+10, which serves as a hint for constructing
proofs. Spoq generates the annotations as it is generating the
high-level specification. Spoq then uses the annotations to
tell Coq what step-by-step syntactic substitutions it should
perform to prove the low-level specification refines the an-
notated high-level specification. Because the annotations tell
Spoq what transformations to do, it only has to validate them
in Coq, which is much easier than automatically discovering
the transformations in Coq; that would be difficult without
Z3. Spoq finally trivially proves that the annotated high-level
specification refines the high-level specification by showing
that removing the annotations does not change the machine
behavior. The two-part refinement proof shows that the
low-level specification refines the high-level specification.

Spoq introduces a Coq tactic hrefine to automate the
core part of the proof, namely proving that the low-level
specification is equivalent to the annotated high-level
specification. The strategy of hrefine is similar to the one
for lrefine used for the identical refinement proof discussed
in Section 5. The hrefine tactic analyzes the structure of
the annotated high-level specification, decomposes it into all
possible branches of state transitions, and conducts the proof
for each branch. For each branch, all match, if, and rely are
eliminated because the branch corresponds to a specific set of
values for their conditions. Each branch therefore has a list of
conditions and annotations. Spoq uses those conditions and
annotations to simplify the low-level specification and prove
that the low-level specification has the same behavior as the
high-level one for that branch. It then repeats this process to
prove the refinement for each branch.

Section 7 shows that Spoq was able to automatically gener-
ate all lifting refinement proofs involving Z3 transformations
in verifying a multiprocessor KVM hypervisor. However, it
is theoretically possible for there to be Z3 transformations for
which Spoq is not able to generate lifting refinement proofs, in
which case the user needs to manually complete those proofs.

Spoq also uses Coq tactics to automatically generate lifting
refinement proofs for Fixpoint constructions, which are used
in high-level and low-level specifications for functions with
loops. The proofs use induction and are straightforward to
generate because they only involve Fixpoint constructions,
which are guaranteed to terminate. The hard part of refining
loops to Fixpoint constructions and completing termination
proofs has already been done in the low-level specifications.

Using Spoq provides significant advantages in terms of
proof modularity over previous approaches that required
users to manually write high-level specifications and
proofs [20, 38, 40]. Because creating a self-contained

860 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

high-level specification often involves unfolding function def-
initions from lower layers, any change to an implementation
at a lower layer can require rewriting the high-level specifica-
tions for all higher layers, which also requires rewriting their
refinement proofs. This makes it difficult to port specifications
and proofs as a software implementation evolves over time if
high-level specifications and refinement proofs are manually
written, as many of them may have to be manually rewritten.
With Spoq, the impact of an implementation change can be
localized to its respective layer, even if that layer requires
writing high-level specifications or proofs manually, since
high-level specifications and proofs for higher layers can be
automatically generated. This makes it much easier to port
specifications and proofs across software updates.

Assembly code. Spoq generates high-level specifications and
lifting refinement proofs for assembly code without jumps in
the same manner as for C code. The current implementation
leaves it to the user to write specifications and refinement
proofs for assembly code with jumps.

7 Evaluation

We have implemented a Spoq prototype, which consists of
three components: the translator from systems code into Coq,
the specification and proof generator, and the Coq libraries
for LLVM IR and assembly semantics and tactics. The three
components are implemented using 4K lines of code (LoC)
in C++ and Python, 6K LoC in Python, and 5K LoC in Coq,
respectively. We evaluated Spoq’s effectiveness in translating
C systems code into Coq for various widely used open-source
software, and verifying a KVM hypervisor implementation.

7.1 Translating system software into Coq

Since the first step in verification is to translate systems
code into Coq, we evaluated Spoq’s ability to do so for the
applications, libraries, and Linux kernel version listed in
Figure 8. We used the Makefile for the source code tree of
each application, library, and kernel to build the source code
using the default configuration, but output LLVM IR (.ll)
files, in some cases by modifying the Makefiles by replacing
the -o compilation option to output an executable with the
-S -emit-llvm option to output LLVM IR files, which are
then read by Spoq to translate them into Coq. The Linux
kernel uses a more complex KBuild system [29], but no
modifications were needed since it already accepts the -S

-emit-llvm option to output LLVM IR files.
For comparison, we also tried to use ClightGen to translate

the systems code into Coq. This required much more effort
to the build source code trees because many of the compiler
flags are not accepted by ClightGen. Instead, for most
cases, we ran the existing Makefiles to get the compilation
commands executed and saved them to a file, then used a

0 50% 100%
Percentage

Redis
v2.0

OpenSSL
v3.0.0

Memcached
v1.6.17

mbedtls
v3.2.0

Linux v5.15
(allnoconfig)

99.81% (1067/1069)

99.98% (44555/44563)

99.95% (1831/1832)

99.42% (5627/5660)

99.99% (41116/41122)

Spoq

Spoq

Spoq

Spoq

Spoq

40.41% (432/1069)

78.59% (35024/44563)

57.26% (1049/1832)

49.96% (2828/5660)

0.01% (5/41122)

ClightGen

ClightGen

ClightGen

ClightGen

ClightGen
Pass
Fail

Figure 8: Translating C code into Coq. Each bar shows how many
of the total number of C functions are successfully translated.

script to filter options not supported by ClightGen, then reran
the filtered compilation commands using ClightGen instead.

Figure 8 shows the results for translating C systems code
into Coq using Spoq versus CompCert’s ClightGen. Across
all of the applications, libraries, and the Linux kernel, Spoq
successfully translates over 99% of the functions in the
source code into their Coq representations. The failures
were caused by currently unsupported LLVM instructions,
mainly advanced branching instructions (e.g. callbr, invoke,
resume). Support for them is left for future work.

Spoq performs significantly better than ClightGen, which
fails almost entirely on the Linux kernel and only translates
roughly 50% of the functions in the source code into their
Coq representations for most cases. Its best performance
is on OpenSSL, for which it is still able to only translate
less than 80% of the functions in the source code into
Coq representations. ClightGen fails due to numerous
unsupported C features, including variable-sized arrays,
function parameters or return values with union/struct,
additional keywords, C statements, and other unsupported
inline assembly features. Furthermore, for the Linux kernel,
GNU C directives are ubiquitous in almost all header files
included by source code files and prevent ClightGen from
translating the kernel source code into Coq.

Not only does Spoq perform far better than ClightGen
in translating systems code into Coq representation, but it
has a much smaller implementation. The module in Spoq
responsible for translating systems code into Coq consists
of 2.7K LoC in Python and 1.3K LoC in C++, the latter to
make use of the official LLVM library to parse LLVM IR
files. Its minimal implementation avoids bloating the TCB.
In contrast, ClightGen is enormous, consisting of at least tens
of thousands of lines of unverified OCaml code. ClightGen
performs worse than Spoq and increases the TCB size much
more significantly than Spoq as well.

7.2 Verifying a KVM hypervisor
We evaluated Spoq’s ability to reduce proof costs by
verifying SeKVM, a retrofitted version of the KVM/Arm

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 861

#define __hyp_text __section(.hyp.text) notrace
u32 __hyp_text mem_region_search(u64 addr)

(a) Unsupported compiler directive.

/* Orignal source code:
* inline assembly and macro of a C statement */
u32 __raw_readl(const volatile void __iomem *addr){
u32 val;
asm volatile("ldr %w0, [%1]\r\nldar %w0, [%1]",)
: "=r" (val) : "r" (addr));
return val;}

#define readl_relaxed(c) \
({ u32 __r = \

le32_to_cpu((__force __le32)__raw_readl(c)); \
__r;})

/* Verified source code:
* original source code replaced with only C function
* declaration so it can be parsed by ClightGen. */
u32 readl_relaxed(u64 addr);

(* Specification modeling the behavior of
* readl_relaxed; implementation unverified. *)
Definition readl_relaxed_spec (addr: Z) (st: ST) :=
(ZMap.get st.(mem) addr, st).

(b) Unsupported GNU Inline Assembly and C statement.

Figure 9: Example SeKVM changes required to use ClightGen.

hypervisor [13–15, 37] that was previously verified in
Coq [38, 39, 54]; only its trusted core needed to be verified to
guarantee the security properties of the entire multiprocessor
hypervisor. We updated SeKVM to run on additional hard-
ware, specifically the Raspberry Pi 4, which involved modest
changes to its previously verified codebase. However, this
required updating the proofs, so we used Spoq to verify the
updated version, and compare the proof effort to the manually
written Coq proofs for the earlier version of SeKVM.

Generating Coq representations. We first used Spoq to
automatically translate the source code of the trusted core of
the updated hypervisor version into Coq. Spoq successfully
translated all of the 3.8K LoC of C and Arm assembly code
into Coq. The same code that is compiled to execute is used
for verification; there is no difference, ensuring that the proofs
hold at the source code level for the code that is executed.
This is in contrast to the previous work to verify SeKVM,
which used ClightGen to translate its implementation
into Coq. This required further retrofitting of the source
code because of its use of many features unsupported by
ClightGen, including removing all header files with versions
that were amenable to translation by ClightGen.

Figure 9 shows examples of the retrofitting required to
use ClightGen. Figure 9a shows a GNU C compiler directive
__section which tells the linker to link the function into a spe-
cial text section that SeKVM later isolates and protects from
the rest of the kernel. ClightGen does not support such GNU C
compiler directives, which are heavily used in systems code to
control compilation and linking behavior. To use ClightGen,
we first need to remove those GNU C compiler directives from
all functions. Figure 9b shows a C macro readl_relaxed with
inline assembly. ClightGen does not support such C macros or
inline assembly. To use ClightGen, we need to either rewrite

all such macros into standard C functions, or model them as
abstract functions whose implementations are not verified
and must be included in the TCB. Figure 9b shows the latter
approach. The macro is replaced with just a function declara-
tion so it can be translated by ClightGen, and a specification
is written for the function, but the function implementation
cannot be verified. There are over a hundred such functions
in the original source code. These required changes result in
a gap between the code that is verified versus the code that
is compiled and executed. Unfortunately, without supporting
features such as GNU C compiler directives, the verified code
cannot be directly compiled and executed.

Generating specifications and proofs. We then used Spoq to
generate the top-level specification for SeKVM, including all
layer specifications and refinement proofs. Table 1 shows the
manual proof effort required to verify SeKVM’s functional
correctness using Spoq, as measured by the LoC in Coq that
still needed to be manually written to complete the verifica-
tion. We also propagated the proofs to Arm’s relaxed memory
hardware, but omit details as it is similar to VRM’s proof [54].

We wrote less than 100 LoC to provide the layer structure
in a layer configuration file consisting of the same 34 layers
as the original proofs for SeKVM; the changes in the updated
version of SeKVM were minor enough that no changes in the
layer structure were needed. We wrote 0.5K LoC for the bot-
tom layer machine model for concurrency-related structures.

For C code without loops and Arm assembly code without
jumps, Spoq automatically generated all low-level specifica-
tions and identical refinement proofs. For C code with loops,
Spoq automatically generated all low-level specifications
given a ranking function for each loop, each requiring 2 LoC.
For C code with loops within conditionals, we wrote 0.8K
LoC for identical refinement proofs that could not be auto-
mated by the current Spoq prototype, much of which involved
copying and pasting of Coq code for termination proofs when
multiple conditional branches used the same loop.

For C code and Arm assembly code without jumps, Spoq
automatically generated all high-level specifications and
lifting refinement proofs that do not use data abstractions. No
manual proofs were required to verify Z3 transformations.
For assembly code with jumps, we wrote 0.3K LoC for speci-
fications and 0.1K LoC for refinement proofs, without decom-
posing specifications and proofs into low-level and high-level
ones. For layers using data abstractions, one for locks and
three for page tables, we manually wrote high-level specifi-
cations and lifting refinement proofs. For high-level specifica-
tions, we wrote 1.0K LoC for layers using data abstractions.
For lifting refinement proofs, we wrote 0.8K LoC for locks,
2.5K LoC to show multi-level page tables refine a single-level
page mapping, and 0.9K LoC to show data structures tracking
ownership of physical pages refine an abstract map.

Reducing manual proof effort. Table 1 compares the proof
effort to verify SeKVM using Spoq versus the manually writ-

862 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

LoC in Coq Original Spoq Reduction
Layer configuration — 0.1K —
Machine model 1.8K 0.5K 72%
Low-level specifications for C 5.6K 0 100%
Ranking function — 26 —
High-level specifications for C 5.5K 1.0K 82%
Specifications for Asm 0.5K 0.3K 40%
Identical refinement proofs for C 3.6K 0.8K 78%
Lifting refinement proofs for C 14.7K 4.2K 71%
Refinement proofs for Asm 1.8K 0.1K 94%
Security proof 4.8K 3.0K 38%
Total for functional correctness 33.5K 7.0K 79%
Total w/security 38.3K 10.0K 74%

Table 1: Manual proof effort to verify SeKVM.

ten proofs for the original version of SeKVM. The original
manual proof effort required writing more than 3 times as
many lines of specification and 5 times as many lines of proof
as verified source code. Spoq only required writing a third
as many lines of specification and roughly 1.4 times as many
lines of proof as verified source code. In terms of LoC, Spoq
reduced the overall manual proof effort by more than 70%
compared to the original manually written proofs. The largest
reductions in proof effort were for writing the specifications
themselves. Spoq reduced manual effort for writing speci-
fications by more than 90% overall, including eliminating
the cost for specifications without data abstractions. Spoq
reduced manual effort for refinement proofs by more than
70% overall, including eliminating the cost for C code without
loops or data abstractions. Spoq reduced manual effort for
refinement proofs for assembly code by more than 90% and
linked them together with the proofs for C code, in contrast to
the original assembly code proofs for SeKVM. Spoq largely
eliminated the cost of using intermediate layers to modularize
proofs, a substantial cost in the original manually written
proofs, as the vast majority of those layer specifications and
refinement proofs were automatically generated by Spoq.

Spoq also reduced the manual effort in defining the bottom
layer machine model by roughly 70% due to three reasons.
First, Spoq automatically derived many aspects of the abstract
machine model from the source code. In contrast, the machine
model for the original manually written proofs did not have
such a correspondence with the source code and had to be
manually written. Second, Spoq can use a simpler machine
model because it does not need data oracles [38], which were
introduced in the original manually written proofs to verify
security properties. We discuss below how we verify security
properties in a different manner, making data oracles unnec-
essary. Finally, Spoq does not need to include various getter
and setter functions in the bottom layer, which were required
in the original manually written proofs. These getters and
setters, written using various Linux macros, previously had to
be manually specified as part of the bottom layer specification
because they could not be translated by ClightGen into Coq
and hence could not be verified. In contrast, Spoq automati-

cally translated these getters and setters into Coq and verified
them, eliminating them from the bottom layer specification.

We compared the Coq code generated by Spoq versus the
original manually written proofs for SeKVM to provide a mea-
sure of the quality of the generated specifications and proofs
versus what would be produced by humans. Spoq generated
2.5K, 6.6K, 4.2K, 6.9K, and 17.5K LoC in Coq for the ma-
chine model, low-level specifications for C code, high-level
specifications for C code, identical refinement proofs for C
code, and lifting refinement proofs for C code, respectively. In
most cases, the generated Coq code was only modestly larger
than what was produced by a human writing hand-tuned Coq
specifications and proofs. In fact, Spoq generated tighter high-
level intermediate layer specifications than the original man-
ually written specifications. The top-level specification gen-
erated by Spoq was 1.6K LoC in Coq. This is essentially the
same size as the original manually written top-level specifica-
tion, though it is quite different as it is based on a different ma-
chine model derived from the source code for the bottom layer.
The quality and complexity of the top-level specification is
especially important since it should be simple enough that it
can be used to prove higher-level properties of the system.

Proving security properties. To demonstrate the usefulness
and correctness of the top-level specification generated by
Spoq, we used it to verify the security properties of SeKVM,
specifically that it protects the confidentiality and integrity
of virtual machine (VM) data. The original manually writ-
ten proofs used noninterference to prove the security proper-
ties along with data oracles for declassification. We instead
leverage the ideal/real paradigm to prove security properties,
introduced in our recent work on verifying the firmware for
the Arm Confidential Compute Architecture [40]. We define
an ideal machine model that guarantees the security of each
VM’s private data regardless of the behavior of the hypervisor.
The ideal machine defines for each VM a logically isolated
memory space and register set, and directs all memory and
register accesses from VMs to the logical state unless data de-
classification is defined. To account for data declassification
in SeKVM in which a VM can make requests to dynamically
start and stop sharing a piece of memory with the hypervisor,
the ideal machine moves data from the VM’s logical memory
to shared memory and vice versa. The VM accesses its private
data from its logical memory space, and accesses the shared
data from the shared physical memory. By definition, the per-
VM isolated state is only accessible by the VM itself, so the
confidentiality and integrity of VM data is naturally guaran-
teed in the ideal machine. We then prove the top-level specifi-
cation refines the ideal machine, which verifies that SeKVM
indeed protects the confidentiality and integrity of VM data.

The security proof provides three key advantages compared
to the original security proofs based on noninterference. First,
it does not require incorporating data oracles in the machine
model and in various layer specifications, decoupling the
security proof from verifying functional correctness. Second,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 863

Name Description
Apache Apache server v2.4.41 handling 100 concurrent

requests via TLS/SSL from remote ApacheBench [2]
v2.3 client, serving index.html of the GCC 7.5 manual.

Kernbench Compilation of the Linux kernel v4.18 using
allnoconfig for Arm with GCC 9.3.0.

Memcached Memcached v1.5.22 handling requests from a remote
memtier [49] v1.2.11 client with default parameters.

MongoDB MongoDB server v3.6.8 handling requests from
a remote YCSB [10] v0.17.0 client running
workload A with 16 concurrent threads and opera-
tioncount=500000.

MySQL MySQL v8.0.31 running sysbench v1.0.11 with 32
concurrent threads and TLS encryption.

Table 2: Application benchmarks.

the proof itself is simpler, reducing manual proof effort.
Table 1 shows the manual proof effort for the security proof
using this approach is 38% less than the original security
proof using noninterference, though this reduction in proof ef-
fort is unrelated to using Spoq. Finally, and most importantly,
the security proof only needs to trust the specification of a
small idealized secure machine model, which is roughly 200
LoC; the much larger specification of the real system does
not need to be trusted. The trusted specification defines how
VMs load and store private data to their logical isolated space
and specifies the data declassification policy for moving data
between the logical isolated and shared machine states.

Performance of verified implementation. We directly
compiled the Spoq-verified SeKVM source code into a binary
image, and executed it on a Raspberry Pi 4B with 8 GB
RAM, 64 GB SanDisk SD card, and a built-in 1 Gbps NIC.
We measured its performance by running the application
workloads listed in Table 2 in a VM using SeKVM. For
comparison, we also ran the workloads in a VM using
vanilla KVM and natively on the hardware. Each VM was
configured with 2 vCPUs and 4 GB RAM. vCPUs were
pinned to individual physical cores, VHOST networking
was used, and virtual block storage devices were configured
with cache=none [12, 24, 33, 52]. When running natively, we
restricted the workloads to use 2 CPUs and 4 GB RAM to pro-
vide a fair comparison. VMs used a vanilla Linux v5.4 kernel
as their guest OS. The VM on SeKVM included modified vir-
tio drivers in its guest OS to support SeKVM. The Raspberry
Pi ran a proprietary Linux v5.4.55 kernel [45]. It lacks support
for virtio front-end drivers so could not be used as a guest OS.
For client-server applications, clients ran on an x86 machine
with 10-core Intel Xeon CPU E5-2640 2.4 Ghz CPU, 48 GB
RAM and a NetXtreme BCM5719 1 Gbps NIC, connected
to the Raspberry Pi via a Netgear GS308 1 Gbps switch.

Figure 10 shows application workload performance when
using VMs with vanilla KVM and SeKVM. Performance
was normalized to native execution; lower is better. The
performance results are consistent with those previously
reported for SeKVM [54], with worst case overhead being

Apache Kernbench Memcached MongoDB MySQL0

0.5

1.0

1.5

Ov
er

he
ad

 (l
ow

er
 is

 b
et

te
r) Vanilla KVM SeKVM

Figure 10: Application benchmark performance.

less than 15% compared to vanilla KVM. I/O intensive
application workloads incurred higher overhead because
the hypervisor cannot access VM memory unless the virtio
front-end driver makes explicit hypercalls to request memory
pages used for I/O be temporarily accessible to the hypervisor
to pass the I/O data to the back-end driver in the host.

8 Limitations

Spoq’s TCB includes the Clang and LLVM toolchains, Spoq’s
translator, and Spoq’s semantic definitions for LLVM IR and
assembly. The translator is currently unverified and supports
a subset of LLVR IR and Arm assembly, so it may fail to
translate some source code into Coq. Spoq’s specification and
proof generator are not part of its TCB. Enhancing their sup-
port for assembly code with jumps is an area of future work.

The Z3 solver is currently the bottleneck in Spoq’s runtime
performance. Synthesizing high-level specifications for
relatively large functions can take over 30 minutes because
it may involve thousands of Z3 queries. Nevertheless,
automatically generating specifications and proofs for
SeKVM only takes two hours on an AWS machine with an
8-core 2.3 GHz Intel Xeon CPU E5-2686 v4 and 32 GB
RAM, an insignificant amount of time compared to the time
it takes to manually write specifications and proofs.

Spoq currently relies on users to complete all data abstrac-
tion proofs. Developing a library of commonly used data ab-
straction proofs for proof automation is an area of future work.

9 Related Work

Verified systems in C. seL4 [31] presents the first machine-
checked functional correctness proof of an OS kernel. It
used an unverified parser to translate C into Isabelle/HOL,
and is manually proved with simplified C semantics. For
example, pointers to local variables are disallowed by the
simplified C semantics. Assembly code is also unverified.
AtomFS [61] used a verification framework [56] that does
not support assembly code or full C semantics. Many verified
systems [3, 8, 11, 20, 30, 32, 38–41, 54] used ClightGen. For
code that can be parsed by ClightGen and compiled by
CompCert, the CompCert toolchain can guarantee proofs
hold at the assembly level. However, CompCert cannot make

864 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

any guarantees regarding concurrent code even if it can
compile, and our results show that ClightGen cannot support
verification of most real-world unmodified systems code.

Modeling and verifying LLVM IR. VeLLVM [59] includes
formal semantics and tools to verify LLVM IR code in Coq.
VeLLVM adopts CompCert’s sequential machine memory
model, so it cannot verify concurrent systems. It directly
models small-step semantics of IR instructions in CFGs,
making it problematic to use for systems with complex
control flows. CreLLVM [28] extends VeLLVM to verify
compiler optimization passes, but shares the same limitations
of VeLLVM. VIR [48] also models small-step semantics
of IR instructions in CFGs, suffering the same problems as
VeLLVM. K-LLVM [36] defines LLVM IR operational se-
mantics in the K framework, but cannot be used for deductive
reasoning. SeaHorn [22] statically checks assertions in C
programs by translating them to LLVM IR, then using the
IR with an SMT solver and abstraction interpretation. Such
automated verification tools cannot verify the functional
correctness of a complex system. It is difficult to define
program specifications using just assertions, and SMT solvers
and abstract interpretation cannot prove complex proof goals.

Automating systems verification. AutoCorres [17] synthe-
sizes specifications from C programs based on a fixed and
simplistic machine model, which cannot be used to verify con-
current systems. It only supports an even more limited subset
of C than ClightGen and does not support assembly code. The
specifications generated are low level yet machine dependent,
making them difficult to use to verify higher-level properties.

Push-button verification is a fully automated verification
technique that has been used to verifying a file system [50],
compiler [53], and OS kernel [43, 44, 51]. Users only need to
write specifications in addition to the system implementation,
and the verification framework automatically completes the
proofs. However, implementations have restrictive constraints,
such as uniprocessor only and constant bounds for loops
so SMT solvers can be used. Unlike Spoq, verification
requires manually defined specifications, does not hold for
concurrent systems, and lacks machine-checkable proofs, as
the unverified SMT solver provides no proof of its answer
or any way to express a proof that can be machine checked.

Verification-aware programming languages such as
Dafny [34] and F* [47] have been used to implement
verified storage systems [25, 26] and crypto libraries [46, 60].
Developers write code, specifications, and proofs all together
in the same language. A compiler validates users’ proofs,
in part using an SMT solver, and generates source code in
familiar programming languages, which can in turn be further
compiled and executed. Building on Dafny, Armada [42] uses
a set of pre-built proof strategies to generate refinement proofs
between levels of intermediate specifications, which users
are expected to write to bridge the semantic gap between
an implementation and its high-level specification. Unlike

Spoq, layers are not supported and systems written in C and
assembly code cannot be verified without being rewritten.

Decompilation. Decompilation techniques recover a pro-
gram’s source code given only its binary [1,6,9,23,27,57,58],
though the recovered and original source code generally do
not match. Some techniques do not reconstruct program struc-
ture [1, 58], some do so with goto statements [6], and some
only do so with various restrictions on program CFGs [57].
More recent work can reconstruct program structure for arbi-
trary CFGs [23] without using goto statements, but requires a
much more complex algorithm than used by Spoq. In contrast,
Spoq employs a simpler algorithm to reconstruct program
structure for arbitrary CFGs, and keeps the original LLVM IR
instructions, which are much simpler and more rigorously de-
fined than C, instead of trying to recover source code. To sup-
port proof decomposition and simplify specification synthesis,
Spoq intentionally does not employ a richer variety of source
code primitives such as goto or switch statements. Its result-
ing representation is more amenable to verification. Its design
and implementation is far simpler than previous approaches
to keep its TCB small, which is important for verification.

10 Conclusions

Spoq is the first system that can automate the generation of
Coq representations, specifications, and proofs for C systems
code to enable machine-checkable verification of concurrent
system software. Spoq translates C systems code compiled
into LLVM IR directly into Coq, converting IR control flow
graphs into structured program functions to simplify veri-
fication while supporting full C semantics, including GNU
C extensions and inline assembly. Using a layering proof
strategy, Spoq introduces novel Coq tactics and transforma-
tion rules to automatically synthesize layer specifications and
refinement proofs, even for functions with loops. Users can in-
teract with Spoq to further refine the generated specifications
and proofs at any layer. We used Spoq on commodity system
software, such as the Linux kernel, to translate over 99%
of their source code directly into Coq for verification. We
also used Spoq to verify a multiprocessor KVM hypervisor
implementation, showing that it reduces manual proof effort
by over 70% while ensuring that the proofs hold for the
unmodified implementation that is compiled and executed.

11 Acknowledgments

Jay Lorch provided helpful and meticulous feedback on
earlier drafts. This work was supported in part by three
Amazon Research Awards, a Guggenheim Fellowship, a
VMware Systems Research Award, an NSF CAREER
Award, DARPA contract N66001-21-C-4018, and NSF grants
CCF-1918400, CNS-2052947, and CCF-2124080. Ronghui
Gu is the founder of and has an equity interest in CertiK.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 865

References

[1] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia
Slowinska, and Herbert Bos. An In-Depth Analysis
of Disassembly on Full-Scale x86/x64 Binaries. In
Proceedings of the 25th USENIX Security Symposium
(USENIX Security 2016), pages 583–600, Austin, TX,
August 2016.

[2] Apache Software Foundation. ab - Apache HTTP Server
Benchmarking Tool. http://httpd.apache.
org/docs/2.4/programs/ab.html. Accessed
on December 13, 2022.

[3] Andrew W. Appel. Verified Software Toolchain. In
Proceedings of the 20th European Symposium on
Programming (ESOP 2011), pages 1–17, Saarbrücken,
Germany, March 2011.

[4] ARM Ltd. ARM Architecture Reference Manual
ARMv8-A DDI0487A.a, September 2013.

[5] ARM Ltd. Procedure Call Standard for the Arm®
64-bit Architecture (AArch64). https://github.
com/ARM-software/abi-aa/releases/
download/2022Q1/aapcs64.pdf, April 2022.

[6] David Brumley, JongHyup Lee, Edward J. Schwartz,
and Maverick Woo. Native x86 Decompilation Using
Semantics-Preserving Structural Analysis and Iterative
Control-Flow Structuring. In Proceedings of the 22nd
USENIX Security Symposium (USENIX Security 2013),
pages 353–368, Washington, D.C., August 2013.

[7] Edouard Bugnion, Jason Nieh, and Dan Tsafrir.
Hardware and Software Support for Virtualization.
Synthesis Lectures on Computer Architecture. Morgan
and Claypool Publishers, February 2017.

[8] Hao Chen, Xiongnan Newman Wu, Zhong Shao, Joshua
Lockerman, and Ronghui Gu. Toward Compositional
Verification of Interruptible OS Kernels and Device
Drivers. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI 2016), pages 431–447, June 2016.

[9] Cristina Cifuentes. Reverse Compilation Techniques.
PhD thesis, Queensland University of Technology, 1994.

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC 2010),
pages 143–154, Indianapolis, IN, June 2010.

[11] David Costanzo, Zhong Shao, and Ronghui Gu.
End-to-End Verification of Information-Flow Security
for C and Assembly Programs. In Proceedings of the

37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2016),
pages 648–664, June 2016.

[12] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason
Nieh, and Georgios Koloventzos. ARM Virtualization:
Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA 2016), pages 304–316,
Seoul, South Korea, June 2016.

[13] Christoffer Dall and Jason Nieh. KVM/ARM: Expe-
riences Building the Linux ARM Hypervisor. Technical
Report CUCS-010-13, Department of Computer
Science, Columbia University, June 2013.

[14] Christoffer Dall and Jason Nieh. Supporting KVM on
the ARM Architecture. LWN Weekly Edition, pages
18–22, July 2013.

[15] Christoffer Dall and Jason Nieh. KVM/ARM: The
Design and Implementation of the Linux ARM
Hypervisor. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2014),
pages 333–347, Salt Lake City, UT, March 2014.

[16] Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
Z3: An Efficient SMT Solver. In Proceedings of the
14th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS
2008), pages 337–340, Budapest, Hungary, March 2008.

[17] David Greenaway, Japheth Lim, June Andronick,
and Gerwin Klein. Don’t Sweat the Small Stuff:
Formal Verification of C Code without the Pain. ACM
SIGPLAN Notices, 49(6):429–439, June 2014.

[18] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro,
Zhong Shao, Xiongnan Newman Wu, Shu-Chun
Weng, and Haozhong Zhang. Deep Specifications and
Certified Abstraction Layers. In Proceedings of the
42nd ACM Symposium on Principles of Programming
Languages (POPL 2015), pages 595–608, Mumbai,
India, January 2015.

[19] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim,
Jérémie Koenig, Xiongnan Newman Wu, Vilhelm
Sjöberg, and David Costanzo. Building Certified
Concurrent OS Kernels. Communications of the ACM,
62(10):89–99, October 2019.

[20] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan New-
man Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: An Extensible Architecture for
Building Certified Concurrent OS Kernels. In Pro-
ceedings of the 12th USENIX Symposium on Operating

866 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf
https://github.com/ARM-software/abi-aa/releases/download/2022Q1/aapcs64.pdf

Systems Design and Implementation (OSDI 2016),
pages 6530–669, Savannah, GA, November 2016.

[21] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan New-
man Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen,
David Costanzo, and Tahina Ramananandro. Certified
Concurrent Abstraction Layers. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018),
pages 646–661, Philadelphia, PA, June 2018.

[22] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komu-
ravelli, and Jorge A Navas. The SeaHorn Verification
Framework. In Proceedings of the 27th International
Conference on Computer Aided Verification (CAV
2015), pages 343–361, San Francisco, CA, July 2015.

[23] Andrea Gussoni, Alessandro Di Federico, Pietro Fez-
zardi, and Giovanni Agosta. A Comb for Decompiled C
Code. In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security (ASIA CCS
2020), pages 637–651, Taipei, Taiwan, October 2020.

[24] Stefan Hajnoczi. An Updated Overview of the QEMU
Storage Stack. In LinuxCon Japan 2011, Yokohama,
Japan, June 2011.

[25] Travis Hance, Andrea Lattuada, Chris Hawblitzel,
Jon Howell, Rob Johnson, and Bryan Parno. Storage
Systems are Distributed Systems (So Verify Them That
Way!). In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 2020), pages 99–115, November 2020.

[26] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun
Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill.
Ironclad Apps: End-to-End Security via Automated
Full-System Verification. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2014), pages 165–181,
Broomfield, CO, October 2014.

[27] R. Nigel Horspool and Nenad Marovac. An Approach
to the Problem of Detranslation of Computer Programs.
The Computer Journal, 23(3):223–229, August 1980.

[28] Jeehoon Kang, Yoonseung Kim, Youngju Song,
Juneyoung Lee, Sanghoon Park, Mark Dongyeon
Shin, Yonghyun Kim, Sungkeun Cho, Joonwon Choi,
Chung-Kil Hur, et al. Crellvm: Verified Credible
Compilation for LLVM. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2018), pages
631–645, Philadelphia, PA, June 2018.

[29] Kbuild - The Linux Kernel Documentation. https:
//docs.kernel.org/kbuild/kbuild.html.
Accessed on December 13, 2022.

[30] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong
Shao. Safety and Liveness of MCS Lock—Layer by
Layer. In Proceedings of the 15th Asian Symposium on
Programming Languages and Systems (APLAS 2017),
pages 273–297, November 2017.

[31] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. seL4: Formal Verification of an OS Kernel.
In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP 2009), pages
207–220, Big Sky, MT, October 2009.

[32] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart
Beringer, Wolf Honoré, William Mansky, Benjamin C
Pierce, and Steve Zdancewic. From C to Interaction
Trees: Specifying, Verifying, and Testing a Networked
Server. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and
Proofs (CPP 2019), pages 234–248, Cascais, Portugal,
January 2019.

[33] KVM Contributors. Tuning KVM. https:
//www.linux-kvm.org/index.php?title=
Tuning_KVM&oldid=173911, June 2018. Ac-
cessed on December 13, 2022.

[34] K. Rustan M. Leino. Dafny: An Automatic Program
Verifier for Functional Correctness. In Proceedings of
the 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR
2010), pages 348–370, Dakar, Senegal, April 2010.

[35] Xavier Leroy. The CompCert C Verified
Compiler: Documentation and User’s Manual.
https://compcert.org/man/, November 2022.
Accessed on December 13, 2022.

[36] Liyi Li and Elsa L Gunter. K-LLVM: A Relatively
Complete Semantics of LLVM IR. In Proceedings of
the 34th European Conference on Object-Oriented Pro-
gramming (ECOOP 2020), pages 7:1–7:29, Dagstuhl,
Germany, November 2020.

[37] Shih-Wei Li, John S. Koh, and Jason Nieh. Protecting
Cloud Virtual Machines from Commodity Hypervisor
and Host Operating System Exploits. In Proceedings
of the 28th USENIX Security Symposium (USENIX
Security 2019), pages 1357–1374, Santa Clara, CA,
August 2019.

[38] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. A Secure and Formally Verified
Linux KVM Hypervisor. In Proceedings of the 2021
IEEE Symposium on Security and Privacy (IEEE S&P
2021), pages 1782–1799, San Francisco, CA, May 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 867

https://docs.kernel.org/kbuild/kbuild.html
https://docs.kernel.org/kbuild/kbuild.html
https://www.linux-kvm.org/index.php?title=Tuning_KVM&oldid=173911
https://www.linux-kvm.org/index.php?title=Tuning_KVM&oldid=173911
https://www.linux-kvm.org/index.php?title=Tuning_KVM&oldid=173911
https://compcert.org/man/

[39] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh,
and John Zhuang Hui. Formally Verified Memory
Protection for a Commodity Multiprocessor Hypervisor.
In Proceedings of the 30th USENIX Security Symposium
(USENIX Security 2021), pages 3953–3970, Vancouver,
BC Canada, August 2021.

[40] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and Verification of the Arm Confidential Compute Archi-
tecture. In Proceedings of the 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 2022), pages 465–484, Carlsbad, CA, July 2022.

[41] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu,
David Costanzo, Jung-Eun Kim, and Manki Yoon.
Virtual Timeline: A Formal Abstraction for Verifying
Preemptive Schedulers with Temporal Isolation. In Pro-
ceedings of the 47th ACM Symposium on Principles of
Programming Languages (POPL 2020), January 2020.

[42] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos,
Haojun Ma, Bryan Parno, Shaz Qadeer, Upamanyu
Sharma, James R. Wilcox, and Xueyuan Zhao. Armada:
Automated Verification of Concurrent Code with
Sound Semantic Extensibility. ACM Transactions on
Programming Languages and Systems (TOPLAS), 44:1
– 39, May 2022.

[43] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling
Symbolic Evaluation for Automated Verification of
Systems Code with Serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles
(SOSP 2019), pages 225–242, October 2019.

[44] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang,
Dylan Johnson, James Bornholt, Emina Torlak, and
Xi Wang. Hyperkernel: Push-Button Verification of an
OS Kernel. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP 2017), pages
252–269, Shanghai, China, October 2017.

[45] Raspberry Pi. Kernel Source Tree for Raspberry
Pi-provided Kernel Builds. https://github.
com/raspberrypi/linux/tree/rpi-5.4.y.
Accessed on December 13, 2022.

[46] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan
Bhargavan, Benjamin Beurdouche, Joonwon Choi,
Antoine Delignat-Lavaud, Cédric Fournet, Tahina
Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph M. Wintersteiger, and Santiago Zanella
Béguelin. EverCrypt: A Fast, Verified, Cross-Platform
Cryptographic Provider. In Proceedings of 2020 IEEE

Symposium on Security and Privacy (IEEE S&P 2020),
pages 983–1002, San Francisco, CA, May 2020.

[47] Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem
Rastogi, Tahina Ramananandro, Peng Wang, Santi-
ago Zanella Béguelin, Antoine Delignat-Lavaud, Catalin
Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and
Nikhil Swamy. Verified Low-Level Programming Em-
bedded in F*. In Proceedings of the ACM on Program-
ming Languages, volume 1, pages 1–29, August 2017.

[48] Zvonimir Rakamarić and Michael Emmi. SMACK:
Decoupling Source Language Details from Verifier
Implementations. In Proceedings of the 26th Interna-
tional Conference on Computer Aided Verification (CAV
2014), pages 106–113, Vienna, Austria, July 2014.

[49] Redis Labs. Memtier Benchmark. https:
//github.com/RedisLabs/memtier_
benchmark. Accessed on December 13, 2022.

[50] Helgi Sigurbjarnarson, James Bornholt, Nicolas
Christin, and Lorrie Faith Cranor. Push-Button
Verification of File Systems via Crash Refinement.
In Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation (OSDI
2016), pages 1–16, Savannah, GA, November 2016.

[51] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A Framework for Design and Verification of
Information Flow Control Systems. In Proceedings
of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2018), pages
287–305, Carlsbad, CA, October 2018.

[52] SUSE. Performance Implications of Cache Modes.
https://documentation.suse.com/sles/
12-SP5/html/SLES-all/cha-cachemodes.
html. Accessed on December 13, 2022.

[53] Runzhou Tao, Yunong Shi, Jianan Yao, Xupeng Li,
Ali Javadi-Abhari, Andrew W. Cross, Fred Chong,
and Ronghui Gu. Giallar: Push-Button Verification
for the Qiskit Quantum Compiler. Proceedings of
the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation
(PLDI 2022), pages 641–656, June 2022.

[54] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li,
Jason Nieh, and Ronghui Gu. Formal Verification of
a Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP 2021), pages
866–881, Virtual Event, Germany, October 2021.

868 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/raspberrypi/linux/tree/rpi-5.4.y
https://github.com/raspberrypi/linux/tree/rpi-5.4.y
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-cachemodes.html
https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-cachemodes.html
https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-cachemodes.html

[55] The Coq development team. The Coq Proof Assistant.
http://coq.inria.fr. Accessed on December
13, 2022.

[56] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang,
Hui Zhang, and Zhaohui Li. A Practical Verification
Framework for Preemptive OS Kernels. In Proceedings
of the 28th International Conference on Computer
Aided Verification (CAV 2016), pages 59–79, Toronto,
ON, Canada, July 2016.

[57] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-
Padilla, and Matthew Smith. No More Gotos: De-
compilation Using Pattern-Independent Control-Flow
Structuring and Semantic-Preserving Transformations.
In Proceedings of the 2015 Network and Distributed
System Security Symposium (NDSS 2015), San Diego,
CA, February 2015.

[58] Alon Zakai. Emscripten: an LLVM-to-JavaScript Com-
piler. In Proceedings of the 26th ACM International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications Companion (Wavefront
2011), pages 301–312, Portland, Oregon, October 2011.

[59] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Mar-
tin, and Steve Zdancewic. Formalizing the LLVM
Intermediate Representation for Verified Program
Transformations. In Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2012), pages 427–440,
New York, NY, January 2012.

[60] Jean Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A Verified Modern Cryptographic Library.
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017),
pages 1789–1806, October 2017.

[61] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using Concurrent Relational
Logic with Helpers for Verifying the AtomFS File
System. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP 2019), pages
259–274, Huntsville, ON Canada, October 2019.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 869

http://coq.inria.fr

Verifying vMVCC, a high-performance transaction library
using multi-version concurrency control

Yun-Sheng Chang, Ralf Jung,† Upamanyu Sharma,
Joseph Tassarotti,▽ M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL † ETH Zurich ▽ New York University

Abstract

Multi-version concurrency control (MVCC) is a widely used,
sophisticated approach for handling concurrent transactions.
vMVCC is the first MVCC-based transaction library that
comes with a machine-checked proof of correctness, pro-
viding clients with a guarantee that it will correctly handle
all transactions despite a complicated design and implemen-
tation that might otherwise be error-prone. vMVCC is im-
plemented in Go, stores data in memory, and uses several
optimizations, such as RDTSC-based timestamps, to achieve
high performance (25–96% the throughput of Silo, a state-
of-the-art in-memory database, for YCSB and TPC-C work-
loads). Formally specifying and verifying vMVCC required
adopting advanced proof techniques, such as logical atom-
icity and prophecy variables, owing to the fact that MVCC
transactions can linearize at timestamp generation prior to
transaction execution.

1 Introduction

Applications routinely rely on databases not just for storing
data durably on disk, but also for ensuring that transactions
execute atomically despite concurrency and crashes. This
simplifies application development, because the application
developer no longer has to worry about concurrency bugs
or partial state left over after a crash. Indeed, this pattern is
so ubiquitous that it is common for cloud providers to offer
databases as a black-box service to application developers.
In this model, application correctness and performance cru-
cially hinges on the database system correctly handling all
possible corner cases and doing so efficiently.
Achieving both correctness and high performance in

a database system for many concurrent transactions is
challenging. In particular, when transactions read and
write an overlapping set of data items, the database sys-
tem must ensure the transactions appear to execute in a
serial order. A widely used technique for improving per-
formance in this setting is multi-version concurrency control,
or MVCC [8, 30, 35, 36], in which the database stores not
just the latest version of a data item, but also past versions.
Storing past versions allows the database system to execute
writes that add a new version, while also being able to use
the older versions to execute reads from transactions that
appear to execute earlier in the serial order.

Multi-version concurrency control requires a sophisti-
cated implementation of its data structures, in order to ef-
ficiently track multiple versions of each tuple, implement
garbage collection (GC), etc. The implementation must also
employ low-level optimizations to get high performance. For
instance, using a mutex on a shared counter to get a unique
ID for each transaction is too costly, and highly scalable
implementations must use contention-free approaches such
as relying on the CPU timestamp counter. The end result,
therefore, is a complex implementation that can have bugs
leading to incorrect or non-serializable executions. These
bugs can be costly: they can cause data to be lost or cor-
rupted; they can lead to many applications being affected;
and tracking down bugs in the database system can be diffi-
cult for application developers.

This paper presents vMVCC, a high-performance MVCC-
based transaction library with a formal specification and a
machine-checked proof of correctness. vMVCC addresses the
core technical challenges faced by the transaction layer in a
database, and can be used to build transactional applications.
Verifying vMVCC requires addressing several challenges.
First, we must formalize a specification that captures the
guarantees provided by MVCC transactions in a concise
manner. Second, we must develop proof techniques to show
that MVCC achieves a serializable execution order in the
presence of concurrency. Finally, we must be able to formally
reason about high-performance implementations that use
low-level programming techniques such as sharded data
structures, accessing the CPU timestamp counter with an
RDTSC-like instruction, etc.
The key technical challenge addressed in vMVCC lies in

dealing with the fact that MVCC’s linearization point hap-
pens before the transaction body runs—the linearization
point is when the timestamp is obtained in Begin(). This
makes it challenging to verify MVCC-based transactions
because, at the linearization point, the transaction has not
executed yet, and the proof does not know what data the
transaction is going to write or whether it is going to com-
mit or abort. However, it is important for the specification
and proof to update the abstract state of the system at the
linearization point, because subsequent transactions must
observe these changes. In contrast, under two-phase locking,
a transaction linearizes at the point when it commits, where
it is well known what state the transaction modified and that
it is about to commit.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 871

2 false 𝑢 7
ts del val tslast

5 true -

tuple

𝑘

key tuple

... ...

index

𝑘 false 𝑣

key del val

13
ts

txn

4 6 13 ⋯

active tids

txnmgr

Figure 1: Overview of the main vMVCC data structures. Implementation
details are not shown on the figure (e.g., the index and the active transaction
IDs are partitioned into multiple shards for scalability).

vMVCC addresses this challenge by adopting prophecy
variables [1, 18]. Our use of prophecy variables allows the
proof to speculatively predict what state the transaction is
going to modify and whether it will commit. This translates
into the proof considering every possible prediction, allow-
ing vMVCC to update the abstract state accordingly at the
linearization point. As the transaction is about to commit,
the proof can check whether the prediction was correct or
not, and either stop considering further an incorrect predic-
tion, or continue with a correct prediction. vMVCC is not
the first to develop or use prophecy variables—many earlier
frameworks developed support for them and proved that
they are a sound proof technique—but it is the first to prove
the correctness of MVCC-based transactions.
We implemented vMVCC in Go, and verified it using the

Goose and Perennial frameworks. vMVCC implements so-
phisticated optimizations such as the use of RDTSC to gen-
erate strictly increasing timestamps, on-the-fly GC of past
versions, and efficient data structures for storing multiple
versions. vMVCC provides a transactional key-value store
interface, similar to Silo [35]. For the YCSB benchmark with
32 worker threads, vMVCC achieves an aggregated through-
put of 18.6M–52M transactions per second, which is 38–96%
of that achieved by the unverified Silo database. For TPC-C,
vMVCC achieves a throughput of 10.7K–33K transactions per
second per warehouse, which is 25–43% of Silo’s throughput.
The key technical contribution of vMVCC lies in demon-

strating how to formally reason about transactions whose lin-
earization point precedes the execution of their transaction
body, using prophecy variables. This verification technique
would be applicable to any system that uses MVCC [8, 10–
12, 14, 19, 27, 30, 32, 35–37]. The second contribution is
vMVCC itself, the first verified MVCC transaction library.
The vMVCC artifact is interesting in its own right, provid-
ing a high-assurance and high-performance implementation,
and can be used as a Go package independent of verifica-
tion. vMVCC includes several other technical contributions,
including a verified algorithm for computing strictly increas-
ing transaction IDs using RDTSC, and a precise specification
of a transaction library interface using logical atomicity [16].
One of the limitations of vMVCC is that it does not im-

plement durability. In-memory databases are widely used
in practice, but we do plan to extend vMVCC to store data
durably on disk so that it persists across crashes, and to for-

mally verify it using techniques from Perennial [3]. Another
limitation of vMVCC is that it provides a simple key-value
data model, as opposed to SQL’s relational data, and does
not support range scans.

2 Design and interface of vMVCC
vMVCC is a transaction library, and applications interact
with it through a standard interface for transactions, as fol-
lows (in Go syntax):
func (db *DB) Begin() *Txn
func (txn *Txn) Write(key K, value V)
func (txn *Txn) Delete(key K)
func (txn *Txn) Read(key K) (V, bool)
func (txn *Txn) Commit() bool
func (txn *Txn) Abort()

vMVCC uses anMVCC design closest to the original protocol
as proposed by Reed [30] (also known as multi-version times-
tamp ordering [36]). The design is based around assigning a
strictly increasing timestamp in Begin() to every transaction,
and storing multiple versions for each key, corresponding
to a range of timestamps for which that version is valid.
When an application modifies a key, using Write(k,v) or
Delete(k), the vMVCC transaction keeps track of the modifi-
cation in a per-transaction write buffer. When an application
invokes Read(k), the transaction first checks its local write
buffer for pending writes to k; if there are no pending writes,
it then searches from the global state the version of key k

whose timestamp immediately precedes the transaction’s
timestamp. On successfully calling Commit(), the transaction
creates a new version for each key in the write buffer with
the transaction’s timestamp as well. On calling Abort(), or
a failed Commit(), the transaction drops its write buffer.

Read-only transactions always succeed in vMVCC because
vMVCC retains all past versions required by active transac-
tions (i.e., those that have begun but not yet committed or
aborted). A transaction involving updates, however, might
fail to commit if another transaction with a higher timestamp
has read or updated the modified key in the meantime. The
reason this requires aborting the first transaction is that, to
achieve linearizability, the second transaction should have
seen the update made by the first one, but it did not.

Data structures. Figure 1 shows the data structures that
vMVCC uses to implement its design. The crux of multi-
versioning lies in the data structure tuple, consisting of a list
of versions, a tslast field to detect conflicts, and amutex (not
shown) used for synchronizing access to this data structure.
Each version corresponds to a range of timestamps for which
it is valid, represented by the ts field, which marks the start
of the validity region. The version is valid until the next
version’s ts field, or, if this is the last version in the tuple,
then it is the latest version. Each version also contains the
value (val) and whether this key is deleted or not (del). The
tslast field of each tuple represents the highest timestamp
of any transaction that has read or written this tuple. It is

872 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 false 𝑢 7
ts del val tslast

5 true −

16

begin body commit

ts = 4 r(𝑘) → 𝑢 ⋯

Txn 4

1

begin body commit

ts = 15 w(𝑘, 𝑣)
Txn 15

3

15 false 𝑣
2

(a) Execution of two transactions in vMVCC.

2 false 𝑢 7
ts del val tslast

5 true −

12

begin body abort

ts = 10 w(𝑘, 𝑣)
Txn 10

3

begin body commit

ts = 12 r(𝑘) → ⊥

Txn 12
2

1

(b) Detecting and aborting write conflicts in vMVCC.

Figure 2: Two example executions of concurrent transactions in vMVCC.

used to detect conflicts if a Write or a Delete with an earlier
timestamp tries to commit later on. On top of tuples, vMVCC
maintains its index, a hash map from keys to tuple pointers.
Keys not present in the index are assumed to be not present
(deleted) at every timestamp.

Every active transaction in vMVCC is represented using a
transaction object, which consists of a unique timestamp ts,
as well as a local write buffer keeping track of the modifica-
tions made by this transaction so far. When the transaction
commits, it tries to acquire the mutexes of the tuples to be
modified, and if successful, atomically applies the modifica-
tion in its local writer buffer. Transaction IDs are generated
by the transaction manager. For the purposes of GC, it also
keeps track of the IDs of active transactions.

Execution examples. Figure 2(a) illustrates an example
of two concurrent transactions accessing the same key 𝑘.
The tuple in the example corresponds to key 𝑘. 1 Txn 4
reads the value 𝑢 from the tuple, as the timestamp of the
corresponding version (i.e., 2) immediately precedes that of
Txn 4. 2 Txn 15 writes 𝑣 to 𝑘 by appending a new version
tagged with its timestamp at commit time, and 3 increases
tslast to 15 + 1, preventing transactions with timestamp
below 16 from modifying this tuple.
This example also shows the concurrency advantages of

MVCC over conventional concurrency control approaches
such as two-phase locking (2PL) and optimistic concurrency
control (OCC). With 2PL, Txn 15 cannot commit until Txn
4 commits, at which point the lock on 𝑘 is released. With
OCC, Txn 4 would have to abort as the value of 𝑘 changes
during the execution of Txn 4.
Figure 2(b) shows an example of how vMVCC detects

and aborts conflicting writes. 1 Txn 12 reads the second

version of the tuple, and 2 increases the tslast field to its
timestamp. 3 Txn 10 attempts to commit and update the
tuple, but fails because the timestamp of Txn 10 is less than
tslast of the tuple (i.e., 12). Thus, Txn 10 aborts.

Garbage collection. To reclaim space occupied by unus-
able versions, vMVCC employs a garbage collector that runs
in the background to remove those versions. The garbage
collector must ensure that the versions it removes cannot
be accessed by any transactions, including those that have
not even begun. Concretely, the garbage collector first de-
termines a lower bound on the transaction IDs of all active
and future transactions. This lower bound can be computed
by finding the minimal transaction ID among the active
ones; if there are no active transactions, the current times-
tamp is used. Because timestamps are strictly increasing (as
described below), the garbage collector can safely remove
versions whose lifetime ends before that lower bound.

Generating timestamps with CPU timestamp counter.
A key requirement for vMVCC is that every transaction is
assigned a strictly increasing timestamp. However, assigning
these timestamps by modifying a shared in-memory counter
leads to contention on that counter. Instead, vMVCC uses
the CPU timestamp counter (e.g., RDTSC on x86 machines) to
generate timestamps in a scalable way. Modern hardware
ensures that timestamps are monotonically increasing and
consistent across cores and sockets [2].

One complication is that two threads running on different
cores may obtain the same timestamp. vMVCC addresses
this problem by using transaction sites to make transaction
IDs unique. Each site has its own ID, which is a short integer
value (e.g., from 0 to 63). When the transaction manager
wants to assign a timestamp, it replaces the low bits of the
timestamp counter with the site ID value. To ensure that
the transaction manager does not use the same site for two
transactions at the same time, vMVCC maintains an array of
mutexes, one per site, and the transaction manager holds the
site’s mutex while computing the timestamp. The transac-
tion manager can pick any site ID, such as the one associated
with the local core. vMVCC takes a more flexible approach
by assigning each thread a site ID in a round-robin man-
ner. Having per-site mutexes ensures that the transaction
manager does not contend when assigning timestamps on
different sites.
Naïvely replacing the low bits of the timestamp counter

with the site ID leads to subtle correctness issues. For exam-
ple, Txn A may choose the highest possible site ID (all ones),
quickly execute, and commit. Txn B, runs after Txn A but
chooses the lowest possible site ID (all zeroes). The processor
ensures that the RDTSC value seen by Txn B is higher than
that seen by Txn A, but once the low bits are replaced with
all-ones and all-zeroes, it may be that Txn B’s transaction
ID is lower than that of Txn A. One possible fix would be
to represent the transaction ID as a tuple of the complete

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 873

64-bit RDTSC value and the site ID. However, since transaction
IDs are used throughout vMVCC, this leads to a noticeable
performance overhead.

Instead, vMVCC modifies the timestamp algorithm to en-
sure that timestamps are strictly increasing. To obtain a
timestamp, the transaction manager first obtains 𝑡, the cur-
rent RDTSC value, and then computes the next highest value
𝑡
′
≥ 𝑡 such that 𝑡′ has the desired site ID in the low bits. The

transaction manager then spins in a loop calling RDTSC until
it returns a timestamp 𝑡′′ > 𝑡

′. The transaction manager then
uses 𝑡′ as the transaction’s ID. The reason this loop-based
design achieves strictly increasing transaction IDs is that the
transaction manager is holding the site’s mutex while the
CPU timestamp counter passed through 𝑡

′. This means no
other thread could have generated the same transaction ID.
In practice, of course, the loop runs for a few cycles at most,
since the RDTSC value will quickly exceed the loop threshold.

Whole-transaction execution. For developer conve-
nience, vMVCC provides an interface that wraps up the
details of beginning, committing, and aborting a transaction,
in db.Run, a higher-order function whose implementation is
as follows:

func (db *DB) Run(body func(txn *Txn) bool) bool {
t := db.Begin()
commit := body(t)
if commit {

return t.Commit()
} else {

t.Abort()
return false

}
}

The developer provides the body of the transaction, which
can use Read, Write, and Delete to access the system state.
The transaction body returns a boolean to indicate whether
it wants to commit or abort.

3 Using and specifying vMVCC
vMVCC is a transaction library that facilitates building and
verifying applications by providing an atomic transaction ab-
straction. We begin with constructing on top of vMVCC an
example application that atomically transfers some amount
from one account to another, along the lines of what a bank
application might do (§3.1). We then describe the formal
specification of vMVCC and how to build arbitrary applica-
tions on top of it (§3.2).

3.1 Example: AtomicXfer
Figure 3 shows the implementation of AtomicXfer (ignore
the inline proof for now). This code is implementing a simple
bank, transferring amt from the src account to dst. If not
enough funds are available in src, the transaction aborts.
vMVCC ensures that the logical effect of the transaction
body, xfer, appears to apply atomically. This frees the devel-
oper fromworrying about other concurrent transactions that

// { 𝑠𝑟𝑐
t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 }

func xfer(txn *Txn, src, dst, amt uint64) bool {
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 }

sbal, _ := txn.Read(src)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ sbal = 𝑣𝑠 }

if sbal < amt {
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ sbal < amt ∧ ⋯ }

return false
}
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ sbal = 𝑣𝑠 ∧ sbal ≥ amt }

txn.Write(src, sbal - amt)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ ⋯ }

dbal, _ := txn.Read(dst)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 ∧ dbal = 𝑣𝑑 ∧ ⋯ }

txn.Write(dst, dbal + amt)
// { 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt ∧ ⋯ }

return true
}
// If returning false, then { ⊤ }

// Else { 𝑠𝑟𝑐
t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt }

// ⟨ 𝑠𝑟𝑐 ↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 ⟩

func AtomicXfer(db *DB, src, dst, amt uint64) bool {
body := func(t *Txn) bool {

return xfer(t, src, dst, amt)
}
return db.Run(body)

}
// If returning false, then ⟨ 𝑠𝑟𝑐 ↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 ⟩

// Else ⟨ 𝑠𝑟𝑐 ↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 + amt ⟩

Figure 3: Implementation and proof of AtomicXfer using vMVCC library.

may affect the balance in src or dst, or about the versioning
going on inside of vMVCC. vMVCC also ensures the transac-
tions execute in a linearizable order, so that once AtomicXfer
returns, any subsequent transactions will observe the effects
of this AtomicXfer.

Sequential reasoning in xfer. vMVCC formalizes the fact
that the developer need not consider other concurrent trans-
actions by allowing the developer to use sequential reasoning
for the body of the transaction. To achieve this, vMVCC uses
Iris [17], a modern concurrent separation logic (CSL) [29],
to specify its interface. In Iris/CSL, threads can own logical
resources, and resource ownership can be exclusive, meaning
that if one thread owns a resource, no other thread can own
the same resource. For example, the resource 𝑘 ↦ 𝑣 says that
the value of 𝑘 is 𝑣, and also says that the current thread owns
𝑘—that is, no other thread can own 𝑘 ↦ 𝑣 in the meantime
(and thus no other thread can read or write 𝑘).

In our example, the proof of the transaction body, xfer,
assumes ownership of 𝑠𝑟𝑐 t

↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡
t
↦ 𝑣𝑑 ; the ∗ opera-

tor (“separating conjunction”) says the thread owns both
resources and they are disjoint. Having ownership of these
resources allows the proof to assume that it is the only one
accessing 𝑠𝑟𝑐 and 𝑑𝑠𝑡. This, in turn, allows the developer to
prove xfer as if it was running in isolation, with no other
concurrent transactions. The overall specification for xfer
is that, starting with {𝑠𝑟𝑐

t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑}, if xfer runs and

terminates, then it either returns false to abort the trans-
action, or it returns true to commit, and the resources are

874 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

xfer(txn,src,dst,amt)

𝑠𝑟𝑐
t
↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 𝑠𝑟𝑐

t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt

AtomicXfer(db,src,dst,amt)

𝑠𝑟𝑐 ↦ 𝑣𝑠 ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 𝑠𝑟𝑐 ↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡 ↦ 𝑣𝑑 + amt

Figure 4: Figurative specifications of xfer and AtomicXfer. We highlight
the duration of owning the resources with red.

now {𝑠𝑟𝑐
t
↦ 𝑣𝑠 − amt ∗ 𝑑𝑠𝑡

t
↦ 𝑣𝑑 + amt}. To prove this, the

developer considers each line of code, and how that code
affects the resources owned by the thread, as shown in the
proof state comments between lines of code.

Concurrent specification for AtomicXfer. Specifying a
function with exclusive resource ownership (like we did
with xfer) simplifies the reasoning for that function, but at
the cost of limiting its implementations to sequential ones—
only the thread owning the required resources would be
allowed to execute the function.

To specify the behavior of AtomicXfer in Iris/CSL without
requiring ownership of src and dst for the entire duration of
AtomicXfer, vMVCC uses the notion of logical atomicity [16].
Figure 4 shows the flow of resources in a logically atomic
specification of AtomicXfer as compared to that of sequential
xfer. The xfer specification says that the thread owns the
resources throughout the entire execution of xfer, whereas
in AtomicXfer, the specification says that there will be some
point in time at which AtomicXfer appears to run atomically.
One notable difference here is the kinds of resources appear-
ing in the two specifications. Intuitively, the 𝑘

t
↦ 𝑣 used

by xfer says that “this transaction believes the value of 𝑘
is 𝑣”, whereas the 𝑘 ↦ 𝑣 used by AtomicXfer reflects “the
actual value of 𝑘 is 𝑣”. We will explain the meaning of these
resources in more depth in §3.2.

The resulting logically-atomic specification for AtomicXfer
captures that any number of threads are allowed to concur-
rently invoke AtomicXfer, possibly with overlapping src and
dst values. For each thread’s invocation of AtomicXfer, the
specification says that the transfer will execute correctly
and atomically. The application can, in turn, prove that this
maintains some application-level invariant, such as the sum
of the balances of all accounts remains fixed.

Proving AtomicXfer. Proving AtomicXfer involves two
parts. First, the developer proves that xfer meets its specifi-
cation, as described above. Second, the developer uses the
vMVCC library to obtain a proof that AtomicXfer’s specifica-
tion is the logically-atomic equivalent of xfer’s sequential
specification, as shown in Figure 3. The next subsection de-
scribes how vMVCC formally specifies db.Run in the general
case to enable this second step.

{

∗
(𝑘,𝑣)∈𝑚

𝑘
t
↦ 𝑣 ∗ 𝑃(𝑚)

}

body(txn)
{

RET 𝑟 . if 𝑟 then∗
(𝑘,𝑣)∈𝑚

′

𝑘
t
↦ 𝑣 ∗ 𝑄(𝑚,𝑚

′
) else ⊤

}

⟨
𝑚. ∗

(𝑘,𝑣)∈𝑚

𝑘 ↦ 𝑣 ∗ 𝑃(𝑚)

⟩
db.Run(body)

⟨
RET 𝑟 . if 𝑟 then∗

(𝑘,𝑣)∈𝑚
′

𝑘 ↦ 𝑣 ∗ 𝑄(𝑚,𝑚
′
) else∗

(𝑘,𝑣)∈𝑚

𝑘 ↦ 𝑣

⟩
⟹

Figure 5: Specification of db.Run. The angle brackets indicate a logically
atomic specification [16]. The vertical arrow indicates that, as a precondition
for invoking db.Run, the developer must prove the standard Hoare-logic
specification shown above the arrow for body. Not shown is the part of
the specification that describes the representation predicates. We color the
resources established for commit with green, and for abort with red.

3.2 Specifying the transaction interface
Transactions give users an illusion that they are “isolated”
from each other. To capture this intuition, we define the
resource 𝑘

t
↦ 𝑣 (which already showed up in the above

example) as the transaction-local view of the system state. We
can then specify operations that manipulate the transaction-
local view in terms of 𝑘 t

↦ 𝑣:
{

𝑘
t
↦ 𝑣

}

txn.Read(k)
{

RET 𝑣. 𝑘
t
↦ 𝑣

}

{

𝑘
t
↦ 𝑣

}

txn.Write(k,u)
{

𝑘
t
↦ 𝑢

}

{

𝑘
t
↦ 𝑣

}

txn.Delete(k)
{

𝑘
t
↦ ⊥

}

These specifications use standard Hoare-logic syntax, where
{𝑃} op {𝑄} means that, if op runs starting with the resources
specified in precondition 𝑃 , it will return with the resources
as specified in the postcondition 𝑄.
Next, we define the resource 𝑘 ↦ 𝑣 as the logical view

of the system state, representing the linearizable state. The
fact that only a single value of each key is exposed to users
might seem counter-intuitive in the case of MVCC, given
that the system physically stores multiple values for each key.
However, from the application’s point of view, it suffices to
view the abstract state of the system as having a single value
for each key at any given point in time, and updating that
value at the transaction’s linearization point. (We discuss
this in more detail in §4.2.)
The specification of db.Run shown in Figure 5 connects

these two kinds of resources. This is also the top-level the-
orem of vMVCC as a transaction library. The specification
requires the developer to prove a sequential specification
for body with a precondition that takes the transaction-local
view of some set of key-value pairs, 𝑚, along with some

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 875

Time

begin body commit
Txn 10

r(𝑘) → 𝑣 r(𝑘) → 𝑣ts = 10

begin body commit
Txn 15

r(𝑘) → 𝑣 w(𝑘, 𝑣 + 1)ts = 15

𝑘 ↦ 𝑣 𝑘 ↦ 𝑣 + 1

Figure 6: An example of two concurrently running vMVCC transactions.
Both transactions appear to execute their reads and writes at their lin-
earization points (marked as red). The reason linearization points appear
at timestamp generation is that if Txn A linearizes (i.e., runs across its
linearization point) before Txn B, then all reads and writes of A should
appear to happen before that of B. This is precisely what timestamps are
intended to do.

constraints on those values, represented by the predicate
𝑃(𝑚). The postcondition of body says that, if it chooses to
commit, then it should return the transaction-local view of
𝑚

′ with some constraints 𝑄(𝑚,𝑚′
) on how these key-value

pairs relate to the starting state.
Given such a specification for body, the specification of

db.Run says that db.Run(body) will be the logically atomic
equivalent: at some instant during its execution, it will swap
the logical view of𝑚 satisfying 𝑃(𝑚) for that of𝑚′ satisfying
𝑄(𝑚,𝑚

′
). Further, if this transaction aborts (either at its own

will or because of conflicts with another transaction), then
db.Run(body) keeps the logical view of 𝑚 intact.

As an example, we can instantiate 𝑃 and 𝑄 for AtomicXfer
from §3.1 as follows:

𝑃(𝑚) ≜ dom(𝑚) = {𝑠𝑟𝑐, 𝑑𝑠𝑡}

𝑄(𝑚,𝑚
′
) ≜ 𝑚

′
[𝑠𝑟𝑐] = 𝑚[𝑠𝑟𝑐] − 𝑎𝑚𝑡 ∧ 𝑚

′
[𝑑𝑠𝑡] = 𝑚[𝑑𝑠𝑡] + 𝑎𝑚𝑡

The use of 𝑃 and 𝑄 as arbitrary predicates allows the db.Run
specification to capture the behavior of body and transfer it
to the logically atomic specification of db.Run(body). One
technicality here is that 𝑃 and 𝑄 are both pure predicates,
meaning they cannot encode ownership of other resources,
but merely restrict the values of 𝑚 and 𝑚

′.
The specification of db.Run can be regarded as a program-

logic formalization of strict serializability [15] in the database
literature. Serializability comes from the part of the specifi-
cation that says transactions appear to observe and modify
the system state one at a time (at their linearization point),
with strictness owing to the fact that they do so during the
course of their respective execution (and hence the serial
order respects the transaction precedence order).

4 Proving vMVCC
This section describes the important aspects of our proof for
vMVCC. We start with a key verification challenge and how
we solve it with prophecy variables (§4.1). We describe how

Txn 15 commits and updates 𝑘 to 𝑣 + 1

Txn 15 commits and updates 𝑘 to 𝑣 + 2

Txn 18 reads 𝑘, then Txn 15 commits and updates 𝑘
Txn 15 aborts

Txn 15 neither commits nor aborts

Time

begin body commit
Txn 15

r(𝑘) → 𝑣 w(𝑘, 𝑣 + 1)ts = 15

✗

✗

✗

✗

Figure 7: Transaction futures, showing several example futures speculated
through prophecy variables and their interaction with prophecy resolution.

we abstract a tuple from its physical representation contain-
ing multiple versions to its logical view with a single value,
which potentially reflects some update that happens only
in the future (§4.2). We present a key invariant about the
prophecy variable used in vMVCC, and how the invariant
helps maintain other system-wide invariants under correct
and incorrect predictions (§4.3). We discuss how we de-
fine the transaction-local view of the system state, and its
connection to the logical view (§4.4). We finally conclude
this section with the challenges and the approach regarding
proving strict monotonicity of transaction IDs (§4.5).
4.1 Speculation using prophecy variables
We introduce the verification challenge with an example
shown in Figure 6. Observe that in the example, the value
of 𝑘 to be read by Txn 10 is determined up front by 𝑘 ↦ 𝑣

at its linearization point, despite the fact that by the second
read of Txn 10, Txn 15 has already committed and updated
the physical state of 𝑘. Similarly, the write of Txn 15 updates
the logical state to 𝑘 ↦ 𝑣 + 1 before it physically executes.
This kind of “speculative” behavior of MVCC turns out to be
tricky to reason about in a Hoare-logic reasoning style where
the proof considers each line of code in turn and reasons
about how that code updates the abstract and physical states.
The challenge arises from the fact that MVCC transac-

tions linearize when their timestamp is generated. In the
proof, the logical state must be updated at the transaction’s
linearization point, which happens before the transaction
body runs. The changes to the logical state depend both on
the transaction itself (i.e., what data the transaction decides
to write), as well as conflicts with other transactions (i.e.,
whether another transaction reads or writes the same keys
as this transaction in a way that will force this transaction
to abort, as discussed in §2). This poses the question: how
do we know, at the transaction’s linearization point, what
values will a transaction write, and whether a transaction
will encounter a conflict and thus be forced to abort? To
tackle this issue, we use prophecy variables.

Intuitively, prophecy variables allow the proof to speculate
about future execution. In the case of vMVCC, the prophecy
variable is a list of transaction actions, which describes what
actions each transaction will perform, and in what order.

876 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

⊥ ⊥ 𝑣1 𝑣2 𝑣2Linear

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5 𝑣6 𝑣6Speculative

𝑣6Logical (𝑘1 ↦ 𝑣6)

Physical 1 false 𝑣1 4
ts del val tslast

2 false 𝑣2

=

⪰

AR

Key 𝑘1

𝑘1 false 𝑣5

key del val

WriteBuf

Local𝑘1
t
↦ 𝑣5 𝑘2

t
↦ 𝑢4∗

⊕ ⊕ 𝑢4 (from key 𝑘2)

Txn 5

(𝑘
1
,𝑣
5
)

5
𝑘

2

3

Prophecy
CF

(last-value invariant)

(prefix invariant)

(abstraction relation)
(conflict-free invariant)

(transaction-local invariant)

Figure 8: Overview of vMVCC’s key physical states (in blue regions), logical states (in red regions), intermediate states, and the system-wide invariants
relating them (the dotted lines). We introduce the tuple abstraction relation, the prefix invariant and the last-value invariant in §4.2, the conflict-free invariant
in §4.3, and the transaction-local invariant in §4.4. Here 𝑢4 is the value of the speculative view of 𝑘2 at timestamp 5.

We refer to the list as the future-action list. There are two
kinds of actions in vMVCC’s proof: 𝑚

𝑡
(“Txn 𝑡 commits and

applies updates 𝑚 to the system state”) and𝑘

𝑡
(“Txn 𝑡 reads

key 𝑘”). Transaction aborts are represented by a commit
with an empty write-set.

At transaction begin time, vMVCC’s proof uses the
prophecy variable to speculatively predict the execution of
the transaction, which allows the proof to update the logical
state as if it knew what the transaction is going to do. The
main challenge of using the prophecy variable, however, is
that some of the predictions could be incorrect—it predicts
something that does not match what happens later. As an
example, Figure 7 shows five concrete predictions for Txn
15 that increases the value of 𝑘 by 1. Only the bottom pre-
diction turns out to be correct when the transaction actually
commits. The incorrect predictions eventually diverge from
the actual changes made by the transaction, and will make
the logical state inconsistent with the physical state.

To deal with the divergence, the proof performs prophecy
resolution at the point where the transaction actually com-
mits and updates the physical state. Prophecy resolution
allows the proof to stop considering cases corresponding to
predictions that did not match reality, and continue only
with the cases that did. We will elaborate more on cor-
rect/incorrect predictions and prophecy resolution with a
concrete example in §4.3.

This description may make it sound like there are a large
number of cases to consider in the proof, greatly increasing
the proof burden. In practice, the predictions are symbolic,
rather than concrete timestamps, keys, and values; for in-
stance, the prophecy variable speculates the updates made
by a transaction as a symbolic partial map. Furthermore, the
proof can group together many speculative executions (e.g.,
those in which the transaction of interest is speculated to
commit without encountering a conflict), and consider the
entire family of executions just once.

4.2 Incorporating speculation in abstract state
vMVCC exposes a single linearizable copy of the system state,
thereby freeing the users from explicitly reasoning about the
timestamps. Thus, the logical view (shown in the “logical”
row of Figure 8) of vMVCC is a single value for every key,
and the proof must connect this logical view to the physical
state (shown in the “physical” row of Figure 8), consisting of
the Go struct representing each tuple.

This connection is challenging for several reasons, includ-
ing the fact that the Go data structure contains multiple
versions, and the fact that the value in the logical view may
not even be present in the Go data structure, if it is made
by a write speculated by the prophecy variable for an active
transaction. Moreover, reasoning about the physical layout
of the tuple in all intermediate proofs is cumbersome.

To address these challenges, we introduce two intermedi-
ate layers modeled with monotonic lists (i.e., lists that only
grow). The first is the linear view of the tuple, shown in the
“linear” row of Figure 8. The linear view is a contiguous list
of values, indexed by timestamps. The linear view gives us
an elegant way to specify operations on tuples: reading a
tuple with a given timestamp 𝑡 just returns its value at index
𝑡. If the transaction needs to extend tslast, doing so extends
the linear view up to the new tslast timestamp, filling in
new entries with the last value in the list. Writing a tuple
with a given timestamp 𝑡 extends the tuple up to index 𝑡, and
appends the new value to the end.

To capture the speculative behavior of MVCC as described
in §4.1, we add the “speculative” layer, as shown in Fig-
ure 8 as well. The speculative view is yet another contiguous
timestamp-indexed list, much like the linear view, but in-
cludes the writes from transactions that have linearized but
have not yet finished executing and updating the physical
state. The proof looks up and extends the speculative view
at the linearization point (the ability for such extension is
guaranteed by strict monotonicity of vMVCC’s timestamps),

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 877

begin r(𝑘) → 𝑣2 w(𝑘, 𝑣5) commit

𝑘

5
(𝑘,𝑣5)

5
(𝑘,𝑣6)

6

no conflicting actions

Prophecy

⊥ ⊥ 𝑣1Linear

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5Speculative
⪰

(𝑘,𝑣5)

5
(𝑘,𝑣6)

6
𝑘

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5 𝑣6

⪰

(𝑘,𝑣6)

6
(𝑘,𝑣5)

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5 𝑣6

⪰

(a) An example execution with a prediction that Txn 5 commits without conflicts.

begin r(𝑘) → 𝑣2 w(𝑘, 𝑣5) commit

𝑘

5
(𝑘,𝑣6)

6
(𝑘,𝑣5)

5

conflicting action: (𝑘,𝑣6)

6

Prophecy

⊥ ⊥ 𝑣1Linear

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2Speculative
⪰

(𝑘,𝑣6)

6
(𝑘,𝑣5)

5
𝑘

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣2 𝑣6

⪰

(𝑘,𝑣5)

5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣5

⊥ ⊥ 𝑣1 𝑣2 𝑣2 𝑣2 𝑣2 𝑣6

(b) An example execution with a prediction that Txn 5 commits despite conflicts.

Figure 9: Two example executions illustrating how the proof handles correct and incorrect predictions in Figure 9(a) and Figure 9(b), respectively. We
indicate the linearization and prophecy resolution points with red and blue dots, respectively. For concreteness, we use Txn 5 in the examples, but in the
actual proof, the timestamp is just a symbolic value 𝑡 that represents all possible timestamps. Note that all these states are sealed in some global invariant to
enable sharing—each thread (or, transaction) can access them only at its atomic steps, including the linearization and prophecy resolution points. This means
that the states could have changed by another thread between two atomic steps.

based on the prophecy variable. The linear view is updated
when physically reading and writing a tuple.

We use these intermediate views to relate vMVCC’s physi-
cal state to its top-level logical view, as shown in Figure 8, for
each key in the system state. The tuple abstraction relation
describes how the physical tuple layout is connected to its
abstract linear view. The prefix invariant requires that the
linear view must be a prefix of the speculative view, cap-
turing the intuition that the speculative view runs ahead
of the linear one. Finally, the last-value invariant says the
last element of the speculative view is equal to the top-level
logical value of that key. vMVCC’s proof heavily relies on
the invariants maintained between these layers.
Modeling these intermediate views as monotonic lists al-

lows the proof to seal their “authoritative” ownership in a
global invariant for sharing among transactions, but at the
same time enables the proof to retain knowledge about exist-
ing prefixes of the lists. As we will see in §4.4, this is crucial
to bridge the gap between reading the logical state at the
linearization point, and reading the physical state later on
when the transaction actually executes.

Abstraction relation underGC. In the presence of GC, the
tuple abstraction relation (shown as AR in Figure 8) cannot
hold on all timestamps, as that would require mutating the
existing part of the linear view when removing unusable
versions from the physical state. As mentioned in §2, the
key idea of GC safety is to identify versions that will not
be accessed by any transactions, including those that have
not even begun. We formalize this line of reasoning with a

monotonic timestamp 𝑡safe, which serves as a lower bound
on the transaction IDs of all active and future transactions.

To start a round of GC, the garbage collector first computes
a new 𝑡safe, and then relaxes the abstraction relation of the
target tuples so that it no longer places any constraints on
versions whose lifetime ends before 𝑡safe. Doing so allows the
garbage collector to delete those versions without violating
the abstraction relation. We further weaken the specification
for reading and writing a tuple at timestamp 𝑡 by requiring
a proof of 𝑡 ≥ 𝑡safe in their precondition, ensuring that the
deleted versions are never observed.

4.3 Maintaining invariants under speculation
One challenge in vMVCC’s proof stems from the fact that
prophecy variables can speculatively predict that a trans-
action will commit in the future, while at the same time
predicting earlier transactions that conflict with it. This
brings up two challenges related to the system-wide invari-
ant maintained by vMVCC’s proof.

The first challenge is that the invariant ensures that trans-
actions cannot commit in the presence of conflicts, which
would be at odds with the (ultimately incorrect) speculative
prediction described above. This makes it impossible for the
proof developer to update the logical state based on the incor-
rect predictions but still maintain the invariant, which must
always hold. To get around this issue, vMVCC’s proof treats
such inconsistent predictions as transaction aborts, which
makes it easy to maintain the invariant and thereby carry
through the prediction to the prophecy resolution point.

878 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The second challenge stems from the fact that an inconsis-
tent prediction, such as the example above, involves multiple
transactions, and therefore relies on prophecy resolution
in multiple threads. The prediction about each individual
transaction and thread could be correct in its own right, but
it is the combination of them that leads to a contradiction.
How should the proof be structured to establish the con-
tradiction despite only doing one prophecy resolution at a
time? vMVCC’s proof addresses this challenge by maintain-
ing a sufficiently strong invariant that carries along facts
from each prediction to derive contradictions against later
predictions as needed, as we describe below.

To illustrate this point, we first sketch out the proof for a
correct prediction, where a transaction commits and there
are no conflicts that would have forced it to abort, and then
show how vMVCC’s proof handles incorrect predictions.

Predicted commit without conflicts. In Figure 9(a), Txn
5 is speculated to commit without encountering any conflict.
The reason is that at its linearization point, the commit ac-
tion of Txn 5 in the future-action list, (𝑘,𝑣5)

5
(there might be

multiple of them in the list, but the proof cares only about
the first one), is conflict-free against all the actions prior to
it. We define 𝑚

𝑡
to be conflict-free against an action 𝑎 if

(1) 𝑎 = 𝑘

𝑡
′ , where 𝑡

′
≤ 𝑡 ∨ 𝑘 ∉ dom(𝑚), or (2) 𝑎 = 𝑚

′

𝑡
′ ,

where 𝑡′ < 𝑡 ∨ dom(𝑚
′
) ∩ dom(𝑚) = ∅. Knowing that Txn

5 will commit without conflicts, the proof safely extends
the speculative view up to timestamp 5 using the old value
𝑣2, and appends the new value 𝑣5 to it (which updates the
logical view to 𝑣5 as well) without violating the conflict-free
invariant, as described below.

Intuitively, the conflict-free invariant requires that a trans-
action reflects its update to the speculative view only if the
first commit action of the transaction is conflict-free against
all the actions prior to it in the future-action list. As we will
see below, this invariant is crucial to prove invariance of the
prefix property between the linear and speculative views.

On reading key 𝑘, the proof resolves the head of the future-
action list to 𝑘

5
. Then, it uses the conflict-free invariant to

deduce that transactions which contain updates to the specu-
lative view, but not to the linear view, must have timestamps
greater than or equal to the timestamp of this read. This
implies that the speculative view can differ from the linear
view only after a timestamp 𝑡 > 5, allowing the proof to
re-establish the prefix invariant after extending the linear
view. A similar reasoning goes for commit, except the proof
additionally uses the promise that Txn 5 will commit to know
the value at timestamp 5 of the speculative view is 𝑣5.

Predicted commit despite conflicts. In Figure 9(b), Txn
5 is speculated to commit despite the presence of conflicts
because its first commit action, (𝑘,𝑣5)

5
, conflicts with an ear-

lier action (𝑘,𝑣6)

6
. The proof, as in the previous case, extends

the speculative view up to timestamp 5 using the old value
𝑣2; however, it does not append the new value 𝑣5 as doing so

would violate the conflict-free invariant, and proceeds as if
the transaction will abort, which makes the invariant true.
For read, the proof of the prefix property is similar to

the previous case. For commit, however, the proof cannot
re-establish the prefix property after extending the linear
view, because it indeed did not apply the new value 𝑣5 at
the linearization point. Fortunately, at this point the proof
knows two facts that contradict each other: (1) reaching the
prophecy resolution point for commit, the execution must
have passed the conflict detection as illustrated in Figure 2(b),
implying the length of the linear view 𝑙 ≤ 5 + 1 (the +1 part
is due to our lists being zero-indexed); (2) some conflicting
action (in this case (𝑘,𝑣6)

6
), which extends the linear view to

at least timestamp 𝑡 > 5, must have happened before Txn 5
commits, implying 𝑙 > 5 + 1. The proof closes this case with
the derived contradiction.

4.4 Abstract state of a transaction
As mentioned in §4.1 (and illustrated in Figure 6), the value
of key 𝑘 to be read by a transaction is determined up front
by 𝑘 ↦ 𝑣 at the transaction’s linearization point. Reading
from the physical state, however, happens only at some later
point in time, and the value is based on 𝑘

t
↦ 𝑣

′, as specified
in §3.2. This means the proof has to somehow connect 𝑘 ↦ 𝑣,
𝑘

t
↦ 𝑣

′, and 𝑣
′′, the result of physically reading the tuple of

𝑘. This section describes how the system-wide invariants
shown in Figure 8 establish that connection.
Let us first consider the case where the transaction has

not written key 𝑘. Our first step then is to show 𝑣 = 𝑣
′.

Recall that at the linearization point of Txn 𝑡 that reads or
writes 𝑘, we extend the speculative view of 𝑘 up to 𝑡 using
its last value. Doing so, along with the last-value invariant,
allows us to deduce that the value of the speculative view at
index 𝑡 is 𝑣 (and will remain so since the speculative view is
monotonic). The proof then follows from the definition of
the transaction-local invariant, which says that if Txn 𝑡 has
not written 𝑘, then 𝑣

′, the transaction-local value, is equal to
the value of the speculative view at index 𝑡.
Our next step is to show 𝑣

′
= 𝑣

′′. Again recall that physi-
cally reading the tuple of 𝑘 at timestamp 𝑡 means extending
the linear view of 𝑘 up to 𝑡 (if the value at 𝑡 is still absent),
and looking up its value at index 𝑡. The proof of 𝑣′ = 𝑣

′′ then
follows immediately from the prefix invariant that requires
the linear view to remain a prefix of the speculative one.

Now consider the case where the transaction has last writ-
ten 𝑘 with value 𝑢. As specified in §3.2, the logical effect of
the write is 𝑘 t

↦ 𝑢. We thus define the remaining case for
the transaction-local invariant: if the transaction has written
𝑘, then the transaction-local value is equal to the value in its
local write buffer.
The contents of the write buffer are also what the spec-

ulated updates in a commit action (i.e., 𝑚 in 𝑚

𝑡
) resolve to.

This allows us to obtain the equality between the speculated
updates with the actual updates at the prophecy resolution

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 879

point, which is crucial when re-establishing the prefix in-
variant as discussed in §4.3.

4.5 Strict monotonicity of transaction ID
Another challenge in vMVCC’s proof is establishing strict
monotonicity of transaction IDs, for vMVCC’s RDTSC-based
algorithm described in §2. The challenge lies not only in
proving that the algorithm generates strictly increasing trans-
action IDs, but also in being able to logically execute the
transaction (i.e., update the logical state) at the linearization
point corresponding to that transaction ID. The reason this
is challenging is that the linearization point for some transac-
tion ID 𝑡

′ might not correspond to any line of code that was
executed for this transaction—the algorithm simply spins in
a loop waiting for RDTSC to advance past 𝑡′, and linearization
occurs when any transaction observes that 𝑡′ has passed.

To formally reason about this algorithm, vMVCC’s proof
maintains a logical table of slots, one per timestamp. The
slot contains the logical set of changes that a transaction
with that timestamp wants to perform, represented as a
ghost function. The actual state changes performed by this
ghost function are determined by prophecy variables, as
described above. The proof uses the slots to invoke the
ghost functions for each timestamp in order, as the RDTSC

clock advances; the proof maintains a “latest-slot” timestamp
corresponding to the last table slot that has been invoked.
The invariant associated with this proof states that this latest
timestamp is always below (or equal to) the real RDTSC clock.
Furthermore each future slot is protected by the site’s mutex
that corresponds to this timestamp.
When the transaction manager first computes 𝑡′, it regis-

ters the 𝑡′ slot in the table, putting in a ghost function that
will perform its transaction’s changes. Since 𝑡′ > 𝑡, the proof
has not yet invoked the ghost function for this slot, and the
current thread also holds the site’s mutex needed to fill this
slot (which proves that no concurrent thread could fill the
same slot). As the transaction manager runs the loop waiting
for RDTSC to move past 𝑡′, it updates the latest-slot with each
iteration, executing all of the ghost functions in the slots that
have been advanced over. The proof takes advantage of later
credits [31] in Iris that enable verification of this “unsolicited
helping” pattern.
The invariant for the slot table says that, for every slot

with a timestamp below the latest-slot, its ghost function
callback has been invoked. As a result, when the transaction
manager’s loop exits, it knows that the latest-slot is at least
as high as 𝑡′, and therefore its ghost callback must have been
invoked (either by this same thread or by some other thread
running the same loop).

5 Implementation and proof details
We implemented vMVCC in Go, and verified its implementa-
tion using the Perennial framework [3] (based on Iris [21–23]
and Coq [33]), using Goose [4] to lift vMVCC’s Go code into

Component Lines of code (Go) / proof (Coq)

Tuple 260 / 1947
Transaction 419 / 4489
Index 85 / 496
Timestamp 24 / 311
Misc 39 / 361
Ghost state - / 947
Global invariants - / 2566

Total 827 / 11117

Figure 10: Lines of code and proof for each component of vMVCC.

Perennial. To enable vMVCC’s proofs of MVCC transaction
linearizability, we incorporated prophecy variable support
from Iris [18] into Perennial.

Figure 10 summarizes the implementation and proof effort,
not including changes to Perennial that were necessary for
the verification. The lines of proof include the specifications
for each function in vMVCC’s implementation. The proof
effort for vMVCC required about 13× as many lines of proof
as lines of code, which is in the same ballpark as other verified
systems that handle concurrency [3, 6, 13].

The implementation contains several low-level optimiza-
tions that improve performance. We used RDTSC to generate
transaction IDs. We also padded data structures to avoid
false cache-line sharing that limits multi-core scalability, and
sharded the index and the set of active transaction IDs to
reduce contention from concurrent accesses.

5.1 Bugs found during verification
Whenwewere first designing and implementing vMVCC, we
were careful to structure the code in a way that makes it clear
why the code is correct, what the invariants are, how they are
maintained, and what guarantees each interface or function
provides. Nevertheless, during the actual verification, we
ran into several bugs in corner cases that we missed or did
not correctly handle in the implementation, highlighting the
importance of formal reasoning. In this subsection, we give
several examples of such bugs.

One interesting bug we found when verifying vMVCC is
related to garbage collection. The buggy code is:

func (site *TxnSite) getSafeTS() uint64 {
site.mutex.Lock()
var tidmin uint64 = MAX_U64 /* buggy */
// var tidmin uint64 = site.getCurrentTS()
for _, tid := range site.tidsActive {

if tid < tidmin {
tidmin = tid

}
}
site.mutex.Unlock()
return tidmin

}

When the garbage collector starts a new round of GC, it first
calls getSafeTS on each site to collect the per-site minimal
transaction ID, and then computes a globally minimal one

880 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

YCSB
(100/0)

YCSB
(50/50)

YCSB
(0/100)

Scan
(100 keys)

TPC-C
(1 WH)

TPC-C
(32 WH)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Pe

rf
or

m
an

ce

51
.9

 M
 t

xn
/s

27
.2

 M
 t

xn
/s

18
.8

 M
 t

xn
/s

1.
7

M
 t

xn
/s

32
.8

 K
 t

xn
/s

32
9.

6
K

 t
xn

/s

Silo vMVCC

Figure 11: Comparison of Silo and vMVCC. For YCSB, each transaction
reads or writes a key sampled from a uniform distribution with a certain
R/W ratio. For TPC-C, the number of warehouses is same as the number of
worker threads.

among them. If every transaction site is empty (i.e., if ev-
ery site returned MAX_U64), the garbage collector generates
a timestamp using an arbitrary site. (Recall that vMVCC
always places a site ID in the low bits of the timestamp, and
the choice of site ID does not matter, as it is purely there
to ensure uniqueness.) The bug arises when a transaction
enters the system right after getSafeTS returns, and then
the garbage collector computes a timestamp larger than the
ID of that transaction. Our fix to this bug is to generate a
timestamp within each site, as shown in the commented-out
code. Doing so ensures that future transaction IDs generated
by this site will be larger than the one getSafeTS returns.
Another subtle bug we discovered is missing the wait

loop when generating transaction IDs, violating the strict
monotonicity of our timestamp generation scheme. The fix
was the looping RDTSC algorithm described in §2. Finally,
since our protocol is centered around timestamps, we also
discovered several off-by-one errors in the implementation
when conducting the verification of vMVCC (e.g., where
greater-than comparisons should have been greater-than-or-
equal-to comparisons).

6 Evaluation
We experimentally answer the following questions:
• Is vMVCC competitive with state-of-the-art unverified
systems? (§6.2)

• Does the use ofMVCC in vMVCC help with long-running
read-only transactions? (§6.3)

• Are the low-level optimizations in vMVCC important for
performance? (§6.4)

• Does vMVCC scale under high-contention workloads?
(§6.5)

6.1 Experimental setup
All experiments were done on an AWS EC2 c5.9xlarge in-
stance with 36 vCPUs (18 physical CPUs, each shared by 2
hardware threads via hyper-threading) and 72 GB of main
memory, running Linux 5.15.0 and Go 1.20.3.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Write

0

3

6

9

12

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

2PL
vMVCC

2PL (with long-running readers)

vMVCC (with long-running readers)

Figure 12: Comparison of 2PL and vMVCC under YCSB (4 keys accessed
per transaction, 𝜃 = 0.85, 24 threads), with and without 8 long-running
reader threads that repeatedly read 1% of the entire key space.

Weused the YCSB benchmark [7] to understand the perfor-
mance characteristics of vMVCC under various workloads.
Unless otherwise specified, we execute each YCSB put or
get in a separate transaction. The data set contains 1M key-
value pairs with each key being an 8-byte integer and value
an 100-byte string. The access pattern follows the uniform
distribution, or the Zipfian distribution, with a parameter 𝜃
controlling the skewness of the distribution. We vary the
read-write ratio and the number of keys accessed in each
transaction.

We also used the TPC-C benchmark, which involves more
sophisticated transactions. TPC-C models the operation of
a wholesale supplier, a common online-transaction process-
ing (OLTP) workload. It contains 9 tables and 5 kinds of
transactions, each with various workload characteristics. In
particular, most transactions can be processed in a single
warehouse, so it is natural and efficient to map each ware-
house to one thread. Our current implementation of vMVCC
requires the key to be an 8-byte integer, and every tuple
needs a key. Because of these limitations we made two modi-
fication to TPC-C. First, we do not support “get customers by
their last name” appearing in the OrderStatus and NewOrder

transactions; they are replaced with just “get customers by
customer ID”. Second, the History table does not have a
primary key, so we randomly generate one for it.

We employ a background GC thread for vMVCC in every
experiment. We repeat each experiment 10 times, each for
30 seconds. We report the mean, minimum, and maximum
(the last two as error bars) among the 10 runs.

6.2 Comparison with Silo
To evaluate whether vMVCC achieves competitive perfor-
mance with state-of-the-art systems, we compare vMVCC to
Silo [35], a high-performance transactional database system.
Because vMVCC does not store data durably, we compare
with MemSilo, a variant of Silo that does not persist its data.
Silo is an OCC/MVCC based system, using OCC to provide
serializability, and using MVCC to access a consistent snap-
shot of old versions. Unlike vMVCC, Silo does not generate
a new version for every write, but only once per snapshot
epoch (on the order of 1 second), which reduces memory
management costs. Silo’s OCC/MVCC design has the ad-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 881

∞ 10 s 5 s 1 s 500 ms 100 ms0

100

200

300

400

Pe
rf

or
m

an
ce

 (K
 tx

n/
s)

2PL vMVCC

Figure 13: Comparison of 2PL and vMVCC under TPC-C (32 warehouses),
with a thread periodically invoking the read-only transaction StockScan.

vantage of lower memory usage and allocation overhead
over vMVCC’s pure MVCC design. On the other hand, Silo
only ensures its snapshot transactions (those that access past
versions) always read a consistent snapshot, without impos-
ing ordering constraints on them with respect to normal
linearizable transactions, whereas in vMVCC, a “snapshot
transaction” is simply a linearizable transaction that does
not perform writes.
Figure 11 shows the results of the comparison for sev-

eral configurations of YCSB and TPC-C, normalizing to the
throughput achieved by Silo. Similarly to Silo, each worker
thread in vMVCC generates the workload parameters and
then immediately processes the transaction. We used a YCSB
profile where each transaction accesses a single key sam-
pled from a uniform distribution. vMVCC achieves 96.6%
the throughput of Silo for a read-only workload in YCSB,
and 38.8% for a write-only workload. For TPC-C, vMVCC
achieves 43% the throughput of Silo for 1 warehouse and
25.7% for 32 warehouses. We hypothesize that the perfor-
mance difference between Silo and vMVCC is largely due to
(1) vMVCC’s higher memory allocation overhead for storing
past versions, and (2) its inefficient way of executing range
scans—lacking a tree-like index structure, vMVCC relies on
the continuity invariant of TPC-C [34], and expands a range
query into multiple point queries. To test these hypotheses,
we conducted the following two experiments.

First, we ran the same write-only YCSB workload, except
that we fixed the write value to some statically allocated
string, and modified vMVCC to perform in-place update
on its tuples, without changing any other parts of the code
(hence the resulting system is not even correct, but it is
merely for us to understand more about vMVCC’s perfor-
mance characteristics). Applying these changes increases
the relative performance from 38.8% to 87.3%.

Second, we ran an additional range scan workload where
each transaction first randomly picks a starting key, and then
reads the next 100 keys. Silo executes each transaction with
a single scan, whereas vMVCC issues 100 reads. Figure 11
shows the results in the “scan” column. vMVCC achieves
48.1% of Silo’s throughput; the difference mostly attributes
to more cache misses in vMVCC.
Based on these experiments, we conclude that the gap

between vMVCC’s performance and that of Silo is indeed

1 2 4 8 16 32
Number of Threads

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

base
+ sharding/padding
+ sharding/padding + FAI
+ sharding/padding + RDTSC

Figure 14: Throughput of vMVCC with different optimizations enabled.
The benchmark is YCSB (1 key read per transaction, 𝜃 = 0.2).

largely due to memory allocation and vMVCC’s lack of sup-
port for range scans. For benchmarks that do not stress these
two aspects, vMVCC achieves performance competitive with
Silo.

6.3 Robustness to long-running readers
One main advantage of MVCC over traditional concurrency
control protocols is that its performance should remain stable
even in the presence of long-running readers. To confirm
that vMVCC’s design indeed achieves these performance
benefits, we implemented a variant of vMVCC that uses two-
phase locking for concurrency control instead of MVCC, and
compared the performance of vMVCC with this 2PL variant.

YCSB. We first compare vMVCC and 2PL under the YCSB
workload, using a YCSB profile where each transaction reads
or writes 4 keys. We fixed the number of threads to 24, 𝜃
to 0.85, and varied the read-write ratio from 0% to 100%.
We then ran one experiment without long-running readers,
and another one where the workload includes 8 transactions
repeatedly reading 10K keys (1% of the entire key space).

Figure 12 shows the results. In the absence of long-running
readers, 2PL performs better than vMVCC for all read-write
ratios except for the read-only workload (comparing the
solid lines). The difference stems from MVCC’s overhead of
(1) generating timestamps and (2) keeping past versions and
the associated memory allocation costs.
In the presence of long-running readers (comparing the

solid and dashed lines of each system), vMVCC’s throughput
drops slightly between the range of 11.5%–22.2%, whereas
2PL’s throughput drops significantly as the write ratio in-
creases (e.g., 72.6% and 84.9% for write ratio 80% and 100%,
respectively). As a result, the performance of 2PL with long-
running readers is worse than that of vMVCC for workloads
with 40% or more writes; for instance, under write ratios
80% and 100%, vMVCC performs 2.2× and 4× better than 2PL,
respectively. The reason is that, in 2PL, the long-running
readers hold read locks on keys for a long duration, prevent-
ing other transactions from writing to those keys.

