Ship your Critical Section Not Your Data:
Enabling Transparent Delegation with TCLocks

Vishal Gupta Kumar Kartikeya Dwivedi Yugesh Kothari
Yueyang Pan Diyu Zhou Sanidhya Kashyap

=PFL

Locks: MOST WIDELY used mechanism

200

—_
a1
o

1

4X

N
o

lock API() calls (x1000)
o
o

o

2002 2012 2022
Linux kernel

More locks are in use to improve OS scalability

2

Performance: Micro-benchmark

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

8

2 ‘e.

M Ops/sec

- 0-0-0-90-9

- AN < o0 O 0|V <
— N |I©O oo

112

of threads
® Linux ¢ CNA

Setup: 8-socket/224-core machine

140

168

196

224

Performance decreases
with increasing core
count

NUMA-aware locks (CNA)
follow a similar trend

Traditional lock design: Large data movement

t1 t2 t3
T 4) —T—
lock()
count++ Spin
] unlock() [=%trane | / Spi
S e lock() pin
~ ~
=~ — _| Shared I
data I” _/ count++ !
[unlock() |-oCktransfer £
\ 10Ck()
~
-~ ~
~|= - — _| Shared
data [count++
unlock()
t: thread i

\J \J \J

Traditional lock design: Not ideal

t Shared data movement
8
6 /‘\" I N S
¥ 4 Yo,

CS execution time

Z -0 --0-0-9
0

— N IO 00 — < O o

- — — — «

of threads A l. ti f
® Linux ¢ CNA pplication perrormance

M Ops/sec
L)
’
@
I
A
®

Delegation-style locks

e Similar to a server-client model
o Server: Lock holder
o Client: Waits to acquire the lock

e Client ships its critical section request
in the form of a function to the server
thread

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

Delegation-style locks

Processes
client’s request

CS

CS

t

f

CS Request

>

Spin

<

g:serverthread
q:threadi
CS: critical section

Response

t

f

CS Request

e

N

Spin

<

Z

Response

Delegation-style locks

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

1000

Y
- o
- o o

©
—

CS Execution Time (us

Setup:

—

o

2

"‘—.—H—.—I—l

N < 00 OV 0V <
— NI o
-

of threads
® Linux ¢ CNA = Delegation-based locks

128
168
224

8-socket/224-core machine

CS execution time similar with

increasing core count
e Minimal shared data
movement

Delegation locks require app. modification

lock() 200
count++ =
o
unlock() = 150 t
(2}
= 4X
,0\100
5
T ~ 50
void incr_func() = ks
count++ *
2002 2012 2022
send_req_to_server(&incr_func) Linux kernel

Delegation is impractical for complex applications

TCLocks: Goals

e Transparency
o Use standard lock/unlock APIs without rewriting applications

e Delegation

o Minimal shared data movement

Transparent delegation

10

How to achieve transparent delegation?

e How to capture the thread’s context?
o Without application rewrite

e Where to capture the thread’s context?
o Such that only critical section is captured

e Does the waiter’s thread modify its context?
o While the server is executing waiter’s critical section

Key idea: Transparent delegation

e How to capture the thread’s context?
o Instruction pointer + stack pointer + general-purpose registers

e Where to capture the thread’s context?
o Start and end of lock/unlock API

e Does the waiter’s thread modify its context?
o No, lock waiter busy waits to acquire the lock

TCLocks: Putting it all together

® Queue-based lock

o List of waiters maintained as a queue

o Supports different queue reordering policy?
e Same lock/unlock API

e Server thread batches each waiters’ request
e No dedicated server
o Head of the queue becomes the server
o Theroleis transferred to the next waiter after some threshold

1. Scalable and Practical Locking With Shuffling, SOSP’19

13

TCLocks in action: Phase 1

[Queue]—PCTX1 o

t: thread i
CTXi: thread i’s context

-

lock()

>

(1) Save context

LN

>

(2) Join queue

N

>

(3) Become server

J

scTx, | o ~CTX, | ofH],
tZ t3
? ?
lock() lock()

Y

(1) Save context

A

(1) Save context

AN

Y

(2) Join queue

LN

Y

(2) Join queue

AN

(3) Spin

(3) Spin

TCLocks in action: Phase 2

(o

¥

CTX, | o

2

server

L

?

(1) Switch to CTX,

(2) cs,

(3) Notify t,

CS: Critical section
p:threadi
CTXﬁthread i’s context

Spin

t
?
™
Spin
/

15

TCLocks in action: Phase 2

[Queue]—b CTX, o »{CTX, | © > CTX, O——i | |

1 3
? ?
[server) / \
| (1) switch to CTX, .
Servery/ < Spin
loop \ [(2) Cs,)
S~ @ Notifyy, oo

CS: Critical section
t: thread i
CTXi: thread i’s context

16

TCLocks: Practical considerations

® |deal case
o Waiter’s thread does not modify its context
® Reality
o External events can modify waiter’s context
m Interrupts: Require stack access
m Waiter’s parking/wakeup mechanism: Require stack access

e Ephemeral stack
o An empty piece of memory used only during critical section execution
o Handles:
m Interrupts on waiter’s CPU
m Waiter’s thread parking/wakeup mechanism

17

TCLocks: Making it practical

® Algorithmic support:

o Blocking and reader-writer locks

o NUMA-aware policy
® Lock usage:

o Nested locking and OOO unlocking

o Special execution contexts and per-CPU variables
® Performance optimization:

o Reduced context-switch overhead

o Stack prefetching

Checkout the paper for more details

18

TCLocks: Evaluation

® Does TCLocks reduce the time spent in critical section?
e Does TCLocks improve application performance?

Hardware: 8-socket/224-core Intel machine

19

Evaluation: CS execution time

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

S1000 p === o = = === e = 1\ e >4threads

S o0l } "40‘""' o Minimal shared data

Q I "4

= I o movement

= 10 I I o S —

% : e < 4threads

g : ! o Context-switch overhead
§ 0.1 | o Not enough batching

- N < Kao © ®lo 3
\ [r——— - e e - - e s s .
of threads

® Linux ¢ CNA = TCLocks

Setup: 8-socket/224-core machine
20

Evaluation: Micro-benchmark

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

g e Within a socket:
o Minimal shared data
o 6 movement
& 4
a ® Across socket:
; 2 o NUMA-aware policy
0 e 2-4cores:

o Context-switch overhead
o Not enough batching

of threads
® Linux ® CNA = TCLocks

Setup: 8-socket/224-core machine

21

Evaluation: Real-world applications

Kernel-space: Metis User-space: LevelDB

800 4

600 3
2 3

T 400 @ 2
~ S~
2 3

© 200 O 1

0 0

of threads # of threads
® Linux ¢ CNA = TCLocks ® pthread-mutex ¢ CNA = TCLocks

TCLocks provides similar or better performance irrespective of thread count

ARTIFACT ARTIFACT ARTIFACT

o EVALUATED EVALUATED EVALUATED
Conclusion Episni. | @Usnn. | @pneni

AVAILABLE REPRODUCED

® Existing lock design:
o Traditional lock design has more shared data movement
o Delegation-based lock design requires application modification

® TCLocks: Provides transparent delegation
o Capture thread’s context at right time
e Key takeaway:
o Applications can now use delegation-style locks without modification

https://rs3lab.github.io/TCLocks/

Thank you!

23

