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Locks: MOST WIDELY used mechanism
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More locks are in use to improve OS scalability
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Performance: Micro-benchmark

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock
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Traditional lock design: Large data movement
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Traditional lock design: Not ideal
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Delegation-style locks

e Similar to a server-client model
o Server: Lock holder
o Client: Waits to acquire the lock

e Client ships its critical section request
in the form of a function to the server
thread

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)




Delegation-style locks

Processes
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Delegation-style locks

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock
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Delegation locks require app. modification
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Delegation is impractical for complex applications




TCLocks: Goals

e Transparency
o Use standard lock/unlock APIs without rewriting applications

e Delegation

o Minimal shared data movement

Transparent delegation
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How to achieve transparent delegation?

e How to capture the thread’s context?
o Without application rewrite

e Where to capture the thread’s context?
o Such that only critical section is captured

e Does the waiter’s thread modify its context?
o While the server is executing waiter’s critical section




Key idea: Transparent delegation

e How to capture the thread’s context?
o Instruction pointer + stack pointer + general-purpose registers

e Where to capture the thread’s context?
o Start and end of lock/unlock API

e Does the waiter’s thread modify its context?
o No, lock waiter busy waits to acquire the lock




TCLocks: Putting it all together

® Queue-based lock

o List of waiters maintained as a queue

o Supports different queue reordering policy?
e Same lock/unlock API

e Server thread batches each waiters’ request
e No dedicated server
o Head of the queue becomes the server
o Theroleis transferred to the next waiter after some threshold

1. Scalable and Practical Locking With Shuffling, SOSP’19
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TCLocks in action: Phase 1
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TCLocks in action: Phase 2
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TCLocks in action: Phase 2
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TCLocks: Practical considerations

® |deal case
o Waiter’s thread does not modify its context
® Reality
o External events can modify waiter’s context
m Interrupts: Require stack access
m Waiter’s parking/wakeup mechanism: Require stack access

e Ephemeral stack
o An empty piece of memory used only during critical section execution
o Handles:
m Interrupts on waiter’s CPU
m Waiter’s thread parking/wakeup mechanism
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TCLocks: Making it practical

® Algorithmic support:

o Blocking and reader-writer locks

o NUMA-aware policy
® Lock usage:

o Nested locking and OOO unlocking

o Special execution contexts and per-CPU variables
® Performance optimization:

o Reduced context-switch overhead

o Stack prefetching

Checkout the paper for more details
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TCLocks: Evaluation

® Does TCLocks reduce the time spent in critical section?
e Does TCLocks improve application performance?

Hardware: 8-socket/224-core Intel machine
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Evaluation: CS execution time

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

S1000 p === o = = === e = 1\ e >4threads

S o0l } "40‘""' o Minimal shared data

Q I "4

= I o movement

= 10 I I o S —

% : e < 4threads

g : ! o Context-switch overhead
§ 0.1 | o Not enough batching

- N < Kao © ®lo 3
\ [r——— - e e - - e s s .
# of threads

® Linux ¢ CNA = TCLocks

Setup: 8-socket/224-core machine
20



Evaluation: Micro-benchmark

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock
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Evaluation: Real-world applications

Kernel-space: Metis User-space: LevelDB
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TCLocks provides similar or better performance irrespective of thread count




ARTIFACT ARTIFACT ARTIFACT
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Conclusion Episni. | @Usnn. | @pneni

AVAILABLE REPRODUCED

® Existing lock design:
o Traditional lock design has more shared data movement
o Delegation-based lock design requires application modification

® TCLocks: Provides transparent delegation
o Capture thread’s context at right time
e Key takeaway:
o Applications can now use delegation-style locks without modification

https://rs3lab.github.io/TCLocks/

Thank you!
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