TPC-C. We also compare vMVCC and 2PL under the TPC-C
workload. Similarly to prior work [36], we add a read-only
transaction StockScan that counts the number of each item in

882 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 4 8 16 32
Number of Threads

0.0

6.6

13.2

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

θ = 0.8
θ = 0.85
θ = 0.9
θ = 0.95

(a) Read scalability of vMVCC under high-contention workloads.

1 2 4 8 16 32
Number of Threads

0.0

2.4

4.8

Th
ro

ug
hp

ut
 (M

 tx
n/

s)

θ = 0.8
θ = 0.85
θ = 0.9
θ = 0.95

(b) Write scalability of vMVCC under high-contention workloads.

Figure 15: Scalability analysis under high contention. The benchmark is YCSB (4 keys accessed per transaction).

all warehouses. We parametrize the workload by the interval
of invoking StockScan. Figure 13 shows the results.
When no StockScan is invoked (represented by the ∞ in-

terval on the x-axis), 2PL performs better than vMVCC by
around 14%. However, when there are StockScan transac-
tions running, NewOrder transactions that update the stock
table will conflict with StockScan, and block under 2PL con-
currency control. As the interval between StockScan trans-
actions decreases, 2PL’s performance drops significantly,
whereas vMVCC throughput remains more-or-less the same,
since StockScan accesses old versions of tuples and does not
impact other transactions. For StockScan intervals 500 and
100 ms, the throughput of vMVCC is 11× and 54.4× that of
2PL. In terms of latency, vMVCC maintains its 99.9% latency
around 3.4 ms across all StockScan intervals, whereas the
99.9% latency of 2PL increases from 3.2 ms in the absence
of StockScan transactions, to a few tens and occasionally
hundreds of ms when StockScan is invoked every 100 ms.

6.4 Low-level optimizations

vMVCC implements (and verifies) two low-level optimiza-
tions to achieve high performance on many cores: (1)
padding and sharding data structures and mutexes, to avoid
cache-line contention, and (2) using RDTSC to generate trans-
action IDs without shared-memory contention. To under-
stand whether they are important for performance, we en-
able each optimization in turn and measure the resulting
performance. To stress the implementation, we chose a
lightweight YCSB profile where each transaction accesses a
single key. We chose a low-contention setting (𝜃 = 0.2) so
that transactions largely access different portions of the key
space; we will evaluate scalability under high contention in
the next subsection.

To evaluate the benefit of the RDTSC-based transaction ID
generation, we compare with two alternatives. The first is a
lock-based design where the transaction manager acquires a
mutex to get (and increment) the next transaction ID counter.
The second is a lock-free implementation that uses the fetch-
and-increment (FAI) instruction to atomically obtain the next
transaction ID.

Figure 14 shows the results. The optimizations have little
effect on a single core, but significantly improve vMVCC’s
performance on 32 cores. Partitioning and padding index and
transaction sites improves vMVCC’s performance by 2.8×
at 32 cores. Using FAI increases throughput by a further 3×
over the lock-based design at 32 cores. Finally, RDTSC-based
transaction IDs achieve yet another 3.7× improvement in
throughput compared to FAI at 32 cores. In summary, the
results show that all of these optimizations are important
for scaling vMVCC’s performance with many cores.
Enabling all the optimizations, vMVCC’s throughput

scales by 15.6× using 16 threads. The result suggests that
vMVCC eliminates almost all contention on its internal data
structures (when the keys themselves do not contend). The
throughput scales further by 1.66× when doubling the num-
ber of threads to 32, implying that vMVCC can benefit from
hyper-threading even though not as much as from having
more physical cores.

6.5 Scalability under contention
The previous section showed that vMVCC scales nearly lin-
early for a low-contention workload, with its low-level op-
timizations. In this section, we evaluate vMVCC’s scalabil-
ity under high-contention workloads, using a YCSB profile
where each transaction issues 4 reads/writes, with the skew-
ness parameter 𝜃 ranging from 0.8 to 0.95.

Figure 15 shows the results. For reads (Figure 15(a)), before
reaching the hyper-threading threshold (i.e., 18 cores), the
throughput scales almost linearly with respect to the number
of threads, except for extremely contended workloads (e.g.,
𝜃 = 0.95): the aggregated throughput of 16 threads is 14.9×
that of a single thread for 𝜃 = 0.8, and 12.6× for 𝜃 = 0.95. Scal-
ability drops after reaching the hyper-threading threshold
because of interference, especially for higher skewness: us-
ing 32 threads achieves 22.8× better performance for 𝜃 = 0.8,
and 16.9× for 𝜃 = 0.95.
For writes (Figure 15(b)), asides from hyper-threading

interference, having more contention also causes more con-
flicts between transactions, and hence higher abort rates.
For instance, the abort rate at 32 threads for 𝜃 = 0.8 is 4.8%,
whereas for 𝜃 = 0.95 is 27.6%. The result is that vMVCC’s

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 883

throughput with 32 threads is 11.7× that of a single thread
for 𝜃 = 0.8 and 9.9× for 𝜃 = 0.95.

The results show that vMVCC’s performance scales with
the number of cores even for workloads of high contention.

7 Related work
vMVCC is the first formally verifiedMVCC-based system, but
builds on prior work on formal verification and specification
of transactions, as we now discuss.

Verified systems. The closest related work to vMVCC is
GoTxn [6], a verified transaction library that uses 2PL for
concurrency control. GoTxn stores data durably to disk and
uses the verified GoJournal [5] journaling system to provide
crash atomicity. vMVCC uses a more sophisticated concur-
rency control plan (MVCC), which allows it to achieve high
performance for long-running read-only transactions, while
GoTxn uses standard 2PL which does not perform well with
long-running readers. vMVCC also implements and veri-
fies sophisticated optimizations, such as strictly increasing
RDTSC-based timestamps, which are not present in GoTxn.

Malecha et al. [28] verified a simple relational database, fo-
cusing on SQL queries, the relational data model, and the use
of B+-trees on disk. These issues are complementary to the
focus of vMVCC, which targets handling concurrent trans-
actions using sophisticated concurrency control protocols
and low-level optimizations.

Prophecy variables. Abadi and Lamport [1] first proposed
prophecy variables as a proof technique to establish refine-
ment mappings between state machines. Jung et al. [18]
later integrated it in a Hoare-style program logic. Prior work
using prophecy variables is mostly focused on verification
of protocols and small examples of data structures and algo-
rithms, such as RDCSS, the Herlihy-Wing queue [18], and
the atomic snapshot algorithm [24].
In this paper, we apply prophecy variables in a sophis-

ticated transaction library. We use prophecy variables to
make more elaborate predictions about the behavior of trans-
actions, including what data they read and write, and we
demonstrate that prophecy variables are useful for reasoning
about transactions.

Framework for specifying and verifying transactions.
Lesani et al. [25] develop a framework for verifying software
transactional memory systems and apply it to the NOrec
transactional memory algorithm [9]. NOrec uses a form of
OCC, in which transactions check whether they have been
invalidated by conflicting writes during commit time. As
with 2PL, NOrec transaction’s linearization point occurs dur-
ing commit, and hence does not appear to require prophecy
variables in its proof.

vMVCC uses logically atomic triples to specify transac-
tions, instead of classical serializability and linearizability
definitions [15] that are based on trace equivalence (e.g., as

used by GoTxn). This makes it easier to verify clients of
a transaction library by proving Hoare triples about code
running inside of the transaction library. Prior work has
similarly found it useful to introduce alternate specifications
for transactions and serializability in the context of formal
verification. The Push/Pull model [20] provides a set of prim-
itive operations which can be used to describe a variety of
transactions. Any system that can be decomposed into these
operations is guaranteed to be serializable. C4 [26] is a frame-
work that supports verifying transactional objects, that is,
concurrent data structures that allow chaining multiple op-
erations together in an atomic transaction. The framework
supports composing transactional objects as components of
a higher-level transactional object.

8 Conclusion
This paper presented vMVCC, the first MVCC-based trans-
action library with a machine-checked proof of correctness.
A key challenge in verifying vMVCC lies in reasoning about
the linearization of transactions under MVCC, where the lin-
earization point occurs before the transaction body actually
runs. vMVCC addressed this challenge by using prophecy
variables to speculate whether upcoming transactions are
going to commit, and what values they are going to write,
thereby allowing vMVCC to state and prove a simple yet
general specification for its top-level transaction interface
using logical atomicity. vMVCC incorporates further low-
level optimizations, such as using RDTSC to generate strictly
increasing transaction IDs, with corresponding proofs of
correctness, to achieve high performance. An evaluation
demonstrated that, for a range of YCSB and TPC-C work-
loads, vMVCC’s throughput is 25–96% of the throughput
of Silo, a state-of-the-art unverified system; that vMVCC
benefits from MVCC to achieve good performance for long-
running read-only transactions compared to two-phase lock-
ing; and that vMVCC’s low-level optimizations are important
for achieving high performance. At the same time, vMVCC’s
proof effort—13× as many lines of proof as lines of code—is
on par with other verified concurrent systems.

Acknowledgments
We are grateful to Anish Athalye, Sanjit Bhat, Alexandra
Henzinger, Jon Howell, Derek Leung, the anonymous review-
ers, and our shepherd, Adriana Szekeres, for their valuable
feedback that improved this paper. We thank Tej Chajed for
discussions on transactions and the Perennial framework.
This work was supported by a grant from Amazon AWS
through the Science Hub program, and by NSF awards CCF-
2123864 and CCF-2318722. The code and proof of vMVCC is
available at:

https://pdos.csail.mit.edu/projects/vmvcc.html

884 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://pdos.csail.mit.edu/projects/vmvcc.html

References
[1] M. Abadi and L. Lamport. The existence of refinement

mappings. In Proceedings of the 3rd Annual IEEE Sym-
posium on Logic in Computer Science, pages 165–175,
Edinburgh, Scotland, July 1988.

[2] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. OpLog: a library for scaling update-heavy data
structures. Technical Report MIT-CSAIL-TR-2014-019,
MIT Computer Science and Artificial Intelligence Lab-
oratory, Cambridge, MA, Sept. 2014.

[3] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zel-
dovich. Verifying concurrent, crash-safe systems with
Perennial. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP), pages 243–258,
Huntsville, Ontario, Canada, Oct. 2019.

[4] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zel-
dovich. Verifying concurrent Go code in Coq with
Goose. In Proceedings of the 6th International Work-
shop on Coq for Programming Languages (CoqPL), New
Orleans, LA, Jan. 2020.

[5] T. Chajed, J. Tassarotti, M. Theng, R. Jung, M. F.
Kaashoek, and N. Zeldovich. GoJournal: a verified, con-
current, crash-safe journaling system. In Proceedings of
the 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 423–439, Virtual
conference, July 2021.

[6] T. Chajed, J. Tassarotti, M. Theng, M. F. Kaashoek, and
N. Zeldovich. Verifying the DaisyNFS concurrent and
crash-safe file system with sequential reasoning. In
Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 447–
463, Carlsbad, CA, July 2022.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In Proceedings of the 1st ACM Symposium on
Cloud Computing (SOCC), pages 143–154, Indianapolis,
IN, June 2010.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, D. Woodford, Y. Saito, C. Tay-
lor, M. Szymaniak, and R. Wang. Spanner: Google’s
globally-distributed database. In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Hollywood, CA, Oct. 2012.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec:
streamlining STM by abolishing ownership records. In
Proceedings of the 15th ACM Symposium on Principles

and Practice of Parallel Programming, pages 67–78, Ban-
galore, India, Jan. 2010.

[10] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton:
SQL Server’s memory-optimized OLTP engine. In Pro-
ceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, New York, NY, June
2013.

[11] etcd Authors. etcd API, Apr. 2023. https://etcd.io/
docs/v3.6/learning/api/#revisions.

[12] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. In Proceedings of
the 41st International Conference on Very Large Data
Bases (VLDB), Kohala Coast, HI, Aug.–Sept. 2015.

[13] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg,
and D. Costanzo. CertiKOS: An extensible architec-
ture for building certified concurrent OS kernels. In
Proceedings of the 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
653–669, Savannah, GA, Nov. 2016.

[14] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan. Amazon Redshift and
the case for simpler data warehouses. In Proceedings
of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Australia, May–June
2015.

[15] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans-
actions on Programming Languages Systems, 12(3):463–
492, 1990.

[16] B. Jacobs and F. Piessens. Expressive modular fine-
grained concurrency specification. In Proceedings of
the 38th ACM Symposium on Principles of Programming
Languages (POPL), pages 271–282, Austin, TX, Jan. 2011.

[17] R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal,
and D. Dreyer. Iris from the ground up: a modular foun-
dation for higher-order concurrent separation logic.
Journal of Functional Programming, 28:e20, 2018.

[18] R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport,
A. Timany, D. Dreyer, and B. Jacobs. The future is
ours: prophecy variables in separation logic. In Pro-
ceedings of the 47th ACM Symposium on Principles of
Programming Languages (POPL), pages 45:1–45:32, New
Orleans, LA, Jan. 2020.

[19] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA: Fast
memory-optimized database system for heterogeneous
workloads. In Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data, San
Francisco, CA, June–July 2016.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 885

https://etcd.io/docs/v3.6/learning/api/#revisions
https://etcd.io/docs/v3.6/learning/api/#revisions

[20] E. Koskinen and M. Parkinson. The push/pull model of
transactions. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 186–195, Portland, OR, June
2015.

[21] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer,
and L. Birkedal. The essence of higher-order concurrent
separation logic. In Proceedings of the 26th European
Symposium on Programming (ESOP), pages 696–723,
Uppsala, Sweden, Apr. 2017.

[22] R. Krebbers, A. Timany, and L. Birkedal. Interactive
proofs in higher-order concurrent separation logic. In
Proceedings of the 44th ACM Symposium on Principles of
Programming Languages (POPL), pages 205–217, Paris,
France, Jan. 2017.

[23] R. Krebbers, J. Jourdan, R. Jung, J. Tassarotti, J. Kaiser,
A. Timany, A. Charguéraud, and D. Dreyer. MoSeL:
a general, extensible modal framework for interactive
proofs in separation logic. In Proceedings of the 23rd
ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 77:1–30, St. Louis, MO, Sept.
2018.

[24] L. Lamport and S. Merz. Prophecy made simple. ACM
Transactions on Programming Languages and Systems,
44(2):6:1–6:27, Apr. 2022.

[25] M. Lesani, V. Luchangco, and M. Moir. A framework for
formally verifying software transactional memory algo-
rithms. In Proceedings of the 23rd International Confer-
ence on Concurrency Theory (CONCUR), page 516–530,
Newcastle upon Tyne, UK, Sept. 2012.

[26] M. Lesani, L. Xia, A. Kaseorg, C. J. Bell, A. Chlipala,
B. C. Pierce, and S. Zdancewic. C4: verified transac-
tional objects. Proceedings of the ACM on Programming
Languages, 6(OOPSLA):1–31, 2022.

[27] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions.
In Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data, Chicago, IL, May
2017.

[28] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky.
Toward a verified relational database management sys-
tem. In Proceedings of the 37th ACM Symposium on
Principles of Programming Languages (POPL), Madrid,
Spain, Jan. 2011.

[29] P. W. O’Hearn. Resources, concurrency, and local rea-
soning. Theoretical Computer Science, 375(1):271–307,
2007.

[30] D. P. Reed. Naming and Synchronization in a Decentral-
ized Computer System. PhD thesis, Massachusetts Insti-
tute of Technology, Sept. 1978. http://hdl.handle.
net/1721.1/16279.

[31] S. Spies, L. Gäher, J. Tassarotti, R. Jung, R. Krebbers,
L. Birkedal, and D. Dreyer. Later credits: Resourceful
reasoning for the later modality. In Proceedings of the
27th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), Ljubljana, Slovenia, Sept.
2022.

[32] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis,
T. Grieger, K. Niemi, A. Woods, A. Birzin, R. Poss,
P. Bardea, A. Ranade, B. Darnell, B. Gruneir, J. Jaffray,
L. Zhang, and P. Mattis. CockroachDB: The resilient
geo-distributed SQL database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management
of Data, Portland, OR, June 2020.

[33] The Coq Development Team. The Coq Proof Assis-
tant, version 8.15, Jan. 2022. URL https://doi.org/
10.5281/zenodo.5846982.

[34] Transaction Processing Performance Council (TPC).
TPC benchmark C standard specification, revision 5.11,
Feb. 2010. https://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5.11.0.pdf.

[35] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), Farmington, PA, Nov. 2013.

[36] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An
empirical evaluation of in-memory multi-version con-
currency control. Proceedings of the VLDB Endowment,
10(7):781–792, Mar. 2017.

[37] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,
E. Tschannen, S. Atherton, A. J. Beamon, R. Sears,
J. Leach, D. Rosenthal, X. Dong, W. Wilson, B. Collins,
D. Scherer, A. Grieser, Y. Liu, A. Moore, B. Muppana,
X. Su, and V. Yadav. FoundationDB: A distributed un-
bundled transactional key value store. In Proceedings of
the 2021 ACM SIGMOD International Conference onMan-
agement of Data, pages 2653–2666, Virtual conference,
June 2021.

886 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://hdl.handle.net/1721.1/16279
http://hdl.handle.net/1721.1/16279
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

Automated Verification of Idempotence for Stateful Serverless Applications

Haoran Ding1, Zhaoguo Wang1, Zhuohao Shen1, Rong Chen1,2, and Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

Abstract
Serverless computing has become a popular cloud computing
paradigm. By default, when a serverless function fails, the
serverless platform re-executes the function to tolerate the fail-
ure. However, such a retry-based approach requires functions
to be idempotent, which means that functions should expose
the same behavior regardless of retries. This requirement is
challenging for developers, especially when functions are
stateful. Failures may cause functions to repeatedly read and
update shared states, potentially corrupting data consistency.

This paper presents Flux, the first toolkit that automati-
cally verifies the idempotence of serverless applications. It
proposes a new correctness definition, idempotence consis-
tency, which stipulates that a serverless function’s retry is
transparent to users. To verify idempotence consistency, Flux
defines a novel property, idempotence simulation, which de-
composes the proof for a concurrent serverless application
into the reasoning of individual functions. Furthermore, Flux
extends existing verification techniques to realize automated
reasoning, enabling Flux to identify idempotence-violating
operations and fix them with existing log-based methods.

We demonstrate the efficacy of Flux with 27 representa-
tive serverless applications. Flux has successfully identified
previously unknown issues in 12 applications. Developers
have confirmed 8 issues. Compared to state-of-the-art sys-
tems (namely Beldi and Boki) that log every operation, Flux
achieves up to 6× lower latency and 10× higher peak through-
put, as it logs only the identified idempotence-violating ones.

1 Introduction
A serverless application typically comprises a collection of
functions, which may be stateful. For example, they may com-
municate with each other through a shared database. Major
serverless platforms generally support the stateful model, such
as AWS [17], Microsoft [59], and Google [36]. Platforms gen-
erally employ a retry-based fault tolerance mechanism for
stateful applications — they automatically retry a function in
case of an unexpected error [18, 35, 57].

However, this mechanism mandates developers to write

idempotent applications that produce consistent results irre-
spective of the number of retries. In a sequential system that
invokes functions sequentially, developers can reason about
each function independently. However, a concurrent system
can invoke functions simultaneously. Therefore, developers
must consider all possible interleavings of concurrent func-
tions, making it challenging to write idempotent applications.

This paper presents Flux, the first toolkit that automatically
verifies the idempotence of concurrent serverless applications.
Building such a toolkit posed several challenges. First, a for-
mal idempotence definition for concurrent systems is desired
but currently missing. Second, automated verification requires
examining all possible interleavings of concurrent serverless
functions with arbitrary failures, which is prohibitively ex-
pensive. Third, for non-idempotent applications, the toolkit
should accurately identify the code that corrupts idempotence,
enabling developers to fix the issues.

To overcome the first challenge, we propose a novel idem-
potence definition for concurrent systems — idempotence con-
sistency. A serverless application is idempotence-consistent if,
for any observable behavior of an execution with retries, there
exists another execution without retries that can produce the
same behavior. Achieving idempotence consistency makes
clients unaware of retries during execution (Section 3). Un-
like alternative idempotence conditions, such as exactly-once
execution [45, 73], idempotence consistency offers greater
flexibility. An idempotence-consistent application does not
necessarily ensure exactly-once execution of all database op-
erations.

To tackle the second challenge, we propose idempotence
simulation to realize compositional proof, which enables prov-
ing the idempotence consistency of an application by veri-
fying each function individually. For each function, Flux
verifies that every possible execution with retries has a corre-
sponding retry-free execution that can simulate it (Section 4).
Existing work [66] can realize automated verification in a
sequential system by comparing the execution results when
retries happen with the results without retries. However, in
a concurrent system, verification requires modeling the con-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 887

current environment to account for the side effects of run-
ning multiple functions concurrently. Unfortunately, existing
modeling approaches are not fully automated as they ask
developers for hints, such as invariants [40, 60] and rely con-
ditions [47, 53]. In contrast, Flux automates the generation of
rely conditions and other hints. Additionally, Flux proposes
failure reduction to avoid enumerating all failure cases.

To help fix idempotence issues, Flux can identify
idempotence-violating operations whose re-execution cor-
rupts idempotence consistency. Developers can use logs to
ensure exactly-once execution semantics for these operations
rather than all operations via existing mechanisms [45, 73].

We evaluate Flux on 27 representative serverless applica-
tions with 79 functions. These applications are from vari-
ous sources, such as the AWS serverless application reposi-
tory [3], a GitHub repository (10.9k stars) [9], popular server-
less benchmarks [8, 10], and applications commonly used
in papers about serverless computing [5, 6]. Flux success-
fully identifies previously unknown idempotence issues in 12
applications. Compared to state-of-the-art systems (namely
Beldi [73] and Boki [45]) that log all operations, Flux achieves
up to 6× lower latency and 10× higher peak throughput, as it
logs only identified idempotence-violating operations.

Nevertheless, Flux still has several limitations. First, al-
though we design it for stateful serverless functions, its as-
sumption that states only include data in NoSQL databases
restricts its applicability to storage systems of other types.
We need to model the semantics of other storage systems care-
fully. Second, our verification method is sound but incom-
plete since Flux cannot handle certain serverless functions,
such as functions having certain types of unbounded loops.
Last, Flux currently supports only Java applications since we
build Flux based on a symbolic execution engine for Java
applications [61]. Despite these limitations, we believe that
Flux takes an important step towards enabling verification for
idempotence consistency of serverless functions.

2 Motivation and Our Approach
Why Need Idempotence? The concept of idempotence is
crucial for applications that rely on retry-based methods to
tolerate failures. Without idempotence, re-executing failed
computations may result in unexpected side effects, causing
severe correctness issues [42, 48, 64, 67]. With the emergence
of serverless computing, idempotence has become a signif-
icant requirement for serverless applications. However, this
requirement poses a challenge when serverless functions run
concurrently and are stateful, placing a substantial burden on
using serverless platforms [44, 69, 73].

We use an example in Figure 1 to illustrate why re-
executing a non-idempotent application can cause issues. This
is an example derived from a real-world e-commerce web
application, Spree [68]. The payment function atomically
checks the customer’s balance and deducts the price with a
discount rate using a conditional update API (line 4). This

1 void payment(productId , userId, price) {
2 discount := get("Discount", productId);
3 total := price * discount;
4 success := cond_update("Balance", userId,
5 inc(-total), gte(total));
6 receiptId := generateId(userId, productId ,
7 localTime());
8 if(success)
9 put("Receipt", receiptId , total);

10 }
11

12 void adaptDiscount(productId , percent) {
13 if(!isValid(percent))
14 return;
15 discount := 1.0 - percent/100.0;
16 put("Discount", productId , discount);
17 }

Figure 1: A simplified e-commerce serverless application with two
functions. When balance in the database is greater than or equal to
total (gte(total) is true), cond_update (line 4) decreases balance by
total (inc(-total)) and returns true. Otherwise, it returns false. The
generateId function (line 6) returns a receipt identifier. The isValid
function (line 13) returns true iff percent is between 0 and 100.

CrashAPI

Argument Response Retry

Payment

Time

get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

get

productId

0.6

put

receiptId

put

productId

0.6

6

Figure 2: The concurrent execution of payment and adaptDiscount
in Figure 1.

method needs to create a receipt accordingly (line 9). Mean-
while, the adaptDiscount function changes the discount for a
specific product, which the seller typically invokes.

Suppose a failure occurs after payment deducts the price
from the customer’s balance at line 4 but before it creates a
new receipt at line 9. Consider the sequential execution of
payment without concurrency. If the platform re-executes this
function after the failure, the function will deduct the price
twice from the customer’s balance. One possible solution to
ensure idempotence is to log the conditional update operation.
Additionally, it is necessary to log the execution of generateId ,
as localTime returns different values on retry. These logs can
ensure that the function will not re-execute update (line 4)
and generateId (line 6) on retry, which will always return the
same value as the first execution. The solution is enough to
provide idempotence under the sequential scenario.

However, the above solution does not work when payment
runs concurrently with adaptDiscount . For example, suppose
adaptDiscount changes the discount after payment fails at
line 4 but before its re-execution. Then, payment would have
deducted the price with the old discount but created a new
receipt with the new discount, which poses an inconsistency
between the customer’s balance and the corresponding re-
ceipt. Figure 2 shows the specific interleaving. Flux aims
to automatically find the correct logging strategy under both

888 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Payment get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

put

productId

0.6

put

receiptId

Time

8

(a) The execution with a retry when logging all operations of payment .

Payment

Time

get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

put

receiptId

put

productId

0.6

put

receiptId

8 8

(b) The execution with a retry when logging all operations of payment except
for the put .

Payment get

productId

0.8

adaptDiscount

update

userId

True

inc(-8)

put

receiptId

put

productId

0.6

Time

8

(c) The normal execution without retries and logging operations.

Figure 3: Three different concurrent executions of the functions in
Figure 1. The legend is the same as that in Figure 2.

sequential and concurrent scenarios via verification.

Idempotence Condition. Some recent efforts have focused
on the retry-based fault tolerance mechanism for serverless
applications [44, 45, 69, 73]. Although they optimize run-
times or libraries of serverless computing, they overlook
the definition of idempotence. For example, Beldi [73] and
Boki [45], which contribute novel distributed logging mech-
anisms, equate idempotence with executing each database
operation exactly once. They achieve this by logging every
operation to ensure that functions execute each operation only
once. However, repeating some operations does not compro-
mise idempotence. For instance, as shown in Figure 3b, log-
ging all operations except for put on receipt can still ensure
idempotence, as payment will always write the same value
into the receipt on retry as it did in its first execution. However,
as illustrated in Figure 3a, Beldi and Boki need to log every
operation, which is over-restricted and incurs unnecessary per-
formance costs. This logging strategy misses the opportunity
to maximize performance while ensuring idempotence.

When defining idempotence for serverless applications,
we should consider what kind of execution with retries is
acceptable. The intuitive requirement is that clients should
be unaware of retries. This requirement enables us to define
acceptable execution with retries in terms of normal execution

without retries. For instance, the executions with a retry in
Figure 3b and Figure 3a are both acceptable because they are
equivalent to the normal execution in Figure 3c. However,
the execution in Figure 2 is unacceptable because we cannot
find an equivalent normal execution for it. The normal con-
current execution of payment with adaptDiscount will never
deduct “8” from the balance but record “6” in the receipt.
Therefore, determining whether an application is idempotent
requires checking whether any possible execution with retries
is acceptable.

Verification of Idempotence. Several frameworks for veri-
fying storage systems also prove the idempotence of recovery
functions [23, 24, 27, 28, 66]. Specifically, the resulting state
of the recovery should be consistent even if the system fails
during recovery and retries the recovery function many times.
The work based on Crash Hoare Logic [23,24,27,28] verifies
idempotence by proving that the crash condition of the recov-
ery function always implies its precondition. Developers need
to specify both pre and crash conditions manually. The push-
button verification approach [66] frees developers from such
a proof burden by automatically verifying recovery functions
with SMT solvers. However, all such methods assume that the
recovery procedure is sequential. Verifying the idempotence
of concurrent functions is still missing.

To prove the idempotence of concurrent functions, we use
compositional proof techniques. The fundamental idea is to
break down the verification of an application’s idempotence
into verifying each function individually. However, the main
challenge is defining the property that needs verification for
each function, which can facilitate compositional proof. Be-
sides, modeling the behavior of other concurrent function
instances also poses a challenge. Existing methods typically
use invariants [60] or rely conditions [47, 53] to model the
concurrent environment. Invariants describe the properties
of the system state that persist during concurrent execution,
while rely conditions depict how other concurrent functions
can change the system state. Unfortunately, developers must
explicitly specify all of them. We need to infer invariants or
rely conditions automatically for automated verification.

Our Approach. To define idempotence, we propose a new
consistency model called idempotence consistency (Section 3).
An execution with retries is acceptable if there exists an-
other normal execution without retries that can exhibit the
same observable behavior (e.g., Figure 3b). An application
is idempotence-consistent if all possible executions with re-
tries are acceptable. To verify idempotence consistency, we
propose idempotence simulation (Section 4), which extends
traditional forward simulation [55] and enables compositional
proof for idempotence consistency. Specifically, the verifica-
tion process tries to find a mapping from each step during the
execution with retries to n steps during the execution without
retries such that the single step and the n steps exhibit the
same observable behavior.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 889

Verifier (§3-5)F

Application

Func without idempotence issues Func with idempotence issues Func with logging

F F Advisor (§6)

+ Candidate Scheme F

Serverless Platform (e.g., AWS, Azure, GCP)

[F]

Logging Mechanism
(e.g., Beldi, Boki)

[F]FF

F

F

+ SchemeF

FLUX

Figure 4: The architecture of Flux.

1 bool retry := random();
2 if(retry)
3 {
4 reset_local_state();
5 goto BEGIN;
6 }

Figure 5: The pseudocode simulating random failures and retries of
a function f . BEGIN is a label at the beginning of f .

Figure 4 shows the components of Flux. First, develop-
ers provide the source code of a serverless application for
Flux. Then, Flux checks each function individually to reason
about idempotence simulation (Section 5). If all functions
pass verification, the application is idempotence-consistent.
If not, advisor identifies operations that corrupt idempotence
consistency based on the results of the verifier (Section 6).
Developers can use existing logging mechanisms to ensure
exactly-once semantics of such operations. Compared with
logging all operations pessimistically, Flux guarantees idem-
potence while reducing unnecessary protection overhead.

3 Idempotence Consistency
Idempotence consistency requires that each execution with
retries should have the same observable behavior as another
execution without retries. To formally define idempotence
consistency, Flux uses an automaton to model the concurrent
execution of functions. An automaton includes system states
and a set of steps. Each step (S,e,S′) represents a state transi-
tion from state S to S′, which triggers an event e observable to
clients (e.g., a function invocation). Note that some steps may
not produce events because they are not observable to clients.

System State. The system state consists of the shared state
and the local state of each function instance. In scenarios
where functions use a NoSQL database, the shared state D
constitutes a collection of key-value pairs stored persistently
in databases. Given an instance executing a function, its local
state includes the invocation arguments, the local variables,
the return value, and the next program statement to execute.
The start system state only contains the shared state because
the platform has not invoked any functions at the beginning.

Event. An automaton may produce an event during each
state transition, which is observable to clients. In the con-
text of serverless functions, Flux considers three types of
events: function invocation events, function response events,
and third-party service events. When creating a new instance
fid(args) to run the serverless function f , the automaton pro-

duces an invocation event (fid , inv(args)). When the instance
fid finishes its execution and successfully responds to clients
with the value v, it produces a response event (fid ,resp(),v).
When the serverless function requests a third-party service
s, it produces a third-party service event (ids,args,ret). The
args and ret represent parameters and return values, respec-
tively. An automaton produces such events when a service
has side effects, which developers must explicitly specify.

Client-Observable Behavior. The client-observable behav-
ior of an execution includes all events generated during the
execution and the final shared state observable by clients. The
events include function invocation, response, and third-party
service events. We use ⟨H,D⟩ to denote the client-observable
behavior, where H represents the event sequence generated by
the automaton throughout the execution, and D is the shared
state reached after the execution.

Given a function set F , to model the execution of functions
in F under failure, we rely on the following failure model and
star operator.

Failure Model. Flux assumes that failure can occur at any
time during the execution of an instance. The failure of indi-
vidual instances does not affect the persistent shared state or
individual local states of other instances. Furthermore, when
the platform retries an instance, it retains the same identifier
and arguments, generating no invocation events.

Star Operator. Given a function f , f∗ denotes a function
synthesized by inserting a code fragment after every statement.
When random failures and retries occur during a function’s
execution, the platform will re-initialize the local state and
re-execute the function from the first statement (without retry
events). The code fragment (Figure 5) simulates random fail-
ures by resetting the local state and simulates retries by jump-
ing to the beginning of f . F∗ is a function set synthesized by
applying the star operator to each function in F .

Based on the above concepts, Flux is able to define idempo-
tence consistency as the relationship between two automata. It
means that F allows all possible client-observable behaviors
for the automaton of F∗.

Definition 1 (Idempotence Consistency) For any start sys-
tem state S and any step sequence of the automaton executing
F∗ from S, if the step sequence results in the client-observable
behavior ⟨H,D⟩, then there always exists another step se-
quence of the automaton executing F from S such that it also
results in ⟨H,D⟩.
4 Proof Strategy
Using compositional proof techniques [52–54, 76], Flux auto-
matically verifies the idempotence consistency of serverless
applications. The fundamental idea is to simplify the proof
of a concurrent program by reasoning about each of its com-
ponents separately. Several existing approaches utilize com-
positional proof to verify the correctness of concurrent pro-
grams, such as RGSim [53], AtomFS [76], and Armada [54].

890 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

However, the primary difference between Flux and existing
approaches is that existing approaches require human experts
to aid the proof, such as manually specifying the correctness
definition or modeling program behavior under concurrency.
Flux, on the other hand, performs entirely automated verifica-
tion without human intervention.

Preliminary. Flux adopts compositional proof techniques,
verifying a concurrent program by checking each component
individually rather than enumerating all possible interleavings.
For instance, when verifying a concurrent stack implemen-
tation [52], programmers only need to separately consider
the correctness of push and pop functions under concurrency.
To perform compositional proof, programmers first need to
manually specify each component’s expected behavior (e.g.,
specifications for push and pop functions). Second, program-
mers should carefully craft the pre- and post-conditions of
each statement, which are propositions describing the system
state before and after executing the statement. The verifi-
cation goal is that when the start system state satisfies the
pre-condition of the first statement, the system state after exe-
cuting the component must satisfy the post-condition of the
last statement under concurrency. Note that other concurrent
threads can simultaneously modify the system state. There-
fore, to consider all possible execution results, pre- and post-
conditions must cover all possible system states before and
after executing a statement. Developers need to prove that the
pre- and post-conditions are stable under concurrency, which
means they always hold irrespective of how other concurrent
functions simultaneously modify the system state. Finally, to
verify the stability of pre- and post-conditions, programmers
must manually define a rely condition R, which describes
the state transition made by other concurrent threads. R is
a relation of system states. Each (S, S’) in R indicates that
other concurrent threads might change the current state S to
S’. In the example of the stack, the rely condition specifies
the impact of concurrent push and pop operations on the
global linked list that represents the stack. We can define it as
{(ℓ,ℓ′) ∣ ((∃v.ℓ′ = PUSH(ℓ,v))∨ (ℓ′ = POP(ℓ)))}. ℓ repre-
sents the state of the linked list, while ℓ

′ is the new state after
applying the operations of PUSH(ℓ,v) or POP(ℓ).

4.1 Idempotence Simulation
Instead of manually crafting the specification, Flux introduces
a new correctness definition — idempotence simulation. A
serverless function f satisfies idempotence simulation if there
exists a forward simulation [55] between f∗ and f under
the same rely condition R. The forward simulation means
that from the same start shared state with the same invoca-
tion argument, each step of executing f∗ has zero or multiple
corresponding steps of executing f that can simulate it. If a
step s of f∗ changes the shared state D to D′ and produces
an event e, a step sequence s1 . . .si of f can simulate it if
and only if carrying out these steps sequentially from D also
reaches D′ and produces e. Note that idempotence simulation

does not only consider the shared state reached by executing
the current instance but also D reached by executing other
concurrent instances according to R. Flux differs from pre-
vious verification frameworks [23, 24, 27, 28, 66] that focus
on the idempotence of sequential functions by considering
intermediate states. This difference is significant because, in a
concurrent setting, these intermediate states may be externally
observable.

Given a function set F , Flux decomposes the proof of idem-
potence consistency into reasoning about the idempotence
simulation of every function f in F based on the following
theorem. f∗ ⊑R f means that for any start shared state and in-
vocation argument, there exists a forward simulation between
f∗ and f under the same rely condition R.

Theorem 1 Given a function set F , if each function f in F
satisfies idempotence simulation, then F satisfies idempotence
consistency, denoted as the predicate idem(F).

(∀ f ∈ F.∃R. f∗ ⊑R f)→ idem(F).

Appendix A presents the formal proof of Theorem 1. We
only illustrate its intuition as follows. Existing work [53]
based on rely conditions has proposed methods to prove that
the specification can exhibit all possible observable behaviors
of the implementation. When proving idempotence consis-
tency, we observe that we can treat F∗ as the implementation
and F as its specification. Then we can utilize the composi-
tional proof technique in the existing work to verify idem-
potence consistency. An important fact is that the steps of
implementation consist of the steps from each component,
while the specification of the implementation consists of the
specification of each component. Therefore, the existing work
first proves that for each component and its specification, each
step of the component has zero or multiple steps of the speci-
fication that can simulate it under the rely condition R. Then
the verifier can compose the proof for each component to
imply that each step of the implementation always exhibits
the observable behavior allowed by its specification. In the
scenario of idempotence consistency, we treat each serverless
function f∗ as the component. Then we can treat f as the
specification for f∗. Based on the observation, Flux defines
idempotence simulation as the forward simulation between
f∗ and f , which can imply idempotence consistency.

4.2 Automated Concurrency Reasoning
To verify the program with compositional proof, existing ap-
proaches [52–54,76] require programmers to manually define
the pre- and post-condition of each statement, as well as the
rely condition for concurrent state transitions. The cause of
the need for manual effort is that different definitions of cor-
rectness usually require different pre-, post-, and rely condi-
tions. Programmers need to deeply understand the definition
of correctness to find and specify the appropriate conditions.

However, idempotence consistency presents a unified cor-
rectness definition for stateful serverless functions, establish-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 891

ing an opportunity to generate pre-, post- and rely conditions
automatically. These conditions capture the potential concur-
rent accesses to the shared database state and describe the
state transition on each access. Flux accomplishes this with
symbolic execution. To reduce the complexity of analysis,
Flux models the semantics of each API as a sequence of
atomic read operations or atomic write operations on a set
of key-value pairs, as most serverless platforms use NoSQL
databases with key-value interfaces [16, 34, 58]. Then, it can
symbolically execute all functions and check the parameters
of issued database operations to analyze the data in the shared
state that functions can access. Section 5 will depict more
details.

Flux identifies three types of rely conditions.

• Read-only: all concurrent accesses to a specific key-value
pair are read operations. Flux formalizes this type of rely
condition as (D[k]= v, D[k]= v), which means before and
after the access, the value (v) indexed by k in the database
keeps unchanged.

• Arbitrary update: functions could update the data in the
database to arbitrary values. Flux formalizes this type of
rely condition as (∃v1.D[k] = v1, ∃v2.D[k] = v2).

• Constant update: functions will update the specific key-
value pair to only a constant value. Flux formalizes this
type of rely condition as (∃v1.D[k]= v1, D[k]= c), where
c is the constant value.

Flux constructs pre- and post-conditions in the Floyd-Hoare
style (“{P}C{Q}”). C is the next program statement to exe-
cute. P is the pre-condition before executing C, while Q is the
post-condition after the execution. If C is the first statement of
the function, then P is true. Flux adopts the following rules to
automatically generate the pre- and post-conditions according
to the semantics of C and different rely conditions:

• {P}put(k,c){P∧(D[k]=c)}: if the rely condition specifies
that all concurrent updates are constant updates with a con-
stant value of c, then D[k] will always be c after executing
put(k,c).

• {P}v := get(k){P∧(D[k]=v)}: if the rely condition speci-
fies that all concurrent accesses to k are read operations,
then the value of D[k] should be exactly v which is the
return value of the get operation in C.

• {P}if(P1(v)){P∧P1(D[k])}: suppose C is a branch state-
ment based on P1(v), and v is the value read from the
database, indexed by k. The post-condition is P∧P1(D[k])
if D[k] satisfies one of the following requirements accord-
ing to rely condition: 1) D[k] is read-only; 2) functions
can update D[k] to a constant value c such that P1(c) is
true.

• {P}C{P}: in the other cases, the post-condition is the same
as the pre-condition, which is stable.

4.3 Unbounded Loop
Another challenge in automated verification involves deal-
ing with functions that contain unbounded loops. A loop is
unbounded when its maximum number of iterations is not con-
stant. Existing approaches require that programmers manually
specify loop invariants to handle unbounded loops. However,
previous works have shown that finding a proper loop invari-
ant is challenging [19, 33]. Flux reasons about unbounded
loops without requiring loop invariants. The following para-
graphs provide the details in two cases:

Case 1. The operations in the unbounded loop do not mod-
ify the shared state in the database. For this case, Flux treats
the entire unbounded loop as an uninterpreted function [12],
which is a symbolic function and may return arbitrary values.
Specifically, Flux derives a new function g from the original
function f by replacing the unbounded loop with an uninter-
preted function. Then, Flux directly reasons the idempotence
simulation for g instead of f .

Case 2. The operations in the unbounded loop may mod-
ify the shared state. Flux addresses this type of unbounded
loop with Theorem 2, which requires that the parameters of
the write operations in such unbounded loops must remain
the same between normal execution and retry. For conve-
nience, Flux represents a function with an unbounded loop
as {C1;L;C2}, where L is the unbounded loop, C1 denotes
all code before the loop, and C2 denotes all code after the
loop. BL denotes the loop body of L. We present the theorem
as follows. Appendix C provides the formal proof and an
example of applying the theorem.

Theorem 2 Given a function f with the unbounded loop in
case 2, f satisfies idempotence simulation if the number of
iterations of the loop L remains unchanged on retry, and C1,
C2 and BL can satisfy the following requirements: 1) They all
satisfy idempotence simulation; 2) Their inputs do not change
on retry; 3) They will not affect the shared state on retry once
the function has successfully executed them.

4.4 Failure Reduction
The platform may re-execute a function an arbitrary number
of times. It is impossible to verify idempotence simulation if
we enumerate all possible failure cases, which yields infinite
possible executions. Instead, we prove that it is sufficient to
verify a function only by examining the executions satisfying
two conditions, as stated in the following theorem.

Theorem 3 For any function set F , if each function f ∈ F
satisfies idempotence simulation under the following two
conditions: 1) failure happens only after statements modifying
the shared state, and 2) failure occurs at most once, then each
function f ∈ F also satisfies idempotence simulation under
arbitrary failure and retries.

This result (i.e., failure reduction) mitigates the challenge
of proving idempotence simulation with infinite failure. It

892 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 bool retry := random();
2 if(retry && hasretried < LIMIT)
3 {
4 reset_local_state();
5 hasretried++;
6 goto BEGIN;
7 }

Figure 6: The pseudocode simulating random failures and retries of
f n.

transforms the problem of examining executions with infi-
nite failure into the problem of reasoning about executions
with finite failure. Moreover, it maintains the soundness of
the verification, signifying that Flux does not overlook any
idempotence issues.

The intuition behind the first condition is that a statement
that does not modify the shared state lacks side effects if a
failure occurs after it. Because the failure effectively renders
the result of the statement invisible to clients and the following
code. Therefore, when the failure occurs, it appears as if the
function instance never executed the statement.

The second condition is correct and ensures soundness. We
formalize its correctness based on the following concepts.
Given a function f , f n denotes the function whose number
of re-execution is not more than n times (n ≥ 0). We can
construct f n by inserting the code fragment in Figure 6 after
every statement of f . The global variable hasretried is initially
zero, which indicates the number of retries that have occurred.
We can simulate n retries for f n by setting the constant LIMIT
to n. The correctness of the second condition follows from the
following theorem. Appendix B presents the formal proof.

Theorem 4 Given a function f in F , if the execution of f
can simulate f 1 under concurrency, then for any n ≥ 1, the
execution of f can simulate f n under concurrency.

(∃R. f 1
⊑R f)→ (∀n ≥ 1.∃R. f n

⊑R f).

Compared to Yggdrasil [66], which assumes that failure
happens only once when verifying the idempotence of se-
quential recovery procedures, Flux targets a different setting
— concurrent vs. sequential. Yggdrasil proves that if the ex-
ecution with one retry produces the same system state and
return value as the retry-free execution, then the execution
with arbitrary times of retries also produces the same system
state and return value. This approach ignores intermediate
system states. It only considers the system state and return
value when the function finishes because intermediate system
states for sequential functions are not observable to clients.
However, under concurrency, we should consider intermediate
system states. We need to define and prove failure reduction
based on simulation relation ⊑R.

5 Implementation
Flux builds a verifier to automatically verify idempotence sim-
ulation for each function based on failure reduction. It models
the execution of a function with symbolic traces generated by

symbolic execution. Each trace represents a feasible execution
path and records the path condition, events, and database oper-
ations. The verifier can only handle Java applications because
Flux builds the verifier by extending a symbolic execution
engine for Java [61]. However, our definition and verification
method for idempotence consistency is not specific to any
particular programming language.

When functions invoke third-party services, Flux mandates
that developers explicitly indicate whether these services have
side effects. In particular, developers provide a vector of ser-
vice names and a corresponding bit vector, where each bit
indicates whether the corresponding service has side effects.
For instance, developers should annotate the random function
with a “0” since it has no side effects, whereas developers
should annotate the print function with a “1”.

Next, Flux handles unbounded loops by first converting
functions into abstract syntax trees (ASTs) and identifying
unbounded loops within them. Then, Flux replaces each un-
bounded loop that does not modify the shared state with an
uninterpreted function. It further identifies all variables mod-
ified within the loop and assigns the return value of the un-
interpreted function to these variables. For each unbounded
loop that modifies the shared state, Flux partitions the code
into three parts via ASTs and checks them (Section 4.3).

Algorithm 1: Workflow of the Verifier
1 Input: A function set F, a function f ∈ F, a string vector

services of the names of services, and a bit vector bv
indicating whether each service has side effects.

2 Output: The verification result of f.
3 Verify(F, f, services, bv):
4 R := GenRelyCond(F)
5 T := TracesNoRetry(f ,R,services,bv)
6 Tr := TracesWithRetry(f ,R,services,bv)
7 foreach ⟨tr , pcr⟩ ∈ Tr:
8 if ¬HasSimulatedTrace(⟨tr , pcr⟩,T) then
9 return false

10 return true
11 HasSimulatedTrace(⟨tr , pcr⟩, Traces):
12 foreach ⟨t, pc⟩ ∈ Traces:
13 if CheckSimulation(tr , pcr , t, pc) then
14 return true
15 return false

Algorithm 1 shows the verification algorithm. The goal is
to prove the simulation relation between f 1 defined in Sec-
tion 4.4 and f . First, GenRelyCond generates the rely con-
dition R by symbolically executing all functions in F . Based
on R, TracesNoRetry generates all possible symbolic traces
T for f via another symbolic execution. TracesWithRetry
returns all possible symbolic traces Tr for f 1. Then, for every
trace tr ∈ Tr, HasSimulatedTrace checks whether there exists
a trace in T that can simulate tr. The initial path condition
of symbolic execution is true, which does not contain any
constraints on database states and function arguments. There-
fore, if Flux can find a retry-free trace for each trace tr, the
retry-free trace is feasible, and the idempotence simulation
holds for any possible database states and arguments.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 893

5.1 Generating Symbolic Traces
Each trace is an ordered list with a path condition. Every list
element includes the following fields: step id, event, database
operation, and the post-condition after the step. The step id
identifies the atomic step causing state transition. The event
produced by the step has a type, some arguments, and a return
value, which are symbolic expressions or constants. Flux
considers three types of events for the execution of a serverless
function: function invocation, function response, and third-
party services with side effects. Developers specify whether
a third-party service has side effects via the bit vector bv in
Algorithm 1 (line 3). The fields of the operation include
the type (optype), the argument (oparg), and the result of
the operation (opret), where oparg and opret are symbolic
expressions or constants. As described in Section 4.2, Flux
models the semantics of each API as a sequence of read or
write operations. Post-conditions can help model the return
value of read operations. For example, D[k]=c implies that
the results of the subsequent read operations on k must be
c. Flux adds these propositions about return values of read
operations to the path condition.

GenRelyCond(F) symbolically executes all functions in F
and returns the rely condition R. As illustrated in Section 4.2,
Flux identifies three kinds of data. If an operation modifies
the data indexed by a symbolic key, Flux assumes that the
operation can change arbitrary data in the database. If an oper-
ation writes a symbolic value into the data, Flux uses the path
condition to infer whether it is a constant or an arbitrary value.
Users can also annotate that some variables in a serverless
function are unique. That means other concurrent instances
cannot access the data indexed by these unique variables. For
example, developers can annotate receiptId in Figure 1 to
be unique to indicate that other concurrent instances cannot
write the receipt created by the current instance.

5.2 Checking Idempotence Simulation

Algorithm 2: Checking Idempotence Simulation
1 CheckSimulation(tr, pcr, t, pc):
2 premise := pcr ∧ pc
3 pass := CheckWithPremise(tr , t, premise)
4 return pass
5
6 CheckWithPremise(tr, t, premise):
7 if tr .empty() then
8 return true
9 step := tr .subtrace(0,1)

10 foreach n from 0 to t.size()−1:
11 nsteps := t.subtrace(0,n)
12 pass := CheckStep(step,nsteps, premise)
13 if !pass then
14 continue
15 next_premise := UpdatePremise(step,nsteps, premise)
16 next_tr := tr .subtrace(1, tr .size())
17 next_t := t.subtrace(n, t.size())
18 pass := CheckWithPremise(next_tr ,next_t,next_premise)
19 if pass then
20 return true
21 return false

CheckSimulation in Algorithm 2 determines if two traces,

tr from f 1 and t from f , satisfy the idempotence simulation.
Their associated path conditions are pcr and pc. Specifically,
CheckSimulation tries to construct a mapping from every step
in tr to n (n ≥ 0) steps in t such that the n steps can simulate
the single step. The existence of such a step mapping can
imply idempotence simulation.

CheckWithPremise recursively checks all possible step
mappings. It first uses CheckStep (Line 12) to check if the n
steps in t (nsteps) can simulate the first step in tr (step). If the
check fails, it increases n to enumerate other possible map-
pings. Otherwise, it continues to check the subsequent steps
in tr in a recursive way (Line 18). To reason the simulation
between step and nsteps, CheckStep requires that the write
operations in step and nsteps result in the same database state.
It means that every write operation in nsteps should have
the same parameters as the write operation in step under the
proposition of premise, where premise is the conjunction of
the path conditions associated with t and tr. Specifically, two
symbolic parameters, p1 and p2, are equivalent under premise
if premise → (p1 = p2) is true. Flux leverages an SMT solver
to check this first-order logic formula. If step does not record
any write operations, nsteps should also contain no write op-
erations. Besides, when step has an event, such as invoking
a third-party service with side effects and function response,
Flux requires that nsteps contains the same event. After the
check succeeds, Flux updates premise with UpdatePremise ,
which maintains the relations among symbolic variables. Up-
datePremise has three parameters, including step , nsteps , and
premise. If operations in step and nsteps read the data in-
dexed by the same key in databases, UpdatePremise adds a
proposition to premise that these operations return the same
value. Otherwise, it does nothing.

Algorithm 2 enumerates all possible mappings, which in-
troduces heavy verification burdens. Flux proposes a heuristic
algorithm based on the observation that f 1 and f are almost
the same, except that the platform may re-execute f 1. Thus,
for each step s1

i of f 1 before the retry, Flux tries to map it
to the ith step si of f . For each step s1

j of f 1 after the retry,
if f 1 has executed s1

j before the retry, then Flux maps it to a
nop step, a step that does nothing. Otherwise, it maps s1

j to
a step sk in f such that sk can simulate s1

j . This only con-
structs and checks one mapping instead of enumerating all
possible mappings, which may miss the correct mapping. If
the constructed mapping does not work, Flux will randomly
sample other mappings to reduce false positives. However,
the method causes no false positives in the evaluation.

Example. After logging all operations except for the put
operation, the payment function will have no idempotence
issues. We also need to log generateId , which always returns
the same value on retry. First, GenRelyCond(F) returns a rely
condition that other concurrent function instances can arbi-
trarily change balance and discount in the database because

894 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

R

productId

discount2

R W

userId

balance2

userId

balance2-
discount2*price

W

receiptId

discount2*price

tr : W

receiptId

discount2*price

R R W Wt :

productId

discount1

userId

balance1

userId

balance1-
discount1*price

receiptId

discount1*price

PC(t) : balance1 >= discount1*price PC(tr) : balance2 >= discount2*price

W R Key

Value
ReadWrite Retry

Time Order Step Mapping

Figure 7: The example of verifying payment in Figure 1 when
logging all database operations except for put (line 9). Variables,
such as discount1 , have symbolic values. PC(t) is the path condition
of the trace t.

the function writes them by symbolic values. Second, Fig-
ure 7 shows that tr is a symbolic trace produced by retrying
payment1 after it generates receiptId , while t is a symbolic
trace produced without retries. Since Flux models update
(line 4) as a read and a write operation executed atomically,
there is no arrow between them. The post-conditions in traces
are true. Third, Algorithm 2 finds a proper mapping from
every step in tr to n steps in t and returns true. According
to the heuristic algorithm in the previous paragraph, there
are three steps in tr before the retry. Flux maps each of them
to one step in t, accordingly. For instance, the first step in tr
corresponds to executing get (line 2). Flux maps it to the first
step in t, corresponding to the execution of get (line 2). The
last step in tr corresponds to the put (line 9) executed in the
first execution of payment1. Thus, Flux maps this step to a
nop step. The first step in t can simulate the first step in tr
because they do not modify the database state and produce no
events. Since the start database states of the two steps are the
same, the return values of their read operations are the same,
which means discount1=discount2 . The second step in t can
simulate the second step in tr because they change balance
to the same value with no events. Due to a similar reason,
the third step in t can simulate the third step in tr. Because
of logging, get on retry in tr still returns discount2 in the
first execution, while update on retry in tr does nothing and
returns true. The generateId function also returns the same
identifier. Flux can use a nop step to simulate the last step in
tr because it is a useless write that does not change the data
in the receipt. Since the function has no return value, we omit
the function response event. Other traces of payment under
retry can also pass the verification. Therefore, payment with
these logs has no idempotence issues.

Soundness and Completeness. The verifier is sound and
incomplete. Soundness means the verifier will not overlook
any idempotence issues, which the theorems in Section 4 can
imply. Incompleteness means some idempotence-consistent

1 void unsupportedLoop(key, n) {
2 value := get("Data", key);
3 while(value % n != 0) {
4 put("Data", key, value + 1);
5 value := get("Data", key);
6 }
7 }

Figure 8: An example of an unbounded loop unsupported by Flux.

applications cannot pass the verification. Note that although
the verifier is incomplete, it can still ensure idempotence con-
sistency and reduce the performance overhead of logging.
The verifier is incomplete and will introduce false positives
in the following cases. First, an application is idempotence-
consistent, but individual functions do not satisfy idempo-
tence simulation. For example, an application incorporates
two functions, f1 and f2. They blindly write different values
to the same record Ra, while no functions will read it. Con-
sider the interleaving of f1.write(Ra, 1) → f2.write(Ra, 0) →
f1.retry() → f1.write(Ra, 1). In this example, functions flip
Ra’s value twice due to the retry. Nevertheless, since no func-
tions read the record Ra, clients will not observe that two flips
occur. Idempotence consistency still holds. However, Flux
will consider these two writes as non-idempotent because
they fail to follow idempotence simulation and will log each
of them; Second, an application contains unbounded loops
with write operations such that the parameters of issued write
operations can be different between normal execution and
retry. For example, the unbounded loop in Figure 8 uses the
data read from the database to be the parameters of write
operations and the loop condition. As a result, the param-
eters of write operations and the number of loop iterations
may change on retry, which does not satisfy the requirements
of Theorem 2. Section 4.3 depicts two specific types of un-
bounded loops that can be handled by Flux. Third, when
examining the idempotence simulation of a function f , Flux
constructs a step mapping using a heuristic approach instead
of enumerating all potential mappings. The heuristic runs un-
der the assumption that if f fails before a specific operation
op, f will execute op on retry. When the assumption does
not hold, the heuristic may not work, and Flux may miss cor-
rect mappings. Last, Flux does not generate all possible rely,
pre- and post-conditions, which may impede the verification
capability of idempotence simulation.

6 Advisor
Advisor identifies idempotence-violating operations based
on a brute-force algorithm and a heuristic algorithm. The
brute-force algorithm first enumerates all possible operation
sets. Second, for every set, it invokes the verifier to prove
the function after ensuring exactly-once execution of each
operation in the set via logs. Flux models the exactly-once
execution of an operation by adjusting the generated traces
rather than modifying functions. Specifically, it deletes each
trace element that records a retried write operation in the set.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 895

Table 1: An example of executing the heuristic algorithm of advisor.

get 0 1 1
update 1 0 1
put 1 1 0

Verify(F, f) False False True

Furthermore, it appends a formula to the path condition for
each retried read operation in the set, indicating that the re-
tried operation returns the same result as the initial execution.
Third, among all operation sets that enable the function to
pass the verification, Flux selects the set that incurs the least
performance cost. Flux estimates the performance cost via
the evaluation results derived from the adopted logging mech-
anism. This algorithm enumerates O(2n) possible operation
sets, where n is the number of operations.

To reduce the complexity, we propose a heuristic algorithm
checking only O(n) sets. Initially, Flux logs all operations
in the function. Then Flux gradually removes the logs of
operations one by one. If the function can pass the verification
after removing a log, advisor will permanently remove the
log. Otherwise, the operation is idempotence-violating, and
advisor preserves the log. Table 1 shows how to apply the
heuristic to payment in Figure 1. Assume that advisor has
logged generateId . “0” denotes that advisor logs the operation.
“1” denotes that advisor does not log the operation. Advisor
first removes the log of get (get=0) but Verify(F , f) returns
f alse. Therefore, advisor preserves the log for idempotence.
Due to the same reason, advisor does not remove the log of
update . Last, Verify(F , f) indicates removing the log of put
does not break the idempotence. Therefore, advisor does not
log it.

The incompleteness of the verifier may result in advisor
being unable to detect certain redundant logs. Nonetheless,
Flux can still diminish logging overhead for functions while
ensuring idempotence consistency. Specifically, for an un-
bounded loop that the verifier cannot handle, advisor logs all
operations before and within the loop except for read opera-
tions on read-only data. Then advisor directly addresses the
code after the unbounded loop.

7 Evaluation
We aim to answer the following questions: 1) How effec-
tive is the verifier? 2) How long does it take for advisor to
identify idempotence-violating operations? 3) How much per-
formance benefit does Flux bring?

7.1 Experimental Setup
We evaluate the execution time of the verifier and advisor on
a desktop running Ubuntu 18.04, which has an Intel Core i7-
8700 processor and 15GB DRAM. Additionally, we evaluate
the performance of serverless applications on multiple AWS
servers.

We compare our system with Beldi [73] and Boki [45],

which logs all operations. Although some other systems [44,
69] also guarantee idempotence for serverless applications,
we focus on comparing with Beldi and Boki because they
are state-of-the-art. It is worth noting that while Flux aims
to provide idempotence consistency, Beldi and Boki go fur-
ther by ensuring transactional properties as well. To ensure
fairness in our comparison, we do not utilize the transaction
mechanisms provided by Beldi and Boki, as our focus is on
idempotence assurance alone. Therefore, the advantage that
Flux may have over Beldi and Boki in terms of performance
does not result from its lack of guarantee for transactional
properties.

We store the data of applications in DynamoDB [15]. We
run Beldi on AWS Lambda [16] with 1GB DRAM for each in-
stance and collect performance results via AWS CloudWatch.
Boki provides its own serverless platform. We deploy Boki ac-
cording to the evaluation environment in its paper [45]. Boki’s
serverless platform can report the latencies of functions but
cannot report their throughputs precisely.

We use wrk2 [1] as the load generator, which runs on an
m5.2xlarge instance for Beldi and a c5d.xlarge instance for
Boki. We adapt representative applications from the AWS
serverless applications repository [3], a GitHub repository
(10.9k stars) [9], popular benchmarks [8, 10, 29], and appli-
cations commonly used in papers about serverless comput-
ing [5, 6]. They have covered diverse real-world scenarios
of serverless computing, such as image processing and web
applications. We choose the applications with at least 1,000
deployments in AWS serverless application repository [3].
We skip some applications since they are micro-benchmarks
or stateless (no database operations). Table 2 summarizes the
characteristics of these applications. Type-I applications sat-
isfy idempotence consistency, while Type-II applications do
not. Although most applications in Table 2 have fewer than
a thousand lines of code, they remain representative because
serverless platforms typically impose restrictions on code size
and running time [2, 4, 7]. For instance, existing work [75]
that adapts web applications to serverless platforms needs to
largely reduce the application’s code size.

Flux’s approach is orthogonal to specific programming
languages. However, its implementation depends on a Java
symbolic execution engine [61] for program analysis. We
manually port applications to Go with the same semantics for
a fair performance comparison with Beldi and Boki, which
target Go applications. We choose to implement a verifier
for applications in Java rather than Go because Java is a
more frequently utilized language in developing serverless
applications than Go [11].

7.2 Verification Efficacy
Table 2 shows that the verifier identifies all 12 applications
with idempotence issues. All issues are previously unknown.
Developers have confirmed 8 issues among them. The ver-
ifier works for all applications except SPECjbb, which has

896 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: The characteristics of 27 serverless applications. The applications with † have unbounded loops. LoC indicates lines of Java code.
C/S indicates whether functions run sequentially (S) or concurrently (C). #F, #I, and #N indicate the number of functions, functions without
idempotence issues, and functions with issues. #R/#W and #S indicate the number of read/write operations and idempotence-violating
operations. VTime, ATime(H), and ATime(B) indicate the execution time (in seconds) of the verifier, advisor using the heuristic algorithm,
and advisor using the brute-force algorithm.

Type Application LoC C/S Selected #F #I #N #R #W #S VTime ATime(H) ATime(B)

I (15)

Data Analysis [10] † 356 S ✓ 7 7 0 4 3 0 5.45
Image-Processing [10] 435 S 5 5 0 0 4 0 3.24
Mapreduce [8] † 250 S 3 3 0 3 1 0 2.06
FaaSImage [8] 193 S 1 1 0 1 9 0 104.31
Video [8] † 40 S 1 1 0 1 1 0 2.19
Image-Resizer [9] 92 S 1 1 0 1 1 0 2.40
Replicator [9] 59 S ✓ 1 1 0 1 1 0 2.40
Receive-Email-Body [9] 58 S 1 1 0 1 0 0 0.74
Fetch-And-Store [9] 66 S 1 1 0 0 1 0 1.49
FFmpeg [9] † 49 S 1 1 0 1 - - 2.23
DynamoDB-backup [9] † 26 S 1 1 0 1 - - 2.44
Lambda-Image-Resizer [3] 123 S 1 1 0 1 0 0 1.12
Uploader [3] 101 S ✓ 1 1 0 2 1 0 1.95
FFmpeg-Lambda-Layer [3] 86 S 1 1 0 1 1 0 2.30
Image-magick [3] 86 S 1 1 0 1 1 0 2.49

II (12)

SPECjbb2015 [29] † 1,861 C ✓ 9 5 4 - - - Timeout 6.23 11.87
Alexa [10] † 89 C ✓ 10 9 1 1 1 1 2.13 2.60 4.25
Hotel [5] † 714 C ✓ 10 8 2 7 5 3 2.26 17.70 68.94
Media [5] 486 C 7 6 1 1 7 7 14.79 86.04 344.77
Pynamodb-S3-URL [9] 224 C 6 2 4 6 9 9 9.91 22.85 69.71
Rest-API [9] 135 C 4 1 3 2 2 3 4.90 5.98 23.72
GraphQL [9] 80 C ✓ 1 0 1 1 1 1 2.07 4.34 12.17
Mongodb-Atlas [9] 83 S 1 0 1 0 1 1 2.28 14.25 72.67
Express [9] 76 C 1 0 1 1 1 1 1.90 1.92 4.28
Flask [9] 34 C 1 0 1 1 1 1 2.31 2.80 3.64
Save [3] 62 S 1 0 1 0 1 1 2.14 5.61 12.57
HttpEP [3] 105 C ✓ 1 0 1 1 3 3 2.42 11.73 44.5

unbounded loops unsupported by the verifier. However, all
functions in SPECjbb that cannot be verified have idempo-
tence issues. Thus, the verifier does not introduce false posi-
tives for SPESjbb. Nonetheless, it is worth noting that false
positives are still possible for other applications.

The 21 non-idempotent functions detected by Flux in 12
applications result in various bug patterns and outcomes due
to incorrectly repeated write operations on retry. First, the
database state is inconsistent with user expectations. For
instance, the idempotence violation in SPECjbb causes du-
plicate balance deductions. Second, the value responded to
clients is inconsistent with the database state. An example is
an IoT application called Alexa, where a function successfully
modifies device configuration but returns “failed” instead of
“success” to clients. Third, a single write operation may update
multiple records on retry, resulting in duplicated records with
identical content. For example, the PlaceOrder function in the
Hotel benchmark always places a new order with a random
identifier on each retry, resulting in duplicate records. Last,
concurrent functions may observe the inconsistent shared
state. An example is the Media benchmark, which relies on
a counter in the database to perform synchronization among
concurrent functions. However, the ComposeReview function
will falsely increase the counter due to retry, leading to false
synchronization among concurrent instances.

To test the scalability of the verifier, we run micro-
benchmarks with increasing verification complexity. When
the number of branches in a single function increases, the
verification time increases exponentially, as the number of
traces also increases exponentially. Verifying a function with
16 branches takes 1441.48 seconds. When we increase the
number of database operations, functions, or LoC, the verifica-
tion time increases linearly because the number of generated
traces increases linearly. Figure 15 in Appendix D presents
more details. Note that the verification time does not affect
the execution time of applications.

7.3 Performance of Advisor

For the second question, Table 2 shows the execution time
of advisor with two different algorithms. Compared to the
brute-force algorithm, the heuristic algorithm achieves up
to 4× smaller search space, which cuts down 80.39% of the
execution time of advisor. Although the heuristic algorithm
does not guarantee finding the minimum operation set, the
evaluation shows that it finds the same set as the brute-force
algorithm in practice. Although SPECjbb2015 has unbounded
loops unsupported by the verifier, advisor can still handle it
with the method described in Section 6.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 897

10
1

10
2

10
3

10
4

 1
Data Analysis Replicator SPECjbb Uploader Alexa Hotel GraphQL HttpEP

L
a

te
n

c
y
 (

m
s
)

Raw Flux Beldi

1
7
.2

2

7
.8

2

8
2
.9

2

3
.6

3

1
6
.1

2 4
8
.1

6

4
.0

1

1
9
8
.9

4

1
7
.2

2

7
.8

2

1
9
5
.1

3

3
.6

3

1
7
.5

2 5
0
.7

9

4
.2

7

1
9
9
.5

0

5
1
.5

8

3
8
.6

2 2
0
2
.8

1

2
1
.9

0

5
3
.3

5

1
1
9
.6

1

2
3
.6

4

3
3
9
.2

2

4
3
.7

9

1
5
.4

0

2
8
8
.5

9

1
1
.4

6

3
5
.6

7

8
9
.8

7

1
2
.7

2

2
5
0
.4

4

4
3
.7

9

1
5
.4

0

2
9
4
.7

9

1
1
.4

6

5
6
.3

9

1
4
0
.8

8

4
3
.1

7

2
6
7
.8

2

1
0
9
.8

5

8
3
.6

5

6
6
4
.1

1

4
6
.4

2 9
9
.2

3

2
6
5
.9

2

5
3
.7

9

4
0
8
.6

4

Figure 9: The median (box) and 99% tail latency (whisker) of Raw,
Flux, and Beldi for eight applications. The y-axis is in the log scale.

 0

 400

 800

 1200

 1600

 2000

 0 800 1600 2400 3200T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(a) Data Analysis

 0

 100

 200

 300

 400

 0 100 200 300 400T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(b) Replicator

 0

 600

 1200

 1800

 2400

 3000

 0 1000 2000 3000 4000T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(c) Uploader

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(d) Alexa

 0

 300

 600

 900

 1200

 0 300 600 900 1200T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(e) Hotel

 0

 600

 1200

 1800

 2400

 3000

 0 800 1600 2400 3200T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(f) GraphQL

 0

 150

 300

 450

 600

 0 150 300 450 600T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(g) HttpEP

 0

 200

 400

 600

 0 200 400 600 800T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Request Rate (req/s)

Raw

Flux

Beldi

(h) SPECjbb

Figure 10: The throughput of each serverless application under
different configurations with increasing request rates.

7.4 Performance of the Applications
To answer the third question, we run applications under
four configurations: Raw, Flux, Boki, and Beldi. Raw means
running applications without any logs, which may be non-
idempotent. Flux uses existing mechanisms to log operations
identified by advisor. Wrk2 runs for 7 minutes to generate
random requests. We will show the results of 8 represen-
tative applications marked by ✓in Table 2. Since Type-I
applications are idempotence-consistent, Flux removes all
logging operations. For Type-II applications, Flux reduces up
to 99.47% of logging operations during execution compared
to Beldi and Boki.

7.4.1 Flux vs. Beldi

Latency. Figure 9 shows the results on AWS Lambda. Flux
poses no logging overhead over Raw for Type-I applications.
Compared with Beldi, which logs all operations, Flux brings
2.5× ∼ 6× performance improvement. For Type-II applica-
tions, Flux can avoid logging some operations. As a result, it

10
1

10
2

 1
Data Analysis Replicator Uploader Hotel GraphQL HttpEP

L
a

te
n

c
y
 (

m
s
)

Flux Boki

4
.0

2

6
.5

1

3
.8

1

2
2

.6
5

5
.9

0 2
6

.3
0

1
0

.7
5

1
4

.7
2

8
.3

8 2
4

.6
5

7
.3

3 2
8

.3
2

2
2

.6
6

1
2

.0
0

8
.7

3

3
2

.6
2

1
2

.1
1

3
3

.2
5

4
0

.8
9

2
0

.9
4

1
6

.1
8

6
3

.7
0

1
4

.6
2

4
4

.2
6

Figure 11: The median (box) and 99% tail latency (whisker) of Flux
and Boki for six applications at 1 RPS.

achieves up to 5.5× performance improvement over Beldi.

Throughput. Figure 10 shows that Flux achieves the same
peak throughput on Type-I applications as Raw and up to
7.36× higher peak throughput than Beldi. For Type-II appli-
cations, Flux can avoid part of logging operations. Therefore,
it has up to 80% higher peak throughput than Beldi, except for
HttpEP. For HttpEP, Flux has 10× higher peak throughput
than Beldi because Flux avoids logging a scan operation that
can return massive data, which reduces much overhead under
concurrency.

7.4.2 Flux vs. Boki

Boki [45] is another system to provide idempotence for
serverless applications. The comparison can also demonstrate
that Flux is general enough to be independent on a specific
serverless platform. Because of Boki’s limitations, it does not
guarantee idempotence for read-modify-write database opera-
tions [13]. Thus, we do not evaluate Alexa and SPECjbb2015
on Boki.

Figure 11 shows that at 1 RPS, Flux reduces the median
latency by up to 62.6% compared to Boki. The performance
of Boki is better than Beldi because Boki designs a more
efficient logging mechanism. Under high concurrency, the
logging mechanism of Boki introduces more overhead. We
further evaluate the latency at 800 RPS. Flux reduces the
median latency by up to 82.5% and the p99 latency by up to
69.0% for Type-I applications compared to Boki because Flux
introduces no logs. For Type-II applications, Flux reduces the
median latency by up to 88.4% and the p99 latency by up to
72.4%. Flux achieves 8.7× lower median latency than Boki
on HttpEP because Flux avoids logging an expensive “scan”.

7.4.3 Performance of the Java Applications

Since Beldi and Boki only support Go applications, we com-
pare the performance of Java applications on AWS Lambda
under the configurations of Flux and Raw. We implement
the logging mechanism via transactions [73]. At 1 RPS, Flux
achieves a tail latency up to 22.6% higher than Raw due to
the additional logging overhead. However, despite better per-
formance, Raw cannot guarantee idempotence consistency
and may cause incorrect execution results.

8 Related Work
Verification of Idempotence. Table 3 summarizes the ma-
jor differences between Flux and prior works that can verify

898 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 3: Main differences between Flux and prior works. FSCQ-based works use a method akin to FSCQ [28] to prove the idempotence.
Partial protection means ensuring idempotence consistency while reducing unnecessary logs.

Definition of Idempotence Verification Method of Idempotence Protection

Support
Concurrency

Target Serverless
Applications

Verification
Targets

Support
Concurrency

Automated
Verification

Unbounded
Loop

Partial
Protection

Flux ✓ ✓ Implementation ✓ ✓ ✓(Partially) ✓
Ramalingam et al. [62] ✓ ✗ Protocol ✓ ✗ – ✗
Jangda et al. [44] ✓ ✓ Protocol ✓ ✗ – ✗
Yggdrasil [66] ✗ ✗ Implementation ✗ ✓ ✗ –
FSCQ-Based
Works [23–25, 27, 28] ✗ ✗ Implementation ✗ ✗ ✓ –

idempotence. Jangda et al. [44] formalizes the semantics of
serverless computing and ensures idempotence with trans-
actions. There are two main differences between Jangda et
al. and Flux. For the idempotence definition, idempotence
consistency is more relaxed than the idempotence provided
by Jangda et al., as it allows more concurrent schedulings.
Jangda et al. tries to model serverless computing with naive
semantics to conceal the low-level details of serverless func-
tion execution, such as concurrency and warm-start. It re-
quires the platform to process concurrent requests in the same
way as processing a single request at a time without con-
currency or retries. Consequently, it necessitates atomicity,
serializability, and exactly-once execution. Besides, Jangda
et al. focuses on verifying protocols instead of source code.
To ensure idempotence, it protects the entire function with
serializable transactions and uses logs to ensure that the trans-
action only commits once. However, using transactions is not
optimal since some applications may not require transaction
semantics, resulting in redundant protection and performance
cost.

FSCQ [28] and DFSCQ [27] verify the crash safety of
file systems via Crash Hoare Logic (CHL). CHL requires
developers to manually write pre-conditions, post-conditions,
and crash conditions to specify crash safety. Under crash,
CHL proves that the program state always satisfies crash
conditions after a crash happens at any time. It defines the
idempotence of a recovery program to be that crash condi-
tions imply pre-conditions. Perennial [23], GoJournal [24],
and DaisyNFS [25] achieve significant progress in the verifi-
cation of concurrent crash-safe systems. They adopt a similar
approach as FSCQ to verify the idempotence of a recovery
program. Thus, they cannot realize automated verification.
Different from them, Flux focuses on automated verification
without human effort.

Recent SMT-based verification approaches [26,39,66] have
solved many issues of the automated verification of storage
systems. Yggdrasil proposes a new correctness definition for
sequential file systems — crash refinement. It means that
for any disk state produced by the implementation with crash
recovery, the specification can also produce the same disk
state. The definition is amenable to automated verification.
Yggdrasil also verifies the idempotence of recovery functions.

Unfortunately, it verifies sequential functions rather than con-
current functions. Others [26, 39] also verify sequential func-
tions.

Ramalingam et al. [62] formally defines idempotence in
the general distributed setting, proving that logging each oper-
ation can guarantee this property. It has two main differences
from Flux. First, for the definition of idempotence, both Rama-
lingam et al. and Flux require that any execution with retries
has the same observable behavior as another normal execu-
tion. However, Ramalingam et al. targets a general distributed
setting. The observable behavior only includes function invo-
cation and response. In contrast, Flux also considers database
states. As a result, for stateful serverless applications, Ra-
malingam et al.’s definition may allow inconsistent database
states on retry as long as functions do not return database
states to clients. This anomaly is critical if clients directly
access database states for analysis or other purposes. In con-
trast, Flux’s definition prohibits inconsistent database states
and can prevent such anomalies. Second, for verification and
protection, Ramalingam et al. manually proves the protocol
of logging each operation and presents a compiler that au-
tomatically logs each operation. Flux focuses on verifying
the implementation of applications and its advisor only logs
necessary operations.

Crash-Only Software. Previous work [20] comprehen-
sively analyzes the requirements for crash-only software, a
program that can crash safely and recover quickly via retries.
Our work can assist in revising these requirements. Specifi-
cally, serverless applications fulfill most of these requirements,
such as explicit boundaries around what is retried and dedi-
cated storage for non-volatile data. However, our work only
mandates that all functions satisfy idempotence consistency
instead of necessitating that every request is idempotent, as
stated in previous work [20]. This distinction results in fun-
damental differences in several aspects. First, idempotence
pertains to a single component, while idempotence consis-
tency pertains to the entire application comprised of multiple
components. Second, while idempotence requires a function’s
execution result to remain the same despite retries, idempo-
tence consistency only requires the existence of an execution
without retries for each execution with retries such that they
produce the same result. For example, a read-only function

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 899

may not satisfy idempotence because concurrent modifica-
tions to the database state can result in different return values
with and without retries. However, read-only functions do
not violate idempotence consistency. In addition to serverless
functions, other applications with “imperfectly crash-only”
code can also refer to the requirements revised based on Flux.

Research on Serverless Computing. Some systems [44,
45, 62, 69, 73] focus on ensuring idempotence via runtime
mechanisms. Different from them, Flux focuses on verify-
ing idempotence consistency. Furthermore, combining them
with Flux can ensure idempotence efficiently. Some other sys-
tems [21, 30–32, 46, 49, 51, 56, 63, 65, 71, 72, 74] target other
things, such as startup time.

Consistency Model. There are many consistency mod-
els [14], which define the permitted execution order under
concurrency. Idempotence consistency specifies the expected
behavior of concurrent systems when failure happens, which
is the main difference from existing consistency models.

9 Discussion
Serverless Applications vs. Other Applications. Idempo-
tence [43] is a property that is important not only for server-
less applications but also for programs that use retry-based
fault tolerance approaches, such as RPC-based distributed
systems [41,50], AI systems [38], and even some intermittent
systems [70]. Thus, it is worth considering whether we can
apply Flux to programs beyond serverless applications. The
answer is yes and no.

One of the key contributions of Flux is formally defin-
ing idempotence consistency, which is general enough for
various scenarios. For instance, different RPC handlers in dis-
tributed systems may concurrently manipulate shared states.
Repeated state updates due to failures and retries could impair
data consistency under concurrency. Specifically, we success-
fully detect an issue in HDFS according to the definition
of idempotence consistency, which the community has con-
firmed [41]. When the system retries NameNode RPC of
ClientProtocol.truncate , it may truncate a file multiple times,
which will potentially cause data loss if another RPC simul-
taneously updates the same file. However, this issue will not
happen under sequential execution.

However, using Flux’s method to verify other systems poses
many challenges. First, the automated verification algorithm
mainly focuses on serverless applications. We need to re-
design it for other scenarios. For example, Flux presumes
that shared states are solely key-value pairs stored in NoSQL
databases. However, shared states could be file descriptors,
shared variables, or global configurations in distributed sys-
tems. Programmers must reinterpret them across various sce-
narios. Additionally, Flux automatically constructs pre-, post-,
and rely conditions based on the NoSQL interface assumption,
necessitating a re-examination of the construction algorithm
based on other modeling methods of states. Second, Flux’s

implementation targets serverless applications. For example,
Flux currently only supports Java programs and DynamoDB,
which are commonly used by serverless applications. Engi-
neering effort is necessary to support other languages and
storage services. Furthermore, advisor in Flux relies on ex-
isting logging mechanisms for serverless applications to fix
idempotence issues. Therefore, the new scenario should also
provide mechanisms to ensure exactly-once execution of oper-
ations on shared states. Failure to do so limits Flux’s potential
to identify and fix idempotence issues via advisor.

Idempotence Consistency vs. Atomicity. Although atom-
icity is vital for fault tolerance, Flux does not guarantee it.
Atomicity is not mandatory for some applications to sustain
fault tolerance, as they may permit other functions to see par-
tial updates. Furthermore, it is essential to emphasize that
Flux is orthogonal to approaches that ensure atomicity. An
application that necessitates atomicity can still utilize Flux
to guarantee idempotence consistency and minimize logging
overhead.

Although Flux does not verify atomicity and some other
transactional properties, extending our approach to verify
these properties is an intriguing research direction. Some
verifiers [22–25, 37, 53, 54, 76] target transactional proper-
ties but may not consider retries. After ensuring idempotence
consistency based on Flux, we can prove the transactional
properties of functions without considering failures and re-
tries. Therefore, we can combine Flux and these verifiers by
ensuring idempotence consistency via Flux and then proving
other properties with these verifiers.

Automated Verification vs. Interactive Verification. We
adopt symbolic execution engines to develop Flux, which
requires less manual effort than using interactive theorem
provers. [37]. Additionally, although interactive theorem
provers can handle unbounded loops by crafting loop invari-
ants, finding proper loop invariants is notoriously difficult.

10 Conclusion
This paper presents Flux, the first toolkit that can automat-
ically verify and help ensure the idempotence consistency
of serverless applications. It guarantees idempotence consis-
tency via logs while reducing unnecessary logging overhead.

Acknowledgment
We sincerely thank the anonymous reviewers for their valu-
able comments. We are especially grateful to our shep-
herd, George Candea, whose reviews and suggestions largely
improved our work. This work is supported by the Na-
tional Natural Science Foundation of China (No. 62132014
and 62272304), the Fundamental Research Funds for the
Central Universities, and the HighTech Support Program
from Shanghai Committee of Science and Technology (No.
20ZR1428100). Zhaoguo Wang (zhaoguowang@sjtu.edu
.cn) is the corresponding author.

900 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

zhaoguowang@sjtu.edu.cn
zhaoguowang@sjtu.edu.cn

References
[1] A Constant Throughput, Correct Latency Recording

Variant of wrk. https://github.com/giltene
/wrk2.

[2] AWS Lambda Enables Functions That Can Run up to
15 minutes. https://aws.amazon.com/about-aws
/whats-new/2018/10/aws-lambda-supports-f
unctions-that-can-run-up-to-15-minutes/?
nc1=h_ls,.

[3] AWS Serverless Application Repository. https://se
rverlessrepo.aws.amazon.com/applications.

[4] Azure Functions Hosting Options. https://docs.m
icrosoft.com/en-us/azure/azure-functions
/functions-scale,.

[5] Beldi. https://github.com/eniac/Beldi.

[6] Benchmark Workloads of Boki. https://github.c
om/ut-osa/boki-benchmarks.

[7] Cloud Functions Execution Environment. https://cl
oud.google.com/functions/docs/concepts/e
xec,.

[8] Functionbench. https://github.com/kmu-bigda
ta/serverless-faas-workbench.

[9] Serverless Examples. https://github.com/serve
rless/examples.

[10] Serverlessbench. https://serverlessbench.syst
ems/en-us/.

[11] State of Serverless. https://www.datadoghq.com/
state-of-serverless/.

[12] Uninterpreted Functions and Constants. https://mi
crosoft.github.io/z3guide/docs/logic/Uni
nterpreted-functions-and-constants.

[13] Working with Items and Attributes - Amazon Dy-
namoDB. https://docs.aws.amazon.com/am
azondynamodb/latest/developerguide/Worki
ngWithItems.html#WorkingWithItems.Atomic
Counters.

[14] Marcos K. Aguilera and Douglas B. Terry. The Many
Faces of Consistency. IEEE Data Eng. Bull., 39:3–13,
2016.

[15] Amazon. AWS Dynamodb. https://aws.amazon.c
om/dynamodb/.

[16] Amazon. AWS Lambda. https://aws.amazon.com
/lambda/.

[17] Amazon. Build a CRUD API with Lambda and Dy-
namoDB. https://docs.aws.amazon.com/apig
ateway/latest/developerguide/http-api-dyn
amo-db.html.

[18] Amazon. Make a Lambda Function Idempotent. https:
//aws.amazon.com/premiumsupport/knowledg
e-center/lambda-function-idempotent/,.

[19] Andreas Blass and Yuri Gurevich. Inadequacy of Com-
putable Loop Invariants. ACM Trans. Comput. Logic,
2(1):1–11, jan 2001.

[20] George Candea and Armando Fox. Crash-Only Soft-
ware. In 9th Workshop on Hot Topics in Operating
Systems, Lihue, HI, May 2003. USENIX Association.

[21] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro
Fonseca. From Warm to Hot Starts: Leveraging Run-
times for the Serverless Era. In Proceedings of the Work-
shop on Hot Topics in Operating Systems, page 58–64,
New York, NY, USA, 2021. Association for Computing
Machinery.

[22] Tej Chajed, Frans Kaashoek, Butler Lampson, and Nick-
olai Zeldovich. Verifying Concurrent Software Using
Movers in CSPEC. In 13th USENIX Symposium on
Operating Systems Design and Implementation, pages
306–322, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[23] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying Concurrent, Crash-Safe
Systems with Perennial. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, Hun-
stville, ON, Canada, October 2019.

[24] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. GoJour-
nal: A Verified, Concurrent, Crash-safe Journaling Sys-
tem. In 15th USENIX Symposium on Operating Systems
Design and Implementation, pages 423–439. USENIX
Association, July 2021.

[25] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying the
DaisyNFS Concurrent and Crash-safe File System With
Sequential Reasoning. In 16th USENIX Symposium on
Operating Systems Design and Implementation, pages
447–463, Carlsbad, CA, July 2022. USENIX Associa-
tion.

[26] Yun-Sheng Chang, Yao Hsiao, Tzu-Chi Lin, Che-Wei
Tsao, Chun-Feng Wu, Yuan-Hao Chang, Hsiang-Shang
Ko, and Yu-Fang Chen. Determinizing Crash Behav-
ior with a Verified Snapshot-Consistent Flash Transla-
tion Layer. In 14th USENIX Symposium on Operat-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 901

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/?nc1=h_ls
https://serverlessrepo.aws.amazon.com/applications
https://serverlessrepo.aws.amazon.com/applications
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/eniac/Beldi
https://github.com/ut-osa/boki-benchmarks
https://github.com/ut-osa/boki-benchmarks
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/serverless/examples
https://github.com/serverless/examples
https://serverlessbench.systems/en-us/
https://serverlessbench.systems/en-us/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://microsoft.github.io/z3guide/docs/logic/Uninterpreted-functions-and-constants
https://microsoft.github.io/z3guide/docs/logic/Uninterpreted-functions-and-constants
https://microsoft.github.io/z3guide/docs/logic/Uninterpreted-functions-and-constants
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.AtomicCounters
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

ing Systems Design and Implementation, pages 81–97.
USENIX Association, November 2020.

[27] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay undefinedleri, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying a High-
Performance Crash-Safe File System Using a Tree Spec-
ification. In Proceedings of the 26th Symposium on Op-
erating Systems Principles, pages 270–286, New York,
NY, USA, 2017. Association for Computing Machinery.

[28] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Us-
ing Crash Hoare Logic for Certifying the FSCQ File
System. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, pages 18–37, New York, NY,
USA, 2015. Association for Computing Machinery.

[29] Standard Performance Evaluation Corporation. Specjbb
2015. https://www.spec.org/jbb2015/.

[30] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia,
Binyu Zang, and Haibo Chen. Serverless Computing on
Heterogeneous Computers. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 797–813, New York, NY, USA, 2022. Association
for Computing Machinery.

[31] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-Millisecond Startup for Serverless Com-
puting with Initialization-Less Booting. In Proceedings
of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, pages 467–481, New York, NY, USA,
2020. Association for Computing Machinery.

[32] Alexander Fuerst and Prateek Sharma. FaasCache:
Keeping Serverless Computing Alive with Greedy-Dual
Caching, pages 386–400. Association for Computing
Machinery, New York, NY, USA, 2021.

[33] Carlo A. Furia, Bertrand Meyer, and Sergey Velder.
Loop Invariants: Analysis, Classification, and Examples.
ACM Comput. Surv., 46(3), jan 2014.

[34] Google. Google Cloud Functions. https://cloud.
google.com/functions/.

[35] Google. Retrying Event-Driven Functions. https:
//cloud.google.com/functions/docs/bestpr
actices/retries,.

[36] Google. Stateful Serverless on Google Cloud with
Cloudstate and Akka Serverless. https://cloud.
google.com/blog/topics/developers-practit
ioners/stateful-serverless-on-google-clo
ud-with-cloudstate-and-akka-serverless.

[37] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. Certikos: An Extensible Architecture for
Building Certified Concurrent OS Kernels. In 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 653–669, Savannah, GA, Novem-
ber 2016. USENIX Association.

[38] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale Preemption for Concurrent
GPU-accelerated DNN Inferences. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 539–558, Carlsbad, CA, July 2022.
USENIX Association.

[39] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage Sys-
tems are Distributed Systems (So Verify Them That
Way!). In 14th USENIX Symposium on Operating
Systems Design and Implementation, pages 99–115.
USENIX Association, November 2020.

[40] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving Practical Dis-
tributed Systems Correct. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 1–
17, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[41] Apache HDFS. HDFS-16322. https://issues.apa
che.org/jira/browse/HDFS-16322.

[42] Hadoop HDFS. HDFS-7926. https://issues.apa
che.org/jira/browse/HDFS-7926.

[43] Pat Helland. Idempotence Is Not a Medical Condition:
An Essential Property for Reliable Systems. Queue,
10(4):30–46, apr 2012.

[44] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Ar-
jun Guha. Formal Foundations of Serverless Computing.
Proc. ACM Program. Lang., 3, October 2019.

[45] Zhipeng Jia and Emmett Witchel. Boki: Stateful Server-
less Computing with Shared Logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 691–707, New York, NY, USA, 2021.
Association for Computing Machinery.

[46] Zhipeng Jia and Emmett Witchel. Nightcore: Effi-
cient and Scalable Serverless Computing for Latency-
Sensitive, Interactive Microservices, pages 152–166. As-
sociation for Computing Machinery, New York, NY,
USA, 2021.

[47] C. B. Jones. Tentative Steps toward a Development
Method for Interfering Programs. ACM Trans. Program.
Lang. Syst., 5(4):596–619, oct 1983.

902 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.spec.org/jbb2015/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/functions/docs/bestpractices/retries
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://cloud.google.com/blog/topics/developers-practitioners/stateful-serverless-on-google-cloud-with-cloudstate-and-akka-serverless
https://issues.apache.org/jira/browse/HDFS-16322
https://issues.apache.org/jira/browse/HDFS-16322
https://issues.apache.org/jira/browse/HDFS-7926
https://issues.apache.org/jira/browse/HDFS-7926

[48] Kafka. Kafka-5169. https://issues.apache.org/
jira/browse/KAFKA-5169.

[49] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating Function-as-a-
Service Workflows. In 2021 USENIX Annual Technical
Conference, pages 805–820. USENIX Association, July
2021.

[50] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Mat-
sushita, and John Ousterhout. Implementing Lineariz-
ability at Large Scale and Low Latency, pages 71–86.
Association for Computing Machinery, New York, NY,
USA, 2015.

[51] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan
Cheng, Wenli Zheng, and Minyi Guo. FaasFlow: Enable
Efficient Workflow Execution for Function-as-a-Service.
In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 782–796, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

[52] Hongjin Liang and Xinyu Feng. Modular Verification
of Linearizability with Non-Fixed Linearization Points.
SIGPLAN Not., 48(6):459–470, jun 2013.

[53] Hongjin Liang, Xinyu Feng, and Ming Fu. A Rely-
Guarantee-Based Simulation for Verifying Concurrent
Program Transformations. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 455–468, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[54] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-Effort Veri-
fication of High-Performance Concurrent Programs. In
Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 197–210, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[55] Nancy Lynch and Frits Vaandrager. Forward and Back-
ward Simulations. Inf. Comput., 128(1):1–25, jul 1996.

[56] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. Orion and the Three Rights: Sizing, Bundling,
and Prewarming for Serverless DAGs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 303–320, Carlsbad, CA, July 2022.
USENIX Association.

[57] Microsoft. Designing Azure Functions for Identical
Input. https://docs.microsoft.com/en-us/az
ure/azure-functions/functions-idempotent,.

[58] Microsoft. Microsoft Azure Functions. https://azur
e.microsoft.com/en-us/services/functions/.

[59] Microsoft. What are Durable Functions. https://do
cs.microsoft.com/en-us/azure/azure-funct
ions/durable/durable-functions-overview?
tabs=csharp.

[60] Peter W. OHearn. Resources, Concurrency, and Local
Reasoning. Theor. Comput. Sci., 375(1-3):271–307, apr
2007.

[61] Java Pathfinder. Java Pathfinder. https://github.c
om/javapathfinder/.

[62] Ganesan Ramalingam and Kapil Vaswani. Fault Tol-
erance via Idempotence. In Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 249–262, New
York, NY, USA, 2013. Association for Computing Ma-
chinery.

[63] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
Breaker: Warming Serverless Functions Better with
Heterogeneity. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
753–767, New York, NY, USA, 2022. Association for
Computing Machinery.

[64] Serverlessbench. Issue with Exactly-once Execution
Semantic of Alexa. https://github.com/SJTU-I
PADS/ServerlessBench/issues/6.

[65] Wonseok Shin, Wook-Hee Kim, and Changwoo Min.
Fireworks: A Fast, Efficient, and Safe Serverless Frame-
work Using VM-level post-JIT Snapshot. In Proceed-
ings of the Seventeenth European Conference on Com-
puter Systems, page 663–677, New York, NY, USA,
2022. Association for Computing Machinery.

[66] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-Button Verification of File Systems
via Crash Refinement. In 12th USENIX Symposium on
Operating Systems Design and Implementation, pages
1–16, Savannah, GA, November 2016. USENIX Asso-
ciation.

[67] Spark. Spark-6133. https://issues.apache.org/
jira/browse/SPARK-6133.

[68] Spree. Spree. https://spreecommerce.org/.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 903

https://issues.apache.org/jira/browse/KAFKA-5169
https://issues.apache.org/jira/browse/KAFKA-5169
https://docs.microsoft.com/en-us/azure/azure-functions/functions-idempotent
https://docs.microsoft.com/en-us/azure/azure-functions/functions-idempotent
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://github.com/javapathfinder/
https://github.com/javapathfinder/
https://github.com/SJTU-IPADS/ServerlessBench/issues/6
https://github.com/SJTU-IPADS/ServerlessBench/issues/6
https://issues.apache.org/jira/browse/SPARK-6133
https://issues.apache.org/jira/browse/SPARK-6133
https://spreecommerce.org/

[69] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati,
Joseph E. Gonzalez, Joseph M. Hellerstein, and Jose M.
Faleiro. A Fault-Tolerance Shim for Serverless Comput-
ing. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems, New York, NY, USA, 2020.
Association for Computing Machinery.

[70] Milijana Surbatovich, Limin Jia, and Brandon Lucia. I/o
Dependent Idempotence Bugs in Intermittent Systems.
Proc. ACM Program. Lang., 3, oct 2019.

[71] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking, Anal-
ysis, and Optimization of Serverless Function Snapshots.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 559–572, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[72] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
InFless: A Native Serverless System for Low-Latency,
High-Throughput Inference. In Proceedings of the 27th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 768–781, New York, NY, USA, 2022. Association
for Computing Machinery.

[73] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-Tolerant and
Transactional Stateful Serverless Workflows. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, pages 1187–1204. USENIX Associa-
tion, November 2020.

[74] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and Cheaper Serverless
Computing on Harvested Resources. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, pages 724–739, New York, NY, USA,
2021. Association for Computing Machinery.

[75] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang,
Zhaoguo Wang, and Haibo Chen. BeeHive: Sub-Second
Elasticity for Web Services with Semi-FaaS Execution.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 74–87,
New York, NY, USA, 2023. Association for Computing
Machinery.

[76] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu,
and Haibo Chen. Using Concurrent Relational Logic
with Helpers for Verifying the AtomFS File System. In

Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, pages 259–274, New York, NY,
USA, 2019. Association for Computing Machinery.

904 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Appendix A Proof of Theorem 1
In this section, we prove that it is sufficient to verify the idem-
potence consistency of a function set F by proving that each
function f ∈F satisfies idempotence simulation, which is The-
orem 1 in the paper. Since our verification approach adopts
existing compositional proof techniques in RGSim [53], our
formal proof is similar to the proof in that paper.

Let’s start by introducing some important concepts. When
we have two functions running concurrently, we can con-
sider them as one unit and denote their local state using the
symbol σ1 ∥ σ2, where σ1 represents the local state of the
first function and σ2 represents the local state of the second
function. Using this notation, we can represent the overall
system state as ⟨σ1 ∥ σ2,D⟩ when two functions run concur-
rently. We use ⟨σ1 ∥ σ2,D⟩ α

⟶ ⟨σ′1 ∥ σ2,D
′⟩ to denote that

the system can take one step and change the system state
from ⟨σ1 ∥ σ2,D⟩ to ⟨σ′1 ∥ σ2,D

′⟩, producing an event α (if
any). During each execution cycle, the system can either ad-
vance the first function by one step or advance the second
function by one step. It means that if there exists σ

′
1 and

D′ such that ⟨σ1,D⟩ α
⟶ ⟨σ′1,D′⟩, then we can imply that

⟨σ1 ∥ σ2,D⟩ α
⟶ ⟨σ′1 ∥ σ2,D

′⟩. Similarly, if there exists σ
′
2

and D′ such that ⟨σ2,D⟩ α
⟶ ⟨σ′2,D′⟩, then we can imply that

⟨σ1 ∥ σ2,D⟩ α
⟶ ⟨σ1 ∥ σ

′
2,D

′⟩.
⟨σ1 ∥ σ2,D⟩ ⊑R ⟨Σ1 ∥ Σ2,D⟩ denotes that the concurrent

execution of two functions with the local state Σ1 and Σ2 can
simulate the concurrent execution of another two functions
with the local state σ1 and σ2 under the rely condition R.
Here is the detailed definition of the simulation relation. We
use ⟨Σ1,D⟩ α

⟹ ⟨Σ′1,D′⟩ to denote that the system can take
n (0 ≤ n) steps to change the system state from ⟨Σ1,D⟩ to
⟨Σ′1,D′⟩, producing an event α (if any).

