
Ship your Critical Section Not Your Data:
Enabling Transparent Delegation with TCLocks

Vishal Gupta Kumar Kartikeya Dwivedi Yugesh Kothari
Yueyang Pan Diyu Zhou Sanidhya Kashyap

2

More locks are in use to improve OS scalability

4X

Locks: MOST WIDELY used mechanism

Performance: Micro-benchmark

3

Setup: 8-socket/224-core machine

● Performance decreases
with increasing core
count

● NUMA-aware locks (CNA)
follow a similar trend

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

1 socket > 1 socket

Lock transfer

Lock transfer

Traditional lock design: Large data movement

4

lock()

count++

unlock()

count++

unlock()

count++

unlock()

Spin

Spin

Shared
data

t
1

t
2

t
3

t
i
: thread i

lock()

lock()

Shared
data

Traditional lock design: Not ideal

5

Application performance

Shared data movement

CS execution time

Delegation-style locks

● Similar to a server-client model

○ Server: Lock holder

○ Client: Waits to acquire the lock

● Client ships its critical section request

in the form of a function to the server

thread

6

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

Delegation-style locks

7

CS
2

Spin

CS
3

CS Request

Response
Spin

CS Request

Response

tS t2 t3

t
s
: server thread

t
i
: thread i

CS: critical section

Processes
client’s request

Setup: 8-socket/224-core machine

CS execution time similar with
increasing core count
● Minimal shared data

movement

Delegation-style locks

8

1 socket > 1 socket

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

Delegation locks require app. modification

9

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

Delegation is impractical for complex applications

4X

TCLocks: Goals

10

● Transparency
○ Use standard lock/unlock APIs without rewriting applications

● Delegation
○ Minimal shared data movement

Transparent delegation

How to achieve transparent delegation?

11

● How to capture the thread’s context?
○ Without application rewrite

● Where to capture the thread’s context?
○ Such that only critical section is captured

● Does the waiter’s thread modify its context?
○ While the server is executing waiter’s critical section

Key idea: Transparent delegation

12

● How to capture the thread’s context?
○ Instruction pointer + stack pointer + general-purpose registers

● Where to capture the thread’s context?
○ Start and end of lock/unlock API

● Does the waiter’s thread modify its context?
○ No, lock waiter busy waits to acquire the lock

TCLocks: Putting it all together

● Queue-based lock

○ List of waiters maintained as a queue

○ Supports different queue reordering policy1

● Same lock/unlock API

131. Scalable and Practical Locking With Shuffling, SOSP’19

● Server thread batches each waiters’ request

● No dedicated server

○ Head of the queue becomes the server

○ The role is transferred to the next waiter after some threshold

TCLocks in action: Phase 1

14

CTX
3Queue CTX

1
CTX

2

t
1

t
2

t
3

lock()

(1) Save context

(2) Join queue

(3) Spin

lock()

(1) Save context

(2) Join queue

lock()

(1) Save context

(2) Join queue

(3) Spin

t
i
: thread i

CTX
i
: thread i’s context

(3) Become server

TCLocks in action: Phase 2

15

CTX
3Queue CTX

1
CTX

2

t
1

t
2

t
3

Spin

server

(1) Switch to CTX
2

(2) CS
2

Spin

non-CS

CS: Critical section
t

i
: thread i

CTX
i
: thread i’s context

(3) Notify t
2

TCLocks in action: Phase 2

16

CTX
3Queue CTX

1
CTX

2

t
1

t
3

Spin

server

(1) Switch to CTX
3

CS: Critical section
t

i
: thread i

CTX
i
: thread i’s context

(2) CS
3

(3) Notify t
3

non-CS

Server
loop

TCLocks: Practical considerations

17

● Ideal case
○ Waiter’s thread does not modify its context

● Reality
○ External events can modify waiter’s context

■ Interrupts: Require stack access
■ Waiter’s parking/wakeup mechanism: Require stack access

● Ephemeral stack
○ An empty piece of memory used only during critical section execution
○ Handles:

■ Interrupts on waiter’s CPU
■ Waiter’s thread parking/wakeup mechanism

TCLocks: Making it practical

18

● Algorithmic support:
○ Blocking and reader-writer locks
○ NUMA-aware policy

● Lock usage:
○ Nested locking and OOO unlocking
○ Special execution contexts and per-CPU variables

● Performance optimization:
○ Reduced context-switch overhead
○ Stack prefetching

Checkout the paper for more details

TCLocks: Evaluation

19

● Does TCLocks reduce the time spent in critical section?
● Does TCLocks improve application performance?

Hardware: 8-socket/224-core Intel machine

Setup: 8-socket/224-core machine

Evaluation: CS execution time

20

● > 4 threads
○ Minimal shared data

movement

● ≤ 4 threads
○ Context-switch overhead
○ Not enough batching

1 socket > 1 socket

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

Evaluation: Micro-benchmark

21

● Within a socket:
○ Minimal shared data

movement

● Across socket:
○ NUMA-aware policy

● 2 - 4 cores:
○ Context-switch overhead
○ Not enough batching

1 socket > 1 socket

Setup: 8-socket/224-core machine

Benchmark: Each thread enumerates files in a directory, serialized by a directory lock

3.8x
2x

Evaluation: Real-world applications

22

User-space: LevelDB

TCLocks provides similar or better performance irrespective of thread count

Kernel-space: Metis

5.2x

2x

Conclusion

23

● Existing lock design:

○ Traditional lock design has more shared data movement

○ Delegation-based lock design requires application modification

● TCLocks: Provides transparent delegation

○ Capture thread’s context at right time

● Key takeaway:

○ Applications can now use delegation-style locks without modification

Thank you!

https://rs3lab.github.io/TCLocks/

