TAILCHECK: A Lightweight Heap Overflow
Detection Mechanism
with Page Protection and Tagged Pointers

Amogha Udupa S. G. Raveendra Soori Michael Ferdman Dongyoon Lee

A

Stony Brook
University

July 11, 2023

Problem: Heap Overflow

* C/C++ lacks memory safety

e 2022 CWE top-most dangerous software weaknesses

e Security implications

- privilege escalation

< Blog Home

CVE-2021-3156: Heap-Based Buffer
Overflow in Sudo (Baron Samedit)

Himanshu Kathpal, Senior Director, Product Management, Qualys Platform and Sensors.
January 26, 2021 - 12 min read

Last updated on: December 23, 2022

Update Feb 3, 2021: It has been reported that macOS, AIX, and
Solaris are also vulnerable to CVE-2021-3156, and that others may also
still be vulnerable. Qualys has not independently verified the exploit.

- Information leakage

The Heartbleed bug: How a flaw in
OpenSSL caused a security crisis

Analysis
Sep 06, 2022 + 10 mins

| Internet | ‘ Open Source | ‘ Vulnerabilities

Heartbleed can be traced to a single line of code in OpenSSL, an
open source code library. Here's how Heartbleed works and how to

fix it.

Prior Solution Drawbacks

e Guard Pages (Ex. ElectricFence, PageHeap)
. No metadata lookup and no explicit checks
- X High memory overhead, slow

 Explicit Bounds Checking (Ex. SoftBound)
. Uses shadow memory region
- X Costly metadata lookup and bound comparison cost

* Pointer Tagging (Ex. Delta Pointers)
e A4 Quick metadata look up
- X Requires large tags, shrinks address space

TailCheck 1. Page Protection

2. Memory Dereference Duplication

3. Pointer Tagging

Original Tail
object object

0x0000 Oxffff

N

0x000a 0x000a + d

Tagged ptr : 0xd0Oa

TailCheck 1. Page Protection

2. Memory Dereference Duplication

3. Pointer Tagging

Original Tail
object object
0x0000 . Oxffff
P
‘ d :
0x000a 0x000a + d

Tagged ptr : 0xd0Oa

Out of bounds access = Page fault \

Outline

* Design
* Memory allocator
* Compiler code instrumentation

* Evaluation
* Security evaluation
e Server application performance (vs AddressSanitizer)
e SPEC CPU performance (vs Delta Pointers)

TailCheck Design

1. Memory allocator
* Sets up guard pages
* Initializes pointer tags

2. Compiler instrumentation
» Adds duplicate memory access to a tail object (for OOB check)
* Masks/restores pointer tags across un-instrumented library function calls

Reusing guard pages and implicit OOB check = Low cost :

TailCheck Memory Allocator

* mimalloc based — equal sized blocks allocated together
* Last block reserved for TailObject, end aligned with Guard Page

* TailObjects are allocated for block-group size lesser than 64kB
* 16-bit TailTag can represent up to 64kB distance

* TailTag is calculated for allocations, tagged pointer is returned

Allocation

Tail Guard
0x0000 N -, Oxffff
Object /Pa
| | 7

Tai1lTag d

TailCheck Memory Allocator

* Small object pages share a single TailObject

7
00000 Tail 778IEEs OxfEfE

Object P ag

X T dl :A

* Large Objects are their own TailObjects
* Large Objects have zero-value TailTag
* Object end aligned to protected page

ZGun % Guanc
S S

0x0000 Oxffff

TailCheck Code Instrumentation

load tagp

Transformed to...

E—

ADDR BITS = 48

MASK = ((1<< ADDR BITS)-1)
p = tagp & MASK

d = tagp >> ADDR BITS

load p+d // TailCheck
load p

TailCheck Code Instrumentation

* LLVM Link-Time-Optimization passes

* Dereference Duplication

 CallSite Masking — remove tag at instrumentation boundary
* Optimizations

» SafeAlloc — statically known safe access (Delta Pointers)
* Hoist TailPointer calculation out of loops

* Gather Pointer Arithmetic that use the same base pointer

Outline

* Evaluation
* Security evaluation
e Server application performance (vs AddressSanitizer)
e SPEC CPU performance (vs Delta Pointers)

TailCheck Evaluation

e Server Applications
e apache, nginx — 256 request per second, varying file sizes
 memcached, redis — 50% get/set ratio, varying value sizes

* SPEC CPU 2006, v1.0

e Cand C++ applications

* SPEC CPU 2017, v1.0.5

e Speed set, Cand C++
* Single threaded

10

Security Evaluation

* Overflows are caught as segmentation faults
 SPEC CPU 2006 has no reported heap buffer overflows
* SPEC CPU 2017 gcc’s illegal read in tree-ssa-sccvn.c:3365

* Detected read of 4 bytes out of the allocated area
 SPEC CPU 2017 v1.0.5 benchmark

11

Server Application Performance

* Less than 4% overhead on tail (99t percentile) latencies
* 3x better compared to AddressSanitizer

Q W TailCheck M AddressSanitizer

o 1.5

o

=

:01.4

£

81.3

> 1.2

UI

c

7]

)

c 1.1

-l

X

< 1.0

& M @ O o T|®@ @ o o T @ o o To|lo o o0 o T|lo o o o ¢

o) ¥ ¥ ¥ s S$|¥ ¥ ¥ s §$|¥x ¥ ¥ s S| o0 & ¥ S|/ 0o & x 5
™ o s|™ 8 - s|® 8 7 = — = — 0 =

Apache Nginx Nginx (w/o poolalloc) Memcached Redis

12

SPEC CPU Performance

 On SPEC CPU 2006, TailCheck overhead is 29%
* On SPEC CPU2017, TailCheck overhead is 33% (peak memory: 9%)

SPEC CPU 2006 SPEC CPU 2017
1.5 1.5
14 M TailCheck m Delta Pointers 14
1.3 1.3
1.2 1.2
1.1 1.1
1.0 1.0
Integer FP Average TailCheck TailCheck TailCheck

Baseline Optimized Optimized+SafeAlloc
13

Conclusions

 TailCheck offers page protection-based heap memory safety
* TailCheck allocator + compiler managed tagged pointers
* Duplicate memory dereference implicitly checks for out of bounds access

e Optimizations improve TailCheck performance by 20%

* TailCheck is fast, can be run in production

* 4% and 3% overhead for the average and tail latencies for servers
 SPEC CPU 2006 and SPEC CPU2017 overhead is 29% and 33%

14