• For any local state σ
′
1 and database state D′, if ⟨σ1,D⟩ α

⟶

⟨σ′1,D′⟩, then there exists a local state Σ
′
1 such that ⟨Σ1,D⟩

α

⟹ ⟨Σ′1,D′⟩. If α is a response event, then ⟨σ2,D
′⟩ ⊑R

⟨Σ2,D
′⟩. Otherwise, ⟨σ′1 ∥ σ2,D

′⟩ ⊑R ⟨Σ′1 ∥ Σ2,D
′⟩. This

condition represents the requirement for the simulation
relation when the system advances the first function by one
step.

• For any local state σ
′
2 and database state D′, if ⟨σ2,D⟩ α

⟶

⟨σ′2,D′⟩, then there exists a local state Σ
′
2 such that ⟨Σ2,D⟩

α

⟹ ⟨Σ′2,D′⟩. If α is a response event, then ⟨σ1,D
′⟩ ⊑R

⟨Σ1,D
′⟩. Otherwise, ⟨σ1 ∥ σ

′
2,D

′⟩ ⊑R ⟨Σ1 ∥ Σ
′
2,D

′⟩. This
condition represents the requirement for the simulation
relation when the system advances the first function by one
step, which is similar to the first requirement.

• If (D,D′) ∈ R, then ⟨σ1 ∥ σ2,D
′⟩ ⊑R ⟨Σ1 ∥ Σ2,D

′⟩.

We can extend the above definition to more than two func-
tions.

To prove Theorem 1, we first prove the following two lem-
mas based on the above definitions.

Lemma 1 Assume there are four functions f1, f2, g1, and g2.
Suppose that the execution of g1 can simulate the execution
of f1 under the rely condition R, while the execution of g2
can simulate the execution of f2 under the rely condition R.
Then we can imply that the concurrent execution of g1 and
g2 can simulate the concurrent execution of f1 and f2 under
the rely condition R. We use σ1, σ2, Σ1, and Σ2 to represent
the local states of f1, f2, g1, and g2, respectively.

∀σ1,Σ1,σ2,Σ2,D.

((⟨σ1,D⟩ ⊑R ⟨Σ1,D⟩)∧ (⟨σ2,D⟩ ⊑R ⟨Σ2,D⟩))→
(⟨σ1 ∥ σ2,D⟩ ⊑R ⟨Σ1 ∥ Σ2,D⟩)

Proof

The premises include

⟨σ1,D⟩ ⊑R ⟨Σ1,D⟩, (1)

and
⟨σ2,D⟩ ⊑R ⟨Σ2,D⟩. (2)

The conclusion is

⟨σ1 ∥ σ2,D⟩ ⊑R ⟨Σ1 ∥ Σ2,D⟩. (3)

Below we prove the conclusion by co-induction on ⊑R. Ac-
cording to the definition of ⊑R described above, the execution
of two functions belongs to one of the following five cases.

• ⟨σ1,D⟩ α
⟶ ⟨σ′1,D′⟩, where α is not a response event.

According to the definition of ⊑R, we need to prove that
there exists Σ

′
1 such that ⟨Σ1,D⟩ α

⟹ ⟨Σ′1,D′⟩ and ⟨σ′1 ∥
σ2,D

′⟩ ⊑R ⟨Σ′1 ∥ Σ2,D
′⟩.

From Equation (1), there exists Σ
′
1 such that

⟨Σ1,D⟩ α
⟹ ⟨Σ′1,D′⟩, (4)

and
⟨σ′1,D′⟩ ⊑R ⟨Σ′1,D′⟩. (5)

Since (D,D′) ∈ R, from Equation (2), we know

⟨σ2,D
′⟩ ⊑R ⟨Σ2,D

′⟩. (6)

From both Equation (5) and Equation (6) we know

⟨σ′1 ∥ σ2,D
′⟩ ⊑R ⟨Σ′1 ∥ Σ2,D

′⟩. (7)

• ⟨σ2,D⟩ α
⟶ ⟨σ′2,D′⟩, where α is not a response event. The

proof is similar to the first case.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 905

• ⟨σ1,D⟩ α
⟶ ⟨σ′1,D′⟩, where α is a response event.

According to the definition of ⊑R, we need to prove
that there exists Σ

′
1 such that ⟨Σ1,D⟩ α

⟹ ⟨Σ′1,D′⟩, and
⟨σ2,D

′⟩ ⊑R ⟨Σ2,D
′⟩.

From Equation (1), there exists Σ
′
1 such that

⟨Σ1,D⟩ α
⟹ ⟨Σ′1,D′⟩. (8)

Since (D,D′) ∈ R, we know

⟨σ2,D
′⟩ ⊑R ⟨Σ2,D

′⟩. (9)

• ⟨σ2,D⟩ α
⟶ ⟨σ′2,D′⟩, where α is a response event. The

proof is similar to the third case.

• (D,D′) ∈ R, which means that other concurrent functions
change the database state from D to D′.

According to the definition of ⊑R, we need to prove that
⟨σ1 ∥ σ2,D

′⟩ ⊑R ⟨Σ1 ∥ Σ2,D
′⟩.

From (D,D′) ∈ R and Equation (1), we know

⟨σ1,D
′⟩ ⊑R ⟨Σ1,D

′⟩. (10)

From (D,D′) ∈ R and Equation (2), we know

⟨σ2,D
′⟩ ⊑R ⟨Σ2,D

′⟩. (11)

From both Equation (10) and Equation (11), we know

⟨σ1 ∥ σ2,D
′⟩ ⊑R ⟨Σ1 ∥ Σ2,D

′⟩. (12)

Therefore, the conclusion Equation (3) is true. □

Then we prove the following lemma.

Lemma 2 We use AF to denote an automaton running func-
tions in a function set F . For any function set F and automaton
AF , if every function in F satisfies idempotence simulation,
then the following fact holds: from the same initial database
state, every time the automaton AF∗ takes one step, AF can
take n steps (n ≥ 0) such that they reach the same database
state and produce the same event (if any).

Proof

The premise is that every function f ∈ F satisfies idempo-
tence simulation:

∀ f ∈ F.

(∀D,arg.⟨init(f∗,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩),
(13)

where init(f ,arg) denotes the initial local state of running the
function f with the argument arg, and we omit the existential
quantifier on R. The conclusion is that the execution of F can
simulate the execution of F∗.

We prove the conclusion by classifying every step taken by
AF∗ into three cases.

• AF∗ creates a function instance to run a function f∗. Then,
AF can create an instance with the same identifier to run f
with the same invocation arguments. Both of them do not
change the database state and produce the same invocation
event. Note that we treat f and f∗ as the same in invocation
events since their only difference is whether to be retried.

• A function instance takes one step. From Equation (13) and
Lemma 1, we know that for any functions f1, f2, . . . ∈ F ,
function arguments arg1, . . ., and shared state D,

⟨init(f∗1 ,arg1) ∥ . . . ,D⟩ ⊑R ⟨init(f1,arg1) ∥ . . . ,D⟩. (14)

From Equation (14), we know that for any intermediate
local states (σ f1 , . . .) and database state D′ during executing
functions,

⟨σ f ∗1 ∥ . . . ,D′⟩ ⊑R ⟨σ f1 ∥ . . . ,D′⟩. (15)

According to the definition of ⊑R, Equation (15) implies
that every time a function instance in AF∗ takes one step,
another function instance in AF can always take k (0 ≤ k)
steps to result in the same database state and the same event
(if any).

• AF∗ retries an instance. Then AF takes no steps such that it
produces the same database state and no event. The proof
is similar to the second case.

Then, the conclusion is true. □

Finally, we can prove Theorem 1 in the paper.

Theorem 5 Given a function set F , if every function f ∈ F
satisfies idempotence simulation, then F satisfies idempotence
consistency.

Proof

The premise is that every function f ∈ F satisfies idempo-
tence simulation.

∀ f ∈ F.

(∀D,arg.⟨init(f∗,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩).
(16)

The conclusion is that F satisfies idempotence consistency
(Definition 1).

From Lemma 2 and Equation (16), we imply that the execu-
tion of F can simulate the execution of F∗. That means every
time AF∗ takes one step, AF can take n (n ≥ 0) steps such that
they reach the same database state and produce the same event
(if any). Therefore, if some execution of AF∗ can result in the
client-observable behavior ⟨H,D⟩, then there exists another
execution of AF that can also result in ⟨H,D⟩. The conclusion
is proved. □

906 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Appendix B Proof of Failure Reduction
In this section, we prove Theorem 4 in the paper, which proves
the second condition in Theorem 3. The first condition in
Theorem 3 is intuitive. Thus, we omit its formal proof in this
section. We first prove two lemmas and then prove Theorem 4
based on them.

Lemma 3 If the execution of f can simulate f 1, then for any
n ≥ 1, the execution of f n−1 can simulate f n. The definition
of f 1, f n, and f n−1 are in Section 4.4.

(∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩)→

(∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f n−1

,arg),D⟩).

Proof

The premise is

∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩. (17)

We want to prove for all n ≥ 1,

∀D,arg.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f n−1

,arg),D⟩. (18)

We prove it by induction on n.

Base case: When n = 1, Equation (18) is true, because it is
equivalent to the premise Equation (17).

Inductive step: Suppose Equation (18) is true when n = k
(k ≥ 1).

∀D,arg.⟨init(f k
,arg),D⟩ ⊑R ⟨init(f k−1

,arg),D⟩. (19)

Then when n = k+1, we want to prove

∀D,arg.⟨init(f k+1
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩. (20)

According to the definition of ⊑R, we need to map every single
step during the execution of f k+1 to s (s ≥ 0) steps during
the execution of f k. We can construct the mapping in the
following way. f k+1 and f k are almost the same, except that
the platform retries them for different times. Then before the
first retry, we map every single step when executing f k+1 to a
single step of f k. That means f k+1 and f k always execute the
same statement. This mapping can satisfy the requirements
of ⊑R.

When the first retry of f k+1 happens, we ask f k to be also
retried. Assume the database state immediately before the
retry is D1. The executions of f k+1 and f k from D1 after the
first retry are equivalent to the executions of f k and f k−1 from
D1 before the first retry, respectively. This is because after the
first retry, the platform will retry f k+1 for k times and retry
f k for k−1 times. From Equation (19), we know that

∀arg.⟨init(f k
,arg),D1⟩ ⊑R ⟨init(f k−1

,arg),D1⟩. (21)

Then there exists a step mapping from every step of f k+1 to
steps of f k after the first retry, which satisfies the requirements
of ⊑R. Therefore, Equation (18) is true for n = k+1.

Conclusion: By the principle of induction, Equation (18) is
true for any n ≥ 1. □

Lemma 4 For any i, j,k ≥ 0, if the execution of f k can sim-
ulate f j and the execution of f j can simulate f i, then the
execution of f k can simulate f i.

∀i, j,k.

((∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f j

,arg),D⟩)∧
(∀D,arg.⟨init(f j

,arg),D⟩ ⊑R ⟨init(f k
,arg),D⟩))

→ (∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩).

Proof

This lemma is similar to the transitivity of forward simula-
tion. The premises include

∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f j

,arg),D⟩, (22)

and

∀D,arg.⟨init(f j
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩. (23)

The conclusion is

∀D,arg.⟨init(f i
,arg),D⟩ ⊑R ⟨init(f k

,arg),D⟩. (24)

We use σi, σ j, and σk to denote the local state when execut-
ing f i, f j, and f k, respectively. We will prove the conclusion
Equation (24) by co-induction. According to the definition of
⊑R, every step taken during executing f i belongs to one of
the following three cases.

• ⟨σi,D⟩ α
⟶ ⟨σ′i,D′⟩, where α is not a response event.

According to the definition of ⊑R, we need to prove
that there exists σ

′
k such that ⟨σk,D⟩ α

⟹⟨σ′k,D′⟩ and
⟨σ′i,D′⟩ ⊑R ⟨σ′k,D′⟩.
From Equation (22), we know that there exists σ

′
j such that

⟨σ j,D⟩ α
⟹⟨σ′j,D′⟩, (25)

and
⟨σ′i,D′⟩ ⊑R ⟨σ′j,D′⟩. (26)

From Equation (23) and Equation (25), we know there
exists σ

′
k such that

⟨σk,D⟩ α
⟹⟨σ′k,D′⟩, (27)

and
⟨σ′j,D′⟩ ⊑R ⟨σ′k,D′⟩. (28)

From Equation (26) and Equation (28), we know that

⟨σ′i,D′⟩ ⊑R ⟨σ′k,D′⟩. (29)

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 907

• ⟨σi,D⟩ α
⟶ ⟨σ′i,D′⟩, where α is a response event.

According to the definition of ⊑R, we need to prove that
there exists σ

′
k such that ⟨σk,D⟩ α

⟹⟨σ′k,D′⟩.
From Equation (22), we know that there exists σ

′
j such that

⟨σ j,D⟩ α
⟹⟨σ′j,D′⟩. (30)

From Equation (23) and Equation (30), we know there
exists σ

′
k such that

⟨σk,D⟩ α
⟹⟨σ′k,D′⟩. (31)

• ⟨D,D′⟩ ∈ R, which means that other concurrent functions
change the database state from D to D′.

According to the definition of ⊑R, we need to prove that
⟨σi,D

′⟩ ⊑R ⟨σk,D
′⟩.

From Equation (22), we know

⟨σi,D
′⟩ ⊑R ⟨σ j,D

′⟩. (32)

From Equation (23), we know

⟨σ j,D
′⟩ ⊑R ⟨σk,D

′⟩. (33)

From Equation (32) and Equation (33), we know

⟨σi,D
′⟩ ⊑R ⟨σk,D

′⟩. (34)

Thus, we have proved the conclusion Equation (24). □

Finally, we can prove Theorem 4 in the paper based on the
above two lemmas.

Theorem 6 Given a function f , if each execution with one
retry under concurrency has a corresponding retry-free execu-
tion that can simulate it, then each execution with arbitrary
times of retries also has a corresponding retry-free execution
that can simulate it.

(∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩)→

(∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩).

Proof

The premise is

∀D,arg.⟨init(f 1
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩. (35)

The conclusion is

∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f ,arg),D⟩. (36)

From Lemma 3 and the premise Equation (35), we know

∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f n−1

,arg),D⟩.
(37)

From Lemma 4 and Equation (37), we know

∀D,arg,n ≥ 1.⟨init(f n
,arg),D⟩ ⊑R ⟨init(f 0

,arg),D⟩. (38)

Since f 0 is equivalent to f , Equation (38) is equivalent to the
conclusion Equation (36). The conclusion is true. □

1 int f(input)
2 {
3 output = f1(input);
4 return f2(output);
5 }

Figure 12: A function composed of two sub-functions called f1 and
f2.

Appendix C Proof of Theorem 2
This section proves Theorem 2 in Section 4.3 of the pa-

per. We first define and prove sequential compositionality of
idempotence simulation.

Definition 2 Given a function f and the rely condition R,
f satisfies strong idempotence simulation means that: 1) f
satisfies idempotence simulation under R; and 2) after the
platform successfully executes f without retries for one time,
retrying f again will not modify the shared state.

Particularly, the second condition is equivalent to the third
requirement in Theorem 2 of paper: it will not affect the
shared state on retry once it has been successfully executed.

Lemma 5 Given any two functions f1 and f2, if f1 satisfies
strong idempotence simulation, f2 satisfies idempotence sim-
ulation, and the input of f2 remains unchanged on retry, then
the function f in Figure 12 composed of f1 and f2 also satis-
fies idempotence simulation.

Proof According to Theorem 3, we prove the simulation rela-
tion between f 1 and f . Note that f 1 is defined in Section 4.4,
which is different from f1. Then we classify the location
where retry occurs during the execution of f 1 into three cases
and prove that under all these cases, executing f without re-
tries could exhibit all possible client-observable behaviors
produced by executing f 1. Then we can prove that f satisfies
idempotence simulation.

• Retry happens during the execution of f1. Then the execu-
tion of f 1 consists of three main parts:
(P1) the execution of f1 before retry;
(P2) the normal execution of f1 after retry;
(P3) the normal execution of f2.
Since f1 satisfies idempotence simulation, a normal execu-
tion of f1 without retries could exhibit all client-observable
behaviors of (P1) and (P2). In this case, a normal execution
of f without retries can simulate the execution of f 1.

• Retry happens between f1 and f2. This execution exhibits
the same client-observable behavior as another execution
where retry happens immediately before the “return” state-
ment in f1. The proof is the same as the first case.

• Retry happens during the execution of f2. Then the execu-
tion of f 1 consists of four main parts:
(P1) the first normal execution of f1 without retries;

908 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 int f(int input)
2 {
3 int output1 = f1(input);
4 int output2 = f2(output1);
5 ...;
6 return fn(outputn);
7 }

Figure 13: A function composed of n sub-functions called f1, . . .,
and fn.

(P2) the execution of f2 before retry;
(P3) the second normal execution of f1 without retries;
(P4) the normal execution of f2 without retries.
Since f1 satisfies strong idempotence simulation, the sec-
ond normal execution of f1 will not modify the shared state
and return the same value as the input for the f2. There-
fore, this kind of execution of f 1 exhibits the same client-
observable behavior as the execution composed of (P1),
(P2), and (P4). Since f2 satisfies idempotence simulation,
there exists another normal execution of f2 that exhibits the
same client-observable behavior as the execution of (P2)
and (P4). Thus, the execution of f 1 described in this case
exhibits the same client-observable behavior as another
normal execution of f without retries.

In conclusion, for any execution of f 1, there always exists a
normal execution of f that exhibits the same client-observable
behavior under concurrency. According to Theorem 4, f sat-
isfies idempotence simulation. □

Then we extend sequential compositionality to a function
composed of arbitrary number of code fragments.

Lemma 6 For any positive integer n ≥ 2 and any function f
in the form of Figure 13, if each fi (1 ≤ i < n) satisfies strong
idempotence simulation, fn satisfies idempotence simulation,
and the input of each fi remains unchanged on retry, then f
satisfies idempotence simulation.

Proof We prove it by induction on n (n ≥ 2). The premise is
Lemma 5.

Base case. When n = 2, the conclusion is true, because it is
equivalent to the premise.

Inductive step. Assume the conclusion is true when n = k.
We prove that the conclusion is also true when n= (k+1). We
can treat the code fragment containing the first k sub-functions
as a function g. Since the conclusion is true when n = k, the
function g satisfies idempotence simulation. f consists of
two sub-functions called g and fk+1, both of which satisfy
idempotence simulation. From Lemma 5, we can imply that
f satisfies idempotence simulation.

Conclusion. By the principle of induction, f satisfies idem-
potence simulation for any n ≥ 2. □

Based on Lemma 6, we prove that our method of addressing
unbounded loops with write operations is sound, which is

1 void checkCoupons(coupons, time) {
2 // C1
3 if(coupons.size == 0)
4 return;
5 // L
6 for(int j = 0; j < coupons.size(); j++) {
7 coupon := get("Coupon", coupons[j].couponId);
8 if(isExpired(coupon.date, time)) {
9 coupon.expired := true;

10 put("Coupon", coupons[j].couponId , coupon);
11 }
12 }
13 // C2
14 return;
15 }

Figure 14: An example of unbounded loop with write operations.

Theorem 2 in the paper. For convenience, we represent a
function with an unbounded loop as {C1;L;C2}, where L is the
unbounded loop, C1 is all code preceding L, and C2 denotes
all code following the loop. BL is the loop body of L.

Theorem 7 Given a function f with the unbounded loop in
case 2, f satisfies idempotence simulation if the number of
iterations of the loop L remains unchanged on retry, and C1,
C2 and BL can satisfy the following requirements: 1) They all
satisfy idempotence simulation; 2) Their inputs do not change
on retry; 3) They will not affect the shared state on retry once
the function has successfully executed them.

Proof Since the number of loop iterations is the same on
retry, the execution of f comprises the execution of C1, the
execution of an unbounded number of BL, and the execution
of C2. We can prove that f satisfies idempotence simulation
based on Lemma 6. Although the number of loop iterations is
unbounded, the loop body executed by each iteration is the
same. Therefore, we just need to prove that C1, BL, and C2
satisfy the requirements in Lemma 6. The requirements have
been ensured by the premise of Theorem 7. Therefore, the
conclusion is true and f satisfies idempotence simulation. □

We use an example to show how to use this theorem to per-
form the verification. In Figure 14, the checkCoupons func-
tion uses an unbounded loop to check whether coupons have
expired. Obviously, C1 and C2 in checkCoupons satisfy all
requirements in Theorem 2. The number of the loop iterations
is the size of coupons which will be the same on retry. Thus,
to prove the idempotence simulation of checkCoupons, we
only need to focus on the loop body BL (line 7-11). First, Flux
can prove that BL satisfies the idempotence simulation; Then,
it uses static analysis to find that BL’s input is coupons that
keeps consistent on retry. Third, once it successfully updates
expire to be true for a specific coupon , the value will remain
unchanged as checkCoupons always updates it to be true on
retry. According to the theorem, we have that checkCoupons
satisfies the idempotence simulation.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 909

 0

 500

 1000

 1500

 0 2 4 6 8 10 12 14 16

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

The Number of Branches

(a) The verification time of a single function with ten database opera-
tions and different numbers of branches.

 0

 200

 400

 600

 800

 0 200 400 600 800 1000 1200 1400

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

The Number of Database Operations

(b) The verification time of a single function with different numbers
of database operations. The function has one execution path. Lines of
code also increase linearly when the number of database operations
increases linearly.

 0

 200

 400

 600

 0 2 4 6 8 10 12 14 16 18 20

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

s
)

The Number of Functions in an Application

(c) The verification time of an application with different numbers of
functions.

Figure 15: The verification time for different numbers of branch
statements, database operations, and functions.

Appendix D Scalability of the Verifier

We have created micro-benchmarks to evaluate the scalability
of the verifier. Figure 15a shows that when the number of
branches in a single function increases, the verification time
increases exponentially, as the number of traces also increases
exponentially. Besides, Figure 15b shows that when the num-
ber of database operations in a single function increases, the
verification time increases linearly. This is because the num-
ber of generated traces increases linearly. Note that because
these micro-benchmarks mainly contain database operations,
LoC also increases linearly when the number of database op-
erations increases. Thus, Figure 15b also demonstrates that
when the LoC of a single function increases, the verifica-
tion time increases linearly. Additionally, we evaluate the
verification time for an application with different numbers

of functions. Each function has one execution path and two
hundred database operations. Figure 15c shows that the veri-
fication time increases linearly when the number of functions
in an application increases linearly. Because the number of
traces increases linearly.

910 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Sharding the State Machine:
Automated Modular Reasoning for Complex Concurrent Systems

Travis Hance†, Yi Zhou†, Andrea Lattuada‡*, Reto Achermann⋆, Alex Conway‡,
Ryan Stutsman‡⊕, Gerd Zellweger‡, Chris Hawblitzel⊙, Jon Howell‡, Bryan Parno†

† Carnegie Mellon University; ⋆ University of British Columbia;
‡ VMware Research; ⊕ University of Utah; ⊙ Microsoft Research

Abstract
We present IronSync, an automated verification framework
for concurrent code with shared memory. IronSync scales
to complex systems by splitting system-wide proofs into iso-
lated concerns such that each can be substantially automated.
As a starting point, IronSync’s ownership type system allows
a developer to straightforwardly prove both data safety and
the logical correctness of thread-local operations. IronSync
then introduces the concept of a Localized Transition Sys-
tem, which connects the correctness of local actions to the
correctness of the entire system. We demonstrate IronSync
by verifying two state-of-the-art concurrent systems compris-
ing thousands of lines: a library for black-box replication on
NUMA architectures, and a highly concurrent page cache.

1 Introduction
Despite the importance of concurrent software, it is famously
difficult to write correctly. The correctness of any one thread
can, in principle, depend on changes from any other thread;
developers often struggle to consider all possible thread in-
terleavings. This reasoning becomes more difficult in aggres-
sively optimized systems that use custom synchronization
tools beyond standard abstractions like locks. Such systems
often appear anti-modular in that they entangle synchroniza-
tion logic with application logic. For example, a concurrent
page cache (§5.2) might use a bit both for the synchroniza-
tion purpose of read-locking a section of memory and for the
logical purpose of indicating that an IO write is in progress.

In theory, formal software verification can produce prov-
ably correct code, but existing techniques have struggled to
reach production-scale shared-memory systems (§9). Some
work [19, 20] on verifying concurrent systems carefully fo-
cuses on networking and asynchronous disk IO, but avoids
shared-memory concurrency. Other work [11, 12, 17, 36, 46]
does tackle shared memory, but it relies on techniques which
require considerable sophistication and manual effort from
the developer. Still other work [38] offers simpler tools and
greater automation, but the automation does not yet scale,
requiring hours of CPU time for tens of lines of code (§7.1).

In contrast, IronSync enables verification of production-
scale shared-memory concurrent systems, including those
with custom synchronization protocols. Such verification
comes with many reasoning challenges, and IronSync suc-

*Work done while at ETH Zurich

ceeds by carefully partitioning the system-level proof so that
a developer can ergonomically tackle each challenge by for-
malizing her existing intuitions, supported at each stage by
powerful automation.

At the lowest level, an IronSync developer uses an owner-
ship type system to prove the data safety of her implementa-
tion. Oversimplifying, in an ownership type system, an owned
value must be held (or referenced) by exactly one variable. A
fast, deterministic type checker enforces this property, which
IronSync, like Rust [28, 39] and other languages, in turn uses
to enforce data safety, i.e., basic memory safety plus freedom
from conflicting reads and writes. Our experience, and that
of the Rust community, suggests using an ownership type
system for such reasoning is relatively intuitive.

Going further, IronSync shows how the developer can ad-
ditionally use ownership types to reason about the logical
correctness of a thread’s local actions on data it owns. Intu-
itively, in any segment of code where a thread operates only
on owned data, that data cannot affect or be affected by other
threads. Hence, IronSync can reason about such code using
sequential reasoning techniques and tools honed over decades
of research and development. Reasoning sequentially is more
intuitive for the developer as well.

Finally, the IronSync developer must connect the locally
correct thread actions to global, system-wide correctness. To
support this step, IronSync introduces the Localized Transi-
tion System (LTS), which abstracts each thread’s actions and
the state they act upon, formalizing the intuition that in effi-
cient concurrent programs, each thread acts only on a small
fragment of the program’s global state. Using the techniques
above, the developer locally proves that the LTS is a sound ab-
straction of their implementation. Finally, IronSync soundly
abstracts the LTS into a simplified program representing the
whole system. This new program (with threads, locks, and
other implementation details abstracted away) is far simpler to
reason about, and it connects naturally to previous automated
techniques for, e.g., reasoning about asynchronous IO or dis-
tributed nodes [19, 20]. Since each step on this path is proven
sound, proofs at this level also apply to the implementation.

To support the advanced read-sharing patterns found in pro-
duction systems, IronSync also reuses the machinery above
(with a small twist) to factor out reasoning about complex
synchronization primitives, so that the developer can think
about them separately from the core application logic, even if

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 911

the implementation deeply entangles the two concerns.
The developer writes their implementation and performs

all of the reasoning above in an extended version of the Dafny
language [33] augmented with the trusted axioms and memory
primitives in IronSync’s framework.

Evaluation. We introduce IronSync via a series of increas-
ingly complex examples, culminating in two production-level
case studies (§5). To illustrate IronSync at scale, we verify
a Node Replication (NR) library that creates a linearizable
NUMA-aware concurrent data structure from a black-box
sequential one [9]. To show IronSync working both at scale
and with prior work on crash safety [19], we verify Splinter-
Cache [14], a production-scale disk-backed in-memory page
cache created for use in commercial products [49].

Each case study’s performance matches its unverified
production-level counterpart (§7.2), driving workloads of 5M
updates/sec. with 192 threads (NR) or 3M ops/sec. (Splin-
terDB with verified SplinterCache), demonstrating IronSync
has not impeded optimization through limited expressiveness
or excessive proof burden. We also uncovered severe bugs
(§7.3) in the unverified implementations.

Limitations. As in any verification system, the correctness
of a verified IronSync program depends on the correctness of
its spec, and the verification tool (Dafny [33]). Our encoding
of the IronSync framework in Dafny is also trusted (although
application-specific definitions are not). IronSync does not
verify liveness, termination, or deadlock-freedom. We focus
on data safety and functional correctness; i.e., if an operation
returns a result, it is correct according to its spec. IronSync
verifies programs against a high-level memory consistency
model that distinguishes data-race-free memory from racy,
sequentially consistent atomic memory. This compiles to
efficient assembly on modern hardware, but it cannot exploit
every optimization afforded by relaxed memory (§4.2).

Contributions. In summary, this paper:
1. Factors the proof of a production-scale concurrent sys-

tem into intuitive reasoning steps that can each be sup-
ported with powerful automation.

2. Illustrates how the application of an ownership type sys-
tem enables scalable, automated concurrent reasoning
about both data safety and logical correctness.

3. Introduces Localized Transition Systems, which soundly
connect local reasoning about a thread’s actions to global
reasoning about the correctness of the full system.

4. Enables developers to verify complex, application-
specific read-sharing synchronization tools in isolation
from the program’s main application logic.

5. Demonstrates, via case studies, that IronSync effectively
reasons about practical, complex, high-performance con-
current systems.

2 The Potential Pitfalls of Parallelism
To highlight the challenges of writing and reasoning about
concurrent code, we begin with a simple bank application.

if accounts[A] ≥ amt {
accounts[A] = accounts[A] - amt
accounts[B] = accounts[B] + amt

}

Figure 1: Buggy code violating data safety

lock(accounts[A]);
sufficient_balance : = accounts[A] ≥ amt;
unlock(accounts[A]);

if sufficient_balance {
lock(accounts[B]);
accounts[B] = accounts[B] + amt
unlock(accounts[B]);

lock(accounts[A]);
accounts[A] = accounts[A] - amt
unlock(accounts[A]);

}

Figure 2: Buggy code violating logical correctness

lock(accounts[A]);
lock(accounts[B]);
if accounts[A] ≥ amt {

accounts[A] = accounts[A] - amt
accounts[B] = accounts[B] + amt

}
unlock(accounts[A]);
unlock(accounts[B]);

Figure 3: Correct code (assuming that A < B, which is necessary to
avoid deadlock, although proving deadlock-freedom is out-of-scope
for IronSync)

This multi-threaded application maintains a list of accounts,
each with an account ID and a balance, supporting one opera-
tion, transfer(A,B,d), which moves d dollars from account
A to account B.

Here, there are a handful of mistakes an inexperienced
developer might make. First, they might write code as in
Figure 1, which would be correct in a sequential program but
critically flawed in a concurrent one, where, e.g., two different
threads might both write to accounts[A], one overwriting the
other. In fact, it might be difficult to even fully characterize
the buggy behavior on realistic hardware with weaker memory
models [1, 2, 45], and in some programming languages, data
races may even be undefined behavior [5, 52].

A naive fix would be to protect the code in Figure 1 with a
global lock. Such a fix would be correct but embarrassingly
inefficient. For efficiency, the developer might employ a
finer-grained concurrency strategy by creating a lock for each
account, reasoning that most transfers affect disjoint accounts.

Figure 2 uses a discipline of locking an account before read-
ing/writing it, eliminating the data-safety problems above,
since no other thread can simultaneously read/write the ac-
count information. Even with this fix, however, the program
is still not logically correct: two different transfer operations
might each check that account A has sufficient funds and then
move forward even when A lacks the funds to complete both,
leaving A with a negative balance.

Given enough debugging (or prior experience), the devel-
oper might eventually produce the code in Figure 3, which

912 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

holds locks on both accounts as it makes the transfer. How
would the developer convince herself that she has finally pro-
duced a correct implementation?

She might first reason that the program is data safe because
it holds the corresponding account lock whenever it accesses
shared memory. Data safety rules out blatant data corruptions,
making it feasible to reason about logical correctness.

Given data safety, she might then informally reason that
holding both locks simultaneously gives the thread exclusive
access to the portion of the state (accounts A and B) needed
to correctly perform the transfer. Although other concurrent
threads might simultaneously modify other program state, all
such modifications are irrelevant to the transfer. Conversely,
any changes the thread makes to accounts A and B must be
irrelevant to any concurrent transfers, since those transfers
must involve other accounts. Hence, she can reason locally
about the correctness of the transfer implementation. Further-
more, from the perspective of the other threads, the transfer
appears to occur atomically.

With IronSync, the developer formalizes her intuitions
about data safety and logical correctness in a machine-
checked way.

3 The Core IronSync Methodology
IronSync utilizes a variety of techniques, with the philosophy
of using the right tool for each job. We introduce the tech-
niques through a series of increasingly complex examples.1

Here we focus on the toy banking application from §2 to illus-
trate IronSync’s core ideas: (1) the use of an ownership-based
type system, (2) the abstraction of threads via a localized
transition system, and (3) the way we soundly compose a lo-
calized transition system into a global state machine that can
soundly reason about global properties of the full concurrent
program.

In §4, we introduce increasingly sophisticated features and
examples, building up to our production-level case studies in
§5. We defer the formalism underpinning IronSync to §6.

3.1 Achieving Data Safety in IronSync

IronSync mechanically enforces data-safety via an owner-
ship type system. Such type systems are effective at en-
forcing data-safety both in unverified programming (e.g., in
Rust [29]) and in verified sequential programming; e.g., in
Linear Dafny [35], a version of the Dafny verification lan-
guage [33] augmented with an ownership (or linear [51]) type
system inspired by Rust’s. In IronSync, we extend Linear
Dafny with tools for logical correctness in concurrent settings
(3.2). First, though, we overview ownership types, explain
how they enforce data safety, and how this aids in verification.

In Linear Dafny, an owned value must be held (or refer-
enced) by exactly one variable. Any attempts to duplicate
or drop the value are rejected by the type checker. In Iron-
Sync, this ensures that data is uniquely owned, and hence a

1All examples are fully verified and available in our open-source release.

thread can read or write to data it owns without interference
from other threads. Owned values can, however, be stored in
shared (read-only) variables; Dafny’s type checker ensures
that the scope of such shared variables is contained within the
scope of the originating owned variable, and that the owned
variable is not modified until the shared variables expire.

method M(owned w : int, b : bool) returns (owned z : int)
owned var x : = w; // okay : consumes w
owned var y : = w; // error : w was already consumed
if b {
shared var s : = x; // okay : shares x read-only
x : = x + 1; // error : borrowed value still live in s

}
x : = x + 1; // okay : shared variable s has expired
z : = x; // okay : consumes x

Figure 4: Ownership in action

IronSync uses the ownership type system to ensure that
code cannot read or write shared memory after it gives
up permission to access it. Figure 5 shows an example
of this approach in a portion of the API for an exclusive
lock (which in turn is implemented and proven correct us-
ing lower-level IronSync primitives – see §4.2). The API
uses owned and shared variables, as introduced above, and
generic types (indicated by the type parameter <T>) as in Java
or C#. Notice that the Lock itself is passed shared; hence,
it can be referenced simultaneously from multiple threads,
as expected of a lock. The caller obtains an owned guard
value when it acquires the lock (AcquireExcl). The guard
object, named after objects like C++’s std::lock guard
or Rust’s RwLockWriteGuard, is an object that exists for
the duration the lock is held. Furthermore—and similarly
to RwLockWriteGuard—the guard object provides a type-
safe means to access the data being protected by the lock.
That is, after the user relinquishes the guard on release
(ReleaseExcl), the type system will reject any further at-
tempts to use the guard to access the lock’s data.

method AcquireExcl<T>(shared m : Lock<T>)
returns (owned guard : ExclGuard<T>)

method ReleaseExcl<T>(owned guard : ExclGuard<T>)

Figure 5: Example lock specification.

With these tools, an IronSync developer can rule out
data-safety issues, because shared memory can only be ac-
cessed while holding the corresponding permission (e.g., the
ExclGuard) from a lock (or a fancier primitive – see §4.2).
Correct management of the permission is enforced by the
ownership type system.

Using an ownership type system to enforce data safety is
not unique to verification; e.g., this is a crucial feature of Rust.
Novel to IronSync, however, is its further use of its ownership
system to help the developer verify logical correctness.

3.2 Local Logical Correctness

IronSync uses ownership to simplify and automate reasoning
about the correctness of a thread’s actions on data it owns.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 913

3.2.1 Ownership Simplifies Concurrent Correctness

With IronSync, we observe that a type-enforced ownership
discipline dramatically simplifies reasoning about correct-
ness in concurrent settings. To illustrate, consider this short
Dafny program, using its traditional heap model (i.e., without
ownership types):
method M(data : Data)
modifies data
requires data.x == 2
ensures data.x == 3

{
data.x : = data.x + 1;

}

The Dafny verifier can easily prove that if the precondition
in the requires clause holds, then the postcondition in the
ensures clause will always hold. However, if this method
were part of a concurrent program, Dafny’s standard sequen-
tial reasoning would not be sound, since another thread could
change the heap-allocated data at any time.

With ownership types, however, we can rewrite it as:
method M(owned data : Data)
requires data.x == 2
ensures data.x == 3

{
data.x : = data.x + 1;

}

Because the type system ensures that the data value is
uniquely owned, the verifier can once again make the as-
sumption that no other thread is concurrently modifying data.
Hence, the verifier can soundly use the same algorithms as
before to easily verify this method.

In short, because IronSync mediates all access to shared
resources via Linear Dafny’s ownership type system, we can
verify the logical correctness of concurrent code operating
locally on owned values by using algorithms and tools that
have been honed for decades on sequential verification. In
our experience, this brings a substantial boost in proof au-
tomation.

3.2.2 Maintaining Local Correctness with Invariants

However, even in a program that obeys an ownership disci-
pline, one thread seldom owns a piece of data indefinitely;
instead, threads hand off ownership of shared data via syn-
chronization primitives like locks. Hence, the developer needs
a mechanism to reason about what value(s) shared data may
hold when a thread acquires ownership of that data.

In one such mechanism, IronSync allows the developer to
reason about locked data by associating each lock with a lock
invariant, i.e., a property of the data protected by the lock
(Figure 6). The thread can assume the property holds when it
acquires the lock, and in exchange, it must prove the property
holds when it releases the lock. This in turn means that the
next thread to take the lock may also “take” the assumption.

Again, we see the utility of ownership types: the verifier
can soundly assume that the value of guard.v is not being
modified by other threads while the lock is held, since the

function is_even(x : int) { x % 2 == 0 }

// Create a new lock with an invariant that its value
// is always even. Supply a compliant initial value (2).
shared var m : = NewLock(2, is_even);
owned var guard : = AcquireExcl(m);
assert guard.v % 2 == 0; // Passes
guard.v : = guard.v + 1;
// ReleaseExcl(guard); // error : violates invariant `is_even`
guard.v : = guard.v + 1;
ReleaseExcl(guard); // okay : satisfies invariant `is_even`
// guard.v : = guard.v + 1; // error : guard already consumed
// ReleaseExcl(guard); // error : guard already consumed

Figure 6: Example of a lock invariant. Any commented line, if un-
commented, would give the resulting error. Note that ReleaseExcl
consumes the owned guard object, so it cannot be used later.

thread holding the lock uniquely owns the guard. Hence,
we can continue to use the efficient sequential verification
techniques from §3.2.1 to prove the correctness of a thread’s
actions on data it obtains from other threads.

3.3 From Local to Global Logical Correctness

We have shown IronSync’s use of ownership to establish data
safety and the logical correctness of a thread’s local actions
on data it owns. The final step is to explain how threads
cooperate to achieve a global (program-wide) logical goal.

This final step would be trivial in a program that protects
all of its state with a global lock. In that case, proofs of local
correctness would suffice for global correctness, since we
would simply specify the program’s expected behavior via
an invariant on the global lock. Such an approach would be
correct but embarrassingly inefficient.

For better efficiency, the developer might employ a finer-
grained concurrency strategy using many local locks. At this
point, proving a global property directly becomes difficult
since no thread has a global view of the system.

For such systems, IronSync provides the developer with
tools to build up to global logical correctness in stages.
First, the developer creates a simplified abstract model of the
threads’ local actions (§3.3.1). Second, the developer uses the
techniques from §3.2 to locally prove that each thread’s im-
plementation can be soundly abstracted by the model (§3.3.2).
Finally, IronSync reassembles the model’s local actions into
a single global abstraction of the program (§3.3.3). At this
level, the developer can reason about global properties of
the system, without the complexity of low-level details like
thread interleaving, memory management, or even locking
strategy. Because each step above is proven sound, the global
correctness properties hold for the implementation as well.

3.3.1 Abstracting Local Actions

As a first step towards proving global correctness, an Iron-
Sync developer proves that their implementation corresponds
to a simpler program, where threads, locks, and other imple-
mentation details are entirely abstracted away. Reasoning
about the correctness of the new program is much simpler.

914 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Returning to our bank, we would like the abstract program
to operate over a simple state representing all of the accounts:
State : {accounts : map<AccountId, Balance>}

The challenge is to connect the application’s concrete state
(e.g., as stored in array) to the abstract state above.

As discussed earlier, once the implementation commits to
a fine-grained, per-account locking strategy (as in Figure 3),
it becomes difficult for an individual thread to reason about
the global concrete state. After all, any given thread holds at
most two locks at a time, and hence it cannot authoritatively
reason about the state of the rest of the accounts.

Hence, IronSync introduces the concept of a Localized
Transition System (LTS) (formally defined in §6.1), which
breaks the abstract program’s state into shards that match the
“granularity” of the concrete implementation. The LTS then
defines transitions that apply locally to only a subset of the
shards. These transitions capture the work a thread performs
on its local view of the state. We can later (§3.3.3) reassemble
these local views into a global view.

Figure 7 shows the LTS definition for our bank example.
The LTS defines a shard to be the information for a single
account, matching the granularity of the locking scheme in
Figure 3. The localized transition function transfer says
that a thread that holds two shards (the “pre-state shards”),
one for A and one for B, where A’s shard holds at least amt
dollars, can exchange those shards for a new pair of shards
(the “post-state shards”) with updated balances. This defini-
tion directly captures the intuition that a transfer only affects
(and is affected by) the state of the two accounts involved. All
other accounts (shards) are irrelevant.

Notice the abstraction the LTS provides: the update to the
shards occurs atomically without any explicit mention of par-
ticular synchronization primitives. For complex systems, this
simplification makes the application vastly easier to analyze.

In designing their LTS, a developer will typically choose
a “granularity” for their shards and actions that matches the
granularity of the implementation’s concurrency strategy. As
we discuss below, this makes it feasible to use the local cor-
rectness techniques from §3.2 to tie the implementation to the
LTS. Choosing a coarser granularity would complicate the
proof of this connection, while choosing a finer granularity
would introduce unnecessary complexity into proofs about
the global system (§3.3.3).

In practice, this means that different programs will use
different LTS designs. A program with a modest concurrency
strategy can afford to use coarse-grained shards, doing most
of the proof work “locally” using techniques from §3.2. A
program with an aggressive fine-grained concurrency strategy
will use finer-grained shards, and thus put more work into
spanning the gap from the LTS to the global system.

3.3.2 Tying the Concrete Implementation to the LTS

To make use of the abstraction provided by the LTS, we
must soundly (i.e., in a machine-checked way) establish that

Shard : {id : AccountId, balance : Balance}

localized transition transfer(A, B, amt) :
for some (bal_1, bal_2) where bal_1 ≥ amt,
pre-state shards :

{id : A, balance : bal_1}
{id : B, balance : bal_2}

post-state shards :
{id : A, balance : bal_1 - amt},
{id : B, balance : bal_2 + amt}

Figure 7: Bank LTS

the implementation’s behavior matches that of the LTS; thus
properties proved about the LTS will meaningfully apply to
the real implementation.

A key idea in IronSync is that we tie the implementation to
the LTS by explicitly manifesting and manipulating the state
shards of the LTS abstraction in the implementation code.
The code then uses the local correctness techniques from §3.2
to prove that its manipulation of its concrete state correctly
reflects LTS-defined actions on the corresponding shards.

In more detail, the implementation holds LTS shards in
owned ghost variables. Ghost variables act like normal vari-
ables, but they serve only as “proof constructs” and are absent
from the compiled executable. Making the shards owned
ensures that they cannot be duplicated, preventing the imple-
mentation from holding on to two potentially contradictory
shards (e.g., one that claims account A holds v dollars and
another that claims it holds v+ x dollars). Indeed, unique
ownership prevents those shards from existing anywhere in
the system, even spread across different threads.

In practice, an IronSync developer will typically embed the
ghost shards into their implementation and tie the ghost state
to physical state via invariants. The top of Figure 8 illustrates
this idea for our bank example. The implementation stores
each account’s concrete balance in an Entry datatype (similar
to a struct) that also holds a ghost owned shard defined by
the LTS. The account entries live in a sequence, each protected
with a lock with an invariant that the ghost state in the shard
matches the physical state of the implementation.

Looking at this program, a reader might understandably
wonder what is accomplished by redundantly “doubling up”
the state into a physical account balance and a ghost account
balance. The key is that by doing so, we establish the formal
correspondence between the concrete implementation state
and the abstract state of the LTS.

The final step is to connect the implementation’s actions
to the transitions in the LTS. To do so, IronSync provides a
trusted, axiomatic API for the ghost shards, with API calls
that update the shards by performing valid transitions of the
verified LTS. Each call consumes the old owned shards, and
produces new owned shards. As shown in Figure 8, this
means that during a transfer, the developer can update the
physical state of the account balances and then atomically
exchange (via LTS_transition) the old shards for a new
pair representing the LTS state after performing the abstract
transfer transition. These new shards match the concrete

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 915

datatype Entry = Entry(bal : int, ghost owned shard : Shard)

shared var accts : seq<Lock<Entry>> where
∀i, accts[i] has lock invariant : (entry : Entry)

⇒ entry.shard == Shard({id : i, balance : entry.bal})

method DoTransfer(A : AccountId, B : AccountId, amt : Dollars)
// Acquire locks on both accounts.
owned var guardA : = AcquireExcl(accts[A]); lock A

owned var guardB : = AcquireExcl(accts[B]); lock B

// These follow from the lock invariant.
assert guardA.v.shard.bal == guardA.v.bal;
assert guardB.v.shard.bal == guardB.v.bal;

// Physically move `amt` from one account to the other.
guardA.v.bal -= amt; debit A
guardB.v.bal += amt; credit B

// Invariant is temporarily broken.
assert guardA.v.shard.bal != guardA.v.bal;

// Perform the transfer transition of the LTS
// as a ghost operation.
guardA.v.shard, guardB.v.shard : = ghost transition
LTS_transition("transfer", guardA.v.shard, guardB.v.shard, amt);

// Lock invariants have been restored.
assert guardA.v.shard.bal == guardA.v.bal;
assert guardB.v.shard.bal == guardB.v.bal;

// We can now release the locks.
ReleaseExcl(guardA); unlock A

ReleaseExcl(guardB); unlock B

Figure 8: An implementation of our bank example. Figure 9 illus-
trates one possible execution.

state, satisfying the corresponding lock invariants and hence
allowing the locks to be released.

Hence, we can soundly reason about the implementation’s
concrete actions on concrete state using the LTS’s abstract
transitions on its abstract shards. IronSync’s trusted API
allows the programmer to make this connection locally in the
implementation code by showing that a sequence of physical
steps are consistent with the “large” atomic steps of the LTS.

We illustrate this process in Figure 9a, which shows one
invocation of the DoTransfer method from Figure 8. The il-
lustration depicts the relationship between the ghost shards of
the LTS (dashed blue boxes) and the physical values stored in
memory. Time runs along the x-axis; each vertical gradation
represents a fine-grained period, such as a single instruction.

Initially, Thread 2 holds no locks. It receives a client
request to transfer $7 from A to B. The developer knows that
the relevant LTS transition requires atomically interacting
with the A and B shards, so the thread’s first step is to acquire
lock A. Lock acquisition brings into Thread 2’s scope both
permission to observe the physical value of A (via a pointer;
the physical value does not move from the heap, of course)
as well as the ghost shard for A.

Later, Thread 2 likewise acquires the physical B state and
its ghost shard. The ghost LTS transition requires that shard A
has a value greater than the $7 transfer. Thread 2 confirms this
by checking the physical value of A, which it knows (from
the lock invariant) matches the ghost shard for A.

Then Thread 2 debits $7 from the physical value of A. Note
that the ghost shard has not changed; no LTS transition allows
debiting A all by itself. The lock invariant is temporarily false,
which is fine, since Thread 2 still holds the lock. Next, Thread
2 credits $7 to the physical value of B.

Thread 2 cannot release the locks until it restores their
invariants. Hence, it invokes transfer(A,B,7), the ghost
LTS transition from Figure 7, which consumes the shards
A : 9, B : 1. As a ghost transition, this happens instantaneously.
The transition yields (by postcondition) the new shards A :
2, B : 8, which the thread proves match the corresponding
physical values. Having restored the lock invariants, the
thread completes its work by releasing its locks, one at a time.

For simplicity, we do not illustrate any activity on Thread 1.
However, observe that it could, with any interleaving, acquire
noncontending locks and interact with their associated state.

3.3.3 Global Logical Correctness With the GSM

To reason about the logical correctness of the entire multi-
threaded program, we reassemble the shards of the LTS into a
representation of the program’s global state, and similarly, we
translate the local transitions of the LTS into global transitions
over the global state. We call the result (formally defined in
§6.1) a Global State Machine (GSM).

Figure 10 shows the developer’s definition of the GSM
for the bank example. The State now holds all of the ac-
counts. The transfer transition is an atomic step that reads
and writes the global state. As in Figure 9b, the GSM’s
state only changes—atomically—at the moment Thread 2 in-
vokes the ghost LTS transition. Hence, regardless of low-level
thread interleaving, from GSM’s global perspective, the state
advances through a sequence of atomic global transitions,
even as the physical values are updated asynchronously. This
greatly simplifies reasoning about global correctness.

Indeed, since the GSM is a standard state machine, we
can employ standard reasoning techniques honed by decades
worth of research [32], including prior work automating such
reasoning [19, 20]. For example, we can easily prove that
account balances never go negative, or that the total amount
of money across all accounts is always preserved. In both
cases, the proof proceeds by showing that the property holds
in an initial state, and then showing that if it holds before an
atomic transition, then it also holds afterwards. For the bank
example, these proofs are produced fully automatically.

In contrast, it would be impossible to talk about such global
properties from within the implementation, where a given
thread only ever holds at most two locks.

Soundly Assembling the GSM. To compose the LTS
shards into the GSM’s state, the IronSync developer must
declare a datatype that can hold one or more shards. §6.1 dis-
cusses the formal rules the datatype must obey, but a common
pattern is to use a (partial) dictionary from an application-
specific identifier (e.g., an account ID) to the corresponding
shard. The developer then proves the soundness of each LTS

916 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A:9

A:9

A:9

C:1

C:1

C:1

B:1

B:1

B:1

C:1

C:1

B:1

B:1
T
h
re

a
d
 1

g
lo

b
a
l
v
ie

w
T
h
re

a
d
 2

C
lie

n
t

U
n
lo

ck
e
d
 H

e
a
p

re
q
:

tx
fr

(A
,
B

,
$

7
)

a
ck

 t
x
fr

A:9

A:9

C:1

C:1

B:1

B:1

A:9

A:9

C:1

C:1

B:1

B:1

A:2

A:9

C:1

C:1

B:8

B:1

A:2

A:9

A:9

C:1

B:1

A:9

C:1

B:1

A:9

C:1

B:1

A:9

C:1

B:1

A:2

C:1

B:8

B:8

B:8

A:2

A:2

A:2

A:2

B:8

B:8

B:8

B:8

A:2

A:2

C:1

C:1

C:1

C:1

C:1

C:1

A:2

B:8

A:2

C:1

B:8

C:1

time (instructions)

g
h
o
st

 t
ra

n
si

ti
o
n

d
e
b
it

 A

lo
ck

 A

lo
ck

 B

u
n
lo

c
k
 A

u
n
lo

c
k
 B

instantaneous

cr
e
d
it

 B

physical

ghost

(a)

(b)

Figure 9: (a) Ghost values (dashed cyan boxes) travel alongside physical values (solid yellow). Ghost values are atomically updated according
to the LTS rules (see §3.3.2 for details). (b) LTS transitions, in turn, are abstracted into the GSM (§3.3.3).

State : {accounts : map<AccountId, Balance>}

atomic transition transfer(A, B, x) :
if state.accounts[A] ≥ x {

state.accounts[A] -= x;
state.accounts[B] += x;

}

Figure 10: Bank GSM

transition, with respect to this dictionary. Oversimplifying,
this proof proceeds as follows. We imagine starting with a dic-
tionary that contains at least the transition’s incoming shards
(in Figure 7, the initial account information for A and B), and
possibly some others as well. We remove the incoming shards
from the dictionary and hand them to the localized transition.
We then try to combine the outgoing shards with the dictio-
nary. If this results in a well-formed dictionary (i.e., no keys
are duplicated), the transition is valid and can be lifted to an
atomic transition of the GSM (as shown in Figure 10).

4 Advanced IronSync Techniques
Verification of real concurrent programs often has additional
challenges beyond those of our “toy” banking example. This
section illustrates, via examples, IronSync’s solutions to two
situations that arise in a real concurrent system:

• An abstraction of the program state (like the GSM) might
still not be abstract enough to be a useful specification.

• Developers employ custom synchronization tools (be-
yond simple locks), plus optimizations like read-sharing.

We apply these solutions to the complex case studies in §5.

4.1 Specification via Refinement

For trivial programs like our bank, one might accept an invari-
ant as the definition of correctness. For substantial programs,
we prefer to express correctness via a trusted specification that
precisely defines the program’s expected behavior, and then
prove that the implementation refines it; i.e., every execution

Shard: {idx: nat, entry: (Key, Value)?}

localized transition insert(key, value):

for some (i, j, k⃗, v⃗)
where i = hash(key) and key /∈ {k_i, ..., k_j}

pre-state shards:
{ for m = i .. j | {idx: m, entry: (k_m, v_m)} }
{idx: j+1, entry: null} // First empty slot

post-state shards:
{ for m = i .. j | {idx: m, entry: (k_m, v_m)} }
{idx: j+1, entry: (key, value)} // Holds (key, value)

Figure 11: A Hash Table LTS Transition that inserts a new
(key,value) pair at index j+1; the other shards are unmodified,
but serve to justify that j+1 is the correct index.

of the implementation is an execution of the spec.
A hash table’s spec, for example, is a simple dictionary, suc-

cinctly expressible in 10-20 lines. Its implementation obeys
the spec while providing good performance. For instance, a
Robin Hood Hash Table (RHHT) [10] stores key-value pairs
in an array and locates keys via linear-probing [30]: given a
key, probing starts with the key’s hash index and continues
sequentially until the key or an empty slot is found.

To exploit concurrency, a developer might add multiple
threads and create a lock for each slot in the array. A straight-
forward concurrency strategy would have a thread lock the
entire range of slots needed for each linear probe, complete its
operation, and then release the locks. To express this strategy
in IronSync, per §3, the developer defines an LTS (Figure 11)
with shards at the granularity of the locking scheme: each
shard of the LTS represents a single array slot.

Once the LTS is proven sound, the developer uses IronSync
to reassemble the LTS into the GSM comprising the full
sequence of optionally-occupied slots. They then prove that
the GSM refines the spec by establishing invariants. One
RHHT invariant is that each key in the table can be found
in a contiguous range of non-empty slots starting from the
key’s hash index. Proving refinement via such invariants is

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 917

straightforward using standard techniques [32] previously
encoded in Dafny [19, 20].

4.2 Lower-Level Memory Primitives

The previous examples are built from locks, which help main-
tain data safety. In practice, many advanced concurrent sys-
tems do not use locks, but rather custom synchronization
tools built from lower-level primitives. Supporting such ad-
vanced systems is a core IronSync goal, and hence IronSync
makes these lower-level primitives its base and then verifiably
constructs locks and other synchronization tools from them.
In this section, we introduce IronSync’s primitives and, as a
warm-up, see how they let us verify a basic mutual-exclusion
lock.

Consider a lock implemented with two fields: a boolean
flag indicating whether the lock is taken, and a slot for the
data being protected by the lock. Defining operations on
these fields must be done in terms of a memory-ordering
model, which dictates when different threads may disagree
on the ordering of reads and writes. Developers must take
care to use special, slower instructions to synchronize threads
when necessary, and such subtleties are notoriously difficult
to handle correctly, especially since the details depend on the
hardware platform (e.g., x86-TSO [45] or ARM [1]).

IronSync’s memory model is based on the C++11 memory
model [5, 7], which abstracts over these hardware differences
by providing a distinction between non-atomic memory (the
most common, “normal” memory) and atomic memory. Non-
atomic memory access compiles to fast instructions, while
atomic memory (depending on how it is used) may compile
to slower instructions, possibly involving memory fences. To
make this dichotomy sound, the C++ model requires all non-
atomic accesses be data-race-free (a burden placed on the
programmer); however, the atomic memory allows contended
access. In the lock example, multiple threads might contend
to access the flag, but the thread that wins will have exclusive
access to the data field, making its accesses data-race-free.

IronSync supports data-race-free non-atomic memory and
sequentially-consistent atomic memory. Specifically, it takes
advantage of the C++11 memory model’s DRF-SC property,
which states that if all non-SC memory accesses are data-
race-free, then the entire execution is sequentially-consistent.
By allowing data-race-free memory for the common cases,
IronSync takes advantage of much of the speed afforded by
modern hardware, although it does not take advantage of
the weaker atomic memory orderings (e.g., release-acquire
ordering or relaxed).

In particular, IronSync supports these two modes of shared-
memory-access through two of its trusted primitives, Atomic
for word-sized atomic memory and Cell<T> for non-atomic
memory storing arbitrary types T. To ensure that access to a
shared Cell<T> is data-race-free, IronSync requires a thread
to own a special ghost object of type Permission<T> for read-
ing and writing. Meanwhile, IronSync treats the sequentially-

consistent atomics as if they were “virtual locks” that can be
unlocked for a single atomic operation; they can then use lock
invariants, as before, to verify code that manipulates ghost
objects in the virtual lock. Atomic supports common atomic
operations, like compare-and-swap and atomic addition.

With these tools, the developer can verify a lock as follows:
they declare the flag field as an Atomic and the data field
as a Cell. They store the ghost Permission object for the
Cell in flag’s virtual lock. By reading and writing to flag
(e.g., with an atomic compare-and-swap), threads can transfer
ownership of the Permission, allowing them to access the
data field in a data-race-free manner. This process is verified
by IronSync, which checks that the invariant on the virtual
lock is maintained.

4.3 Read Sharing

Crucially, data-race-freedom does not preclude all simulta-
neous access. While it prohibits a write from occurring si-
multaneously with a read or another write, it does permit
multiple simultaneous readers. This read-sharing is crucial
for performance in many applications; however, to make use
of it, the developer must still ensure that threads obey some
single-writer, multiple-reader protocol. In such a protocol, the
developer ensures that there can be a single writer or multiple
readers at any given time, but never both at the same time
(and of course never more than one writer).

The challenge with read-sharing protocols is that there is no
optimal way of accounting for the shared state. For example,
a particularly common protocol uses reference-counting, e.g.,
in a reader-writer lock, but even here, there is no universal
way to implement a reader-writer lock. Our case studies (§5),
for example, employ two different custom-built reference-
counting-based locks, and locks aren’t even the end of the
story. Our NR case study (§5.1) uses a lock-free cyclic buffer,
where multiple threads share read-access to entries, and where
the safety is guaranteed by a protocol of head and tail pointers.

In IronSync, the developer can implement and verify a read-
sharing protocol, including any of the above, by designing a
particular kind of LTS, which we call a guard protocol, and
proving that it enforces safe access to shared state. A guard
protocol is an LTS whose state has an explicit notion of a
stored (ghost) object, along with a notion of depositing and
withdrawing that object. Intuitively, the program begins with
a unique reference to an object (e.g., the ghost Permission
for a Cell – see §4.2). To create read-shared references that
it can give to other threads, the program “deposits” the object
into the guard protocol, and in exchange it can obtain one or
more guards. A guard is simply an LTS state shard that acts
as a “witness” that the object has been deposited (and not yet
withdrawn). Once all the guards (i.e., read-shared references)
are returned, IronSync allows the program to “withdraw” the
reference from the LTS and use it once again for mutation.

To demonstrate the soundness of their guard protocol, the
library developer must show that it satisfies two obligations.

918 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

First, they show that guard shards only exist when an object
has been deposited (and not yet withdrawn). This prevents
the library from synthesizing bogus read-shared references.
Second, they show that the LTS’ withdrawal transition only
occurs when an object is in fact deposited and there are no
outstanding guards.

Once the guard protocol is proven sound, IronSync pro-
vides the library developer with an extended version of the
trusted shard API from §3.3.2. Recall that the standard API
consumes and produces owned shards. The API for guard
protocols, however, allows a thread holding a read guard to
acquire a shared version of the protected data; e.g., a shared
Permission for a Cell, which the Cell API requires for read
access to its concrete memory, but which doesn’t suffice to
use the API for writing. Hence, the developer can ergonomi-
cally manipulate shared data using Dafny’s shared variables,
with the assurance that all accesses are data-race free.

Crucially, IronSync’s general approach to read sharing
enables a developer to devise protocols that are drastically
different from a read/write lock. For example, in the cyclic
buffer (§5.1), threads read entries (via ghost guard objects)
and use a head pointer to indicate when they are done; other
threads look at these head pointers to determine when it is safe
to garbage collect the entries and overwrite them (requiring a
withdraw).

5 Case Studies
IronSync, we have seen, comprises a collection of tools:
(ghost) ownership types, LTS abstraction, state-machine re-
finement, and automated verification. To test that this collec-
tion suffices to verify modern production-scale systems (i.e.,
systems notable for their performance, which they achieve
through non-trivial concurrency patterns), we select two such
systems and produce verified implementations within Iron-
Sync. These particular systems were chosen, in part, because
there was independent interest in verifying their correctness
from the systems’ designers. We compare our case studies to
those in prior work in §9.

By producing implementations that match the originals in
design and performance (§7), we show that writing a system
in IronSync does not sacrifice performance-critical concur-
rency patterns. Of course, our implementations are not identi-
cal to the originals: ours are written in Dafny (and compiled
to machine-generated C++ code), and they make a few minor
deviations from the originals (§7.2). Nonetheless, the exercise
does, as a bonus, yield some insight into the originals (§7.3).

Overview. Both case studies are complex; for each, cor-
rectness depends on myriad interlocking moving parts. Hence,
we show how an IronSync developer divides the proof work
into manageable subtasks, and chooses the right IronSync
tool for each.

Specifically, NR (§5.1) shows how to pull together all
the IronSync features discussed earlier. With SplinterCache
(§5.2), we also verify the program’s use of an external disk.

CyclicBuffer

FlatCombine

DistRwLock

Replication

SimpleLog

Linearized X

Trusted Spec

CacheRwLock Cache

CacheDisk model

System Model (Cache+Disk)

PageMap

Trusted Spec
Refinement on

execution traces

(a) Node Replication (b) SplinterCache

Black-box data
structure X

Primary LTS

Trusted component

Atomic State Machine

Guard Protocol LTS

Refinement

LTS/GSM
relationship

Primary GSM

Impl + Ghost

Replication

Figure 12: Proof architecture of our case studies.

Common Architecture. Each case study follows a similar
high-level structure. Each has a primary LTS (and a corre-
sponding GSM), which is used, via state-machine refinement
(§4.1), to establish that the program meets its specification. In
addition, each program uses complex synchronization logic
that makes data safety challenging, so each case study also
uses several secondary LTSes as guard protocols (§4.3). Fig-
ure 12 summarizes the architectures for the case studies in
terms of these components.

5.1 Node Replication NR

NR [9] is a concurrency library that transforms a black-box,
sequential data structure into a linearizable, NUMA-aware
concurrent version. NR works by replicating the sequential
data structure on each NUMA node, using an operation log
to maintain consistency. Replicas benefit from read concur-
rency using a reader-writer lock designed to minimize reader
contention [50] and from write concurrency using flat combin-
ing [22], which batches operations from multiple threads to be
executed by a single combiner thread. The combiner appends
the batched operations to the log; other nodes read the log and
update their local replica copies. The original, unverified NR
implementation is ∼1000 lines of Rust. NR has recently been
adopted by NrOS [6], which uses it to implement scalable
versions of a wide range of OS subsystems.

Verification Objective. Our verified implementation also
takes a user-provided black-box data structure, this time one
with a functional spec. Verified NR produces the replicated
data structure and a proof that this replicated system meets
the same functional spec linearizably.

Proof Overview. As in our earlier examples, we can
coarsely divide our tasks into data safety and logical cor-
rectness. In some places, the reference implementation uses
Rust’s unsafe code, so these parts pose challenges for our
verified implementation. In Rust, unsafe means that the
code foregoes Rust’s usual safe aliasing checks and places
the burden of correctness on the programmer. In IronSync,
this means that we cannot (solely) rely on the ownership type
system to ensure data safety. Luckily, IronSync has a verified
alternative: the guard protocol.

As an example, consider the cyclic buffer at the center of
NR’s coordination, used to broadcast messages from one node
to all other nodes. Using a stringent protocol of head and tail

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 919

pointers, NR ensures that each node reads each message after
it is written but before it is garbage collected, and further,
that these reads and writes are properly synchronized. Notice
how this custom protocol of head and tail pointers is used
in place of a general utility for safe data access (like a mu-
tex). Figure 13 shows pseudocode for parts of this protocol,
delineating the read sections and write sections for buffer
messages. Data safety, here, approximately amounts to say-
ing that the write section never overlaps any another section.
This read-sharing pattern is exactly what guard protocols are
designed to support. We can construct such a protocol by
identifying the instructions relevant to data safety (marked ⋆
in Figure 13) and abstracting them into an LTS.

NR has two more places where we need to do something
similar. One is a specialized lock that protects the per-node
replicas. These locks are designed with multiple reference
counters to reduce thread contention; using a guard protocol,
we can verify the lock and provide an API similar to the lock
API discussed in §4.3. Finally, NR uses a flat-combining
algorithm, and so we must reason about the synchronization
of data between a client thread and a combiner thread.

With the three guard protocols, DISTRWLOCK,
CYCLICBUFFER, and FLATCOMBINE to “patch up”
holes in the ownership type system, the only remaining
task is to prove a linearizable specification. We use an LTS,
REPLICATION, to track (i) all in-progress updates and reads,
(ii) the states of node-local replicas, (iii) the full history of
event messages, and (iv) version numbers for the replicas.
Since so much of the synchronization logic is already handled
by the guard protocols, the LTS abstraction is dramatically
simpler than the NR system as a whole: we have relegated
entire subsystems to being “mere implementation details.”

Now, from REPLICATION, we can construct the GSM as
an abstraction of the global system behavior. Next, we need
to establish a state machine refinement to a linearizable spec-
ification. This is challenging because REPLICATION has
future-dependent linearization points; hence, we cannot prove
that REPLICATION refines a linearized state machine with a
single-state abstraction function. Instead, we have to prove a
theorem operating over arbitrary execution traces. To simplify
this task, we split it into two steps: first we prove, via a single-
state abstraction function, that REPLICATION’s GSM refines a
simpler state machine, SIMPLELOG, which only tracks a log
and the index of the latest linearized operation. Abstracting
out replicas makes SIMPLELOG much easier to analyze, and
the theorem over execution traces becomes tractable.

Notice that in Figure 13, the CYCLICBUFFER and REPLI-
CATION subsystems are heavily interleaved, with some in-
structions even being part of both. We discuss this in §8.

5.2 SplinterCache

SplinterCache is a production-grade in-memory page cache
used by the key-value store SplinterDB [14], which was cre-
ated for use in VMware’s vSAN [49]. SplinterCache is built

fn append(ops):
tail := globalTail;
if tail + ops.length > globalHead + SIZE:
wait and retry;

compare_and_swap(globalTail, tail, tail + ops.length);

for i in 0 .. ops.length:
j := (tail + i) % SIZE;
live_bit := ((tail + i) / SIZE) % 2;
log[j].op = ops[i]; // Non-atomic write
log[j].alive = live_bit; // Synchronizing write

fn dispatch():
head := nodeLocalVars.localHead;
tail := globalTail;
for i in head .. tail:
j := i % SIZE;
live_bit := (i / SIZE) % 2;
wait until:

log[j].alive == live_bit; // Synchronizing read
op := log[j].op; // Non-atomic read
applyUpdateToReplica(op);

atomic_max(maxReplicaVersion, tail);
nodeLocalVars.localHead := tail;

W
rit

e
se

ct
io

n
Re

ad
 se

ct
io

n

Figure 13: Pseudocode of key NR algorithms, omitting ghost shards.
Shared variables are bold for atomics and italics for non-atomics. ⋆
is code relevant to CYCLICBUFFER; to REPLICATION. Ranges
show where it is safe to read and write log[j].op; CYCLICBUFFER

proves disjointness.

for loads where it may have 100GiB of RAM available and for
use with low-latency IO devices. Clients can acquire a lock
(reader or writer) on a disk page by its address, and the cache
abstracts the details from the client. Internally, it loads that
page into memory if necessary, and it handles writeback and
eviction. Its optimizations include prefetching and batched
IOs. It attempts to flush pages to disk before they need to be
evicted. The reference code is ∼ 2000 lines of C.

Verification Objective. We characterize the behavior of
the cache operating together with an external disk, using a
trusted model of the disk. Our high-level spec, PAGEMAP,
maps each block address to two 4KiB pages, an on-disk and
an in-memory version. The system may nondeterministically
overwrite the on-disk version with the in-memory one.

A cache makes weaker promises than a key-value store or
file system, which might offer snapshot consistency. However,
this doubled-up mapping spec still constrains behavior in the
event of a crash, demonstrating how IronSync programs can
integrate with prior approaches to verifying crash safety [19].

Proof Overview. Once again, we divide our proof into
data safety and logical correctness.

The SplinterCache uses a complex locking scheme to pro-
tect the in-memory cached pages. The cache implementation
needs to acquire a write lock to write to a page or a read lock
to read from a page, but there are some subtleties: even if the
client intends to only read a page, the cache may still need
to load it from disk, which means writing the contents into
memory, which requires a write lock on the memory page.

For efficiency’s sake, the locking protocol has a variety of
special states for handling situations like the above. More
specifically, the lock has bit flags for states (not all mutually
exclusive): (i) WriteBack: the page is being written to disk,
effectively an extra read-lock; (ii) Loading: the page is being

920 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Free Loading

Clean

DirtyWriteBack

Disk read
command

Disk read
response

Disk write
command

Disk write
response

Eviction

Application
write

Free Loading

Unlocked ReadLocked WriteBack

Claimed WriteBack/
Claimed

PendingWriteLocked
WriteBack/

Pending

Figure 14: (a) Left, transitions for the lock status of a single cache
entry in CACHERWLOCK. Dashed ovals represent read-locked
states; double ovals represent write-locked states. (b) Right, transi-
tions for the status of a single cache entry in CACHE. Both figures
are simplified abstractions.

loaded from disk; (iii) Free: this entry is not assigned to
a disk page; and (iv) Claimed: the claiming thread has the
exclusive right to upgrade a read lock to a write lock. These
states allow optimizations; e.g., an entry marked Free cannot
be locked, so a thread that loads a page into a free entry can
skip the usual check that there are no readers. Even beyond
these states, the lock has the same multiple-reference-counters
optimization as NR’s DISTRWLOCK described earlier. Fig-
ure 14a summarizes all the states.

As usual, we handle the reader-writer lock with a guard
protocol. This leaves logical correctness, which we prove
with the CACHE LTS. It tracks the information needed to
prove consistency properties between cache and disk; e.g., it
maintains a two-way mapping between cache entries (indexed
by entry numbers) and disk pages (indexed by page numbers).
It tracks the status of each entry, which may be either empty
(i.e., not corresponding to any page), loading, clean, dirty, or
writeback-in-progress. This is summarized in Figure 14b.

Next, we can construct the CACHE GSM as a sound ab-
straction of our implementation. We then apply previous tech-
niques [19] to integrate CACHE with a (trusted) model of the
asynchronous disk. This yields a state machine CACHE+DISK
which abstracts the behavior of the entire system. Here, we
prove relevant invariants: the bidirectional mapping is self-
consistent; outstanding IO requests agree with the loading
and writeback statuses; an in-memory clean page matches the
on-disk page. We finally prove that CACHE+DISK refines
PAGEMAP as the high-level specification.

6 Formalism and Implementation
IronSync’s Trusted Computing Base comprises the following:

• A trusted programming language and verifier.
• A trusted library of shared-memory primitives (§4.2).
• A trusted library of formal definitions and axioms for

LTSes, guard protocols, and state machine refinement.
The Language. IronSync is built on Linear Dafny [35];

we added ghost ownership types to its existing (non-ghost)
ownership types, and we also supply Atomic and Cell types
(§4.2) for shared memory. To prevent unsoundness with
concurrent threads, IronSync disallows Dafny’s traditional
support for aliasable mutable objects.

IronSync code compiles via Dafny’s C++ backend, and
uses std::atomic to implement IronSync’s Atomic. There-
fore, the C++ compiler is also part of the trusted toolchain,
notably including its mapping from C++’s memory ordering
model to the hardware’s. Specifically, we rely on the compiler
to insert memory fences appropriately for any Atomic mem-
ory locations, thereby providing the sequential consistency
guarantees for the language runtime.

6.1 Formal Definitions

We briefly summarize the mathematical formalism underpin-
ning IronSync’s LTS (§3.3.1) and the guard protocol (§4.3).
These definitions are exposed to the IronSync developer via
an axiomatically trusted library in Dafny.

IronSync introduces LTSes to formalize the idea that a
transition updates and depends on only a portion of the state,
while the rest of the state is irrelevant. This formalization
encodes shards as elements of a monoid, an established tool
from concurrency reasoning from separation logic [26].

Definition 1 (LTS: Localized Transition System) A Local-
ized Transition System is a triple (M, Init,τlocal). Here, M
is a commutative monoid, that is, a set with a composition
operator (·) : M×M → M which is associative and commuta-
tive, and with a unit element ε ∈ M (i.e., ∀m ∈ M.m · ε = m).
Meanwhile, Init : M → bool represents valid initial states,
and τlocal : M×M → bool is a “local transition function.”

This essentially says that an element m ∈ M represents
partial information about a state of the system, while the
composition of two elements gives us a way to combine
the partial information about different components. Thus a
transition τ makes sense even on pieces of partial information.
In the bank example discussed at the end of §3.3.3, each m is
a (partial) dictionary from account IDs to account info.

The IronSync framework then defines the global state ma-
chine (GSM) in terms of the LTS by taking elements of m that
represent a complete view of the system (e.g., a dictionary
containing all of the bank’s accounts). Specifically, we define
a transition on a complete state by splitting it in two: one
part to be operated on, and one part that is irrelevant to the
transition, and then performing the transition on the first part:

Definition 2 (GSM: Global State Machine) Given an LTS
(M, Init,τlocal), we define a global transition function,

τglobal(s,s′)≜ ∃d,d′,e. τlocal(d,d′)∧(s = d ·e)∧(s′ = d′ ·e).

We call (M, Init,τglobal) the Global State Machine.
In the bank example, d would be a dictionary holding keys
for the two accounts involved in a transfer, and e would be a
dictionary holding all of the other accounts.

6.2 Guard Protocols

A Guard Protocol consists of (i) an LTS with a notion of ghost
objects that may be deposited or withdrawn, and (ii) a notion
of a guard, a state shard that locally guarantees a particular

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 921

ghost object is deposited. Concretely, a Guard Protocol is
defined by its relation to the following state machine that
formalizes “deposited state.”
Definition 3 (Safety-Deposit State Machine) Given a set
T , a Safety-Deposit State Machine is a state machine defined
over the state T ∪{empty}, with transitions, for all t ∈ T :

empty
deposit(t)−→ t t

withdraw(t)−→ empty

empty internal−→ empty t internal−→ t

Here, T is the set of ghost objects that can be deposited.
A developer defines an LTS for their Guard Protocol and

proves it sound based on the definition below, and in ex-
change, IronSync gives them access to a set of ghost shards
representing their protocol: a thread can deposit ghost objects
from the set T into the protocol and withdraw them later. Cru-
cially, the trusted IronSync API from §4.3 allows code that
holds a guard shard to obtain a shared copy of the deposited
value t, which allows the code to ergonomically and soundly
manipulate read-shared data.

Formally, we define a Guard Protocol as follows.
Definition 4 (Guard Protocol) Given a set T , a Guard
Protocol is an LTS that has three transition types,
(M, Init,τinternal

local ,τ
deposit(t)
local ,τ

withdraw(t)
local); an invariant Inv :

M → bool; and an abstraction function Abs : M → T ∪
{empty}. We define τinternal

global ,τ
deposit(t)
global ,τ

withdraw(t)
global of the GSM

as in Def. 2.
We say the Guard Protocol is sound if Inv is an inductive

invariant on the GSM, i.e., ∀ transition labels ℓ:

∀m ∈ M. Init(m) =⇒ Inv(m)

∀m,m′ ∈ M. Inv(m)∧ τ
ℓ
global(m,m′) =⇒ Inv(m′)

and if the GSM, as interpreted by Abs, refines the Safety-
Deposit State Machine. Given a sound Guard Protocol, we
say that g ∈ M is a read-guard of t ∈ T if,

∀b ∈ M. Inv(g ·b) =⇒ Abs(g ·b) = t.

Here, Abs gives the GSM a notion of a “deposited object.”
The read-guard condition says that in any valid global state
(as given by Inv) with g as a sub-shard, t is guaranteed to
be the deposited object (as given by Abs). This means that a
thread holding the guard shard g can soundly read the shared
value t, and that all such readers will read the same value.

When the IronSync user defines a new guard protocol and
proves it sound, IronSync gives them access to an API to ma-
nipulate ghost shards according to the transitions, as with any
other LTS. In this case, the functions that perform exchanges
can also perform deposits and withdraws; furthermore, there
are new functions for the read-guard objects: if g is a read-
guard of t, then the user can use a shared ghost shard g to
obtain a shared ghost shard t. Linear Dafny’s type system
ensures that the guard reference outlives t.

Major component trusted impl proof verif
LOC LOC LOC time

Common Framework
LTS def. & ghost axioms 487 15 s
Memory Primitives 310 6 s
Libraries 316 3825 75 s
Bank §3
Spec 17 0.7 s
LTS 262 9 s
Impl 21 16 2 s
RHHT Hash Table §4.1
Spec 57 2 s
LTS 687 54 s
Refinement Proofs 168 8 s
Impl 417 1390 68 s
Node Replication §5.1
Spec 104 4 s
REPLICATION LTS 2329 384 s
FLATCOMBINE LTS 649 97 s
CYCLICBUFFER LTS 1756 182 s
DISTRWLOCK LTS 633 17 s
Refinement Proofs 1291 132 s
Impl 730 1170 80 s
SplinterCache §5.2
Spec 185 4 s
Disk Model and API 586 14 s
CACHE LTS 1036 159 s
CACHERWLOCK LTS 2015 86 s
Refinement Proofs 2456 372 s
Impl 1579 3163 297 s
Total 1746 3063 22846 34.7 min

Figure 15: Across all case studies the proof:code ratio is 7.5.

In addition to the formulation above, IronSync provides
a more advanced version that allows multiple objects to be
stored at once. This is useful for NR’s cyclic buffer §5.1,
for example. Both of these formulations are proved correct,
based on a set of low-level axioms for manipulating monoid-
based ghost state with shared variables in Linear Dafny;
those axioms in turn are based on a concurrent separation
logic for temporary read-sharing called Burrow [18].

7 Evaluation
In our evaluation, we aim to answer the following questions:

• What is the verification effort for IronSync development,
both by the developer and the computer verifier (§7.1)?

• Is IronSync suitable for verifying state-of-the-art sys-
tems without compromises (§7.2)?

• What does verification tell us about the original reference
implementations (§7.3)?

7.1 Verification Effort

Verifying all four concurrent examples consumes under an
hour of CPU (5 minutes real time) on an 8-core 64 GiB cloud
machine. 88% of files verify in under a minute; the slow-
est takes less than five. The four examples comprise 2747
lines of non-ghost implementation, plus 316 of shared library.

922 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 15 shows detailed information for each case study.
Within implementation files, the proof-to-code ratio is about
4:1, where the proof code includes both the manipulation
of ghost shards and standard Dafny proof annotations, like
preconditions and postconditions. The full system proofs aug-
ment the implementation files with LTS code and refinement
proofs, raising the overall proof:code ratio to 7.5.

As two points of comparison, we consider GoJournal [12]
and Armada [38] (see §9 for details). GoJournal [12] reports
a 19:1 proof-to-code ratio for its shared-memory code, while
Armada’s largest example takes 4.9 hours of CPU time (about
40 min. of real time) to verify 70 lines of code. These are not
direct apples-to-apples comparisons: Armada and GoJournal
arguably prove more substantial theorems about machine
semantics. Still, verification time and developer effort have
historically limited the use of verification tools, and thus
IronSync constitutes a major practical improvement.

7.2 Case Study Fidelity

We evaluate IronSync’s expressiveness by porting our two
production-level case studies, NR (§5.1) and SplinterCache
(§5.2), to IronSync to confirm that IronSync does not require
sacrificing performance-critical concurrency patterns. We
refer to the case studies’ existing publications [9, 14] (both
within the last 5 years) to justify that they can reasonably be
called “state-of-the-art.” We evaluate how faithful our Iron-
Sync implementations are to the reference implementations
both qualitatively and by comparing performance.

First, we report on intentional compromises we made while
mimicking the reference code of NR and SplinterCache, from
most significant to least. First, in some cases, Reference NR
uses release-acquire atomics. IronSync does not support these,
so we use sequentially-consistent atomics instead. Second,
IronSync does not support callbacks, so we refactored code
to avoid them, and we could not implement the secondary,
callback-based APIs in SplinterCache or NR. Third, Iron-
Sync’s SplinterCache adds a runtime check in one method
whose correctness was otherwise dependent on properties of
SplinterDB’s allocator, which was out-of-scope.

As evidence that these artifacts otherwise meet a high de-
gree of fidelity, we benchmark against their references, using
methodology similar to the reference publications [9, 14].
Each case study has different hardware requirements.

NR. We evaluate NR’s performance against other locks and
to its reference Rust implementation from NrOS [6]. We wrap
a single-threaded radix tree with IronSync-NR, Reference-
NR, or a lock, including a verified DISTRWLOCK (§5.1), an
MCS lock [40], a shuffle lock [27], and the standard C++
shared mutex. The benchmark pre-populates the tree with
128M entries (using 8B keys and values) and executes get and
update requests with a uniform key distribution while varying
the update ratio and the number of threads.

Figure 16 shows the performance measured on a machine
with 4 Xeon Gold 6252 CPUs with 24 cores per NUMA node,

4 48 96 144 192
0M

200M

400M

600M

800M

op
s/

se
c

0% Updates

IronSync-NR

Reference-NR

DistRwLock

Shuffle Lock

MCS

libstdc++ shared mutex

4 48 96 144 192
0M

10M

20M

30M

10% Updates

4 48 96 144 192
threads

0M

1M

2M

3M

4M

100% Updates

Figure 16: Comparing throughput scalability of IronSync-NR,
Reference-NR, and locks. Higher is better.

totaling 96 cores and 192 hardware threads. The threads are
pinned to fill up cores on a NUMA node first before moving
to the next. NR adds one replica for each NUMA node, so
at x=96 threads, NR uses 4 replicas. Beyond 96 threads, no
more replicas are added, and we begin hyperthread-sharing.
IronSync-NR and Reference-NR perform similarly and gener-
ally outperform the rest, especially for read-heavy workloads.

For 0% updates, IronSync-NR, Reference-NR and the
DISTRWLOCK scale linearly, but the other mechanisms
suffer under lock contention. NR performs better than
DISTRWLOCK due to perfect NUMA locality. With 10%
updates, DISTRWLOCK’s performance drops to match the
other locks, while IronSync-NR and Reference-NR benefit
from flat combining. IronSync-NR outperforms Reference-
NR slightly, though we do not yet know the cause.

Only at very high update rates (e.g., 100%) do MCS and
shuffle locks outperform NR at low scale on one NUMA node;
otherwise both NR implementations dominate. Hence, we
conclude that IronSync-NR provides performance parity with
Reference-NR and that it preserves NR’s replication and flat
combining benefits at all scales.

SplinterCache. We evaluate the performance of IronSync-
SplinterCache against the reference implementation both with
macrobenchmarks as part of SplinterDB using the YCSB
benchmark [15], and with cache-specific microbenchmarks.

Results are from a Dell PowerEdge R630 with a 28-core
2.00 GHz Intel Xeon E5-2660 CPU, 192 GiB RAM and a
960GiB Intel Optane 905p PCI Express 3.0 NVMe device.

Macrobenchmarks. Our YCSB configuration largely fol-
lows prior work [14]. We perform the Load, and A-F standard
workloads on SplinterDB using either IronSync- or Reference-
SplinterCache. Each workload uses 24B keys, 100B values
and 14 threads. Run E performs 14M operations and the
others each perform 69M operations, so that each workload
logically reads/writes roughly 80GiB of data.

We use three target memory sizes: 4 GiB to stress eviction
and IO; 20 GiB to reflect a common system configuration;
and 100 GiB to stress in-memory and concurrency. Figure 17
shows that SplinterDB with IronSync-SplinterCache is always
within 9% of the reference performance.

Microbenchmarks. We first allocate pages and flush them

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 923

IronSync-SplinterCache Reference-SplinterCache

LoadA B C D E F

1M
2M

3M
4M

22
58

k

12
15

k

85
5k

83
8k

96
2k

67
4k

80
k

24
46

k

12
07

k

84
8k

83
3k

95
3k

67
1k

77
k

op
s/

se
c

(a) 4GiB
LoadA B C D E F

1M
2M

3M
4M

28
69

k

20
05

k

15
57

k

16
13

k

17
45

k

11
97

k

13
1k

29
42

k

19
92

k

15
60

k

16
25

k

18
00

k

11
84

k

12
9k

op
s/

se
c

(b) 20GiB
LoadA B C D E F

1M
2M

3M
4M

31
91

k

27
40

k

28
59

k

31
51

k

27
50

k

18
23

k

17
5k

31
54

k

27
72

k

28
04

k

30
57

k

26
73

k

18
58

k

17
0k

op
s/

se
c

(c) 100GiB
Figure 17: YCSB Benchmark. 69M ops/workload (E is 14M) with
14 threads. Y-axis is mean of 3 runs. Higher is better.

IronSync-SplinterCache Random Reference-SplinterCache Random
IronSync-SplinterCache Sequential Reference-SplinterCache Sequential

2 4 6 8 10 12 140M
20

M
40

M

threads

op
s/

se
c/

th
re

ad

(a) Uncontended Reads

2 4 6 8 10 12 140M
20

M
40

M

threads

op
s/

se
c/

th
re

ad

(b) Contended Reads

2 4 6 8 10 12 140K
10

0K
20

0K

threads

op
s/

se
c/

th
re

ad

(c) IO Bound Reads

2 4 6 8 10 12 140M
5M

10
M

15
M

threads

op
s/

se
c/

th
re

ad

(d) Uncontended Writes

2 4 6 8 10 12 140M
5M

10
M

15
M

threads

op
s/

se
c/

th
re

ad

(e) Contended Writes

2 4 6 8 10 12 140K
10

0K
20

0K

threads

op
s/

se
c/

th
re

ad

(f) IO Bound Writes

Figure 18: SplinterCache microbenchmark with a 4 GiB cache. Y-
axis is mean throughput of 5 runs. Higher is better.

without evicting them. Then each thread performs a fixed
number of operations, choosing pages either randomly or se-
quentially, then either acquiring a read lock or a write lock.
We use three configurations in a 4 GiB cache: general “un-
contended” in-memory, with 2 GiB of data, (Figures 18a
and 18d), “contended” in-memory, with 128 KiB (32 pages)
of data (Figures 18b and 18e), and “IO bound”, with 8 GiB of
data (Figures 18c and 18f). IronSync-SplinterCache is within
11% of the performance of reference on all microbenchmarks.

7.3 Bugs and Insights

We confirmed the 3 bugs below with the original developers.
NR. In the reference code, we identified a bug which could

cause a read-read linearizability violation between two dif-
ferent nodes if they took place concurrently with an update.
This bug could only occur if a thread dispatched log entries
during garbage collection.

This bug surfaced when we realized our first attempt at
defining REPLICATION would not be linearizable. We fixed
the bug by always holding the lock appropriately, and the
verified implementation now puts an extra ghost shard behind
the lock to represents the lock’s role in REPLICATION.

SplinterCache. We identified two bugs in the reference
code. First was a data race on disk_addr, which maps cache
entries to disk addresses. This race could occur when a read

lock races with both eviction and a subsequent load.
Second, the code for batching write IO did not check that

disk_addr was the expected value after locking a page for
writeback. This could result in data written to the wrong loca-
tion, among other corruptions. We identified these while port-
ing the implementation, as we realized certain ghost shards
would not be available following the reference logic.

8 Discussion on Modularity
Concurrent systems can seem dauntingly anti-modular when
they entangle low-level synchronization with high-level ap-
plication logic, making the tasks of ensuring data safety and
logical correctness seem inseparably intertwined. By veri-
fying two such case studies, IronSync shows how these two
levels of concern can be disentangled within the proof.

In NR (§5.1), for example, the localHead variables
play two distinct roles: (i) buffer entries cannot be
garbage-collected past any node’s localHead (relevant to
CYCLICBUFFER), ensuring data safety, and (ii) localHead
matches the version of the local replica state (relevant to
REPLICATION), ensuring logical correctness. Figure 13 il-
lustrates the overlap of these roles in two methods where the
overlap is notably dense. Note that some operations might
advance both state machines at the same time; however, this
fact is not relevant to proofs associated with either either half.

Likewise in SplinterCache (§5.2), the WriteBack flag plays
a role in both logical correctness (CACHE) and low-level data
safety (CACHERWLOCK). The code ties these two distinct
roles together by using the same flag bit: when a thread
modifies the physical WriteBack flag, it advances both state
machines (Figure 14), but again, this is an implementation
detail to which both abstractions are agnostic.

In short, we modularize proofs of a sophisticated system by
abstracting it in multiple ways. Difficult concurrent reasoning
takes place on simplified abstractions, but IronSync ensures
the abstractions compose soundly; thus proofs about the in-
dividual components say something meaningful about the
whole. The implementation still ties the abstractions together
with physical state, but this step is straightforward from a
verification standpoint, thanks to the ownership type system
and Dafny’s automation. Ultimately, this method decouples
the modularity structure of the proof from that of the code.

9 Related Work
Logics for concurrent programs reflect different trade-offs
between generality, expressiveness, modularity, and usabil-
ity. IronSync strikes a balance between very general state
machines at high levels of abstraction, while at lower levels
leaning on language features like Hoare logic and ownership
types for usability. IronSync trusts these language features
instead of proving theorems directly against operational se-
mantics, unlike work like Armada [38] or Iris [24].

Concurrent separation logic (CSL) [44] lets threads take
temporary ownership of state to perform isolated reasoning.

924 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Propositional CSL is in general undecidable [8], so tools
either require manual assistance from the user, as in Iris
Proof Mode [31] where the user can manually match hypothe-
ses to goals, use incomplete heuristics and user hints, as in
Diaframe [42], or solve restricted fragments, as in Viper [43]
and Steel [16]. Meanwhile, IronSync encodes CSL propo-
sitions using explicit ownership in the type system. Thus,
ownership is directed manually by the user, but this method
lets us additionally take direct advantage of automation from
standard sequential reasoning tools such as SMT solvers and
the weakest-precondition-style encoding used by Dafny.

Recent CSLs are extremely sophisticated. Iris [24] and
Steel [16] employ monoids to extend CSL with flexible own-
ership protocols, used in recent systems like Perennial [11]
and GoJournal [12], and Iris can handle future-dependent
linearization points with prophecy variables [25]. However,
the proof rules in these systems are intricate and may be in-
timidating to non-experts (e.g. Iris needs the “later modality”
to allow impredicative invariants, which allow Iris to express
some invariants beyond what IronSync can handle directly).
In contrast, IronSync aims to make these concepts approach-
able by integrating invariants and monoids into its ownership
type system, and connecting them with state-machine refine-
ment. As a rough comparison, IronSync’s case studies achieve
a 7.7:1 proof-to-code ratio, while GoJournal [12] reports a
19:1 ratio for a comparably sized case study.

Like IronSync, Armada [38], IronFleet [20], and Veri-
BetrKV [19] all employ state-machine refinement. The latter
two use Dafny’s Hoare reasoning for the implementation of se-
quential code, whereas IronSync uses it for concurrent shared-
memory code. In contrast, Armada verifies concurrent code
using state machine refinement throughout the entire proof
stack, foregoing Hoare-style reasoning in favor of detailed,
low-level state machines. This provides more expressiveness;
for example, two of Armada’s case studies rely on racy mem-
ory accesses using memory ordering weaker than SC, which
IronSync does not currently support. However, Armada’s
expressiveness also imposes costs; e.g., Armada’s Pointers
case study is 13 LoC and generates 6,997 lines of proof, while
in IronSync the proof is trivial, since the correct usage of the
owned pointers is automatically determined by type checking.
Similarly, Armada’s Owicki-Gries counter requires 130 lines
of manual proof and generates 169,270 lines of Dafny proof
to verify, while in IronSync it requires 230 lines of manual
proof that verify directly in 8 seconds. We studied Armada’s
largest case study, a lock-free queue with 70 lines of code,
and implemented an analogous queue in IronSync. Theirs
requires 601 lines of proof (compared to 580 for IronSync)
and 8 proof layers (∼ 700 LoC), and takes 4.9 hours of CPU
time to verify almost 200K lines of generated proof, versus
100 seconds of CPU time for IronSync.

Many other systems utilize ownership types. Cogent [3]
and VeriBetrKV [19] use ownership types for systems ver-
ification, albeit with no shared-memory concurrency, and

with the latter introducing Linear Dafny. CIVL [21] (based
mainly on reduction [37]) uses ownership types, but pri-
marily to handle thread identifiers, not general ghost state.
Rust [28, 39] uses ownership types to enforce memory safety
between threads [23] but lacks verification of deeper correct-
ness properties. GhostCell [53] (an inspiration for our Cell)
proposes owned “ghost tokens” in Rust to express ownership
of groups of objects, though only for memory safety. Tools
like Prusti [4] verify single-threaded Rust programs; IronSync
can help extend them to multi-threaded Rust code.

Several approaches use Dafny-style automation for concur-
rent reasoning. Chalice [34] is a Dafny-like language with
lock invariants but no tools for global reasoning. GoJour-
nal [12] does integrate Dafny’s sequential reasoning into a
verified concurrent system, but it performs its shared-memory
concurrency reasoning in Iris, so it does not leverage Dafny’s
automation for concurrency reasoning the way IronSync does.

CertiKOS [17] and SeKVM [36, 46] encapsulate concur-
rent operations inside modular interfaces, where programmers
write proofs about the operations directly in Coq. We expect
that IronSync-style ownership could simplify these proofs.

Prior work has verified concurrent hash tables, both bucket-
ing [13] and linear-probing [18]. Prior work has also verified
flat-combining [47] and producer-consumer queues [41, 48],
but we are not aware of a verified cyclic buffer like NR’s,
which requires multiple consumers to read each entry.

10 Conclusion
IronSync offers scalable verification of concurrent shared-
memory systems by factoring their complex proofs into sep-
arate concerns. It automates proofs of data safety and local
logical correctness via a fast, deterministic ownership type
system combined with powerful tools for sequential correct-
ness. IronSync’s LTS connects these local techniques to a
simplified view of the entire system, where a developer can
more easily reason about global properties. Our case studies
demonstrate the success of this approach and show that we
can tease apart application and synchronization logic for proof
purposes, even when the implementation entangles them.

11 Acknowledgments
Work at CMU was supported, in part, by the Alfred P.
Sloan Foundation, a Google Faculty Fellowship, a gift from
VMware, a grant from the Intel Corporation, and the NS-
F/VMware Partnership on Software Defined Infrastructure
as a Foundation for Clean-Slate Computing Security (SDI-
CSCS) program under Award No. CNS-1700521. We also
acknowledge the support of the Natural Sciences and En-
gineering Research Council of Canada (NSERC). Andrea
Lattuada was supported by a Google PhD Fellowship.

We thank Mihai Budiu, Manos Kapritsos, Jay Lorch, and
Oded Padon, along with the anonymous reviewers and our
shepherd, Eddie Kohler, for helpful feedback. We also thank
Rob Johnson for discussions on SplinterCache.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 925

A Artifact Appendix
Abstract

Our artifact contains everything needed to verify the IronSync
projects with Linear Dafny and run the benchmark experi-
ments.

Scope

Our artifact can be used to reproduce the results in Section 7,
specifically:

• The table in Figure 15, with line count information and
verification times.

• Other figures, such as proof-to-code ratio, mentioned in
Section 7.1.

• Benchmark results in Section 7.2, specifically, the claim
that for both NR and SplinterCache, the performance
of the IronSync applications are comparable to their
corresponding reference implementations.

Contents

The artifact contains:

• Linear Dafny source for the IronSync framework.
• Linear Dafny source for the case studies mentioned in

the paper (the bank, the hash table, SplinterCache, and
NR)

• Our modified version of Linear Dafny needed to run
IronSync.

