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More locks are in use to improve OS scalability

4X

Locks: MOST WIDELY used mechanism



Performance: Micro-benchmark
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Setup:   8-socket/224-core machine

● Performance decreases 
with increasing core 
count

● NUMA-aware locks (CNA) 
follow a similar trend

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

1 socket  > 1 socket



Lock transfer

Lock transfer

Traditional lock design: Large data movement
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Traditional lock design: Not ideal
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Application performance

Shared data movement

CS execution time



Delegation-style locks

● Similar to a server-client model

○ Server: Lock holder

○ Client: Waits to acquire the lock

● Client ships its critical section request 

in the form of a function to the server 

thread
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lock()  
count++ 
unlock() 

void incr_func() =  
count++

send_req_to_server(&incr_func)



Delegation-style locks
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Setup:   8-socket/224-core machine

CS execution time similar with 
increasing core count
● Minimal shared data 

movement

Delegation-style locks
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1 socket  > 1 socket

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock



Delegation locks require app. modification
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lock()  
count++ 
unlock() 

void incr_func() =  
count++

send_req_to_server(&incr_func)

Delegation is impractical for complex applications

4X



TCLocks: Goals
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● Transparency
○ Use standard lock/unlock APIs without rewriting applications

● Delegation
○ Minimal shared data movement

Transparent delegation



How to achieve transparent delegation? 
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● How to capture the thread’s context?
○ Without application rewrite

● Where to capture the thread’s context?
○ Such that only critical section is captured

● Does the waiter’s thread modify its context?
○ While the server is executing waiter’s critical section



Key idea: Transparent delegation 
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● How to capture the thread’s context?
○ Instruction pointer + stack pointer + general-purpose registers

● Where to capture the thread’s context?
○ Start and end of lock/unlock API

● Does the waiter’s thread modify its context?
○ No, lock waiter busy waits to acquire the lock



TCLocks: Putting it all together

● Queue-based lock

○ List of waiters maintained as a queue

○ Supports different queue reordering policy1

● Same lock/unlock API

131. Scalable and Practical Locking With Shuffling, SOSP’19

● Server thread batches each waiters’ request

● No dedicated server

○ Head of the queue becomes the server

○ The role is transferred to the next waiter after some threshold



TCLocks in action: Phase 1
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TCLocks in action: Phase 2

15

CTX
3Queue CTX

1
CTX

2

t
1

t
2

t
3

Spin

server

(1) Switch to CTX
2

(2) CS
2

Spin

non-CS

CS: Critical section
t

i
: thread i

CTX
i
: thread  i’s context

(3) Notify t
2



TCLocks in action: Phase 2
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TCLocks: Practical considerations
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● Ideal case
○ Waiter’s thread does not modify its context

● Reality
○ External events can modify waiter’s context

■ Interrupts: Require stack access
■ Waiter’s parking/wakeup mechanism: Require stack access

● Ephemeral stack
○ An empty piece of memory used only during critical section execution
○ Handles:

■ Interrupts on waiter’s CPU
■ Waiter’s thread parking/wakeup mechanism



TCLocks: Making it practical
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● Algorithmic support:
○ Blocking and reader-writer locks
○ NUMA-aware policy

● Lock usage:
○ Nested locking and OOO unlocking
○ Special execution contexts and per-CPU variables

● Performance optimization:
○ Reduced context-switch overhead
○ Stack prefetching

Checkout the paper for more details



TCLocks: Evaluation
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● Does TCLocks reduce the time spent in critical section?
● Does TCLocks improve application performance?

Hardware: 8-socket/224-core Intel machine



Setup:   8-socket/224-core machine

Evaluation: CS execution time
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● > 4 threads 
○ Minimal shared data 

movement

● ≤ 4 threads 
○ Context-switch overhead
○ Not enough batching

1 socket  > 1 socket

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock



Evaluation: Micro-benchmark
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● Within a socket:
○ Minimal shared data 

movement

● Across socket:
○ NUMA-aware policy

●  2 - 4 cores:
○ Context-switch overhead
○ Not enough batching

1 socket  > 1 socket

Setup:   8-socket/224-core machine

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

3.8x
2x



Evaluation: Real-world applications

22

User-space: LevelDB

TCLocks provides similar or better performance irrespective of thread count

Kernel-space: Metis

5.2x

2x



Conclusion
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● Existing lock design:

○ Traditional lock design has more shared data movement

○ Delegation-based lock design requires application modification

● TCLocks: Provides transparent delegation

○ Capture thread’s context at right time

● Key takeaway: 

○ Applications can now use delegation-style locks without modification

Thank you!

https://rs3lab.github.io/TCLocks/