• The open-source reference implementation of NR.
• The open-source reference implementation of Splin-

terDB (which includes SplinterCache).
• A Docker container with all Dafny dependencies.
• A benchmark harness for each.

Hosting

The artifact is hosted at https://github.com/
secure-foundations/ironsync-osdi2023, commit
d361111cbc87b5573d14975227de845e8a717ca5. See the
README.md file for instructions.

Requirements

The artifact requires x86 Ubuntu. (Note that, although our
artifact includes a Docker container, which may be used on
other platforms, the Docker container is only used for running
Linear Dafny; it cannot be used for running the benchmarks.)

The ideal hardware for the NR benchmarks is a NUMA
machine with 96 cores. The benchmarks in our paper were
run on a machine with 4 Xeon Gold 6252 CPUs with 24
cores per NUMA node. However, a machine with fewer cores
should still be able to reproduce our graphs up to a certain
number of threads.

The ideal hardware for the cache benchmarks is a machine
with a low-latency storage device, such as an Intel 905P
Optane SSD. The machine also needs at least 100GiB to run
the largest benchmark. The benchmarks in our paper were

run on a Dell PowerEdge R630 with a 28-core 2.00 GHz Intel
Xeon E5-2660 CPU, with 192 GiB RAM.

If the ideal hardware is not used, you will not be able to
reproduce the exact performance characteristics of our paper,
though we still expect to see that the IronSync implementa-
tions perform comparably to the reference implementations.
Our artifact contains additional recommendations for select-
ing hardware.

References
[1] ALGLAVE, J., FOX, A., ISHTIAQ, S., MYREEN, M. O.,

SARKAR, S., SEWELL, P., AND NARDELLI, F. Z. The
semantics of Power and ARM multiprocessor machine
code. In Proceedings of the Workshop on Declarative
Aspects of Multicore Programming (DAMP) (2009).

[2] ALGLAVE, J., MARANGET, L., SARKAR, S., AND
SEWELL, P. Fences in weak memory models. In Pro-
ceedings of Computer Aided Verification (CAV) (2010).

[3] AMANI, S., HIXON, A., CHEN, Z., RIZKALLAH,
C., CHUBB, P., O’CONNOR, L., BEEREN, J., NA-
GASHIMA, Y., LIM, J., SEWELL, T., TUONG, J.,
KELLER, G., MURRAY, T., KLEIN, G., AND HEISER,
G. Cogent: Verifying high-assurance file system imple-
mentations. In Proceedings of the ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

[4] ASTRAUSKAS, V., MÜLLER, P., POLI, F., AND SUM-
MERS, A. J. Leveraging Rust types for modular specifi-
cation and verification. In Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA) (October 2019).

[5] BATTY, M., OWENS, S., SARKAR, S., SEWELL, P.,
AND WEBER, T. Mathematizing C++ concurrency. In
Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL) (2011).

[6] BHARDWAJ, A., KULKARNI, C., ACHERMANN, R.,
CALCIU, I., KASHYAP, S., STUTSMAN, R., TAI, A.,
AND ZELLWEGER, G. NrOS: Effective replication and
sharing in an operating system. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21) (July 2021).

[7] BOEHM, H.-J., AND ADVE, S. V. Foundations of the
C++ concurrency memory model. In Proceedings of the
ACM Conference on Programming Language Design
and Implementation (PLDI) (2008).

[8] BROTHERSTON, J., AND KANOVICH, M. Undecidabil-
ity of propositional separation logic and its neighbours.
J. ACM 61, 2 (Apr. 2014).

926 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/secure-foundations/ironsync-osdi2023
https://github.com/secure-foundations/ironsync-osdi2023

[9] CALCIU, I., SEN, S., BALAKRISHNAN, M., AND
AGUILERA, M. K. Black-box Concurrent Data Struc-
tures for NUMA Architectures. In Proceedings of
the ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2017).

[10] CELIS, P. Robin Hood Hashing. PhD thesis, University
of Waterloo, CAN, 1986.

[11] CHAJED, T., TASSAROTTI, J., KAASHOEK, M. F.,
AND ZELDOVICH, N. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP)
(Oct. 2019).

[12] CHAJED, T., TASSAROTTI, J., THENG, M., JUNG, R.,
KAASHOEK, M. F., AND ZELDOVICH, N. GoJournal:
A verified, concurrent, crash-safe journaling system. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2021).

[13] CLAUSEN, E. Verifying hash tables in Iris. Master’s
thesis, Aarhus University, 2017.

[14] CONWAY, A., GUPTA, A. K., CHIDAMBARAM, V.,
FARACH-COLTON, M., SPILLANE, R. P., TAI, A.,
AND JOHNSON, R. SplinterDB: Closing the bandwidth
gap for NVMe key-value stores. In Proceedings of the
USENIX Annual Technical Conference (ATC) (2020).

[15] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
cloud serving systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing (2010).

[16] FROMHERZ, A., RASTOGI, A., SWAMY, N., GIB-
SON, S., MARTÍNEZ, G., MERIGOUX, D., AND RA-
MANANANDRO, T. Steel: Proof-oriented programming
in a dependently typed concurrent separation logic. Pro-
ceedings of the ACM on Programming Languages 5,
ICFP (August 2021).

[17] GU, R., SHAO, Z., CHEN, H., WU, X., KIM, J.,
SJÖBERG, V., AND COSTANZO, D. CertiKOS: An
extensible architecture for building certified concurrent
OS kernels. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation
(2016).

[18] HANCE, T., HOWELL, J., PADON, O., AND PARNO,
B. Burrow: Custom read/write permissions for cus-
tom ghost state in concurrent separation logic. Tech.
Rep. CMU-CyLab-21-002, Carnegie Mellon University,
Cylab, Nov. 2021.

[19] HANCE, T., LATTUADA, A., HAWBLITZEL, C., HOW-
ELL, J., JOHNSON, R., AND PARNO, B. Storage sys-
tems are distributed systems (so verify them that way!).
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2020).

[20] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M.,
LORCH, J. R., PARNO, B., ROBERTS, M. L., SETTY,
S., AND ZILL, B. IronFleet: Proving practical dis-
tributed systems correct. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP)
(Oct. 2015).

[21] HAWBLITZEL, C., PETRANK, E., QADEER, S., AND
TASIRAN, S. Automated and modular refinement rea-
soning for concurrent programs. In Proceedings of Com-
puter Aided Verification (CAV) (2015).

[22] HENDLER, D., INCZE, I., SHAVIT, N., AND TZAFRIR,
M. Flat Combining and the synchronization-parallelism
tradeoff. In Proceedings of the ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA) (2010).

[23] JUNG, R., JOURDAN, J.-H., KREBBERS, R., AND
DREYER, D. RustBelt: Securing the foundations of the
Rust programming language. Proceedings of the ACM
on Programming Languages 2, POPL (Jan. 2018).

[24] JUNG, R., KREBBERS, R., JOURDAN, J.-H., BIZJAK,
A., BIRKEDAL, L., AND DREYER, D. Iris from the
ground up: A modular foundation for higher-order con-
current separation logic. Journal of Functional Pro-
gramming 28 (2018).

[25] JUNG, R., LEPIGRE, R., PARTHASARATHY, G.,
RAPOPORT, M., TIMANY, A., DREYER, D., AND JA-
COBS, B. The future is ours: Prophecy variables in
separation logic. Proceedings of the ACM Programming
Languages 4, POPL (Jan. 2020).

[26] JUNG, R., SWASEY, D., SIECZKOWSKI, F., SVEND-
SEN, K., TURON, A., BIRKEDAL, L., AND DREYER,
D. Iris: Monoids and invariants as an orthogonal basis
for concurrent reasoning. In Proceedings of the ACM
Symposium on Principles of Programming Languages
(POPL) (2015).

[27] KASHYAP, S., CALCIU, I., CHENG, X., MIN, C., AND
KIM, T. Scalable and practical locking with shuffling.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (2019).

[28] KLABNIK, S., AND NICHOLS, C. The Rust Program-
ming Language. No Starch Press, USA, 2018.

[29] KLABNIK, S., NICHOLS, C., AND RUST COMMU-
NITY. The Rust Programming Language. https:
//doc.rust-lang.org/book/.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 927

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

[30] KNUTH, D. E. The Art of Computer Programming,
Volume 3: (2nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., USA, 1998.

[31] KREBBERS, R., TIMANY, A., AND BIRKEDAL, L. In-
teractive proofs in higher-order concurrent separation
logic. SIGPLAN Not. 52, 1 (Jan. 2017), 205–217.

[32] LAMPORT, L. Specifying Systems: The TLA+ Lan-
guange and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[33] LEINO, K. R. M. Dafny: An automatic program verifier
for functional correctness. In Proceedings of the Confer-
ence on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR) (2010).

[34] LEINO, K. R. M., MÜLLER, P., AND SMANS, J. Verifi-
cation of concurrent programs with Chalice. In Proceed-
ings of Foundations of Security Analysis and Design
(FOSAD) (2009).

[35] LI, J., LATTUADA, A., ZHOU, Y., CAMERON, J.,
HOWELL, J., PARNO, B., AND HAWBLITZEL, C. Lin-
ear types for large-scale systems verification. In Pro-
ceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA) (November 2022).

[36] LI, S.-W., LI, X., GU, R., NIEH, J., AND HUI, J. Z.
A secure and formally verified Linux KVM hypervisor.
In Proceedings of the IEEE Symposium on Security and
Privacy (2021).

[37] LIPTON, R. J. Reduction: A method of proving proper-
ties of parallel programs. Communications of the ACM,
18, 12 (1975).

[38] LORCH, J. R., CHEN, Y., KAPRITSOS, M., MA, H.,
PARNO, B., QADEER, S., SHARMA, U., WILCOX,
J. R., AND ZHAO, X. Armada: Automated verification
of concurrent code with sound semantic extensibility.
ACM Transactions on Programming Languages and
Systems 44, 2 (June 2022).

[39] MATSAKIS, N. D., AND KLOCK, F. S. The Rust lan-
guage. Ada Lett. 34, 3 (Oct. 2014), 103–104.

[40] MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algo-
rithms for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Sys-
tems 9, 1 (Feb. 1991).

[41] MÉVEL, G., AND JOURDAN, J.-H. Formal verification
of a concurrent bounded queue in a weak memory model.
Proceedings of the ACM on Programming Languages 5,
ICFP (Aug. 2021).

[42] MULDER, I., KREBBERS, R., AND GEUVERS, H.
Diaframe: Automated verification of fine-grained con-
current programs in Iris. In Proceedings of the ACM
Conference on Programming Language Design and Im-
plementation (PLDI) (2022).

[43] MÜLLER, P., SCHWERHOFF, M., AND SUMMERS,
A. J. Viper: A verification infrastructure for permission-
based reasoning. In Proceedings of the Conference on
Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI) (Berlin, Heidelberg, 2016).

[44] O’HEARN, P. W. Resources, concurrency, and local
reasoning. Theoretical Computer Science 375, 1–3 (Apr.
2007).

[45] OWENS, S., SARKAR, S., AND SEWELL, P. A better
x86 memory model: x86-TSO. In Proceedings of the
Conference on Theorem Proving in Higher Order Logics
(TPHOLs) (Aug. 2009).

[46] TAO, R., YAO, J., LI, X., LI, S.-W., NIEH, J., AND
GU, R. Formal verification of a multiprocessor hypervi-
sor on Arm relaxed memory hardware. In Symposium
on Operating Systems Principles (SOSP) (2021).

[47] TURON, A., DREYER, D., AND BIRKEDAL, L. Unify-
ing refinement and hoare-style reasoning in a logic for
higher-order concurrency. In Proceedings of the ACM
International Conference on Functional Programming
(ICFP) (2013).

[48] TURON, A., VAFEIADIS, V., AND DREYER, D. GPS:
Navigating weak memory with ghosts, protocols, and
separation. In Proceedings of the ACM Conference on
Object Oriented Programming Systems Languages &
Applications (OOPSLA) (2014).

[49] VMWARE. What is VMware vSAN? https://www.
vmware.com/products/vsan.html, 2021.

[50] VYUKOV, D. Distributed reader-writer mu-
tex. http://www.1024cores.net/home/
lock-free-algorithms/reader-writer-problem/
distributed-reader-writer-mutex, 2011.

[51] WADLER, P. Linear types can change the world! In
Proceedings of the IFIP TC 2 Working Conference on
Programming Concepts and Methods (1990).

[52] WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND
SOLAR-LEZAMA., A. Towards optimization-safe sys-
tems: Analyzing the impact of undefined behavior. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP) (Nov. 2013).

[53] YANOVSKI, J., DANG, H.-H., JUNG, R., AND
DREYER, D. GhostCell: Separating permissions from

928 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.vmware.com/products/vsan.html
https://www.vmware.com/products/vsan.html
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex

data in Rust. Proceedings of the ACM on Programming
Languages 5, ICFP (Aug. 2021).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 929

Flor: An Open High Performance RDMA Framework Over Heterogeneous RNICs

Qiang Li⋄, Yixiao Gao‡, Xiaoliang Wang‡, Haonan Qiu⋄, Yanfang Le♯, Derui Liu⋄, Qiao Xiang⋆,
Fei Feng⋄, Peng Zhang⋄, Bo Li⋄, Jianbo Dong⋄, Lingbo Tang⋄, Hongqiang Harry Liu⋄, Shaozong Liu⋄,

Weijie Li⋄, Rui Miao⋄, Yaohui Wu⋄, Zhiwu Wu⋄, Chao Han⋄, Lei Yan⋄, Zheng Cao⋄, Zhongjie Wu⋄,
Chen Tian‡, Guihai Chen‡, Dennis Cai⋄, Jinbo Wu⋄, Jiaji Zhu⋄, Jiesheng Wu⋄, Jiwu Shu⋆

⋄Alibaba Group, ‡Nanjing University, ♯AMD, ⋆Xiamen University

Abstract
Datacenter applications have been increasingly applying
RDMA for ultra-low latency and low CPU overhead. How-
ever, RDMA-capable NICs (RNICs) of different vendors or
different generations of the same vendor do not cooperate
well, which could cause bandwidth imbalance in the pro-
duction network and introduce new root causes of the PFC
storms. Our key observation is that although the data path
functions of heterogenous RNICs follow the same RoCEv2
specifications, their control path functions are vendor and
version specific. To this end, we propose Flor, an open
framework that provides a unified hardware data plane atop
heterogeneous RNICs and a flexible software control plane
running over host CPUs or NPU of RNICs and DPUs. The
hardware plane requires no changes to current specifications.
The software plane on-loads congestion control and reliability
management in the large-scale lossy Ethernet with no PFC
dependency. We implemented and evaluated Flor in both
testbed and production clusters over Intel E180, Mellanox CX-
4 and CX-5 and Broadcom RNICs. Experiments show that
Flor achieves comparable performance to vanilla RDMA in
many scenarios, including 1/4096 packet loss, 6000:1 incast,
and large-scale cross-pod communication. Flor mitigates the
performance gap of CX-4 and CX-5 RNICs from 24.3% to
1.3% when they are deployed together.

1 Introduction
Remote Direct Memory Access (RDMA) over Converged
Ethernet has been widely deployed in datacenters [3, 5, 11,
14, 30]. It provides low latency and high throughput for
many applications, e.g., key-value store [21, 35], distributed
transactions [8, 55], distributed memory [9, 56], remote pro-
cedure call (RPC) [20, 22, 47], storage systems [11], graph
computing [43] and machine-learning systems [29].

With the increasing deployment of RDMA, modern dat-
acenters adopted RDMA-capable NICs (RNICs) of differ-
ent generations and vendors, e.g., Mellanox ConnectX-(CX-
)4/5/6 [49,50,52], BlueField [51], Intel E810 [17], and cloud-
provider customized RNICs [10, 12, 42]. On the one hand,

adopting more than one vendor avoids vendor lock-in, i.e.,
relying on devices of a particular vendor, which is a serious
risk during global supply chain crises such as the COVID-
19 pandemic [18, 45]. On the other hand, the disaggregated
deployment of storage and computation systems separates the
back-end services from the front-end services into different
clusters, where each cluster can host different types of RNICs.

The coexistence of heterogeneous network devices in
datacenters introduces new challenges [11, 14, 25]. First,
devices may adopt different implementations of RDMA
engines. It happens among not only different vendors but
also different generations of devices of the same vendor.
We have investigated the impact of various devices in a
large-scale storage system that involves two generations of
Mellanox RNICs, which have different variants of DCQCN.
In a hybrid deployment of 16 50Gbps CX-4 and CX-5
NICs, we observed a severe bandwidth imbalance, where
the average throughput of CX-4 NICs degrades to 28Gbps
over a full-mesh traffic pattern. Furthermore, we test the
congestion control behaviors of NICs from different vendors.
Specifically, Mellanox RNICs set the same congestion control
rate for packets with the same destination IP, while Intel
E810 RNICs enforce congestion control based on flows
with the same five-tuple. In addition, Broadcom RNICs [7]
implement DCTCP [2, 6] as the congestion control algorithm,
while Intel E810 RNICs implement a window-based DCQCN
variant [19]. The different congestion control algorithms can
further amplify the bandwidth imbalance.

Second, RDMA requires Priority-based Flow Control
(PFC) to maintain a lossless network fabric. Diverse devices
increase the risk of generating PFC pause frames, which can
propagate to the whole network and cause the network to
stop forwarding traffic. In addition, the parameter tuning for
the PFC configuration is time-consuming on newly deployed
devices [25,57], which usually takes weeks or months in large-
scale networks with multiple vendors. During the long-term
operation of production networks, we have observed multiple
sources of PFC pause frame generation at both end-hosts and
switches. Specifically, we found that implementation bugs

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 931

of switches and RNICs are one important root cause of PFC
storms [11,14]. In our datacenter, we record that the high loss
rates occur due to diverse devices abnormality, system mis-
configuration, and congestion of burst traffic in the production
system, which has also been reported in prior work [58].

To cope with these issues, we need an open and unified
framework to address the growing diversity of datacenter
devices and give users the flexibility of RDMA programming
to reduce the operational complexity of large-scale datacenter
networks. Our key insight is that the RDMA data path, in-
cluding memory semantics, needs fast and high-performance
packet processing. In contrast, the control path including
congestion control algorithms and the reliable re-transmission
mechanisms, which are RTT-based operations, is relatively
slow but needs to guarantee efficiency. This inspires us to
rethink the functions division between hardware and software
by on-loading congestion control and reliability modules to
the software plane while strengthening the data path transport
by following the standard RoCEv2 specifications [3–5] in the
high-speed hardware.

We present Flor, an open, unified framework to support
applications over heterogeneous networking devices. Flor
separates the data-path and control-path of RDMA transport
with a hardware and software co-design [24, 28, 37, 45, 52].
The data-path functions, e.g., packet processing and bulk mem-
ory transfer semantics, remain on the hardware. Flor’s data-
path follows RDMA primitives without any modifications in
hardware to maintain high performance. Flor strengthens Re-
liable Connection (RC) transport through hardware/software
co-design to overcome the low-efficient hardware-based Go-
Back-N retransmission [14]. Furthermore, we leverage Un-
reliable Connection (UC) transport [4] as the first citizen for
out-of-order demands in datacenters [42,46] as it supports the
out-of-order delivery of messages between RDMA operations
without any requirements on the hardware change. We adopt
UD as a key element to enable selective retransmission [36]
for RoCEv2 and deliver messages to the applications in an
out-of-order manner [42].

The control-path includes a load-aware dynamic chunking
module, an RDMA-semantic-compatible reliability module,
and a congestion control module. The load-aware dynamic
chunking module balances between the performance and
the software control granularity. Flor proposes a software
selective retransmission scheme by leveraging UC to process
out-of-order delivery. Flor implements an RTT-based conges-
tion control algorithm similar to Swift [26] but improves the
RTT measurement accuracy of previous work [28] by 10×
on 99th percentile and 99.9th percentile RTT. By onloading
these functions to hosts or programmable devices [40] (e.g.,
IPU core [18], DPU core [51], CPU or even GPU [1]), the
software developers have the flexibility of customizing and
generalizing these functions across heterogeneous RNICs.
For example, Flor can also adopt emerging congestion control
schemes [26, 30] and optimization of transport protocols

(e.g. Swift, HPCC) instead of waiting for months or years
of hardware upgrades.

We evaluate Flor through extensive experiments in an RPC
benchmark and real production systems. We compare Flor
with a customized RDMA library, XRDMA [32]. XRDMA
implements the RPC interfaces with vanilla RDMA primitives.
Compared to XRDMA, which suffers significant performance
loss with 1/4096 packet loss ratio with lossy RoCE ac-
celerations [53], Flor maintains steadily high throughput.
Specifically, by deploying an RTT-based congestion control
algorithm, Flor can handle 6000:1 incast with no throughput
loss at run time. Flor achieves comparable performance
as XRDMA for intra-pod communication and better per-
formance than XRDMA for inter-pod communication. Our
evaluations show that Flor reduces the bandwidth gap from
21.8% to 1.3% in the hybrid CX-4 and CX-5 deployment
clusters and mitigates the performance gaps by 220% for
RNICs of different vendors. For the production systems
running big-data applications and cloud storage service,
compared with XRDMA, Flor improves the job completion
time of a big-data application job by 10% and achieves
comparable latency and IOPS on the latency-sensitive cloud
storage service. Specifically, the process of upgrading the
existing RDMA framework, i.e., XRDMA, to Flor has little
performance impact on the running applications. Our practical
experience with Flor shows that Flor provides a non-stop and
smooth upgrade from lossless RDMA to lossy Flor.

In summary, this paper makes the following contributions:
• The interoperability of devices in RDMA networks needs

be better addressed. We study the impact of heterogeneous
RNICs in the production network.

• We revitalize the RDMA support by introducing an open
unified framework accommodating primary RNICs in the
lossy datacenter networks.

• We implement the framework and verify its effectiveness
and low software overhead in both testbed and realistic
production systems.

• As far as we know, this is the first systematic work con-
sidering the operation with heterogeneous devices, which
innovates future RDMA system design from the perspective
of service providers.

2 Background & Motivation
2.1 RDMA Preliminaries
RDMA is a hardware transport that exposes network operation
through verbs API. User-space applications initiate data
transmission requests to RNICs by posting Work Queue
Elements (WQEs) into queue pairs (QPs). After transmitting
the data, the RNICs generate Completion Queue Elements
(CQEs) into Completion Queues (CQs) as the transmit
completion signals for users. RDMA supports three transport
types: Reliable Connection (RC), Unreliable Connection
(UC), and Unreliable Datagram (UD) [4]. Correspondingly, it

932 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1QP 64QP 512QP
Number of QP

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (G

bp
s) Mellanox

Broadcom

Figure 1: Throughput difference
of a Mellanox RNIC and a Broad-
com RNIC sending to an Intel
RNIC.

Mellanox Broadcom Intel
Receiver NIC Vendor

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (G

bp
s) Mellanox

Broadcom
Intel

Figure 2: Throughput difference
in a Mellanox-Broadcom-Intel hy-
brid deployment with a full mesh
traffic pattern.

provides two well-known primitives: SEND/RECV are two-
sided operations supported by all transports. WRITE is a one-
sided operation supported by RC and UC, but READ is only
supported by RC.

For connection-oriented services (UC and RC), QPs main-
tain Packet Sequence Number (PSN) and expected Packet
Sequence Number (ePSN), respectively, on the sender and
the receiver. RC QPs only receive packets with PSN correctly
matching ePSN and increase ePSN after successful receiving.
For RC, RNIC is responsible for retransmissions, where the
receiver RNICs send acknowledge (ACK) packets. Once a
packet is dropped, the sender must start retransmitting the
lost packet. For UC, the transport does not retry messages
with errors, and users must handle the error. Specifically, for
UC QPs, when a packet of a verb is lost, the RNICs drop the
whole verb, update ePSN, and continue to receive other verbs.
Thus, compared with RC, it is more flexible for users to deal
with out-of-order messages and potentially provide effective
upper-level RPC service through software-defined reliability.

2.2 Production Experience
We present our production experiences demonstrating the dif-
ficulties of deploying the RDMA NICs of various generations
and vendors in the same datacenter.
Interoperability of heterogeneous RNICs. We first in-
vestigate the performance gap between RNICs of different
generations belonging to the same vendor. We run IB Perftest1

in a cluster where 8 servers are equipped with CX-4 and
another 8 servers are equipped with CX-5 RNICs. Given
a full-mesh traffic pattern, i.e., all servers send requests to
each other, the throughput of CX-4 and CX-5 is 28Gbps and
41Gbps respectively. The throughput gap is 13Gbps (46.4%).

We then investigate the performance gaps among RNICs
of different vendors. As shown in Figure 1, when a Mellanox
RNIC [51] and a Broadcom RNIC [7] send traffic to an Intel
RNIC [17] simultaneously. The configurations of the RNICs
are depicted in §7.5. The Mellanox NIC gets 66Gbps, and the
Broadcom NIC gets 20Gbps (220% of the performance gap)
when each initiates one connection, i.e.. 1 QP. The Mellanox
NIC gains less bandwidth, e.g., 3Gbps, than the Broadcom

1IB Perftest is a benchmark tool for measuring the throughput and latency
of RDMA operations [13].

NIC when the number of connections increases, i.e., 64 QPs
and 512 QPs. This causes unfair bandwidth share between
applications hosted atop different RNICs. Figure 2 shows the
throughput of each NIC with a full mesh traffic test (i.e., all-
to-all traffic) among the three NICs. We stack the throughput
of each RNIC to the same receiver RNIC. For example, when
a Broadcom NIC and an Intel NIC send traffic to a Mellanox
NIC, the Broadcom NIC and the Intel NIC get the throughput
of 43Gbps and 15Gbps, respectively (left bar). We can observe
a similar performance variation when any two of the RNICs
are competing with each other.

The difference in RNICs throughput is significant and leads
to the computing tasks load imbalance on the nodes. We find
that the root cause is the congestion control implementation
difference or the congestion control algorithm difference
among these heterogeneous RNICs. After we apply a unified
congestion control algorithm, the performance gaps are
eliminated (§7.5).
Operational challenges caused by PFC storming. PFC
storm is a well-known problem [14,15,54,57] that threats the
system’s availability if the pause frames are sent to the whole
cluster [14]. RDMA systems in production adopt multiple
mechanisms to mitigate the impact of these risks, such as PFC
monitoring and watchdog, limiting the scale of PFC in a pod.

However, the PFC risk is not thoroughly eliminated and
happens repeatedly with new causes. In addition to the known
reasons of PFC storms, e.g., the slow receiver [14] and switch
hardware bug [11], we found that Machine Check Errors
(MCE) caused by memory Error Correcting Code (ECC) and
the lack of memory bandwidth can lead to the PFC storm
when we introduce new RNICs in the datacenter. When MCE
occurs on a server, RNIC receives data but can not DMA
the data to the server memory. Thus, it sends excessive PFC
pause frames to the neighbour switches and then spreads to
the network. The occurrence frequency of MEC can be up to
1% [34], which leads to operational difficulty.

The lack of memory bandwidth also leads to PFC storms
because CPUs and RNICs share the memory bandwidth on
a server. When the CPU running applications preempts too
much memory bandwidth, the memory bandwidth left for
the RNIC is less than the network bandwidth [41]. Then the
RNICs send PFC frames to prevent packet loss due to the
RNIC buffer overflow. It is difficult to guard against every
possible cause of the PFC storm. We expect to eliminate PFC
from our production system while achieving performance
compatible with a lossless network.

2.3 Motivation
These practical issues prompt us to rethink the usage of
RDMA from the perspective of service providers. We aim to
design an open and unified RDMA framework, which meets
the following objectives:
• Compatibility. The open framework needs to be backward

compatible with the legacy devices configured in the cluster.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 933

App

RNICRNIC
ACK ACK

ACK QP

WQEs

Data QP

ACK
CQE

Logical connection CQ/ACK QPs

Connection

Backup QP

ACK
CQE

ACK CQ

Congestion Control
Module

chunk chunk

Chunking
Module

Reliability
Module

RTT Measurement
Module

Connection
Management

Data
CQE

Data
CQE

DMA

Congestion
Control

Timestamp

Reliability

Data CQ

Poll CQ

Post
Send

Figure 3: The framework of Flor

To this end, we abstract common features of available
RNICs of main vendors and simplify the design by using
the minimum set of functionalities in the hardware, e.g.,
packetization, packet processing, message assembling, etc.

• Flexibility. To meet various application requirements
and dynamic deployment of disaggregated services, the
framework should support high feature velocity. It is
programmable to realize efficient user-defined control
mechanisms like new congestion control.

• Availability. The modern large-scale datacenters are built
on Ethernet, which is a lossy network with multiple paths.
Our framework is able to mitigate the impact of lossy
Ethernet but fully utilizes the available network resources
and maintains high performance [34, 42, 46].

3 Flor Design
3.1 Design Rationale
By investigating the RNICs of primary vendors, we notice
that they follow the same RoCEv2 specifications in data-path
but develop vendor-specific (even version-specific) control-
path. Our key insight is that the RDMA data-path should
be stable by following the standard specifications. At the
same time, control-path needs to guarantee flexibility and
availability. We can onload a subset of the transport functions
to the software to provide programmability to developers. The
design rationale is
Maintaining RDMA data-path specifications in hardware
layer. RDMA data-path, including packet processing and
memory semantics, is a per-packet-based operation which is
fast and high-performance. To maintain low latency and low
CPU utilization features of RDMA, Flor places the data-path
in hardware, which covers packetization, packet processing,
message assembling, and direct memory access between
RNICs and host memory. Therefore, Flor is compatible with
primary RNICs.
Onloading control-path to software layer. The most
flexible features in the control-path are congestion control
and transmission reliability with regard to the lossy Ethernet.

The corresponding algorithms rely on the signals of packet
latency, ECN notification, Inband Network Telemetry (INT),
etc., the response interval of which can be several RTTs.
Thus, Flor can onload the relatively slow control to the
software layer by leveraging its programmability but has little
influence on system efficiency. Notably, with the development
of programmable devices, we can realize functions of control-
path in not only hosts but the NPU [18] of RNICs or
DPUs [51].

3.2 Architecture
Flor is an open, unified, high performance RDMA framework
over lossy Ethernet in large-scale datacenters. The architec-
ture is shown in Figure 3.
Data path. Since the process details of RDMA operations
on QPs are dictated in the RDMA protocol [4], utilizing
standard RDMA operations, which are supported by all
RNICs, to transfer data among heterogeneous RNICs can
achieve comparable performance. Flor takes RDMA WRITE
and SEND as the base WQEs for the data transferring and
receiving because they both support RC and UC and maintain
high performance of RDMA. Notice that RDMA READ has
a known performance issue [21] and only supports RC. Flor
uses the RDMA SEND WQEs to transfer small messages
(e.g., ≤32KB) and WRITE to transmit large messages. For
large messages, Flor needs an extra round-trip to exchange
remote memory address and buffer size with remote servers.
Note that the memory information exchange requires once
for each large message. Flor prioritizes the SEND WQEs
over large messages to avoid that head-of-line blocking to the
small messages. On top of the RDMA verbs, Flor provides
a message-based communication interface to support RPCs
favoured by most datacenter applications [20].
Control path. The control-path of Flor consists of five flexi-
ble software modules: Connection Management, Chunking,
Reliability, Congestion Control, and RTT Measurement.
• Connection Management. This module establishes and

releases connections and manages backup QPs. Data are
transmitted through QP and backup QPs, which take over
the RDMA requests in place of the malfunctioned primary
QP. The data CQs provide data completion events. The
ACK QPs and CQs are used for sending and receiving
software ACKs when using software reliability. Through
QP management, Flor can abstract these backup QPs and
present them as one QP to upper-level applications.

• Chunking. The Chunking module splits large messages into
small RDMA requests, i.e., chunk. Flor takes the chunk
as the base unit of the selective repeat algorithm and
congestion control algorithm, instead of a packet at the
traditional transport [26,57]. A chunk is sent to the network
via a WRITE or SEND Work Queue Element (WQE).

• RTT Measurement. The RTT Measurement module collects
the NIC hardware timestamp, synchronizes the hardware
and software timestamp, and then updates RTT, which is

934 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

used as the signal of network congestion, retransmission
and link failure detection.

• Reliability. Each WQE is passed to the Reliability module,
which stores the transport information and maintains the
state for packet loss detection and RTT calculation. We
develop a software selective retransmission mechanism by
tracking every request sent to the network.

• Congestion Control. The Congestion Control module takes
the congestion signals, e.g., RTT, ECN, INT [39], and drop
events, to calculate the congestion window or sending rate
according to the congestion control algorithms. By default,
we apply an RTT-based congestion control algorithm to
eliminate the impact of complicated parameter tuning of
congestion control on diverse switches [26].

3.3 Optimization and Deployment.
The key challenge for Flor is to offer flexibility while
providing comparable performance to the vanilla RoCEv2
stack. We make the following optimizations:
• Maintaining RDMA performance using the soft-

ware/hardware co-design. The RMDA hardware solution
provides high throughput, low latency, and low CPU over-
head. To maintain these advanced properties, we adopt a
dynamic chunking mechanism to tune the size of messages
for slow control-path when tracking the software congestion
control and loss recovery. The overhead of the control-path
functions onloading to the software layer is low because
we apply large granularity of messages instead of packet
processing (§ 4).

• Enhanced UC with Selective Retransmission. The
packet loss rate in datacenters is actually low, which will
not trigger frequent re-transmission. Designing a correct
reliability mechanism while keeping the zero-copy memory
semantic is the main challenge that Flor handles. UC has
the property that RNICs can deliver the messages to the
host without waiting for the previous ones to complete.
Flor leverages this property to design a more efficient
retransmission scheme, i.e., selective retransmission [36]
without any hardware change to speed up the application
processing [42] (§ 5).

• Enhanced RC with Correctness. RC is one of the
data-path transport supported by Flor. Go-back-N, the
RC’s retransmission mechanism, is known to have low
efficiency [36]. Flor enhances the Go-back-N mechanism
by adding an additional software retransmission scheme.
We address the correctness issue introduced by the software
retransmission, where the retransmitted RDMA operators
may overwrite the memory region that has been submitted
to applications(§ 6).
Flor users can select a combination of these software

modules in different scenarios. The software congestion
control and reliability modules can be bypassed or replaced
by the hardware functionalities. Table 1 shows some recom-
mended configuration combinations for different deployment

Scenarios Chunking Reliability CC
Intra-pod, PFC-enabled No RC HW

Intra-pod, PFC- and ECN-disabled Yes RC or UC SW
Across-pod Applications Yes UC SW

CX-4/5 Hybrid Yes RC or UC SW

Table 1: Recommended choices of modules in some scenarios. CC
represents congestion control. HW indicates hardware-offloaded
modules, SW indicates software-implemented modules.

scenarios in our production. For example, in a PFC- and
ECN-disabled CX-4 cluster, Flor provides RDMA service
by enabling chunking and software congestion control
with hardware-based (RC) or software-based (UC) reliable
transport. For cross-pod applications, software-based (UC)
reliability is recommended to tolerant packet loss.

4 Dynamic Chunking
The chunking algorithm determines the granularity of RDMA
requests bursting into the network. A large chunk size may
result in a traffic burst that causes congestion and incurs
high recovery costs in case of packet loss, while a small one
leads to more CPU costs. Therefore, the key design point is
dynamically adapting chunking size according to the current
network status, which helps achieve both good performance
and fine-grained traffic control. More specifically, it tries to
adopt large chunk sizes with hardware SEND or WRITE
operations to reduce CPU cost when the loss rate is low. Once
packet loss occurs, it applies chunk-slicing and retransmission
of dropped chunks by software.

Flor uses the estimated RTT as the default feedback signal
of network status for the dynamic chunking strategy. The
estimated RTT is not only used as the feedback signal of the
dynamic chunking algorithm but also used as the congestion
control signal, as well as a timeout signal for reliability.

4.1 Accurate RTT Measurement
The accuracy of RTT measurement directly impacts the
performance of all these components. Different from the
approach [26] where measures RTT based on per-packet
timestamp, Flor measures RTT for the chunks with different
sizes. RoGUE [28] firstly devises a way of RTT measurement
for dynamic verb sizes on RNICs and utilizes the hardware
timestamp functionality of RNICs to get an accurate times-
tamp to calculate RTT. Flor takes the RoGUE’s methodology
to measure RTT for the RC transport and further improves
the RTT measurement accuracy for UC transport.

Figure 4 shows the RTT measurement method in Flor for
the UC transport. Note that leveraging hardware timestamp
to measure RTT requires synchronizing the software and
hardware clock (Appendix A.2.1). On the sender side, the
timestamps of the data WQE sending completion (T1) and
the corresponding ACK receiving completion (T4) can
be obtained from the hardware. On the receiver side, the
timestamp of the data WQE arrival (T2) is read from the
hardware and the timestamp of the corresponding ACK WQE

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 935

posting time (T′3) is accessible through software. (T′3 - T2)
is computed in the receiver and sent back to the sender by a
subsequent ACK packet. Thus RTT can be calculated with:

RT T = (T4−T1)− (T ′3−T2). (1)
However, the measurement is not absolutely accurate as T′3 is
the post time rather than the actual send completion time of
the ACK (T3) due to the queuing of sending requests in NICs.
In addition, under a heavy load, the ACK can be delayed up
to milliseconds upon receiving by the sender software due
to the head-of-line blocking by the data WQEs and the QP
scheduling policies. As a result, on the one hand, the measured
RTT can be increased by this overhead, which inaccurately
reflects the network congestion; On the other hand, this also
prolongs the congestion feedback loop such that the sender
can not respond to the network congestion in time.

Flor uses two optimization approaches to improve RTT
measurement accuracy and shorten the feedback loop delay.
First, Flor uses a high-priority UD QP to send and receive
ACKs to avoid head-of-line blocking and scheduling delays
on RNICs. Second, Flor uses a separate completion queue for
ACKs and polls it prior to the data completion queue in each
batch. Our measurement shows that the measured tail RTT
without optimization can be up to several milliseconds due to
QP scheduling (Figure 16 in Appendix A.2.2). The overesti-
mated RTT can cause an unnecessary window decrease. Using
a separate QP and completion queue for ACKs improves the
RTT measurement accuracy by 10× on tail RTTs.

4.2 Chunking Strategy
Flor extracts the chunking algorithm as a module such that
users can specify their own chunking algorithms. Here we
present the default algorithm used by Flor. The key idea is to
dynamically reduce the chunk size when the RTT of network
gets worse and increase the chunk size when its status gets
better. We initialize the chunk size by the minimum value of
the available congestion window (acwnd) or bandwidth-delay
product (BDP) (chunk_size←min{acwnd,BDP}). Then we
update the chunk size for each RTT.

As shown in Algorithm 1, we use estimated RTT, which
reflects network queuing, as the feedback signal of chunking
in Flor. We maintain two smoothed RTTs (rtts and rttl)
with Exponentially Weighted Moving Average (EWMA)
[31] using different indexes α (the parameter that controls
the weight of new feedback). The short-term RTT rtts
demonstrates the up-to-date congestion status, while the long-
term RTT rttl indicates the common status of the connection.

Generally, we define a span of expected RTT denoted by
(βmax ∗ rttl−βmin ∗ rttl). Here βmax and βmin are configurable
parameters to identify the upper and lower bounds. (βmax ∗
rttl−rtts) indicates the position of short-term RTT in the RTT
span. The Algorithm divides the RTT span linearly, as shown
in line 4 of Algorithm 1. sizemax is the maximal chunk size
2 For example, if the rtts reduces to the lower bound of RTT

2By default, sizemax is 64KB, which is a trade-off between the CPU

span (βmin ∗rttl), it indicates that the status of network is good
and the chunk size increases to the sizemax. On the contrary, if
the rtts increases to the upper bound of RTT span (βmax ∗ rttl),
it indicates that the load of the network is high and we should
reduce the chunk size to the UNIT _SIZE.

Algorithm 1 An RTT-based Chunking Algorithm
Input: RTT rtt, available congestion window acwnd
Output: chunk_size

1: update short-term RTT rtts with rtt, αs via EWMA
2: update long-term RTT rttl with rtt, αl via EWMA
3: sizet ← sizemax ∗ (βmax∗rttl−rtts

βmax∗rttl−βmin∗rttl
)

4: chunk_size←min{sizet ,acwnd}
5: return chunk_size

Note that the chunking module still applies to have a fine-
grained traffic control if Flor uses a rate-base congestion
control, e.g., DCQCN. To support the reliability design (§3.2),
Flor aligns the chunk_size to UNIT _SIZE (the minimal
chunk_size), i.e., chunk_size is exactly multiple times of
UNIT _SIZE. Note that to prevent deadlock of the congestion
window, the chunk_size is set to UNIT _SIZE when the
available congestion window is smaller than UNIT _SIZE.
The UNIT _SIZE can be equal to the value of the current
MTU. To mitigate the impact of packet loss, Flor adopts
different chunking mechanisms for RC or UC transport,
respectively. For RC transport, Flor directly reduces the large
chunk sizes to the minimum chunk size of one UNIT _SIZE
to reduce retransmission overhead and avoid the live lock of
retransmission. For UC transport, Flor relies on congestion
window, which will cut its size by a half upon a packet
loss. And finally, the chunk size becomes UNIT _SIZE when
continuous packet loss happens. In particular, Flor can adopt
Selective Retransmission with UC in Section 5 to reduce
chunk retransmission under high packet loss and achieve
better transmission efficiency than Go-Back-N.

5 Selective Retransmission with UC
UC transport only drops the verbs that have packets dropped
but does not drop the subsequent successfully-delivered verbs.
Thus, based on the chunking mechanism that splits RDMA
messages into varied sizes of WQEs, Flor is able to design
reliability mechanisms (sequence number, acknowledgement,
and retransmission) at the granularity of chunking WQEs.
The transmission of RDMA WRIT E operations does not need
any reordering buffer because WRIT Es are directly DMA-ed
into the host buffer. However, there are still some challenges
to implement reliability in software for one-sided RMDA
WRIT E operations:

• Challenge #1: Additional data copy. Since RDMA
WRITE writes an array of memory pieces to one continuous

efficiency to transmit large chunks and the retransmission overhead of packet
loss to transmit smaller ones.

936 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Sender NIC Receiver NICUser User

Sender NIC Receiver NICUser

Seq=1,
size=1000Seq=2,
size=500
Seq=3,
size=500Seq=4,
size=500

size=15
00

size=50
0

size=50
0

User

DROPPED

TX
completion
T1

RX
completion
T2

ACK RX
completion
T4

ACK TX
completion
T3

ACK
post
T3'

Figure 4: RTT measurement for
UC in Flor. T 1–T 4 are times-
tamps of events.

No coalescing0

2

4

IO
PS

106

30 us + 4 Chunks

120 us + 32 Chunks

Figure 5: Performance impact
of ACK coalescing.

remote address, Any extra content added to the chunks of a
large message, including information needed by reliability
mechanisms such as sequence numbers, can break the
original message, which then incurs a memory copy at
software to assemble the scattered memory into the original
message.

• Challenge #2: Software ACK. WRITE is a one-sided
RDMA operation that bypasses the CPU of the receiver.
The receiver can not know whether a WRITE succeeds or
fails, which is one of the main issues when the one-sided
operator is used in practice. Flor uses WQEs to encode
software ACK messages as UC does not generate hardware
ACK packets. Without careful design of the ACK message,
the high frequency of the software ACK will significantly
degrade the performance.

• Challenge #3: Repetitive memory access. The retrans-
mission of RDMA WRIT E operation may cause a data
integrity issue as RNICs can write to a piece of memory
already submitted to the application.

To solve these problems, some novel designs, including
sequence number space for WRITE_WITH_IMM, software
ACKs, and two-sided retransmission, are adopted in Flor’s
reliability mechanism.
Sequence number space for WRITE_WITH_IMM. To
assemble the chunks into the original message on the
receiver without the extra data copy (Challenge #1), Flor
uses WRITE_WITH_IMM to generate signals to software for
the arrival of chunks. One feature of WRITE_WITH_IMM
is that it can carry an extra 32-bit imm_data set by the
sender. With WRITE_WITH_IMM, the receiver can detect the
arrival of RDMA verbs and receive the chunk number without
polluting the application memory. For SEND-transported
small requests, Flor adds an additional header in the payload to
carry additional information, including the sequence numbers.

However, to reassemble the initial messages from the
chunks, we need another sequence number for the chunks.
Note that chunks of a large message are also not continuous
in the sending queue since some SENDs operations (e.g.,
retransmissions and the address-exchanging messages of
WRITE) are prioritized in Flor.

Similar to QUIC [27], Flor encodes two sets of sequence
numbers into each RDMA WQE: global sequence number

and reliability sequence number. The global sequence number
is a 64-bit value, and all the RDMA WQEs have a unique
global sequence number to identify the sequence within a
QP. The reliable sequence number is used to identify the
sequence within the same type of WQEs, i.e., WRITE WQEs
and SEND WQEs have separate reliable sequence number
space. These two sequence number spaces also allow Flor
to identify the original WQEs and the retransmitted WQEs
by different global numbers such that ACK information and
the timestamp carried in ACKs are clear. The retransmission
WQEs share the same reliable sequence number with the
original WQE. More details can be found in Appendix A.1.1.
Software ACK. Flor acknowledges every WQE, but
generating an ACK for each WQE can cause high overhead
for small-message traffic (Challenge #2). Flor puts multiple
sequence numbers into one software ACK to reduce the
CPU overhead. The detailed ACK format is explained in
Appendix A.1.2. However, ACKs should be sent timely since
ACKs carry RTT and WQE numbers used in the congestion
control and reliability mechanism. Thus, Flor sets these trigger
rules for receivers to send an ACK immediately: (1) the
cumulative number of WQEs; (2) the cumulative size of
WQEs; (3) the last WQE in the congestion window signed by
a hint bit in the header or IMM_DATA field; and (4) an out-of-
order reliable sequence number, whichever reaches first. Flor
also sets a timer as a trigger because the tail of a flow or small
bursts may not have enough data to trigger the cumulative
counters.

To show the impact of different ACK triggering frequencies,
we set up an experiment with a client and a server, and
each is equipped with a CX-4 dual-port NIC. There are 8
threads and 64 QPs on each node. Figure 5 shows the IOPS
in a 128-byte request and response RPC benchmark with
different ACK triggering mechanisms. The ACK coalescing
mechanism improves ∼40% IOPS compared to a per-WQE
ACK mechanism (No coalescing in Figure 5). In addition,
among different coalescing WQE sizes and timers, the setting
of 120µs timer and cumulative counter of 32 WQEs achieves
a satisfying IOPS, which is the default configuration of Flor.
Two-sided retransmission. When the sender detects an
out-of-order delivery from an ACK or a timeout event, it
retransmits the WQEs. Flor handles the retransmissions by
SEND, since spurious retransmissions of WRITE may cause a
data integrity issue (Challenge #3). The data integrity issue
can happen when WQEs are queued in the network for a long
time, which incurs timeout retransmission at the sender. In
this case, the original WQE is received by the receiver, and
the whole message is submitted to the upper-layer application.
The application can write the content of the message as it
needs. However, the subsequent retransmitted WRITE WQE
arrives at the receiver and overwrites the memory region
that the application has already changed without informing
the CPU of the receiver. Flor retransmits WQEs by SEND
through the same QP for the lost one to avoid uncontrolled

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 937

memory access from RNICs. In a SEND operation, the data
is written into a piece of pre-posted memory. Flor then
copies the data into its desired location if the message has
not been submitted to the application. If the retransmission
SEND arrives earlier on the receiver, the following original
WRITE_WITH_IMM will be dropped by the receiver RNIC
because its hardware packet sequence number is smaller than
the expected hardware packet sequence number, which is
updated because of the arrival of the SEND.

6 Enhance Hardware Retransmission
Flor is compatible with hardware reliability by using RC to
reduce software costs and achieve better performance. Note
that Flor supports both one-sided and two-sided RDMA oper-
ations on RC QPs. The hardware retransmission of RDMA
operations is out of the control of software congestion control.
This has potential risks of incurring network congestion since
the size of inflight data can be much larger than the software
congestion window. Flor improves the hardware reliability
by adding a software retransmission scheme. Flor sets short
retransmission retry times in RC QPs to limit the size of data
exceeding the software congestion control window.

If the retransmission fails for the retry times, the QP is
turned into error states by the RNIC hardware. Turning
the error states of the QPs into the working states takes a
long time, e.g., 5ms. Instead, Flor resubmits the uncompleted
inflight WQEs to another pre-connected QPs, called backup
QPs [28], and flips the backup QP to be the primary QP to
continue data transmission. At the same time, Flor re-connects
the original QP in the background. The inactive backup QPs
do not consume additional cache resources on RNICs and
thus have no side effect on performance [28]. Our practical
experience shows that using one retry time incurs too many
QP switches in some extreme cases e.g., large-scale incast.
By default, Flor uses two retry times and two backup QPs for
each connection. Compared to QP reconnecting, switching to
backup QPs costs less time, i.e., ∼60µs.

A racing issue occurs when QPs turn into the error state
occasionally: the sender may return a failure of a WQE
while the receiver successfully receives it. This case happens
when the QP at the sender turns into the error state with
successful inflight operations. In such a case, the sender posts
a duplicated WQE mistakenly on the backup QP of the logical
connection. Another corner case that causes the same problem
is that the sender times out when the hardware ACK is on
the flight. Flor retransmits the WQEs with RDMA SEND and
checks if the message has been submitted to the application
before the data are copied into the destination application’s
memory.

7 Evaluation
We evaluate Flor by answering the following questions:

1. The software overhead of Flor in the 100Gbps network
(§7.2) and its robustness against packet loss (§7.3)?

Cluster Nodes RNICs
A 100 CX-4 Lx 25Gbps dual-port

B 16
8 × CX-5 25Gbps dual-port

8 × CX-4 Lx 25Gbps dual-port
C 48 CX-5 100Gbps dual-port

D 3
Intel E810 100Gbps dual-port

Broadcom P2100G 100Gbps dual-port
Mellanox BlueField-2 100Gbps dual-port

Table 2: Clusters setups used in our evaluation.

2. The behaviour of Flor in both intra-pod and inter-pod
communications when PFC is disabled (§7.4)?

3. The effectiveness of Flor in a hybrid deployment with
heterogeneous RNICs (§7.5)?

4. The performance of Flor’s default Congestion Control
in large-scale incast scenario (§7.6)?

5. The impact on services when upgrading from the current
network to Flor in production systems (§7.7)?

7.1 Experiment Setup and Benchmarks
Cluster setup. Table 2 lists four clusters used in the
evaluation. The default RDMA configurations of our clusters
are that: (1) for CX-4 lossless RNICs, PFC is enabled on ToR
and Leaf switches but disabled on Spine switches; (2) for
CX-5 lossy RNICs, PFC is disabled on all switches, and the
lossy RoCE acceleration features [53] are enabled.
Baseline and workload. Our RPC system used in evaluation
supports XRDMA, Flor, user-space TCP, and kernel TCP.
XRDMA is a vanilla RoCEv2-based RPC library, which is
deployed in the clusters listed in Table 2 before upgrading to
Flor. The user-space TCP is based on DPDK. Two applica-
tions run on top of our RPC framework: a Map-Reduce-like
application and a distributed block storage service.
Configuration for Flor. In the clusters, we configure one
specific priority queue on both switches and RNICs. The PFC
and ECN are enabled on this priority queue (lossless queue).
Besides, we reserve another priority queue (lossy queue) for
Flor in which PFC and DCQCN are disabled. The coalescing
ACK parameters are 120µs timer, 32 WQEs and 32KB data at
most. The base RTT used in the software congestion control
is 50µs. The minimal and maximal chunk size is 1KB and
64KB, respectively.

7.2 Software Overhead.
Flor introduces additional CPU cost due to the software
implementation of reliability mechanism and chunking. To
evaluate its impact, we compare the single-core performance
of different network protocol stacks with our RPC benchmark,
including XRDMA, Flor (RC), Flor (UC), user-space TCP,
and kernel TCP. The I/O depth (i.e., the maximal number of
inflight RPC requests) is 8. We vary the RPC request size
from 4KB to 1MB and fix the response size at 128 bytes. The
servers are equipped with Intel CPUs (2.9GHz) which have
96 logic cores, and CX-6DX 100Gbps dual-port RNICs (not
listed in Table 2).

Figure 6(a) demonstrates the throughput of all the stacks
with different RPC sizes. The single-thread throughput of Flor

938 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

25

50

75

100

Th
ro

ug
hp

ut
 (G

bp
s)

User-sp
ace TCP TCP

XRDMA

Flor (R

C)
Flor (U

C)

(a) Single-thread throughput.

0
0.2
0.4
0.6
0.8

1

CP
U

 u
sa

ge

4KB
16KB

64KB
256KB

1MB

User-sp
ace TCP

TCP
XRDMA

 Flor (R

C)
Flor (U

C)

(b) CPU usage.

Figure 6: Single-thread throughput and CPU usage of Flor
and other different network stacks.

and XRDMA can reach to ~88Gbps while user-space TCP
and kernel TCP achieve up to ~30Gbps even with large RPC
size, i.e., 1MB. Notice that due to the hardware and RoCEv2
protocol overhead, such as headers of Ethernet, IP, UDP, and
IB with 1024B MTU, the standard RDMA benchmark, i.e.,
Perftest [13] achieves a maximum bandwidth of 88Gbps. This
shows that the Chunking mechanism does not hurt the single-
thread throughput of Flor. We observed that the performance
degradation of Flor (RC/UC) happens at 64KB due to extra
memory information exchanges for using RDMA WRITE
to transmit each large message and dismisses as message
sizes increase. The throughput of large requests in XRDMA
is lower than Flor because XRDMA uses RDMA READ
operation to transfer the large requests, and RDMA READ
operation has inflight bound on RNICs along with some well-
known performance issues [16, 23]. When using a chunk of
4KB, Flor can handle over 770K chunks per second with a
single thread. Flor is able to maintain high throughput as the
chunk size is usually larger than 4KB, and applications often
adopt multiple threads.

We then estimate the corresponding CPU usage. The CPU
usage is obtained from perf [38] tool since we use polling
mode for RDMA. Notice that in our production storage
system, it adopts a run-to-completion model based on a co-
routine IO framework [11], where the network polling for
disk read or write uses the same core with storage protocol
processing in concurrent execution. As shown in Figure 6(b),
Flor takes less than 0.3 CPU core for large data size of 1MB
message in 100 Gbps network. Most modern servers usually
have large numbers of cores (>96) and 0.3 CPU cores usage
(<0.4% usage) has little impact on the production system.

Flor maintains low CPU cost because it leverages zero-copy
features of RDMA and mainly deals with lightweight control
events for congestion control and reliability. In addition, Flor
is compatible with different platforms, which can further
reduce the host CPU cost by offloading Flor to SmartNICs,
and FPGA in computation-intensive hosts.

We also measure the single-core throughput of Flor at
200Gbps RNICs and show that Flor can achieve comparable
throughput as vanilla RDMA. Besides, we show that Flor out-
performs the other network stacks, i.e., SNAP [33], eRPC [20]

4 8
 16

(KB)

0

10

20

Th
ro

ug
hp

ut
 (G

bp
s)

lossless,1/4096
lossy,1/4096
Flor,1/4096

lossless,1/16384
lossy,1/16384
Flor,1/16384

 32
 64

 128
 256

 512

 1024

Message Size (KB)
(a) Low drop ratio. (KB)

0

10

20

Th
ro

ug
hp

ut
 (G

bp
s)

lossless,1/256
lossy,1/256
Flor,1/256

lossless,1/1024
lossy,1/1024
Flor,1/1024

4 8
 16 0

 64
 128

 256
 512

 1024
 32

Message Size (KB)
(b) High drop ratio.

Figure 7: The throughput of lossless, lossy XRDMA and Flor
under different packet drop ratio.

(as shown in Table 4).

7.3 Performance with Packet Loss.
To validate the effectiveness of the software Reliability
mechanism of Flor, we take two CX-5 RNICs from cluster B
in Table 2 and disable one port on each RNIC. We manually
configure packet drop ratios on the RNIC of the receiver. We
compare Flor against XRDMA using the lossless and lossy
configuration of CX-5. The congestion control is disabled to
avoid transmission rate back-off due to packet loss.

We use various request sizes (4KB~1MB) under four
packet drop ratios (two high ratios of 1/256 and 1/1024,
and two low ratios of 1/4096 and 1/16384). As shown in
Figure 7, Flor outperforms the lossy and lossless setup across
all the drop ratios. Due to software selective retransmission,
Flor is able to maintain a performance close to that of zero
packet drop at the low packet drop ratios. Its performance
decreases slower than the lossy and lossless setup at the high
drop ratios. We observe that the lossy acceleration feature
achieves higher throughput with the occurrence of packet loss
compared to the lossless setup, i.e., the lossy acceleration
features of CX-5 does improve the packet loss recovery
performance. However, the throughput of lossless and lossy
RDMA both decrease dramatically when the drop ratio is
larger than 1/4096. It indicated that the lossy acceleration
features of current hardwares still cannot maintain good
performance under high packet loss. Flor achieves similar
results by performing the same experiments through manually
configuring the random packet drop ratio on the port of the
ToR switch connecting to the live port of the RNIC at the
host.

7.4 Intra- and Inter-Pod Traffic
Flor uses an advanced congestion control to enable lossy
RDMA support, eliminating the PFC dependency while
maintaining high performance. We validate the performance
gain of Flor in large-scale intra- and inter- pod transmission
through cluster A (pod1) and B (pod2) (Table 2). We use the
default configuration in our clusters in the tests of XRDMA:
PFC for RoCE traffic is only enabled on ToR and Leaf
switches (i.e., intra-pod) and disabled on Spine switches

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 939

0 100 200 300
Time (Seconds)

0

20

40

XRDMA
Flor

Th
ro

ug
hp

ut
(G

bp
s)

(a) Intra-pod full-mesh test.

0 100 200 300
Time (Seconds)

0

20

40

Th
ro

ug
hp

ut
 (G

bp
s)

XRDMA in pod1
XRDMA in pod2

(b) XRDMA in inter-pod full-mesh test.

0 100 200 300
Time (Seconds)

0

20

40

Th
ro

ug
hp

ut
(G

bp
s)

Flor in pod1
Flor in pod2

(c) Flor in inter-pod full-mesh test.

Figure 8: The throughput of XRDMA and Flor in cross-pod scenarios.

(i.e.,inter-pod). Similarly, we configure the intra-pod traffic
of Flor (UC) on the lossless queue and the inter-pod traffic of
Flor (UC) on the lossy queue. For each node, a client sends
large RPC requests (512KB) to each server on other nodes
with IO depth of 8. The size of the RPC response is 128 bytes.
Each client and server uses 4 threads in the tests.

As shown in Figure 8(a), for intra-pod traffic, the average
throughput of Flor (UC) is comparable to XRDMA which
is stable at ∼35Gbps. For inter-pod traffic test, as shown in
Figure 8(b) and 8(c), the throughput of XRDMA in one
pod shakes fiercely between 35Gbps and 45Gbps, and the
throughput in the other pod oscillates between 35Gbps and
20Gbps. The unstable and unbalanced throughput of XRDMA
is caused by packet loss as PFC is disabled in inter-pod
switches, and DCQCN can not prevent packet loss. In contrast,
the throughput of Flor (UC) is stable and balanced between
the two pods. In summary, Flor can achieve higher and more
stable throughput than XRDMA for lossy inter-pod tests. The
clients in pod1 suffer more from throughput loss because they
send more cross-pod traffic and experience more packet loss
in this full-mesh traffic pattern.

7.5 Heterogeneous RNICs
To evaluate the effectiveness of Flor over heterogeneous
RNICs, we test with 8 CX-4 and 8 CX-5 RNICs in cluster
B (Table 2) with PFC and DCQCN enabled. We run the
RPC benchmark with a full-mesh traffic pattern atop of Flor
and XRDMA. When using XRDMA, the average throughput
of CX-4 and CX-5 RNICs is 33.2Gbps and 41.3Gbps,
respectively. The throughput gap between CX-4 and CX-
5 is 8.1Gbps (24.3%). When using Flor, the throughput of
CX-4 and CX-5 RNICs with Flor is 37.1Gbps and 36.6bps,
and the throughput gap is 0.5Gbps (1.3%). This indicates
that Flor eliminates the throughput gap between CX-4 and
CX-5 RNICs by replacing the hardware congestion control
with a unified software congestion control, which minimizes
the performance difference introduced by the control path of
heterogeneous hardware.

To verify the effectiveness of Flor over RNICs from
different vendors, we run perftest among 100Gbps RNICs, in-
cluding Mellanox BlueField-2 [51], Intel E810-C RNIC [17]
and Broadcom NetXtreme P2100G RNICs [7]. For congestion
control, BlueField-2 only supports DCQCN, P2100 only
supports DCTCP, and E810-C supports DCQCN, DCTCP and

Timely. To clarify the unmatched performance introduced
by different congestion control algorithms, we choose to
set DCQCN for BlueField-2 and E810-C, and DCTCP for
P2100G with PFC and ECN enabled on RNICs and the
connected switches. Each sender issues 512 QPs and sends
traffic with 64KB data blocks. Four Flor configurations,
i.e., PFC with hardware congestion control (CC) and Flor,
hardware CC and Flor, Flor, and Flor with fixed cwnd are
tested. Flor with fixed cwnd means the software congestion
control algorithm has a fixed congestion window and does not
change throughout the whole experiments. We set the fixed
congestion window size as one bandwidth-delay product in
this experiment.

Figure 9 shows the throughput of each NIC under the
full-mesh traffic pattern. BlueField-2 and P2100G get the
same bandwidth when they are competing with each other
to send traffic to E810-C. Compare with Figure 2, with the
configurations of PFC + hardware CC + Flor (1), hardware
CC + Flor (2) and Flor (3), and we see that Intel NIC gets
the same throughput, i.e., 18Gbps, when competing with
Mellanox NIC and Broadcom NIC. We see the performance
gap between Intel NIC and Mellanox NIC when they send
traffic to the Broadcom NIC, even if we only apply the Flor’s
congestion control (3), where the Intel NIC gets 19Gbps, and
the Mellanox NIC gets 56Gbps, 194% of the performance
gap.

The reason is that Flor’s congestion control takes the
RTT as the congestion signal. Intel NIC has a higher packet
processing time, which causes the estimated RTT between the
Intel NIC and the Broadcom NIC to be higher than the one
between the Mellanox NIC and the Broadcom NIC. Thus, the
RTT-based congestion control algorithm reduces window size
in Intel NIC and results in lower throughput. This indicates
Flor’s congestion control needs to be further improved by
taking the NIC processing delay into account. If we fixed
the congestion window, i.e., Flor with fixed cwnd (4), the
bandwidth is less-skewed shared between the Mellanox NIC
and the Intel NIC.

7.6 Large-scale Incast
We build a group of incast tests in cluster A (Table 2) to
evaluate the performance of Flor’s congestion control. We
measure the throughput and Out-of-Sequence (OOS) counter.
We configure Flor running on the lossy queue, i.e., disabling

940 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Mellanox Broadcom Intel
Receiver NIC Vendor

0

20

40

60

80

100

120

140
Th

ro
ug

hp
ut

 (G
bp

s) Mlnx-1
Bm-1
Intel-1

Mlnx-2
Bm-2
Intel-2

Mlnx-3
Bm-3
Intel-3

Mlnx-4
Bm-4
Intel-4

Figure 9: Bandwidth in a Mlnx-Broadcom-Intel
hybrid deployment with Flor. Configurations: 1 =
PFC+hardware CC+Flor, 2 = hardware CC+Flor, 3 =
Flor, 4 = Flor +fixed cwnd.

10 20 30 40 50 60 70 80
Incast Nodes

0

25

50

Th
ro

ug
hp

ut
 (G

bp
s)

0

2000

4000

O
O

S
Co

un
t (

/s
)

4KChunk Bw
1KChunk Bw

4KChunk OOS
1KChunk OOS

Figure 10: Flor performance in large-scale incast test.

XRDMA Flor
0

0.2
0.4
0.6
0.8

1

Ti
m

e
Co

st
 (N

or
m

.)

Run Time
Shuffle Time

Figure 11: Run time in big
data application.

PFC and DCQCN. For incast traffic, we install RPC clients on
N machines and RPC server on one remote server. Each client
has 8 threads connecting to the server, and each thread issues
32KB RPC requests with IO depth of 8. Thus, the number
of QPs on each client is 8×8 = 64, and the number of QPs
on the server is N×64. Thus, the maximum incast degree is
~6000 when the node number is 90 in this test.

Figure 10 shows the throughput and OOS counters with
different incast nodes of N and the minimal chunk sizes.
Given the minimal chunk size of 4KB or 1KB, the throughput
is consistent of 50Gbps with the increasing scale of incast.
However, given the minimal chunk size of 4KB, the number
of OOS increases when the incast nodes are larger than 50
(about 4000 : 1 incast). This is because the minimum chunk
size of 4KB is the minimal congestion window size for each
QP, and the volume of burst traffic is too large in such a large-
scale incast. Therefore, we apply the minimal chunk size of
1KB, which avoids the generation of OOS in the large-scale
incast. Notably, we set the minimal chunk size of 4KB in the
storage production network because we have optimized the
storage application to balance the load across nodes, which
avoids such large incast events in practice [11].

7.7 Evaluation in Production Network
Big-data applications. ServiceX is a Map-Reduce-like big-
data application that runs on top of the distributed storage
service. The completion time of the shuffle processing
influences the performance of the whole task, and it desires
fast and stable network transmission. To estimate the impact
of Flor in the production system, we run ServiceX atop of Flor
and XRDMA in cluster C (Table 2) with a lossless network.
We conduct the task of sorting 1TB of data. The number of
mapper tasks and reducer tasks are both 1K, and each mapper
processes data of 1GB. We apply two key metrics: the average
running time of a mapper and the average shuffle time, i.e.,
the time of transferring data in the network. As shown in
Figure 11, in comparison with XRDMA, Flor reduces the
average running time by 10% and accelerates the average
shuffle time by 16% due to an efficient congestion control
strategy.
Non-stop upgrade. Flor allows to upgrade online with
negligible down time of service, which is crucial to meet
service level requirements in modern datacenter. We measure
the impact of upgrading from XRDMA to Flor on applications

such as Pangu [11] through the measurements of normalized
throughput and latency and PFC counters. In the experiment,
the software upgrading takes place at the 0.5th minute. As
shown in Figure 12(a), the read and write throughput of the
application have a slight jitter (<2%) when switching to Flor.
Figure 12(b) shows that the latency increases by 10% at
0.5 minute, lasting less than 30s. Figure 12(c) shows the
generation of PFC pauses (packets per second, pps) and its
duration time (µs), which appears in a very short time period.
At the 5.5th minute, we then disable DCQCN and PFC. The
throughput is unaffected, and the latency decreases slightly
(~3%). This latency might be caused by the interference
between DCQCN and the software congestion control. When
running Flor with and without PFC and DCQCN, all the
metrics are healthy.
High-performance block storage service. Flor is applied
for latency-sensitive applications such as the Enhanced SSD
(ESSD) product of Elastic Block Storage (EBS). ESSD
provides block storage service (virtual disks) as local devices
through high performance network. We compare the latency
and requests per second (IOPS) of an EBS application running
with XRDMA or Flor in cluster C (Table 2). We adopt the
workload of a real ESSD storage application with an I/O size
of 4KB. XRDMA is tested with RoCE lossy accelerations
enabled. Flor is tested with these features disabled. There are
three kinds of configurations for Flor: (i) Flor with hardware
reliability and hardware congestion control (Flor HW R/C);
(ii) Flor with hardware reliability and software congestion
control (Flor HW R); and (iii) Flor with software reliability
and congestion control (Flor SW).

Figure 13 (a) shows the normalized single-operation
latency of XRDMA and Flor. Flor demonstrates compa-
rable average latency performance with XRDMA among
all the operation types. Although software-based modules
are involved, the latency of Flor is still slightly lower (1%–
8%) than XRDMA due to the optimized software stack of
Flor. Flor (HW R/C) has the lowest average latency through
hardware-based implementation. Flor (SW) and Flor (HW R)
have slightly higher latency (< 3%) due to the overhead of
software stack. Figure 13 (b) shows that Flor achieves the
comparable normalized IOPS as XRDMA for 4KB Read and
Write. In conclusion, in supporting block storage service, Flor
has comparable latency and IOPS with XRDMA.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 941

Time (Mins)

0

0.5

1

Th
ro

ug
hp

ut

Read
Write

0 1 2 3 4 5 6 7

0

8 9 10

(a) Application throughput.

0 1 2 3 4 5 6 7

Time (Mins)

0

0.5

1

La
te

nc
y

(N
or

m
.)

Read
Write

8 9 10

(b) Application latency.
Time (Mins)

0

0.5

1

Pa
us

e
(p

ps
/u

s)

Pause Count (pps)
Pause Duration (us)

0 1 2 3 4 5 6 7

0

8 9 10

(c) PFC counters.
Figure 12: The system performance of upgrading from XRDMA to Flor.

Read Write
0

0.5

1

La
te

nc
y

XRDMA
Flor (HW R/C)

Flor (HW R)
Flor (SW)

(a) Average latency of 4KB.
Read Write

0

0.5

1

IO
PS

XRDMA
Flor (HW R/C)

Flor (HW R)
Flor (SW)

(b) IOPS of 4KB operation.

Figure 13: Performance of Block Storage Service.

8 Discussion
Hybrid RDMA NICs’ deployment in datacenters. In the
production network with over 100K servers, new servers
and new NICs are incrementally deployed, which results
in the mix of the latest generation and earlier generations
(or different vendors) of RDMA NICs co-existing in the
same datacenter network. In addition, the malfunctioning
servers in the built-up clusters can be replaced by servers
configured with NICs of different generations or vendors. The
new generation of RNICs is released by the vendors every
2 or 3 years. From our experience in Block Storage Service,
we first deployed storage servers with CX-4 RDMA NICs
in 2016. In 2019, we started to deploy new servers of CX-5
RDMA NICs because of higher performance and price ratio.
As a result, there exists the hybrid deployment of both CX-4
and CX-5 RDMA NICs. The same deployment choice was
made when we introduced CX-6DX RDMA NICs in 2021.
Programmable control plane. Flor provides a new per-
spective of layered architecture to achieve high velocity
and performance with diverse hardware. Flor envisions the
"programmability" of reliability and CC modules of RDMA in
the control plane, which can be implemented in programmable
hardware, such as smartNICs with embedded CPU or NPU,
e.g., ConnectX-6, Bluefield, Intel IPU. In this way, we can
make use of the programmable hardware capability such as
hardware timestamp, rate-limiting, and packet drop detection
to further improve the efficiency of CC and reliability while
keeping the unified control policy among heterogeneous
RNICs with the same Flor architecture.
Concerns of implementation. Currently, not all NICs
support UC. First, this research work has demonstrated, for the
first time, the effectiveness of using UC for high-performance
out-of-order transmission in product networks. Second, UC
is a standard transport defined in the RoCE specification,
and its logic is simple and easy to implement by hardware.

Network Protocol MTU (B) Throughput 100/200 (Gbps)
Linux TCP 1500 22

SNAP 1500 39.1
SNAP (+I/OAT) 5000 67.5 (82.2)

eRPC on IB 3840 73
Perftest 1024 88/193

XRDMA 1024 88/174
Flor 1024 84/173

Table 3: The single-core bandwidth of different network
transport stacks in 100 and 200Gbps networks.

Therefore, this work provides a new choice for the community,
and we expect more vendors to support UC. In addition,
when migrating Flor to SmartNICs, e.g., Bluefield 2, which
has multiple ARM cores and sufficient DRAM memory,
thanks to Flor ’s architecture that clearly separates each
component, each individual component is easy to move to the
BlueField’s ARM cores. The main differences from the host
CPU implementation are that the ARM core is less performant
than the host CPU core, and the L3 cache size of Bluefield
2 is limited, requiring the developers to optimize the system
carefully. With the capability of directly operating data in the
host memory introduced by Bluefield 3, the limited L3 cache
size caused performance degradation can be resolved.

9 Related Work
Software solutions. We compare Flor with different
network protocols. Table 3 shows the single-thread throughput
between two nodes in the 100Gbps and 200Gbps network.
The throughput of SNAP [33] and eRPC [20] are from
the published papers. We can see that network protocols
with hardware-offloaded RDMA semantics, i.e., Perfest [13],
XRDMA and Flor, achieve higher throughput than other
network stacks. In addition, the throughput of XRDMA and
Flor are comparable with Perfest, which plays the raw IB
verbs without any overhead of RPC. The RDMA-based
protocols can also maintain high bandwidth utilization in
a 200Gbps network, where the throughput of Flor is the
same with XRDMA. Though the throughput of eRPC and
SNAP increases as the MTU size increases, using large
MTU sizes requires a unified and standard configuration,
which adds operation complexity in a complicated production
environment. Besides, software solutions suffer from higher
latency [33] and CPU overhead [20] without hardware

942 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Functionalities Lossless RDMA Lossy RDMA eRPC 1RMA Flor
Transport granularity Verbs Verbs MTU Op (4KB) Variable chunk (e.g., 4KB-64KB)

CPU Involvement One/Two-sided One/Two-sided Two-sided One-sided One/Two-sided
Congestion control &

Signal & Type
HW,

ECN, rate
programmable HW,

ECN+RTT, rate
SW,

credit, window
SW,

RTT, window
SW/HW,

RTT/ECN, window/rate

Reliability &
Retransmission

HW,
GBN

HW,
SR for RDMA Operation SW, GBN SW, unknown

SW/HW,
intra-chunk GB0 &

inter-chunk SR/GBN
PFC dependency &

Loss tolerance Yes, poor No, high No, poor No, unknown No, high

HW dependency All RNICs CX6-dx DPDK/all RNICs Customized NIC All RNICs
Datapath zero copy Yes Yes No Yes Yes

Table 4: Comparison on transport features of Flor and other network solutions.

acceleration.
Hardware solutions. To get rid of PFC, Mellanox brings
up Resilient RoCE [48] and Lossy RoCE Accelerations [53]
on lossless RNICs, i.e., Go-Back-N-based RNICs. Resilient
RoCE utilizes congestion control, i.e., DCQCN, to deal with
network congestion and avoid packet loss. A recent study [44]
shows that the Resilient RoCE can prevent packet loss in some
specific scales but still suffers unfairness from packet loss
in large-degree incast events. Hardware-based lossy RDMA
solutions such as Mellanox CX-5/6 [50,52] and IRN [36] rely
on strengthened hardware to run on a lossy network. They can
not be deployed with CX-4 RNICs, and also lack the flexibility
for users to customize each function as the implementation is
highly ingrained into the hardware.
Hardware & software co-design solutions. RoGUE [28]
designs a software congestion control for RDMA but relies
on hardware reliability mechanism to recover from packet
loss. It uses a large static chunk size, i.e., 64KB, which needs
to be revised to deal with the large-scale incast scenario.
1RMA [45] is a high-performance network system that
provides congestion control and reliability in software. 1RMA
also enables one-sided RDMA operations based on novel
hardware with RDMA READ-like operation. However, it
can not work on commodity RNICs, so it has little help for
existing RDMA systems. Table 4 shows the clear difference
between Flor and other network frameworks.

10 Conclusion
We present Flor, a flexible lossy RDMA framework for
heterogeneous RNICs that solves a set of problems raised
in production RoCEv2 clusters. These problems include
PFC dependency, the interconnectivity of heterogeneous
RNICs and hardware-bonded congestion control schemes.
Flor onloads the reliability and congestion control function
from RNICs to the software. Flor proposes a software
selective retransmission for the first time at the RoCEv2
network and uses a software RTT-based congestion control
to deal with the performance gap among the heterogeneous
RNICs. Our evaluation of the testbed and production clusters
shows that Flor achieves high performance and flexibility
in many scenarios, including packet loss, heterogeneous
hardware, large-scale incast, and distributed systems. Flor

also shows that the process of upgrading the existing RDMA
framework to Flor has little performance impact on the
running applications.
Acknowledgments. We are extremely grateful for our shep-
herd, Costin Raiciu, and the anonymous OSDI’23 reviewers
for their wonderful feedback. Xiaoliang Wang is supported
by NSFC No.62172204. Qiao Xiang is supported in part by
the National Key R&D Program of China 2022YFB2901502,
Alibaba Innovative Research Award, NSFC No.62172345,
Open Research Projects of Zhejiang Lab 2022QA0AB05,
MOE China Award 2021FNA02008, and NSF-Fujian-China
2022J01004. And we also appreciate for the help from Lei
Yan and Shanghai Yunsilicon Technology Co., Ltd.

References
[1] Introducing the gaudi2 processor for training deep

learning workloads. https://habana.ai/training/gaudi2/,
2022.

[2] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In SIGCOMM. ACM, 2011.

[3] InfiniBand Trade Association. Infiniband architecture
specification release 1.2.1 annex a16: RoCE, 2010.

[4] InfiniBand Trade Association. Infiniband architecture
specification release 1.2.1, 2014.

[5] InfiniBand Trade Association. Infiniband architecture
specification release 1.2.1 annex a17: Rocev2, 2014.

[6] Broadcom. Changing congestion control mode set-
tings. https://techdocs.broadcom.com/us/e
n/storage-and-ethernet-connectivity/ethern
et-nic-controllers/bcm957xxx/adapters/Conf
iguration-adapter/RoCE/advanced-network-co
nfiguration/changing-congestion-control-mo
de-settings.html, 2022.

[7] Broadcom. Netxtreme®-e series. https://www.
broadcom.com/products/ethernet-connectivit
y/network-adapters/p2100g, 2022.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 943

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/p2100g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/p2100g
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/p2100g

[8] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using RDMA and htm. In Proceedings of the Eleventh
European Conference on Computer Systems. ACM,
2016.

[9] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast remote
memory. In NSDI, 2014.

[10] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: SmartNICs
in the public cloud. In NSDI, 2018.

[11] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When cloud storage
meets RDMA. In NSDI, 2021.

[12] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacenter
networks. In NSDI, 2022.

[13] Github. Perftest. https://github.com/linux-r
dma/perftest, 2021.

[14] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity Ethernet at scale. In SIGCOMM. ACM,
2016.

[15] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo,
Kun Tan, Jitendra Padhye, and Kai Chen. Tagger: Prac-
tical PFC deadlock prevention in data center networks.
In Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies.
ACM, 2017.

[16] Alibaba Inc. Pangu, the high performance distributed
file system by Alibaba cloud. https://www.alib
abacloud.com/blog/pangu-the-high-performan
ce-distributed-file-system-by-alibaba-clou
d_594059, 2018.

[17] Intel. Production brief for Intel® Ethernet Controller
E810-CAM2/CAM1/XXVAM2. https://cdrdv2
.intel.com/v1/dl/getContent/615503, 2020.

[18] Intel. Intel infrastructure processing unit (IPU).
https://www.intel.cn/content/www/cn/zh/pro
ducts/network-io/smartnic.html, 2021.

[19] Intel. Irdma readme. https://downloadmirror.i
ntel.com/738730/README_irdma.txt, 2022.

[20] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX
NSDI, 2019.

[21] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In
ACM SIGCOMM Computer Communication Review,
volume 44, pages 295–306. ACM, 2014.

[22] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram RPCs. In OSDI,
2016.

[23] Anuj Kalia Michael Kaminsky and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX Annual Technical Conference (ATC), 2016.

[24] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP acceleration as an OS
service. In Proceedings of the Fourteenth EuroSys
Conference, 2019.

[25] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In NSDI, Renton, WA, April 2022.

[26] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the
datacenter. SIGCOMM, 2020.

[27] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
QUIC transport protocol: Design and internet-scale
deployment. In SIGCOMM, ACM, 2017.

[28] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya
Akella, and Michael M Swift. Rogue: RDMA over
generic unconverged Ethernet. In SoCC, 2018.

[29] Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungure-
anu. Malt: distributed data-parallelism for existing ml
applications. In Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015.

944 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://cdrdv2.intel.com/v1/dl/getContent/615503
https://cdrdv2.intel.com/v1/dl/getContent/615503
https://www.intel.cn/content/www/cn/zh/products/network-io/smartnic.html
https://www.intel.cn/content/www/cn/zh/products/network-io/smartnic.html
https://www.intel.cn/content/www/cn/zh/products/network-io/smartnic.html
https://downloadmirror.intel.com/738730/README_irdma.txt
https://downloadmirror.intel.com/738730/README_irdma.txt

[30] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
high precision congestion control. In SIGCOMM. ACM,
2019.

[31] James M. Lucas and Michael S. Saccucci. Exponentially
weighted moving average control schemes: Properties
and enhancements. Technometrics, 32(1):1–12, 1990.

[32] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin
Chang, Kang Chen, Hai Jiang, and Yongwei Wu. X-
RDMA: Effective RDMA middleware in large-scale
production environments. In IEEE International Con-
ference on Cluster Computing (CLUSTER), 2019.

[33] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-
kernel approach to host networking. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, SOSP, 2019.

[34] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From Luna to Solar: The evolu-
tions of the compute-to-storage networks in Alibaba
cloud. In SIGCOMM, New York, NY, USA, 2022.
Association for Computing Machinery.

[35] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using one-sided RDMA reads to build a fast, CPU-
efficient key-value store. In USENIX Annual Technical
Conference (ATC), 2013.

[36] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for RDMA.
In Proceedings of ACM Special Interest Group on Data
Communication. ACM, 2018.

[37] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal,
Mohammad Alizadeh, and Hari Balakrishnan. Restruc-
turing endpoint congestion control. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, 2018.

[38] Wiki of Linux perf command manpage. Perf wiki. ht
tps://perf.wiki.kernel.org/index.php/Main_P
age, 2021.

[39] OpenCompute. In-band network telemetry in Barefoot
Tofino. https://www.opencompute.org/files/
INT-In-Band-Network-Telemetry-A-PowerfulAn
alytics-Framework-for-your-Data-Center-OCP
-Final3.pdf, 2019.

[40] P4. P4. https://p4.org/, 2021.

[41] Behnam Montazeri Masoud Moshref Khaled Elmeleegy
Luigi Rizzo Marc de Kruijf Gautam Kumar Sylvia
Ratnasamy David Culler Amin Vahdat Saksham Agar-
wal, Rachit Agarwal. Understanding host interconnect
congestion. In in ACM HotNets. ACM, 2022.

[42] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez
Sabbag. Supercomputing on Nitro in AWS cloud. IEEE
Micro, 2020.

[43] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen,
and Feifei Li. Fast and concurrent rdf queries with
RDMA-based distributed graph exploration. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX Association, 2016.

[44] Alexander Shpiner, Eitan Zahavi, Omar Dahley, Aviv
Barnea, Rotem Damsker, Gennady Yekelis, Michael Zus,
Eitan Kuta, and Dean Baram. RoCE rocks without PFC:
Detailed evaluation. KBNets, 2017.

[45] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob Cauble,
et al. 1RMA: Re-envisioning remote memory access for
multi-tenant datacenters. In SIGCOMM, 2020.

[46] Stanford. Homasimulation. https://github.com
/PlatformLab/HomaSimulation, 2018.

[47] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is faster
than server-bypass with RDMA. In Proceedings of
the Twelfth European Conference on Computer Systems,
2017.

[48] NVIDIA Networking (Mellanox Technologies). Re-
silient roce. https://community.mellanox.c
om/s/article/introduction-to-resilient-roc
e---faq, 2018.

[49] NVIDIA Networking (Mellanox Technologies).
Connectx-4 lx en en card. https://www.mellanox
.com/files/doc-2020/pb-connectx-4-lx-en-ca
rd.pdf, 2020.

[50] NVIDIA Networking (Mellanox Technologies).
Connectx-5 en en card. https://www.mellanox.c
om/files/doc-2020/pb-connectx-5-en-card.pd
f, 2020.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 945

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://www.opencompute.org/files/INT-In-Band-Network-Telemetry-A-PowerfulAnalytics-Framework-for-your-Data-Center-OCP-Final3.pdf
https://p4.org/
https://github.com/PlatformLab/HomaSimulation
https://github.com/PlatformLab/HomaSimulation
https://community.mellanox.com/s/article/introduction-to-resilient-roce---faq
https://community.mellanox.com/s/article/introduction-to-resilient-roce---faq
https://community.mellanox.com/s/article/introduction-to-resilient-roce---faq
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf

[51] NVIDIA Networking (Mellanox Technologies). Ac-
celerating data center security with bluefield-2 dpu.
https://developer.nvidia.com/blog/accelera
ting-data-center-security-with-bluefield-2
-dpu, 2021.

[52] NVIDIA Networking (Mellanox Technologies).
ConnectX-6 Dx Ethernet SmartNIC. https:
//nvdam.widen.net/s/qpszhmhpzt/networking-
overal-dpu-datasheet-connectx-6-dx-smartni
c-1991450, 2021.

[53] NVIDIA Networking (Mellanox Technologies). Mel-
lanox lossy RoCE accelerations. https://commun
ity.mellanox.com/s/article/How-to-Enable-D
isable-Lossy-RoCE-Accelerations, 2021.

[54] C. Tian, B. Li, L. Qin, J. Zheng, J. Yang, W. Wang,
G. Chen, and W. Dou. P-PFC: Reducing tail latency
with predictive PFC in lossless data center networks.
IEEE Transactions on Parallel and Distributed Systems,
31(6):1447–1459, 2020.

[55] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles. ACM,
2015.

[56] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memories and RDMA-capable networks. In 17th
USENIX Conference on File and Storage Technologies
(FAST). USENIX Association, 2019.

[57] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale RDMA
deployments. In SIGCOMM, 2015.

[58] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Förster, Arvind Krishnamurthy, and Thomas An-
derson. Understanding and mitigating packet corruption
in data center networks. SIGCOMM, 2017.

APPENDIX

A Design Details
A.1 Software Reliability
A.1.1 Chunk sequence number
Flor has two sequence number spaces, i.e. global sequence
number (GN in Figure 14) and reliable sequence number (RN
in Figure 14). The global sequence number is a 64-bit value
and all the RDMA WQEs have a unique global sequence
number to identify the sequence within a QP. The reliable

Global Num = 1
Reliable Num = 1

Chunks transported by WIRTE_WITH_IMM are
identified by Message Id + Offset

Global Num = 2
Message id = 1

Offeset = 1

Global Num = 3
Reliable Num = 1

Global Num = 4
Reliable Num = 2

WQEs transported by SEND are
identified by Reliable Numbers

All WQEs are numbered with
non-repetitive Global Numbers

Retransmissions have
different Global Numbers

8KB
MID=1
OFF=0

（GN=1）

32KB
MID=1
OFF=2

（GN=3）

1KB
GN=2
RN=1

4KB
GN=4
RN=2

MID=1
OFF=0

4KB
GN=5
RN=3

MID=1
OFF=1

Retransmit

WRITE WQEs SEND WQEs

1KB
GN=6
RN=1

Figure 14: An example of the numbering system of Flor. An
40KB of WRITE WQE is splited into a 8KB and a 32KB WRITE
WQE. The 8KB WRITE WQE and 1KB SEND WQE are lost and
get retransmitted. The retransmissions of 8KB WRITE WQE are
transmitted via two 4KB SENDs.

sequence number is used to identify the sequence within the
same type of WQEs, i.e., WRITE WQEs and SEND WQEs
have separate reliable sequence number space. Flor identifies
the original WQEs and the retransmitted WQEs with different
global numbers such that ACK information (and timestamp
information carried in ACKs) is not ambiguous. The global se-
quence numbers for WRITE WQEs are maintained only at the
senders and not transmitted to the receiver. The SEND WQEs
carry both the reliable numbers and the global sequence
numbers to the receiver. The retransmission WQEs share the
same reliable sequence number with the original WQE. Note
that Flor uses SEND WQE to retransmit WRITE WQE. This
SEND WQE that is used for WRITE retransmission carries
the original WRITE reliable sequence number, a new reliable
number and a new global sequence number to the receiver
such that this retransmission is able to be identified both by
the sender and receiver.

The reliable sequence number of WRITE WQEs consists
of 1-bit hint, 21-bit message id (MID in Figure 14) and 10-bit
chunk_o f f set (OFF in Figure 14). The hint bit is set when
the WQE is the last WQE in the congestion window. We align
the chunk_size to the chunk unit size (e.g., UNIT_SIZE). The
chunk_o f f set represents the offset of the memory address of
a chunk (addrc) from the staring memory address of the same
message (addrm), i.e.,

chunk_o f f set = (addrc−addrm)/UNIT _SIZE

The receiver can validate the integrity of the message by
checking whether it has received data of all chunk offsets
covered the message size and assemble the messages to notify
the application. If using UNIT _SIZE = 4KB, then 10-bit
chunk offset supports up to 4KB×210 = 4MB message. To
support larger message in applications, users can allocate
more bits for chunk offset field.

Figure 14 shows an example how this numbering system
works. Here a large message of 40KB is split into 2 WRITE
WQEs, i.e., 8KB and 32KB and a SEND message is sent
between these two WRITE WQEs. Each WQE has a unique
global sequence number (GN) and the WRITE WQEs do not
carry the GN to the receiver while the SEND does.

In the case that 8KB WRITE WQE and the 1KB SEND
WQE are retransmitted. The 8KB WRITE WQE is split into
two 4KB SEND WQEs, where the minimal chunk_size is

946 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://developer.nvidia.com/blog/accelerating-data-center-security-with-bluefield-2-dpu
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://nvdam.widen.net/s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartnic-1991450
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations

4KB. Each SEND WQE for WRITE retransmission carries the
original reliable sequence number of the WRITE WQE and
has a new SEND reliable sequence number and a new global
sequence number. Each SEND WQE for SEND retransmission
carries the original SEND reliable sequence number and a new
global sequence number to the receiver.
A.1.2 ACK Format and CompressionMessage id

22bit
Chunk offset

10bit

Immediate data (32bit)

ACK packet format (32 acked number at most)

Least ACKed number
8B

ACK generate delay
8B

bitmap
4B

QP number
4B

Acked num
4B

Acked num
4B

…

Least ACKed number
8B

ACK generate delay
8B

bitmap
4B

QP number
4B

Acked num
4B

Acked num
4B

… Acked num
4B

Acked num
4B

Figure 15: Software ACK format.

Figure 15 shows the software ACK format. A 32-bit bitmap
(4B) in ACK packet indicates that each ACK packet signals
at most 32 WQEs. A ith bit set in the bitmap indicates that
the ith ACKed number is a global sequence number for a
SEND WQE, otherwise, the ith ACKed number is the reliable
sequence number for a WRITE WQE. It is possible that
the ACK packet contains the number of ACKed number is
less than 32. As Figure 15 shows that the first ACKed number
starts from 24thB and each ACKed number is 4B. The number
of ACKs carried in one packet is calculated as follows:

(ack_length−24B)/4B,

where ack_length is the packet length of the ACK packet.
For example, an ACK of packet length 40B carries (40B−
24B)/4B = 4 acked numbers. If the bitmap is 0XC0000000,
then the first 2 ACKed numbers acknowledge WRITE WQEs
and the 3th and 4th ACKed numbers acknowledge SEND
WQEs.

We limits the acked number to be 32-bit to shorten the
length of the ACK packets. The reliable sequence number
of a WRITE WQE and the global sequence number of a
SEND WQE will be ACKed back to the sender. Recall that
the reliable sequence number is 32-bit and the global sequence
number is 64-bit. Thus, we compress the 64-bit global
sequence number to a 32-bit ACKed number as follows:

acked_num = global_num− least_acked_global_num,

where the least_acked_global_num is the smallest global
sequence number in a ACK packet. The WQEs with global
sequence number larger than

least_acked_global_num+232−1

are dropped by Flor if received. This window size is large
enough in practice. The silently dropped WQEs, if there are,
are detected by timeout.

A.2 RTT measurement
A.2.1 HW/SW Clock Synchronization
The timestamps are generated by the NIC hardware clock.
Except from obtaining timestamps from completions events
to calculate, Flor may also need time for other usages, e.g.,
setting retransmission timers. However, querying current time
from RNICs is a time-consuming operation (e.g., costs 1µs in
CX-4). Thus Flor maintains a software clock based on rdtsc()
and synchronizes the clock with hardware clock. When Flor
sends or receives an operation and the clock is not corrected
for 100µs, then Flor queries a timestamp from RNIC and
update the offset when the error exceeds threshold 10µs.
According to our observation, the successfully correct ratio
(i.e., the ratio that the error exceeds 10µs) is less than 1%.
A.2.2 Improve RTT Measurement Accuracy

RTT (50th)

500

1000

Ti
m

e
(u

s)

ACK on shared QP
ACK on isolated QP

RTT (99th)
RTT (99.9th)

Figure 16: RTT accuracy with shared and isolated QP.

Figure 16 shows the measured RTT values with and without
Flor optimization, i.e., ACK on isolated QP and ACK on
shared QP, respectively. The experiment setup is the same as
Figure 5 except using a larger RPC request size, i.e., 1MB.
A.2.3 RTT Measurement for UC

RTT (99.9th)

ACK Delay (99th)

Local ACK Delay (99.9th)0

50

100

150

20
0

Ti
m

e
(u

s)

Immediate
30 s,4 WQEs

120 s,32 WQEs

Figure 17: Evaluation of optimizations on ACK designs.
Note that Flor ACKs coalescing mechanism can also cause

the ACKs being delayed. Thus, we measured the ACK delay
(i.e., T′3−T2) and local delay duration (the time between T4
and ACK processing time) with different acknowledgement
frequencies. Figure 17 reports the 99th percentile of these
delays as the acknowledgement frequencies changes. As
expected, the ACK delay increases as the number of WQEs’
ACKs coalescing increases, this is because the receiver needs
to wait more WQEs to finish or a timer to generate an ACK.
The local delay stays the same because Flor prioritizes to
poll the ACK completion queue and Flor processes one

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 947

ACK regardless the number of the number of WQEs’ ACKs
coalescing. Finally, the RTT measurement results show that
RTT measurement accuracy does not impact by the ACK
frequencies with this improvement.

948 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ShRing: Networking with Shared Receive Rings

Boris Pismenny†⋄ Adam Morrison‡ Dan Tsafrir†±

† Technion – Israel
Institute of Technology

⋄NVIDIA ‡ Tel Aviv
University

± VMware
Research

Abstract
Multicore systems parallelize to accommodate incoming

Ethernet traffic, allocating one receive (Rx) ring with ≥1Ki
entries per core by default. This ring size is sufficient to absorb
packet bursts of single-core workloads. But the combined size
of all Rx buffers (pointed to by all Rx rings) can exceed the
size of the last-level cache. We observe that, in this case, NIC
and CPU memory accesses are increasingly served by main
memory, which might incur nonnegligible overheads when
scaling to hundreds of incoming gigabits per second.

To alleviate this problem, we propose “shRing,” which
shares each Rx ring among several cores when networking
memory bandwidth consumption is high. ShRing thus adds
software synchronization costs, but this overhead is offset by
the smaller memory footprint. We show that, consequently,
shRing increases the throughput of NFV workloads by up
to 1.27x, and that it reduces their latency by up to 38x. The
substantial latency reduction occurs when shRing shortens the
per-packet processing time to a value smaller than the packet
interarrival time, thereby preventing overload conditions.

1 Introduction
Software systems drive Ethernet NICs through producer-
consumer “rings.” A ring is a logically circular memory array
shared between software and NIC, such that each ring entry
points to a buffer big enough to store an Ethernet packet. Soft-
ware sends data by placing packet buffers in a transmission
(Tx) ring, thereby handing them to the NIC to be sent. Soft-
ware receives data by removing packet buffers from a receive
(Rx) ring after they have been filled by the NIC, immediately
replacing them with free buffers to be used in their stead
for future incoming traffic. Thus, Rx rings are always fully
populated with (free or filled) buffers, whereas Tx rings are
commonly partially populated or empty. Consequently, Rx
rings are more memory-consuming than Tx rings.

By default, a receive ring consists of ≥1Ki entries [11, 21,
60, 65, 86, 86, 92], each pointing to a 1500B buffer, Ethernet’s
maximum transmission unit (MTU) [36]. A typical Rx ring
thus requires (1Ki × 1500B ≈) 1.5MiB. NICs support hun-
dreds of such rings [12, 50, 66, 71], which software uses for
synchronization-free parallelism, assigning different rings to
different cores in both kernel [30, 33, 68, 77, 82, 84, 90] and
user [2, 8, 24, 38, 52] network stacks. The combined size of
Rx buffers across all cores—henceforth denoted as α—can
therefore reach tens of MiBs, which might be bigger than the

last-level cache (LLC). Notably, α constitutes a lower bound
for the size of the NIC working set [25], as the NIC sequen-
tially operates on all Rx buffers, one after the other, so all
buffers in the circle must be used before they can be re-used.
As a result, α exceeding LLC capacity can be problematic for
high-throughput, low-latency workloads that sustain network
traffic of up to hundreds of gigabits per second (Gbps).

The problem stems from these workloads relying on data
direct I/O (DDIO) [20] technology or similar. DDIO allows
NIC direct memory accesses (DMAs) to read and write pack-
ets to and from the LLC while avoiding high main memory
access costs [15,29,63,64,78,79,87,91]. But an α larger than
the LLC undermines DDIO’s effectiveness, as the NIC work-
ing set is too big to be cached. Consequently, CPU memory
accesses become slower, contending with DMAs for insuffi-
cient cache capacity. Accesses are thus increasingly served by
main memory, making the per-packet processing time longer.
This overhead translates to degraded throughput and latency
of networking workloads that experience the memory as a
bottleneck resource.

We exemplify this problem in §2, using run-to-completion
systems [6, 26, 35, 52, 58, 69, 73] common in microsecond-
scale workloads like network function virtualization (NFV).
In these systems, each thread of execution consists of a loop
that iteratively polls an Rx ring, receives a packet from the
wire, processes it to completion (without context switches or
interrupts interfering), and then sends a response.

In §3, we consider addressing the problem by reducing the
size of Rx rings [91]. We find that a size smaller than 1Ki
might cause a core to experience many more packet drops
when the incoming traffic targets this specific core. For exam-
ple, a core may sustain 2x more packets without drops using
1Ki entries instead of 128. (Increasing Rx sizes beyond 1Ki
has no benefit in our workloads.) In contrast, in multicore
setups, using 128 entries per Rx ring reduces α without incur-
ring additional drops, provided the incoming traffic is evenly
spread between the cores, which curbs the traffic and bursts
that each individual Rx ring experiences.

Motivated by this finding, in §4, we propose “shRing,” a
system that alleviates the above problem by sharing a 1Ki-
sized Rx ring between a set of N cores. ShRing satisfies the
simultaneous needs of all sharing cores when incoming traffic
is even or uneven. Sharing balances buffer usage, allowing
cores that sustain heavier traffic to utilize more Rx entries at
the expense of cores sustaining lighter traffic while keeping
α small.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 949

ShRing is advantageous if (1) cache misses due to ineffec-
tive DDIO usage cause non-negligible overhead, and (2) the
workload avoids pathologically imbalanced conditions, where
a subset of the sharing cores are continuously overloaded
while their peers are underloaded. (NFV studies commonly
assume non-pathological conditions [4, 10, 26, 59, 63, 73, 75,
76, 97], which might indicate the system is misconfigured.)
If DDIO usage is effective, then shRing’s synchronization
overhead might degrade the performance, and if the workload
is pathologically imbalanced, then the overloaded cores might
monopolize all the entries of the shared ring. ShRing thus
dynamically identifies the above two conditions, and it turns
itself on or off accordingly.

When operational, shRing boosts LLC hits by shrinking
the working set, which reduces the per-packet processing
time (Pt) and thus increases throughput. If shRing’s shorter
Pt becomes smaller than packet interarrival time (It), queuing
theory dictates that ring occupancy drops from full to empty,
dramatically shortening latency from linear in the ring size to
essentially Pt . But even if shRing’s Pt remains greater than It
(ring fully occupied, so latency is linear in ring size), latency
still improves by a factor of 1/N, as the per-core Rx ring size
is effectively 1/N smaller, being shared by N cores.

Shared data structures commonly underperform due to soft-
ware synchronization overhead [9, 22, 26, 55, 80, 90]. ShRing
reduces this overhead by avoiding synchronization when de-
ciding which core will process which newly arriving packet.
By using per-core completion rings (CRs), the NIC spreads
incoming packets between cores, adding the integer index
of each packet’s entry to the CR of the core that owns the
packet [37]. Cores still require synchronization when notify-
ing the NIC that ring entries can be reused. ShRing bounds
this overhead by limiting N, the number of sharing cores. We
use N=8, but other values may be preferable in other setups.

We explore two shRing variants. The first, “RxArr,” is a
shared cyclic Rx array structured similarly to a private ring.
Because it is shared, its packet buffers routinely become ready
for reuse out of (array) order, as they are processed by dif-
ferent cores. The problem is that, for correctness, RxArr is
permitted to notify the NIC that entry i can be reused only
after all preceding entries (such as i-1) are likewise made
reusable. This constraint necessitates coordination between
cores, which increases the overhead of synchronization.

Our second shRing variant, “RxList,” simplifies coordina-
tion by turning the shared ring into a linked list using a “next”
field added to Rx entries. When storing incoming packets, the
NIC follows list (rather than array) order. This change allows
cores to make entries immediately available for NIC reuse;
they no longer have to wait for preceding entries. We find,
alas, that RxList performs poorly, as the linked list structure
undermines the NIC’s ability to prefetch Rx entries, ruling
this design out for the time being. We propose a modest NIC
ASIC modification that resolves this problem (but prevents
us from experimentally evaluating this improved design).

We demonstrate in §5 that RxArr shRing works as expected,
improving NFV macrobenchmark throughput by up to 1.27x
and latency by up to 38x. In §6, we experimentally show that
our findings are also applicable to more traditional applica-
tions that use kernel-based TCP sockets. Finally, we discuss
related work in §7 and conclude in §8.

2 Motivation

We begin by providing the necessary background (§2.1) and
by characterizing the problem that shRing tackles, which is
the increasing working set size of the NIC as compared to the
LLC size (§2.2). We then experimentally demonstrate how
this problem affects performance as well as shRing’s ability
to address its root cause (§2.3).

2.1 Background
Interacting with NICs Software and Ethernet NICs interact
via logically cyclic producer-consumer queues called rings.
The roles of producer and consumer depend on perspective:
for received (Rx) traffic, the NIC can be viewed as producing
incoming packets that software consumes; alternatively, soft-
ware can be viewed as producing free buffers that the NIC
consumes by filling them with incoming data. Transmitted
(Tx) traffic can be viewed similarly. Software chooses the
ring size and allocates it in main memory. The entries of a
ring are architected descriptor structures consisting of several
fields, one of which is a pointer to packet buffer.

Software pre-allocates packet buffers for all Rx descriptors.
Each buffer can hold MTU bytes (≈1500 by default). When a
packet arrives, the NIC DMA-writes it to the buffer pointed
to by the tail descriptor of the Rx ring (“next free” index),
incrementing the tail to point to the subsequent descriptor if
the tail does not surpass the head ring descriptor. Symmetri-
cally, software dequeues Rx packets for processing from the
head descriptor (“next full” index), iteratively incrementing it
so long as it does not surpass the tail; software replaces the
current head’s buffer, which the NIC has just filled, “reposting”
a new free buffer instead and informing the NIC about this by
“ringing the doorbell” (writing to a NIC register).

Tx traffic occurs similarly, with NIC and software flipping
roles (NIC responds to software actions rather than the other
way around). Thus, in contrast to the Rx case, Tx ring descrip-
tors are initially empty and therefore consume less space.

A ring’s head and tail are maintained as consumer-
and producer-controlled registers, residing in NIC memory
mapped I/O (MMIO) and holding ring indexes. Software may
configure the NIC to trigger an interrupt when it updates a
register, or it may instead poll the ring and observe changes.

The NIC distributes incoming traffic load between mul-
tiple Rx rings, and therefore between multiple cores, using
receive side scaling (RSS [68], which computes a hash over
the packet’s header to produce a ring identifier) or accelerated

950 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

receive flow steering (ARFS [90], which consults software-
controlled packet steering tables).

NFs In this work, we mostly focus on improving the per-
formance of network function (NF) workloads. NFs are
packet-processing applications that were once implemented
using rigid proprietary hardware middleboxes and are now
increasingly implemented with software on off-the-shelf
servers [4, 23, 26, 27, 53, 54, 58, 74]. Common NF examples
include switches, routers, firewalls, virtual private networks
(VPN), deep packet inspectors (DPI), network address trans-
lators (NAT), and load balancers (LB). Evidence suggests
that nearly 60% of all data center network traffic relies on
NFs [74].

To attain high throughput and low latency, NFs commonly
employ a packet processing model based on kernel bypass
and direct NIC access [4, 23, 27, 53, 58] as provided by, e.g.,
the data plane development kit (DPDK) [51]. To improve effi-
ciency and minimize overheads, this model typically foregoes
abstractions like blocking I/O, context switching, and multi-
tasking. Instead, it is designed as a simple run-to-completion,
polling system, which does away with costly device interrupts
as means of driving networking activity. Thus, each NF thread
T gets its own dedicated core and rings. T continuously polls
its Rx ring, and when a packet arrives, T processes the packet,
generates a response, sends the response by placing it in its
Tx ring, and resumes its Rx polling.

DDIO High-throughput, low-latency apps like NFs benefit
from Intel’s direct data I/O (DDIO) technology [20] (other
processor vendors support similar technologies [5,93]). When
possible, DDIO satisfies DMA operations from the LLC rather
than main memory, which is faster/cheaper and may thus im-
prove throughput and latency. Specifically, DDIO services
DMA reads from the LLC if the target data is already there,
which, in addition to being faster, also reduces memory band-
width contention. Symmetrically, DDIO can perform DMA
writes directly to the LLC instead of to main memory by ei-
ther overwriting existing LLC lines, if they reside in the LLC,
or by allocating new lines in up to two LLC ways.

2.2 The Problem: I/O Working Sets
Let the I/O working set be the memory area that an I/O device
(e.g., NIC) reads/writes via DMA in a given time interval. For
NFs, this set should preferably fit in the LLC due to DDIO. An
I/O-intensive workload whose I/O working set size exceeds
(or even approaches) LLC capacity implies: that I/O-related
data likely competes for cache capacity; that DMAs are thus
increasingly served by main memory instead of the LLC;
and that LLC contention and memory bandwidth bottlenecks
might occur as a result [15, 29, 63, 64, 78, 79, 87, 91].

Rx ring size is a key factor in determining the I/O work-
ing set size. Recall that all Rx descriptors are pre-populated
with MTU (1500B) packet buffers upon startup. Subsequently,
whenever software replenishes the ring’s head descriptor with

Intel gen. max ring default Xeon
year NIC (GbE) num. (rm) size (s) CPU LLC cores
2001 [40] 1 1 256 [41] 256 KiB 1
2007 [42] 10 64 512 [43] 12 MiB 4
2014 [46] 40 1536 512 [45] 38 MiB 15
2020 [49] 100 2048 2048 [48] 77 MiB 56

Table 1: The first Intel NIC model in each GbE generations shown
alongside the Intel CPU launched at the same year whose LLC was
the largest in that year. The number of supported NIC rings and the
default ring size are increasing.

a free buffer B, the head-tail protocol (§2.1) dictates that the
NIC will DMA-write a new packet to B only after the associ-
ated Rx ring tail wraps around back to B’s position. Thus, the
aggregate Rx size (denoted α) serves as a lower bound for the
I/O working set. If software utilizes r Rx rings of size s, then
this lower bound is α = r× s×1500B.

The problem that motivates our work is that α grows faster
than the LLC and nowadays routinely exceeds it, with Rx
rings increasing both in number (r) and size (s). Underly-
ing this phenomenon are, notably, the following technology
trends. NIC throughput has been growing faster than CPU
packet processing speed for over a decade [32,87]. The higher
bandwidth increases variability and necessitates bigger net-
work queues [28, 47, 94]. Moreover, the ever-growing traffic
volume implies that the days when a single CPU core was
able to drive an Ethernet NIC to its full capacity are long
gone [31]. Thus, modern systems must employ multicore par-
allelism [9, 22, 26, 80, 90]. NICs have therefore evolved to
offer multiple Rx/Tx rings, allowing each core to interact with
the NIC through its own private ring instances in isolation.
We refer to this architecture as privRing.

To demonstrate the rapidly increasing α phenomenon
(along with the underlying technology trends), we collected
the ring maximal number (rm) and default size (s) from the
datasheet and driver, respectively, of every Intel NIC model
released during 2000–2022. Table 1 shows a representative
summary; to conserve space, we only include the first NIC of
each Ethernet generation with increasing throughput. Early
1GbE NICs supported only a single ring, but as multicore
CPUs became more common, subsequent 1GbE NICs sup-
ported up to 16 rings (not shown). Later, the first generation of
10GbE, 40GbE, and 100GbE respectively introduced support
for 64, 1536, and 2048 rings.1 The default ring size likewise
increased from 256 to 2048. Network stacks and libraries
adopt similar sizes. For instance, the default Rx ring size in
all sample apps in the DPDK library is currently 1024 [60].

The right side of Table 1 matches each NIC with an Intel
CPU model launched at that year, whose LLC was the largest

1It makes sense for r to be much bigger than CPU core number in order
to support, e.g.: per-application rings [38, 95]; per-container rings [2, 24];
a ring for every SRIOV [44] instance of every virtual CPU of every virtual
machine that runs on the host machine [82, 84]; and a hypervisor ring per
VM ring for fallback when flow rule offloading is not yet configured [33,77].

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 951

2

8

32

128

512

2048

8192

2007
(10 GbE)

2014
(40 GbE)

2020
(100 GbE)

s
iz

e
 [

M
iB

]
all supported rings

Rx ring for each core

LLC

78x

4.3x

Figure 1: Aggregate Rx size (α = r× s×MTU) grows faster than
LLC size and has already exceeded it in even the most minimalist
configuration (based on data from Table 1).

at the time. Using this data, Figure 1 plots the size of the
LLC and the minimal and maximal α of the associated NIC.
We see that the maximal aggregate Rx size (assuming all rm
supported rings are used) was always too big to fit in the LLC
size in this time range. But in 2020, the aggregate Rx size
of even the most minimalist configuration—just one Rx per
core—became too big. This is the source of the problem.

The situation is exacerbated if considering logical, rather
than physical cores (the 4.3x in the figure would have become
8.6x). We predict that this trend will continue, as upcoming
NICs will bring more features (and queues), with speeds of
up to 800 GbE expected in 2025 [13, 14].

2.3 Implications
Assume that the I/O working set size of some NF exceeds
the LLC capacity and/or the LLC space it needs for satisfy-
ing DMA-writes of incoming data (constrained by DDIO to
only two ways per LLC set by default) is insufficient. In this
case, we claim that the overhead is significant to the point
that it may be preferable to abandon dedicated private rings
(privRings) in favor of shared rings (shRings), despite the
synchronization cost associated with the latter.

To demonstrate, we use a synthetic FastClick NF mi-
crobenchmark configured to iteratively receive a packet, ac-
cess an array, perform routing, and send the packet out [8].
The NF uses all (16) cores of our 2.1 GHz CPU, experiencing
a theoretical incoming load of 200 Gbps of MTU packets (line
rate), which in practice is 195.6 Gbps (due to 34B Ethernet
overhead for each 1500B MTU packet). We execute this ex-
periment using the baseline privRing, as well as three shRing
variants that unify the rings of 2, 4, and 8 cores, respectively
denoted as shRing/2, shRing/4, and shRing/8. (The full de-
tails of shRing are specified in §4, and the full details of the
experiment are specified in §5.)

Figure 2a distills our case. It shows the average number
of cycles it takes to handle one packet, breaking it down to
synchronization overhead (“sync”) vs. actual processing time
(“orig”). While synchronization overheads are substantial and

increase with the level of sharing, we see that it is nevertheless
advantageous to pay the cost, as cycles-per-packet improves
by about 4% each time we halve the I/O working set size.

The NF throughput, shown in Figure 2b, is approximately
inversely proportional to cycles-per-packet (Figure 2a) as long
as the CPU constitutes a bottleneck resource and line rate is
not yet attained. Specifically, let C denote the average number
of cycles required to process one packet, let hz (=2.1 GHz)
denote the cycles-per-second clock speed of the CPU, and let
n (=16) denote the number of running CPU cores, then n× hz

C
is the number of packets that the CPU handles per second,
and so Gbps(C) = 1500B × 8bit × n × hz

C is the throughput.
Using this equation, we can compute Cbdgt , the budget of

per-packet cycles that the system must meet to achieve the
195.6 Gbps line rate (denoted “bdgt” in Figure 2a) as follows:
Cbdgt = 1500B × 8bit × n × hz / 195.6 Gbps = 2061 cycles
per packet. Only shRing/8 meets the budget here.

We have argued that the reason underlying shRing’s im-
proved performance is its smaller I/O working set, which
curbs memory bandwidth consumption by increasing cache
efficiency. This argument is directly supported by Figures 2c
(memory bandwidth) and 2d (LLC misses as experienced by
both CPU and NIC). In the latter figure, we see that privRing’s
NIC PCIe miss rate is as high as 85%, which is why privRing’s
average NIC PCIe read latency grows to 1.45 µs (Figure 2e).
Such a long PCIe latency is enough to saturate the DMA
engines within the NIC (designed to hide PCIe latency with
parallelism), and so it hampers the NIC’s ability to quickly
process rings, which in turn generates high ring occupancy of
94% on average (Figure 2f). The implication is that, on aver-
age, each privRing packet P must wait for 966 packets (=94%
of ring size) to be processed before P is finally processed
itself, which explains privRing’s high latency (Figure 2g).

In contrast, shRing/8’s occupancy is small, as it meets the
Cbdgt budget and so its processing rate (µ) is larger than the
arrival rate (λ). Because µ > λ, latency is much lower. Even
when shRing does not meet the Cbdgt budget (the /2 and /4
variants), it improves latency, as its per-packet processing
time is lower than in privRing.

3 Fewer or Smaller Private Rings

Conceivably, we can reduce the I/O working set size without
ring sharing in two straightforward ways. One can use much
smaller per-core Rx rings, or one can employ a single core (us-
ing a bigger Rx ring) as the system’s centralized “dispatcher”
for all incoming traffic. Here, we briefly explain why neither
is satisfactory for high-bandwidth networking applications.

The single-core, single-ring centralized dispatcher ap-
proach is used by such systems as Shinjuku [57] and
Shenango [72]. It can be an effective way to reduce I/O mem-
ory consumption, and it has been shown to work well for
NIC bandwidth of up to 40 Gbps. But more powerful NICs
might not be served well by this approach, as the dispatcher’s

952 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

1

2

3

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

-4
%

-8
%

-1
2
%

orig
sync
bdgt

(a)
cycles/pkt

[K]

0

50

100

150

200

250

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

+
4
%

+
9
%

+
1
3
%

(b)
throughput

[Gbps]

0

10

20

30

40

50

60

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

-1
7
%

-3
1
%

-7
9
%

(c)
memory bw

[GiB/s]

0

20

40

60

80

100

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

PCIe
CPU

(d) LLC
missess

[%]

0

0.5

1

1.5

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

-1
1
%

-1
4
%

-3
2
%

(e) PCIe
latency

[µs]

0

20

40

60

80

100

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

-2
1
%

-3
3
%

-9
7
%

(f) ring
occupancy

[%]

0

200

400

600

800

1000

1200

p
ri
v
R

in
g

s
h
R

in
g
/2

s
h
R

in
g
/4

s
h
R

in
g
/8

-1
9
%

-3
7
%

-9
2
%

(g)
latency

[µs]

Figure 2: ShRing’s synchronization costs are significant but are nevertheless worthwhile, as they are cheaper than the overheads associated
with privRing’s larger I/O working set. When shRing’s cycles-per-packet meet the line rate budget (a), its packet processing rate exceeds the
packet arrival rate, generating low occupancy in the ring (f) and thus substantially reducing the latency (g).

limited compute capacity becomes a bottleneck [31].
The other potential approach, of reducing the size of all

rings while retaining the ring-per-core design, is compatible
with multicore parallelism. But we contend that the existing
ring size is necessary and that reducing it has negative reper-
cussions. To illustrate, we run the standard RFC2544 no-drop
rate (NDR) test [10] with DPDK Layer-3 MTU packet for-
warding (l3fwd) on 8 cores. This test finds the maximum
throughput attainable without loss. We run it once with traffic
evenly spread across the cores (“multicore”) and again with
traffic directed at one of them (“single core”).

Figure 3a shows that small rings work well for multiple
cores if traffic is evenly spread between them, curbing the
load and bursts that each core/ring experiences, which allows
the fewer Rx buffers to cope. But small rings cease to deliver
when traffic is uneven: the overloaded (“single”) core’s ring
overflows and causes packet drops if it is smaller than 1Ki. In
contrast, Figure 3b shows that one shared 1Ki-ring is enough
to sustain optimal NDR of either 8 competing cores (each
using 128 entries on average) or just one overloaded core,
as shRing allows more loaded cores to use more Rx entries
at the expense of their less loaded peers that are adequately
served by fewer entries at that particular time.

4 ShRing’s Design and Implementation

ShRing is an architecture for driving high bandwidth NICs. In-
stead of using private per-core default-sized Rx rings, it shares
each default-sized Rx ring between a set of cores. (ShRing
leaves the Tx path unmodified.) ShRing can improve through-
put, latency, or both, depending on the workload (§4.1).

Sharing a receive ring among cores requires us to syn-
chronize the ring accesses of the CPU (using locks or
atomic instructions), which incurs overhead compared to the
synchronization-free privRing. ShRing curbs this overhead
by limiting the number of cores sharing a ring to N; we use

 0

 20

 40

 60

 80

 100

128
256

512
1Ki

2Ki
4Ki

n
o

-d
ro

p
 t

h
ro

u
g

h
p

u
t

[G
b

p
s
]

Rx ring size [entries]

(a) privRing

 0

 20

 40

 60

 80

 100

1:1 1:2 1:4 1:8

sharing ratio [rings:cores]

single core
multicore

(b) shRing (1Ki ring)

Figure 3: DPDK l3fwd no-drop rate. Small privRings work well
when traffic is evenly spread across cores but cause drops otherwise.
ShRings work well in both cases at a fraction of the buffer size.

N=8, but other values may work better for other setups. Also,
shRing reduces synchronization overhead by leveraging per-
core completion rings (CRs) with which the NIC spreads
incoming packets between cores [37], ridding them from hav-
ing to compete for newly arriving packets (§4.2). As a result,
shRing’s benefits outweigh its synchronization costs for work-
loads that suffer from ineffective DDIO use.

We propose two shRing designs that represent the ring as
an array (RxArr, §4.3) or a linked list (RxList, §4.4). Both
can be implemented with recent NVIDIA NICs. RxArr’s syn-
chronization is costlier, but RxList’s interferes with the NIC’s
Rx entry prefetching, so we rule it out (but propose a modest
NIC ASIC modification that will fix this problem).

ShRing dynamically turns itself on/off depending on
whether or not the workload is benefiting from it (§4.5). We
describe the implementation details in §4.6.

4.1 Benefits and Constraints
ShRing can improve throughput and/or latency, depending
on the workload. Next, we define the workload properties

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 953

necessary for shRing to be advantageous, and we explain the
expected benefits of shRing and how it provides them. When
shRing is counterproductive (necessary properties are absent),
it dynamically disables itself.

ShRing is relevant only for workloads that avoid patholog-
ical core overload, where a subset of the sharing cores are
continuously overloaded while their peers are underloaded.
Pathological conditions may occur due to continuous, highly
skewed per-packet processing time differences, or because of
chronic incoming traffic imbalance. For reasons detailed later
on (§4.5), when cores share a ring under pathological condi-
tions, the fact that only some of them are overloaded implies
that the packets of the overloaded cores increasingly and dis-
proportionately accumulate within the ring, to the point that
no room is left for packets of underloaded cores. This pathol-
ogy causes new packets directed at underloaded cores to get
dropped despite there being available processing capacity.

We term these conditions “pathological” because (1) they
are suboptimal and may indicate the system is misconfigured,
and (2) they are atypical when measuring NFV performance,
as many NFV studies [4,26,63,73,75,76,97] and IETF bench-
marking methodology [10] generate packet headers using
randomization, balancing load across cores with hash-based
packet spreading (e.g., RSS).

Throughput ShRing improves a workload’s throughput if
(1) its I/O working set with privRing exceeds the LLC DDIO
capacity and (2) the penalty of the resulting cache misses
is non-negligible compared to the overall packet processing
time. Relative to privRing, shRing multiplicatively decreases
the number of rings by a factor equal to the number of cores
sharing each Rx ring (N=8 in our case). This decrease results
in a corresponding 1/N reduction of the I/O working set,
possibly to below the LLC DDIO capacity. ShRing therefore
mitigates and possibly eliminates the I/O-related cache miss
penalty and thus enables more effective packet processing.

Latency ShRing improves a workload’s latency if the asso-
ciated cores are saturated because packet service rate (number
of packets processed per second, denoted µ) is smaller than
packet arrival rate (number of packets arriving per second,
denoted λ). Latency is linear in the ring size s in this case, as
queuing theory dictates that µ < λ implies fully occupied Rx
rings, which means every newly arriving packet waits for s−1
preceding packets to be processed. But in contrast to privRing,
where each core has its own default-sized ring, shRing shares
each such ring between N cores, so the “effective” ring ca-
pacity that each core experiences is s/N, which means the
latency proportionally becomes 1/N smaller (recall that we
assume no pathological core imbalance).

Moreover, whenever shRing improves throughput, it also
improves latency, as this throughput improvement stems from
making the per-packet processing time (Pt) shorter. Notably,
if shRing’s shorter Pt transforms the overall service rate from
slower than arrival rate (under privRing) to faster (µ > λ

occupiedvacant

b. shRinga. privRing

desc 3desc 2desc 13
2

4

1

head

shared
desc1

2 3

4

c2 c3c1

Figure 4: PrivRing (private Rx rings) vs. shRing (shared Rx ring)
with N = 3 completion rings.

instead of µ < λ), queuing theory says that Rx ring occu-
pancy drops from fully to barely occupied. Namely, latency
drops sharply, essentially becoming O(Pt) with shRing in-
stead of O(Pt × s) with privRing. This shRing property under-
lies Figure 2g.

4.2 Synchronization with Completion Rings
In principle, N cores may share a receive ring by syn-
chronously accessing the ring’s head. But this approach cre-
ates a synchronization bottleneck [9, 22, 26, 80, 90]. ShRing
sidesteps this problem by reusing RSS to spread incoming
packets between different sharing cores (in addition to spread-
ing them between different rings, which is the usual role
of RSS). So when the NIC stores incoming packets in a
shared ring, it communicates to each of the N sharing cores
which packets belong to that core via a per-core completion
ring (CR), as depicted in Figure 4.

A CR is a circular array in host memory. There are N CRs
associated with each shared ring R: one for each core C that
shares R. The CR stores indexes of R’s packet descriptors,
specifying which descriptors are ready to be processed by C.
Similarly to descriptor rings, a CR has head/tail entries whose
indexes reside in NIC memory. When the NIC stores in R an
incoming packet P that is mapped to core C, it writes the index
of P’s descriptor to the tail of C’s CR and advances this tail.
To receive packets, C polls its CR head awaiting notification
about the next available packet in R. When C removes this
packet from R, it advances its CR head.

Thus, per-core CRs allow cores to poll without synchroniz-
ing with their peers. CRs negligibly increase the I/O working
set size, as a CR entry occupies only a single cacheline (for
storing metadata about the associated packet, such as size and
header offsets). Nonetheless, CRs do not obviate the need for
synchronization when a core reposts a descriptor for the NIC
to consume. RxList and RxArr address this synchronization
problem in different ways.

NIC Support Recent NVIDIA NICs already support asso-
ciating multiple CRs with a shared Rx ring as part of a shared
receive queue (SRQ) buffers feature [37, 61]. The motiva-
tion for this feature is reducing DRAM pinning for RDMA
(see §7), as opposed to shRing’s goal of improving throughput

954 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and latency for Ethernet.
We expect support for Ethernet Rx ring sharing among

CRs to become widely available in the future, because it is
included in the infrastructure datapath function (IDPF) spec-
ification [17] and the Open Compute Project NIC specifica-
tion [18], which are proposed industry standards for network
device interfaces.

4.3 Array Ring Sharing (RxArr)
In the baseline privRing, each core C processes and reposts
descriptors of its private ring in array order, one after the
other. Namely, after C processes a descriptor Di, it reposts Di
by advancing the head of the ring past Di to Di+1, thereby
indicating that Di can be reused by the NIC to store some
other incoming packet in the future.

In contrast, RxArr shRing implements a ring array that
is shared between N cores. It therefore cannot automatically
advance the ring’s head in this way, as Di might become ready
for reuse before its k preceding descriptors {D j} j=i−1

j=i−k . For
example, if they were assigned to cores different than C and
require a longer processing time as compared to Di. Or if RSS
happened to assign all of them to some other core C′, which
must now work harder than C to catch up.

RxArr must thus guarantee that the NIC is notified that Di
can be reused only when all preceding descriptors are also
ready for reuse. For this purpose, RxArr maintains a bitmap
with a bit per descriptor, tracking which ring descriptors be-
tween head and tail have been processed and made available
for reuse. After core C consumes Di and re-arms it with a
new empty buffer, C (1) atomically sets bit i in this bitmap,
(2) consults the bitmap to find the maximal contiguous se-
quence of descriptors available for reuse beginning at the head
{D j} j=maxContig

j=head , and (3) atomically clears the corresponding
bits and advances the head past them.

The drawback of RxArr is its synchronization overhead, as
its bitmap is a shared and frequently updated data structure
that requires core coordination. Also, RxArr is suboptimal in
that it delays the reuse of descriptors made ready by some
cores, if prior descriptors have not yet been processed by other
cores. Conceivably, packet loss might occur under RxArr
despite available CPU and buffer capacity. In the privRing
baseline, in contrast, ready descriptors reside in different rings
and so the NIC can reuse them as they become available.

Listing 1 shows the RxArr receive function, which de-
queues a batch of packets for processing. It receives a shared
descriptor ring (sd_ring), the calling core’s CR (c_ring
completion ring), and an output array of packet pointers
(pkts) of length len. It returns the number of received pack-
ets. Lines 10–15 poll the CR to find the location of a ready
descriptor assigned to the calling core and store the descrip-
tor’s buffer in the output array, replacing this buffer with a
new one. Lines 16–22 mark received descriptors in the shared
bitmap (sdr->bitmap) while batching updates within 64-bit

1 #define BIT(x) (1 << ((x) & 63))
2 #define WORD(x) ((x) >> 6)
3 #define ISSET(bmp, x) \
4 (bmp[WORD(x & (bmp->size - 1))] & BIT(x))
5 int shRing(sd_ring *sdr, c_ring *cr,
6 void **pkts , int len) {
7 int rcvd = 0, lidx = -1;
8 uint_64t lbits = 0
9 while (rcvd < len) {

10 c_ring_ent *cre = get_cre(cr);
11 if (cre == NULL)
12 break;
13 int idx = cre->idx;
14 pkts[rcvd++] = sdr->desc[idx].buf;
15 sdr->desc[idx].buf = alloc_buf();
16 if (lidx == -1) lidx = WORD(idx);
17 else if (lidx == WORD(idx)) {
18 atomic_or(&sdr->bitmap[lidx], lbits);
19 lidx = WORD(idx);
20 lbits = 0;
21 }
22 lbits |= BIT(idx);
23 }
24 if (rcvd == 0) return 0;
25 if (lbits != 0)
26 atomic_or(&sdr->bitmap[lidx], lbits);
27 cr->ci += rcvd;
28 *cr->doorbell = cq->ci;
29 lock(sdr->lock);
30 while (ISSET(sdr->bitmap , sdr->ci) != 0) {
31 setb = ffs(~sdr->bitmap[WORD(sdr->ci)]);
32 atomic_clear(&sdr->bitmap[WORD(sdr->ci)],
33 setb - 1);
34 sdr->ci += setb - 1;
35 }
36 *sdr->doorbell = sdr->ci;
37 unlock(sdr->lock);
38 return rcvd;
39 }

Listing 1: RxArr shared ring receive code.

words. This is done using atomic instructions, as other cores
may be concurrently setting/clearing other bits in the bitmap.
Line 24 handles the corner case of an empty CR. Lines 25–
26 handle the remaining accumulated bitmap updates after
exiting the loop. Lines 27–28 ring the CR’s doorbell.

Lines 29–37 identify the maximal contiguous sequence
of descriptors beginning at the ring head that is available
for reuse, notifying the NIC about them. These operations
are performed under a lock to guarantee the atomicity of
(1) inspecting and modifying the bitmap and of (2) notifying
the NIC. Line 31 uses the find-first-set instruction to identify
the contiguous set bits. Lines 32–33 atomically clear them.
Finally, Line 34 advances the ring’s head (consumer index,
sdr->ci) accordingly, and Line 36 writes the updated head
to the shared ring’s doorbell.

4.4 Linked List Ring Sharing (RxList)
RxList is a shRing design that alleviates RxArr’s bitmap co-
ordination problem, eliminating the requirement to repost

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 955

occupiedvacanthead

a. linked list

Shared
desc1

2 3

4

b. batched linked list

Shared
desc

1
2
3
4c2

c3

c1

hwHead

Figure 5: RxList vs. Batched RxList designs for one shared ring
with three completion rings. In (b), the batch size is 4.

descriptors in array order. To this end, RxList represents the
empty packet buffer descriptor queue as a linked list. The
NIC correspondingly follows list order when storing incom-
ing packets. The list itself is overlaid on the Rx descriptor
array, with each descriptor holding a “next” field pointing to
the next list item. (Linked list functionality is part of the SRQ
feature [7].) Initially, each descriptor points to the subsequent
descriptor in the array. But as packet processing occurs and
cores process and repost descriptors out of array order, the
descriptor order in the list changes. We denote the first and
last descriptors in the empty descriptor list as hwHead and
hwTail, respectively, to distinguish them from the “head” and
“tail” used in the rest of the paper to describe the first and last
descriptors holding packets.

Figure 5a depicts RxList’s structure using three cores shar-
ing a single Rx ring. Observe that RxList’s descriptor ring
entries are not contiguous: there are multiple non-vacant de-
scriptors in the array between hwHead and its successor va-
cant descriptor in the list, which is impossible in an array-
based design. The figure also shows dashed links between
non-vacant descriptors. These represent the order in which
these descriptors were filled by the NIC, i.e., their order in
the list when they were vacant.

We now detail RxList’s receive flow, whose code is shown
in Listing 2. The function’s inputs and outputs are the same
as RxArr’s receive function. Lines 5–10 batch packets for pro-
cessing exactly as in RxArr: the completion ring is polled to
find the location of ready descriptors, each such descriptor’s
buffer is stored in the packet output array, and the descrip-
tor’s buffer is replaced with a new buffer. Lines 11–13 are
unique to RxList: they link dequeued descriptors one after the
other, creating a linked list that will eventually be appended
to the tail of the empty descriptor list. Lines 15–17 are again
standard functionality. First, the case of an empty completion
ring is checked, and then the core’s completion ring head
(denoted ci, or consumer index) is updated, including a noti-
fication to the NIC via a doorbell MMIO write. Lines 18–24
are again new to RxList. They lock the shared descriptor ring
to atomically (1) append the new list created in lines 11–13
after the tail of the list and (2) notify the NIC, via a doorbell

1 int ll_recv(sd_ring *sdr, c_ring *cr,
2 void **pkts , int len) {
3 int idx, rcvd = 0, myhead , *iptr = NULL;
4 while (rcvd < len) {
5 c_ring_ent *cre = get_cre(cr);
6 if (cre == NULL)
7 break;
8 idx = cre->idx;
9 pkts[rcvd++] = sdr->desc[idx].buf;

10 sdr->desc[idx].buf = alloc_buf();
11 if (iptr == NULL) myhead = idx;
12 else iptr ->next = idx;
13 iptr = &sdr->desc[idx];
14 }
15 if (rcvd == 0) return 0;
16 cr->ci += rcvd;
17 *cr->doorbell = cq->ci;
18 lock(sdr->lock);
19 int prevtail = sdr->hwTail;
20 sdr->desc[prevtail].next = myhead;
21 sdr->hwTail = idx;
22 sdr->ci += rcvd;
23 *sdr->doorbell = sdr->ci;
24 unlock(sdr->lock);
25 return rcvd;
26 }

Listing 2: RxList (linked list) shared ring receive code.

 0
 40
 80

 120
 160
 200

1:1 1:2 1:4 1:8

sharing ratio (rings:cores)

-1% -33%
-60% -76%

(a) throughput
[Gbps]

 0
 3
 6
 9

 12
 15
 18

1:1 1:2 1:4 1:8

array
linked list

-3%
60%

2.5x

4.2x

(b) NIC per-packet
processing time [µs]

Figure 6: Although conceptually more suitable for sharing, RxList
interferes with descriptors’ contiguity, hampering their prefetching
and thus degrading performance. (Labels show List to Arr ratio.)

write, of the number of descriptors with empty buffers that
are appended to the list. Finally, line 25 returns the number
of received packets.

Prefetching Problem We find that RxList neutralizes de-
scriptor prefetching, an important NIC performance optimiza-
tion. Because descriptor rings are typically stored contigu-
ously, the NIC reads sequences of contiguous descriptors in a
single PCIe read transaction and caches valid descriptors in
NIC memory to improve throughput and reduce latency for
subsequent packets. When descriptors are linked out of array
order, the NIC fails to find the next descriptor on the list in its
on-NIC cache, resulting in more descriptor DMA reads being
required.

Effective descriptor prefetching is critical for high PCIe-
based NIC performance [70], and even more crucial for
shRing. In privRing, a descriptor cache miss on some ring

956 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

does not stall incoming traffic destined to other rings, but with
shRing there are fewer rings and so more traffic is stalled.

To demonstrate this effect, we evaluate the performance
of various descriptor ring to core sharing ratios. We com-
pare RxList to RxArr, in which the NIC follows descriptor
array order when storing packets. We run the synthetic NF
(from §2.3) on all cores and try to process traffic at line rate.

Figure 6a shows the throughput achieved by both designs.
When there is no sharing, then RxList, RxArr, and privRing
(not shown) perform similarly (≈ 2%). This is expected since
in this case, all approaches maintain ordering within the single
descriptor ring. However, as we decrease the ring to core
ratio, linked list descriptors become reordered and RxList’s
throughput declines sharply as sharing increases: 33% for 1:2
sharing ratio and 76% for 1:8 sharing ratio.

Figure 6b shows how costly out-of-order descriptors are,
motivating RxArr. Specifically, we report the NIC’s internal
packet processing time, and see that for linked lists this time
grows as more cores share a descriptor ring: from 3.7 µs at 1
core per ring to 16.3 µs at 8. In contrast, RxArr performance
remains the same regardless of the sharing ratio.

Prefetching Solution We propose batched RxList, a shRing
design that obtains RxList’s resiliency against pathological
core overload conditions without damaging the NIC’s per-
formance. Batched RxList amortizes the cost of locking and
descriptor reordering in RxList by batching packets to de-
scriptors. In this design, depicted in Figure 5b, each RxList
descriptor points to a buffer that can hold multiple packets.
For each RxList, the NIC stores new packets destined to a
core via the same descriptor used to store previous packets
for that core, provided that room remains in the descriptor’s
packet buffer. Only once this descriptor “fills up” will the NIC
consume a new descriptor from the list and start storing in-
coming packets for that core in the new descriptor’s buffer. To
perform this batching, the NIC caches the last Rx descriptor
used for each CR associated with the RxList. The NIC thus
effectively maintains per-core “mini hwHeads” pointing to
each core’s current descriptor.

The benefit of the batched RxList design is twofold. From
the NIC’s perspective, batching packets in descriptors and
caching the descriptors reduces the importance of descriptor
prefetching, as packets destined to a core experience a single
cache miss per batch. From the cores’ perspective, batching
reduces RxList synchronization, as locking the RxList to re-
post a descriptor is now guaranteed to occur only once per
batch, instead of potentially once per packet.

Although recent NICs support batching multiple packets in
a single large descriptor buffer [3], batched RxList requires
NIC ASIC modifications to support a list consisting of such
descriptors. Therefore, we cannot evaluate batched RxList.
We present this design to underscore that RxList’s tradeoffs
are likely not fundamental and are caused by current NIC
ASIC limitations, which can be fixed.

4.5 Dynamic ShRing
We propose a dynamic approach that switches between
privRing and shRing during run time, depending on which
architecture is more beneficial at the moment. Our goal is
to disable shRing if the workload experiences pathological
core overload or if it is not bottlenecked on I/O-related cache
misses. We describe the heuristic we currently use to iden-
tify these conditions. We leave improving the precision and
robustness of the heuristic for production use to future work.

Pathological Overload Pathological overloaded conditions
can make overloaded cores monopolize ring descriptors. If
continuous, high per-packet processing time differences are
such that the packet service rate of overloaded cores is smaller
than their packet arrival rate, queuing theory dictates that the
Rx ring eventually becomes fully occupied with their packets.
If incoming traffic is chronically imbalanced, large batches of
packets destined to overloaded cores can arrive and occupy
most if not all the descriptors.

In both of the above scenarios, overloaded cores invoke
their ring’s receive function less frequently than underloaded
cores. This is clearly the case for cores overloaded due to high
per-packet processing time, but also happens if overload is
due to incoming traffic imbalance. In this case, an overloaded
core’s receive call produces a large batch of packets, which
takes the core longer to process before returning to the ring
to dequeue more packets. We detect overloaded cores based
on this behavior, as explained below.

I/O-Related Cache Miss Significance Recall that under
non-pathological conditions, a workload will benefit from
shRing if (1) its I/O working set with privRing exceeds the
LLC DDIO capacity and (2) the penalty of the resulting cache
misses is non-negligible (§4.1). We associate (1) with high
memory bandwidth utilization and (2) with high networking
throughput.

Heuristic We measure throughput, memory bandwidth, and
time between subsequent calls to the receive function and
record the results in a sliding window of 16 entries. When
more than half of throughput and memory bandwidth mea-
surements exceed a predefined threshold while no core is over-
loaded (calls receive infrequently compared to other cores),
we switch from privRing rings to shRing rings. To switch back
from shRing to privRing, we wait until 7

8 of measurements
are below the threshold

To switch between privRing and shRing, we pre-program
two sets of RSS tables, which are NIC data structures used
to steer incoming packets to descriptor and completion rings
based on packet headers. Each RSS table set points to its own
set of rings, i.e., privRing and shRing. Then, based on the
heuristic’s decision, we update NIC steering rules to redirect
packets to the appropriate RSS table set. After switching,
before we begin polling the new rings for packets, we drain
remaining packets from the previous ring set.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 957

4.6 Implementation
Our implementation of RxArr and RxList targets 100 GbE
NVIDIA NICs with unmodified ASICs. We initially relied on
firmware patches to expose ring sharing mechanisms, origi-
nally aimed for InfiniBand RDMA (see §7), for Ethernet use.
However, NVIDIA NIC firmware now makes these mecha-
nisms generally available.

We implement our designs with 2039 lines of code (LOC)
in the NVIDIA DPDK driver and only 137 LOC in DPDK’s
core. We leverage DPDK’s command line driver options to
enable the desired ring sharing mechanism and to specify how
many cores share each ring. This approach enables unmodi-
fied DPDK-based applications to benefit from shRing.

Dynamic shRing is implemented in a dedicated thread
that runs every 10 ms on a separate core which polls Intel
PCM [39] counters for PCIe generated memory bandwidth
and NIC byte and packet counters. We expose PCM coun-
ters through a library that we link with DPDK; the library
is 116 LOC and the code using it in DPDK is 330 LOC. As
the threshold for switching from privRing to shRing, we use
throughput greater than 170 Gbps, memory bandwidth greater
than 25 GiB/s, and the standard deviation between calls to Rx
functions being at most 32x larger than the median (where
32 is the maximum packet batch that shRing’s Rx functions
can return). We experimentally find that these values provide
good results for the NFs we tested.

5 Evaluation

We evaluate shRing’s effectiveness using synthetic mi-
crobenchmarks as well as NAT and LB macrobenchmarks.
We measure the gains obtained with shRing’s efficient I/O
working set utilization in both non-pathological and patholog-
ical conditions (§4.1) under 200 GbE load.

5.1 Methodology
Experimental Setup Our setup consists of two Dell Pow-
erEdge R640 servers, connected back-to-back via two pairs
of 100 GbE NVIDIA ConnectX-5 NICs with pause frames
disabled. One server is the evaluated system and the other
is the load generator. Both servers have 16-core 2.1 GHz
Xeon Silver 4216 CPUs, 128 GiB (=4x16 GiB) 2933 MHz
DDR4 memory, and a 22 MiB LLC that consists of 11 ways.
They run Ubuntu 18.04 (Linux 5.4.0) with hyperthreading
and Turbo Boost disabled. The kernel is configured to isolate
CPUs from the OS scheduler, use 1 GiB hugepages, disable
power saving states, and disable microarchitectural side chan-
nel mitigations.

On the load generator machine, we run the stateless Cisco
T-Rex packet generator [16], which we modify to improve
latency measurement accuracy from 10–100µs to 1µs [81].
Unless specified otherwise, we use default application set-
tings: 1024 descriptor Rx and Tx rings and 2 DDIO LLC

0.8
0.9

privRing
1.1
1.2
1.3

normalized cycles/packet

n
o
rm
a
liz
e
d

th
ro
u
g
h
p
u
t 46%

54%

(a) shRing/2

62%

38%

(b) shRing/4

100%

0%

(c) shRing/8

0
0.2
0.4
0.6
0.8

privRing

0
.8

0
.9

p
ri
v
R
in
g

1
.1

1
.2

n
o
rm
a
liz
e
d

la
te
n
c
y

0
.8

0
.9

p
ri
v
R
in
g

1
.1

1
.2

0
.8

0
.9

p
ri
v
R
in
g

1
.1

1
.2

Figure 7: Normalized performance of shRing to privRing for NFs
with varying memory intensity: shRing/8 improves performance in
all cases. (Labels show percentage of NFs in quadrant.)

ways, and we run application logic on all 16 of the available
CPU cores—8 cores per NIC. All the results presented are
trimmed means of ten runs; the minimum and maximum are
discarded. The standard deviation is always below 5%.

Measurement Tools We measure cycles per packet by mod-
ifying applications to record cycle counters, cache hit rate
using Linux perf, Tx ring occupancy by comparing comple-
tion ring producer and consumer indexes, PCIe latency using
NVIDIA Mellanox Neo-host [67], and memory bandwidth
and PCIe hit rate using Intel PCM [39].

Ring Mechanisms We compare between privRing; non-
dynamic array ring sharing (RxArr) between 8 cores—the
maximum possible on a CPU with 16 cores and 2 NICs—
which we denote “shRing/8;” and a small privRing configura-
tion whose aggregate descriptor count equals that of shRing/8,
i.e., 128 entries per ring when shRing/8 uses 1024 entries per
RxArr. We remark that small privRing is impractical since it
imposes loss when traffic is bursty, as shown in §3. We show
it for a thorough comparison between privRing and shRing.

5.2 Non-Pathological Conditions
We show the benefits of using shRing under high load with-
out pathological core overload conditions. Specifically, we
evaluate (1) synthetic NFs with varying memory intensity and
cache pressure; (2) NAT and LB performance; and (3) MICA
key-value store performance.

For NFs, we use large 1500B UDP packets sent at 200
Gbps to stress the I/O working set, and select packet 5-tuples
at random to spread the load across cores.

Memory Intensity To explore shRing performance with
NFs of various memory intensity, we run FastClick’s synthetic
WorkPackage module [8] which receives a packet, performs
routing, followed by a number of random memory reads from

958 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

64
128
256
512
1Ki
2Ki
4Ki

 0 4 8

 1
2

 1
6

memory accesses per packet in >LLC buffer [#]

privRing
shring/8

12.4x
12.4x

9.7x
12.3x

(a)
latency

[µs]

60
80

100
120
140
160
180
200

 0 4 8

 1
2

 1
6

-3%

-4%

-10%
-12%

(b)
throughput

[Gbps]

0
4
8

12
16
20
24
28

 0 4 8

 1
2

 1
6

62%
74%2.3x

2.1x

(c)
cache misses
per packet [#]

Figure 8: High cache pressure decreases performance for shRing
and privRing. (Labels show privRing to shRing ratio.)

a buffer, and then sends the packet out. We modify WorkPack-
age to optionally read or overwrite packet payload.

We test 60 configurations: randomly reading 1, 2, 4, 8,
or 12 times from a 1MiB, 10MiB, 20MiB, or 40MiB buffer
(corresponding to L1, L2, LLC, and larger than LLC sizes),
while packet payload is either untouched, read, or overwritten.

For each configuration, we plot shRing throughput, latency,
and cycles per packet normalized to privRing; Figure 7 shows
the results. We find that throughput and latency improve with
descriptor sharing ratio: shRing/8 obtains the best throughput
and latency followed by shRing/4 and then shRing/2. More-
over, shRing/8 always outperforms privRing (all are above the
horizontal line), while shRing/4 and shRing/2 underperform
privRing for 54% and 38% of the most memory intensive con-
figurations, respectively. Exploring the configurations where
shRing/2 and shRing/4 are less successful than privRing, we
find that they consist of 3/16 and 11/16 NFs that read packet
payload, and 5/16 and 6/16 configurations that overwrite pay-
load, for shRing/2 and shRing/4, respectively.

Workload Cache Footprint We explore shRing effective-
ness as the workload’s cache footprint grows. We use the
aforementioned synthetic NF with 1–16 random memory ac-
cesses per packet in a 40 MiB array. Figure 8 shows the re-
sults. ShRing mitigates I/O working set induced cache misses,
improving application cache hit rates by up to 2.1x, which
translates to up to 13% higher throughput and up to 13.1x
lower latency. As the workload’s cache footprint grows, so
does CPU processing time per packet, so eventually cores
exceed the CPU cycle budget needed for line rate processing.
Both throughput and latency degrade as a result. As the num-
ber of processed packets thus decreases, the I/O working set
induced cache stress decreases too, and so the gap between
cache misses per packet in privRing and shRing shrinks.

NAT and LB We use two stateful FastClick NFs as mac-
robenchmarks: NAT and LB, which cache up to 10M flows
using per-core cuckoo hash tables. NAT consistently remaps

100
120
140
160
180
200

N
A

T
L

B

privRing
small privRing (impractical)
shRing/8

16
64

256
1Ki
4Ki

0
20
40
60
80

100

0
20
40
60
80

100

0
10
20
30
40
50
60

100
120
140
160
180
200

(a)
throughput

[Gbps]

16
64

256
1Ki
4Ki

(b)
latency

[µs]

0
20
40
60
80

100

(c) ddio
hit rate

[%]

0
20
40
60
80

100

(d) ring
occupancy

[%]

0
10
20
30
40
50
60

(e) memory
bandwidth

[%]

Figure 9: LB and NAT performance at 200Gbps load.

and rewrites incoming and outgoing packet IP packet headers.
LB matches each flow with one of 32 destination servers,
maintaining the match for each flow and making new matches
with a round-robin policy. NAT is more memory intensive
than LB, as it uses two cache entries per flow (one for each
direction) while LB uses only one

We show results with a load of 200 Gbps. Results with
speeds greater than 170 Gbps are similar, while lower speeds
show no difference in throughput and less than 5 µs in latency
in favor of privRing due to the synchronization overhead of
shRing. The results we show are for the default Rx ring size
(i.e, 1024), results for other ring sizes are similar in nature.

Figure 9 depicts the resulting (a) throughput, (b) latency,
(c) ring occupancy, (d) PCIe (DDIO) miss rate, and (e) mem-
ory bandwidth. The results show that shRing/8 outperforms
privRing in throughput and latency, which is consistent with
previously presented microbenchmarks. This happens be-
cause at high offered load the I/O working set starts con-
tending with the CPU for LLC space and memory bandwidth,
which slows CPU packet processing. CPU slowdown, in turn,
causes ring occupancy to grow, which increases latency (as
explained in §2.3).

We expect small privRing to perform similarly to shRing/8,
and indeed this is the case for LB, but surprisingly small
privRing NAT performance is worse than shRing. For NAT,
small privRing has a notably lower DDIO hit rate and higher
ring occupancy. We speculate that the root cause is that shRing
reposts buffers slower as it waits for other cores to make
progress, and therefore its working set is slightly smaller
because less buffers are exposed to I/O.

ShRing achieves high performance because it shrinks the
I/O working set size to fit in the default DDIO portion of
the LLC (i.e., two LLC cache ways). When disabling DDIO,
namely forbidding NIC DMA writes from allocating ways
within the LLC, all ring types achieve only 150 Gbps through-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 959

0

500

1K

1.5K

2K

la
te

n
c
y

th
ro

u
g
h
p
u
t

privRing
small privRing (impractical)
shRing/8

-5
2
%

-4
7
%

0
.0

%

0

500

1K

1.5K

2K

-5
0
%

-4
8
%

0
.0

%

0
5

10
15
20
25

1
1
%

-1
%

0
.0

%

0
2
4
6
8

10

(a) uniform load

1
2
%2
6
%

0
.0

%

0
2
4
6
8

10

(b) skewed load

-1
%1
3
%

0
.0

%

0

4

8

12

(c) small values

-0
.1

%

0
.0

%

0
.0

%
Figure 10: ShRing benefits the MICA key-value store with large
I/O working sets, non-pathological load imbalance, and high load.

put and 1.3 µs latency, which is 3% and 27% lower than
privRing and shRing/8 with default DDIO (not shown in the
figure). When assigning all LLC ways to DDIO, privRing per-
formance matches shRing for LB, but it is insufficient for the
more memory intensive NAT application, which uses twice
as much state and whose throughout improves by less than
5% (also not shown).

Key-Value Store We use the MICA key-value store [62] to
show that shRing is applicable beyond NFs and to highlight
how workload conditions impact shRing’s effectiveness. We
run MICA on 8 cores using a single 100GbE NIC, with 128 B
keys and 1KiB values.

Figure 10a shows the results of a workload with 95% set op-
erations, uniformly distributed among all cores, at the highest
possible request rate. This workload satisfies the conditions
that make shRing beneficial (§4.1)—i.e., (1) no pathologi-
cal core overload, (2) a large I/O working set, and (3) non-
negligible penalty of I/O-related cache misses. ShRing im-
proves MICA throughput by 12% and reduces latency by 52%
in this workload; small privRing shows the potential through-
put gain from reducing the I/O working set, without shRing’s
synchronization cost.

Figure 10b changes the workload’s traffic spread, making
it imbalanced (Zipf distribution of skewness 0.99). Conse-
quently, shRing reduces throughput by 1% over privRing
but still improves latency by 50%. Figure 10c shows the ini-
tial workload but with 128B values, which makes the I/O
working set small. ShRing makes no throughput improve-
ment and increases latency by 11%. We obtain similar results
when lowering the request rate of Figure 10a’s workload (not
shown). In both these cases, shRing adds synchronization
overhead which is not offset by I/O working set related im-
provements, either because the I/O working set was small to
begin with (Figure 10c) or because the penalty of I/O-related
cache misses is negligible (low load).

5.3 Pathological Conditions
This section demonstrates shRing’s sensitivity to patholog-
ical core overload, where one of the shared ring’s cores is
continuously overloaded compared to the rest. We evaluate
shRing/8, referred to as “shRing” here, as well as dynamic
shRing/8 (denoted “dshRing”) and its ability to gracefully fall
back to privRing in pathological conditions. We evaluate two
causes for pathological conditions: variability in processing
and variability in incoming packet distribution among cores.
We also evaluate NAT and LB throughput when offered load
switches from non-pathological to pathological over time.

Processing Variability In this experiment, we choose a tar-
get core per NIC and control its processing speed by varying
the number of memory accesses it performs per packet while
all other cores run the synthetic workload described in §2.3.

Figure 11a depicts the resulting throughput. When the
target core’s packet processing is fast, shRing and dshRing
throughput is 12% higher than privRing, but as the core’s
processing slows down, shRing throughput declines to 58%
lower than privRing. In contrast, dshRing notices that one core
is slowing down shRing and switches to privRing, thereby
avoiding performance degradation.

Figure 11b explains the observed throughput, by show-
ing the time shRing Rx descriptors wait for co-sharing core
bitmap updates before being handed back to the NIC. We
present only shRing and dshRing, because privRing does not
have such delays. In shRing, slow processing on the target
core can delay co-sharing cores from making their processed
Rx descriptors available for NIC reuse. This effect is negligi-
ble when the target core makes less than 100 memory accesses
per packet, but subsequently, descriptor wait time increases
dramatically (up to 257 µs) and throughput decreases.

Traffic Variability Here, we choose a target core per NIC
and vary the percentage of packets directed to it up to 30%.
All cores run the synthetic workload. We direct 64 B packets
at the target core and 1500 B packets at the others, so that
even when receiving 30% of the packets, the target core’s
incoming traffic is < 3% of total incoming throughput. This
means that in principle, the target core’s behavior should have
negligible effect on overall throughput.

Figure 12a shows the throughput in practice. When the
packet load on the target core is less than 15%, shRing out-
performs privRing and dshRing’s heuristic correctly enables
shRing. But as load exceeds 15%, the targeted core becomes
overloaded and so shRing throughput declines by up to 54%.
In contrast, privRing throughput declines by only 3%, since
other cores are not affected. DshRing’s heuristic identifies
when the achieved throughput is too low and that it will not
be improved by shRing, and thus switches to privRing.

Figure 12b shows that as with processing variability,
shRing’s throughput decreases because the unloaded cores’
Rx descriptor reposting is delayed by the overloaded core.

960 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

target core memory accesses (#)

th
ro

u
g
h
p
u
t
[G

b
p
s
]

privRing
dshRing
shRing

+12%

-58%

60

80

100

120

140

160

180

200

 0 100 200 300

(a)

dshRing

switches

to privRing

re
p
o
s
t
la

te
n
c
y
 [

µ
s
]

0

50

100

150

200

250

300

 0 100 200 300

(b)

Figure 11: When incoming packet rate is fixed, process-
ing variability in one core (e.g., due to increased number
of memory accesses) might degrade shRing’s throughput
and delay descriptor reposting in peer cores. Dynamic
shRing falls back on privRing when this happens.

incoming target core pkts out of total pkts (%)

 t
h

ro
u

g
h

p
u

t
[G

b
p

s
]

privRing
dshRing
shRing

+14%

-54%

60

80

100

120

140

160

180

200

 0 10 20 30

(a)

dshRing

switches

to privRing

re
p

o
s
t

la
te

n
c
y
 [

µ
s
]

0

20

40

60

80

100

120

140

160

 0 10 20 30

(b)

p
ro

c
e

s
s
e

d
 t

a
rg

e
t

p
k
ts

 [
%

]

0

5

10

15

20

25

30

35

 0 10 20 30

(c)

Figure 12: When variability manifests as increased rate of packets targeting
one specific core (x axis), at some point, it prolongs the latency of peer core
descriptor reposting (b); at this point, performance degrades (a) as the target
core processing can no longer match the volume of incoming traffic (c).

Figure 12c presents the ratio of packets successfully pro-
cessed by the target core out of all packets. While shRing
maintains the target core’s ratio of outgoing to incoming pack-
ets, the cost is that as more packets target this core, shRing
delays receiving on other cores. This results in drops of the
1500 B packets when the target core is overloaded, and thus
throughput declines. In contrast, privRing drops excess pack-
ets that exceed the target core’s processing capacity, and as a
result it has at most 17% outgoing packets on the target core.

Handling Variability with Dynamic ShRing We run an
experiment where the incoming load switches from non-
pathological to pathological after 20 seconds. Figure 13 shows
NAT and LB throughput sampled every second. DshRing ini-
tially uses privRing, but as load increases, it identifies high
throughput and memory bandwidth with no overloaded cores
and switches to shRing. At 20 seconds, we reconfigure the
load generator to send a pathological load, which overloads
cores and decreases throughput. DshRing identifies the drop
in throughput and switches back to privRing. Consequently,
dshRing achieves good performance in both.

6 Kernel-Based TCP Sockets
Our implementation and evaluation focus on NFV workloads,
which typically bypass the operating system (OS) network-
ing stack and the socket abstraction. This section explores
the potential benefit to socket-based TCP applications from
deploying shRing in the Linux networking stack.

Concerns about the effectiveness of a shRing-based NIC
OS driver are that (1) application working sets may be
too large for shRing’s improved DDIO utilization to mat-
ter and (2) even if not, small private rings might not lead to
packet loss in the Linux kernel, as opposed to with DPDK.

Because our shRing prototype is DPDK-based, we can-
not directly evaluate shRing in the Linux kernel. We there-
fore use “small privRing” as a proxy, to show the benefit of

reducing the I/O working set in the Linux kernel. We run
Netperf [56] microbenchmarks to show that: (1) smaller I/O
working sets can improve performance of a socket-based
application and (2) 1Ki-sized rings are necessary to handle
burstiness in the kernel.

Pros of Smaller I/O Working Sets We measure Netperf
TCP request-response throughput (sum of Rx and Tx). We
use 16 cores and two NICs with two threads per core (one per
NIC). For symmetry, we use the same ring size on both sides.
In all experiments, the CPU is not the bottleneck.

Figure 14a shows the throughput obtained for 64KiB re-
quests and various response sizes. In this setting, small rings
outperform large rings by up to 10%. But when the size of the
request and the response are equal (Figure 14b), the results
become less conclusive, e.g., for 1KiB messages throughput
is almost the same for both ring sizes, and for 4KiB messages,
the small ring’s throughput is 5% less than the default.

Cons of Small Private Rings We measure Netperf TCP
stream throughput for various private ring sizes, with traffic
either directed at a single core or evenly spread among 8 cores.
Figure 15 (similarly to Figure 3) demonstrates that small rings
work well for multicore TCP traffic, as the spread of load curbs
the bursts each individual core/ring experiences. However,
a single ring smaller than 1Ki overflows and causes drops,
which cause TCP to back off and thus degrade throughput.

7 Related Work
Efficient LLC Utilization DDIO enabled platforms allow
NICs to access data faster via the relatively small LLC. Many
previous works, unrelated to ring sharing, proposed tech-
niques to improve DDIO efficiency: (1) using small private
rings to reduce the I/O working set [91]; (2) placing packets
in LLC slices closest to the target processing CPU core [29];
(3) eliminating interference between applications and I/O de-
vices when partitioning the LLC [96]; (4) placing only packet

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 961

 0

 50

 100

 150

 200

0 10 20 30 40

time [sec]

th
ro

u
g

h
p

u
t

[G
b

p
s
]

NAT

shRing
dshRing
privRing

 0

 50

 100

 150

 200

0 10 20 30 40

time [sec]

LB

Figure 13: NAT and LB throughput when switching from a non-
pathological to a pathological workload.

0

50

100

150

200

1/4 1 4 16 64

response size [KiB]

th
ro

u
g

h
p

u
t

[G
b

p
s
]

(a) 64KiB request

1Ki ring

128 ring (impractical
w/o shRing)

8% 7%
6% 10% 9%

1/4 1 4 16 64

(b) request=response

3%
-0.1%

-5%

8%

10%

Figure 14: Netperf TCP_RR throughput with (a) 64KiB requests
for various response sizes and (b) equal request and response sizes.
Small rings work better as they reduce the I/O working set.

90
95

 0
 5

 10
 15
 20
 25

64 128 256 512 1Ki 2Ki 4Ki

ring size

single core
multicoreth

ro
u

g
h

p
u

t
[G

b
p

s
]

netperf TCP stream

Figure 15: Netperf TCP stream throughput. Small rings work
well when traffic is spread across multiple cores but cause drops
otherwise.

headers in the LLC to reduce LLC contention [34, 79, 83];
and (5) modifying CPUs to prefetch DDIO-written data into
mid-level caches and to invalidate data without writeback
when possible to conserve memory bandwidth [1]. We show
that small private rings are insufficient and propose a ring
sharing mechanism that is symbiotic with the last four tech-
niques.

Sharing Within a Core in Software Linux io_uring ”au-
tomatic buffer selection“ [19] lets applications pre-register
buffers and later consume these via read/recv system calls
for different file descriptors. Similarly, buffers posted to
shRing are pre-registered and later assigned to cores at packet
arrival time. But unlike io_uring, shRing operates between
software and hardware.

Sharing Within a Core in Ethernet NICs When a single
core and privilege level have multiple NIC rings, sharing their
buffers and CRs to conserve resources is desirable. For ex-
ample, SRIOV NICs expose a ring per VM on the hypervisor
to receive packets missing hardware virtual switching rules,
allowing the hypervisor to install matching rules [33, 77]. As
the number of VMs exceeds the number of cores, multiple
such rings must share a core. To optimize this, NVIDIA NICs

recently started sharing ring buffers and CRs within each
core [61] via the same firmware changes that we used, which
are now publicly available. ShRing, in contrast, shares rings
between cores.

Sharing Between Cores in RDMA RDMA applications
typically employ queue pairs (QPs) with dedicated buffers to
connect between endpoints—consuming GiBs of DRAM [85,
88]. Shared Receive Queues (SRQ), like shRing, decrease
memory use by sharing buffers. Whereas SRQ helps RDMA
applicability by fitting I/O buffers in server DRAM, shRing
improves performance by fitting I/O buffers in server LLC.

Sharing Between Cores in Integrated NICs Nebula [89]
is an on-chip integrated NIC design optimized for RPC work-
loads. Nebula, like shRing, fits the I/O working set within
the LLC. Whereas Nebula is applicable only for RDMA-like
hardware-terminated protocols, shRing is applicable to typical
general purpose Ethernet software network stacks.

8 Conclusions
Multicore systems with per-core Ethernet rings use too many
receive rings, creating memory pressure that hampers per-
formance. We show that shared receive rings alleviates this
problem despite the associated synchronization costs.

Acknowledgments
We thank the paper’s shepherd, Adam Belay, and the anony-
mous reviewers for their valuable feedback.

References
[1] Mohammad Alian, Siddharth Agarwal, Jongmin Shin,

Neel Patel, Yifan Yuan, Daehoon Kim, Ren Wang, and
Nam Sung Kim. IDIO: Network-driven, inbound
network data orchestration on server processors. In
IEEE/ACM International Symposium on

962 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Microarchitecture (MICRO), pages 480–493, 2022.
https:
//doi.org/10.1109/MICRO56248.2022.00042.

[2] Nambiar Amritha, Samudrala Sridhar, and Patil Kiran.
Hardware acceleration of container networking
interfaces. https://legacy.netdevconf.info/0x
14/session.html?talk-hardware-acceleratio
n-of-container-networking-interfaces, 2020.
Accessed: 2022-10-10.

[3] Amir Ancel, Tariq Tokun, and Saeed Mahameed. Rx
and Tx bulking/batching. https://legacy.netdevc
onf.info/2.1/slides/apr6/network-performan
ce/04-amir-RX_and_TX_bulking_v2.pdf, 2017.
Accessed: 2022-10-10.

[4] Fabien André, Stéphane Gouache, Nicolas Le
Scouarnec, and Antoine Monsifrot. Don’t share, don’t
lock: Large-scale software connection tracking with
krononat. In USENIX Annual Technical Conference
(ATC), pages 453–466, 2018. https://www.usenix
.org/conference/atc18/presentation/andre.

[5] ARM. ARM cache stashing.
https://developer.arm.com/documentation/
102407/0100/Cache-stashing, 2017. Accessed:
2022-12-10.

[6] Dave Barach. VPP/software architecture. https://wi
ki.fd.io/view/VPP/Software_Architecture,
2018. Accessed: 2022-11-28.

[7] Dotan Barak. ibv_post_srq_recv. https://www.rdma
mojo.com/2013/02/08/ibv_post_srq_recv/.
Accessed: 2022-09-26.

[8] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
userspace packet processing. In ACM/IEEE Symposium
on Architectures for Networking and Communications
Systems (ANCS), pages 5—-16, 2015.
https://doi.org/10.1109/ANCS.2015.7110116.

[9] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. An analysis of linux
scalability to many cores. In USENIX Symposium on
Operating System Design and Implementation (OSDI),
Vancouver, BC, October 2010. USENIX Association.
https://www.usenix.org/conference/osdi10/an
alysis-linux-scalability-many-cores.

[10] S. Bradner and J. McQuaid. Benchmarking
methodology for network interconnect devices. RFC
2544, Internet Engineering Task Force, March 1999.
http://www.rfc-editor.org/rfc/rfc2544.txt.

[11] Jesse Brandeburg. ice: change default number of
receive descriptors. https://marc.info/?l=linux
-netdev&m=156771568024262&w=2, 2019. Intel.
Accessed: June 2021.

[12] Broadcom. NetXtreme E-Series PCIe NIC Ethernet
Adapters Specification Sheet. https://docs.broad
com.com/doc/netxtreme-e-series-pcie-nic-e
thernet-adapters-specification-sheet, 2021.
Accessed: 2021-08-10.

[13] Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun,
Christine Severns-Williams, Naru Sundar, Nadav
Turbovich, Barry Wolford, and Yadong Li. Intel’s
hyperscale-ready infrastructure processing unit (IPU).
In Hot Chips, 2021. https:
//doi.org/10.1109/HCS52781.2021.9567455.

[14] Idan Burstein. NVIDIA data center processing unit
(DPU) architecture. In Hot Chips, 2021. https:
//doi.org/10.1109/HCS52781.2021.9567066.

[15] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In ACM SIGCOMM
Conference on Applications Technologies Architecture
and Protocols for Computer Communications, pages
65—-77, 2021.
https://doi.org/10.1145/3452296.3472888.

[16] Cisco. TRex: Realistic Traffic Generator.
https://trex-tgn.cisco.com/. (Accessed: May
2021.).

[17] OASIS IDPF Technical Committee. IDPF
(Infrastructure Data Path Function).
https://www.oasis-open.org/committees/dow
nload.php/70738/IDPF%20Spec_v0_9.pdf, 2023.
Accessed: 2023-05-13.

[18] OASIS IDPF Technical Committee. OCP Server NIC
SW Specification: Core Features.
https://docs.google.com/document/d/1FaVPGYi
pZ1sPhnYg7KItAS7ivL_svvZP8ZVJeFJezc0, 2023.
Accessed: 2023-05-13.

[19] Jonathan Corbet. Automatic buffer selection for
io_uring. https://lwn.net/Articles/815491/,
2020. Accessed: 2023-04-13.

[20] Intel Corporation. Intel data direct i/o technology (intel
DDIO): A primer.
https://www.intel.com/content/dam/www/publ
ic/us/en/documents/technology-briefs/data
-direct-i-o-technology-brief.pdf, 2012.
Accessed: 2020-07-18.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 963

https://doi.org/10.1109/MICRO56248.2022.00042
https://doi.org/10.1109/MICRO56248.2022.00042
https://legacy.netdevconf.info/0x14/session.html?talk-hardware-acceleration-of-container-networking-interfaces
https://legacy.netdevconf.info/0x14/session.html?talk-hardware-acceleration-of-container-networking-interfaces
https://legacy.netdevconf.info/0x14/session.html?talk-hardware-acceleration-of-container-networking-interfaces
https://legacy.netdevconf.info/2.1/slides/apr6/network-performance/04-amir-RX_and_TX_bulking_v2.pdf
https://legacy.netdevconf.info/2.1/slides/apr6/network-performance/04-amir-RX_and_TX_bulking_v2.pdf
https://legacy.netdevconf.info/2.1/slides/apr6/network-performance/04-amir-RX_and_TX_bulking_v2.pdf
https://www.usenix.org/conference/atc18/presentation/andre
https://www.usenix.org/conference/atc18/presentation/andre
https://developer.arm.com/documentation/102407/0100/Cache-stashing
https://developer.arm.com/documentation/102407/0100/Cache-stashing
https://wiki.fd.io/view/VPP/Software_Architecture
https://wiki.fd.io/view/VPP/Software_Architecture
https://www.rdmamojo.com/2013/02/08/ibv_post_srq_recv/
https://www.rdmamojo.com/2013/02/08/ibv_post_srq_recv/
https://doi.org/10.1109/ANCS.2015.7110116
https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
http://www.rfc-editor.org/rfc/rfc2544.txt
https://marc.info/?l=linux-netdev&m=156771568024262&w=2
https://marc.info/?l=linux-netdev&m=156771568024262&w=2
https://docs.broadcom.com/doc/netxtreme-e-series-pcie-nic-ethernet-adapters-specification-sheet
https://docs.broadcom.com/doc/netxtreme-e-series-pcie-nic-ethernet-adapters-specification-sheet
https://docs.broadcom.com/doc/netxtreme-e-series-pcie-nic-ethernet-adapters-specification-sheet
https://doi.org/10.1109/HCS52781.2021.9567455
https://doi.org/10.1109/HCS52781.2021.9567455
https://doi.org/10.1109/HCS52781.2021.9567066
https://doi.org/10.1109/HCS52781.2021.9567066
https://doi.org/10.1145/3452296.3472888
https://trex-tgn.cisco.com/
https://www.oasis-open.org/committees/download.php/70738/IDPF%20Spec_v0_9.pdf
https://www.oasis-open.org/committees/download.php/70738/IDPF%20Spec_v0_9.pdf
https://docs.google.com/document/d/1FaVPGYipZ1sPhnYg7KItAS7ivL_svvZP8ZVJeFJezc0
https://docs.google.com/document/d/1FaVPGYipZ1sPhnYg7KItAS7ivL_svvZP8ZVJeFJezc0
https://lwn.net/Articles/815491/
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf

[21] Nithin Dabilpuram. [dpdk-dev] [patch 00/44] marvell
CNXK ethdev driver.
https://inbox.dpdk.org/dev/20210306153404.
10781-4-ndabilpuram@marvell.com/T, 2021.
Marvell. Accessed: 2022-11-28.

[22] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of µs-scale
rpcs. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 35–48, 2019.
https://doi.org/10.1145/3297858.3304070.

[23] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon
Olson, Kevin DeCabooter, Marc de Kruijf, Nan Hua,
Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter,
Uday Naik, and Amin Vahdat. Andromeda:
Performance, isolation, and velocity at scale in cloud
network virtualization. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 373–387, 2018. https://www.usenix.org/c
onference/nsdi18/presentation/dalton.

[24] Daly Dan. Introduction infrastructure programming.
https://ipdk.io/documentation/IPDK-io%20-%
20Recipes.pdf, 2021. Accessed: 2022-10-10.

[25] Peter J. Denning. The working set model for program
behavior. Communications of the ACM (CACM),
11(5):323––333, May 1968.
https://doi.org/10.1145/363095.363141.

[26] Mihai Dobrescu, Norbert Egi, Katerina Argyraki,
Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
Routebricks: Exploiting parallelism to scale software
routers. In ACM Symposium on Operating Systems
Principles (SOSP), pages 15—-28, 2009.
https://doi.org/10.1145/1629575.1629578.

[27] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and
Jinnah Dylan Hosein. Maglev: A fast and reliable
software network load balancer. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), pages 523–535, 2016.

[28] Matt Faraclas. Received packets have been dropped by
nic. https://indeni.com/blog/cross-vendor-a
lert-of-the-week-some-received-packets-hav
e-been-dropped-by-nic/, 2014. Accessed: June
2021.

[29] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Make the most out of last level cache
in intel processors. In ACM Eurosys, pages 1–17, 2019.
https://doi.org/10.1145/3302424.3303977.

[30] FreeBSD. Network RSS.
https://wiki.freebsd.org/NetworkRSS, 2014.
Accessed: January 2017.

[31] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at
microsecond timescales. In USENIX Symposium on
Operating System Design and Implementation (OSDI),
pages 281–297, 2020. https://www.usenix.org/c
onference/osdi20/presentation/fried.

[32] Fritz Kruger. CPU bandwidth - the worrisome 2020
trend. https://blog.westerndigital.com/cpu-b
andwidth-the-worrisome-2020-trend/, 2020.
Accessed: 2021-06-09.

[33] Or Gerlitz, Hadar Hen-Zion, Amir Vadai, and Rony
Efraim. Introduction to switchdev SR-IOV offloads.
https://legacy.netdevconf.info/1.2/slides/o
ct6/04_gerlitz_efraim_introduction_to_switc
hdev_sriov_offloads.pdf, 2016. Accessed:
2022-10-10.

[34] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan
Beschastnikh, and Margo Seltzer. Parking packet
payload with p4. In ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT),
pages 274—-281, 2020.
https://doi.org/10.1145/3386367.3431295.

[35] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik
Palkar, Dongsu Han, and Sylvia Ratnasamy. SoftNIC:
A software NIC to augment hardware. Technical
Report UCB/EECS-2015-155, EECS Department,
University of California, Berkeley, May 2015.
http://www2.eecs.berkeley.edu/Pubs/TechRpt
s/2015/EECS-2015-155.html.

[36] 802.3-105 – IEEE standard for Ethernet. https:
//doi.org/10.1109/IEEESTD.2016.7428776,
2016.

[37] InfiniBand Trade Association (IBTA). What is
InfiniBand. https:
//www.infinibandta.org/ibta-specification/.
(Accessed: Dec 2021).

[38] Intel. Application Device Queues.
https://www.intel.com/content/www/us/en/ar
chitecture-and-technology/ethernet/adq-res
ource-center.html. Accessed: 2022-09-29.

964 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://inbox.dpdk.org/dev/20210306153404.10781-4-ndabilpuram@marvell.com/T
https://inbox.dpdk.org/dev/20210306153404.10781-4-ndabilpuram@marvell.com/T
https://doi.org/10.1145/3297858.3304070
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://ipdk.io/documentation/IPDK-io%20-%20Recipes.pdf
https://ipdk.io/documentation/IPDK-io%20-%20Recipes.pdf
https://doi.org/10.1145/363095.363141
https://doi.org/10.1145/1629575.1629578
https://indeni.com/blog/cross-vendor-alert-of-the-week-some-received-packets-have-been-dropped-by-nic/
https://indeni.com/blog/cross-vendor-alert-of-the-week-some-received-packets-have-been-dropped-by-nic/
https://indeni.com/blog/cross-vendor-alert-of-the-week-some-received-packets-have-been-dropped-by-nic/
https://doi.org/10.1145/3302424.3303977
https://wiki.freebsd.org/NetworkRSS
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://blog.westerndigital.com/cpu-bandwidth-the-worrisome-2020-trend/
https://legacy.netdevconf.info/1.2/slides/oct6/04_gerlitz_efraim_introduction_to_switchdev_sriov_offloads.pdf
https://legacy.netdevconf.info/1.2/slides/oct6/04_gerlitz_efraim_introduction_to_switchdev_sriov_offloads.pdf
https://legacy.netdevconf.info/1.2/slides/oct6/04_gerlitz_efraim_introduction_to_switchdev_sriov_offloads.pdf
https://doi.org/10.1145/3386367.3431295
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://doi.org/10.1109/IEEESTD.2016.7428776
https://doi.org/10.1109/IEEESTD.2016.7428776
https://www.infinibandta.org/ibta-specification/
https://www.infinibandta.org/ibta-specification/
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/adq-resource-center.html

[39] Intel. Processor Counter Monitor (PCM).
https://github.com/opcm/pcm. Accessed:
2021-02-05.

[40] Intel. Intel® 82544ei gigabit ethernet controller.
https://ark.intel.com/content/www/us/en/ar
k/products/2276/intel-82544ei-gigabit-eth
ernet-controller.html, 2001. Accessed:
2022-10-10.

[41] Intel. Intel® Xeon processors reach 2 gigahertz for
workstations. https://www.intel.com/pressroom/
archive/releases/2001/20010925comp.htm, 2001.
Accessed: 2022-10-10.

[42] Intel. Intel® 82598eb 10 gigabit ethernet controller.
https://ark.intel.com/content/www/us/en/ar
k/products/36918/intel-82598eb-10-gigabit
-ethernet-controller.html, 2007. Accessed:
2022-10-10.

[43] Intel. Intel® Xeon® processor x5482.
https://ark.intel.com/content/www/us/en/ar
k/products/33088/intel-xeon-processor-x
5482-12m-cache-3-20-ghz-1600-mhz-fsb.html,
2007. Accessed: 2022-10-10.

[44] Intel. PCI-SIG SR-IOV primer: An introduction to
SR-IOV technology. http://www.intel.com/cont
ent/www/us/en/pci-express/pci-sig-sr-iov-p
rimer-sr-iov-technology-paper.html, Jan 2011.

[45] Intel. Intel® Xeon® processor e7-2880 v2.
https://ark.intel.com/content/www/us/en/ar
k/products/75241/intel-xeon-processor-e
72880-v2-37-5m-cache-2-50-ghz.html, 2014.
Accessed: 2022-10-10.

[46] Intel. X710-am2. https://ark.intel.com/conten
t/www/us/en/ark/products/82944/intel-ether
net-controller-x710am2.html, 2014. Accessed:
2022-10-10.

[47] Intel. Tuning the buffers: a practical guide to reduce or
avoid packet loss in dpdk applications.
https://indeni.com/blog/cross-vendor-alert
-of-the-week-some-received-packets-have-b
een-dropped-by-nic/, 2017. Accessed: June 2021.

[48] Intel. Intel® Xeon® platinum 9282 processor.
https://ark.intel.com/content/www/us/en/ar
k/products/194146/intel-xeon-platinu
m-9282-processor-77m-cache-2-60-ghz.html,
2019. Accessed: 2022-10-10.

[49] Intel. E810-cam1. https://ark.intel.com/conten
t/www/us/en/ark/products/187409/intel-eth
ernet-controller-e810cam1.html, 2020.
Accessed: 2022-10-10.

[50] Intel. Intel ethernet network adapter e810-2cqda2.
https://ark.intel.com/content/www/us/en/ar
k/products/192561/intel-ethernet-network-a
dapter-e810-cqda1.html, 2021. Accessed:
2021-08-10.

[51] Intel Corporation. DPDK: Data plane development kit.
http://dpdk.org, 2010. (Accessed: May 2016).

[52] Intel Corporation. DPDK programmer’s guide: Poll
mode driver. https://doc.dpdk.org/guides/prog
_guide/poll_mode_drv.html, 2014. (Accessed: Dec
2022).

[53] Rishabh Iyer, Katerina Argyraki, and George Candea.
Performance interfaces for network functions. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 567–584, 2022.
https://www.usenix.org/conference/nsdi22/pr
esentation/iyer.

[54] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4:
Experience with a globally-deployed software defined
wan. In ACM SIGCOMM Conference on Applications
Technologies Architecture and Protocols for Computer
Communications, pages 3––14, 2013.
https://doi.org/10.1145/2486001.2486019.

[55] Zou Jia, Zhiyong Liang, and Yiqi Dai. Scalability
evaluation and optimization of multi-core SIP proxy
server. In International Conference on Parallel
Processing (ICPP), pages 43–50, 2008.
10.1109/ICPP.2008.30.

[56] Rick A. Jones. Netperf: A network performance
benchmark (Revision 2.0). http://www.netperf.or
g/netperf/training/Netperf.html, 1995.
Accessed: August, 2016.

[57] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 345–360,
2019. https://www.usenix.org/conference/nsdi
19/presentation/kaffes.

[58] Georgios P. Katsikas, Tom Barbette, Dejan Kostić,
Rebecca Steinert, and Gerald Q. Maguire Jr. Metron:
NFV service chains at the true speed of the underlying
hardware. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages
171–186, 2018. https://www.usenix.org/confere
nce/nsdi18/presentation/katsikas.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 965

https://github.com/opcm/pcm
https://ark.intel.com/content/www/us/en/ark/products/2276/intel-82544ei-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/2276/intel-82544ei-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/2276/intel-82544ei-gigabit-ethernet-controller.html
https://www.intel.com/pressroom/archive/releases/2001/20010925comp.htm
https://www.intel.com/pressroom/archive/releases/2001/20010925comp.htm
https://ark.intel.com/content/www/us/en/ark/products/36918/intel-82598eb-10-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/36918/intel-82598eb-10-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/36918/intel-82598eb-10-gigabit-ethernet-controller.html
https://ark.intel.com/content/www/us/en/ark/products/33088/intel-xeon-processor-x5482-12m-cache-3-20-ghz-1600-mhz-fsb.html
https://ark.intel.com/content/www/us/en/ark/products/33088/intel-xeon-processor-x5482-12m-cache-3-20-ghz-1600-mhz-fsb.html
https://ark.intel.com/content/www/us/en/ark/products/33088/intel-xeon-processor-x5482-12m-cache-3-20-ghz-1600-mhz-fsb.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
https://ark.intel.com/content/www/us/en/ark/products/75241/intel-xeon-processor-e72880-v2-37-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75241/intel-xeon-processor-e72880-v2-37-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75241/intel-xeon-processor-e72880-v2-37-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/82944/intel-ethernet-controller-x710am2.html
https://ark.intel.com/content/www/us/en/ark/products/82944/intel-ethernet-controller-x710am2.html
https://ark.intel.com/content/www/us/en/ark/products/82944/intel-ethernet-controller-x710am2.html
https://indeni.com/blog/cross-vendor-alert-of-the-week-some-received-packets-have-been-dropped-by-nic/
https://indeni.com/blog/cross-vendor-alert-of-the-week-some-received-packets-have-been-dropped-by-nic/
https://indeni.com/blog/cross-vendor-alert-of-the-week-some-received-packets-have-been-dropped-by-nic/
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/187409/intel-ethernet-controller-e810cam1.html
https://ark.intel.com/content/www/us/en/ark/products/187409/intel-ethernet-controller-e810cam1.html
https://ark.intel.com/content/www/us/en/ark/products/187409/intel-ethernet-controller-e810cam1.html
https://ark.intel.com/content/www/us/en/ark/products/192561/intel-ethernet-network-adapter-e810-cqda1.html
https://ark.intel.com/content/www/us/en/ark/products/192561/intel-ethernet-network-adapter-e810-cqda1.html
https://ark.intel.com/content/www/us/en/ark/products/192561/intel-ethernet-network-adapter-e810-cqda1.html
http://dpdk.org
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
https://www.usenix.org/conference/nsdi22/presentation/iyer
https://www.usenix.org/conference/nsdi22/presentation/iyer
https://doi.org/10.1145/2486001.2486019
10.1109/ICPP.2008.30
http://www.netperf.org/netperf/training/Netperf.html
http://www.netperf.org/netperf/training/Netperf.html
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://www.usenix.org/conference/nsdi18/presentation/katsikas

[59] Amine Kherbouche. Scaleway natasha performance
test. https://github.com/scaleway/natasha/tr
ee/master/test/perf, 2018. Accessed: 2022-11-28.

[60] Kevin Laatz. [dpdk-dev] [PATCH v2 0/3] Increase
default RX/TX ring sizes. https://mails.dpdk.org
/archives/dev/2018-January/086889.html, 2018.
Intel DPDK. Accessed: June 2021.

[61] Xueming Li. [dpdk-dev] [patch v11 0/7] ethdev:
introduce shared rx queue.
https://lore.kernel.org/all/20211020075319.
2397551-1-xuemingl@nvidia.com/, 2021.
Accessed: 2023-04-13.

[62] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), pages 429–444, 2014.
https://www.usenix.org/conference/nsdi14/te
chnical-sessions/presentation/lim.

[63] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar,
and Justine Sherry. Contention-aware performance
prediction for virtualized network functions. In ACM
SIGCOMM Conference on Applications Technologies
Architecture and Protocols for Computer
Communications, pages 270—-282, 2020.
https://doi.org/10.1145/3387514.3405868.

[64] Ilias Marinos, Robert N.M. Watson, Mark Handley, and
Randall R. Stewart. Disk|Crypt|Net: Rethinking the
stack for high-performance video streaming. In ACM
SIGCOMM Conference on Applications Technologies
Architecture and Protocols for Computer
Communications, pages 211–224, 2017.
https://doi.org/10.1145/3098822.3098844.

[65] Marvell. FastLinQ 41000 Series Adapters.
https://www.marvell.com/content/dam/marvel
l/en/public-collateral/ethernet-adaptersa
ndcontrollers/marvell-ethernet-adapters-f
astlinq-41000-series-user-guide.pdf, 2020.
Accessed: June 2021.

[66] Mellanox. Connectx®-6 en card product brief.
https://www.mellanox.com/sites/default/fil
es/related-docs/prod_adapter_cards/PB_Conn
ectX-6_EN_Card.pdf, 2018. Accessed: 2019-08-06.

[67] Mellanox. Mellanox NEO-Host.
https://www.mellanox.com/sites/default/fil
es/related-docs/prod_management_software/P
B_Mellanox_NEO_Host.pdf, 2018. Accessed:
2021-04-16.

[68] Microsoft. Introduction to receive side scaling.
https://docs.microsoft.com/en-us/windows-h
ardware/drivers/network/introduction-to-r
eceive-side-scaling, 2017. Accessed: January
2020.

[69] Robert Morris, Eddie Kohler, John Jannotti, and
M. Frans Kaashoek. The click modular router. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 217—-231, 1999.
https://doi.org/10.1145/319151.319166.

[70] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding pcie performance for end host
networking. In ACM SIGCOMM Conference on
Applications Technologies Architecture and Protocols
for Computer Communications, pages 327—-341, 2018.
https://doi.org/10.1145/3230543.3230560.

[71] NVIDIA. ConnectX®-7 Card Product Brief.
https://www.nvidia.com/content/dam/en-zz/
Solutions/networking/ethernet-adapters/co
nnectx-7-datasheet-Final.pdf, 2021. Accessed:
2021-04-16.

[72] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango:
Achieving high CPU efficiency for latency-sensitive
datacenter workloads. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 361–378, 2019. https://www.usenix.org/c
onference/nsdi19/presentation/ousterhout.

[73] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks:
Taking the V out of NFV. In USENIX Symposium on
Operating System Design and Implementation (OSDI),
pages 203–216, 2016.
https://www.usenix.org/conference/osdi16/te
chnical-sessions/presentation/panda.

[74] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A. Maltz, Randy
Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. Ananta: Cloud
scale load balancing. In ACM SIGCOMM Conference
on Applications Technologies Architecture and
Protocols for Computer Communications, pages
207—-218, 2013.
https://doi.org/10.1145/2486001.2486026.

[75] Solal Pirelli and George Candea. A simpler and faster
NIC driver model for network functions. In USENIX
Symposium on Operating System Design and
Implementation (OSDI), 2020.

966 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/scaleway/natasha/tree/master/test/perf
https://github.com/scaleway/natasha/tree/master/test/perf
https://mails.dpdk.org/archives/dev/2018-January/086889.html
https://mails.dpdk.org/archives/dev/2018-January/086889.html
https://lore.kernel.org/all/20211020075319.2397551-1-xuemingl@nvidia.com/
https://lore.kernel.org/all/20211020075319.2397551-1-xuemingl@nvidia.com/
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://doi.org/10.1145/3387514.3405868
https://doi.org/10.1145/3098822.3098844
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/ethernet-adaptersandcontrollers/marvell-ethernet-adapters-fastlinq-41000-series-user-guide.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_adapter_cards/PB_ConnectX-6_EN_Card.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_management_software/PB_Mellanox_NEO_Host.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_management_software/PB_Mellanox_NEO_Host.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_management_software/PB_Mellanox_NEO_Host.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://doi.org/10.1145/319151.319166
https://doi.org/10.1145/3230543.3230560
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://doi.org/10.1145/2486001.2486026

https://www.usenix.org/conference/osdi20/pr
esentation/pirelli.

[76] Solal Pirelli, Akvilė Valentukonytė, Katerina Argyraki,
and George Candea. Automated verification of network
function binaries. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 585–600, 2022. https://www.usenix.org/c
onference/nsdi22/presentation/pirelli.

[77] Jiri Pirko and Scott Feldman. Ethernet switch device
driver model (switchdev).
https://www.kernel.org/doc/Documentation/n
etworking/switchdev.txt, 2015. Accessed:
2022-10-10.

[78] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
NIC offloads. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 18—-35, 2021.
https://doi.org/10.1145/3445814.3446732.

[79] Boris Pismenny, Liran Liss, Adam Morrison, and Dan
Tsafrir. The benefits of general purpose on-NIC
memory. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 1130—-1147,
2022.
https://doi.org/10.1145/3503222.3507711.

[80] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for
microsecond-scale networked tasks. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 325—-341, 2017.
https://doi.org/10.1145/3132747.3132780.

[81] Mia Primorac, Edouard Bugnion, and Katerina
Argyraki. How to measure the killer microsecond. In
Proceedings of the Workshop on Kernel-Bypass
Networks, pages 37––42, 2017.
https://doi.org/10.1145/3098583.3098590.

[82] Scott Rixner. Network virtualization: Breaking the
performance barrier: Shared I/O in virtualization
platforms has come a long way, but performance
concerns remain. ACM Queue, 6(1):36––44, January
2008.
https://doi.org/10.1145/1348583.1348592.

[83] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostić, and Marco
Chiesa. A High-Speed stateful packet processing
approach for tbps programmable switches. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), pages 1237–1255, 2023.

https://www.usenix.org/conference/nsdi23/pr
esentation/scazzariello.

[84] Jeff Shafer, David Carr, Aravind Menon, Scott Rixner,
Alan Cox, Willy Zwaenepoel, and Paul Willman.
Concurrent direct network access for virtual machine
monitors. In IEEE International Symposium on
High-Performance Computer Architecture (HPCA),
pages 306–317, 01 2007.
https://doi.org/10.1109/HPCA.2007.346208.

[85] Galen M Shipman, Timothy S Woodall, Richard L
Graham, Arthur B Maccabe, and Patrick G Bridges.
Infiniband scalability in open MPI. In IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), 2006.
https://doi.org/10.1109/IPDPS.2006.1639335.

[86] Shahaf Shuler. [dpdk-dev] [patch v2 2/2] net/mlx5: add
rx and tx tuning parameters. https://mails.dpdk.o
rg/archives/dev/2018-May/099834.html, 2018.
Mellanox. Accessed: Nov. 2022.

[87] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai
Eran, Gerd Zellweger, Austin Bolen, Liran Liss, Adam
Morrison, and Dan Tsafrir. Ioctopus: Outsmarting
nonuniform dma. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 101–115, 2020.
https://doi.org/10.1145/3373376.3378509.

[88] S. Sur, Lei Chai, Hyun-Wook Jin, and D.K. Panda.
Shared receive queue based scalable MPI design for
InfiniBand clusters. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2006.
https://doi.org/10.1109/IPDPS.2006.1639336.

[89] Mark Sutherland, Siddharth Gupta, Babak Falsafi,
Virendra Marathe, Dionisios Pnevmatikatos, and
Alexandres Daglis. The nebula rpc-optimized
architecture. In ACM International Symposium on
Computer Architecture (ISCA), pages 199–212, 2020.
https:
//doi.org/10.1109/ISCA45697.2020.00027.

[90] Herbert Tom and de Bruijn Willem. Scaling in the linux
networking stack. https://www.kernel.org/doc/D
ocumentation/networking/scaling.txt, 2011.
Accessed: 2020-03-05.

[91] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. Resq: Enabling slos in network function
virtualization. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages
283—-297, 2018. https://www.usenix.org/confe
rence/nsdi18/presentation/tootoonchian.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 967

https://www.usenix.org/conference/osdi20/presentation/pirelli
https://www.usenix.org/conference/osdi20/presentation/pirelli
https://www.usenix.org/conference/nsdi22/presentation/pirelli
https://www.usenix.org/conference/nsdi22/presentation/pirelli
https://www.kernel.org/doc/Documentation/networking/switchdev.txt
https://www.kernel.org/doc/Documentation/networking/switchdev.txt
https://doi.org/10.1145/3445814.3446732
https://doi.org/10.1145/3503222.3507711
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3098583.3098590
https://doi.org/10.1145/1348583.1348592
https://www.usenix.org/conference/nsdi23/presentation/scazzariello
https://www.usenix.org/conference/nsdi23/presentation/scazzariello
https://doi.org/10.1109/HPCA.2007.346208
https://doi.org/10.1109/IPDPS.2006.1639335
https://mails.dpdk.org/archives/dev/2018-May/099834.html
https://mails.dpdk.org/archives/dev/2018-May/099834.html
https://doi.org/10.1145/3373376.3378509
https://doi.org/10.1109/IPDPS.2006.1639336
https://doi.org/10.1109/ISCA45697.2020.00027
https://doi.org/10.1109/ISCA45697.2020.00027
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian

[92] Tariq Toukan. [PATCH net-next 08/10] net/mlx4_en:
Increase default TX ring size.
https://www.mail-archive.com/netdev@vger.k
ernel.org/msg173779.html, 2017. Mellanox.
Accessed: June 2021.

[93] S. Van Doren. Compute express link. In IEEE
Symposium on High Performance Interconnects (HOTI),
2019.
https://doi.org/10.1109/HOTI.2019.00017.

[94] VMware. Large packet loss in the guest os using
vmxnet3 in esxi (2039495).
https://kb.vmware.com/s/article/2039495,
2021. Accessed: June 2021.

[95] Ziye Yang, Ben Walker, James R Harris, Yadong Li,
and Gang Cao. Optimal use of the tcp/ip stack in
user-space storage applications with ADQ feature in
NIC. In 2020 IEEE 26th International Conference on
Parallel and Distributed Systems (ICPADS), pages
363–371, 2020. https:
//doi.org/10.1109/ICPADS51040.2020.00056.

[96] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren
Wang, Ilia Kurakin, Charlie Tai, and Nam Sung Kim.
Don’t forget the I/O when allocating your LLC. In
ACM International Symposium on Computer
Architecture (ISCA), pages 112–125, 2021. https:
//doi.org/10.1109/ISCA52012.2021.00018.

[97] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa,
Katerina Argyraki, and George Candea. A formally
verified NAT. In ACM SIGCOMM Conference on
Applications Technologies Architecture and Protocols
for Computer Communications, pages 141––154, 2017.
https://doi.org/10.1145/3098822.3098833.

968 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.mail-archive.com/netdev@vger.kernel.org/msg173779.html
https://www.mail-archive.com/netdev@vger.kernel.org/msg173779.html
https://doi.org/10.1109/HOTI.2019.00017
https://kb.vmware.com/s/article/2039495
https://doi.org/10.1109/ICPADS51040.2020.00056
https://doi.org/10.1109/ICPADS51040.2020.00056
https://doi.org/10.1109/ISCA52012.2021.00018
https://doi.org/10.1109/ISCA52012.2021.00018
https://doi.org/10.1145/3098822.3098833

ServiceRouter: Hyperscale and Minimal Cost Service Mesh at Meta

Harshit Saokar1, Soteris Demetriou1,2, Nick Magerko1, Max Kontorovich1, Josh Kirstein1,

Margot Leibold1, Dimitrios Skarlatos1,3, Hitesh Khandelwal1, and Chunqiang Tang1

1 Meta Platforms, 2 Imperial College London, 3 Carnegie Mellon University

Abstract
Datacenter applications are often structured as many inter-

connected microservices, and the service mesh has become a

popular approach to route RPC traffic among services. This pa-

per presents ServiceRouter (SR), Meta’s global service mesh,

which has been in production since 2012. SR differs from

publicly known service meshes in several important ways.

First, SR is designed for hyperscale and currently uses mil-

lions of L7 routers to route tens of billions of requests per

second across tens of thousands of services. Second, while

SR adopts the common approach of using sidecar or remote

proxies to route 1% of RPC requests in our fleet, it employs a

routing library that is directly linked into service executables

to route the remaining 99% directly from clients to servers,

without the extra hop of going through a proxy. This approach

significantly reduces the hardware costs of our hyperscale ser-

vice mesh, saving hundreds of thousands of machines. Third,

SR provides built-in support for sharded services, which ac-

count for 68% of RPC requests in our fleet, whereas existing

general-purpose service meshes do not support sharded ser-

vices. Finally, SR introduces the concept of locality rings to

simultaneously minimize RPC latency and balance load across

geo-distributed datacenter regions, which, to our knowledge,

has not been attempted before.

1 Introduction

The increasing need for continuous integration and deploy-

ment [25] in datacenter environments has led to the widespread

adoption of the microservice architecture [?, 42], in which an

application is decomposed into a collection of services that

can be independently developed and deployed. To manage

the traffic of remote procedure calls (RPCs) between these

services, many organizations use a service mesh [30].

Figure 1 shows the most common form of layer-7 (L7, i.e.,

application layer) service mesh. In this architecture, each

service process is accompanied by an L7 sidecar proxy running

on the same machine, which routes RPC requests on behalf

of the service. As an example, when service A on machine 1

sends requests to service B, the proxy on machine 1 will

load-balance the requests across machines 2 and 3. If the

autoscaling system detects an increase in load and starts a new

replica of service B on machine 4, the control plane’s service

discovery function will notify the proxy on machine 1, which

will then include machine 4 in its load-balancing targets for

future requests for service B.

This paper presents Meta’s global service mesh called Ser-

viceRouter (SR). SR supports a comprehensive set of features,

including service discovery, load balancing, failover, authenti-

cation, encryption, observability [1], overload protection [39],

distributed request tracing [32], resource attribution for ca-

pacity management [16], and duplication of traffic for shadow

testing. Due to space limitations, the focus of this paper is pri-

marily on answering the following questions: (1) how to scale

a service mesh to millions of L7 routers, (2) how to minimize

the hardware cost of a hyperscale service mesh, (3) how to

support sharded services which are essential but often over-

looked, and (4) how to simultaneously minimize RPC latency

and balance load in a geo-distributed service mesh.

Scalability. Traditionally, a software-defined network [18]

uses a centralized control plane and a decentralized data plane.

Most service meshes [10,30,37] follow this approach and use a

central controller to configure the routing table of each sidecar

proxy. However, this approach is not sufficiently scalable for a

hyperscale service mesh. The control plane has a dual function

of generating global routing metadata and managing each L7

router. We advocate for keeping the former in the central

control plane, but decentralizing the latter by transferring

its function to L7 routers. Each L7 router should be self-

configuring and self-managing so that the central control plane

can scale out easily.

Service A

L7 Proxy

Machine 1

Service B

L7 Proxy

Machine 4

Service B

L7 Proxy

Machine 3

Service B

L7 Proxy

Machine 2

Control Plane

Region US-East Region UK

Figure 1: Sidecar-proxy-based service mesh.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 969

Independent

Controllers

Data

Warehouse

Dedicated

Balancer

Routing Information Base (RIB)

➢ Service discovery info (e.g., service name, IP & port)

➢Per-service routing config (e.g., RPC timeout)

➢Cross-region service routing info (e.g., latency & load)

Logging & monitoring metrics reporting

Sidecar

Proxy

The data distribution layer

massively replicates the RIB

database to help scale out

Cached small

subset of the RIBServiceService
library

…
Machine

RIB

Replicas

Figure 2: ServiceRouter’s scalable service-mesh architecture.

Figure 2 shows SR’s scalable architecture. On the top, dif-

ferent controllers independently execute functions such as

registering services and generating a per-service cross-region

routing table. Each controller independently updates the cen-

tral Routing Information Base (RIB), and is not concerned

with configuring or managing individual L7 routers. In the

middle of Figure 2, the distribution layer replicates the RIB

so that there are sufficient RIB replicas to handle read traf-

fic from millions of L7 routers. At the bottom, guided by the

RIB, each L7 router self-configures without the control plane’s

direct involvement. Initially, an L7 router’s routing table is

empty. When it receives an RPC request that targets a service,

it fetches the routing information for the service from an RIB

replica and subscribes to future RIB updates for the service.

Hardware cost. Existing service meshes [10, 30, 37] use

sidecar proxies to forward requests (Figure 1). However, this

approach incurs extra hardware costs due to the overhead of the

extra routing hop, such as data serialization and deserialization

in the proxy. Istio’s benchmarking [47] shows that 0.35 vCPU

can handle 1,000 requests per second. Therefore, it would

need the equivalent of 1,750,000 AWS t4g.small VMs to

route 10 billion requests per second.

SR eliminates the need for a proxy and its associated hard-

ware cost by providing the service-mesh function through a

library called SRLib. SRLib is linked into service executa-

bles and routes RPC requests directly from clients to servers.

However, this approach requires changes to services’ source

code, which is not always possible. For example, our services

written in Erlang cannot link SRLib into their executables.

To meet the diverse needs of services, SR enables the seam-

less coexistence of different types of L7 routers, including

Istio-style sidecar proxies, AWS-ELB-style [5] dedicated load

balancers, and gRPC-style lookaside [24] load balancers, as

shown in Figure 2. The key insight that enables SR’s versa-

tility is that the controllers at the top of Figure 2 are agnostic

to the L7 routers at the bottom, allowing the L7 routers to

choose their own architecture.

The embedded SRLib helps us achieve significant hardware

savings. Currently, 99% of RPC requests at Meta are routed by

SRLib, and the remaining 1% is routed by sidecar proxies and

a group of dedicated load balancers that consume thousands of

machines. If we were to completely switch from using SRLib

to using proxies to route 100% of our traffic, we would need

to add hundreds of thousands of extra machines.

Sharded services. Sharding [34] and replication are two key

techniques for building scalable services. In our fleet, the vast

majority of RPC traffic is for sharded services. Despite their

importance, existing general-purpose service meshes do not

directly support routing for sharded services. For example, in

Figure 1, assuming that Service B’s replicas on machines 2, 3,

and 4 host various data shards that can dynamically migrate

across machines, it is possible for the proxy on machine 1 to

route a request to machine 2 mistakenly, even if the request is

meant for a shard on machine 3.

SR makes sharding support a top priority and uses a sin-

gle framework to support both sharding and replication. As

sharding is often tied to application logic, our key insight is

to enforce separation of concerns by defining a simple and

generic sharding abstraction between the service mesh and

services. This allows SR to route traffic for different sharded

services without needing to know their application logic.

Cross-region routing. Existing solutions [4, 41] are not op-

timized for routing across geo-distributed datacenter regions.

For example, in Figure 1, should machine 1 route requests to

machines 2 and 3, which have a higher load, or to machine

4, which has a longer network latency? Moreover, how to en-

sure that the resulting global traffic distribution for a service

matches the global supply of the service’s capacity in different

regions? These questions have not been well answered before.

To better support cross-region routing, we introduce the

concept of locality rings for services to express their preferred

tradeoff between latency and load. For example, a service

can instruct SR that if and only if the load in the local region

goes above 70%, SR can relax the locality constraint and route

some local traffic to other regions in the same continent; if the

load further increases above 80%, SR can even route some

local traffic to regions in a different continent. SR collects

global traffic and load information for each service, computes

a cross-region routing table that conforms to the requirements

specified in locality rings, and disseminates the routing table

to L7 routers to guide their routing. This allows SR to provide

globally optimized traffic shaping for services.

Contributions. We summarize our contributions below.

• SR is designed for hyperscale. While there may be pro-

prietary systems of a similar scale, their specifics are not

publicly available, and existing open-source service meshes

do not scale well [57]. We hope that our experience can be

helpful to those who seek to build scalable service meshes.

970 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• SR supports the seamless coexistence of different types

of L7 routers in one service mesh, including sidecar prox-

ies [30], dedicated load balancers [5], lookaside load bal-

ancers [24], and an embedded routing library. To save on

hardware costs, SR routes 99% of RPC requests in our fleet

using the embedded library. This approach, along with the

scale at which we utilize it, might be unique in the industry.

• While existing service meshes exclusively focus on un-

sharded services, which only account for 32% of our fleet’s

RPC requests, SR provides built-in support for sharded

services, which account for 68% of our traffic.

• Although primitive forms of locality-aware routing existed

before [31], our novelty is to introduce the concept of lo-

cality rings to simultaneously minimize RPC latency and

balance load across geo-distributed regions.

2 Comparison of Services Mesh Architectures

In this section, we compare different architectures of service

mesh. The design space, shown in Table 1, is determined by

the answers to two key questions: (1) which component fetches

and caches the routing metadata, and (2) which component

routes application RPC traffic. In Table 1, Library, Kernel,

Local, and Remote mean that RPC routing or maintenance of

routing metadata is performed by an embedded library, the

kernel, a local proxy/daemon on the RPC client machine, or a

remote proxy/service outside the client machine, respectively.

2.1 Different Types of L7 Routers in SR

SR allows different L7 router setups to coexist in one service

mesh in order to support diverse use cases. These setups are

shown in Figure 4 and explained below. Different types of L7

routers interoperate well and can send RPC requests to the

same server at the same time.

SRLib. This setup is shown in Figure 4(a) and corresponds to

solution (9) in Table 1. It provides the service-mesh function

through a library, which is directly linked into the RPC client’s

executable. The library can route requests directly to servers

without the need for a proxy, eliminating the extra hardware

cost and routing latency of a proxy. The client only needs to

fetch and cache a small part of RIB (called the miniRIB) that

is actively used by the client.

We run a separate RIBDaemon on the client machine to

cache miniRIB, instead of relying on SRLib to do so. This

Which component manages and caches miniRIB?

Lib Kernel Local Remote

Which

component

forwards

application

RPC traffic?

Lib (1) : (5) : (9) SRLib (13) SRLookaside

Kernel (2) : (6) eBPF (10) : (14) :

Local (3) : (7) : (11) SRSidecarProxy
(15) SRSidecarProxy

plus SRLookaside

Remote (4) : (8) : (12) : (16) SRRemoteProxy

Table 1: The complete solution space for service mesh. The

symbol : indicates undesirable solutions.

separation allows for the use of cgroup to provide strong

isolation between a) RIBDaemon’s less urgent background

work that keeps miniRIB up-to-date and b) SRLib’s latency-

sensitive foreground work that routes RPC requests and is

on the critical path of application performance. Updates to

RIB can be very spiky and when those updates are pushed to

miniRIB, they can cause a spike in CPU usage to process the

updates. Figure 3 shows the spiky CPU usage of a production

machine’s RIBDaemon. When cgroup throttles RIBDaemon,

it has little impact on SRLib because SRLib consults RIBDae-

mon only once on its first RPC for a service and all subsequent

RPCs for the service go directly from SRLib to servers without

involving RIBDaemon. In contrast, if miniRIB is managed by

SRLib, cgroup cannot isolate the resource usage for maintain-

ing miniRIB from the application’s own resource consumption

because SRLib is linked into the application.

SRLookaside. This setup, shown in Figure 4(b) and cor-

responding to solution (13) in Table 1, addresses the issue

of RIBDaemon running on every RPC client machine and

consuming resources, particularly memory. It eliminates RIB-

Daemon by moving the function of miniRIB management

and server selection to a remote and shared SRLookasideSer-

vice, while still routing RPCs directly from clients to servers

without going through an intermediate proxy.

Historically, Meta used a large fleet of small machines with

as little as 16GB memory because of their advantages in power

efficiency. Accordingly, SRLookaside was developed to save

memory on those small machines. Now even our small ma-

chines have at least 64GB memory and hence the usage of

SRLookaside was deprecated, because the limited memory

savings no longer justify the burden of maintaining the SR-

Lookaside service.

SRSidecarProxy. This setup, shown in Figure 4(c) and cor-

responding to solution (11) in Table 1, incurs extra hardware

costs and routing latency like Istio [30], but its implementa-

tion is much more scalable than Istio, because each SRProxy

self-manages without the control plane’s involvement and only

caches miniRIB instead of the entire RIB. At Meta, the usage

of SRSidecarProxy is mostly limited to services written in

Erlang because SRLib does not directly support Erlang.

0

0.2

0.4

0.6

0.8

1

Time over two weeksN
o

rm
a

li
ze

d
 C

P
U

 U
sa

g
e

Figure 3: Spiky CPU usage of a machine’s RIBDaemon.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 971

Server

Client

SRProxy

Machine

Routing Info Base (RIB)

miniRIB

Server

Server

Server
Client

Machine

Routing Info Base (RIB)

SRProxyminiRIB

Server

Server

Client

Server

Client

RIBDaemon

Machine

Routing Info Base (RIB)

miniRIB

Server

Server

SRLib

Server

Routing Info Base (RIB)

SRLookasideServiceminiRIB

Server

Server

Machine

(c) SRSidecarProxy

Routing metadata traffic Application RPC traffic

(d) SRRemoteProxy(a) SRLib (b) SRLookaside

Client SRLib

Client SRLib

Figure 4: Service mesh design alternatives. The diagrams show how RPC clients send requests to RPC servers.

Client

SRProxy

Client

Client

Client

Client

Client

…

Server

Server

Region US-East Region UK

b) Using a shared SRProxy

Client

Client

Client

Client

Client

Client

…

Server

Server

Region US-East Region UK

a) Using SRLib

Figure 5: A shared SRProxy is better at dealing with many

clients sending infrequent cross-region RPC requests.

SRRemoteProxy. This setup, shown in Figure 4(d) and cor-

responding to solution (16) in Table 1, is similar to AWS

ELB [5]. SRRemoteProxy functions as a dedicated load bal-

ancer shared by multiple clients, reducing the number of RPC

connections and increasing the reuse of keep-alive connec-

tions, as illustrated in Figure 5. Suppose there are a large

number of clients and each client sends a request to a server

in a remote datacenter region occasionally. Each RPC would

experience a long delay due to the three rounds of cross-region

round-trip time needed to establish a new TLS/TCP connec-

tion. A shared proxy eliminates this overhead by keeping a

small number of cross-region connections alive and reusing

them to send requests on behalf of many clients.

2.2 Comparison of L7 Routers

Next, we compare solutions in Table 1. Solutions (1)–(4)

are undesirable because managing miniRIB in the library

would impact the application’s performance due to lack of

isolation. Solutions (5), (7), and (8) are undesirable because

there is no system call to access miniRIB cached in the kernel.

Although solution (6) exists in the form of eBPF-based service

mesh [35], its function is limited by what can be done by an

eBPF program in the kernel. For example, Cilium [29]’s eBPF

program can only handle L3/L4 protocols and it still has to use

a sidecar proxy to handle L7 protocols. Similar to solution (6),

solutions (10) and (14) are undesirable because of the difficulty

of implementing advanced L7 routing features in the kernel.

Service

Mesh

Alternatives

A1:

HW

cost

A2:

direct

RPC

A3:

fast

RIB

A4:

save

mem

A5:

unchg

code

A6:

share

conn

SRLib 6 6 6 H : :

Sidecar Proxy : : 6 H 6 :

Remote Proxy : : 6 6 6 6

Lookaside H 6 : 6 : :

Attributes Description

A1: HW cost No extra hardware cost for proxy or lookaside service.

A2: direct

RPC

Application RPC traffic goes from clients to servers without

the overhead of going through an intermediate proxy.

A3: fast RIB No overhead to access Routing Information Base (RIB)

outside the client machine thanks to local RIB caching.

A4: save mem No extra memory usage on the client machine thanks to the

elimination of the local RIB cache.

A5:unchgcode No need for application source code modification.

A6:

share conn

Benefits of multiple clients sharing a proxy, e.g., better load

balancing or connection reuse (Figure 5).

Alter- na-

tives

When to use a particular service-mesh setup Usage at

Meta

SRLib Use SRLib for large-scale deployments where hard-

ware costs and routing latency are most important.

99% of

traffic

Remote

Proxy

Use remote proxies if it benefits from multiple clients

sharing a proxy, e.g., to improve connection reuse

when there are many low-traffic clients (Figure 5).

Some

limited

use

Sidecar

Proxy

Use sidecar proxies if you cannot modify application

source code to use SRLib, or SRLib does not support

the app’s programming language (e.g., Erlang).

Only

one-off

use

Lookaside Use a remote lookaside service to reduce the memory

used on every client machine for caching miniRIB.

Depre-

cated

Table 2: Comparison of service mesh design alternatives.

Solution (12) is undesirable because it is strictly worse than

(16), i.e., if routing is performed by a remote proxy, it is better

to move miniRIB to the remote proxy as well. Theoretically,

solution (15) uses less memory on the client machine than

(11) does. However, (15) is not used at Meta since even (11)

is not widely used and the added benefit of (15) is limited.

Finally, for ease of access, we summarize in Table 2 the

comparison of the design alternatives.

972 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Config Mgmt

System (CMS)

Global Registry

Service (GRS)

Cluster

Manager
Shard

Manager

Cross-region Routing

Service (xRS)

Latency Monitor

Service (LMS)

Routing Information Base (RIB)

Figure 6: ServiceRouter’s control-plane components.

3 ServiceRouter Design

In this section, we first present an overview of ServiceRouter

and then elaborate on its key design ideas.

3.1 Overview

SR supports all four types of L7 routers depicted in Figure 4.

For the sidecar or remote proxy setup, we add a wrapper layer

atop SRLib code to run it as a standalone proxy. SR’s control-

plane components are depicted in Figure 6 and further ex-

plained below.

Routing Information Base (RIB). RIB is a Paxos-based

key-value store with nine Paxos acceptors distributed across

five geographic regions to ensure high availability. It centrally

stores routing metadata for all services running in all regions.

It uses thousands of Paxos learners to create many local RIB

replicas in every region to ensure high read throughput and

availability even if a region is disconnected from other regions.

We discuss how to scale RIB in §4.1.

Global Registry Service (GRS). GRS maintains service

and shard discovery information in RIB. Figure 7 shows two

example services registered at GRS. Service A is replicated

but not sharded. When the cluster manager [53] starts or stops

a container for service A, it informs GRS to update the list of

service A’s replicas. We will explain SR’s built-in support for

sharded services in §3.3.

Configuration Management System (CMS). CMS [52]

allows customization of the routing policy for each service,

including RPC timeout, connection reuse, locality routing

preference, etc. Services owners follow the configuration as

code paradigm to author, review, and commit routing config-

urations. It also supports automated configuration updates.

For example, the latency monitoring service (LMS) periodi-

cally aggregates and commits configuration updates related

to cross-region latency to guide SRLib’s routing decisions.

Cross-region Routing Service (xRS). Compared with a

centralized load balancer, SRLib only has a local view of the

traffic from one client and might not make globally optimal

routing decisions. xRS addresses this problem by aggregating

global traffic information for each service and computing a

cross-region routing table, which is disseminated via RIB and

consumed by SRLib to guide its routing decisions.

Service B’s replicas:
IP3:port3

shard0 [primary, 0, 100)

shard5 [secondary, 500, 900)

IP4:port4

shard3 [secondary, 300, 500)

shard5 [secondary, 500, 900)

shard9 [secondary, 900, 2000)

IP5:port5

shard0 [secondary, 0, 100)

shard3 [primary, 300, 500)

shard5 [primary, 500, 900)

…

Service A’s replicas:

IP1:port1

IP2:port2

…

Unsharded service Sharded service

Figure 7: Examples of GRS’ service registry records.

3.2 Service Discovery

A RIBDaemon runs on each machine and maintains a so-called

miniRIB that caches the specific parts of RIB that are needed

by the RPC clients running on the machine. Initially, miniRIB

is empty. When SRLib wants to send an RPC request to a

particular service, such as service X, it requests service X’s

routing metadata from RIBDaemon. RIBDaemon fetches the

metadata from a RIB replica, caches it on disk so that it can

survive machine reboots, subscribes to future updates related

to service X, and finally returns the metadata to SRLib. SRLib

also subscribes to RIBDaemon for future updates and caches

the metadata in memory (but not on disk) for later reuse so

that it won’t contact RIBDaemon on every RPC request.

When the deployment of service X is changed in the future,

the cluster manager informs GRS to update RIB. The update

is immediately pushed to all RIB replicas, which further push

the update to every RIBDaemon that subscribes to service X’s

routing metadata. Finally, RIBDaemon pushes the update to

SRLib. Service X may be deployed in multiple datacenter

regions, and its replicas in each region are managed by a dif-

ferent regional cluster manager. All of these cluster managers

inform GRS to update the same service-registry record for

service X so that a client’s RPC request can potentially be

routed to a replica in any region (§3.4.1). The RPC client of

a service can choose to send requests only to servers located

in the same region as the client. In this scenario, to reduce

overhead, RIBDaemon subscribes only to routing updates

originating from the local region.

With the help of the cluster manager, clients do not need

to independently discover a server’s failure through timeouts.

When a server is brought down for planned maintenance, such

as code deployment, the cluster manager first updates RIB to

inform the clients and then stops the server. For unplanned

failures, the cluster manager detects all kinds of failures, such

as process crashes/hangs and machine failures, and updates

RIB to inform the clients.

3.3 Support for Sharded Services

SR provides built-in support for sharded services. In Figure 7,

service B is both sharded and replicated. We define a sim-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 973

ple sharding abstraction between SR and services to enforce

separation of concerns, so that SR can route traffic without

needing to know a sharded service’s internal application logic.

Specifically, a service specifies how a 128-bit key space is

partitioned into shards. Each shard can be independently repli-

cated and migrated across containers. Each shard replica is

associated with an abstract role, e.g., primary or secondary. In

this example, shard5 corresponds to the key range [500, 900)

and its replica on IP4:port4 serves the secondary role. SR is

not concerned with the real semantics of the shard key or role,

and merely routes requests according to a client’s request.

SRClient *cln = SR_get_client("ServiceB", 618/*key*/, SECONDARY);

cln->foo(); // Invoke RPC for foo().

In this example, SR discovers that shard5 contains key 618 and

shard5’s secondary role is served by its replicas on IP3:port3

and IP4:port4. SR picks one of them to serve the request

according to the load balancing policy. In the service’s imple-

mentation, the primary and secondary roles could be mapped

to the leader and follower replicas of a database, respectively.

SR’s shard-map abstraction is generic and currently sup-

ports hundreds of sharded services. Most but not all of them

are managed by a common shard manager [34], which notifies

GRS to update the shard registry when new shards are added

or removed, or existing shards are migrated across containers.

With SR, sharded and unsharded services share and reuse

all the sophisticated components in SR (Figures 2 and 6).

Moreover, routing for sharded services works out-of-the-box

without any additional effort. In contrast, existing general-

purpose service meshes do not support sharded services, and

applications have to develop their own solutions.

Design alternatives. One alternative to SR’s shard-map ap-

proach is consistent hashing [33]. Given a list of servers,

it deterministically determines the server responsible for a

given key based on hashing. As a result, it does not need

to store the shard map in Figure 7. Despite its advantage

in simplicity, consistent hashing is insufficient for advanced

sharding use cases, as its deterministic key assignment does

not support dynamic migration of shards in response to shard

load changes [2, 34]. SR provides built-in support for both

consistent hashing and the shard-map approach. As shown

in our previous work [34], out of the hundreds of sharded

services at Meta, the number of services that choose to use

a flexible shard map is 5.4 times higher than the number of

services that choose to use consistent hashing, which confirms

the importance and effectiveness of the shard-map approach.

Another alternative to SR’s shard-map approach is to al-

low a service to provide its own custom lookaside-service

implementation. This approach can provide maximum flexi-

bility and separate the service’s custom shard discovery and

selection logic from the service mesh. Both gRPC [24] and

SR’s lookaside interfaces can support this approach. At Meta,

some service owners were initially interested in this approach

because of its flexibility. However, they ultimately did not use

it because of the burden of maintaining a custom lookaside

service, and also because it turns out that the shard-map ap-

proach and consistent hashing together are sufficient for nearly

all sharded services.

3.4 Load Balancing

SR’s load-balancing solution is based on the Pick-2 [41]

algorithm. Pick-2 randomly samples two servers from a

candidate pool and chooses the server with less load as the

RPC target. However, using Pick-2 alone is not sufficient for

a geo-distributed service mesh. Therefore, we have developed

three novel techniques to complement Pick-2: 1) Consider

regional locality when sampling two random servers (§3.4.1).

2) Sample two random servers from a stable subset of servers,

rather than all servers, to maximize connection reuse (§3.4.2).

3) Take an adaptive approach to load estimation based on the

workload characteristics (§3.4.3). Further details on these

techniques are provided in the following sections.

3.4.1 Locality Awareness

In a geo-distributed service mesh, a faithful implementation

of Pick-2 would cause long RPC latencies because it does

not take regional locality into account. Our measurements

show that the P50 of within-region RTT is only 116ąĉ, while

the P50 of cross-region RTT is 35ăĉ and the P99 is as high as

163ăĉ. These data emphasize the importance of considering

regional locality when routing RPC requests.

Instead of Pick-2’s approach of randomly sampling two

servers from the candidate pool, SR uses the so-called locality

rings to filter out long-latency servers that are far from the

client, and then sample from the remaining nearby servers.

Each service can define a set of rings with increasing latencies,

e.g.,
[
ring1: 5ăĉ | ring2: 35ăĉ | ring3: 80ăĉ | ring4: @

]
. The

Latency Monitoring Service (LMS) periodically updates RTTs

between regions, and RPC clients obtain them via CMS.

An RPC client uses cross-region RTTs to estimate its la-

tency to different servers. Starting from ring1, if the client

finds any RPC server whose latency is within the latency

bound for ringÿ, it filters out all servers in ringÿ+1 and above,

and randomly samples two servers from ringÿ. If the service

has no servers in ringÿ, it considers servers in ringÿ+1, and so

forth. SR’s default setting maps
[
ring1|ring2|ring3|ring4

]
to[

same region| neighboring regions| same continent| global
]
.

Filtering by locality rings reduces routing latencies but still

has limitations due to lack of a global view. First, servers

in ringÿ might be overloaded while servers in ringÿ+1 are un-

derutilized. Second, clients’ local routing decisions might

not lead to an optimal global traffic distribution that matches

the global supply of server capacity. In particular, when a

region Ĕ fails, if all clients independently decide to reroute

their requests initially going to Ĕ, to Ĕ’s nearest region ĕ ,

they may overload ĕ , bring it down, and together move onto

the next region Ė, and so forth, causing a domino effect.

974 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The Cross-region Routing Service (xRS) solves these prob-

lems by using global information to compute a per-service

cross-region routing table whose entry [ČÿĀ] means that ČÿĀ

fraction of the service’s RPC requests originated from region

Ďÿ should be routed to region ĎĀ . The cross-region routing

table is stored in RIB and disseminated to all clients. When

an RPC client wants to send a request, it follows the traffic

distribution ČÿĀ to randomly choose a destination region, and

then applies the normal routing algorithm to select a server in

the destination region.

xRS can purposely update the routing table to shift traffic

out of a region in preparation for an upcoming maintenance

event or in response to a disaster. While doing so, it tries

to avoid overloading other regions. Guided by a PID con-

troller [50], it gracefully shifts traffic across regions to prevent

over-reaction. If there is insufficient capacity globally, it cre-

ates so-called black holes in the routing table to instruct clients

to drop certain traffic instead of overloading servers.

Next, we describe how xRS computes the cross-region rout-

ing table. xRS collects traffic and load information globally,

and simulates how a region’s load would change if more or less

traffic is routed to the region. For each service, xRS periodi-

cally fetches load information from its servers and aggregates

it by region. It also collects requests per second (RPS) served

by servers in each region, which is used to calculate the RPS

cost as the ratio of a region’s load to its RPS. RPS cost is the

estimated load increase due to a unit of RPS increase. For

example, the load for a region with a 60% load serving 100

RPS, would increase by 0.6% if 1 RPS is added to the region.

xRS strives to simultaneously minimize RPC latency and

balance load across regions. It expands the locality rings

with load thresholds, e.g.,
[
ring1: 5ăĉ : 55% | ring2: 35ăĉ

: 65% | ring3: 80ăĉ : 80% | ring4: @ : @
]
. Intuitively, it

means that, for example, when ring1’s load goes beyond 55%,

xRS will relax its latency restriction and start to consider

routing traffic to servers in ring2, and so forth. This load-

enriched locality ring information is not directly consumed

by SRLib, but instead is fed to xRS to compute a per-service

cross-region routing table as follows. xRS first tries to serve

all requests in the source region locally, by setting "ÿ Čÿÿ = 1

and "ÿ"Ā � ÿ ČÿĀ = 0. Then assisted by each region’s RPS cost,

it identifies the most loaded region and tries to follow the

preference in the locality rings to move some of the region’s

traffic to nearby regions. This process repeats until either no

regions are overloaded or all regions are equally loaded.

Currently, 46% of our services are routed using xRS’ cross-

region routing tables, while the rest are routed using the base-

line locality rings without the routing tables. Some services

choose not to use xRS due to the overhead of collecting global

traffic and load information. Moreover, some services gener-

ate high traffic and require low latency, and as a result, they

prefer to fail a request instead of routing it across regions.

In total, about 16% of RPC requests in our fleet are routed

across regions. This emphasizes the importance for global

service meshes to optimize cross-region routing, an area that

is largely overlooked by existing service meshes.

Design alternative. With xRS, service owners need to apply

their domain knowledge to set the thresholds for network RTT

and server utilization in locality rings. To avoid the burden

of setting these thresholds, an alternative approach is to use

end-to-end RPC latency as the sole metric, which, in theory,

would automatically consider both network RTT and server

utilization. The load-balancing goal of this latency-focused

approach would be to minimize the average RPC latency. Paci-

fici et al. [45] used a similar approach in a local cluster setting.

However, SR does not follow this approach because, based

on both queuing theory [11] and our production experience,

modeling latency at high utilization is not robust. This implies

that xRS would not be able to accurately predict how traffic

shifts would affect RPC latency.

Moreover, minimizing RPC latency by trading long queuing

delay at the RPC server for long cross-region network RTT is

not a robust method, as it can lead to overloading of nearby

servers and a high RPC error rate. We explain this through an

example. Suppose a client sends requests to two servers Ĕ and

ĕ , where Ĕ is in the same region with a 100ąĉ RTT and ĕ is

in a different region with a 100ăĉ RTT. Further assume that it

takes 1ăĉ to process a request. To minimize the RPC latency,

the latency-focused approach would send all requests to Ĕ,

which is in the local region, until its queuing delay reaches

100ăĉ, and only then it would start to send requests to ĕ ,

which is in a remote region. However, with a processing time

of 1ms, when the queuing delay at Ĕ reaches 100ms, Ĕ would

be severely overloaded and might experience a high error rate.

Overall, in a geo-distributed environment where network RTT

may vary by three orders of magnitude, from 100ąĉ to 100ăĉ,

the latency-focused approach is not robust.

3.4.2 RPC Connection Reuse

Our measurements show that setting up a new TLS/TCP con-

nection takes 1.6ms and consumes 14KB of memory on each

side. To reduce this overhead, SR keeps the TLS/TCP connec-

tions and reuses them across different RPC requests. However,

the randomization used by Pick-2 makes connection reuse

ineffective. As Pick-2 randomly samples two servers out of

all Ą servers for each request, over time, an RPC client com-

municates with all Ą servers. However, it is impractical to

maintain keep-alive connections with all Ą servers when Ą is

large because of the memory and CPU overhead required to

maintain the connections.

To improve connection reuse, an RPC client chooses a

stable subset of ā servers out of all Ą servers (often āÃ Ą), and

keeps reusing these ā stable servers. Upon each RPC request,

Pick-2 samples two servers out of the ā stable servers instead

of all Ą servers. Over time, the client maintains keep-alive

connections with the ā stable servers.

One challenge is for each RPC client to independently

choose their ā stable servers while globally the load spreads

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 975

evenly across all Ą servers. Suppose a server on average main-

tains keep-alive connections with ĉ clients. When a new

server is added to the existing Ą servers, an ideal and stable

solution should require only M clients to drop one existing

server out of their list of ā stable servers and add the new

server to their list, so that the new server also serves ĉ clients

like other servers.

With SR, each RPC client uses Rendezvous Hashing [9,54]

to select ā stable servers, which achieves the ideal properties

described above. Specifically, a client uses its unique client

ID as hashing salt, computes the hashcodes of all servers,

and chooses the ā servers with the largest hashcode. Stable

servers and Rendezvous Hashing together help SR maximize

connection reuse. In production, over99% of our RPC requests

reuse existing connections.

Design alternative. We prefer Rendezvous Hashing over

Consistent Hashing [33] because it allows SR to use weighted

hashing to assign client connections proportional to a server’s

compute power. This in combination with a weighting mecha-

nism to bias the Pick-2 probability proportional to a server’s

compute power, solves the problem that our large fleet runs

multiple generations of hardware that have very different per-

formance characteristics. Moreover, Rendezvous Hashing

achieves better load balancing. For example, when a server

dies, its load is evenly redistributed to other servers even with-

out using Consistent Hashing’s virtual servers.

3.4.3 Adaptive Load Estimation

In order for Pick-2 to choose a routing target between two

candidates, it needs to know the load information. By default,

SR uses the number of outstanding requests at an RPC server

to represent its load. In addition, SR allows custom load

metrics such as CPU, memory, disk, or any application-level

metric. Currently, 77% and 18% of the RPC requests in our

fleet use the number of outstanding requests and CPU usage as

the load metric, respectively, while the rest use other metrics.

To determine a server’s load, a client has two options:

1) Poll the server for its load right before deciding whether to

send a request to the server, which incurs additional overhead

and latency. 2) Have the server include its load information

on its responses and then cache it at the client for later reuse,

which is efficient but may result in the client using stale load

information and causing load imbalance.

To strike a balance between these two approaches, SR em-

ploys an adaptive mechanism. An RPC response is always

piggybacked with the server’s current load information. When

evaluating a server’s load before sending a new request, the

client uses the cached load information only if it is sufficiently

fresh (method 1). Otherwise, it polls the server for its realtime

load if the network RTT to the server is low compared with

the server’s average request-processing time (method 2). In

the worst case that the cached load information is stale and the

polling overhead is high, it chooses one of the two candidate

servers at random. (method 3).

Design alternative. LI [13] attempts to solve the load-

estimation problem by using methods 1 and 3 alone, without

method 2 (polling). Data from our production system show

that, with SR’s adaptive mechanism, about 50%, 25%, and

25% of RPC requests end up using methods 1, 2, and 3, re-

spectively. This confirms the usefulness of introducing the

just-in-time polling method.

4 Evaluation

Our evaluation attempts to answer the following questions:

1. Does SR scale well? (§ 4.1)

2. To what extent does SRLib save hardware costs, and when

should one use SRProxy versus SRLib? (§ 4.2)

3. Can SR balance load within and across regions? (§ 4.3)

4. Are sharded services important, and can SR effectively

support both sharded and unsharded services? (§ 4.4)

4.1 Scalability

Hyperscale is a key design goal that distinguishes SR from

most of the existing service meshes. SR currently operates in

tens of datacenter regions and runs millions of L7 routers to

serve tens of thousands of services. GRS globally distributes

service discovery information for millions of containers and

hundreds of millions of shards.

To understand the scale of individual services, we plot the

number of servers used by services in Figure 8. A small

fraction of services are very large while most are very small.

Specifically, while 90% of services each use less than 200

servers, 2% of services each use more than 2,000 servers and

the largest service uses about 90ć servers. Figure 9 shows

the RPS of services. Similarly, while most services have a low

RPS, some hyperscale services process billions of RPS. These

hyperscale services often demand the highest performance

and most sophisticated features from SR. Overall, Figures 8

and 9 show that SR scales well for both a small number of

hyperscale services and a large number of small services.

In SR’s overall architecture (Figure 6), the central RIB

enables separation of concerns for different components in the

Figure 8: Number of servers used by services. Each dot rep-

resents one service. Note that both axes are in log scale.

976 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: Requests per second by services. Each dot represents

one service. Note that both axes are in log scale.

data plane and the control plane so that each component can

scale out independently. However, RIB itself might become

a bottleneck, primarily due to the large amount of service-

discovery data stored in RIB and the associated write rate.

Currently, RIB’s total size is about 12GB, processing about

335 writes/second at a total data rate of about 39MB/second.

The write rate is low because writes are heavily batched; in

particular, sometimes thousands of updates for the service-

discovery registry are batched into a single write. In the past,

we used ZooKeeper as the data store for RIB, which could not

scale beyond a few GB, and hence we sharded RIB. Now we

use an in-house data store [6] that scales well and there is no

urgency to shard RIB further. Overall, currently RIB is not a

bottleneck and it can be further sharded to scale out if needed.

The distribution of RIB is fast, far from reaching any scal-

ing bottleneck. We operate about 2,000 RIB replicas globally,

which form a 2-layer data distribution tree among themselves.

In our production environment, the distribution latency of an

RIB update to reach clients in geo-distributed datacenter re-

gions is 400ms/900ms/1300ms at P50/P95/P99, respectively.

Due to the propagation delay of service discovery infor-

mation, any system that does service discovery and routing,

not just SR, will encounter the problem of stale routing in-

formation on some clients. In the face of stale routing infor-

mation, SR guarantees correctness and strives to minimize

performance impact. For example, if an SR client sends a

request for a specific shard to a server that no longer holds the

shard, the client will receive an error and automatically retry

a different server. To improve performance, SR minimizes

the chance of this scenario by implementing graceful shard

migration. When migrating a shard from server Ĕ to server

ĕ , as described in our previous work [34], the shard manager

first starts the shard on Y, then updates RIB to redirect clients

to send traffic to Y, and finally stops the shard on Ĕ.

As long as RIB scales well, xRS, CMS, LMS, GRS, and

the L7 routers can all scale out horizontally. xRS is sharded

by service and can scale out horizontally. Computing the

routing table for one service only takes about one second.

CMS processes about 10,000 routing-configuration changes

per day for about 2,500 services, and 99% of those changes

are driven by automation tools. Overall, the rate of writes to

CMS is far from reaching any bottleneck.

To understand the nature of routing-configuration changes,

we list the types of the most frequent changes on an average

day. A data pair (X%/Y) below means that every day X% of

the total changes are for a specific type, which are applied to Y

number of services. The top types of changes are 1) processing

timeout (27%/1700), the server-side RPC processing timeout;

2) locality ring (30%/700); 3) traffic shedding (11%/3), the

percentage of traffic to be shed for a given client ID in an over-

load situation; and 4) shadow traffic (6%/100), the percentage

of production traffic to be replicated to a test service. These

data demonstrate that it is easy to dynamically reconfigure

the routing policies for thousands of services at the central

CMS. Moreover, it shows that locality ring is an important

feature that is frequently tuned for services to achieve the best

cross-region routing performance.

4.2 Hardware Cost

We compare the CPU overhead of SRLib and SRProxy, and

use case studies to illustrate when to use SRProxy.

4.2.1 SRLib versus SRProxy

To quantify the hardware cost, we conduct an experiment to

compare three RPC setups: 1) SRLib, where a client uses

SRLib to route requests to a simple service running on 10

machines; 2) SRProxy, where a client sends requests to a

remote SRProxy, which forwards requests to the servers; and

3) Thrift, where a barebone client hard-codes a most efficient

way to randomly select one of the 10 servers and invokes it

using the Thrift [51] RPC protocol. SRLib and SRProxy’s

internal implementation also use Thrift but add extra logic

atop it. Therefore, Thrift represents the lower-bound baseline.

In all three setups, the RPC connections are 100% reused to

avoid the connection establishment overhead. All servers used

in the experiment are located in the same region to minimize

the impact of network latency. We use three RPC payload

sizes. The Production size uses requests and responses of

5.4ćþ and 6ćþ, respectively, which are the average sizes

of payloads in production. The Large and Small sizes use

payloads that are 10Ď or
1

10
Ď of the production payload size,

respectively. We report in Figure 10 the end-to-end RPC

latency and the total CPU instructions executed across the

client, proxy (if used), and server when processing one RPC.

Using production-sized payloads, compared with Thrift,

SRLib and SRProxy consume 80% and 273% additional CPU

cycles, respectively. The overhead is high because this experi-

ment is set up to measure almost the worst case of SRLib and

SRProxy. Since the payload’s data type is a trivial string, seri-

alization and deserialization in Thrift take little time. More-

over, both the RPC client and server do not do any processing.

Overall, this setup minimizes all other overhead in order to

show the worst-case setup for SRLib and SRProxy. In our pro-

duction environment, when aggregated across all workloads

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 977

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Small Payload Production Payload Large Payload

La
te

n
cy

(m

s)

(a) 50th percentile (P50) of RPC Latency.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Client side

Proxy side

Small Payload Production Payload Large Payload

In
st

ru
ct

io
n

s
p

e
r

R
e

q
u

e
st

 (
m

il
li

o
n

s)

(b) CPU overhead.

Figure 10: Comparison of latency and CPU overhead across

three setups: the Thrift baseline, SRLib, and SRProxy.

running on all servers, SRLib consumes 36% additional CPU

cycles compared to Thrift. This is much lower than the 80%

overhead observed in this worst-case experiment.

For the SRProxy setup using production-sized payloads, the

CPU consumption is evenly split between the client and proxy.

Thrift and SRLib have almost identical latency, whereas SR-

Proxy’s latency is 107% higher. Using large-size payloads,

the relative overhead of SRLib and SRProxy becomes smaller.

Compared with Thrift, SRLib and SRProxy consume addi-

tional 25% and 190% CPU cycles, respectively.

This experiment shows that, across the RPC client and

proxy, the SRProxy setup in total consumes more than twice

the amount of CPU cycles as the SRLib setup. In our pro-

duction environment, we use thousands of SRProxy machines

to route 1.1% of the total RPC requests, which generate only

0.1% of the total RPC data transferred. The remaining RPC

requests are routed by SRLib. If we were to completely switch

from SRLib to SRProxy and route 100% of the RPC traffic by

SRProxy, we would need hundreds of thousands of additional

machines for SRProxy.

In the SRProxy setup with production-sized payloads, the

split between CPU instructions executed in the kernel and

user space is 26% versus 74%. This indicates that even if the

kernel overhead could be entirely eliminated through methods

like zero-copy data forwarding, it would still be insufficient

to significantly reduce the proxy’s overhead. Moreover, the

proxy cannot perform zero-copy data forwarding because it

needs to manage encryption and identity.

Using small and production-sized payloads, SRLib’s la-

tency appears to be slightly better than Thrift, but since the

standard deviation is high, the small difference is mostly

caused by measurement noises in our production network

that serves many other production services. Lastly, we would

expect to see less CPU cycles consumed by the client side

of the SRProxy setup compared with the client side of the

SRLib setup, as the former does less routing work. However,

the difference is insignificant in this experiment because the

SRLib code path is slightly better optimized by our years of

investments in it.

4.2.2 Case Study of When to Use SRProxy

As shown in Figure 5, a shared SRProxy improves connection

reuse, which potentially can reduce the latency of cross-region

RPCs at the expense of extra hardware to host SRProxy. The

tradeoff depends on the business value of the reduced latency

and the cost of the extra hardware. In practice, we always

carefully evaluate our customer’s request of using SRProxy

case by case. We present several case studies below.

E-Comm. E-Comm is a sharded ranking service used in e-

commerce. Due to its tight service-level objective (SLO) for

latency, all of its shards were replicated to every region to

enable local access. We analyzed its traffic pattern and found

that by allowing only 5% of its traffic to go across regions, we

could avoid replicating 33% of its shards in every region. This

would lead to significant hardware savings but at the expense

of increased latency. In Figure 11, we compared E-Comm

with and without SRProxy and found that SRProxy improved

cross-region connection reuse and reduced the P90 latency

from about 325ăĉ to about 150ăĉ. E-Comm’s maximum

per-region RPS is about 300ć , which can be handled by 4

SRProxy machines since each SRProxy machine can handle

about 87ć RPS. In practice, about 10 SRProxy machines are

needed to provide sufficient buffers for failure and unexpected

125

175

225

275

325

375

425

475

La
te

n
cy

 (
m

il
li

se
co

n
d

s)

Time over two hours

E
n

a
b

le
 S

R
P

ro
xy

With SRProxy

Without

SRProxy

Figure 11: E-Comm’s P90 latency with and without SRProxy.

978 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

load spikes. After the evaluation, we decided to enable SR-

Proxy for E-Comm because the 10 SRProxy machines per

region would allow us to save 33% of E-Comm’s hardware

capacity by routing 5% of its traffic across regions while still

keeping its latency within its SLO.

Key-value store. This distributed key-value store has 1.5

million data shards. Accordingly, its service-discovery in-

formation includes a large shard map for these 1.5 million

shards (see an example in Figure 7). It takes a lot of memory

on the key-value store’s clients to cache this large service’s

full service-discovery information. We evaluated enabling

SRProxy to offload the service-discovery cache from the client

machines to SRProxy, and noted that it saved on the client

machines 250MB memory at P99. Moreover, SRProxy helped

with connection reuse and thus latency. The clients have poor

connection reuse due to the huge fanout of requests to many

different shards hosted by different servers. Shared SRProxies

could drastically improve connection reuse and reduce latency

by 27% on average. However, due to the key-value store’s high

RPS, it would need 1,500 SRProxy machines. Eventually, we

decided that the cost would not sufficiently justify the benefits

and hence did not use SRProxy to route its traffic.

4.3 Load Balancing

SR performs load balancing both within a region and across

regions. We evaluate both scenarios in this section.

4.3.1 Same-Region Load Balancing

To evaluate same-region load balancing, we selected 15 rep-

resentative services that produce significant traffic within a

region. 10 of these services are unsharded and 5 are sharded.

We measured each service’s average production load (pending

requests for unsharded services and CPU usage for sharded

services) across its servers and normalized the load by its

mean. To evaluate whether the load evenly spreads across

Figure 12: Load balancing within a region for unsharded (U)

and sharded (S) services. The top group shows the normal-

ized average load and the bottom two groups show the load’s

coefficient of variation (CV) across servers.

a service’s different servers, we calculated the coefficient of

variation (CV) for each service. Figure 12 summarizes the

results. We observe that the load is concentrated within a nar-

row band for all services. Across all 15 services, the median

CV is low Č50ÿĒ = 0.18 and Č 95ÿĒ = 0.6. In particular, the

CV for unsharded services is always low (Č50ċ
ÿĒ

= 0.13 and

Č95ċ
ÿĒ

= 0.20), indicating that SR effectively balances the

load across their servers.

The CV for sharded services is higher (Č50ĉ
ÿĒ

= 0.44 and

Č95ĉ
ÿĒ

= 0.61), indicating that the load is less balanced. This

is because some shards are hot (receiving a lot of traffic) while

others are cold (receiving little traffic), due to the nature of data

stored in the shards. As a result, even if SR perfectly routes

RPC requests to different replicas of the shards, the load on the

servers that host different shards may still be unbalanced. To

further balance the load, it may be necessary to migrate shard

replicas across containers and/or create additional replicas of

the hot shards. However, these operations may have a high

overhead, so our shard manager [34] performs these operations

only enough to prevent server overload without attempting to

perfectly balance the load. Overall, these data show that SR

can use a single service mesh to balance load for both sharded

and unsharded services.

4.3.2 Cross-Region Load Balancing

Locality ring. A service’s locality-ring configuration

(§ 3.4.1) guides SR to route requests to nearby servers when

appropriate. To assess its effectiveness, we measure P90 la-

tencies for requests that fall into different locality rings. Most

services (63.8%) use SR’s default locality-ring configuration:[
same region | neighboring regions | same continent | global

]
.

Interestingly, 15.4% of services simply set their locality ring

as
[
global

]
, meaning that they have no locality preference.

Most of these services are not user facing and not sensitive to

latency, but instead care more about availability. 9.7% of ser-

vices set their locality ring as
[
same region | global

]
, meaning

that they prefer a request being served in the local region, but

if that’s impossible, they prefer the request being served by a

more lightly loaded server in any region, as opposed to a more

heavily loaded server in a nearby region. The remaining 11.1%

of services use their own custom locality-ring configuration.

We found that the P90 latency is 12/83/201/262 ms

for requests that are served by servers in the

Region / NeighboringRegions / Continent / Global rings,

respectively. This confirms the correct behavior that the inner

rings exhibit lower latencies than the outer rings. Moreover,

the latency jump at each expanded ring level is significant,

indicating that fine-grained locality management is helpful.

Initially, our default ring configuration was
[
same region|

same continent | global
]
. As more datacenter regions were

added to our infrastructure, the latency difference between

regions in the same continent became more significant. Then

we were able to easily introduce a new ring level, neighboring

regions, thanks to the flexibility offered by locality rings.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 979

Ring 3

Ring 1

Ring 2

Ring 4

Figure 13: xRS shapes a service’s traffic across several regions

to prevent overloads.

Cross-region load spillover. xRS computes a cross-region

routing table per service to guide L7 routers’ routing deci-

sions (§3.4.1). To evaluate its effectiveness, we choose a

service that does newsfeed fetching and ranking for one of

our main products. The service uses the following locality-

ring thresholds,
[
ring1:75% | ring2:80% | ring3:85%

| ring4:90%
]
, where the second number (e.g., 75%) in the

pairs is a load threshold. It means that if the measured load

in an inner ring exceeds the threshold, xRS should compute

a new routing table to shift some traffic from the inner ring

to the next-level outer ring in order to reduce load in the in-

ner ring. The load metric for the service is CPU utilization

averaged across the service’s all servers in a region.

In Figure 13, we report a real incident that happened to

the service in production, which was not conducted by us

just for the sake of experiment. The figure shows the average

load across several regions for the service in the span of 40

minutes. We observe that xRS was able to shift traffic to

maintain the load well below the ring1 load threshold of 75%

for most regions except Region 0 during a short spike.

At 09:53 AM, Region 0 exhibited high load (81.2%), which

exceeded its ring2 load threshold (80%). xRS evaluated shift-

ing some traffic to Region 0’s ring2 regions (i.e., Regions 2,

8, and 10) and chose Region 2 as the target because it had the

lowest load. xRS calculated that by shifting some traffic from

Region 0 to Region 2, the load of Region 0 would fall below

the load threshold. This resulted in a new routing table which

reduced Č0,0 traffic by 5.35% and set Č0,2 = 5.35%, meaning

that 5.35% of requests originating from Region 0 should be

routed to Region 2. Then, the load of Region 0 fell to 70.9%

and subsequently to 65.47% at 09:54 AM. The corresponding

load increase in Region 2 was insignificant because the service

had a large capacity footprint in Region 2.

At 09:55 AM, the load of Region 0 spiked again to 92.83%

and then to 96.69% at 09:56 AM, which was above the ser-

vice’s ring4 threshold (90%). In response, xRS reduced Č0,0

0.0

0.5

1.0

1.5

2.0

2.5

R
e

la
ti

v
e

 T
ra

ff
ic

Time over One Week

Aggregate requests per second for unsharded services

Aggregate requests per second for sharded services

(a) Data plane (i.e., application RPCs).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e

la
ti

v
e

 T
ra

ff
ic

Time over One Week

Write traffic for service discovery data for sharded services

Write traffic for service discovery data for unsharded services

(b) Control plane (i.e., service-discovery updates).

Figure 14: Traffic for unsharded and sharded services, exclud-

ing memcache.

by 12% at first (99.24%³ 86.92%) and then by another 13%

(86.92%³ 74.38%). The removed traffic was again added to

Region 2 alone as it was the least loaded region among all

regions in Region 0’s ring4. Č0,2 increased first from 0.76% to

13.08% and then from 13.08% to 25.62%. These adjustments

helped the load in Region 0 to drop to 64.34% and the region

became healthy again at 09:57 AM.

Overall, the whole process above was fully automated by

xRS without any manual intervention. It demonstrates that

xRS is effective in dynamically managing cross-region traffic.

4.4 Sharded Services

Currently, our fleet runs hundreds of sharded services [34].

Although they only account for about 3% of our tens of thou-

sands of services, they generate more traffic than the other

97% unsharded services, because many sharded services are

among our largest and highest traffic services. Specifically,

most of the largest services in Figures 8 and 9 are sharded,

and the two services studied in §4.2.2 are both sharded. To

give a sense of scale, our fleet has millions of containers for

unsharded services, and hundreds of millions of shard replicas.

Figure 14(a) shows that the aggregate RPS for all sharded

services is 212% of the aggregate RPS for all unsharded ser-

vices. Our memcache [38] is sharded and has the highest RPS

among all our services, but it is excluded from the comparison

in Figure 14(a) to avoid overshadowing other services. The

RPS for memcache alone is 975% of the aggregate RPS for

all unsharded services. Although memcache has a high RPS,

each of its requests is very lightweight and hence memcache

servers do not account for a large fraction of our fleet capacity.

Figure 14(b) shows that the aggregate control-plane traffic to

980 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

update service-discovery information for all sharded services

is 240% of the aggregate traffic for all unsharded services. This

is because sharded services more frequently migrate shards

across servers to balance load.

Overall, the traffic for sharded services overwhelmingly

dominates both the data plane and the control plane of our

service mesh, which highlights the importance of providing

first-class built-in support for sharded service in a service

mesh. Excluding memcache, RPCs for sharded services ac-

count for 68% of all RPCs, rising to 92% when memcache is

included (as our memcache is sharded). Despite the impor-

tance of sharded services, all existing general-purpose service

meshes ignore sharded services and exclusively focus on un-

sharded services. Our key insight in supporting sharded and

unsharded services in a single framework is to define a shard-

ing abstraction between SR and services to enforce separation

of concerns so that SR can route traffic without knowing a

service’s internal application logic.

5 Limitations of SRLib and Our Solutions

In this section, we discuss several limitations of SRLib and

how we address them.

Dynamic policy updates. In addition to load balancing, SR

offers a large set of service-mesh features such as overload

protection [39], observability [1], distributed tracing [32], and

encryption. These features are managed through dynamic

policy updates, which need to be executed by L7 routers in

near-real-time. Without good tooling support, deploying pol-

icy updates for a library embedded in applications could be

harder than for standalone sidecar proxies. At Meta, this prob-

lem is solved by a powerful configuration management system

called Configerator [52]. The policies for both SRProxy and

SRLib are managed in the same way. When a policy changes,

Configerator propagates the change and sends an upcall to

SRLib embedded in applications. SRLib then applies the new

policy immediately, without restarting the application.

Source code modification. One disadvantage of SRLib is

that it requires code changes to services. Traditional RPCs

use an IP address and a port number to obtain an RPC client,

whereas SRLib obtains an RPC client using a service name.

The code example below shows that it is straightforward to

modify a traditional RPC framework to use SRLib.

TraditionalRPCClient *cln = get_client(IP, port);

cln->foo(); // Invoke RPC for foo().

SRClient *cln2 = SR_get_client("service_name");

cln2->foo(); // Invoke RPC for foo().

Moreover, source-code modification related to RPC is not

unique to SRLib, and is widely adopted by hyperscalers. Re-

gardless of how routing is done, as long as a hyperscaler’s

RPC framework does not entirely rely on the standard but slow

DNS for service discovery, they have to modify their appli-

cation code to integrate with their custom service-discovery

system. Examples of this include Google’s Borg Name Ser-

vice [55], Netflix’s Eureka [17], LinkedIn’s Rest.li Dynamic

Discovery [49], Twitter’s Finagle [19], Uber’s Hyperbahn [27],

and Airbnb’s Synapse [3]. The prevalence of custom service-

discovery systems, which often require source-code modifica-

tions to use, suggests that this approach is practical as long as

the changes are simple and limited to RPC’s narrow interface.

Library code deployment. Deploying a new version of SR-

Lib is more difficult than deploying a new version of a sidecar

proxy. This is because SRLib is compiled into tens of thou-

sands of services, each with its own deployment schedule.

Furthermore, in theory, it is possible that some services may

not be updated for a long time, resulting in their continued

use of an outdated version of SRLib. At Meta, this problem

is solved by a powerful continuous software deployment tool

called Conveyor [25]. With the help of Conveyor, 97% of

the services at Meta are configured to deploy automatically

without manual intervention, whether it is on a daily or weekly

basis, or whenever a code update successfully passes all tests.

Moreover, due to reasons beyond SR, it is a company mandate

for all services to be deployed regularly, which ensures that

services run with a recent version of SRLib.

Bugs in SRLib. If SRLib’s new code has a bug, it can be
difficult to instantly roll back all services. To mitigate this risk,
every major code change or new feature in SRLib is gated by a
configuration parameter that can be toggled live in production
via Configerator [52], as shown in the example below, without
requiring a software deployment or process restart.

// Introduce a new FEATURE_X in the SRLib code.

if (check_gate(FEATURE_X)) {

// New code path...

} else {

// Old code path...

}

In the example above, when FEATURE_X is updated on a cen-

tral server via Configerator, the new parameter value is prop-

agated to all SRLib instances within seconds. SRLib’s next

invocation to check_gate(FEATURE_X) returns the updated

parameter value and switches the code path accordingly, with-

out requiring a restart of the application process.

After the above new code is released into production,

check_gate(FEATURE_X) defaults to false, as if the new code

path does not exist. Configerator then manages a canary test-

ing process where it selectively enables the new code path

for a small number of replicas of a few services by setting

check_gate(FEATURE_X) to true. If the test is successful, the

new code path is gradually enabled for more services. If a bug

is encountered, FEATURE_X can be instantly disabled for

all services via a configuration change. Overall, incremental

rollouts of new SRLib code gated by configuration changes

allow us to mitigate the risk of SRLib bugs.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 981

Summary. At Meta, managing widely deployed libraries

(WDL) such as SRLib is largely a solved problem thanks

to the help of Configerator [52] and Conveyor [25]. These

tools also help manage about a dozen other WDLs, so the

problem is not unique to SRLib. However, we acknowledge

that, even with the help of Configerator and Conveyor, it is still

more challenging to develop, deploy, and manage SRLib than

sidecar or remote proxies because SRLib is linked into every

service. Although SR supports both SRProxy and SRLib,

we prioritize the cost savings of hundreds of thousands of

machines that come with the routing-library approach, over the

simplicity that comes with the proxy approach. Our experience

in production demonstrates that the routing-library approach

is not only cost-effective but also practical, even in highly

complex environments, despite its challenges.

6 Related Work

There is an array of works from both academia and industry

discussing routing and load balancing in datacenter environ-

ments, at either layer-3/4 [5,8,12,14,18,21,40,44,46] or layer

7 [3, 5, 15, 19, 20, 23, 26, 30, 36, 37, 43, 48]. Layer-3/4 load

balancers can be implemented either in hardware [8, 21, 40]

or in software [5, 14, 22, 28, 44, 46, 48]. As a layer-3 solu-

tion, anycast [56] can route requests to nearby servers, but

it does not consider the servers’ dynamic load. As shown in

Figure 14, the majority of our traffic is for sharded services,

which cannot be handled by these layer-3/4 solutions as they

do not understand application shards.

More relevant to SR are layer-7 (L7) service-mesh solutions

that route requests across microservices. L7 routing can in-

spect application-level information, enabling more advanced

load balancing. L7 routing can be performed by a group of

dedicated proxies [3, 5, 15, 20]. However, using remote prox-

ies comes with significant latency and hardware costs, so SR

limits the use of SRProxy to around 1% of its traffic, only for

services that can benefit the most from connection reuse.

More related to SRLib, which routes 99% of our traffic, are

service meshes that distribute L7 decisions closer to the clients.

eBPF [35] is efficient but is limited in its L7 capabilities. For

example, Cilium [29]’s eBPF program can only handle L3/L4

protocols, and it still needs to use a sidecar proxy to handle L7

protocols. RPC frameworks such as Thrift [51], gRPC [23],

and Finagle [19] are the foundations of service meshes, but

they do not offer the complete capabilities needed for a geo-

distributed service mesh, such as global-traffic-aware routing.

To address these limitations, more complex service

meshes [15, 30, 36, 37] have been proposed. Envoy [15] is

typically deployed as a sidecar proxy, and Istio [30] provides

a control plane to manage Envoy proxies. We compare dif-

ferent service meshes in Table 2 and show that the sidecar

approach is easy to deploy, but increases latency and incurs

significant hardware costs. Zhu et al. [57] show that Istio adds

92% extra CPU usage and increases the latency by 185% [57].

mRPC [7] confirms that a sidecar increases the P99 RPC la-

tency by 180% and decreases throughput by 44%. SR takes

the routing-library approach to avoid the overhead of a proxy.

mRPC [7] eliminates the double marshaling overhead of the

sidecar approach, by using shared memory to communicate

between the application and the sidecar and by not performing

marshaling in the application. However, this approach requires

modifying applications to allocate memory for RPC arguments

from a heap in shared memory. This can be difficult since

memory allocations tend to scatter throughout an application

and sometimes occur in system libraries such as strdup()

that cannot be easily modified.

While Istio offers locality-aware routing based on static

rules [31], SR dynamically computes a per-service global

routing table based on global traffic. Google Slicer [2] sup-

ports service discovery for sharded services, but this function

is not offered by the underlying service mesh out of the box.

7 Conclusion

We presented Meta’s global service mesh, called ServiceR-

outer (SR). SR differs from other publicly known service

meshes in several significant ways. First, SR scales signifi-

cantly beyond previously published work, currently processing

tens of billions of requests per second. This is achieved by mas-

sively replicating the routing information base (RIB) to guide

L7 routers to self-configure and self-manage in a decentralized

manner. Second, SR minimizes hardware costs by providing

the service-mesh function out of an embedded routing library

for 99% of its traffic, in contrast to the common approach of

using sidecar or remote proxies alone. Third, SR introduces

the concept of locality rings to simultaneously minimize RPC

latency and balance load across geo-distributed datacenter

regions. Finally, SR supports both sharded and replicated

services through a common underlying routing framework.

Our ongoing work is focused on improving global rout-

ing in accordance with global capacity management [16] and

enhancing overload protection to ensure services gracefully

degrade in the event of large-scale disasters [39].

Acknowledgments

This paper presents 11 years of work by past and current mem-

bers of several teams at Meta, including ServiceRouter, CSLB,

SMC, and Falcon. In particular, we would like to call out the

current members of the ServiceRouter team who are not on the

author list: Akrama Baig Mirza, Bo Huang, Emanuele Altieri,

Kenny Lau, Lijie Tang, Mikhail Shatalov, Nan Su, Nitesh

Kant, Scott Diao, Tao Chen, Wei Song, and Weilun Wang.

We thank all reviewers for their insightful comments, Shie Er-

lich for the support, as well as Andrii Grynenko, Rahul Gokul,

and Stepan Palamarchuk for their contributions to some ideas

presented in the paper.

982 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak

Borkar, Bhuwan Chopra, Ciprian Gerea, Daniel Merl,

Josh Metzler, David Reiss, Subbu Subramanian, et al.

Scuba: Diving into data at facebook. Proceedings of the

VLDB Endowment, 6(11):1057–1067, 2013.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,

Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,

Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:

Auto-sharding for datacenter applications. In Proceed-

ings of the 12th USENIX Symposium on Operating Sys-

tems Design and Implementation, pages 739–753, 2016.

[3] Airbnb Synapse. https://github.com/airbnb/

synapse.

[4] Klaithem Al Nuaimi, Nader Mohamed, Mariam Al Nu-

aimi, and Jameela Al-Jaroodi. A survey of load balanc-

ing in cloud computing: Challenges and algorithms. In

2012 second symposium on network cloud computing

and applications, pages 137–142. IEEE, 2012.

[5] AWS Elastic Load Balancing. https://aws.amazon.

com/elasticloadbalancing/.

[6] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir

Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh,

Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming

Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang,

Ahmed Yossef, Francois Richard, and Yee Jiun Song.

Virtual Consensus in Delos. In Proceedings of the 14th

USENIX Symposium on Operating Systems Design and

Implementation, 2020.

[7] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xin-

hao Kong, Thomas Anderson, Matthew Lentz, Xiaowei

Yang, and Danyang Zhuo. Remote procedure call as

a managed system service. In 20th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 23), pages 141–159, Boston, MA, April 2023.

USENIX Association.

[8] Reuven Cohen, Matty Kadosh, Alan Lo, and Qasem

Sayah. LB Scalability: Achieving the Right Balance

Between Being Stateful and Stateless. IEEE/ACM Trans-

actions on Networking, 30(1):382–393, 2021.

[9] Ben Coleman. Rendezvous Hashing Explained,

2020. https://randorithms.com/2020/12/26/

rendezvous-hashing.html.

[10] Consul. https://www.consul.io.

[11] Robert B Cooper. Queueing theory. In Proceedings of

the ACM’81 conference, pages 119–122, 1981.

[12] Alejandro Forero Cuervo. Load Balancing in the

Datacenter, 2016. https://sre.google/sre-book/

load-balancing-datacenter/.

[13] Michael Dahlin. Interpreting stale load information.

IEEE Transactions on parallel and distributed systems,

11(10):1033–1047, 2000.

[14] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody

Smith, Roman Kononov, Eric Mann-Hielscher, Ardas

Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-

nah Dylan Hosein. Maglev: A fast and reliable software

network load balancer. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI

16), pages 523–535, 2016.

[15] Envoy Proxy. https://www.envoyproxy.io/.

[16] Marius Eriksen, Kaushik Veeraraghavan, Yusuf Abdul-

ghani, Andrew Birchall, Po-Yen Chou, Richard Cornew,

Adela Kabiljo, Ranjith Kumar S, Maroo Lieuw, Justin

Meza, Scott Michelson, Thomas Rohloff, Hayley Rus-

sell, Jeff Qin, and Chunqiang Tang. Global Capacity

Management with Flux. In Proceedings of the 17th

USENIX Symposium on Operating Systems Design and

Implementation, 2023.

[17] Eureka. https://github.com/Netflix/eureka.

[18] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong,

Charles Killian, Waqar Mohsin, Henrik Muehe, Joon

Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano,

et al. Orion: Google’s Software-Defined Networking

Control Plane. In 18th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 21),

pages 83–98, 2021.

[19] Finagle: A Protocol-Agnostic RPC System.

https://blog.twitter.com/engineering/en_

us/a/2011/finagle-a-protocol-agnostic-rpc-

system.

[20] Rohan Gandhi, Y Charlie Hu, and Ming Zhang. Yoda:

A highly available layer-7 load balancer. In Proceed-

ings of the Eleventh European Conference on Computer

Systems, pages 1–16, 2016.

[21] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu,

Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming

Zhang. Duet: Cloud scale load balancing with hardware

and software. ACM SIGCOMM Computer Communica-

tion Review, 44(4):27–38, 2014.

[22] Introducing the GitHub Load Balancer. https://

githubengineering.com/introducing-glb/.

[23] gRPC. https://grpc.io/.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 983

https://github.com/airbnb/synapse
https://github.com/airbnb/synapse
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://randorithms.com/2020/12/26/rendezvous-hashing.html
https://randorithms.com/2020/12/26/rendezvous-hashing.html
https://www.consul.io
https://sre.google/sre-book/load-balancing-datacenter/
https://sre.google/sre-book/load-balancing-datacenter/
https://www.envoyproxy.io/
https://github.com/Netflix/eureka
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system
https://blog.twitter.com/engineering/en_us/a/2011/finagle-a-protocol-agnostic-rpc-system
https://githubengineering.com/introducing-glb/
https://githubengineering.com/introducing-glb/
https://grpc.io/

[24] gRPC Lookaside Load Balancer. https://github.

com/markitdigital/grpc-lookaside.

[25] Boris Grubic, Yang Wang, Tyler Petrochko, Ran Yaniv,

Brad Jones, David Callies, Matt Clarke-Lauer, Dan Kel-

ley, Soteris Demetriou, Kenny Yu, and Chunqiang Tang.

Conveyor: One-Tool-Fits-All Continuous Software De-

ployment at Meta. In Proceedings of the 17th USENIX

Symposium on Operating Systems Design and Imple-

mentation, 2023.

[26] HAProxy. https://www.haproxy.com/.

[27] Hyperbahn. https://github.com/uber-archive/

hyperbahn.

[28] IPVS Software - Advanced Layer-4 Switching.

http://www.linuxvirtualserver.org/software/

ipvs.html.

[29] Isovalent. Cilium Service Mesh—Everything You Need

to Know, 2022. https://isovalent.com/blog/

post/cilium-service-mesh/.

[30] Istio. https://istio.io/.

[31] Istio Locality Load Balancing. https:

//istio.io/latest/docs/tasks/traffic-

management/locality-load-balancing/.

[32] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edi-

son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win

Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et al.

Canopy: An End-to-End Performance Tracing And Anal-

ysis System. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 34–50, 2017.

[33] David Karger, Eric Lehman, Tom Leighton, Rina Pani-

grahy, Matthew Levine, and Daniel Lewin. Consistent

hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In Pro-

ceedings of the twenty-ninth annual ACM symposium on

Theory of computing, pages 654–663, 1997.

[34] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,

Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun

Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-

araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,

and Chunqiang Tang. Shard Manager: A Generic Shard

Management Framework for Geo-distributed Applica-

tions. In Proceedings of the 28th ACM Symposium on

Operating Systems Principles, 2021.

[35] Idit Levine, Christian Posta, and Yuval Kohavi. eBPF

for Service Mesh? Yes, but Envoy Proxy is here to

stay, 2021. https://www.solo.io/blog/ebpf-for-

service-mesh/.

[36] Chien-Chih Liao, Pawel Krolikowski, and

Sangeeta Kundu. Better Load Balanc-

ing: Real-Time Dynamic Subsetting, 2022.

https://www.uber.com/blog/better-load-

balancing-real-time-dynamic-subsetting/.

[37] Linkerd. https://linkerd.io/.

[38] Memache. https://memcached.org/.

[39] Justin Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware,

Dmitry Chernyshev, Yi Yu, Nazim Uddin, Chad Nachi-

appan, Sari Tran, Shuyang Shi, Tina Luo, Ke Hong,

Sankaralingam Panneerselvam, Hans Ragas, Svetlin

Manavski, Weidong Wang, and Francois Richard. Def-

con: Preventing Overload with Graceful Feature Degra-

dation. In Proceedings of the 17th USENIX Symposium

on Operating Systems Design and Implementation, 2023.

[40] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun

Lee, and Minlan Yu. Silkroad: Making stateful layer-

4 load balancing fast and cheap using switching asics.

In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, pages 15–28,

2017.

[41] Michael Mitzenmacher. The power of two choices in ran-

domized load balancing. IEEE Transactions on Parallel

and Distributed Systems, 12(10):1094–1104, 2001.

[42] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and

Mike Amundsen. Microservice architecture: aligning

principles, practices, and culture. " O’Reilly Media,

Inc.", 2016.

[43] Netflix Ribbon. https://github.com/Netflix/

ribbon.

[44] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,

and Costin Raiciu. Stateless datacenter load-balancing

with beamer. In 15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 18), pages

125–139, 2018.

[45] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer,

Malgorzata Steinder, Asser Tantawi, and Alaa Youssef.

Managing the response time for multi-tiered web appli-

cations. IBM TJ Watson Research Center, Yorktown, NY,

Tech. Rep. RC23651, 2005.

[46] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin

Murthy, Albert Greenberg, David A. Maltz, Randy Kern,

Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon

Kim, and Naveen Karri. Ananta: cloud scale load bal-

ancing. In Proceedings of the ACM SIGCOMM 2013

conference on SIGCOMM, SIGCOMM ’13, pages 207–

218, New York, NY, USA, 2013. ACM.

984 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/markitdigital/grpc-lookaside
https://github.com/markitdigital/grpc-lookaside
https://www.haproxy.com/
https://github.com/uber-archive/hyperbahn
https://github.com/uber-archive/hyperbahn
http://www.linuxvirtualserver.org/software/ipvs.html
http://www.linuxvirtualserver.org/software/ipvs.html
https://isovalent.com/blog/post/cilium-service-mesh/
https://isovalent.com/blog/post/cilium-service-mesh/
https://istio.io/
https://istio.io/latest/docs/tasks/traffic-management/locality-load-balancing/
https://istio.io/latest/docs/tasks/traffic-management/locality-load-balancing/
https://istio.io/latest/docs/tasks/traffic-management/locality-load-balancing/
https://www.solo.io/blog/ebpf-for-service-mesh/
https://www.solo.io/blog/ebpf-for-service-mesh/
https://www.uber.com/blog/better-load-balancing-real-time-dynamic-subsetting/
https://www.uber.com/blog/better-load-balancing-real-time-dynamic-subsetting/
https://linkerd.io/
https://memcached.org/
https://github.com/Netflix/ribbon
https://github.com/Netflix/ribbon

[47] Performance and Scalability of Istio. https://istio.

io/latest/docs/ops/deployment/performance-

and-scalability/.

[48] Will Reese. Nginx: the high-performance web server

and reverse proxy. Linux Journal, 2008(173):2, 2008.

[49] Rest.li Dynamic Discovery. https://linkedin.

github.io/rest.li/Dynamic_Discovery.

[50] Daniel E Rivera, Manfred Morari, and Sigurd Skogestad.

Internal model control: PID controller design. Industrial

& engineering chemistry process design and develop-

ment, 25(1):252–265, 1986.

[51] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.

Thrift: Scalable cross-language services implementation.

Facebook white paper, 5(8):127, 2007.

[52] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holistic

Configuration Management at Facebook. In Proceed-

ings of the 25th Symposium on Operating Systems

Principles, pages 328–343, 2015.

[53] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,

Jonathan Kaldor, Scott Michelson, Thawan Kooburat,

Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long

Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-

nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas

Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-

navi Venkatesan, and Peter Zhang. Twine: A Unified

Cluster Management System for Shared Infrastructure.

In Proceedings of the 14th USENIX Symposium on Op-

erating Systems Design and Implementation, pages 787–

803. USENIX Association, 2020.

[54] David Thaler and Chinya V Ravishankar. A name-based

mapping scheme for rendezvous. In Technical Report

CSE-TR-316-96, University of Michigan, 1996.

[55] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at Google with Borg. In Pro-

ceedings of the 10th ACM European Conference on Com-

puter Systems, 2015.

[56] Scott Weber and Liang Cheng. A survey of anycast

in ipv6 networks. IEEE Communications Magazine,

42(1):127–132, 2004.

[57] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang,

Yongsu Zhang, Xuan Kelvin Zou, Xiongchun Duan,

Peng He, Arvind Krishnamurthy, Matthew Lentz,

Danyang Zhuo, and Ratul Mahajan. Dissecting Service

Mesh Overheads. In arXiv preprint arXiv:2207.00592,

2022. https://arxiv.org/pdf/2207.00592.pdf.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 985

https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://linkedin.github.io/rest.li/Dynamic_Discovery
https://linkedin.github.io/rest.li/Dynamic_Discovery
https://arxiv.org/pdf/2207.00592.pdf

Characterizing Off-path SmartNIC for Accelerating Distributed Systems

Xingda Wei1,2, Rongxin Cheng1,2, Yuhan Yang1, Rong Chen1,2, and Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

Abstract
SmartNICs have recently emerged as an appealing device for
accelerating distributed systems. However, there has not been
a comprehensive characterization of SmartNICs, and existing
designs typically only leverage a single communication path
for workload offloading. This paper presents the first holis-
tic study of a representative off-path SmartNIC, specifically
the Bluefield-2, from a communication-path perspective. Our
experimental study systematically explores the key perfor-
mance characteristics of communication among the client,
on-board SoC, and host, and offers insightful findings and
advice for designers. Moreover, we propose the concurrent
use of multiple communication paths of a SmartNIC and
present a pioneering guideline to expose new optimization
opportunities for various distributed systems. To demonstrate
the effectiveness of our approach, we conducted case studies
on a SmartNIC-based distributed file system (LineFS) and
an RDMA-based disaggregated key-value store (DrTM-KV).
Our experimental results show improvements of up to 30%
and 25% for LineFS and DrTM-KV, respectively.

1 Introduction
Remote Direct Memory Access (RDMA) has been widely
adopted in modern data centers [23, 71, 20], pushing network
bandwidth (towards 400 Gbps [44]) and distributed system
performance [17, 76, 75, 64, 80, 82, 77] to the next level.
However, the high-speed network requires more CPU re-
sources to saturate a fast RDMA-capable NIC (RNIC) [38],
which places a significant CPU burden on distributed sys-
tems [32]. One-sided RDMA can alleviate CPU pressures by
enabling the RNIC to directly read and write host memory
in a CPU-bypass way. However, the limited offloading capa-
bilities may cause network amplifications and thus degrade
system performance [61, 28].

The continuous improvements in RDMA [67] and the es-
sential power and memory walls of CPUs have led to the
emergence of SmartNICs—the RNICs with programmable
capabilities. These NICs offer systems the opportunity to
offload more complex computations to the NIC. Currently,
there are two main types of SmartNICs. The first one is the
on-path SmartNIC [42], which directly exposes the process-
ing units (NIC cores) for handling RDMA packets to the
systems. Unfortunately, programming low-level NIC cores
with firmware [38, 61] and isolating the offloaded program

from normal RDMA requests pose significant burdens on
developers. To simplify system development, the off-path
SmartNIC [52, 53, 9, 51] attaches a programmable multicore
SoC (with DRAM) next to the RNIC cores, which is off the
critical path of RDMA. Thanks to this separation, the SoC is
independent of normal RDMA requests and can further de-
ploy a full-fledged OS to make the developments easier [32].
Specifically, developers can treat the SoC as a separate server.
In this paper, we focus on off-path SmartNIC1 due to its
generality and programmability.

There have been valuable studies on characterizing off-path
SmartNICs [38, 37, 32, 68, 2], with a focus on their ability
to offload computation. A key finding is that the comput-
ing power of off-path SmartNICs is weaker than that of the
host [38, 37, 32]. This means that off-path SmartNICs do
not improve the speed of a single network path, such as that
between NIC and the host. For example, iPipe [38] found that
the path between the host and SoC has a relatively high la-
tency due to the support for more developer-friendly RDMA.

Although prior work has been valuable in utilizing Smart-
NICs for distributed systems, it has primarily focused on
offloading computation to the SmartNIC’s SoC. However, it
is surprising that the fundamental function of SmartNICs,
namely networking, has been overlooked despite its signifi-
cant impact on overall performance. In fact, networking on
the SmartNIC is intricate, because it provides multiple com-
munication paths. For example, SmartNICs support using
RDMA to access the memory of the host or SoC, as well as
exchanging data between the host and the SoC.

To this end, this paper conducts the first systematic study
on characterizing the performance of communication paths of
SmartNIC. Unlike previous studies that simply report basic
performance numbers [37, 32, 68], we systematically analyze
the performance implications of SmartNIC architecture on
different paths. Specifically, we investigate why and when
one path may be faster than another, identify the bottlenecks
for each path, examine how the heterogeneity of the SoC
brings performance anomalies in paths related to the SoC,
and finally explore how paths interact with each other. The
main highlights of our results are:

• Different paths exhibit diverse performance characteristics.
The RDMA path from the NIC to the SoC is up to 1.48×
faster than the path to the host.

1This paper will use “SmartNIC” (or “SNIC” for brevity) to specifically refer
to off-path SmartNICs.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 987

• The SoC introduces new performance anomalies to paths
related to it. The low-level hardware details of the SoC,
including the memory access path and PCIe MTU, differ
from those of the more powerful host CPU. Without con-
sidering such factors, RDMA requests involving the SoC
suffer from up to 48% bandwidth degradation.

• The paths between the SoC and the host may underutilize
the PCIe. RDMA from the SoC to the host (and vice versa)
crosses the NIC internal PCIe twice. It can only utilize half
of the PCIe bandwidth and requires processing up to 6×
more PCIe packets than the others. DMA only passes the
PCIe once, but it is not always faster than RDMA due to
the weaker SoC DMA engine (compared to the one on the
RNIC) and also suffers from packet amplifications.

Based on our performance characterization, we found that
prior approaches, which mainly optimize a single path for a
specific functionality of distributed systems, failed to fully
exploit SmartNICs. This is because a single path cannot uti-
lize the computing and networking capability of SmartNICs.
Further, only considering a single path may ignore resource
interference between different paths (e.g., the PCIe and PCIe
switches). As a result, LineFS can only utilize up to 117 Gbps
of bandwidth on a 200 Gbps SmartNIC. A similar issue ex-
ists in SmartNIC-based disaggregated key-value store: while
choosing a path to offload all key-value (KV) store operations
to the SmartNIC SoC can eliminate the network amplification
in existing RDMA-based key-value stores, the wimpier com-
puting power of SmartNIC SoC limits its overall throughput.

Based on the observations from our study, we further pro-
pose an optimization guideline to help designers smartly ex-
ploiting multiple paths of SmartNICs. Instead of optimizing
distributed systems along a single path, it holistically exploits
multiple paths for functionalities with different characteristics
and carefully considers cross-path interference. To demon-
strate the efficacy of our guideline, we conduct two case
studies by optimizing two state-of-the-art systems, namely
LineFS [32] and DrTM-KV [11, 76]. Due to the exposed new
optimization spaces, following our guideline can improve the
performance of LineFS and DrTM-KV by up to 30% and
25% accordingly.

Contributions. We summarize our contributions as follows:

• A comprehensive performance characterization of repre-
sentative off-path SmartNICs, with a particular focus on
various communication paths.

• The first optimization guideline for smartly exploiting the
multiple paths of SmartNICs with managed cross-path re-
source interference.

• Two case studies on SmartNIC-accelerated distributed sys-
tems (i.e., file system and key-value store) with notable
performance improvements, demonstrating the efficacy of
our guideline.

Assumptions and generalizability of our work. We as-
sume an off-path SmartNIC with the following architecture:
the SoC is linked with NIC cores via a PCIe switch, and
there is heterogeneity between SoC and host CPUs. We be-
lieve this is a representative architecture, as many older (e.g.,
NVIDIA Bluefield-1 [55], Broadcom Stingray [9]), current
(e.g., NVIDIA Innova2 [51], Bluefield-2 [52]), and upcom-
ing SmartNICs (e.g., Bluefield-3 [53], Marvell OCTEON 10
DPU [43]) use a similar setup. We conducted experiments
on Bluefield-2 [52]—the state-of-the-art SmartNIC with this
architecture. Meanwhile, we also confirmed that our results
hold for Bluefield-1.

However, we acknowledge that significant architectural
changes (e.g., on-path SmartNICs) may affect our findings.
Nevertheless, we argue that our methodology—first studying
the performance implications of each communication path
and then smartly exploiting multiple paths of SmartNICs—
can be generalized to other SmartNICs. Our benchmarking
code, tools, and systems are available at https://github.
com/smartnickit-project.

2 Background and Context
2.1 RDMA-capable NICs (RNICs)

RDMA (Remote Direct Memory Access) is a low-latency
(2µs) and high-bandwidth (200 Gbps) network widely
adopted in modern data centers [23]. One intuitive way to
utilize RDMA is to accelerate message passing with its
two-sided primitives (SEND/RECV), such as RDMA-based
RPC [27, 17, 12, 47, 30]. Alternatively, the one-sided prim-
itives (READ/WRITE2) allow the RNIC to access the host
memory bypassing the host CPU. Specifically, the NIC core
internally uses the direct memory access (DMA) feature of
the PCIe link to access the host memory (see Figure 1(a)).

Though RDMA has boosted the performance of many dis-
tributed systems [18, 76, 62, 29], usually by orders of magni-
tude, it still has the following two problems especially when
the RNICs scale up to higher performance.

Issue #1: Host CPU occupation. For two-sided primitives,
distributed systems need non-trivial CPUs to saturate a pow-
erful NIC. Our measurements show that a 24-core server
can only saturate 87 million packets per second (Mpps) on a
200 Gbps RNIC (ConnectX-6), while NIC cores can process
more than 195 Mpps.3 A recent work further shows that a
distributed file system requires 2.27× CPU cores to handle
network packets, when the network bandwidth scales from
25 Gbps to 100 Gbps [32]. Although deploying more power-
ful CPUs can alleviate this issue, RNIC bandwidth is also
rapidly growing, currently reaching up to 400 Gbps [44].

Issue #2: Network amplification. Using one-sided RDMA
primitives alleviates the host CPU pressure by allowing sys-

2We use READ/WRITE to indicate RDMA READ/WRITE in this paper.
3Detailed hardware setups can be found in §2.4.

988 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/smartnickit-project
https://github.com/smartnickit-project

SoC cores

DRAM

TX
/R

X
NIC cores

PCIe
Host DRAM

(c) Off-path SmartNIC (a) RDMA-capable
Network card (RNIC)

Client
Requests

Data flow

1

(b) On-path SmartNIC

TX
/R

X

NIC cores

PCIe
Host DRAM

DRAM1
3

TX
/R

X

NIC cores

0

Host DRAM

PCIe
switch1

2 2
3

1 Client<->Host

2 Client<->SoC

3 SoC<->Host
4

4
4 SoC offloading

Client
Requests

Data flow Data flow

Client
Requests

PCIe

1
SoC<->Host*

*3
3

Figure 1: Architecture of different NICs: (a) RDMA-capable NIC (RNIC), (b) on-path SmartNIC, and (c) off-path SmartNIC (our focus).

RNIC

Client

Host

Network

PCIe

Index Values

READ READ SNIC

Client

Host
PCIe

Index Values

READ READ

SEND/RECV SEND/RECV

(a) RDMA (b) SmartNIC

Figure 2: An illustration of a get request in a distributed in-memory
key-value store that is accelerated by using either (a) RNICs (w/
network amplification) or (b) SNICs (w/o network amplification).

tems to offload memory accesses to the RNIC. However,
the limited offloading capability constraints system perfor-
mance, as a single request may involve multiple round trips
of READs/WRITEs to complete (usually termed network am-
plification). Figure 2(a) exemplifies the execution of a get
request on a distributed in-memory key-value store with one-
sided RDMA READs. The client first uses one (or multiple)
READ(s) to query the index for a given key. Based on the
index returned by the previous READs, an additional READ
is issued to retrieve the value.

2.2 From RNICs to SmartNICs

To address the limitations of RNICs, SmartNIC adds an on-
board memory (4–64 GB) together with various computation
units (e.g., SoC) to the NIC. By exposing them to the develop-
ers, SmartNIC enables offloading customized computations
onto it. Specifically, SmartNICs can be categorized as follows.

On-path SmartNIC. As shown in Figure 1(b), the on-path
SmartNIC exposes the NIC cores to the systems with low-
level programmable interfaces, allowing them to directly ma-
nipulate the raw packets. As the name implies, the offloaded
code is on the critical path of the network processing pipeline.
Example NICs include Marvell LiquidIO [42] and Netronome
Agilio [48]. The benefit is that the offloaded code is closer
to the network packets. Therefore, inline requests that only
interact with the NIC, such as writing to the on-board memory
(Á), are extremely efficient [38, 61].

However, on-path SmartNIC has two limitations. First, the
offloaded code (Ã) competes NIC cores with the network
requests sent to the host (À). If offloading too much computa-
tion onto it, the normal networking requests sent to the host

Table 1: Hardware description of Bluefield-2 [52].

Component Hardware description

NIC cores ConnectX-6 (2× 100 Gbps RDMA ports)
SoC cores ARM Cortex-A72 processor (8 cores, 2.75 GHz)
SoC memory 1× 16 GB of DDR4-1600 DRAM
PCIe1 PCIe 4.0 ×16 (256 Gbps bandwidth)

would suffer a significant degradation [38]. Second, program-
ming on-path NICs is difficult due to its low-level interface.

Off-path SmartNIC. As shown in Figure 1(c), the off-path
SmartNIC offers an alternative: it packages additional com-
pute cores and memory in a separate SoC next to the NIC
cores. Therefore, the offloaded code is off the critical path of
the network processing pipeline. From the NIC perspective,
the SoC can be viewed as a second full-fledged host with an
exclusive network interface. To bridge the NIC cores, SoC and
host together, a PCIe switch is integrated inside the SmartNIC
to properly dispatch network packets. Example NICs include
NVIDIA Bluefield [52, 53] and Broadcom Stingray [9].

Compared to the on-path counterparts, the offloaded code
does not affect the network performance of the host as long
as it does not involve network communications (Á). Thanks
to this clear separation, the SoC can run a full-fledged kernel
(e.g., Linux) with a full network stack (i.e., RDMA), simplify-
ing system development and allowing for offloading complex
tasks [32]. However, accelerating distributed systems with
off-path SmartNICs is typically more challenging than using
the on-path counterparts. This is because the PCIe switch pro-
longs all communication paths (i.e., À, Á, and Â), causing
potential performance degradation.

2.3 Target SmartNIC: NVIDIA Bluefield-2

We conduct our study on Bluefield-2, a typical off-path Smart-
NIC optimized for offloading general-purpose computations.
Figure 1(c) illustrates its overall hardware architecture, with
detailed hardware configuration shown in Table 1.

Hardware. Bluefield-2 equips a mature RNIC (ConnectX-
6) as its NIC cores for high-speed networking. These cores
support all RDMA operations. Its programmability comes
from an integrated on-borad SoC, which has 16 GB DRAM
and an ARM Cortex-A72 (8 cores, 2.75 GHz). A PCIe 4.0
switch bridges the NIC cores, SoC and host together, enabling

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 989

Table 2: Machine configurations in our two rack-scale RDMA-capable clusters.

Name Nodes RDMA-capable NIC Host PCIe (PCIe0) Host CPU Host Memory

SRV 3
1× ConnectX-6 (200 Gbps)
1× Bluefield-2 (200 Gbps)

PCIe 4.0 ×16 (256 Gbps) 2× Gold 5317 v4 (12 cores, 3.6 GHz) 128 GB DDR4-2933

CLI 20 1× ConnectX-4 (100 Gbps) PCIe 3.0 ×16 (128 Gbps) 2× E5-2650 v4 (12 cores, 2.2 GHz) 96 GB DDR4-1600

bi-direction data transfer of up to 256 Gbps. Note that the SoC
is linked to the PCIe switch via an internal link, rather than
through PCIe.4 Specifically, the hardware counters provided
by Bluefield [54] also imply that it has only two PCIe links:
one linking RNIC with the switch (PCIe1) and the other
linking the switch with the host (PCIe0).

Software. The SoC runs a full-fledged Linux, allowing de-
velopers to treat it as a normal ARM server. The kernel also
hosts a full RDMA stack, making it convenient for enabling
RDMA-based communication. In addition, Bluefield provides
DOCA [57] SDK for advanced usage, such as DMA.

Communication primitives: RDMA and DMA. All commu-
nication paths related to the SoC are conducted using RDMA
to simplify system development. As shown in Figure 1(c),
clients can issue one-sided or two-sided RDMA requests to
the SoC (Á), similar to a twin server on the host. Meanwhile,
the SoC can also interact with the host via RDMA, and vice
versa (Â). However, exchanging data between the SoC and
the host must pass through the RNIC (PCIe1 and NIC cores)
for RDMA support, which adds a hidden bottleneck to this
path. Fortunately, we found that Bluefield further provides
DMA support (Â∗) with DOCA [57], allowing the SoC to use
DMA to access the host memory (and vice versa), bypassing
the RNIC.

Existing state of exploring Bluefield. Previous studies [38,
37, 32, 68] have mainly focused on the computing power of
Bluefield (Ã in Figure 1), revealing the relative weakness
of the SoC cores in terms of performing offloaded tasks and
sending network requests. This is because the frequency and
number of cores are inferior to those of the host CPU. Due
the power constraints of SmartNICs, it is unlikely that the
relative performance comparison between the NIC and host
CPU will change. Hence, we take this as a premise during
our investigation.

In contrast, few studies have considered various commu-
nication patterns in Bluefield (i.e., À, Á, and Â), which are
the main focus of our work. Thostrup et al. [68] found that
accessing the SoC memory (Á) using READ is faster than
accessing the host memory (À) in the same way. iPipe [38]
shows that using RDMA to communicate between the host
and SoC (Â) has high latency due to the software overhead
of supporting RDMA. This paper systematically explores
the performance characteristics of Bluefield and summarizes
insightful lessons and advice for future system developers.

4This has been confirmed by the NIC vendor.

2.4 Notation and testbed
Notations. This paper follows Bluefield’s hardware speci-
fication when describing low-level hardware details related
to Bluefield-2. As shown in Figure 1(c), “PCIe1” refers to
the PCIe link connecting the NIC cores to the PCIe switch,
and “PCIe0” refers to the link connecting the switch and
the host’s PCIe controller. The ARM cores, along with the
on-chip memory of Bluefield-2, are collectively referred to
as “SoC.” The machine hosting Bluefield-2 is referred as the
“host.” Furthermore, we use the terms “requester” and “re-
sponder” to refer to the machine issuing the RDMA requests
and the destination hardware component, respectively. For
example, in Figure 1(c), the requesters of paths À and Á are
any RDMA-capable machines (also called clients), and the
responders are the host and SoC, respectively. For path Â, the
requester and responder are the host and SoC, respectively,
and vice versa.

Testbed. Table 2 presents the machine configurations in our
testbed. To best utilize SmartNIC, we deploy Bluefield-2 on
the servers (SRV) with matching PCIe link (PCIe 4.0) by de-
fault. These machines can replace Bluefield-2 with 200 Gbps
ConnectX-6 (RNIC) for comparisons. Other machines (CLIs)
serve as clients that issue RDMA requests to the servers. All
machines in SRV and CLIs are connected through a Mellanox
SB7890 100 Gbps InfiniBand Switch. Note that the network
performance of the evaluated 200 Gbps NIC is not limited
since they connect to the switch with two 100 Gbps ports.

Table 3: The findings and advice from our study. Claims supported
by sufficient evidence are denoted by E, while those supported by
hypotheses are denoted by H.

SNIC Paths Findings/Advice E/H

À (§3.1) Throughput of RDMA is lower than RNIC H
Latency of RDMA is higher than RNIC E

Á (§3.2) One-sided RDMA performance is better H
Avoid memory accesses to close addresses E
Avoid large READ requests H

Â/Â* (§3.3) RDMA overuses the PCIe bandwidth E
Avoid large READ/WRTIE requests H
Enable doorbell batching carefully for RDMA E
Use DMA (Â*) to improve PCIe utilization E

À+Á (§4.1) Improve throughput by using paths À and Á H
concurrently (esp. in opposite directions)

À/Á+Â (§4.1) Selectively offload traffic to Â E

990 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 3: The end-to-end latency (upper) and peak throughput (lower) of random inbound RDMA requests on different NICs. The symbols À,
Á, and Â in the legend correspond to the communication paths listed in Figure 1.

3 Characterizing SmartNIC Performance
As mentioned in §2.3, it is well-known that the computing
power of NIC is wimpier than that of the host CPU. There-
fore, we focus on analyzing the communication efficiency of
SmartNIC. Figure 3 shows the end-to-end latency and peak
throughput of sending different RDMA requests (e.g., READ,
WRTIE, and SEND/RECV) using either RNIC or SmartNIC
through different communication paths.

Evaluation setup. We conducted our experiments on the
clusters described in Table 2, using a state-of-the-art RDMA
communication framework [76]. For one-sided operations
(READ and WRITE), the requester communicates with one
responder using RDMA’s reliable connection (RC) queue
pairs (QPs). The responder addresses are randomly chosen
from a 10 GB address space by default. For two-sided op-
erations (SEND/RECV), the responder implements an echo
server that utilizes all available cores for handling messages,
and the requester communicates with it via unreliable data-
gram (UD) QPs for better performance [29, 76, 30]. For end-
to-end latency, we deploy one requester machine to prevent
interferences from queuing effects. For peak throughput, we
use up to eleven requester machines to saturate the responder.
Finally, we enable all well-known optimizations, including
address alignment [81], unsignaled requests [27] and huge
pages [17] to prevent side effects from misusing RDMA.

3.1 Communication from Client to Host (path À)

Latency. To compare communication with the host, we
conduct an apple-to-apple comparison between Bluefield-
2 (SNIC À) with ConnectX-6 (RNIC À), as they share the
same NIC cores [52]. Their performance gap best illustrates
the “performance tax” paid by the SmartNIC architecture.
As shown in Figure 3, SNIC À has 15–30%, 15–21%, and

SN
IC RNIC

RNIC

Switch

Host

PCIe1

PCIe0

READ WRITE

RNIC

RNIC

Host

PCIe 0

READ WRITE

Figure 4: The exec. flow of READ/WRITE on SNIC and RNIC.

6–9% higher latency than RNIC À for READ, WRITE, and
SEND/RECV, respectively. The increased latency on SNIC
comes mainly from the PCIe switch and PCIe1 between the
host and NIC cores. The one-way PCIe latency is approxi-
mately 300 ns, which is non-trivial for small RDMA requests
(1–2µs). Note that the result is measured indirectly. Specif-
ically, the end-to-end read latency on SNIC and RNIC is
2.6µs and 2.0µs, respectively. Compared to RNIC, READ
on SNIC passes through the PCIe switch twice (see Figure 4).
Thus, the cost of each pass is around 300 ns, which matches
the number reported in recent literature [69]. Furthermore,
the increased latency of WRITE on SNIC is lower than that
of READ, because it omits one pass through PCIe switch
for completion [49]. The latency of SEND/RECV on SNIC
also increases, but mainly due to the larger CPU costs at the
responder; the latency to post a request (via MMIO) on SNIC
is higher than RNIC (399 cycles vs. 279 cycles).

Throughput. As shown in Figure 3, for READ, WRITE,
and SEND/RECV, SNIC À has 19–26%, 15–22%, and 3–
36% lower throughput than RNIC À for payloads less than
512 bytes, respectively. We suspect the lower throughput
is due to the longer latency in processing RDMA requests
caused by PCIe switch. However, for larger requests, the re-
sults are similar to using RNIC as both are bottlenecked by
the network bandwidth.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 991

READ(1)+WRITE(2)

READ(1)+READ(1)

SoCRNIC Host
Network PCIe1 PCIe0

SmartNIC

WRITE(2)+READ(3) SNIC ①
SNIC ②

SNIC ③
SNIC ③*

SNIC ①+②
SNIC ①+③

SNIC ②+③
SNIC ①+③*

SNIC ②+③*
0

200

400

Ba
nd

wi
dt

h
(G

bp
s)

Network (Uni)
PCIe (Uni)

Network (Bi)
PCIe (Bi)

READ+READ READ+WRITE WRITE+WRITE WRITE+READ

Figure 5: (a) An illustration of three examples of different combinations of data flows on different paths, and (b) the peak throughput of
different combinations of data flows on different communications paths.

Bottleneck. The lowest bandwidth limit of NIC, PCIe1, and
PCIe0 will first become the bottleneck for communication
from client to host. On our testbed, the bottleneck is the net-
work: 200 Gbps. On the other hand, we find an interesting phe-
nomenon: the total inbound bandwidth of the requester can
approach twice the limit—400 Gbps—because the links are
bi-directional [58]. Specifically, if packets flow in opposite
directions, e.g., the READ and WRITE packets in Figure 5(a),
they can be multiplexed on the same link. To illustrate this,
we dedicate two requesters (each with 12 threads to saturate
the one-way bandwidth) to issue 4 KB packets. As shown in
Figure 5(b), if two clients send READ and WRITE requests
separately, a total of 364 Gbps bandwidth is measured on a
200 Gbps NIC (see READ+WRITE of SNIC À). In contrast,
if both clients send the same type of requests (either READ or
WRITE), only about 190 Gbps is measured. Note that though
this phenomenon is widely known in traditional networking
(i.e., messaging), where the messages are typically two-sided,
it is largely ignored by many RDMA-based systems, because
RDMA request can be one-sided.

Takeaways. Being “smart” incurs performance degradation
for communicating with the host for small requests. For small
requests, we demonstrate that extending RNIC (ConnectX-6)
to SNIC (Bluefield-2) causes performance degradation by
up to 36% and 30% in throughput and latency, respectively.
In general, for distributed systems that only use the path
À, it is recommended to use RNIC. Although the overhead
may be negligible for large requests or for networking with
longer latency, RNIC is cheaper and more energy-efficient
than SNIC.

3.2 Communication from Client to SoC (path Á)

Latency. For sending requests from the client to SoC (SNIC
Á in Figure 3), the latency of READ decreases by up to
14% compared to the host (SNIC À). The reason is that it
skips PCIe0. Yet, it is still 4–15% higher than RNIC, because
requests still must go through the PCIe switch at PCIe1. For
WRITE, SNIC Á provides similar performance as SNIC À
due to the asynchronous completion of cores (see Figure 4).
For SEND/RECV, SNIC Á has 21–30% higher latency than
SNIC À due to the weaker computing power of SoC.

SmartNIC

PCIe

Host memory

SoC memory

LLC

LLCRNIC
RDMA
PCIe
w/ DDIO

PCIe
w/o DDIO Host CPU

Figure 6: Different paths to access host and SoC memories.

Throughput. SNIC Á has better throughput than SNIC À,
reaching 1.08–1.48× for payloads less than 512 bytes. Inter-
estingly, the READ of SNIC Á is even higher than that of
RNIC À before reaching the peak network bandwidth. For
this undocumented results, we suspect that it is due to the
closer packaging of SoC memory and the PCIe switch. Specif-
ically, the SoC is linked to the PCIe switch via an internal link,
rather than through PCIe. Note that a confident analysis relies
on the hardware details of Bluefield, which unfortunately are
not available now. For WRITE, SNIC Á is still lower than that
of the RNIC À. Our hypotheses are twofolds. First, SoC has
fewer DRAM channels compared to the host (1 vs. 4), limit-
ing the concurrency of write accesses. Nevertheless, READ
is not affected because read accesses on DRAM are faster
than write accesses [25, 73]. Second, SoC can only utilize a
portion of NIC cores (see §4.1). Finally, SEND/RECV has
a poor performance on Á: it just achieves up to 64% of the
host (SNIC À). This is due to the wimpy computing power
of SoC, since the throughput of SEND/RECV is bottlenecked
by the responder CPU to send the reply.

Bottleneck. As shown in Figure 1(c), since SNIC Á only
flows through NIC and PCIe1, the bottleneck is their lower
bandwidth limit, which is still Bluefield-2’s 200 Gbps NIC.
Therefore, as shown in Figure 5(b), the performance of SNIC
Á is the same as that of SNIC À, namely the total of 400 Gbps
and 200 Gbps bandwidth for opposite direction and same
direction communication, respectively.

In addition to the basic RDMA performance of the SNIC,
we found several factors that could also prevent distributed
systems from achieving the aforementioned performance.

Advice #1: Avoid memory accesses to close addresses. The

992 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1.5K 3K 6K 12K 24K 48K
Address range (Bytes)

0

50

100

150

Th
pt

 (M
re

qs
/s

ec
)

RNIC w/ DDIO
RNIC w/o DDIO

SNIC ① w/ DDIO
SNIC ① w/o DDIO

SNIC ②

READ

1.5K 3K 6K 12K 24K 48K
Address range (Bytes)

0

50

100

150

Th
pt

 (M
re

qs
/s

ec
) WRITE

Figure 7: The peak throughput of accessing host memory and SoC
memory via SNIC, READ (a) and WRITE (b).

Figure 8: The bandwidth (a) and PCIe packet throughput (b) for
accessing (READ and WRITE) the host (SNIC À) and SoC (SNIC
Á) via SmartNIC. For brevity, we omit the result of SEND/RECV
since it is the same as WRITE for large payloads [27].

wimpy SoC cores may impact the memory access behavior
of one-sided RDMA primitives, because it usually supports
fewer features compared to the more powerful host CPU cores.
Specifically, Data Direct I/O (DDIO) [26] is widely supported
by the host CPUs, which allows the NIC to directly read/write
data from/to its last level cache (LLC), as shown in Figure 6.
SoC cores may also equip with similar features (e.g., ARM
CCI [5]), but whether to do so is vendor-specific. The SoC
cores of our hardware (ARM Cortex-A72 in Bluefield-2) do
not support DDIO. We find that one-sided RDMA without
DDIO suffers performance drop if the requested memory
addresses fall into a small range (i.e., they are close together).
This is because DRAM requires a (not-too-small range) to
utilize all memory modules concurrently. LLC is faster than
DRAM, so we suspect the impact is smaller.

Figure 7 shows the peak throughput of accessing host mem-
ory and SoC memory via SNIC with the increase of address
ranges.5 For WRITE, the throughput of SNIC Á using SoC
drops to 22.7 M reqs/s (from 77.9 M reqs/s) when address
range decreases to 1.5 KB (from 48 KB). In contrast, the per-
formance of SNIC À using Host CPU is hardly affected when
DDIO is enabled. For READ, the degradation is relatively
smaller. The throughput of SNIC Á drops from 85 M reqs/s
to 50 M reqs/s when decreasing the range from 48 KB to
1.5 KB. This is because DRAM can serve reads faster than
writes [25, 73]. Finally, we also plot the RNIC results as a
reference. When requests addresses are close, we can see
that À also suffers a significant performance drop on WRITE
when DDIO is disabled.
5Note that we attach Bluefield to CLI machines for the evaluation because
we are unable to disable DDIO on the SRV machines.

Table 4: PCIe Maximum Transfer Unit (MTU) on our testbed, and
the number of PCIe packets required to transferN bytes via different
communication paths of Bluefield-2. Our simplified model omits
control-path packets (e.g., two-sided message arrival notification).

Host CPU cores (HMTU) SoC cores (SMTU)

PCIe MTU 512 B 128 B

SNIC À SNIC Á SNIC Â

PCIe1 dN/HMTUe dN/SMTUe dN/HMTUe+ dN/SMTUe
PCIe0 dN/HMTUe – dN/HMTUe

Advice #2: Avoid large READ requests. It is common prac-
tice to use requests with large payloads to fully exploit net-
work bandwidth. For example, using requests with payloads
larger than 16 KB is enough to saturate a 200 Gbps RNIC
even using a few threads. Unfortunately, we observed that
the READ performance of SNIC Á collapses with request
payload larger than 9 MB, as shown in Figure 8(a). We sus-
pect that NIC cores suffer from head-of-line blocking when
processing large READ requests. For a READ request, the
NIC issues a PCIe read transaction to fetch the data, which is
further segmented into multiple PCIe packets. The maximum
size of a PCIe packet is determined by the PCIe Maximum
Transfer Unit (MTU), negotiated by the linked hardware de-
vices during bootstrap [49]. Table 4 lists the PCIe MTU on
our testbed. SoC cores (the endpoint of SNIC Á) use a smaller
PCIe MTU (128 B) due to its weaker CPU. As a result, NIC
core that processes a large DMA read sent to SoC memory
(SNIC Á) must wait for more PCIe packets to arrive, resulting
in lengthy processing stalls. Since the overall NIC packet pro-
cessing power is not the bottleneck: as shown in Figure 8(b),
the requests with payloads smaller than 9 MB still can achieve
a high processing rate while it collapses for the others, so we
suspect some blocking happens at the NIC core. Note that
WRITE requests are not affected since DMA does not wait
for the completion [83, 49].

On the contrary, the host uses a larger PCIe MTU (512 B),
so it does not suffer from bandwidth degradation (SNIC À).
As shown in Figure 8(b), the NIC can issue 46.7 million PCIe
packets per second to the host (SNIC À). The aggregated
bandwidth reaches 191 Gbps, bottlenecked by the network.

Takeaways. For READ and WRITE, sending requests to SoC
is typically faster than that to the host (or even faster than via
RNIC) because SoC is “closer” to the NIC (without PCIe0).
In contrast, using SEND/RECV to communicate with SoC is
slower due to weak SoC cores. Furthermore, designers still
need to carefully consider the heterogeneity between host
CPU cores and SoC cores to avoid performance anomalies.
Specifically, memory accesses to a small address range may
suffer performance degradation due to the lack of DDIO sup-
port on SoC cores. In addition, sending large READ requests
to SoC may underutilize the bandwidth so the request should
be proactively segmented into smaller ones.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 993

Figure 9: The bandwidth (a) and PCIe packets throughput (b) for
sending (R)EAD/(W)RITE requests between the host and SoC.

3.3 Communication between SoC and Host (path Â)

We first describe our measurements and findings of RDMA
and then compare RDMA (Â) with DMA (Â*).

Latency. As shown in Figure 3, the latency of sending re-
quests from SoC to the host (SNIC Â S2H) is very high,
especially for READ, since the requester (SoC) takes longer
to issue an RDMA request to the NIC. The latency in the
opposite direction (from the host ot SoC, SNIC Â H2S) is
reduced but still 4–17% higher than SNIC Á. Although the
intra-machine communication saves one network round-trip,
it adds additional PCIe transfers. Specifically, the request on
SNIC Á flows the requester-side PCIe (not shown in Fig-
ure 1(c)), the network, PCIe1, and the PCIe switch, while
the request on SNIC Â (H2S) flows PCIe0, the PCIe switch,
PCIe1 twice (in and out), and the PCI switch (again).

Throughput. For requests with payloads less than 512 bytes,
the throughput of SNIC Â (both S2H and H2S) is dominated
by the requester’s capability to post networking requests. This
is because a single requester machine (either SoC or the host)
cannot saturate the NIC with small requests6, the READ
throughput of SNIC Â only reaches 29 M reqs/s and 51.2 M
reqs/s for S2H and H2S, respectively, still far from its limit.
For WRITE and SEND/RECV, the results are similar. For
larger requests, they are bottlenecked by the PCIe bandwidth,
which will be discussed in more detail next.

Bottleneck. As shown in Figure 5(b), for packets flowing in
a single direction, communication between host and SoC is
bottlenecked by PCIe bandwidth (256 Gbps) rather than the
uninvolved NIC (200 Gbps). Therefore, the peak bandwidth
of SNIC Â is slightly higher than SNIC À and Á (204 Gbps
vs. 191 Gbps). Readers might be interested in why the results
of SNIC Â cannot be close to 256 Gbps. We suspect that it
requires much more PCIe packets than the others. For packets
flowing in opposite directions, SNIC Â can not utilize twice
the limit as the other paths (i.e., SNIC À and Á). This is be-
cause RDMA overuses the PCIe: each request passes through
PCIe1 twice (in and out), exhausting the bi-directional link.

Advice #3: Avoid large READ/WRTIE requests. Communi-
cations between the host and SoC (SNIC Â) also suffers from
bandwidth degradation for large READ requests like SNIC Á,
6We use up to eleven requester machines for SNIC À and SNIC Á.

Figure 10: The latency of posting requests to NICs (a) and the
impact of doorbell batching (DB) on the requester.

possibly due to the head of line blocking as we have discussed
before. Moreover, this issue appears with large WRITE re-
quests because the SmartNIC must first read data from the
requester and then write it to the responder. As shown in
Figure 9(a), the READ/WRITE performance of SNIC Â col-
lapses to about 100 Gbps for large requests. Table 4 shows the
number of PCIe packets required to transfer N bytes via dif-
ferent communication paths. For SNIC Â, the NIC generates
more packets due to passing through PCIe1 twice. Further, the
performance of S2H collapses earlier than H2S as it will pass
through PCIe1 first. Suppose we transfer data at 200 Gbps
from SoC to the host. The SoC cores first transfer 195 M
PCIe packets per second (pps) to the NIC (PCIe1), then the
NIC forwards data back to the PCIe switch via PCIe1 again
with 49 Mpps (the host supports 512 B MTU), and finally, the
switch forwards 49 Mpps through PCIe0. Therefore, Smart-
NIC should process at least 293 Mpps for transferring data
at 200 Gbps, which is 3× and 1.5× higher than SNIC À and
SNIC Á, respectively. This is further confirmed by our mea-
surements of the hardware counters. As shown in Figure 9(b),
for sending 256 KB READ requests from SoC to the host,
the bandwidth reaches 204 Gbps, and the NIC transfers about
320 M PCIe packets per second.

Advice #4: Enable doorbell batching carefully. The time
of posting each request to the NIC is dominated by Memory-
Mapped IO (MMIO) [76, 28]. The SoC suffers a high MMIO
latency when communicating with the host (see Figure 10(a)).
A known optimization is doorbell batching (DB) [28]: to
send a batch of B requests, the requester first chains them
together in memory, then use one MMIO to ask the NIC to
read these requests with DMA in a CPU-bypass way. DB
reduces the number of MMIOs required from B to 1. Thus,
for RNIC À and SNIC Á, DB is always helpful and can bring
2–30% performance improvement (see Figure 10(b)). For
the communication between host and SoC (SNIC Â), DB
is still helpful at the SoC-side. As shown in Figure 10(b),
when sending a batch of READs to the host, DB improves
the SoC performance by 2.7–4.6× for batch sizes 16–80. The
huge improvement is partly due to the CPU-bypass feature of
DMA, and also because the NIC is faster in using DMA to
read requests stored on SoC memory (see §3.2). However, DB
is not always helpful at the host-side, because it is slower to

994 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0
10
20
30
40

Th
pt

 (M
re

qs
/s

ec
)

SNIC ③
SNIC ③*

READ

0

64

128

192

256

Ba
nd

wi
dt

h
(G

bp
s)

SNIC ③
SNIC ③*

READ

16 64 256 1K 4K 16K 64K
Payload (Bytes)

0
10
20
30
40

Th
pt

 (M
re

qs
/s

ec
)

SNIC ③
SNIC ③*

WRITE

64K 256K 1M 2M 4M 8M 16M
Payload (Bytes)

0

64

128

192

256

Ba
nd

wi
dt

h
(G

bp
s)

SNIC ③
SNIC ③*

WRITE

Figure 11: The throughput and bandwidth comparisons of using
RDMA (Â) and DMA (Â*) when communicating from SoC to the
host, the only supported primitive of DMA of our SNIC.

read host memory using NIC DMA (see §3.1). For batch sizes
of 16, 32, and 48, DB decreases the throughput of host-SoC
communication by 9%, 7%, and 6%, respectively.

RDMA (Â) vs. DMA (Â*). Besides RDMA, SoC can use
DMA (Â*) to read/write data from the host (and vice versa)
via the DMA engine inside the SoC. It has the benefits of
reducing two PCIe passes (PCIe1) and bypassing RNIC com-
pared to RDMA (see Figure 1), resulting in a lower latency,
e.g., 1.9µ vs. 2.6µ for 64 B SoC to host READ. However,
we find the SoC DMA engine has a weaker processing power
than RNIC (RDMA). For brevity, we only present results on
SoC to host. The results of host to SoC is the same as SoC to
host since host DMAs are offloaded to SoC for execution [56].
As shown in Figure 11, for WRITE, the peak throughput of
DMA is only 47–59% of that of RDMA for requests with
payload less than 4 KB. The results of READ is similar. DMA
WRITE even fails to saturate the PCIe limit (256 Gbps) for
payloads between 16 KB and 1 MB. We suspect it is due to the
poor processing capability of the SoC’s DMA engine, yet we
cannot confirm this without knowing the confidential internal
design of the SoC. Another observation from the bandwidth
results is that DMA also suffers from the anomalies of RDMA
(see Advice #3): For payloads larger than 1 MB, there is a
significant performance drop for both READ and WRITE.

For bandwidth, Â* has a higher theoretical upper bound
than Â: it is bottlenecked by the bidirectional bandwidth of
PCIe, as it bypasses the PCIe1. However, Figure 5 shows that
it fails to achieve so (only 178 Gbps for READ + WRITE).
This suggests that the slow DMA engine will first become
the bottleneck. Nevertheless, bypassing PCIe1 still has the
benefits of reducing interferences to other paths. We will
discuss them in §4 in detail.

Takeaways. First, enabling doorbell batching is critical for
SNIC Â at the SoC side, because SoC has wimpy computa-
tion power. Yet, it is negatively impacted at the host side for
small batch sizes. Second, SNIC Â has a different bottleneck
than SNIC À and SNIC Á. It is always bottlenecked by the
uni-directional bandwidth of PCIe, while others are limited
by the minimal bi-directional bandwidth of network and PCIe.

Figure 12: Throughput for (a) READ and (b) WRITE with the
increases of requester machines.

If this factor is not adequately considered, distributed systems
will underutilize the NIC bandwidth (see §5.1). Third, though
DMA utilizes PCIe better than RDMA for SoC to communi-
cate with the host, it has a lower throughput due to the weaker
DMA engine at the SoC. Finally, we should avoid transferring
large requests between the host and SoC, for both RDMA and
DMA and for both READ and WRITE.

4 A Guideline for Smartly Exploiting Multiple
Paths of SmartNIC

Previous approaches mainly leverage a single path of Smart-
NIC to optimize a specific functionality of distributed systems.
However, this cannot fully exploit the computing and network-
ing capabilities of SmartNICs. Furthermore, only considering
a single path may ignore interference on resources (e.g., PCIe
and PCIe switch) between different paths. Therefore, we first
holistically study the performance characteristics of concur-
rently using multiple paths, and then lay out an optimization
guideline for designers to smartly use SmartNICs.

4.1 Characterizing concurrent communication paths
Concurrent communication with the host and the SoC
(À+Á). We focus on the throughput results (see the lower
part of Figure 3) since the latency results are roughly the
average of the two paths. We evaluate the peak throughput by
assigning half of the clients to send requests to the host while
the others to send to the SoC. We can see that the total peak
throughput of concurrently using À and Á (SNIC À+Á) is
typically faster than each of them. For READ, WRITE, and
SEND/RECV, SNIC À+Á outperforms the lower of them by
up to 1.45×, 1.50×, and 3.3×, respectively.

For SEND/RECV, a concurrent path utilize both of the
host and SoC to process the requests, so the performance
improvement is clear. However, the READ/WRITE perfor-
mance improvement is non-intuitive and undocumented, since
two paths should compete for NIC cores. Our suspicion is
that the SmartNIC internally reserves some NIC cores for
each endpoint. Therefore, sending requests to the host and
the SoC concurrently can further increase peak throughput
by enabling more NIC cores. To quantify this, we design a
microbenchmark that first increases the requester machines to
saturate the NIC and then changes the responder, as shown in
Figure 12. All requests use 0 B payload to avoid interference
of DMA, i.e., the request will return before passing PCIe1 [6].

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 995

For READ, five requester machines are sufficient to saturate
NIC cores when using SNIC À or SNIC Á alone. Therefore,
for concurrently using SNIC À and SNIC Á, we first dedi-
cate five requester machines for one responder, and then add
requesters for the other responder. Both cases (SNIC À+Á
and SNIC Á+À) offer similar performance, with 4–13% and
5–10% higher throughput than using SNIC À or SNIC Á
alone. For WRTIE, all results are almost the same.

Finally, as expected, the aggregated throughput of the two
paths (SNIC À and SNIC Á) is much higher than concurrently
using them (352 Mpps vs. 195 Mpps), indicating that most
NIC cores are still shared, i.e., each can communicate with
two endpoints, and only a few is dedicated. This also implies
that concurrently using multiple resources of SmartNIC is
non-trivial.

Concurrent inter- and intra-machine communication
(À/Á+Â). There exist four concurrent combinations of inter-
and intra-machine communication. For brevity, we focus on
the results of SNIC À+Â/H2S, other combinations are simi-
lar. To study the concurrent usage of the two paths, we first
deploy sufficient clients (five requester machines) to saturate
the network for SNIC À. Afterward, we start the requester
on the host (one machine with 24 threads) sending RDMA
requests to the SoC (SNIC Â/H2S). Our measurements re-
veal that concurrently enabling intra-machine communication
degrades the performance of inter-machine communication.
As shown in Figure 3, for READ, WRITE, and SEND/RECV,
the throughput of small requests (less than 512 bytes) drops 7–
15%, 4–27%, and 9–14%, by comparing SNIC À and SNIC
À+Â(H2S). For large requests, the performance is always
bottlenecked by the network bandwidth, so the degradation is
negligible.

The SNIC Â affects other communication paths of Smart-
NIC, because it relies on the NIC (PCIe1 and the PCIe switch)
for RDMA support. In comparison, SNIC Â* communication
can leverage DMA to reduce such interferences. For example,
for READ with payloads 16–64 B, we only observe a 5–6%
throughput drop, after adding SNIC Â* to À.

Bottleneck. Assuming each path has only one type of request,
e.g., either READ or WRITE. For SNIC À+Á, each part
has the same bottleneck (the NIC), so the bandwidth limit is
400 Gbps (bi-directional). For SNIC À+Â, it is bottlenecked
by SNIC Â, which is limited on the uni-direction of PCIe
(256 Gbps) since it occupies both directions of PCIe1 (see
Figure 5(b)). Nevertheless, if SNIC À is used in opposite
directions (i.e., READ and WRITE), SNIC À+Â can reach
a higher limit. For example, the aggregated bandwidth can
achieve 456 Gbps (in theory) if we restrict the bandwidth
of data transfer on SNIC Â to 56 Gbps. This suggests that
selectively offloading small portion of data to SoC may be
optimal. Finally, if possible, it is usually better to combine
SNIC À or Á with DMA (À/Á+Â*) despite DMA being
slower than RDMA (see §3.3). This is because DMA has

better PCIe utilization (without passing PCIe) and RNIC
utilization (without using RNIC).

Takeaways. Sending requests from clients to the host and the
SoC concurrently (SNIC À+Á) can better utilize NIC cores to
handle small RDMA requests, especially when used in oppo-
sition directions (e.g., one for READ and one for WRITE). On
the contrary, uncontrolled use of intra-machine (host-SoC)
communications (SNIC Â) may harm inter-machine com-
munications, which is the intrinsic purpose of using Smart-
NIC. Specifically, if the uni-directional bandwidth of PCIe is
smaller than the bi-directional bandwidth of the NIC, using
SNIC Â can introduce a hidden bottleneck. Therefore, we
should always consider using SNIC Â only when spare re-
sources are made available. Specifically, if the inter-machine
communication saturates the NIC, the bandwidth used by
SNIC Â should no larger than P −N , where P andN are the
limit of the PCIe and the network, respectively. For example,
it should be 56 Gbps on our testbed. Using SNIC Â* can
reduce the interference between paths, but SNIC Â* also has
limitations: it is slower than SNIC Â.

Finally, in real-world distributed systems, it is common
that a single communication path cannot fully saturate all
resources of SmartNIC. For example, SNIC Á is the fastest
but limited by small memory and wimpy cores on the SoC.
On the other hand, only using SNIC À as RNIC would waste
all resources on the SoC. Therefore, we should concurrently
use multiple paths provided by the SmartNIC, but carefully
avoid interference between them.

4.2 An optimization guideline

This section presents our optimization guideline for smartly
utilizing multiple communication paths of SmartNIC to
improve the performance of distributed systems. Specifically,
given the functionality (e.g., file replication in a distributed
file system) of a target distributed system that needs to be
accelerated by SmartNIC, we recommend designers consider
the following steps:

1. Devise potential alternatives for SmartNIC to support
the given functionality, and optimize them based on
performance characteristics uncovered by our study.

2. Evaluate and rank alternatives based on system-specific
criteria.

3. Select and combine alternatives in turn until the resource
of SmartNIC is saturated.

System-specific criteria. The criteria can be the desirable
properties that the system designer aims to achieve, or the
restrictions of the systems. For replication in a distributed file
system, the properties include low host CPU overhead and
high network bandwidth utilization [32]. For a disaggregated
key-value store, the properties include less network amplifi-
cation, low latency and high throughput. The restriction the
host has little or no CPU that we can use [86].

996 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 13: The host CPU usage breakdown of different alternatives when replicate 8 MB data (a). Write bandwidth when the host is idle (b)
and busy (c) for A1, A2 and A2 + A3.

Discussion. We currently only consider the combination of
alternatives in a greedy way, which is sufficient for most net-
worked functions in real-world distributed systems. Further,
SmartNIC usually offers a limited number of available op-
tions. Note that efficiently combining alternatives is challeng-
ing. For different systems, different alternatives may consume
different resources on the SmartNIC, while a combination
of them may involve different levels of resource contentions.
Our previous analysis—including the bottleneck of differ-
ent communication paths and concurrently utilizing multiple
paths on the SmartNIC—will guide designers to avoid most
performance contention. Nevertheless, how to systematically
choose and combine different paths is our future work.

5 Case Studies
To demonstrate the efficacy of our study and the optimization
guideline, this section presents two detailed case studies.

5.1 Distributed file system
Overview. File replication is a key pillar in distributed file
systems for fault tolerance. With the emergence of RDMA
and non-volatile memory (NVM), an appealing trend is to use
RDMA to directly replicate file updates on remote NVM for
better performance [32, 3, 40, 4], i.e., RDMA primitives can
directly write NVM just like DRAM, with network and NVM
bandwidth fully utilized [81].

Devise alternatives. The desirable properties of file replica-
tion are high performance, high network utilization and low
host CPU overhead. There are three alternatives to implement
file replications on our SmartNIC, as illustrated in Figure 14.

1. Alternative (A1). It comes from the state-of-the-art
distributed file system on SmartNIC, LineFS [32], which
completely offloads the file replication to SoC. The
SoC will compress and replicate the file to reduce data
transferred through the network with low host CPU usage.
After receiving a replication request, the primary SoC
reads the file from host (Â), compresses it (Ã), and writes
the file to remote backups with chain replication [72] (Á).
Specifically, if there are multiple backups, the second
backup will further re-replicate the log to the next backup
on the chain and so on.

2. Alternative (A2). Guided by our study, we can replace

the Â in A1 with Â* to reduce interference on the PCIe
bandwidth, specifically, PCIe1 on the SmartNIC.

3. Alternative (A3). The host can directly write the file
from the host to the remote backup with WRITE (À) [40].
Note that this approach typically skips file compression to
prevent non-trivial host CPU overhead (see Figure 13 (a)).

Baseline. LineFS [32] is a state-of-the-art distributed file sys-
tem based on NVM and SmartNIC. It adopts A1 to replicate
the files. We further implement A2 and A3 on its open-source
codebase7, and rewrite its backend with more efficient RDMA
implementation to scale to 200 Gbps networking, e.g., with
asynchronous and batched RDMA operations.

Optimization on each alternative. By default, LineFS adopts
a chunk size of 16 MB in its open-source codebase for A1.
Based on our Advice #3 described in §3.3, we shrink it to
256 KB for a better performance over Â. This optimization
further applies to A2 and A3.

Analyse alternatives. A1 is the most straightforward way to
offload file replication, reducing the data transferred through
the network (d vs. d× ratio). Thus, the ideal peak bandwidth
is N/ratio, where N is the bandwidth limit of SmartNIC.
However, A1 does not consider the costly PCIe occupation of
Â (§3.3), which even fails to saturate the network bandwidth
for file transfer. Denote the primary’s PCIe limit (uni) as P .
A1’s file transfer bandwidth d is limited by P

1+ratio , because
each data packet must pass the PCIe1 out link twice. As shown
in Figure 14, one is from SoC to RNIC (d bytes) and another
from SoC to the remote (d× ratio bytes). On our platform
(p = 256Gbps), so A1 is only better than file is not com-
pressed (whose performance is bottlenecked by the network
N = 200Gbps) when the compression ratio is lower than
28%. Worse even, A1 cannot saturate the network bandwidth
of SmartNIC when encountering a bad compression ratio (≥
28%). For example, without compression (ratio = 1), the
peak of A1 is only 128 Gbps.

Figure 13 (b) presents the results of A1 on the file write
benchmark of LineFS. This benchmark does not compress
the file. We can see that A1 only achieves 117 Gbps with 8
clients when the host is idle.

A2 addresses the poor PCIe utilization of A1 by replacing
Â with Â*. As shown in Figure 13 (b), A2 is 1.01–1.13×
7https://github.com/casys-kaist/LineFS

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 997

https://github.com/casys-kaist/LineFS

Primary
Host
SoC
RNICSN

IC

Network

RNIC
SoCSN

IC

Host
Backup

A1(2 3 4+ +) A2(2 3 4+ +)* A3()1

Decompression

Compression

WRITE
d bytes

WRITE d bytes

READ d bytes

READ (d x ratio)
bytes

READ (d x ratio)
bytes

PCIe0

PCIe1

PCIe1

PCIe0

Figure 14: Overview of alternatives for file replication with Smart-
NIC. ratio is defined as compressed size / uncompressed
size. We omit the control path messages as they are trivial.

faster than A1 under different number of clients. However, A2
fails to achieve a close to 200 Gbps result (peak at 133 Gbps)
due to the following two reasons. First, the WRITE of Â* can-
not fully utilize the full PCIe bandwidth on our platform (see
Figure 11). Second, the poor computation power of SoC may
also become the performance bottleneck of file replication.

A3 bypasses the PCIe occupation problem of A1, and
the slow DMA WRITE and weak SoC issues of A2. Mean-
while, its data path is shorter (see Figure 14). As shown in
Figure 13(a), it takes 40% shorter time to wait for the log
acknowledgment compared to A2. As a result, A3’s repli-
cation bandwidth is 5–41% faster than A2 under different
client setups. The drawback is that A3 takes more CPU cy-
cles even without considering compression (Filesystem), see
Figure 13(a). This is because A1 and A2 can digest the file
log on the SoC. Thus, the overall process time reduction of
A3 is 8% (decreased from 40%) compared to A2.

Select and combine alternatives. Since A2 is always better
than A1, we will only consider combining A2 with A3. As
we have analyzed before, A3 is faster than A2. Therefore,
increasing the ratio of A3 in a combined path (A2 + A3)
always improves the performance, as shown in Figure 15.
However, if file compression for high network utilization
is enabled, it has high host CPU utilization, as shown in
Figure 13 (a). Disabling compression for A3 will lower the
network utilization, also illustrated in Figure 15. Specifically,
when increasing the percentage of path A3 in clients, the
network utilization is reduced from 50% to 0% considering a
fixed 50% compression ratio.

Considering A2 has better network utilization, we follow
a greedy approach that first saturate the SoC with A2 for
better network utilization. Afterward, clients use A3 to do the
file replication. This approach can achieve the best of both
worlds: the combined path is faster than A2 with network
better utilized than A3.

Evaluation results. Figure 13 (b) and (c) further present
the file replication benchmark results of A2 + A3 when the
host CPU is idle and busy, respectively. We follow the same
setup as LineFS [32]’s benchmark and add a CPU-intensive

Figure 15: Analysis of the network utilization and performance
when combining A2 and A3.

workload (streamcluster [7]) to the host CPU to emulate a
busy experimental setup. A2 + A3 is 7–30% and 4–21% faster
than original LineFS when CPU is idle and busy, respectively,
thanks to the more efficient usage of SmartNIC and a smart
utilization of multiple execution paths.

5.2 Disaggregated key-value store
Overview. RDMA-based disaggregated key-value stores (R-
KVS) are prevalent in modern data centers [75, 70, 17, 86].
In R-KVS, one or more memory servers store both indexes
(usually hash table) and values. Clients on other machines use
READs to traverse the index and retrieve the corresponding
value to handle requests (i.e., get), see A1 in Figure 16.

Devise alternatives. The desired properties are high
throughput, low latency and minimal network amplification.
The restriction is that we can barely use the host CPU (i.e.,
disable SEND/RECV for path À). SmartNIC enables five
alternatives for R-KVS, as illustrated in Figure 16.

1. Alternative (A1). The client treats SmartNIC as a normal
RNIC and uses READs to handle the get request (À).
This approach suffers from network amplification.

2. Alternative (A2). One intuitive approach for offloading is
to send the get request to the SoC using SEND/RECV (Á).
The SoC can then traverse the index and read the value
on the host via RDMA or DMA READ. This approach
effectively eliminates network amplification.

3. Alternative (A3). One drawback of A2 is that reading
data from SoC to the host is slower reading from the
host’s local memory. An optimization is to offload the
indexes to the SoC memory (Ã). This approach is similar
to index caching at the clients [11, 62, 75], but caching the
indexes at the SmartNIC is more effective. Each client has
a small memory that can only cache hundreds of entries
in a disaggregated setting [86], while SmartNIC has a
relatively large SoC memory (e.g., 16 GB on Bluefield-2)
that can cache all the indexes.

4. Alternative (A4). Accessing the index on the SoC
using SEND/RECV (Á) cannot fully utilize the NIC
cores of SmartNIC, because the peak throughput of
SEND/RECV is only 21.6 M reqs/s. Therefore, we can
use READs to traverse the index on the SoC (Á), and
another READ to retrieve the value on the host (À).

998 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

RNIC

Client

Host

Network

PCIe

Index Values

READ READ

SNIC

Client

Host
PCIe

Index Values

READ READ

A1 RDMA (①) A2 +Offload SoC (② + ③)

SNIC

Client

Host
PCIe

Index Values

A4 +RDMA (① + ②)

READ READ

SNIC

Client

Host
PCIe

Index Values

A3 +Offload index (② + ③ + ④)

READ
SNIC

Client

Host
PCIe

Index Values

A5 +Offload Value (② + ④)

SEND/RECV SEND/RECV SEND/RECV SEND/RECV SEND/RECVSEND/RECV READ READ

Cache Cache (Partial)

④ ④

Figure 16: Alternatives (A1–A5) for offloading a get request of RDMA-based disaggregated key-value store to off-path SmartNIC.

Figure 17: (a) Latency and (b) throughput comparisons between
different alternatives on YCSB C. For A5, we restricted the selection
of clients keys to always hit the cached values on SmartNIC.

This approach still has network amplification, but can
utilize the fast path (Á) to improve performance (see §3.2).

5. Alternative (A5). Similar to index caching, SoC memory
can further cache a portion of values (e.g., the values
of hot keys). This approach avoids using the costly
communication path (Â) of the previous alternatives.

Baseline. DrTM-KV [11] is a state-of-the-art KV store opti-
mized for RDMA: it adopts cluster-chaining hash index such
that the client typically finds the value position of a given key
in one READ. Specifically, for a get request, the client first
READs a 64 B bucket (based on the hash of the key), finds
the remote address of the corresponding value in it, and then
fetches the value with another READ. DrTM-KV supports
index caching at the client to skip the first READ [80], but it
may not be always feasible in a disaggregated environment
due to memory constraints [86], so we disable it.

Optimization on each alternative. We implement A1–A5
on DrTM-KV guided by our study (§3). Specifically, we care-
fully enabled doorbell batching for alternatives related to the
SoC CPU (A2, A3 and A5). Besides, we apply Advice #1 for
A4 and A5, which replicate a few hot keys to multiple repli-
cations to avoid sending requests to a small range of memory.
We use DMA (Â∗) instead of RDMA (Â) to implement A2
and A3 as it is always faster due to lower latency. For example,
A2 throughput is improved by up to 79% with Â*. A2 and
A3 does not suffer from the low DMA throughput discovered
in §3.3 because the SoC will first become the bottleneck.

Analyse alternatives. We use YCSB C [16] (100% get) with
default Zipfian request distribution (θ = 0.99) for all the
experiments. The payload sizes of keys and values are 8 B

and 64 B, respectively, similar to prior work [41, 45, 30, 66,
75]. Following the microbenchmark setup, we use one client
machine to measure the latency and deploy up to eleven client
machines to measure the peak throughput.

Figure 17 demonstrates that none of the path can achieve
both high throughput and low latency. A5 (SEND/RECV)
achieves the lowest latency (4.6µs) because it completely
eliminates the network amplifications problem and costly
host-SoC communications (Â). However, its peak throughput
(17.6 M reqs/s) is significantly lower than some other alterna-
tives. Specifically, the peak throughput of A5 (READ) and
A4 reach 70 M reqs/s and 58.3 M reqs/s, respectively. They
have a higher throughput because the RDMA path to SoC
(À) is faster (§3.2). Note that A5 is not always achievable,
which requires caching all the key-values at the SoC memory.
Therefore, A4 is a suitable design if the SoC cores become the
bottleneck (Ã). A1 has a higher latency and lower throughput
than A4, since RDMA to the host (À) is relatively slow. A2
and A3 are bottlenecked by the slow host-SoC communica-
tion (Â, see §3.3), which is not suitable for offloading KV
store requests.

Select and combine alternatives. Our analysis suggests that
the optimal combination is A4 and A5. Initially, the first few
clients use A5, whereas the later clients use A4. The exact
switch point can be estimated by using queuing theory [24]
to model the capacity of SoC and the capability of RNIC, as
in prior work [46].

In addition, using A5 presents a challenge as clients are
unaware of which values are cached at SoC. Although A3
can be used as a fallback path for cache misses, it will result
in significant performance degradation (see Figure 17). To
tackle this issue, we provide a simple solution: when a cache
miss occurs, the SoC returns the address of the value to the
client, which then issues a READ to retrieve the value accord-
ingly, similar to A4. In real-world skewed workloads (e.g.,
YCSB [16]), cache misses are rare.

Evaluation results. Figure 18 shows the latency and through-
put results on YCSB C. We plotted the graph by increasing
the number of client machines. The combination of A4 + A5
achieves a peak throughput of 68 M reqs/s, which is 25%,
36%, and 12% higher than RNIC, A1, and A4, respectively.
Note that we omit A2 and A3 as they are bottlenecked by SoC
cores and have extremely low peak throughput. The benefits

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 999

Figure 18: Performance of YCSB C using different alternatives.
Note that A5 cannot run a full workload alone, since SoC memory
is not large enough to cache all values. For A4 + A5, one client uses
A5, and the rest use A4.

of A4 + A5 mainly come from utilizing faster SoC RDMA
and SoC cores for reducing network amplifications.

6 Discussion
Generalizability. Although our study primarily focuses on
one particular SmartNIC, Bluefield-2 [52], we believe that
our findings and advice can be applied to other off-path
SmartNICs that share a similar hardware architecture. These
SmartNICs extend RDMA-capable NICs, such as Stingray
PS225 [9] (which extends NetXtreme 100 Gbps RNIC [8]), by
attaching a heterogeneous SoC and bridging SoC and RNIC
together with a PCIe switch. We have confirmed that all our re-
sults hold on Bluefield-1 [55]. Moreover, the next generation
of Bluefield (Bluefield-3) still follows the same architecture,
except for using faster RNIC (400 Gbps ConnectX-7), PCIe
(5.0), and SoC (ARMv8.2+ A78). Even though other Smart-
NICs may have different parameters than Bluefield-2, our
methodology, analysis tools (open-sourced), and performance
models (e.g., Table 4) also apply to them.

Furthermore, DPDK [1] is another popular communication
primitive over SmartNIC. From a NIC’s perspective, DPDK
is similar to SEND/RECV over UD. Therefore, we believe
that most of our findings are still applicable to DPDK as well.
Unfortunately, we do not have an Ethernet-based testbed to
confirm this further.

Suggestions for hardware vendors. Our study has uncov-
ered several anomalies that can be mitigated through hardware
improvements, which we suggest vendors consider. For ex-
ample, current host to SoC DMA must offload to SoC for
execution [56], while supporting CXL [15] can utilize the
more powerful host CPU DMA engine for it. However, doing
so in a programmer-friendly way [21] will require strong co-
operation between the SoC OS and host OS. To the best of
our knowledge, no SmartNIC supports CXL yet. Moreover,
supporting CCI [5] can mitigate the performance degradation
problem described in Advice #1. Furthermore, aligning the
SoC PCIe MTU with the host is likely to improve PCIe perfor-
mance when transferring large payloads. Finally, we encour-
age vendors to disclose more hardware details of SmartNICs
to help explain and confirm the findings of our study.

7 Other Related Work
SmartNIC offloading. Offloading computation to SmartNICs
has attracted significant attention in academia and industry.
The offloaded tasks include network functions [59, 34, 19],
microservices [14, 39], and others [33, 36, 22, 35, 61, 74, 65].
We share the same vision—improving the performance of
distributed systems by offloading computation and communi-
cation to SmartNICs, but further exploit the multiple commu-
nication paths of SmartNICs. In addition, most prior work has
focused on leveraging a single path of on-path SmartNICs, so
our work can inspire future research on multi-path offloading
for on-path SmartNICs.

RDMA offloading. Before the emergence of SmartNICs,
many distributed systems offloaded remote memory accesses
to one-sided RDMA primitives [75, 64, 17, 63, 46, 50, 13,
76, 82, 79, 84, 40, 85, 86]. However, prior work has observed
the poor semantics of one-sided RDMA and has therefore
leveraged advanced RDMA features (e.g., WAIT [60, 31],
DCT [77, 78]) or introduced new RDMA primitives [65, 10].
These efforts are orthogonal to our work and could also benefit
from our findings when using SmartNICs in the future.

8 Conclusion
Designing high-performance distributed systems with Smart-
NICs requires an in-depth understanding of low-level hard-
ware details. This paper presents a comprehensive study of
off-path SmartNIC. Unlike prior work, we explore how the
SmartNIC architecture and the heterogeneity of its compu-
tation units can impact communication performance related
to its components. We further propose the first optimization
guideline for designers to smartly exploit multiple commu-
nication paths of SmartNICs for distributed systems, and
demonstrate our guideline by improving two distributed sys-
tems. In general, our study can help system designers develop
a better understanding of SmartNICs before applying them in
high-performance distributed systems.

Acknowledgment
We sincerely thank our shepherd, Rachit Agarwal, and the
anonymous reviewers for their comments and suggestions
to improve the paper. We also thank Zhuobin Huang for dis-
cussing DPDK on SmartNIC, Jun Lu and Dong Du for pro-
viding the Bluefield-1 hardware, Dingji Li, Erhu Feng, Jinyu
Gu, and Fangming Lu for their valuable feedback on earlier
versions of the paper. This work was supported in part by the
National Key Research & Development Program of China
(No. 2022YFB4500700), the Fundamental Research Funds
for the Central Universities, the National Natural Science
Foundation of China (No. 62202291, 62272291, 61925206),
as well as research grants from Huawei Technologies and
Shanghai AI Laboratory. Corresponding author: Rong Chen
(rongchen@sjtu.edu.cn).

1000 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

rongchen@sjtu.edu.cn

References
[1] Data plane development kit. https://www.dpdk.org/,

2023.

[2] AMARO, E., LUO, Z., OUSTERHOUT, A., KRISHNAMURTHY,
A., PANDA, A., RATNASAMY, S., AND SHENKER, S. Remote
memory calls. In HotNets ’20: The 19th ACM Workshop on
Hot Topics in Networks, Virtual Event, USA, November 4-6,
2020 (2020), B. Y. Zhao, H. Zheng, H. V. Madhyastha, and
V. N. Padmanabhan, Eds., ACM, pp. 38–44.

[3] ANDERSON, T. E., CANINI, M., KIM, J., KOSTIC, D.,
KWON, Y., PETER, S., REDA, W., SCHUH, H. N., AND

WITCHEL, E. Assise: Performance and availability via client-
local NVM in a distributed file system. In 14th USENIX
Symposium on Operating Systems Design and Implementa-
tion, OSDI 2020, Virtual Event, November 4-6, 2020 (2020),
USENIX Association, pp. 1011–1027.

[4] ANDERSON, T. E., CANINI, M., KIM, J., KOSTIC, D.,
KWON, Y., PETER, S., REDA, W., SCHUH, H. N., AND

WITCHEL, E. Assise: Performance and availability via client-
local NVM in a distributed file system. In 14th USENIX
Symposium on Operating Systems Design and Implementa-
tion, OSDI 2020, Virtual Event, November 4-6, 2020 (2020),
USENIX Association, pp. 1011–1027.

[5] ARM. Corelink CCI-550. https://developer.arm.
com/Processors/CoreLink%20CCI-550, 2022.

[6] ASSOCIATION., I. T. Infiniband architecture specifica-
tion. https://cw.infinibandta.org/document/
dl/7859, 2022.

[7] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The
PARSEC benchmark suite: characterization and architectural
implications. In 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT 2008, Toronto,
Ontario, Canada, October 25-29, 2008 (2008), A. Moshovos,
D. Tarditi, and K. Olukotun, Eds., ACM, pp. 72–81.

[8] BROADCOM. Bcm57504 - 100gbe. https:
//en.broadcom.com/products/ethernet-
connectivity/network-adapters/bcm57504-
100g-ic, 2022.

[9] BROADCOM. Product Brief: Stingray PS225. https://
docs.broadcom.com/doc/PS225-PB, 2022.

[10] BURKE, M., DHARANIPRAGADA, S., JOYNER, S., SZEK-
ERES, A., NELSON, J., ZHANG, I., AND PORTS, D. R. K.
PRISM: rethinking the RDMA interface for distributed sys-
tems. In SOSP ’21: ACM SIGOPS 28th Symposium on Oper-
ating Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021 (2021), R. van Renesse and N. Zeldovich,
Eds., ACM, pp. 228–242.

[11] CHEN, H., CHEN, R., WEI, X., SHI, J., CHEN, Y., WANG,
Z., ZANG, B., AND GUAN, H. Fast in-memory transaction
processing using RDMA and HTM. ACM Trans. Comput. Syst.
35, 1 (2017), 3:1–3:37.

[12] CHEN, Y., LU, Y., AND SHU, J. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019 (2019), G. Candea, R. van Re-
nesse, and C. Fetzer, Eds., ACM, pp. 19:1–19:14.

[13] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast
and general distributed transactions using RDMA and HTM.
In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys 2016, London, United Kingdom, April
18-21, 2016 (2016), C. Cadar, P. R. Pietzuch, K. Keeton, and
R. Rodrigues, Eds., ACM, pp. 26:1–26:17.

[14] CHOI, S., SHAHBAZ, M., PRABHAKAR, B., AND ROSEN-
BLUM, M. λ-nic: Interactive serverless compute on pro-
grammable smartnics. In 40th IEEE International Conference
on Distributed Computing Systems, ICDCS 2020, Singapore,
November 29 - December 1, 2020 (2020), IEEE, pp. 67–77.

[15] CONSORTIUM, C. Cxl specification. https:
//www.computeexpresslink.org/download-
the-specification, 2022.

[16] COOPER, B. F. YCSB Core Workloads. https:
//github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads, 2021.

[17] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND

HODSON, O. FaRM: Fast remote memory. In Proceedings
of the 11th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014 (2014), R. Mahajan and I. Stoica, Eds., USENIX
Association, pp. 401–414.

[18] DRAGOJEVIC, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CAS-
TRO, M. No compromises: distributed transactions with con-
sistency, availability, and performance. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015 (2015), E. L. Miller
and S. Hand, Eds., ACM, pp. 54–70.

[19] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU,
V., CAULFIELD, A. M., CHUNG, E. S., CHANDRAPPA, H. K.,
CHATURMOHTA, S., HUMPHREY, M., LAVIER, J., LAM, N.,
LIU, F., OVTCHAROV, K., PADHYE, J., POPURI, G., RAIN-
DEL, S., SAPRE, T., SHAW, M., SILVA, G., SIVAKUMAR, M.,
SRIVASTAVA, N., VERMA, A., ZUHAIR, Q., BANSAL, D.,
BURGER, D., VAID, K., MALTZ, D. A., AND GREENBERG,
A. G. Azure accelerated networking: Smartnics in the public
cloud. In 15th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2018, Renton, WA, USA, April
9-11, 2018 (2018), S. Banerjee and S. Seshan, Eds., USENIX
Association, pp. 51–66.

[20] GAO, Y., LI, Q., TANG, L., XI, Y., ZHANG, P., PENG, W.,
LI, B., WU, Y., LIU, S., YAN, L., FENG, F., ZHUANG, Y.,
LIU, F., LIU, P., LIU, X., WU, Z., WU, J., CAO, Z., TIAN,
C., WU, J., ZHU, J., WANG, H., CAI, D., AND WU, J. When
cloud storage meets RDMA. In 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021 (2021), J. Mickens and R. Teixeira, Eds.,
USENIX Association, pp. 519–533.

[21] GOUK, D., LEE, S., KWON, M., AND JUNG, M. Direct
access, High-Performance memory disaggregation with Di-
rectCXL. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22) (Carlsbad, CA, July 2022), USENIX Asso-
ciation, pp. 287–294.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1001

https://www.dpdk.org/
https://developer.arm.com/Processors/CoreLink%20CCI-550
https://developer.arm.com/Processors/CoreLink%20CCI-550
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://en.broadcom.com/products/ethernet-connectivity/network-adapters/bcm57504-100g-ic
https://docs.broadcom.com/doc/PS225-PB
https://docs.broadcom.com/doc/PS225-PB
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

[22] GRANT, S., YELAM, A., BLAND, M., AND SNOEREN, A. C.
Smartnic performance isolation with fairnic. In SIGCOMM

’20: Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for com-
puter communication, Virtual Event, USA, August 10-14, 2020
(2020), H. Schulzrinne and V. Misra, Eds., ACM, pp. 681–693.

[23] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,
J., AND LIPSHTEYN, M. RDMA over commodity ethernet at
scale. In Proceedings of the ACM SIGCOMM 2016 Confer-
ence, Florianopolis, Brazil, August 22-26, 2016 (2016), M. P.
Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM,
pp. 202–215.

[24] HARCHOL-BALTER, M. Performance modeling and design
of computer systems: queueing theory in action. Cambridge
University Press, 2013.

[25] HASSAN, H., VIJAYKUMAR, N., KHAN, S. M., GHOSE, S.,
CHANG, K. K., PEKHIMENKO, G., LEE, D., ERGIN, O.,
AND MUTLU, O. Softmc: A flexible and practical open-source
infrastructure for enabling experimental DRAM studies. In
2017 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2017, Austin, TX, USA, Febru-
ary 4-8, 2017 (2017), IEEE Computer Society, pp. 241–252.

[26] INTEL. Intel® data direct i/o technology. https://
www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html, 2022.

[27] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
RDMA efficiently for key-value services. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA, August
17-22, 2014 (2014), F. E. Bustamante, Y. C. Hu, A. Krishna-
murthy, and S. Ratnasamy, Eds., ACM, pp. 295–306.

[28] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance RDMA systems. In 2016
USENIX Annual Technical Conference, USENIX ATC 2016,
Denver, CO, USA, June 22-24, 2016 (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association, pp. 437–450.

[29] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-
sided (RDMA) datagram rpcs. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016 (2016), K. Keeton
and T. Roscoe, Eds., USENIX Association, pp. 185–201.

[30] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Data-
center rpcs can be general and fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI
2019, Boston, MA, February 26-28, 2019 (2019), J. R. Lorch
and M. Yu, Eds., USENIX Association, pp. 1–16.

[31] KIM, D., MEMARIPOUR, A. S., BADAM, A., ZHU, Y., LIU,
H. H., PADHYE, J., RAINDEL, S., SWANSON, S., SEKAR, V.,
AND SESHAN, S. Hyperloop: group-based nic-offloading to ac-
celerate replicated transactions in multi-tenant storage systems.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Bu-
dapest, Hungary, August 20-25, 2018 (2018), S. Gorinsky and
J. Tapolcai, Eds., ACM, pp. 297–312.

[32] KIM, J., JANG, I., REDA, W., IM, J., CANINI, M., KOS-
TIC, D., KWON, Y., PETER, S., AND WITCHEL, E. Linefs:

Efficient smartnic offload of a distributed file system with
pipeline parallelism. In SOSP ’21: ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021 (2021), R. van Renesse and
N. Zeldovich, Eds., ACM, pp. 756–771.

[33] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM,
A., CHEN, E., AND ZHANG, L. Kv-direct: High-performance
in-memory key-value store with programmable NIC. In Pro-
ceedings of the 26th Symposium on Operating Systems Prin-
ciples, Shanghai, China, October 28-31, 2017 (2017), ACM,
pp. 137–152.

[34] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU, N.,
XIONG, Y., AND CHENG, P. Clicknp: Highly flexible and high-
performance network processing with reconfigurable hardware.
In Proceedings of the ACM SIGCOMM 2016 Conference, Flo-
rianopolis, Brazil, August 22-26, 2016 (2016), M. P. Barcellos,
J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM, pp. 1–14.

[35] LI, J., LU, Y., WANG, Q., LIN, J., YANG, Z., AND SHU,
J. Alnico: Smartnic-accelerated contention-aware request
scheduling for transaction processing. In 2022 USENIX An-
nual Technical Conference, USENIX ATC 2022, Carlsbad, CA,
USA, July 11-13, 2022 (2022), J. Schindler and N. Zilberman,
Eds., USENIX Association, pp. 951–966.

[36] LIN, J., PATEL, K., STEPHENS, B. E., SIVARAMAN, A., AND

AKELLA, A. PANIC: A high-performance programmable NIC
for multi-tenant networks. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020,
Virtual Event, November 4-6, 2020 (2020), USENIX Associa-
tion, pp. 243–259.

[37] LIU, J., MALTZAHN, C., ULMER, C. D., AND CURRY, M. L.
Performance characteristics of the bluefield-2 smartnic. CoRR
abs/2105.06619 (2021).

[38] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A., PE-
TER, S., AND GUPTA, K. Offloading distributed applications
onto smartnics using ipipe. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM 2019,
Beijing, China, August 19-23, 2019 (2019), J. Wu and W. Hall,
Eds., ACM, pp. 318–333.

[39] LIU, M., PETER, S., KRISHNAMURTHY, A., AND

PHOTHILIMTHANA, P. M. E3: energy-efficient microservices
on smartnic-accelerated servers. In 2019 USENIX Annual Tech-
nical Conference, USENIX ATC 2019, Renton, WA, USA, July
10-12, 2019 (2019), D. Malkhi and D. Tsafrir, Eds., USENIX
Association, pp. 363–378.

[40] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus: an rdma-
enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017 (2017), D. D. Silva
and B. Ford, Eds., USENIX Association, pp. 773–785.

[41] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache craftiness
for fast multicore key-value storage. In European Conference
on Computer Systems, Proceedings of the Seventh EuroSys
Conference 2012, EuroSys ’12, Bern, Switzerland, April 10-13,
2012 (2012), P. Felber, F. Bellosa, and H. Bos, Eds., ACM,
pp. 183–196.

1002 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

[42] MARVELL. Marvell liquidio iii. https://www.marvell.
com/content/dam/marvell/en/public-
collateral/embedded-processors/marvell-
liquidio-III-solutions-brief.pdf, 2022.

[43] MARVELL. Marvell® octeon 10 dpu platform.
https://www.marvell.com/content/dam/
marvell/en/public-collateral/embedded-
processors/marvell-octeon-10-dpu-
platform-product-brief.pdf, 2023.

[44] MELLANOX. ConnectX-7 product brief. https://www.
nvidia.com/content/dam/en-zz/Solutions/
networking/ethernet-adapters/connectx-7-
datasheet-Final.pdf, 2022.

[45] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016
(2016), A. Gulati and H. Weatherspoon, Eds., USENIX Asso-
ciation, pp. 451–464.

[46] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016
(2016), A. Gulati and H. Weatherspoon, Eds., USENIX Asso-
ciation, pp. 451–464.

[47] MONGA, S. K., KASHYAP, S., AND MIN, C. Birds of a
feather flock together: Scaling RDMA rpcs with flock. In SOSP

’21: ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October 26-29,
2021 (2021), R. van Renesse and N. Zeldovich, Eds., ACM,
pp. 212–227.

[48] NETRONOME. Netronome agilio.
NetronomeAgilioSmartNICs.https://
www.netronome.com/products/smartnic/
overview/, 2022.

[49] NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AUDZEVICH,
Y., LÓPEZ-BUEDO, S., AND MOORE, A. W. Understanding
pcie performance for end host networking. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018 (2018), S. Gorinsky and J. Tapolcai, Eds.,
ACM, pp. 327–341.

[50] NOVAKOVIC, S., SHAN, Y., KOLLI, A., CUI, M., ZHANG, Y.,
ERAN, H., PISMENNY, B., LISS, L., WEI, M., TSAFRIR, D.,
AND AGUILERA, M. K. Storm: a fast transactional dataplane
for remote data structures. In Proceedings of the 12th ACM
International Conference on Systems and Storage, SYSTOR
2019, Haifa, Israel, June 3-5, 2019 (2019), M. Hershcovitch,
A. Goel, and A. Morrison, Eds., ACM, pp. 97–108.

[51] NVIDIA. Innova-2 flex. https://www.nvidia.com/
en-us/networking/ethernet/innova-2-flex/,
2022.

[52] NVIDIA. Nvidia bluefield dpu-2. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-
bluefield-2-dpu.pdf, 2022.

[53] NVIDIA. Nvidia bluefield dpu-3. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-
bluefield-3-dpu.pdf, 2022.

[54] NVIDIA. Performance Monitoring Counters, BlueField SW
Manual v2.4.0.11082. https://docs.nvidia.com/
networking/display/BlueFieldSWv24011082/
Performance+Monitoring+Counters, 2022.

[55] NVIDIA. Nvidia bluefield dpu-1. https:
//docs.nvidia.com/networking/display/
BFVPIDPU/Specifications, 2023.

[56] NVIDIA. Nvidia doca dma programming guide.
https://docs.nvidia.com/doca/sdk/dma-
programming-guide/index.html, 2023.

[57] NVIDIA. Nvidia doca software framework. https://
developer.nvidia.com/networking/doca, 2023.

[58] OLUMIDE OLUSANYA AND MUNIRA HUSSAIN. Need
for Speed: Comparing FDR and EDR InfiniBand
(Part 1). https://dl.dell.com/manuals/all-
products/esuprt_software/esuprt_it_ops_
datcentr_mgmt/high-computing-solution-
resources_white-papers77_en-us.pdf, 2022.

[59] PHOTHILIMTHANA, P. M., LIU, M., KAUFMANN, A., PE-
TER, S., BODÍK, R., AND ANDERSON, T. E. Floem: A pro-
gramming system for nic-accelerated network applications. In
13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker, Eds.,
USENIX Association, pp. 663–679.

[60] REDA, W., CANINI, M., KOSTIC, D., AND PETER, S. RDMA
is turing complete, we just did not know it yet! CoRR
abs/2103.13351 (2021).

[61] SCHUH, H. N., LIANG, W., LIU, M., NELSON, J., AND KR-
ISHNAMURTHY, A. Xenic: Smartnic-accelerated distributed
transactions. In SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz, Ger-
many, October 26-29, 2021 (2021), R. van Renesse and N. Zel-
dovich, Eds., ACM, pp. 740–755.

[62] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIC, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-
ity. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019 (2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds.,
ACM, pp. 433–448.

[63] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIC, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-
ity. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019 (2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds.,
ACM, pp. 433–448.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1003

https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
 Netronome Agilio SmartNICs. https://www.netronome.com/products/smartnic/overview/
 Netronome Agilio SmartNICs. https://www.netronome.com/products/smartnic/overview/
 Netronome Agilio SmartNICs. https://www.netronome.com/products/smartnic/overview/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://docs.nvidia.com/networking/display/BlueFieldSWv24011082/Performance+Monitoring+Counters
https://docs.nvidia.com/networking/display/BlueFieldSWv24011082/Performance+Monitoring+Counters
https://docs.nvidia.com/networking/display/BlueFieldSWv24011082/Performance+Monitoring+Counters
https://docs.nvidia.com/networking/display/BFVPIDPU/Specifications
https://docs.nvidia.com/networking/display/BFVPIDPU/Specifications
https://docs.nvidia.com/networking/display/BFVPIDPU/Specifications
https://docs.nvidia.com/doca/sdk/dma-programming-guide/index.html
https://docs.nvidia.com/doca/sdk/dma-programming-guide/index.html
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers77_en-us.pdf

[64] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph ex-
ploration. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds.,
USENIX Association, pp. 317–332.

[65] SIDLER, D., WANG, Z., CHIOSA, M., KULKARNI, A., AND

ALONSO, G. Strom: smart remote memory. In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020 (2020), A. Bilas, K. Magoutis, E. P. Markatos,
D. Kostic, and M. I. Seltzer, Eds., ACM, pp. 29:1–29:16.

[66] TANG, C., WANG, Y., DONG, Z., HU, G., WANG, Z., WANG,
M., AND CHEN, H. Xindex: A scalable learned index for mul-
ticore data storage. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (New York, NY, USA, 2020), PPoPP ’20, Association
for Computing Machinery, p. 308–320.

[67] THOMAS, S., VOELKER, G. M., AND PORTER, G.
Cachecloud: Towards speed-of-light datacenter communica-
tion. In 10th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2018, Boston, MA, USA, July 9, 2018
(2018), G. Ananthanarayanan and I. Gupta, Eds., USENIX
Association.

[68] THOSTRUP, L., FAILING, D., ZIEGLER, T., AND BINNIG, C.
A dbms-centric evaluation of bluefield dpus on fast networks.
In 13th International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Stor-
age Architectures (2022).

[69] TIMOTHY PRICKETT MORGAN. Pushing PCI-express fabrics
up to the next level. https://www.nextplatform.
com/2020/03/27/pushing-pci-express-
fabrics-up-to-the-next-level/, 2022.

[70] TSAI, S., SHAN, Y., AND ZHANG, Y. Disaggregating persis-
tent memory and controlling them remotely: An exploration
of passive disaggregated key-value stores. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX
Association, pp. 33–48.

[71] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 306–324.

[72] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain replication
for supporting high throughput and availability. In 6th Sympo-
sium on Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8, 2004
(2004), E. A. Brewer and P. Chen, Eds., USENIX Association,
pp. 91–104.

[73] WANG, X., KOTRA, J. B., AND JIAN, X. Eager memory
cryptography in caches. In 55th IEEE/ACM International
Symposium on Microarchitecture, MICRO 2022, Chicago, IL,
USA, October 1-5, 2022 (2022), IEEE, pp. 693–709.

[74] WANG, Z., HUANG, H., ZHANG, J., WU, F., AND ALONSO,
G. Fpganic: An fpga-based versatile 100gb smartnic for
gpus. In 2022 USENIX Annual Technical Conference, USENIX
ATC 2022, Carlsbad, CA, USA, July 11-13, 2022 (2022),
J. Schindler and N. Zilberman, Eds., USENIX Association,
pp. 967–986.

[75] WEI, X., CHEN, R., AND CHEN, H. Fast rdma-based ordered
key-value store using remote learned cache. In 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association, pp. 117–135.

[76] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstruct-
ing RDMA-enabled distributed transactions: Hybrid is better!
In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018),
USENIX Association, pp. 233–251.

[77] WEI, X., LU, F., CHEN, R., AND CHEN, H. KRCORE: A
microsecond-scale RDMA control plane for elastic computing.
In 2022 USENIX Annual Technical Conference (USENIX ATC
22) (Carlsbad, CA, July 2022), USENIX Association, pp. 121–
136.

[78] WEI, X., LU, F., WANG, T., GU, J., YANG, Y., CHEN, R.,
AND CHEN, H. No provisioned concurrency: Fast rdma-
codesigned remote fork for serverless computing. In 17th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 23) (Boston, MA, July 2023), USENIX
Association.

[79] WEI, X., SHEN, S., CHEN, R., AND CHEN, H. Replication-
driven live reconfiguration for fast distributed transaction pro-
cessing. In Proceedings of the 2017 USENIX Annual Techni-
cal Conference (Santa Clara, CA, 2017), USENIX ATC’17,
USENIX Association, pp. 335–347.

[80] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015
(2015), E. L. Miller and S. Hand, Eds., ACM, pp. 87–104.

[81] WEI, X., XIE, X., CHEN, R., CHEN, H., AND ZANG, B.
Characterizing and optimizing remote persistent memory with
RDMA and NVM. In 2021 USENIX Annual Technical Confer-
ence, USENIX ATC 2021, July 14-16, 2021 (2021), I. Calciu
and G. Kuenning, Eds., USENIX Association, pp. 523–536.

[82] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh: Locality-
preserving Graph Traversal with Split Live Migration. In 2019
USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019 (2019), pp. 723–738.

[83] XILLYBUS. Down to the tlp: How pci express devices
talk. http://xillybus.com/tutorials/pci-
express-tlp-pcie-primer-tutorial-guide-1,
2022.

[84] ZAMANIAN, E., BINNIG, C., KRASKA, T., AND HARRIS, T.
The end of a myth: Distributed transaction can scale. Proc.
VLDB Endow. 10, 6 (2017), 685–696.

[85] ZHANG, Y., CHEN, R., AND CHEN, H. Sub-millisecond state-
ful stream querying over fast-evolving linked data. In Proceed-
ings of the 26th Symposium on Operating Systems Principles
(New York, NY, USA, 2017), SOSP’17, ACM, pp. 614–630.

[86] ZUO, P., SUN, J., YANG, L., ZHANG, S., AND HUA, Y.
One-sided rdma-conscious extendible hashing for disaggre-
gated memory. In 2021 USENIX Annual Technical Conference,
USENIX ATC 2021, July 14-16, 2021 (2021), I. Calciu and
G. Kuenning, Eds., USENIX Association, pp. 15–29.

1004 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
https://www.nextplatform.com/2020/03/27/pushing-pci-express-fabrics-up-to-the-next-level/
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1

Ensō: A Streaming Interface for NIC-Application Communication
Hugo Sadok Nirav Atre Zhipeng Zhao Daniel S. Berger

James C. Hoe Aurojit Panda Justine Sherry Ren Wang
Carnegie Mellon University Intel Microsoft New York University University of Washington

Abstract
Today, most communication between the NIC and software
involves exchanging fixed-size packet buffers. This packetized
interface was designed for an era when NICs implemented few
offloads and software implemented the logic for translating
between application data and packets. However, both NICs and
networked software have evolved: modern NICs implement
hardware offloads, e.g., TSO, LRO, and serialization offloads
that canmore efficiently translate between application data and
packets. Furthermore, modern software increasingly batches
network I/O to reduce overheads. These changes have led to
a mismatch between the packetized interface, which assumes
that the NIC and software exchange fixed-size buffers, and
the features provided by modern NICs and used by modern
software. This incongruence between interface and data adds
software complexity and I/O overheads, which in turn limits
communication performance.

This paper proposes Ensō, a new streaming NIC-to-software
interface designed to better support how NICs and software
interact today. At its core, Ensō eschews fixed-size buffers, and
instead structures communication as a stream that can be used
to send arbitrary data sizes. We show that this change reduces
software overheads, reduces PCIe bandwidth requirements, and
leads to fewer cache misses. These improvements allow an Ensō-
based NIC to saturate a 100Gbps link with minimum-sized
packets (forwarding at 148.8Mpps) using a single core, improve
throughput for high-performance network applications by 1.5–
6×, and reduce latency by up to 43%.

1 Introduction

Network performance dictates application performance for
many of today’s distributed and cloud computing applica-
tions [48]. While growing application demands have led to
a rapid increase in link speeds from 100Mbps links [31] in
2003 to 100Gbps in 2020 [89] and 200Gbps in 2022 [58], a
slowdown in CPU scaling has meant that applications of-
ten cannot fully utilize these links. Consequently, recent
changes to NICs and networked software have focused on
reducing the number of CPU cycles required for communica-
tion: NIC offloads allow the NIC to perform common tasks
(e.g., segmentation) previously implemented in software; and
more efficient network I/O libraries and interfaces, includ-
ing DPDK and XDP, allow applications to reduce processing
in the network stack. We begin with the observation that
despite these changes, utilizing 100Gbps or 400Gbps links

remains challenging. We demonstrate that this is because of
inefficiencies in how software communicates with the NIC.
While NICs and the software that communicate with them
have themselves changed significantly in the last decade,
the NIC-to-software interface has remained unchanged for
decades.1
Most NICs currently provide an interface where all com-

munication between software and the NIC requires sending
(and receiving) a sequence of fixed-size buffers, which we
call packet buffers in this paper. Packet buffer size is dictated
by software, and is usually chosen to be large enough to fit
MTU-sized packets, e.g., Linux uses 1536 byte packet buffers
(sk_buffs) and DPDK [19] uses 2kB packet buffers (mbufs)
by default. We use the term packetized NIC interface to refer
to any NIC-to-software interface that uses packet buffers
for communication. We observe that two changes in how
NICs are used today have led to an impedance mismatch
with packetized interfaces.

First, many NIC offloads such as TCP Segmentation Of-
floading (TSO) [20, 39], Large Receive Offloading (LRO) [14],
serialization offloads [44, 71, 86], and transport offloads [3,
14, 27, 77] take inputs (and produce outputs) that can span
multiple packets and vary in size. In using these offloads
with a packetized interface, software must needlessly split
(and recombine) data into multiple packet buffers when com-
municating with the NIC.

Second, software logic for sending (and receiving) packets
uses batches of multiple packets to reduce I/O overheads. In
the common case, NICs and software process packets in a
batch sequentially. However, packetized interfaces cannot
ensure that packets in a batch are in contiguous and sequen-
tial memory locations, reducing the effectiveness of several
CPU and IO optimizations.
This mismatch between how modern NICs are used and

what the packetized interface provides causes three problems
that affect application performance:
Packetized abstraction: While imposing fixed-size buffers
works reasonably well when software always needs to ex-
change MTU-sized packets, it becomes clumsy when used
with higher-level abstractions such as application-level mes-
sages (e.g., RPCs), bytestreams, or even simpler offloads such
as LRO. When using this interface, the NIC (or software)
must split messages that are larger than the packet buffer
into multiple packet buffers. Applications then need to deal

1Osiris [22], published in 1994, describes an interface that is nearly
identical to the one adopted by many modern NICs.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1005

with input that is split across multiple packet buffers. Do-
ing so either requires that they first copy data to a separate
buffer, or that the application logic itself be designed to deal
with packetized data. Indeed, implementing any offload or
abstraction that deals with more than a single packet’s worth
of data (e.g., transport protocols, such as TCP, that provide a
bytestream abstraction) in a NIC that implements the packe-
tized interface requires copying data from packet buffers to
a stream. This additional copy can add significant overhead,
negating some of the benefits of such offloads [72, 88].

Poor cache interaction: Because the packetized interface
forces incoming and outgoing data to be scattered across
memory, it limits the effectiveness of prefetchers and other
CPU optimizations that require predicting the next memory
address that software will access—a phenomenon that we
refer to as chaotic memory access. As we show in §7, chaotic
memory accesses can significantly degrade application per-
formance, particularly those that deal with small requests
such as object caches [9, 57] and key-value stores [4, 52].

Metadata overhead: Since the packetized interface relies
on per-packet metadata, it spends a significant portion of
the PCIe bandwidth transferring metadata—as much as 39%
of the available bandwidth when using small messages. This
causes applications that deal with small requests to be bottle-
necked by PCIe, which prevents them from scaling beyond
a certain number of cores. The use of per-packet metadata
also contributes to an increase in the number of memory
accesses required for software to send and receive data, fur-
ther reducing the cycles available for the application. We
observed scalability issues due to PCIe bottleneck in our
implementation of Google’s Maglev Load Balancer [23].

In this paper, we propose Ensō, a new interface for NIC-
application communication that breaks from the lower-level
concept of packets. Instead, Ensō provides a streaming ab-
straction that the NIC and applications can use to commu-
nicate arbitrary-sized chunks of data. Doing so not only
frees the NIC and application to use arbitrary data formats
that are more suitable for the functionality implemented by
each one but also moves away from the performance issues
present in the packetized interface. Because Ensō makes
no assumption about the data format itself, it can be repur-
posed depending on the application and the offloads enabled
on the NIC. For instance, if the NIC is only responsible for
multiplexing/demultiplexing, it can use Ensō to deliver raw
packets; if the NIC is also aware of application-level mes-
sages, it can use Ensō to deliver entire messages and RPCs
to the application; and if the NIC implements a transport
protocol, such as TCP, it can use Ensō to communicate with
the application using bytestreams.
To provide a streaming abstraction, Ensō replaces ring

buffers containing descriptors, used by the current NIC in-
terface, with a ring buffer containing data. The NIC and
the software communicate by appending data to these ring

buffers. Ensō treats buffers as opaque data, and does not
impose any requirements on their content, structure or size,
thus allowing them to be used to transfer arbitrary data,
whose size can be as large as the ring buffer itself. Ensō
also significantly reduces PCIe bandwidth overhead due to
metadata, because it is able to aggregate notifications for
multiple chunks of data written to the same buffer. Finally,
it enables better use of the CPU prefetcher to mask memory
latency, thus further improving application performance.

Although the insight behind this design is simple, it is chal-
lenging to implement in practice. For example, CPU-NIC
synchronization can easily lead to poor cache performance:
any approach where the NIC and CPU poll for changes at
a particular memory location will lead to frequent cache in-
validation. Ensō avoids this obstacle by relying on explicit
notifications for CPU-NIC synchronization. Unfortunately,
explicit notifications require additional metadata to be sent
over the CPU-NIC interconnect, which can negate any bene-
fits for interconnect bandwidth utilization. Ensō mitigates
this overhead by sending notifications reactively. We dis-
cuss our synchronization strategy in detail, as well as other
challenges to the Ensō design in §4.

To understand its performance, we fully implement Ensō
using an FPGA-based SmartNIC. We describe our hardware
and software implementations in §5 and how Ensō can be
used depending on the functionality offered by the NIC in
§6. In §7 we present our evaluation of Ensō, including its
use in four applications: the Maglev load balancer [23], a
network telemetry application based on NitroSketch [54],
the MICA key-value store [52], and a log monitor inspired by
AWS CloudWatch Logs [6]. We also implemented a software
packet generator that we use in most of the experiments.2
We observe speedups of up to 6× relative to a DPDK imple-
mentation for Maglev, and up to 1.47× for MICA with no
hardware offloads.

Finally, while Ensō is optimized for applications that pro-
cess data in order, we show that Ensō also outperforms the
existing packetized interface when used by applications that
process packets out of order (e.g., virtual switches), despite
requiring an additional memory copy (§7.2.2).

Ensō is fully open source, with our hardware and software
implementations available at https://enso.cs.cmu.edu/.

2 Background and Motivation

The way software (either the kernel or applications using
a kernel-bypass API) and the NIC exchange data is defined
by the interface that the NIC hardware exposes. Today,
most NICs expose a packetized NIC interface. This includes
NICs from several companies including Amazon [2], Broad-
com [12], Intel [39], Marvell [56], and others. Indeed, prior

2Developing this software packet generator was a necessary first step
in evaluating Ensō because no existing software packet generators could
scale to the link rates we needed to stress test Ensō!

1006 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://enso.cs.cmu.edu/

RX Descriptor Ring Buffer

TailNICHeadSW

Pkt. 2
Pkt. 1

Pkt. 3 Pkt. 4

Pkt. Buf. 1 Pkt. Buf. 3

Pkt. Buf. 2 Pkt. Buf. 4

Figure 1: Data structures used to receive packets in a packetized NIC
interface. Each packet is placed in a separate buffer that can be arranged
arbitrarily in memory.

work [68] found that of the 44 NIC drivers included in DPDK,
40 use this interface. Due to its ubiquity, the packetized
NIC interface has dictated the API provided by nearly all
high-performance network libraries, including io_uring [15],
DPDK [19] and netmap [73]. In this section, we describe the
packetized NIC interface and highlight some of the issues
that it brings to high-performance applications.

2.1 Packetized NIC Interface

A core design choice in the packetized NIC interface is to
place every packet in a dedicated packet buffer. The NIC and
the software communicate by exchanging packet descriptors.
Descriptors hold metadata, including packet size, what pro-
cessing the NIC should perform (e.g., update the checksum
or segment the packet), a flag bit, and a pointer to a separate
packet bufferwhich holds the actual packet data. Most packet
processing software pre-allocate a fixed number of buffers
for packets; new packets (either generated by an applica-
tion or incoming from the network) are assigned to the next
available buffer in the pool, which may not reside in memory
anywhere near the preceding or following packet. Because
software does not know the size of incoming packets before-
hand, buffers are often sized so that they can accommodate
MTU-sized packets (e.g., 1536B in Linux and 2kB in DPDK).

Figure 1 shows an example of a packetized NIC interface
being used to receive four packets from a particular hardware
queue on the NIC. The NIC queue is associated with a set
of NIC registers that can be used to control a receive (RX)
descriptor ring buffer and a transmit (TX) descriptor ring
buffer. Before being able to receive packets, the software
informs the NIC of the addresses of multiple available buffers
in its pool by enqueueing descriptors pointing to each one
in the RX descriptor ring buffer. The NIC can then use DMA
to write the incoming packet data into the next available
packet buffer and enqueue updated descriptors containing
metadata such as the packet size. Importantly, the NIC also
sets a ‘flag’ bit in the descriptor to signal to the software that
packets have arrived for this buffer. Observing a notification
bit for the descriptor under the head pointer, the software
can then increment the head pointer.

A similar process takes place for transmission: the sending
software assembles a set of descriptors for packet buffers that
are ready to be transmitted and copies the descriptors—but
not the packets themselves—into the TX ring buffer; the flag
bit in the descriptor is now used to signal that the NIC has

transmitted (rather than received) a packet.
One of the major benefits of dedicating buffers for each

packet is that multiplexing/demultiplexing can be done effi-
ciently in software. If the software transmitting packets is the
kernel, this might mean associating each descriptor/packet
pair with an appropriate socket; if the software in use is a
software switch [32, 67] this might mean steering the right
packet to an appropriate virtual machine. Either way, the
cleverness of the packetized NIC interface in using dedicated
packet buffers shines here: rather than copying individual
packets in the process of sorting through inbound packets,
the switching logic can deliver packet pointers to the appro-
priate endpoints. These packets can then be processed and
freed in arbitrary order.

The usage model for a modern high-performance software
stack, however, looks very different. Instead of one software
entity (e.g., kernel, software switch) mediating access to the
NIC, there may be many threads or processes with direct NIC
access (i.e., kernel bypass). High-performance NIC ASICs
exposemultiple hardware queues (as many as thousands [39])
so that each thread or process can transmit and receive data
directly to the NIC without coordination between them. The
NIC then takes on all of the responsibilities of demultiplexing,
using, e.g., RSS [82], Intel’s Flow Director [39], or (for a very
rich switching model) Microsoft’s AccelNet [28]. In this
setting, the multiplexing/demultiplexing capabilities of the
packetized NIC interface offer no additional value.

2.2 Issues with a Packetized Interface
While many high-performance applications today gain little
from a packetized interface, they still need to pay for the over-
heads accompanying it. Shoehorning data communication
between the NIC and applications into fixed-sized chunks
leads to inefficient use of CPU caches and PCIe bandwidth
for small requests, as well as additional data copies due to
fragmentation for applications that rely on large messages
or bytestreams.

In this section, we conduct microbenchmarks that isolate
these issues, and in §7, we also show the impact that these
issues have on real applications.
Chaotic Memory Access: We experiment with a simple
DPDK-based ping/pong program (a description of our testbed
is in §7) which receives a packet, increments a byte in the
packet payload, and re-transmits it. For this program, we
observed maximum throughput of 40Gbps using a 100Gb
NIC (Intel E810) and a single 3.1 GHz CPU core. When we
conduct a top-down analysis [43], we see that the application
is backend-bound, primarily due to L1 and L2 cache misses.
Figure 2a shows around 6% miss ratio for the L1d and a 55%
miss ratio for the L2 cache. This high cache miss ratio is a
direct consequence of using per-packet buffers in the packe-
tized NIC interface. First, because packet buffers themselves
are scattered in memory, reads and writes to packet data evade

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1007

L1d L2
0

20

40

60
M

iss
ra

tio
(%

)

(a)Miss ratio for L1d and L2 caches.
We observe 55% miss ratio for the L2
cache.

RD WR
0

20
40
60
80

PC
Ie

BW
(G

bp
s)

PCIe limit
Goodput
Metadata

(b) PCIe bandwidth utilization. Up
to 39% of the read bandwidth is con-
sumed with metadata.

Figure 2: PCIe bandwidth and cache misses for an application forwarding
small packets with a packetized NIC interface (E810).

any potential benefit from shared cache lines or prefetching.3
Applications like key-value stores [4, 52] or packet proces-
sors [18] exhibit very high spatio-temporal locality in their
data access: they are designed to run to completion (i.e., they
continue working on a packet or batch until the work for that
item is completed, leading to repeated accesses to the same
data), and they operate over incoming packets or batches in
the order in which they arrive (i.e., the current item being
processed serves as an excellent predictor of the next one).
However, this structure is not realized in the memory layout
of packetized buffers, and hence to any cache optimizations,
reads andwrites appear unpredictable. Second, because every
packet is paired with a descriptor, the total amount of mem-
ory required to store all of the data required for I/O increases,
exacerbating last-level cache contention simply because more
data needs to be accessed. Indeed, prior work [55, 81] has re-
peatedly demonstrated that the size of the working set for
packet processing applications often outgrows the amount
of cache space dedicated to DDIO [35], negating the benefits
of this hardware optimization to bring I/O data directly into
the cache. As we discuss in detail in §7.2.3, using a different
NIC interface that facilitates sequential memory accesses
can drop the miss ratio from 6% to 0.2% for the L1d cache,
and from 55% to 9% for the L2 cache.

Metadata Bandwidth Overhead: We observe that the
packetized NIC interface requires the CPU and the NIC to
exchange both descriptors and packet buffers. This leads to
the second problem with the packetized interface: up to 39%
of the CPU to NIC interconnect bandwidth is spent transferring
descriptors (Figure 2b). While NIC-CPU interconnect line
rates are typically higher than network line rates, the gap
between them is relatively narrow. This is particularly prob-
lematic for small transfers as the PCIe theoretical limit drops
to only 85Gbps with 64-byte transfers [62]. We also expect
this gap to remain small in the future as a state-of-the-art
next generation server with a 400Gbps Ethernet connection
and 512Gbps of PCIe 5.0 bandwidth would still bottleneck
with 39% of bandwidth wasted on metadata. This observa-
tion complements recent studies that also point to the PCIe
as a source of congestion for transport protocols [1].

3We note here that the aforementioned performance penalty arises in
spite of the fact that DPDK performs mbuf-level software prefetching.

batch

M1 M2RX Ensō Pipe A M1 M2

M5

1

RX Ensō Pipe B

RX Notification Buf.

M3 M4

A B

3

M5M3 M4

A B

2

TailNIC

HeadSWHeadSW
HeadSW

HeadSW HeadSW

TailNIC

TailNIC

TailNIC

HeadSW

TailNICTailNIC

Figure 3: Steps to receive batches of messages in two Ensō Pipes.

In summary: By pairing every packet with a separate de-
scriptor, the packetized NIC interface was well designed for
a previous generation of high-throughput networked appli-
cations which needed to implement multiplexing in software.
However, for today’s high-performance applications, it in-
troduces unnecessary performance overheads.

3 Ensō Overview

Ensō is a new streaming interface for NIC-application com-
munication. Ensō’s design has three primary goals: (1) flexi-
bility, allowing it to be used for different classes of offloads
operating at different network layers and with different data
sizes; (2) low software overhead, reducing the number of cy-
cles that applications need to spend on communication; and
(3) hardware simplicity, enabling practical implementations
on commodity NICs.
Ensō is designed around the Ensō Pipe, a new buffer ab-

straction that allows applications and the NIC to exchange
arbitrary chunks of data as if reading and writing to an un-
bounded memory buffer. Different from the ring buffers
employed by the packetized interface (which hold descrip-
tors to scattered packet buffers), an Ensō Pipe is implemented
as a data ring buffer that contains the actual packet data.

High-level operation: In Figure 3 we show how an appli-
cation, with two Ensō Pipes, receives messages. Initially, the
Ensō Pipes are empty, and the HeadSW and TailNIC point to
the same location in the buffer 1 . When the NIC receives
messages, it uses DMA to enqueue them in contiguous mem-
ory owned by the Ensō Pipes 2 . In the figure, the NIC en-
queues two messages in Ensō Pipe A’s memory, and three in
Ensō Pipe B’s memory. The NIC informs the software about
this by also enqueuing two notifications (one for each Ensō
Pipe) in the notification buffer. The software uses these noti-
fications to advance TailNIC and process the messages. Once
the messages have been processed, the software writes to a
Memory-Mapped I/O (MMIO) register (advancing HeadSW)
to notify the NIC—allowing the memory to be reused by later
messages 3 . Sending messages is symmetric, except for the
last step: the NIC notifies the software that messages have
been transmitted by overwriting the notification that the
CPU used to inform the NIC that a message was available to
be transmitted.

1008 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Ensō Pipe’s flexibility: Although Figure 3 shows the steps
to sendmessages, because Ensō Pipes are opaque, they can be
used to transmit arbitrary chunks of data. These can be raw
packets, messages composed of multiple MTU-sized packets,
or even an unbounded bytestream. The format of the data
is dictated by the application and the offloads running on
the NIC. Moreover, Ensō Pipes’ opaqueness means that they
can be mapped to any pinned memory within the applica-
tion’s memory space. Thus, by mapping both the RX and TX
Ensō Pipes to the same region, network functions and other
forwarding applications can avoid copying packets. In our
evaluation (§7) we use this approach when implementing
Maglev and a Network Telemetry application.

Performance advantages of an Ensō Pipe: The fact that
data can be placed back-to-back inside an Ensō Pipe ad-
dresses both of the performance challenges we listed previ-
ously: First, Ensō Pipes allow applications to read and write
I/O data sequentially, thus avoiding chaotic memory accesses.
Second, as shown in Figure 3, inlining data in an Ensō Pipe
removes the need for per-packet descriptors, thus reducing
the amount of metadata exchanged over the PCIe bus, and
reducing cycles spent managing (i.e., allocating and freeing)
packet buffers.

Challenges: Although implementing a ring buffer for data
transfer is, on its own, a simple idea, coordinating the notifi-
cations between the CPU and the NIC to update head and
tail pointers turns out to be challenging.

Efficient coordination: The packetized interface coordinates
incoming and outgoing packets by ‘piggybacking’ notifica-
tions in the descriptor queue itself. Each descriptor includes
a ‘flag bit’ that can be used to signal when the descriptor is
valid. Software polls the next descriptor’s flag bit to check if
a new packet arrived. We cannot use the same strategy for
Ensō Pipes as they do not assume a format for the data in
the buffer, and hence cannot embed control signals in it.
In §4.1, we discuss how naïve approaches to notification

can stress worst-case performance of MMIO and DMA. In
particular, concurrent accesses to the same memory address
can create cache contention between the CPU and the NIC.
Ensō uses dedicated notification buffers to synchronize up-
dates to head and tail pointers; when combinedwith batching
and multiqueue processing, the notification buffer approach
reduces the threat of cache contention.

Notification pacing: Ensō Pipes are designed so that notifi-
cations for multiple packets can be combined, reducing the
amount of metadata transferred between the CPU and the
NIC. However, it is still important to decide when to send
notifications: when sent too frequently they waste PCIe
bandwidth and add software overheads, but if sent too in-
frequently the core might be idle waiting for notification,
thus reducing throughput. Ensō includes two mechanisms,
reactive notifications and notification prefetching (§4.2), that

control when notifications are sent. These mechanisms are
naturally adaptive, i.e., they minimize the number of notifi-
cations sent without limiting throughput, and can be imple-
mented without adding hardware complexity.

Low hardware complexity and state: Because the design of
Ensō involves both hardware and software, we must be care-
ful to not pay for software simplicity with hardware com-
plexity. Ensō favors coordination mechanisms that require
little NIC state. We aim for a design that is simple and easily
parallelized. We present Ensō’s hardware design in §5.

Target applications: Ensō implements a streaming inter-
face that is optimized for cases where software processes
received data in order. Our evaluation (§7) shows that this
covers a wide range of network-intensive applications.

One might expect that the resulting design is ill-suited for
applications that need to multiplex and demultiplex packets
(e.g., virtual switches like Open vSwitch [67] and BESS [32]),
as such applications require additional copies with Ensō.4
However, perhaps surprisingly, Ensō outperforms the pack-
etized interface even when it requires such additional copies.
As we show in §7.2.2, when comparing the performance of
an application that uses Ensō and copies each packet, to a
similar DPDK-based application that does not copy packets,
using a CAIDA trace [13] (average packet size of 462 B), we
find that Ensō’s throughput is still 28% higher than DPDK’s
(92.6 Gbps vs. 72.6 Gbps). We discuss how Ensō can be used
depending on the applications and the functionality offered
by the NIC in §6.

4 Efficient Notifications

The key challenges in Ensō arise from efficiently coordinat-
ing Ensō Pipes between the CPU and the NIC. In this section,
we describe how Ensō efficiently coordinates pipes using
notifications (§4.1) and how it paces such notifications (§4.2).

4.1 Efficient Ensō Pipe Coordination

Recall from Figure 3 that the software and the NIC coordinate
access to RX Ensō Pipes using HeadSW and TailNIC and to TX
Ensō Pipes using HeadNIC and TailSW. How should software
and the NIC communicate pointer updates?

In the descriptor ring buffers employed by the packetized
NIC interface, software communicates pointer updates to
the NIC using MMIO writes, and the NIC communicates
pointer updates via inline signaling in the descriptor buffer
itself [25, 39], avoiding the overheads of MMIO reads. Be-
cause the descriptor’s format is defined by the NIC, the NIC

4Note that this overhead only affects applications that multi-
plex/demultiplex packets, and does not apply to software, e.g., TCP stacks,
that processes packet data butmight need to reorder packets. This is because
reordering packet data (rather than whole packets) requires a memory copy
when using either interface.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1009

RX Notification Buffer1

NotificationHead
SW

21 3

Cache line

00 0 0 0 0 00 0 0 0 0 0 0

TailNIC

HeadSW

RX Ensō Pipe

Figure 4: Notification buffer being used to notify the arrival of three chunks
of data in an RX Ensō Pipe. Notifications contain the latest TailNIC for a
given Ensō Pipe as well as a flag signal.

can dedicate a ‘flag signal’ in every descriptor to signal that
the descriptor is valid. Software can then poll the next de-
scriptor until its flag becomes valid. This way, there is no
need for the NIC to explicitly tell software of pointer updates.
Unfortunately, we cannot use this approach for Ensō. While
Ensō Pipes can still use MMIO writes for pointer updates
from software, we cannot embed inline signaling in the Ensō
Pipe itself since we do not impose any structure on the data.
We considered several design options to communicate

pointer updates. We focus on one illuminating rejected de-
sign here: sharing an address in main memory between the
NIC and software. With each Ensō Pipe, we might have
a dedicated address in memory where the NIC writes the
latest TailNIC. The software can then poll this address to de-
termine the latest value. Unfortunately, this approach leads
to contention because every time the NIC writes to memory,
the cache entry on the CPU is invalidated. If software con-
tinues to poll the same cache line, the resulting contention
reduces throughput by orders of magnitude: we measured a
throughput below 5Gbps when using small transfers with
this approach. We discuss other rejected approaches in Ap-
pendix A.

4.1.1 Notification Buffer

Ensō uses a notification buffer to communicate pointer up-
dates. Although the structure of the notification buffer on
its own does not solve the cache contention challenge, when
combined with batched notifications andwhen it is used to ag-
gregate notification updates to/frommultiple Ensō Pipes, this
approach prevents the CPU from busy waiting on the shared
cache line and hence avoids contention-induced slowdowns.
Figure 4 shows an RX Ensō Pipe with its corresponding

notification buffer. It shows how a single notification indi-
cates the presence of multiple sequential chunks of data at
the same time; we discuss how notifications are ‘batched’ or
coalesced in §4.2. Notifications contain the latest TailNIC for
a given RX Ensō Pipe as well as a flag signal that software can
use to check if the next notification is ready to be consumed.
As is done typically with descriptor ring buffers, software
advances the NotificationHeadSW using an MMIO write after
consuming a notification. Like an RX Ensō Pipe, a TX Ensō
Pipe also uses a separate notification buffer to synchronize
pointer updates. But software enqueues new notifications
when it wants to transmit a chunk of data and the NIC over-
writes the transmission notification with a completion notifi-

cation once it is done transmitting the corresponding batch.
Completions flip a flag signal, so that software can check if
the following cache line corresponds to a completion or a
pending TX notification.

4.1.2 Multiplexing and Scaling

Within a single thread: To let a single thread efficiently
access multiple Ensō Pipes, we associate multiple Ensō Pipes
with the same notification buffer. To accomplish this, notifi-
cations include an Ensō Pipe ID alongside the TailNIC and the
flag signal that we discussed before. As a result, software can
probe a single notification buffer to retrieve updates from
multiple Ensō Pipes. This avoids the known scalability issues
from needing to poll multiple queues [59, 76].

Among multiple threads: To let multiple threads send
and receive data independently, Ensō supports multiple noti-
fication buffers. Each thread can use a dedicated notification
buffer, avoiding costly synchronization primitives. When
setting up a new Ensō Pipe, software tells the NIC which
notification buffer is associated with it. Therefore, the NIC
knows to which notification buffer to send a notification.

Among multiple applications: In addition to using inde-
pendent notification buffers, Ensō ensures that applications
only have access to their own subset of Ensō Pipes and noti-
fication buffers. Each queue’s MMIO pointer register pair is
kept in its own dedicated page-aligned block of memory [22].
This lets the kernel map the pointer registers at a per-queue
granularity to the address space of the application that re-
quested it.

4.1.3 Notifications: Contention and Overhead

Allowing multiple Ensō Pipes to share the same notification
queue (§4.1.2), and having notifications arrive only for larger
batches of data (§4.2) naturally prevents contention by keep-
ing the NIC ‘ahead’ of the CPU in updating the notification
buffer, and also reduces the PCIe overhead of communicating
these notifications. As the CPU reads in data for one Ensō
Pipe, the NIC is writing new entries for subsequent Ensō
Pipes. Because the CPU is processing larger batches of data,
it is busier for longer before it needs to check the notification
buffer. Hence, as line rates go up, the two are unlikely to be
accessing the same cache line simultaneously.

4.2 Pacing Notifications

As mentioned above, Ensō batches notifications aiming to
reduce metadata bandwidth consumption and to keep CPUs
busy processing data, rather than waiting for notifications.
Using the wrong batch size, however, is problematic: a sys-
tem that uses batch sizes that are too small would unneces-
sarily transmit extra metadata, and a system that uses batch

1010 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

func onPktArrival()
if status = 0 then

notify (TailNIC)
𝑠𝑡𝑎𝑡𝑢𝑠← 1

func onRxUpdate(HeadSW)
if HeadSW = TailNIC then

𝑠𝑡𝑎𝑡𝑢𝑠← 0
else

notify (TailNIC)
Figure 5: Reactive notification mechanism for an Ensō Pipe. It only sends
notifications when new data arrives and status = 0, or if software updates
HeadSW and it is different from TailNIC.

sizes that are too large might unnecessarily inflate latency.
Ideally, the NIC could keep track of how frequently software
is consuming notifications and try to send a notification right
before software needs the next one, with all the data that
have arrived since the last software read. Ensō approximates
this ideal approach but without the impossibility of perfectly
predicting when the next read is coming.
Instead of trying to predict when to send the next notifi-

cation, Ensō lets software dictate the pace of notifications by
sending notifications reactively. It leverages the fact that the
NIC is already aware of when the software is consuming data,
as the NIC is notified whenever software updates HeadSW
through MMIO writes. Therefore, the NIC can send notifica-
tions in response to these updates. Specifically, we allow the
actual NIC tail pointer (TailNIC) to diverge temporarily from
what is observed from software via the notification buffer.
Ensō suppresses updates to TailNIC until the NIC sees an
update to HeadSW. Our implementation uses a single status
bit for every Ensō Pipe, initialized to ‘0’, which indicates if
the buffer has data.

Operation: Figure 5 summarizes the reactive notification
mechanism. Whenever data arrive at an RX Ensō Pipe
(onPktArrival), we check the status bit, only sending a
notification if status = 0 (indicating that the buffer is empty).
We also potentially send notifications whenever software
updates HeadSW (onRxUpdate). If the new HeadSW is the
same as TailNIC, it means that the buffer is now empty and
we can reset the status back to ‘0’ without sending a new
notification. Otherwise, it indicates that software is unaware
of some of the latest data in the buffer, which triggers a new
notification.

Discussion: Reactive notifications cause the notification
rate to naturally adapt to the rate at which software is con-
suming data, as well as how fast incoming data is arriving.
When software is slow to consume data from a particular
Ensō Pipe, bytes accumulate and the NIC sends fewer notifi-
cations for that Ensō Pipe. When software is fast to consume
data, it advances the HeadSW pointer more often, causing
the NIC to send frequent notifications.
Reactive notifications ensure that every piece of data is

notified, but as we will see in §7.2.5, they can impose a small
latency overhead. This overhead occurs if packet arrivals
are known to the NIC but have not yet been communicated
in the notification buffer. In this case, when HeadSW reaches
TailNIC, software has to wait for a PCIe RTT before it is
notified of the waiting packets. While an extra PCIe RTT

is unlikely to be an issue for Internet-facing applications, it
might be an issue for some latency-sensitive applications [7].

Notification prefetching: To improve latency for latency-
sensitive applications, Ensō also implements a notification
prefetching mechanism. Notification prefetching allows soft-
ware to explicitly request a new notification to the NIC. Ap-
plications can use notification prefetching either explicitly,
by calling a function to prefetch notifications for a given
Ensō Pipe, or transparently, by compiling the Ensō library
in low-latency mode. When compiled in low-latency mode,
the library always prefetches notifications for the next Ensō
Pipe before returning data for the current one. We evaluate
the impact of using notification prefetching in §7.2.5.

5 Ensō Implementation

Our Ensō implementation consists of three pieces: a
userspace library, a kernel module, and a NIC hardware
that implements Ensō. We implement the library and kernel
module on Linux in about 9k lines of C and C++17. Our
hardware implementation uses about 10k lines of SystemVer-
ilog, excluding tests and auto-generated IPs. Our hardware
implementation targets an FPGA SmartNIC but the same
design could also be implemented in an ASIC.

5.1 Software Implementation

Applications use a library call to request notification buffers
and Ensō Pipes. Typically, applications will request a noti-
fication buffer for each thread but may use multiple Ensō
Pipes per thread, depending on their needs. The library
sends requests for new Ensō Pipes and notification buffers to
the kernel, which checks permissions, allocates them on the
NIC, and then maps them into application space. Ensō Pipes
are typically allocated in pairs of RX and TX Ensō Pipe but
may also be allocated as unified RX/TX Ensō Pipes. Unified
RX/TX Ensō Pipes map the RX and TX buffer to the same
memory region, which is useful for applications that modify
data in place and send them back, e.g., network functions.
In contrast, separate Ensō Pipes map the RX and TX buffers
to the different memory regions and are useful for typical
request-response applications.
To ensure a consistent abstraction of unbounded Ensō

Pipes we must also deal with corner cases that arise when
data wrap around the buffer limit. To prevent breaking re-
ceived data that wrap around, we map the same Ensō Pipe’s
physical address twice in the application’s virtual memory
address space. This means that, to the application, the buffer
appears to be twice its actual size, with the second half always
mirroring the first one. The application can then consume
up to the full size of the buffer of data at once, regardless
of where in the buffer the current HeadSW is. To transmit
data that wrap around the buffer limit, the library checks if

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1011

Metadata
RX

Notification

Buffer

Manager

D
M

A
 E

n
g

in
e

RX Ensō Pipe

Manager 1…

Data FIFO

Data

Metadata/

Notification

…

RX Ensō Pipe

Manager 16
Data

MMIO/JTAG MMIO/JTAG

Figure 6: NIC RX Datapath.

the transfer goes around the Ensō Pipe boundary and auto-
matically partitions it into several transfers, each of which
is smaller than the overall buffer size.

5.2 Hardware Implementation
We now describe key RX and TX hardware modules.

5.2.1 RX Datapath

Figure 6 illustrates the RX datapath. It receives as input data
and metadata, which includes the Ensō Pipe ID and the size
of the corresponding data that is being enqueued. Metadata
is handled separately from the data, which allows for smaller
queues between modules. The RX datapath is composed of
the following modules:
RX Ensō Pipe Managers: The Ensō Pipe managers are
responsible for keeping Ensō Pipe state such as the buffer’s
physical address, HeadSW, TailNIC, notification buffer ID, and
notification status bit. When metadata arrive for Ensō Pipe 𝑖 ,
the manager checks for sufficient space in 𝑖 and advances 𝑖’s
TailNIC. The manager also determines whether to trigger a
notification according to the reactive notification strategy
(§4.2). To trigger a notification, the manager includes the
notification buffer ID and sets a bit in the metadata that is
sent to the Notification Buffer Manager.

We usemultiple Ensō PipeManagers for two reasons. First,
it enables flow-level parallelism. Each manager requires two
cycles to process each metadata, achieving a request rate of
125Mpps at a 250MHz clock. To achieve 100Gbps line rate
(148.8Mpps) we thus need at least two managers. Second,
multiple managers enable scaling to high Ensō Pipe counts.
We split the state for different Ensō Pipes among different
managers, allowing the logic to be closer to the memory that
it needs to access. We configure the number of Ensō Pipe
Managers at synthesis time with a default of 16, which allows
the design to meet timing for up to 16k Ensō Pipes.
RXNotification BufferManager: This module issues noti-
fications when needed. It spends one cycle for every request
and an extra cycle for those that require a notification. If we
can suppress notifications for at least 20% of requests, we
only need a single notification manager at a 250MHz clock.
A single notification manager is also sufficient since we use
fewer notification buffers than Ensō Pipes, e.g., one notifi-
cation buffer per CPU core. Our implementation defaults to
128 notification buffers but also meets timing with 1024.

TX Notification

Buffer Manager

Data FIFO

Notification FIFO

Configurator

Completion

Monitor

Configuration FIFO

…

…

DMA Read

Response

DMA Read Request

D
M

A
 E

n
g

in
e

Pending

Data

Request

MMIO/JTAG

TX Completion

…

Data

Metadata

Figure 7: NIC TX Datapath.

DMA Engine: This module uses DMA to write data and
notifications to the correct address in host memory based on
the metadata computed by the upstream modules.

5.2.2 TX Datapath and Configuration Path

The TX datapath (Figure 7) is composed of:

TXNotification BufferManager: This module keeps state
for all TX notification buffers. When software enqueues a
new TX notification and advances NotificationTailSW using
an MMIO write, the manager requests a DMA read to fetch
the notification from memory. The read request is sent to
the DMA Engine, which enqueues the DMA read response
to the Notification FIFO. The manager can then consume
the notifications, allowing it to request DMA reads for the
actual data inside an Ensō Pipe. It also sends information
about each data request to the Completion Monitor module.

Completion Monitor: When the data requested by the
TX Notification Buffer Manager arrive, the DMA Engine
enqueues them to the Data FIFO. The Completion Monitor
consumes the data and keeps track of the number of bytes
pending in each request using information that it received
from the TX Notification Buffer Manager. When the request
completes, the Completion Monitor sends a TX completion
notification to the DMA Engine that writes it to host memory.
It can then output the data and the metadata, containing the
Ensō Pipe ID and size, to downstream modules on the NIC.

Configurator: Configuration notifications are enqueued
to the Configuration FIFO instead of the Notification FIFO.
These are consumed by the Configurator, which directs the
configuration to the appropriate module on the NIC. For
instance, when the kernel sets a new Ensō Pipe, it inserts an
entry in the NIC Flow Table to direct a set of packets to it.

6 Using Ensō

Ensō provides a zero-copy streaming abstraction that the NIC
and applications can use to exchange data. Thus far, we have
shown how this abstraction can be efficiently implemented.
We now discuss how Ensō should be used.

How one uses Ensō depends on how features are split
between hardware and software. We consider three settings:
(1) Traditional NICs which implement simple offloads, such
as checksum and RSS [82], and rely on software implemen-
tation for the rest. These can use Ensō Pipes to deliver raw

1012 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

packets to/from a network stack implemented in software.
(2) NICs that implement transport offloads [10, 14, 77, 78]
in hardware. These can deliver application-level messages
or reassembled bytestreams through the Ensō Pipes. And
finally, (3) NICs that implement application logic [41, 49],
which can use Ensō Pipes to exchange application data. We
elaborate on each of these settings below.

Traditional NICs: For traditional NICs that perform simple
offloads such as checksum and segmentation, using Ensō is
not significantly different than using a packetized interface.
In both cases, the network stack is implemented in software
and only needs to be changed to use Ensō Pipes. Ensō is
designed to support several Ensō Pipes, and for most appli-
cations this change does not induce any additional software
overheads. Furthermore, high-performance packet process-
ing applications that process packets in order, as is the case
for most network functions [68] and applications that use
UDP, can consume and transmit raw packets through an
Ensō Pipe without copies.
However, applications such as virtual switches [32, 67],

that multiplex and demultiplex packets (but do not perform
reassembly or other functions that require re-ordering pack-
ets, where both interfaces require copies), need to perform
an additional copy when forwarding packets to their destina-
tion. As we show in §7.2.2, Ensō’s performance advantages
can outweigh the cost of copies even for such applications.

NICs with transport offload: NICs that implement
message-based transports (e.g., SCTP, Homa [60]) or
streaming-based transports (e.g., TCP)may also choose to use
Ensō Pipes to deliver messages or reassembled bytestreams
directly to the application without copies.

NICs with application logic: NICs that implement
application-layer protocols or include part of the applica-
tion logic may use Ensō Pipes to exchange application-level
messages with applications. For instance, a NIC that is aware
of both TCP andHTTPmay deliver incoming HTTP requests
back to back to a web server, effectively converting the ap-
plication to a run-to-completion model.

7 Evaluation

We now evaluate our design decisions using microbench-
marks, and then use four real-world applications to show
how Ensō improves end-to-end performance.

7.1 Setup and Methodology

Device Under Test (DUT): We synthesize and run the Ensō
NIC on an Intel Stratix 10 MX FPGA NIC [42] with 100Gb
Ethernet and a PCIe 3.0 x16 interface. Most of the NIC design
runs at 250MHz. Our baseline uses an Intel E810 NIC [40]
with 100Gb Ethernet and a PCIe 4.0 x16 interface, and uses

1 2 4 8
Number of cores

0

50

100

150

Pa
ck

et
ra

te
(M

pp
s)

Ensō E810

Figure 8: Raw packet rate. Ensō is bottlenecked by Ethernet while the E810
does not scale beyond two cores. The dashed line represents the 100Gb
Ethernet limit.

DPDK to minimize software overheads. All our experiments
are run on a server with an Intel Core i9-9960X CPU [38]
with 16 cores running at 3.1 GHz base frequency, 22MB of
LLC, and PCIe 3.0. We disable dynamic frequency scaling,
hyper-threading, power management features (C-states and
P-states), and isolate CPU cores from the scheduler.
Packet generator: The packet generator machine is
equipped with an Intel Core i7-7820X CPU [37] with 8
cores running at 3.6 GHz base frequency, 11MB of LLC, and
PCIe 3.0. It includes another Stratix 10 MX FPGA connected
back to back to the E810 and the FPGA on the DUT machine.
We found that existing high-performance packet genera-

tors such as DPDK Pktgen [85] and Moongen [24] are unable
to keep upwith Ensō’s packet rate because their performance
is limited by the packetized NIC interface. We thus imple-
ment EnsōGen, a packet generator based on Ensō. EnsōGen
generates packets from a pcap file, and can send and re-
ceive arbitrary-sized packets at 100Gbps line rate using a
single CPU core. We describe EnsōGen in more detail in
Appendix B. We use EnsōGen in all experiments except for
MICA, where we send requests from a MICA client (§7.3.3).
Methodology: Wemeasure zero-loss throughput as defined
in RFC 2544 [11, 61] with a precision of 0.1 Gbps. We report
median throughput and error bars for one standard deviation
from ten repetitions. We measure latency by implementing
hardware timestamping on the FPGA, which achieves 5 ns
precision for packet RTTs. EnsōGen keeps a histogram with
the RTT of every received packet, which we use to com-
pute median and 99th percentile latencies. PCIe bandwidth
measurements use PCM [17] and we obtain other CPU coun-
ters using perf [65]. To evaluate MICA, we use the same
methodology as the original paper [52] for consistency.

7.2 Microbenchmarks
We start by using microbenchmarks to evaluate Ensō’s per-
formance and the design decisions we made.

7.2.1 Packet Rate

We start by measuring how fast Ensō can process packets.
We compare the performance of an Ensō-based echo server
to that of a DPDK-based echo server. On receiving a packet,

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1013

64 128 256 512 1024 1518
Packet size (bytes)

0

25

50

75

100

�
ro

ug
hp

ut
(G

bp
s)

Ensō
E810

Figure 9: Throughput when forwarding packets between two queues. Ensō
outperforms zero-copy E810 even when it needs to copy packets.

both versions increment a value in each packet’s payload and
then send the packet back out through the same interface.
We increment the payload value to ensure that all packets
are brought into the processing core’s L1d cache. For the
Ensō echo server, we use an RX/TX Ensō Pipe, which lets it
echo packets without copies.

Figure 8 compares the packet rate for Ensō and DPDK for
different numbers of cores. Even with a single core, Ensō
is bottlenecked by Ethernet, achieving 148.8Mpps. In con-
trast, the E810 with DPDK achieves 59Mpps with a single
core and does not scale beyond two cores, where it peaks at
88Mpps. Beyond two cores, the experiments with the E810
are bottlenecked by PCIe bandwidth, which is insufficient for
transferring packet data and descriptor metadata (§7.2.4). As
a result, the number of packets dropped by the E810 NIC in-
creases as we increase the number of cores, and the zero-loss
throughput decreases beyond two cores.

7.2.2 Packet Forwarding with Copies

As we discussed in §3, Ensō’s streaming interface targets
applications that process received data in order. With Ensō,
applications that multiplex and demultiplex data, such as
virtual switches [32, 67], need to copy packets to forward
them to their destination. However, as we will see next, Ensō
outperforms the E810 even in this scenario.

To quantify the overhead of multiplexing and demultiplex-
ing data, we implement a simple packet forwarding applica-
tion that swaps MAC addresses and copies incoming packets
to a different TX Ensō Pipe. We compare this application
against an equivalent zero-copy DPDK implementation. Fig-
ure 9 shows the throughput when forwarding packets of
different sizes using a single CPU core. Packet copies add
overhead to Ensō, which can no longer forward 64-byte pack-
ets at 100Gbps (148.8Mpps). However, Ensō’s throughput
with 64-byte packets (91.7 Gbps) is still more than 2× that
achieved by the E810 with DPDK without copies (39.6 Gbps).
For other packet sizes, Ensō achieves line rate. We also eval-
uate the throughput for the same application when send-
ing packets from a CAIDA trace [13]. For this trace Ensō’s
throughput is 92.6 Gbps, compared to 72.6 Gbps for the E810
with DPDK without copies.

This result came as a surprise to us as our goal with Ensō
was never to target multiplexing/demultiplexing in software.

Ensō Chaotic Ensō E810
Throughput 100.0 Gbps 38.0 Gbps 41.1 Gbps

Rate 148.8Mpps 56.5Mpps 61.1Mpps
L1d miss/total 22.8M/11,597M (0.2%) 557M/3,949M (14%) 1,357M/21,339M (6%)
L2 miss/total 2.1M/22.8M (9%) 382M/558M (68%) 747M/1,357M (55%)

LLC miss/total 541/2.1M (0.03%) 348k/382M (0.09%) 9,086/747M (0.001%)

Table 1: Effect of chaotic memory accesses on throughput and cache misses.
Results are the average of 10 runs, each lasting 10 s.

It also puts into question the usefulness of a packetized in-
terface, as its overheads can be greater than those imposed
by packet copies.

Next, we use more detailed microbenchmarks that help ex-
plain where Ensō’s performance improvement comes from.

7.2.3 Effect of Chaotic Memory Accesses on Cache

We now show that placing messages sequentially in an Ensō
Pipe is important for Ensō’s performance. As we discussed
previously, not using sequential buffers results in chaotic
memory accesses, which reduces the effectiveness of hard-
ware prefetchers (e.g., streaming prefetcher [36]). To evalu-
ate this claim, we built a modified version of Ensō, which we
call Chaotic Ensō, that changes the gaps in memory between
subsequent messages. We compute the gap deterministically
based on the message’s current position in an Ensō Pipe,
ensuring that we add no additional software overhead when
using Chaotic Ensō.
We benchmarked Ensō, Chaotic Ensō, and the E810 NIC

using a program that receives and increments packets (but
does not send them back). We measured zero-loss through-
put, and cache miss rates at this throughput.

We show the results in Table 1. Observe that Chaotic Ensō
achieves a lower throughput of 56.5Mpps than even the E810.
The number of cache misses reveals why: despite processing
fewer packets per second (and hence having fewer cache
accesses), Chaotic Ensō has an order-of-magnitude (557 mil-
lion vs. 22.7 million) more L1d cache misses than Ensō. This,
in turn, leads to an order of magnitude (558 million vs. 22.8
million) more accesses to L2 cache, thus increasing packet
processing overheads. We also observe that the E810 has
more cache accesses than either Ensō or chaotic Ensō, this
is because it uses a descriptor per packet and thus requires
the application to read more data. Finally, we observed that
LLC misses were rare in all three configurations.

7.2.4 PCIe Bandwidth

Next, we evaluate the importance of reducing packet meta-
data by eliminating descriptors. We do so by measuring PCIe
bandwidth when using the echo server described in §7.2.1
with 64-byte packets. In what follows, PCIe writes refer to
DMA transfers from NIC to host memory, while PCIe reads
refer to DMA transfers from the host memory to the NIC.

Unlike other microbenchmarks, we do not limit ourselves
to zero-loss throughput for this experiment, and instead send

1014 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 4 8
Number of cores

0

20

40

60

80

PC
Ie

ba
nd

w
id

th
(G

bp
s)

Ensō Goodput
E810 Goodput

Ensō RD
Ensō WR

E810 RD
E810 WR

Figure 10: PCIe bandwidth utilization for read (RD) and write (WR) trans-
actions. The bars represent the overall PCIe bandwidth utilization, while
the lines represent the goodput, i.e., the amount of PCIe bandwidth used to
transmit packet data. Ensō uses little PCIe bandwidth for metadata, causing
it to achieve a higher goodput while consuming less overall PCIe bandwidth.

packets at line rate. This ensures that software overheads do
not limit observed PCIe bandwidth, since drops due to queu-
ing do not reduce throughput. We measure PCIe bandwidth
and the rate at which the packet generator receives packets.
We use this to calculate the fraction of PCIe bandwidth used
for actual packet data (goodput).5
We report the results in Figure 10, where we show both

PCIe goodput and total PCIe bandwidth for read (RD) and
write (WR) directions. We draw four conclusions from it:
1. With one core, the E810 is CPU-bound, and the NIC

drops incoming packets because of a lack of buffers in
host memory. This reduces goodput and PCIe band-
width utilization.

2. Beyond two cores, the E810 becomes PCIe bound, and
consumes up to 84.1 Gbps of PCIe read bandwidth. This
is close to 85Gbps, the theoretical limit for PCIe Gen3
x16 with 64-byte transfers [62].

3. Even though the E810 has a lower goodput, it consumes
more PCIe bandwidth due to metadata. This overhead
accounts for up to 39% of the PCIe read bandwidth. In
contrast Ensō’s metadata overhead remains below 1.2%.

4. Although barely noticeable in the plot, Ensō’s PCIe
write bandwidth utilization increases as we increase the
number of cores: going up from 76.4 Gbps (one core) to
77.2 Gbps (eight cores). This is because the NIC sends
reactive notifications more frequently when software
consumes packets faster.

While newer PCIe generations, including PCIe Gen 4,
have higher capacity and will no longer be a bottleneck for
100Gbps traffic, they will continue to be a problem for NICs
that have multiple 100Gbps interfaces and for future 400 and
500Gbps NICs. Even with PCIe Gen 5 and a 400Gbps NIC,
the ratio of PCIe to ethernet bandwidth remains the same as
in our setting with PCIe Gen 3.

7.2.5 Reactive Notifications and Latency

As we discussed in §4.2, Ensō is able to reduce metadata
overhead by sending notifications reactively. We measure

5The maximum goodput achievable with 64-byte packets and 100Gb
Ethernet is 76.19 Gbps, since Ethernet adds 20 bytes of overhead per packet.

0 25 50 75 100
O�ered load (Gbps)

0
10
20
30
40
50

La
te

nc
y

(µ
s) Reactive 99th pctl.

Reactive 50th pctl.
Per packet 99th pctl.
Per packet 50th pctl.

Figure 11: RTT for different loads when using a notification per packet or
reactive notifications without notification prefetching.

0 25 50 75 100
O�ered load (Gbps)

0
10
20
30
40
50

La
te

nc
y

(µ
s) Ensō (No pref.) 99th pctl.

Ensō (No pref.) 50th pctl.
Ensō (Pref.) 99th pctl.
Ensō (Pref.) 50th pctl.
E810 99th pctl.
E810 50th pctl.

Figure 12: RTT for different loads for the E810 as well as Ensō with and
without notification prefetching.

the impact reactive notifications have on throughput and
latency, by comparing Ensō’s performance (reactive) to that
of a variant of Ensō (per-packet) that sends a notification for
each packet. We again reuse the echo server from previous
microbenchmarks for this.
Figure 11 shows the RTT (50th and 99th percentiles) as

we increase load for both cases. While reactive notifications
can sustain up to 100Gbps of offered load, a design using
per-packet notifications can only sustain 50Gbps. However,
reactive notifications also add latency with increased load.
We use notification prefetching to minimize latency un-

der high loads.6 When using notification prefetching, the
software explicitly sends the NIC a request for notifications
pertaining to the next Ensō Pipe, while consuming data from
the current Ensō Pipe. This effectively doubles the number
of notifications that the NIC sends to software at a high rate
but ensures that the software does not need to wait for a
PCIe RTT before processing the next Ensō Pipe.

Figure 12 shows the RTT with an increasing load for Ensō
with and without notification prefetching and for an E810
NICwithDPDK. We observe that notification prefetching sig-
nificantly reduces Ensō’s latency, and allows us to achieve la-
tency comparable to the E810, while still sustaining 100Gbps.

7.2.6 Sensitivity Analysis

Finally, we use microbenchmarks to evaluate Ensō’s sensi-
tivity to different configuration parameters:
Impact of the number of Ensō Pipes: We measure the
impact of increasing the number of Ensō Pipes by varying the
number of active Ensō Pipes, and using a workload where
each incoming packet goes to a different Ensō Pipe. We
partition Ensō Pipes evenly across all cores. Our results in
Figure 13 show that (a) we need at least two Ensō Pipes to

6By default Ensō does not prefetch notifications. Latency-sensitive ap-
plications may enable notification prefetching at compile time.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1015

1 2 4 8 16 32 64 128 256 512 1024
Number of Ensō Pipes

0

50

100

150

Pa
ck

et
ra

te
(M

pp
s)

1 core
2 cores

4 cores
8 cores

Figure 13: Packet rate for different numbers of Ensō Pipes and core counts.
The dashed line represents the 100Gb Ethernet limit.

0
25
50
75

100
1 core 2 cores

64 128 256 512 1024 1518
0

25
50
75

100
4 cores

64 128 256 512 1024 1518

8 cores

Packet size (bytes)

�
ro

ug
hp

ut
(G

bp
s)

Ensō E810

Figure 14: Sensitivity analysis with different numbers of cores and packet
sizes. Ensō is bottlenecked by 100Gb Ethernet in all scenarios.

achieve line rate, since this allows us to mask notification
latency; and (b) that throughput drops when a core has more
than 32 Ensō Pipes, or eight cores have more than 512. Note
that this is a pessimal workload, and realistic workloads are
likely to perform better even with many queues [30].

Impact of packet sizes and cores: In Figure 14 wemeasure
the impact of varying packet size and number of cores, and
find that Ensō can always sustain full line rate, regardless of
packet size and core count.

7.3 Application Benchmarks

We now evaluate how Ensō impacts the performance of
real applications. We ported four different applications to
use both DPDK and Ensō. These applications represent
three classes of network-intensive applications (raw packets,
message-based, and streaming) that we expect to be used
with Ensō: Google’s Maglev Load Balancer [23], a network-
telemetry application based on NitroSketch [54], MICA Key
Value Store [52], and a log monitor inspired by AWS Cloud-
Watch Logs [6]. To enable a fair comparison, we use the same
processing logic for both DPDK and Ensō-based implemen-
tations, changing only the wrapper code used to send and
receive packets. Moreover, we only enable simple traditional
offloads on the NIC, e.g., RSS, Flow Director, and checksum,
for both Ensō and DPDK. We expect Ensō to perform even
better with more offloads on the NIC (§6).

7.3.1 Maglev Load Balancer

We implemented Google’s Maglev load balancer [23] as fol-
lows. We replicate the consistent-hashing algorithm pro-

1 2 4 8
Number of cores

0

50

100

150

Pa
ck

et
ra

te
(M

pp
s)

Ensō (Cached)
Ensō (SYN Flood)

E810 (Cached)
E810 (SYN Flood)

Figure 15: Packet rate for the Maglev load balancer under two types of
workloads. The dashed line is the 100Gb Ethernet limit.

posed in the Maglev paper, caching recent flows in a flow
table, as also suggested in the paper. The load balancer ul-
timately determines a backend server for every incoming
packet, rewriting the packet’s destination IP to that of the
chosen backend server. To steer packets among different
cores, we use a hash of the 5-tuple (RSS) in both systems.
We evaluate our implementation using two extreme types
of workloads: one with only 16 flows, which means that
packets always hit the flow cache; and another with a SYN
flood, which means that packets always miss the flow cache.
In both cases, we use small 64-byte packets as Maglev is mo-
tivated by the need to load balance small requests [23, §3.2].
For Ensō, we use unified RX/TX Ensō Pipes to avoid copying
the packet when forwarding it back.

Figure 15 shows the packet rate with both the E810 NIC us-
ing DPDK and Ensō as we scale the number of cores. With a
single core and the cached workload, Ensō achieves a packet
rate of 138Mpps, approximately 6× the 23Mpps achieved
by the E810. With the SYN flood workload, Ensō achieves
79Mpps, approximately 5× the 16Mpps achieved by the
E810.7 With four cores, Ensō becomes bottlenecked by Eth-
ernet for both workloads; and with eight cores, the DPDK
implementation becomes bottlenecked by PCIe (§7.2.4).

7.3.2 Network Telemetry

Sketching algorithms are popular primitives for many net-
work telemetry tasks (e.g., heavy-hitter detection, flow count
estimation) because of their small memory footprint and the-
oretical accuracy guarantees. NitroSketch [54] is a sketching
framework that enables software sketches to achieve high
performance on commodity servers without sacrificing accu-
racy. To evaluate this class of applications, we implemented
a Count-Min Sketch (CMS) using the NitroSketch framework
and Ensō. As in Maglev, we use unified RX/TX Ensō Pipes.
We benchmarked our implementation using two work-

loads: 64B packets (emulating the stress-test performed
in [54]), and a busy period sampled from the 2016 CAIDA
Equinix 10G dataset [13], with an average packet size of 462B.

7Wenote thatDPDK’s packet rate of 16Mppswith a single core is in fact a
good packet rate for DPDK. For instance, NetBricks’ Maglev implementation
achieves 9.2Mpps with a single core [64]. We attribute the improvement in
our DPDK numbers to NetBricks’ unoptimized implementation and our use
of a newer CPU with better single-thread performance.

1016 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 2 4 8
Number of cores

0

10

20

30

40

50

Re
qu

es
tr

at
e

(M
op

s) Ensō
E810

Figure 16: MICA throughput with 8B
keys and values.

0 1 2 3 4 5 6 7
O�ered load (Mops)

0

20

40

60

80

La
te

nc
y

(µ
s)

Pa
ck

et
lo

ssEnsō
E810

Figure 17: Mean RTT for MICA as a
function of offered load (1 core).

0 5 10 15 20 25 30
O�ered load (Mops)

0

20

40

60

80

La
te

nc
y

(µ
s)

Pa
ck

et
lo

ssEnsō
E810

Figure 18: Mean RTT for MICA as a
function of offered load (4 cores).

ap
ac
he

do
ve
co
t
ex
im

my
sq
l

ng
in
x
pa
m

po
st
fi
x

se
li
nu
x

si
ev
e
ss
hd

Target application log

0

25

50

75

100

�
ro

ug
hp

ut
(G

bp
s)

Ensō
E810

Figure 19: Log monitor throughput
for different target applications.

With a single core, Ensō sustains a zero-loss throughput of
81.5 Gbps (121Mpps), approximately 3.5× that achieved by
the E810 (22.8 Gbps or 33.9Mpps) on 64B packets. On the
CAIDA trace, Ensō achieves 94.9 Gbps, a 21% improvement
over the E810 (78.3 Gbps); the application remains compute-
bound in this setting, but Ensō shrinks the fraction of time
spent performing network I/O, which improves performance.

7.3.3 MICA Key-Value Store

MICA [52] is a state-of-the-art key-value (KV) store which is
also a popular benchmark in the literature [34,46,47,51,69,79].
Different from Maglev and the Network Telemetry applica-
tion, that operate on raw packets and forward them backwith
modifications, MICA represents a typical message-based ap-
plication whose responses must be constructed separately
from the incoming request. Also different from these ap-
plications, latency is typically more critical for key-value
stores [7]. MICA also entails significantly more work per
packet (in terms of both compute and memory accesses) and
is, therefore, less likely to become network-bound.
For the following experiments, we set the size for both

keys and values to 8B (corresponding to the ‘tiny’ configura-
tion in [52]). We report results for operations skewed 50%
towards GET requests and with a uniform distribution of key
popularity, but these generalize to other configurations as
well. We use the same throughput metric as described in [52]
(tolerating <1% loss at the NIC), and the same methodology
for measuring end-to-end latency (the client tags each re-
quest with an 8B timestamp, then computes latency based
on the arrival time of the corresponding response).
Figure 16 shows the steady-state throughput in millions

of operations per second (Mops) achieved by MICA for both
E810 with DPDK and Ensō for different numbers of cores.
With a single core, Ensō achieves 7.65Mops, a 31% improve-
ment over the E810.8 While this might seem modest at first
(compared to the 6× speedup on Maglev), note that MICA is
significantly more compute- and memory-intensive than Ma-
glev. Thus, while DPDK adds considerable CPU overhead, it
corresponds to a smaller fraction of the overall compute time.

8For consistency, all the MICA experiments use the original, unmodified
MICA client implemented with DPDK. We observe even better perfor-
mance when using a MICA client ported to Ensō (up to 47% improvement
in throughput).

With 2 and 4 cores, we see throughput speedups of 33% and
23%, respectively. At 8 cores, the bottleneck moves to a dif-
ferent part of the system (i.e., memory). We report numbers
for the ‘tiny’ configuration since it represents a significant
fraction of requests found in real workloads [4, 57], while
also being the most challenging workload for MICA. We also
tested other configurations with larger keys and values, ob-
taining up to 29% improvement for the ‘small’ workload (16B
keys and 64B values) and up to 12% for the ‘large’ workload
(128B keys and 1024B values).

We also evaluate latency, plotting the average request
latency as a function of the offered load when using a server
with a single core (Figure 17) or four cores (Figure 18). For
both configurations, we find that Ensō outperforms the E810
in terms of both throughput and latency. With a single core,
Ensō reduces latency by up to 8 µs (43% reduction) before the
queues start to build up and, with four cores, Ensō reduces
latency by up to 6 µs (36% reduction).

7.3.4 Log Monitor

To understand Ensō’s effect on streaming applications, we
implemented a log monitor. The log monitor is inspired by
AWS CloudWatch Logs [6], which lets users centralize logs
from different hosts and craft queries to look for specific
patterns and raise alarms. Like, AWS CloudWatch Logs In-
sights [5], the log monitor also supports Hyperscan [84] to
search formultiple regular expressions. We use Hyperscan in
streaming mode for both Ensō and DPDK implementations.
To feed the system, we use MTU-sized packets, carrying sys-
tem logs extracted from long-running Linux hosts. We also
configured the log monitor to look for regular expressions
extracted from Fail2ban [45]. We run experiments target-
ing each of the ten most popular applications supported by
Fail2ban according to the Debian package statistics [16].

Figure 19 shows the throughput we achieve when target-
ing each of the ten applications. Performance is dictated
primarily by the number and complexity of the regular ex-
pressions that are required by each target. Ensō’s throughput
is higher across all targets but the gap is more noticeable for
those with simpler or fewer regular expressions, with almost
double the throughput when targeting postfix, selinux,
or sieve. The reasons for Ensō’s improvement in perfor-
mance are twofold: First, Hyperscan performs better when

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1017

larger chunks of data are handed to it at once. With Ensō, we
can invoke Hyperscan with large chunks of contiguous logs
delivered from the NIC but with DPDK we need to invoke
Hyperscan for every DPDK mbuf. Second, as demonstrated
in §7.2.3, Ensō’s memory access patterns are sequential, mak-
ing better use of the CPU prefetcher.

8 Related Work

Direct application access: While giving applications direct
access to the NIC has been a common theme of research for
more than three decades [8, 22, 26, 33, 50, 66, 73, 75, 80, 87, 88],
most work accepts the NIC interface as a given and instead
look at how to optimize the software interface exposed to ap-
plications. A notable exception is Application Device Chan-
nels [22], which gives control of the NIC to the kernel while
giving applications independent access to different queues.
We take inspiration from it in the way that we allow multiple
applications to share the same NIC.

Alternative NIC interfaces: There are also proposals that
try to address some of the performance and abstraction issues
that we highlighted for the packetized interface.

In terms of performance, NvidiaMLX 5NICs [20] provide a
feature named Multi-Packet Receive Queue (MPRQ) that can
potentially reduce PCIe RD bandwidth utilization with meta-
data by allowing software to post multiple packet buffers
at once. However, this is not enough to completely avoid
PCIe bottlenecks as the NIC still needs to notify the arrival
of every packet, consuming PCIe WR bandwidth. Another
proposed change to the NIC interface is Batched RxList [70].
This design aggregates multiple packets in the same buffer
as a way to allow descriptor ring buffers to be shared more
efficiently bymultiple threads, which in turn could help them
avoid the leaky DMA problem [81].
In terms of abstraction, U-Net [83] and, more recently,

NICA [27] allow the NIC to exchange application-level mes-
sages directly. U-Net proposes a communication abstraction
that resembles part of what is now libibverbs (RDMA) [53]
and NICA uses a similar mechanism named “custom rings.”
However, similar to the packetized interface, both U-Net
and NICA use descriptors and scattered buffers and, as such,
inherit its performance limitations.

Application-specific hardware optimizations: Prior
work has optimized the NIC for specific applications.
FlexNIC [49] quantifies the benefits that custom NIC inter-
faces could have to different applications. NIQ [29] imple-
ments a mechanism to reduce latency for minimum-sized
packets by using MMIO writes to transmit these packets.
It also favors MMIO reads over DMA writes for notifying
incoming packets. NIQ’s reliance on MMIO means that it
is mostly useful for applications that are willing to vastly
sacrifice throughput and CPU cycles to improve latency. nm-

NFV [69] stores packet payloads on NIC memory, sending
only the packet headers inlined inside descriptors, which is
useful for network functions that only need to modify the
header. This is orthogonal to Ensō’s interface changes and
could also be used in conjunction with it.

Application-specific software optimizations: Some pro-
posals avoid part of the overheads of existing NICs with
application-specific optimizations in software. TinyNF [68]
is a userspace driver optimized for network functions (NFs).
It relies on the fact that NFs typically retransmit the same
packet after processing. It keeps the set of buffers in the RX
and TX descriptor rings fixed, reducing buffer management
overheads. eRPC [46] is an RPC framework that employs
many RPC-specific optimizations. For instance, it reduces
transmission overheads by ignoring completion notifications
from the NIC, instead relying on RPC responses as a proxy for
completions. FaRM [21] is a distributed memory implemen-
tation. It uses one-sided RDMA to implement a message ring
buffer data structure that has some similarities to an Ensō
Pipe. However, different from an Ensō Pipe, FaRM’s message
buffer is not opaque (enforcing a specific message scheme),
must be exclusive to every sender, and lacks a separate noti-
fication queue (requiring the receiver to fill the buffer with
zeros and to probe every buffer for new messages).

9 Conclusion

Ensō provides a new streaming abstraction for communica-
tion between software and NICs. It is better suited to modern
NICs with offloads and improves throughput by up to 6×
by being more cache- and prefetch-friendly and by reducing
the amount of metadata transferred over the IO bus. While
this paper focused on using Ensō for NIC-to-software com-
munication, we believe that a similar approach might also
apply to other I/O devices and accelerators, and we hope to
explore this in future work.

Acknowledgments

We thank our shepherd, Jon Crowcroft, and the anonymous
OSDI ’23 reviewers for their great comments. We thank Fran-
cisco Pereira andAdithya Abraham Philip for their comments
on this and earlier drafts of this paper, and Ilias Marinos for
the discussions and feedback regarding applications. We also
thank the people from Intel and VMware that gave us feed-
back throughout this work, including Roger Chien, David
Ott, Ben Pfaff, Yipeng Wang, and Gerd Zellweger.
This work was supported in part by Intel and VMware

through the Intel/VMware Crossroads 3D-FPGA Academic
Research Center, by a Google Faculty Research Award, and
by ERDF through the COMPETE 2020 program as part of
the project AIDA (POCI-01-0247-FEDER-045907). Nirav Atre
was supported by a CyLab Presidential Fellowship.

1018 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understand-
ing host interconnect congestion. In Proceedings of
the 21st ACM Workshop on Hot Topics in Networks, Hot-
Nets ’22, pages 198–204, New York, NY, USA, 2022. 2.2

[2] Amazon. DPDK driver for elastic network adapter
(ENA). https://github.com/amzn/amzn-drivers/
tree/master/userspace/dpdk, 2022. 2

[3] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed NICs. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’20,
pages 93–109, Santa Clara, CA, February 2020. 1

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Con-
ference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’12, pages 53–64, New York, NY,
USA, 2012. 1, 2.2, 7.3.3

[5] AWS. CloudWatch Logs Insights query
syntax, 2022. https://docs.aws.amazon.
com/AmazonCloudWatch/latest/logs/CWL_
QuerySyntax.html. 7.3.4

[6] AWS. What is Amazon CloudWatch
Logs?, 2022. https://docs.aws.amazon.
com/AmazonCloudWatch/latest/logs/
WhatIsCloudWatchLogs.html. 1, 7.3, 7.3.4

[7] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
March 2017. 4.2, 7.3.3

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’14, pages 49–65, Broomfield, CO, October 2014.
8

[9] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, MorHarchol-Balter, and

Gregory R. Ganger. The CacheLib caching engine: De-
sign and experiences at scale. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’20, pages 753–768, November 2020. 1

[10] Junehyuk Boo, Yujin Chung, Eunjin Baek, Seongmin
Na, Changsu Kim, and Jangwoo Kim. F4T: A fast
and flexible FPGA-based full-stack TCP acceleration
framework. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’23,
Orlando, FL, USA, 2023. 6

[11] S. Bradner and J. McQuaid. Benchmarking methodol-
ogy for network interconnect devices. RFC 2544, March
1999. 7.1

[12] Broadcom. BNXT poll mode driver. https://doc.
dpdk.org/guides/nics/bnxt.html, 2022. 2

[13] CAIDA. Anonymized internet traces 2016. https://
catalog.caida.org/dataset/passive_2016_pcap.
3, 7.2.2, 7.3.2

[14] Chelsio Communications. Terminator 5 ASIC,
2021. https://www.chelsio.com/terminator-5-
asic/. 1, 6

[15] Jonathan Corbet. Ringing in a new asynchronous I/O
API, 2019. https://lwn.net/Articles/776703/. 2

[16] Debian. Debian popularity contest: Statistics by
source packages (sum) sorted by fields, 2022. https:
//popcon.debian.org/source/by_inst. 7.3.4

[17] Roman Dementiev et al. Processor Counter Monitor
(PCM), 2022. https://github.com/opcm/pcm. 7.1

[18] Mihai Dobrescu, Norbert Egi, Katerina Argyraki,
Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
RouteBricks: Exploiting parallelism to scale software
routers. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles, SOSP ’09, pages
15–28, New York, NY, USA, 2009. 2.2

[19] DPDK. Data Plane Development Kit, 2022. https:
//dpdk.org. 1, 2

[20] DPDK. NVIDIA MLX5 ethernet driver, 2022. https:
//doc.dpdk.org/guides/nics/mlx5.html. 1, 8

[21] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’14, pages 401–414,
Seattle, WA, April 2014. 8

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1019

https://github.com/amzn/amzn-drivers/tree/master/userspace/dpdk
https://github.com/amzn/amzn-drivers/tree/master/userspace/dpdk
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://doc.dpdk.org/guides/nics/bnxt.html
https://doc.dpdk.org/guides/nics/bnxt.html
https://catalog.caida.org/dataset/passive_2016_pcap
https://catalog.caida.org/dataset/passive_2016_pcap
https://www.chelsio.com/terminator-5-asic/
https://www.chelsio.com/terminator-5-asic/
https://lwn.net/Articles/776703/
https://popcon.debian.org/source/by_inst
https://popcon.debian.org/source/by_inst
https://github.com/opcm/pcm
https://dpdk.org
https://dpdk.org
https://doc.dpdk.org/guides/nics/mlx5.html
https://doc.dpdk.org/guides/nics/mlx5.html

[22] Peter Druschel, Larry L. Peterson, and Bruce S. Davie.
Experiences with a high-speed network adaptor: A soft-
ware perspective. In Proceedings of the Conference on
Communications Architectures, Protocols and Applica-
tions, SIGCOMM ’94, pages 2–13, New York, NY, USA,
1994. 1, 4.1.2, 8

[23] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable soft-
ware network load balancer. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’16, pages 523–535, Santa Clara, CA, March 2016.
1, 7.3, 7.3.1

[24] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. MoonGen: A script-
able high-speed packet generator. In Proceedings of the
2015 Internet Measurement Conference, IMC ’15, pages
275–287, New York, NY, USA, 2015. 7.1, B

[25] Paul Emmerich, Maximilian Pudelko, Simon Bauer, Ste-
fan Huber, Thomas Zwickl, and Georg Carle. User
space network drivers. In 2019 ACM/IEEE Symposium
on Architectures for Networking and Communications
Systems, ANCS ’19, pages 1–12, Cambridge, UK, 2019.
IEEE. 4.1, A

[26] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exoker-
nel: An operating system architecture for application-
level resource management. In Proceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles,
SOSP ’95, pages 251–266, New York, NY, USA, 1995. 8

[27] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. NICA: An infrastructure for inline
acceleration of network applications. In 2019 USENIX
Annual Technical Conference, ATC ’19, pages 345–362,
Renton, WA, July 2019. 1, 8

[28] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, MattHumphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: SmartNICs in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’18, pages
51–66, Renton, WA, April 2018. 2.1

[29] Mario Flajslik and Mendel Rosenblum. Network inter-
face design for low latency request-response protocols.
In 2013 USENIX Annual Technical Conference, ATC ’13,
pages 333–346, San Jose, CA, June 2013. 8

[30] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-
sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,
Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.
Packet order matters! Improving application perfor-
mance by deliberately delaying packets. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’22, pages 807–827, Renton, WA, April
2022. 7.2.6

[31] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’03, pages 29–43, New York, NY, USA, 2003.
1

[32] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A soft-
ware NIC to augment hardware. Technical Report
UCB/EECS-2015-155, EECS Department, University of
California, Berkeley, May 2015. 2.1, 3, 6, 7.2.2

[33] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The EXpress data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, pages 54–66, New York, NY,
USA, 2018. 8

[34] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanoPU: A nanosecond network
stack for datacenters. In 15th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’21,
pages 239–256, July 2021. 7.3.3

[35] Intel. Intel data direct I/O technology (Intel DDIO): A
primer. Technical report, Intel, February 2012. 2.2

[36] Intel. Intel 64 and IA-32 architectures optimization
reference manual. Technical Report 248966-045,
Intel, 2022. https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-
sdm.html. 7.2.3

[37] Intel. Intel Core i7-7820X X-series Processor, 2022.
https://ark.intel.com/content/www/us/en/ark/
products/123767/intel-core-i77820x-xseries-
processor-11m-cache-up-to-4-30-ghz.html. 7.1

1020 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://ark.intel.com/content/www/us/en/ark/products/123767/intel-core-i77820x-xseries-processor-11m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123767/intel-core-i77820x-xseries-processor-11m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123767/intel-core-i77820x-xseries-processor-11m-cache-up-to-4-30-ghz.html

[38] Intel. Intel Core i9-9960X X-series Processor, 2022.
https://ark.intel.com/content/www/us/en/ark/
products/189123/intel-core-i99960x-xseries-
processor-22m-cache-up-to-4-50-ghz.html. 7.1

[39] Intel. Intel Ethernet Controller E810. Technical Report
613875-006, Intel, March 2022. 1, 2, 2.1, 4.1, A, B

[40] Intel. Intel Ethernet Network Adapter E810-CQDA2,
2022. https://ark.intel.com/content/www/
us/en/ark/products/210969/intel-ethernet-
network-adapter-e8102cqda2.html. 7.1

[41] Intel. Intel infrastructure processing unit (Intel
IPU) platform (codename: Oak Springs Canyon),
2022. https://www.intel.com/content/www/us/
en/products/platforms/details/oak-springs-
canyon.html. 6

[42] Intel. Intel Stratix 10 MX 2100 FPGA, 2022.
https://ark.intel.com/content/www/us/en/ark/
products/210297/intel-stratix-10-mx-2100-
fpga.html. 7.1, B

[43] Intel. Top-down microarchitecture analysis
method. https://www.intel.com/content/
www/us/en/develop/documentation/vtune-
cookbook/top/methodologies/top-down-
microarchitecture-analysis-method.html,
2022. 2.2

[44] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo,
Hoon Shin, Tae Jun Ham, and Jae W. Lee. A specialized
architecture for object serialization with applications
to big data analytics. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Ar-
chitecture, ISCA ’20, pages 322–334, Virtual Event, 2020.
IEEE Press. 1

[45] Cyril Jaquier et al. Fail2ban, 2022. https://www.
fail2ban.org/. 7.3.4

[46] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’19, pages 1–16, Boston, MA,
February 2019. 7.3.3, 8

[47] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, scalable and simple distributed transac-
tions with two-sided (RDMA) datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’16, pages 185–201, Savannah,
GA, November 2016. 7.3.3

[48] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15,
pages 158–169, New York, NY, USA, 2015. 1

[49] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
performance packet processing with FlexNIC. In Pro-
ceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 67–81, New York,
NY, USA, 2016. 6, 8

[50] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP acceleration as an OS
service. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, EuroSys ’19, New York, NY, USA, 2019.
8

[51] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang,
and Christina Delimitrou. Dagger: Efficient and fast
RPCs in cloud microservices with near-Memory recon-
figurable NICs. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’21,
pages 36–51, New York, NY, USA, 2021. 7.3.3

[52] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’14, pages 429–444, Seattle, WA, April 2014. 1,
2.2, 7.1, 7.3, 7.3.3

[53] Linux RDMA. RDMA core userspace libraries and
daemons, 2022. https://github.com/linux-rdma/
rdma-core. 8

[54] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. NitroSketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’19, pages 334–350, New York, NY, USA,
2019. 1, 7.3, 7.3.2

[55] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar,
and Justine Sherry. Contention-aware performance
prediction for virtualized network functions. In Pro-
ceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’20, pages 270–282,
New York, NY, USA, 2020. 2.2

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1021

https://ark.intel.com/content/www/us/en/ark/products/189123/intel-core-i99960x-xseries-processor-22m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/189123/intel-core-i99960x-xseries-processor-22m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/189123/intel-core-i99960x-xseries-processor-22m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/210969/intel-ethernet-network-adapter-e8102cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/210969/intel-ethernet-network-adapter-e8102cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/210969/intel-ethernet-network-adapter-e8102cqda2.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://www.intel.com/content/www/us/en/products/platforms/details/oak-springs-canyon.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://ark.intel.com/content/www/us/en/ark/products/210297/intel-stratix-10-mx-2100-fpga.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.fail2ban.org/
https://www.fail2ban.org/
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core

[56] Marvell. DPDK marvell. https://github.com/
MarvellEmbeddedProcessors/dpdk-marvell, 2022.
2

[57] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger.
Kangaroo: Caching billions of tiny objects on flash.
In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, pages 243–262,
New York, NY, USA, 2021. 1, 7.3.3

[58] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun
Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao, Yan Zhuang,
Pengcheng Zhang, Rong Liu, Chao Shi, Binzhang Fu, Ji-
aji Zhu, JieshengWu, Dennis Cai, andHongqiangHarry
Liu. From luna to solar: The evolutions of the compute-
to-storage networks in Alibaba Cloud. In Proceedings
of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
pages 753–766, New York, NY, USA, 2022. 1

[59] Amirhossein Mirhosseini, Hossein Golestani, and
Thomas F. Wenisch. HyperPlane: A scalable low-
latency notification accelerator for software data planes.
In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’20, pages 852–867, 2020.
4.1.2

[60] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18,
pages 221–235, New York, NY, USA, 2018. 6

[61] Al Morton. RFC Errata, Erratum ID 412, RFC 2544,
November 2006. https://www.rfc-editor.org/
errata/eid422. 7.1

[62] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 327–341, New York, NY, USA,
2018. 2.2, 2

[63] Nvidia. NVIDIA BlueField-3 DPU, 2022.
https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datasheet-
nvidia-bluefield-3-dpu.pdf. B

[64] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’16,
pages 203–216, Savannah, GA, November 2016. 7

[65] Perf. perf: Linux profiling with performance counters,
2022. https://perf.wiki.kernel.org. 7.1

[66] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
DougWoos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system
is the control plane. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14,
pages 1–16, Broomfield, CO, October 2014. 8

[67] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson,
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang,
Joe Stringer, Pravin Shelar, Keith Amidon, and Mar-
tin Casado. The design and implementation of Open
vSwitch. In 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’15, pages
117–130, Oakland, CA, May 2015. 2.1, 3, 6, 7.2.2

[68] Solal Pirelli and George Candea. A simpler and faster
NIC driver model for network functions. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’20, pages 225–241, November
2020. 2, 6, 8

[69] Boris Pismenny, Liran Liss, Adam Morrison, and Dan
Tsafrir. The benefits of general-purpose on-NIC mem-
ory. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’22, New York,
NY, USA, 2022. 7.3.3, 8

[70] Boris Pismenny, Adam Morrison, and Dan Tsafrir.
ShRing: Networking with shared receive rings. In
17th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’23, Boston, MA, July 2023.
8

[71] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir,
Mark Sutherland, Zilu Tian, Mario Paulo Drumond,
Babak Falsafi, and Christoph Koch. Optimus prime:
Accelerating data transformation in servers. In Pro-
ceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, pages 1203–1216, New
York, NY, USA, 2020. 1

[72] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene
Zhang. Breakfast of champions: Towards zero-copy
serialization with NIC scatter-gather. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS ’21, pages 199–205, New York, NY, USA, 2021. 1

[73] Luigi Rizzo. netmap: A novel framework for fast
packet I/O. In 2012 USENIX Annual Technical Con-
ference, ATC ’12, pages 101–112, Boston, MA, 2012. 2,
8

1022 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/MarvellEmbeddedProcessors/dpdk-marvell
https://github.com/MarvellEmbeddedProcessors/dpdk-marvell
https://www.rfc-editor.org/errata/eid422
https://www.rfc-editor.org/errata/eid422
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://perf.wiki.kernel.org

[74] Hugo Sadok, Miguel Elias M. Campista, and Luís Hen-
rique M. K. Costa. A case for spraying packets in
software middleboxes. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, HotNets ’18, pages
127–133, New York, NY, USA, 2018. B

[75] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav
Atre, Daniel S. Berger, James C. Hoe, Aurojit Panda,
and Justine Sherry. We need kernel interposition over
the network dataplane. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, pages
152–158, New York, NY, USA, 2021. 8

[76] Alireza Sanaee, Farbod Shahinfar, Gianni Antichi, and
Brent E. Stephens. Backdraft: A lossless virtual switch
that prevents the slow receiver problem. In 19thUSENIX
Symposium on Networked Systems Design and Implemen-
tation, NSDI ’22, pages 1375–1392, Renton, WA, April
2022. 4.1.2

[77] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann,
and Simon Peter. FlexTOE: Flexible TCP offload
with fine-grained parallelism. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’22, pages 87–102, Renton, WA, April 2022. 1, 6

[78] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F.
Wenisch, Monica Wong-Chan, Sean Clark, Milo M. K.
Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, Behnam Montazeri,
Simon L. Sabato, Joel Scherpelz, and Amin Vahdat.
1RMA: Re-envisioning remotememory access formulti-
tenant datacenters. In Proceedings of the Annual Con-
ference of the ACM Special Interest Group on Data Com-
munication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’20, pages 708–721, New York, NY, USA, 2020.
6

[79] Mark Sutherland, SiddharthGupta, Babak Falsafi, Viren-
dra Marathe, Dionisios Pnevmatikatos, and Alexandres
Daglis. The NeBuLa RPC-optimized architecture. In
Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ISCA ’20, pages
199–212, Virtual Event, 2020. IEEE Press. 7.3.3

[80] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn
Moy, and Edward D. Lazowska. Implementing network
protocols at user level. In Conference Proceedings on
Communications Architectures, Protocols and Applica-
tions, SIGCOMM ’93, pages 64–73, New York, NY, USA,
1993. 8

[81] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. ResQ: Enabling SLOs in network function vir-
tualization. In 15th USENIX Symposium on Networked

Systems Design and Implementation, NSDI ’18, pages
283–297, Renton, WA, April 2018. 2.2, 8

[82] Amy Viviano. Introduction to receive side scaling, 2022.
https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-
receive-side-scaling. 2.1, 6

[83] Thorsten von Eicken, Anindya Basu, Vineet Buch, and
Werner Vogels. U-Net: A user-level network interface
for parallel and distributed computing. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 40–53, New York, NY, USA,
1995. 8

[84] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo
Park, Geoff Langdale, Jiayu Hu, and Heqing Zhu. Hy-
perscan: A fast multi-pattern regex matcher for mod-
ern CPUs. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’19, pages
631–648, Boston, MA, February 2019. 7.3.4

[85] Keith Wiles et al. The Pktgen application, 2022. https:
//pktgen-dpdk.readthedocs.io/. 7.1

[86] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone,
Changhoon Kim, RajitManohar, and Robert Soulé. Zeri-
alizer: Towards zero-copy serialization. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS ’21, pages 206–212, New York, NY, USA, 2021. 1

[87] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. StackMap: Low-latency networking with
the OS stack and dedicated NICs. In 2016 USENIX
Annual Technical Conference, ATC ’16, pages 43–56,
Denver, CO, June 2016. 8

[88] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The demikernel data-
path OS architecture for microsecond-scale datacenter
systems. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, SOSP ’21, pages
195–211, New York, NY, USA, 2021. 1, 8

[89] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,
Yibin Shen, and Xin Long. High-density multi-tenant
bare-metal cloud. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, pages 483–495, New York, NY, USA, 2020.
1

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1023

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://pktgen-dpdk.readthedocs.io/
https://pktgen-dpdk.readthedocs.io/

Appendix A Rejected Designs for Pointer
Updates

Unfortunately, the simplest alternatives for communicating
pointer updates from the NIC to software perform poorly.
We considered three potential alternative designs to let the
NIC inform pointer updates to software. While these designs
might seem to suit our needs at first, we ultimately discarded
them since they perform poorly due to architectural details
of PCIe or the CPU:
MMIO synchronization: The simplest design would be for
the NIC to update the pointer values to its internal memory
and make software periodically issue an MMIO read to fetch
the latest value. Unfortunately, software-issued MMIO reads
cannot be served from the cache, causing the CPU core to
stall until the read request is sent and the response is received
(two PCIe transfers). Additionally, PCIe serializes MMIO
reads, further reducing performance.
Shared memory synchronization: A second simple al-
ternative would be to dedicate an address in host memory
to hold the pointer value. The NIC can issue a DMA write
whenever it needs to update the pointer value. Software
can then periodically poll the same address to figure out if
the NIC advanced the pointer. The issue with this design
is that it makes the software and the NIC contend for the
same cache line, which requires a slow ownership transfer
whenever the NIC or the CPU access the cache line. To verify
this, we implemented this design and obtained a throughput
of less than 5Gbps when enqueueing 64-byte packets using
the same setup as described in §7.
Inline synchronization: The last discarded design is moti-
vated by traditional NIC descriptor ring buffers which con-
tain constant-sized descriptors with metadata in a format
defined by the NIC. These designs designate a bit of the
descriptor as a “flag bit” [25, 39]. Initially, all the descrip-
tor slots in the buffer have their flag bit zeroed. Whenever
the NIC DMA writes a new descriptor to host memory, it
overwrites the old ‘0’ flag with a ‘1’ flag. To figure out if
a new descriptor is ready to be consumed, software simply
needs to check if the next slot’s flag is set. After consuming
a descriptor, software sets the flag back to ‘0.’ Because many
descriptors are likely to be present in the buffer, this reduces
the chance that software and the NIC will contend for the
same cache line.

Since Ensō Pipes are opaque, implementing the same strat-
egy used in the descriptor ring buffer is impossible. Even
if we zeroed the entire buffer after the data is consumed,
we do not know what data to expect in the buffer—the next
incoming data might also be zero. Therefore we tested an
alternative design: we picked a 128-bit random cookie, to
make the chance of collision with incoming data negligible
and placed it at the beginning of every cache line of the Ensō
Pipe. Software now only needs to check if the next 128 bits

match the cookie. Unfortunately, filling the buffer with cook-
ies whenever the data is consumed imposes considerable
overhead. For this reason, this design worked well for small
data transfers but poorly when using large chunks of data.
This design also prevents software from detecting unaligned
writes.

Appendix B EnsōGen Packet Generator

EnsōGen is a software packet generator built on top of the
Ensō NIC interface that achieves 100Gbps with a single core
and arbitrary packet sizes. Here we briefly describe how it
operates and how we ensure that it is correct.
Operation: At startup EnsōGen reads a user-supplied pcap
file and allocates enough Ensō Pipes to be able to fit all its
packets. At run time, EnsōGen simply needs to round-robing
among the pre-allocated Ensō Pipes enqueueing a single no-
tification in order to transmit the entire 2MB buffer con-
tent. This makes it trivial for EnsōGen to saturate the link
with very little CPU overhead. Since transmission is cheap,
EnsōGen spends most of its CPU cycles receiving packets. It
parses every incoming packet to track the number of bytes
and packets received.
Simple offloads: We implemented hardware support
for timestamping and rate limiting, which helps EnsōGen
achieve cycle-accurate precision while saving CPU cy-
cles. These features are also commonly offered in existing
NICs [39, 63] and are leveraged by some software packet
generators [24]. When hardware timestamping is enabled,
EnsōGen keeps a histogram in host memory with the RTT
of every received packet with 5 ns granularity (the same
precision as the hardware timestamper, which operates at
200MHz). To spread the load equally among the RX Ensō
Pipes regardless of the workload, EnsōGen also configures
the hardware to direct packets to pipes in a round-robin
fashion [74].
Correctness: We verified EnsōGen’s performance and rate-
limiting capabilities using another in-house packet generator
fully implemented on an FPGA, as well as using software
counters, to ensure that the rate limited throughput always
matches the specification.

1024 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Artifact Appendix

Abstract
The paper artifact is composed of Ensō’s hardware and soft-
ware implementations, the applications used in the evalua-
tion, the EnsōGen packet generator, as well as the code to
automatically run most of the experiments. We also include
documentation describing how to set up the environment,
compile the code, synthesize the hardware, and use Ensō
for other purposes—including a detailed description of the
software API.

Scope
The artifact has two main goals: The first is to allow the
main claims in the paper to be validated. The second is to
allow others to build upon Ensō for their own projects.

We include code to automatically reproduce Figures 8, 11,
12, 13, 14, and 15. We also include the source code for all the
applications that we evaluate in §7.3 and for the EnsōGen
packet generator.

Contents
The artifact is split between two git repositories.

Ensō Repository

This repository includes Ensō’s source code as well as doc-
umentation and example applications. It is structured as
follows:
hardware/: Source code for the hardware component and
scripts to automatically generate all the required IPs.
software/: Source code for the software component,
which includes both the library and the kernel module.
It also includes example applications and EnsōGen under
software/examples.
frontend/: Frontend to programmatically load and config-
ure the hardware from Python as well as a command line
interface based on this frontend.
docs/: Documentation detailing how to set up the system,
compile the software and the hardware, and how to use
Ensō’s primitives (RX Pipes, TX Pipes, and RX/TX Pipes)
from an application.

Ensō Evaluation Repository

This repository includes code to automatically run experi-
ments to verify the main claims in the paper and the applica-

tions that we evaluate in §7.3. Here we briefly describe the
main files and directories:
experiment.py: Script to automatically run the experi-
ments to verify the main claims in the paper.

paper_plots.py: Script to produce all the plots in the paper.

setup.sh: Script to automatically setup the experiment
environment.

maglev/: Maglev Load Balancer used in §7.3.1.

nitrosketch/: Network telemetry application based on
NitroSketch used in §7.3.2.

mica2/: MICA Key-Value store used in §7.3.3.

log_monitor/: Log monitor application used in §7.3.4.

Hosting

Both repositories are hosted on GitHub and archived using
Zenodo with a permanent DOI. The documentation con-
tained in the Ensō Repository is also automatically deployed
using GitHub actions for easy access.

Ensō Repository

• Repository: https://github.com/crossroadsfpga/enso
• Commit: 093dca77836fbe10409af7f0ec3b28232fc25f44
• Zenodo Archive: https://zenodo.org/record/7860872
• DOI: https://doi.org/10.5281/zenodo.7860872

Ensō Evaluation Repository

• Repository: https://github.com/crossroadsfpga/enso_eval
• Commit: 1a100cb38577930b9124fc6fefced3f0a6da7da4
• Zenodo Archive: https://zenodo.org/record/7860936
• DOI: https://doi.org/10.5281/zenodo.7860936

Ensō Documentation

• Link: https://enso.cs.cmu.edu

Requirements

Running Ensō requires a host equipped with an Intel
Stratix 10 MX FPGA [42] and an x86-64 CPU. The software
component also assumes that the host is running Linux. §7
details the exact environment we used in our experiments.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 1025

https://github.com/crossroadsfpga/enso
https://github.com/crossroadsfpga/enso/tree/093dca77836fbe10409af7f0ec3b28232fc25f44
https://zenodo.org/record/7860872
https://doi.org/10.5281/zenodo.7860872
https://github.com/crossroadsfpga/enso_eval
https://github.com/crossroadsfpga/enso_eval/tree/1a100cb38577930b9124fc6fefced3f0a6da7da4
https://zenodo.org/record/7860936
https://doi.org/10.5281/zenodo.7860936
https://enso.cs.cmu.edu

	osdi23_full_proceedings_interior-wip.pdf
	osdi23-gupta
	Introduction
	Background
	Traditional Locks
	Delegation-style Locks
	The Incompatibility of Delegation in Concurrent Applications

	TCLocks
	TCLock Design
	Spinlock: TCLockSP
	Proof Sketch of Correctness
	Blocking Lock: TCLockB
	Readers-writer Version: TCLockRW
	Optimizations
	Direct stack switching: waiter waiter
	Minimizing context switch overhead
	NUMA awareness

	TCLocks with Real-World Applications
	Multi-level Locking
	Special Execution Contexts and Per-CPU Variables

	Implementation
	Evaluation
	TCLock Performance Comparison
	Application-level Benchmarks
	Nano benchmark: RCUHT
	Performance With Userspace TCLock

	Discussion and Limitations
	Conclusion
	Acknowledgment

	osdi23-lo
	Introduction
	Preliminary and Motivation
	Data Coherence in ccNUMA
	Cost of Spinlocks on Multi-core CPUs
	Throughput or Fairness? Take Both !

	Related Work
	Routing On Network-on-Chip (RON)
	The Idea
	The Algorithm
	Correctness
	An Example

	More Threads than Cores
	Lock Contention Problems on a Core
	RON with Oversubscription Support

	Performance Evaluations
	Evaluation Platform and Settings
	Microbenchmarks for Quantitative Analysis
	Evaluation Platform and Settings
	Results of Microbenchmarks
	Oversubscribe
	Scalability

	Application-level Benchmarks
	LevelDB (Key-value Database)
	Benchmarks in Different Contention Levels

	RON in GNU/Linux Kernel
	Implementation
	Evaluations

	Conclusion
	Future work

	osdi23-zhou
	Introduction
	Background
	Syscalls and Their Costs
	Performance Optimization on Syscalls

	Design Overview
	Syscall-intensive Applications
	UB Modules

	Hot Syscall Identifier
	BTC Runtime and Translator
	BTC Runtime
	BTC Translator
	Jump Sanitation
	Register Remapping
	Instruction Sanitization
	Memory Access Sanitization

	Security Guarantees
	Thread Safety

	Evaluation
	I/O Micro-benchmark
	Redis
	Nginx
	Raw Socket vs. eBPF

	Discussion
	UB vs. eBPF
	Security Risks
	Other Limitations

	Related Work
	Conclusion
	Artifact Appendix

	osdi23-berger
	Introduction
	CPU Profiling
	Accurate Python-Native Code Profiling
	Accurate Python-Native Profiling of Threads

	Memory and Copy Volume Profiling
	Intercepting Allocation Calls
	Threshold-Based Sampling
	Collecting and Processing Samples
	Memory Leak Detection
	Copy Volume

	GPU Profiling
	GUI Design and Implementation
	Evaluation
	Experimental Setup
	CPU Profiling Accuracy
	Memory Profiling Accuracy
	CPU Profiling Overhead
	Memory Profiling Overhead

	Case Studies
	Related Work
	Deterministic CPU profilers
	Sampling-based CPU profilers
	Memory profilers
	Profilers for Machine Learning Libraries
	Other Python Profilers
	Profilers with Python Support
	Non-Python Profilers

	Conclusion

	osdi23-ren
	Introduction
	Relational Debugging by Examples
	Go-909: A Memory Leak
	Challenges of Debugging Go-909
	Root Cause
	Relational Debugging Go-909

	MongoDB-57221: A Slowdown

	Perspect
	Bootstrapping with Symptoms
	Causality Analysis
	Relational Debugger
	Computing Relations
	Filtering Unchanged Relations
	Relation Refinement
	Ranking Root-Cause Candidates

	Implementation
	Building Static Dependency Graph (SDG)
	Building Relations
	Handling Binary Difference

	Experimental Evaluation
	Effectiveness
	Usability
	Analysis Time

	Discussion and Limitations
	Related Work
	Conclusion

	osdi23-dauterman
	1 Introduction
	2 Design overview
	2.1 Entities
	2.2 Protocol flow
	2.3 System goals
	2.4 Non-goals and extensions

	3 Logging for FIDO2
	3.1 Background
	3.2 Split-secret authentication
	3.3 Two-party ECDSA with preprocessing

	4 Logging for time-based one-time passwords
	4.1 Background: TOTP
	4.2 Split-secret authentication for TOTP

	5 Logging for passwords
	5.1 Protocol overview
	5.2 Split-secret authentication for passwords

	6 Protecting against log misbehavior
	7 Implementation
	8 Evaluation
	8.1 End-user cost
	8.1.1 FIDO2
	8.1.2 TOTP
	8.1.3 Passwords

	8.2 Cost to deploy a larch service

	9 Discussion
	10 Related work
	11 Conclusion

	osdi23-albab
	Introduction
	Background and Related Work
	Privacy Laws
	Complexity of Data Ownership
	Existing Approaches to Privacy Compliance

	K9db Overview
	Modeling Data Ownership and Sharing
	K9db's Annotations
	Expressing Developers' Compliance Policies
	Data Ownership Graph
	Helping Developers Get Annotations Right
	Data Ownership Graph Properties

	Compliant by Construction Storage
	Storage Layout and Logical µDBs
	µDB Integrity
	Handling Subject Access Requests
	Atomicity, Consistency, Isolation, and Durability
	Compliance Transactions

	Query Execution
	Optimizations
	Materialized Views

	Implementation
	Evaluation
	Application Performance
	Lobsters
	ownCloud

	K9db Design Drill-Down
	Schema Annotation Effort

	Conclusion
	Artifact Appendix

	osdi23-li_mingyu
	1 Introduction
	2 Background and Motivation
	2.1 Database as a Service (DBaaS)
	2.2 Encrypted Database (EDB)
	2.3 Type-I EDB: Putting a Database in TEE
	2.4 Type-II EDB: Putting an Operator in TEE
	2.5 Smuggle Attack

	3 Hedb Design
	3.1 Hedb Workflow
	3.2 Defending Smuggle Attack

	4 Supporting Maintainability
	4.1 Understanding DBA tasks
	4.2 DBMS Maintenance by Authenticated Replay
	4.3 Operator Troubleshooting by Anonymized Replay

	5 Implementation
	5.1 Implementation Complexity
	5.2 Optimization

	6 Evaluation
	6.1 Functionality Evaluation
	6.1.1 Case Studies of DBMS Maintenance
	6.1.2 Case Studies of Operator Troubleshooting

	6.2 Security Evaluation
	6.3 Performance Evaluation
	6.3.1 Boot-time and Mode Switch Cost
	6.3.2 Runtime Cost
	6.3.3 Record-based Execution Overhead
	6.3.4 Replay-based Maintenance Overhead

	7 Discussion
	8 Related Work
	9 Conclusion
	A Appendix
	A.1 Attacking Encrypted Data Types
	A.2 Hedb Query Execution Optimization

	B Artifact Appendix
	B.1 Abstract
	B.2 Scope
	B.3 Hosting
	B.4 Contents

	osdi23-li_chenxing
	Introduction
	Background
	Authenticated Storage in Blockchain
	Elliptic Curve Group
	KZG Commitment
	Authenticated Multipoint Evaluation Tree

	Overview
	Versioned Key-value Database
	Multi-level AMT
	Proof Sharding

	LVMT Design
	Interfaces to the Transaction Execution
	Proving Key-value Pairs

	Implementation
	Evaluation
	Related Works
	Conclusion

	osdi23-mai
	Introduction
	Background
	Threat model
	Overview
	Validator
	Security monitors
	Secure and efficient IPC
	Discussion
	Security analysis
	Implementation
	Evaluation
	Experiment setup
	TCB
	End-to-end performance
	Overheads
	IPC performance
	Developer experience

	Related work
	Conclusion

	osdi23-ahmad
	Introduction
	Confidential Cloud Computing
	System Model
	Threat Model and Assumptions
	Research Goal

	Background on Intel SGX
	eOPF Design
	Enclave Life-Cycle Interposition
	Platform-Enclave Co-Attestation

	eOPF Protected Services
	Secure Enclave Orchestration
	Complementary Side-Channel Defense
	Cross-Core Resource Isolation
	Per-Core Resource Invalidation and Deactivation

	Implementation
	Security Analysis
	Analyzing Framework Security
	Analyzing Services Security
	Analyzing eOPF's TCB

	Performance Evaluation
	Microbenchmarks
	Real-world Enclave Programs
	Key takeaways

	Discussion
	Related Work
	Conclusion
	Acknowledgment

	osdi23-angel
	1 Introduction
	2 Context and rollback attacks
	2.1 Context: Confidential computing

	3 Rollback protection
	3.1 Our solution
	3.2 Storing state in an existing storage service

	4 An overview of Nimble
	5 Design details and correctness
	5.1 Core protocol
	5.2 A safe and live replacement of endorsers

	6 Implementation
	7 Evaluation
	7.1 Experimental setup
	7.2 Latency and throughput of Nimble
	7.3 Comparison of TCB size
	7.4 Cost of reconfiguration
	7.5 Integrating applications with Nimble

	8 Related work
	9 Discussion
	9.1 Disaster recovery
	9.2 TCB changes

	osdi23-sajal
	Introduction
	Background and Motivation
	Demand Versatility
	Supply Fluctuations
	Admission Control

	Design of Kerveros
	Buffers
	Allocable VMs
	Overview
	CRA Algorithmic Details
	Linear Adjustment Algorithm (LAA)

	System Implementation
	Architecture
	Allocation Worker Instances
	LAA Instance
	Offline ML Platform
	Placement Store

	Practical Considerations

	Evaluation
	Experimental Setup
	End-to-End Experiments
	Packing Efficiency
	Scalability
	SLA Violations

	Deep Dive on AV Counting Algorithms

	Discussion
	Related Work
	Conclusion
	Theoretical Guarantees

	osdi23-chen
	Introduction
	Background and Motivation
	Hardware-assisted Virtualization
	Vulnerabilities of Hypervisors
	Limitations of Deprivileged Execution

	System Design Overview
	Delegated Virtualization Extension
	DuVisor Design
	Handling VM Exits
	Restricted Memory Virtualization
	I/O and Interrupt Virtualization

	Implementation
	DV-Ext Implementation
	Software Implementation

	Security Analysis and Evaluation
	Performance Evaluation
	Experimental Setup
	Microbenchmarks
	Application Benchmarks
	Impact on Co-located KVM VMs
	Memory Virtualization Overhead

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgments
	Artifact Appendix

	osdi23-zhou
	Introduction
	Background and motivation
	Hardware-accelerated virtualization
	Confidential VMs
	Side channels in processor-based TEEs
	VMs as used in public clouds
	Summary

	Design
	Overview and terminology
	Security properties and threat model
	Hardware support for core slicing
	Slice management
	Attestation and memory encryption

	RISC-V Prototype
	x86 Prototype
	Evaluation
	Performance
	Security
	Hardware complexity
	Impact of physical contiguity

	Discussion: core slicing beyond RISC-V
	Related work
	Conclusion

	osdi23-zhuang
	Introduction
	Motivation
	Overview of recovery strategies
	Applications

	API
	Overview and requirements
	Model
	Guaranteeing exactly-once execution
	References

	Architecture
	Workflow execution
	Workflow recovery
	Execution backends

	Implementation
	Evaluation
	ML training pipelines
	Stateful serverless workflows
	Online-offline graph processing
	Microbenchmarks

	Related Work
	Discussion
	Conclusion
	Artifact Appendix

	osdi23-lyu
	Introduction
	Background
	Fail in Place
	Hyrax System Design
	Hyrax Servers
	Component Pathway Deactivation ([height=1.1em]SystemFigs/deactivateicon)
	Achieving High Performance on FIP Servers

	Hyrax Control Plane
	Hyrax Policy ([height=1.1em]SystemFigs/policyicon)
	Control Plane
	VM scheduling policy
	Hyrax Diagnostics

	Evaluation
	Evaluation Setup
	Server experiments
	Large-scale simulations

	Correctness
	Performance
	Large-scale Cluster Simulations

	Related Work
	Deployment Experience and Discussion

	osdi23-lu
	Introduction
	Background
	Transactional Datastores
	Strict Serializability
	dOCC, d2PL, & Transaction Reordering

	Design Insight & Overview
	Exploiting Natural Consistency
	Three Pillars of Design

	Timestamp-Inversion Pitfall
	Natural Concurrency Control
	Protocol Basics
	Response Timing Control
	Asynchrony-Aware Timestamps
	Smart Retry
	Read-Only Transactions
	Failure Handling
	Correctness

	Evaluation
	Workloads and Experimental Setup
	Result Overview
	Latency vs. Throughput Experiments
	Additional Experiments

	Related Work
	Conclusion

	osdi23-grubic
	Introduction
	Adoption of Deployment Automation
	Deployment Safety at Hyperscale
	ML Model Deployment

	Overview of Software Deployment at Meta
	Deployment Culture
	Deployment Ecosystem
	Component Interaction by Example

	Deployment Scenarios and Solutions
	Enabling In-place Updates
	Deployment Safety
	ML Model Deployment
	Advanced Features for Universal Adoption
	Software Backward Compatibility
	Summary of Distinguishing Features

	Case Study of FrontFaaS
	Design and Implementation of Conveyor
	Conveyor Design
	Implementation of the Deploy Action
	Availability, Reliability, and Recoverability
	Lessons from Conveyor's Evolution

	Evaluation in Production
	Universal Coverage
	Trust in Fully Automated Deployments
	Deployment Safety at Hyperscale
	Deployment Failures
	Release Failures
	Failures in Deploy Actions

	Pipeline Patterns & Recommendations
	Pipeline Configuration
	Deploy Action Configuration & Runtime Statistics
	Real-world Example of Long Deploy Time
	Recommendations for Pipeline Design

	Related work
	Conclusion

	osdi23-eldeeb
	Introduction
	Background
	Strict Serializability
	2PC Recap
	The Penalty of 2PC

	Requirements
	Measuring Contention Footprint
	Architecture
	Epoch Service
	KV Service
	Leader Selection and Disjointedness

	Transaction State Store
	Client

	Snapshots
	Versioning
	Read Algorithm
	Garbage Collection

	Prefetching
	API
	Semantics
	Design
	Handling Resource Contention

	Deadlock Avoidance
	Evaluation
	Contention Microbenchmark
	Scalability
	Snapshot Read Latency
	Range Reads

	Related Work
	Conclusions
	Acknowledgments
	Appendix
	Optimizing 2PC
	Proof Sketch of Epoch Ordering
	Scaling the Epoch Service

	osdi23-mehdi
	Abstract
	1 Introduction
	2 Background
	2.1 Prior Work

	3 The Case for ScaleDB
	3.1 Database Scalability Analysis
	3.2 When Can Range Indexes Scale?

	4 ScaleDB Design
	4.1 Asynchronous Range Index Updates
	4.2 Asynchronous Concurrency Control
	4.3 Durability
	4.4 Correctness

	5 Implementation
	5.1 Indexlet and Phantomlet Hash Table
	5.2 Lock-Free Reads
	5.3 Concurrent Range Index
	5.4 System-wide Synchronized Clock

	6 Evaluation
	6.1 Asynchronous Index Update
	6.2 Serializability
	6.3 ScaleDB Mechanisms

	7 Conclusion
	References

	osdi23-zhang
	Introduction
	Background
	Emerging Online Vector Queries
	The Division Between Databases and Vector Search Systems

	VBase Design
	Relaxed Monotonicity
	Unified Query Execution Engine
	Result Equivalence

	VBase Implementation
	Relaxed Monotonicity Check
	Query Execution Engine
	Query Planning
	Multi-Column Scan Optimization

	VBase Evaluation
	Evaluation Benchmark
	Experiment Setup
	Evaluation Results
	VBase with SPANN
	Cost Estimation

	Related Works
	Conclusion
	Acknowledgement

	osdi23-jiang
	Introduction
	Background
	Approach
	Statement-Dependency Graph
	SQL-Level Instrumentation
	Transactional Oracle Construction

	Implementation
	Evaluation
	Bug Detection
	Comparison with State of the Art
	Design Choice Analysis

	Discussion
	Related Work
	Conclusion
	Definition for statement dependencies
	Proof related to SQL-level instrumentation
	Proof for Theorem 1

	osdi23-cheng
	Introduction
	Motivation
	Object Hit Rate is Insufficient
	Optimality
	Towards a new approach

	Transactional Caching
	Transactions
	Cache
	Transactional Hit Rate (THR)
	Optimality Analysis

	Group Identification and Scoring
	Group Identification
	Scoring
	Scoring a Group in a Single Transaction
	Scoring Across Groups in a Single Transaction
	Scoring Across Transactions

	Optimizations
	Interchangeability
	Levels

	Prefetching
	Implementation
	Shim Layer
	Eviction

	Evaluation
	Experimental Setup
	Application Benchmark Results
	The Need for Dependency Analysis
	Scoring Heuristics
	OHR versus THR
	Transactional Hit Rate

	Related Work
	Conclusion
	Appendix
	Transactional Belady
	Optimal Offline Transactional Caching is NP-Hard

	Artifact Appendix

	osdi23-wang_qing
	Introduction
	Background and Motivation
	Persistent Memory (PM)
	Remote Direct Memory Access (RDMA)
	High Fan-in Small Writes in KVSs
	DLWA from WRITE-enabled Replication

	Rowan Abstraction
	Rowan Semantic
	High-Performance Rowan
	Straightforward Solution
	Our Solution

	Rowan-KV Design
	Overview
	Log Metadata
	Segment Metadata
	Log Entry Metadata

	Managing the Backup Log
	Digest and Garbage Collection
	Failover
	Dynamic Resharding
	Cold Start

	Implementation
	Threading Model
	Network Components
	Storage Components

	Evaluation
	Experimental Setup
	Rowan Performance
	Rowan-KV Performance
	Sensitivity Analysis
	Failover and Cold Start
	Dynamic Resharding
	Comparison with Other Systems

	Discussion
	Related Work
	Conclusion

	osdi23-min
	Introduction
	Background and Motivation
	NAND-based SSDs
	Zoned Namespace SSDs
	Small-zone and Large-zone ZNS SSDs
	The Problem: Lack of an Elastic Interface

	Performance Characterization of a ZNS SSD
	Experimental Setup
	System Model
	Zone Striping
	Basic Performance
	Challenge #1: Application-agnostic Striping

	Zone Allocation and Placement
	Basic Performance
	Challenge #2: Device-agnostic Placement

	I/O Execution under ZNS SSDs
	Basic Performance
	Challenge #3: Tenant-agnostic Scheduling

	eZNS: Enabling an Adaptive Zoned NS
	eZNS Overview
	Hardware Contract and HAL
	Serial Zone Allocator
	Zone Ballooning
	Initial Resource Provisioning
	Local Overdrive: Zone Expanding
	Global Overdrive: Namespace Expanding
	Reclaim: Zone/Namespace Compaction

	Zone I/O Scheduler
	Congestion-avoid Read Scheduler
	Cache-aware Write Admission Control

	Evaluation
	Zone Ballooning
	Zone I/O Fairness
	Application: RocksDB
	Overhead analysis

	Related Work
	Conclusion

	osdi23-wang_chao
	Introduction
	Background and Motivation
	Hashing Schemes for Persistent Memory
	Level-based Hashing
	EH-based Hashing

	Motivation
	Dilemma between Efficiency and Predictability
	Limited Scalability

	Design of SEPH
	Level Segment based Hash Table
	Structure
	Indexing

	Low-Overhead Split
	One-Third Splitting
	Dereference-Free Rehashing

	Semi Lock-Free Concurrency Control
	Design Concept
	Correctness Challenges
	Operation Details
	Persistence for CAS
	Crash Consistency

	Performance Evaluation
	Experimental setup
	Micro Benchmark
	Performance Efficiency and Predictability
	Performance Breakdown
	Performance Scalability
	Mixed Workload

	Macro Benchmark

	Conclusion

	osdi23-wei
	Introduction
	Background and Motivation
	Serverless computing and container
	Startup and resource provisioning costs
	(Remote) state transfer cost

	Remote Fork for Serverless Computing
	The Mitosis Operating System Primitive
	Challenges and approaches

	Design and Implementation
	Fork prepare
	Fork resume
	Network daemon
	RDMA-Aware virtual memory management
	Supporting multi-hops remote fork

	Bringing Mitosis to Serverless Computing
	Fork-aware serverless platform
	Long-lived seed management
	Fork tree and short-lived seed management
	Limitation

	Evaluation
	End-to-end latency and memory consumption
	Bottleneck analysis and throughput comparisons
	Effects of prefetching
	Effects of copy-on-write (COW)
	Effects of optimizations
	State-transfer performance
	Performance under load spikes

	Discussion
	Related Work
	Conclusion

	osdi23-lepers
	Introduction
	Tiered main memory systems
	Software-based migration
	Hardware caching
	Comparison

	Design
	Implementation
	Page initialization and associated metadata
	Static policy
	Dynamic policy and migration daemon

	Evaluation
	Setup
	GUPS
	Random updates to clustered hot values
	Random updates to distributed hot values
	Performance on large datasets
	Summary

	BC
	Masstree
	Performance
	Performance over time, impact of the sampling rate
	Summary

	Silo
	NAS benchmarks

	Discussion
	Related Work
	Conclusion

	osdi23-gopal
	Introduction
	Background & Motivation
	A Heap Overflow Vulnerability
	Threat Model
	Motivation: Haven't we solved it yet?

	TailCheck Design
	TailCheck Code Instrumentation
	TailCheck Optimizations

	TailCheck Implementation Details
	Evaluation Methodology
	Evaluation Results
	Heap Overflow Detection
	TailCheck Performance
	TailCheck Memory Usage
	Analysis of Optimizations.
	Comparison with Delta Pointers
	Comparison with AddressSanitizer

	Discussion
	False Positives and False Negatives
	Benign False Negatives due to Alignment
	Potential Hardware Support
	Extensions to Other Memory Safety

	Related Work
	Buffer Overflow Detection
	Pointer Tagging
	Use-After-Free Detection
	Uninitialized Memory Read

	Conclusions

	osdi23-luo
	Introduction
	Background
	Disaggregated Memory Architecture
	B+ Trees on Disaggregated Memory
	Radix Tree

	Analysis of Tree Indexes Built on DM
	Motivations: B+ Tree vs. ART on DM
	Theoretical Analysis
	Experimental Results

	Challenges: ART on DM

	SMART Design
	Hybrid ART Concurrency Control
	Data Structures
	Concurrent Operations
	RDMA-related Optimizations

	Read Delegation and Write Combining
	ART Cache
	Operations
	Discussion

	Evaluation
	Experimental Setup
	Performance Comparison
	Factor Analysis for SMART Design
	Sensitivity

	Related Work
	Conclusion
	Artifact Appendix

	osdi23-sartakov
	Introduction
	Increasing Memory Density in the Cloud
	Page-based memory sharing and isolation
	Isolation with memory capabilities
	Efficiency and security considerations

	Design of ORC
	Architecture overview
	Compiler support and binary format
	Secure object loading and reuse
	Discussion

	Implementation
	Library OS and standard C library
	Compiler support and CLS
	Secure object loader
	Discussion

	Evaluation
	Experimental setup
	Efficiency and performance overhead
	Impact on service tail latency
	Cost of isolation

	Related Work
	Conclusions

	osdi23-eriksen
	Introduction
	Background
	Datacenter Regions
	Traffic Management
	Service Workloads
	Service Capacity Management
	Capacity Management Challenges

	Design and Implementation
	Overview of Flux's Workflow
	Service Modeling
	Baseline
	Modeling

	Joint Capacity & Traffic Regionalization
	Execution Planning
	Orchestration
	Stateful Services

	Design Alternatives
	RPC tracing
	Nonlinear Service Models

	Discussion
	Practical Challenges
	Applying Flux in Public Clouds

	Evaluation
	Execution Automation
	Capacity Sizing Error
	Model Residuals
	Accelerating Out-of-Region Refresh
	Case Study: FeatureStore

	Related Work
	Conclusion
	Acknowledgements
	MIP Formulation in Flux

	osdi23-meza
	Introduction
	Background
	Data Center Capacity Management
	The Overload Problem
	Related Work
	Graceful Feature Degradation

	Defcon
	Overview
	Knob Definition Framework
	Knob Actuator Service
	Knob Testing Framework
	Degradation Policy

	Evaluation
	Measurement Methodology
	Individual Product Tests
	Combined Product Tests
	Transitive Resource Savings
	Outage Simulation Testing
	Real-World Large-Scale Outage

	Lessons Learned
	Conclusion

	osdi23-bhardwaj
	Introduction
	Background & Related Work
	Cilantro Architecture
	Policies
	Resource allocation in shared clusters
	Review of multi-tenant allocation when performance mappings are known
	Online learning policies in Cilantro

	Microservice resource allocation

	Discussion
	Implementation
	Evaluation
	Multi-tenant cluster sharing
	Baselines
	Results & Discussion

	Resource allocation for Microservices
	Microbenchmarks

	Conclusion
	Acknowledgements
	Experiment Addendum
	Workload description
	Environment details
	Baselines from prior work
	Evolutionary Algorithm
	Other experimental details

	osdi23-vuppalapati
	Introduction
	Motivation
	Karma
	Preliminaries
	Karma design
	Karma credits
	Prioritized resource allocation

	Karma Properties & Guarantees
	Discussion

	Karma Implementation Details
	Evaluation
	Understanding Karma Benefits
	Karma Incentives
	Karma Sensitivity Analysis

	Related Work
	Conclusion

	osdi23-li_zhuohan
	Introduction
	Background
	Model Parallelism in Model Serving

	Motivation and Tradeoff Analysis
	Case Study: A Two-model Example
	When is Model Parallelism Beneficial
	Overhead of Model Parallelism
	Queueing Theory Analysis

	Method
	Automatic Parallelization for Inference
	Placement Algorithm
	Runtime Scheduling

	Implementation
	Evaluation
	Experiment Setup
	End-to-end Results with Real Workloads
	Serving Very Large Models
	Robustness to Changing Traffic Patterns
	Benefits of Dynamic Batching
	Ablation Study

	Related Work
	Conclusion and Future Work
	Acknowledgement

	osdi23-zhang_chen
	Introduction
	Background and Motivation
	Cocktailer Design
	uTask-based DNN Program
	uProgram Scheduling

	Implementation
	Cocktailer on NVIDIA CUDA GPUs
	Code Generation for Nested-uTask
	Code Generation for Loop-uTask
	Code Generation for Branch-uTask
	Code Generation for uTask Reference

	Cocktailer on AMD ROCm GPUs

	Evaluation
	End-to-end Evaluation on NVIDIA GPU
	Control Flow Overhead Analysis
	Breakdown of Optimizations
	End-to-end Evaluation on AMD GPU

	Related Work
	Conclusion
	Artifact Appendix

	osdi23-shi
	Introduction
	Motivation
	Welder Design
	Operator-tile and Tile-graph
	Tile-graph Scheduling
	Mapping to Hardware Accelerator

	Implementation
	Hardware-aligned Tile Search
	Code Generation and Compilation

	Evaluation
	Experimental Setup
	Evaluation on NVIDIA GPUs
	Evaluation on AMD ROCm GPUs
	Scale-up with Host Memory

	Discussion
	Related Work
	Conclusion
	Artifact Appendix

	osdi23-zhao
	Introduction and Background
	Concepts and Notations
	Challenges of Prior Work
	Our Solution and the Organization of the Paper
	Contributions

	Core Idea and Overview
	Exemplifying the Core Idea
	Overview of GraphTurbo

	Scheduling Sub-graph Instances
	Collecting Splitting Information
	Grouping Sub-graphs
	Ordering Sub-graph Instances
	Inferring Core Binding and Buffer Scopes
	Concatenating Instance Outputs
	Generalizing the Approach

	Kernel Generation for Sub-graph Instances
	Loop Fusion within Layers
	Buffer Stitching across Layers/Blocks
	Memory Allocation and Reuse
	Across-layer Instruction Scheduling

	Experimental Results
	Task Decomposition across Clusters
	Performance Comparison
	Performance Breakdown
	Hardware Utilization
	Comparison of Compilation Overhead
	Case Study on GPU

	Related Work
	Conclusion

	osdi23-zheng
	Introduction
	Overview and Motivating Example
	Tensor Algebra Expression
	Derivation Rules
	Intra-Expression Derivation
	Inter-Expression Derivation

	Expression Instantiation
	Operator Matching
	eOperator Generation

	Program Optimizer
	Distance-Guided Search
	Redundancy Pruning
	End-to-End Workflow

	Evaluation
	Experimental Setup
	End-to-End Performance
	Optimization Analysis
	Integration with Different Backends
	Analysis of Automated Derivation

	Related Work
	Conclusion
	Artifact Appendix

	osdi23-hu
	Introduction
	Background and Motivation
	Hyperparameter Tuning
	Hyperparameter Transfer Theory
	Opportunities for Efficient Tuning

	Hydro Overview
	Hydro Tuner
	Model Shrinker
	Trial Binder
	Trial Planner

	Hydro Coordinator
	Bubble Squeezer
	Heterogeneity-Aware Allocator
	Elastic Executor

	Evaluation
	Experiment Setup
	Surrogate-based Tuning Validation
	End-to-End Performance of Hydro Tuner
	More Evaluation on Hydro Tuner
	Hydro Coordinator Evaluation

	Discussion
	Related Work
	Conclusion

	osdi23-wang_yuke
	Introduction
	Related Work
	Motivation
	GNN-tailored Pipeline Construction
	Pipeline-aware Workload Management
	Hybrid GNN Data Placement

	GPU-aware Pipeline Mapping
	Warp-based Mapping & Pipelining
	Specialized Memory Design & Optim.

	Intelligent Runtime Design
	Evaluation
	End-to-End Performance
	Optimization Analysis
	Additional Study

	Discussion
	Conclusion
	Acknowledgment
	Artifact Appendix

	osdi23-cui
	Introduction
	Background and Motivation
	Cell and Router as the Core Abstraction
	Dynamic Optimizations
	Dynamic Horizontal Fusion
	Profile-Guided Model Placement
	Speculative Routing
	Speculative Weight Preloading

	Tracing Cell-level Dataflow
	Static Cell-level Dataflow
	Dynamic Cell-level Dataflow

	Implementation
	Evaluation
	Experimental Setup
	Effectiveness of Brainstorm Abstraction
	Micro Benchmarks
	End-to-end Model Execution
	SwitchTransformer
	LiveSR
	TaskMoE
	SwinV2-MoE
	MSDNet
	DynamicRouting

	Discussion
	Related Works
	Conclusion
	Artifact Appendix

	osdi23-lai
	Introduction
	Background and Motivation
	Deep Learning Recommendation Models
	Challenges in DLRM Deployment
	Opportunities for In-Training Pruning

	AdaEmbed Overview
	AdaEmbed Design
	Embedding Monitor: Identify Important Embeddings
	AdaEmbed Coordinator: Prune at Right Time
	Memory Manager: Prune Weights at Scale

	Implementation
	Evaluation
	Methodology
	End-to-End Performance
	Performance Breakdown
	Sensitivity and Ablation Studies

	Related Work
	Conclusion

	osdi23-wang_jiawei
	Introduction
	Background
	Performance Overhead Breakdown
	Cost of Synchronization Operations
	Interference Cost with Thieves
	Overhead due to Victim Selection

	Recap to Motivate BWoS

	Design
	Bird’s-Eye View of the Queue
	Block-level Synchronization
	Round Control
	Probabilistic Stealing

	Implementation
	Single-Block Operations (Fast Path)
	Block Advancement
	Takeover and Grant Procedures
	Round Control and Reset Procedure

	Verification and Optimization
	Verification Client
	Results

	Evaluation
	Block Size and Memory Overhead
	Microbenchmarks
	Queue without Stealing
	Queue with Stealing
	Pool with Different Stealing Policies

	Macrobenchmarks
	Java G1GC
	Rust Tokio Runtime
	Go Runtime

	Related Work
	Conclusion

	osdi23-li_xupeng
	Introduction
	Spoq Usage Model
	Spoq Workflow
	Generating Coq Representations
	Synthesizing Identical Refinements
	Synthesizing Lifting Refinements
	Evaluation
	Translating system software into Coq
	Verifying a KVM hypervisor

	Limitations
	Related Work
	Conclusions
	Acknowledgments

	osdi23-chang
	Introduction
	Design and interface of vMVCC
	Using and specifying vMVCC
	Example: [0.5]AtomicXfer
	Specifying the transaction interface

	Proving vMVCC
	Speculation using prophecy variables
	Incorporating speculation in abstract state
	Maintaining invariants under speculation
	Abstract state of a transaction
	Strict monotonicity of transaction ID

	Implementation and proof details
	Bugs found during verification

	Evaluation
	Experimental setup
	Comparison with Silo
	Robustness to long-running readers
	Low-level optimizations
	Scalability under contention

	Related work
	Conclusion

	osdi23-ding
	Introduction
	Motivation and Our Approach
	Idempotence Consistency
	Proof Strategy
	Idempotence Simulation
	Automated Concurrency Reasoning
	Unbounded Loop
	Failure Reduction

	Implementation
	Generating Symbolic Traces
	Checking Idempotence Simulation

	Advisor
	Evaluation
	Experimental Setup
	Verification Efficacy
	Performance of Advisor
	Performance of the Applications
	Flux vs. Beldi
	Flux vs. Boki
	Performance of the Java Applications

	Related Work
	Discussion
	Conclusion
	Proof of theo:proof:comp
	Proof of Failure Reduction
	Proof of theo:proof:loopcase2
	Scalability of the Verifier

	osdi23-hance
	1 Introduction
	2 The Potential Pitfalls of Parallelism
	3 The Core IronSync Methodology
	3.1 Achieving Data Safety in IronSync
	3.2 Local Logical Correctness
	3.2.1 Ownership Simplifies Concurrent Correctness
	3.2.2 Maintaining Local Correctness with Invariants

	3.3 From Local to Global Logical Correctness
	3.3.1 Abstracting Local Actions
	3.3.2 Tying the Concrete Implementation to the LTS
	3.3.3 Global Logical Correctness With the GSM

	4 Advanced IronSync Techniques
	4.1 Specification via Refinement
	4.2 Lower-Level Memory Primitives
	4.3 Read Sharing

	5 Case Studies
	5.1 Node Replication NR
	5.2 SplinterCache

	6 Formalism and Implementation
	6.1 Formal Definitions
	6.2 Guard Protocols

	7 Evaluation
	7.1 Verification Effort
	7.2 Case Study Fidelity
	7.3 Bugs and Insights

	8 Discussion on Modularity
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	A Artifact Appendix

	osdi23-li_qiang
	Introduction
	Background & Motivation
	RDMA Preliminaries
	Production Experience
	Motivation

	Flor Design
	Design Rationale
	Architecture
	Optimization and Deployment.

	Dynamic Chunking
	Accurate RTT Measurement
	Chunking Strategy

	Selective Retransmission with UC
	Enhance Hardware Retransmission
	Evaluation
	Experiment Setup and Benchmarks
	Software Overhead.
	Performance with Packet Loss.
	Intra- and Inter-Pod Traffic
	Heterogeneous RNICs
	Large-scale Incast
	Evaluation in Production Network

	Discussion
	Related Work
	Conclusion
	Design Details
	Software Reliability
	Chunk sequence number
	ACK Format and Compression

	RTT measurement
	HW/SW Clock Synchronization
	Improve RTT Measurement Accuracy
	RTT Measurement for UC

	osdi23-pismenny
	Introduction
	Motivation
	Background
	The Problem: I/O Working Sets
	Implications

	Fewer or Smaller Private Rings
	ShRing's Design and Implementation
	Benefits and Constraints
	Synchronization with Completion Rings
	Array Ring Sharing (RxArr)
	Linked List Ring Sharing (RxList)
	Dynamic ShRing
	Implementation

	Evaluation
	Methodology
	Non-Pathological Conditions
	Pathological Conditions

	Kernel-Based TCP Sockets
	Related Work
	Conclusions

	osdi23-saokar
	Introduction
	Comparison of Services Mesh Architectures
	Different Types of L7 Routers in SR
	Comparison of L7 Routers

	ServiceRouter Design
	Overview
	Service Discovery
	Support for Sharded Services
	Load Balancing
	Locality Awareness
	RPC Connection Reuse
	Adaptive Load Estimation

	Evaluation
	Scalability
	Hardware Cost
	SRLib versus SRProxy
	Case Study of When to Use SRProxy

	Load Balancing
	Same-Region Load Balancing
	Cross-Region Load Balancing

	Sharded Services

	Limitations of SRLib and Our Solutions
	Related Work
	Conclusion

	osdi23-wei_xingda_smartnic
	Introduction
	Background and Context
	RDMA-capable NICs (RNICs)
	From RNICs to SmartNICs
	Target SmartNIC: NVIDIA Bluefield-2
	Notation and testbed

	Characterizing SmartNIC Performance
	Communication from Client to Host (path ➀)
	Communication from Client to SoC (path ➁)
	Communication between SoC and Host (path ➂)

	A Guideline for Smartly Exploiting Multiple Paths of SmartNIC
	Characterizing concurrent communication paths
	An optimization guideline

	Case Studies
	Distributed file system
	Disaggregated key-value store

	Discussion
	Other Related Work
	Conclusion

	osdi23-sadok
	Introduction
	Background and Motivation
	Packetized NIC Interface
	Issues with a Packetized Interface

	Ensō Overview
	Efficient Notifications
	Efficient Ensō Pipe Coordination
	Notification Buffer
	Multiplexing and Scaling
	Notifications: Contention and Overhead

	Pacing Notifications

	Ensō Implementation
	Software Implementation
	Hardware Implementation
	RX Datapath
	TX Datapath and Configuration Path

	Using Ensō
	Evaluation
	Setup and Methodology
	Microbenchmarks
	Packet Rate
	Packet Forwarding with Copies
	Effect of Chaotic Memory Accesses on Cache
	PCIe Bandwidth
	Reactive Notifications and Latency
	Sensitivity Analysis

	Application Benchmarks
	Maglev Load Balancer
	Network Telemetry
	MICA Key-Value Store
	Log Monitor

	Related Work
	Conclusion
	Rejected Designs for Pointer Updates
	EnsōGen Packet Generator

