

Hydro: Surrogate-based Hyperparameter Tuning Service in Datacenters

Qinghao Hu^{1,2}, Zhisheng Ye^{2,3}, Meng Zhang^{1,2}, Qiaoling Chen^{2,4}, Peng Sun^{2,5}, Yonggang Wen¹, Tianwei Zhang¹

Background

What is Hyperparameter Tuning?

ResNet, GPT...

```
General:
   learning rate=0.01
   batch size=256
   weight decay=0.01
Optimizer=SGD(momentum=0.5)
  /Adam(betas=(0.9, 0.99))
LR_Scheduler=Step(gamma=0.1)
  /CosineAnnealing(T_max=10)
```


Model Hyperparameter Recipes

Best Configuration

Effect of Hyperparameter Tuning

PyTorch v1.10 released an updated version of their official model weights

Source: PyTorch Blog

Challenge 1: High Tuning Cost of Large Models

The cost of tuning large models is unacceptable

→ lead to subpar model quality

Challenge 2: Inefficient Resource Usage

Tuning jobs consume substantial resources from enterprise & institute clusters

Challenge 2: Inefficient Resource Usage

GPUs are significantly underutilized

Source: [1] Themis (NSDI '20) [2] MLaaS (NSDI '22) [3] Lucid (ASPLOS '23) [4] HFTA (MLSys '21)

Job-level Hydro Tuner

Automatically generate surrogate models for tuning by applying transfer theory and model fusion

Datacenter-level Hydro Coordinator

Leverage idle bubble resources of pretraining jobs via interleaving training

Key Mechanism: Surrogate-based Tuning

Hydro Makes Hyperparameters Transferable

Applying Hydro on the same Transformer model

Underlying Theory: Maximum Update (MU) Parametrization[1]

Theoretically enabling maximal feature learning for infinite-width neural networks

1-hidden-layer MLP:

Optimizer: SGD with lr=1

Common Practice: Initialization:
$$U \sim \mathcal{N}(0,1), \quad V \sim \mathcal{N}(0,1/w)$$

Learning rates: $\eta_U=1, \quad \eta_V=1$

MU Parametrization: Initialization: $U \sim \mathcal{N}(0,1), \quad V \sim \mathcal{N}(0,1/w^2)$

Learning rates: $\eta_U = w, \quad \eta_V = 1/w$:

Avoid Output Layer Blow-up

MU Parametrization: Intuitive Insights[1]

Theoretical: Maximal feature learning for infinite-width neural networks

Impact in Practice

Empirical: Hyperparameter transfer across model scales (in terms of width)

Correspond models with different scales to their ∞ limits

Benefits:

- Solve the unbalanced training issue (e.g., output layer update much faster) via layer-wise *lr* adjustment
- Ensure consistent magnitude updates for each layer during training regardless of its width

Problem: Manually implementing MU parametrization is burdensome and error-prone

Hydro Tuner

MU parametrization theory + system support to jointly accelerate tuning

Hydro Tuner: Scaling Effect

Example: WideResNet-50

Hydro Tuner: Scaling Effect

However... For Small Model: ResNet-18

Hydro Tuner: Model Fusion

Hydro further enables inter- and intra-trial fusion to improve hardware efficiency

Hydro Tuner: Inter-trial Fusion

Hydro extends the application scope of HFTA^[1] & automizes the fusion process

22

Hydro Tuner: Inter-trial Fusion

Hydro extends the application scope of HFTA^[1] & automizes the fusion process

23

Effect of Scaling + Inter-trial Fusion

Example: ResNet-18 (Scaling=8, CIFAR-10 Batch_Size=256) on A100 80GB

Job-level Hydro Tuner

Automatically generate surrogate models for tuning by applying transfer theory and model fusion

Datacenter-level Hydro Coordinator

Leverage idle bubble resources of pretraining jobs via interleaving training

Resource Contention between LLM Pretraining and Tuning Jobs

Large Language Model (LLM) pretraining jobs occupy massive resources

→ Long queuing delay of tuning jobs

Opportunity: Co-exist LLM Pretraining Jobs

Massive Resources: Long-term occupy hundreds ~ thousands of GPUs

Pipeline Parallelism is commonly applied but introduces bubbles

X Wasted spare resources

Hydro Coordinator: Leverage Bubble Resources

Solution: Interleaving Hydro trials with a LLM pretraining job

Hydro Coordinator: Leverage Bubble Resources

Solution: Interleaving Hydro trials with a LLM pretraining job

Why Hydro Trials are suitable for interleaving?

1. Throughput Insensitive

Tuning jobs are more tolerant of partial trials slowdown

2. Deterministic and Scaled Memory Footprint

Memory is profiled and greatly reduced via model scaling

3. Elastic and Opportunistic Trial Placement

Trials can adjust the fusion number to fit the remaining memory

GPU Memory:

Effect of Hydro Coordinator

SM Activity of a GPT model with 4 pipeline stages (over 4x8 A100 GPUs)

+ Hydro Trials (fuse 16x ResNet-18 models) with interleaving training

Evaluation

Evaluation: Intuitive Study of Surrogate-Based Tuning

Hyperparameter ranking transfers well across different scaling ratios

Evaluation: End-to-End Experiments

Testbed: A100 GPU cluster of Shanghai Al Laboratory

Baseline: Ray Tune^[1] system + FIFO algorithm

Task	Search Space	Model	#GPUs	#Trial	Acceleration	Quality
Language Modeling	Ir : (10 ⁻⁵ , 10 ⁻¹) gamma : (0.01, 0.9)	GPT-3 XL	128	100	78.5 ×	-0.48 ppl*
		Transformer	8	200	8.7 ×	-0.15 ppl
Image Classification	Ir: (10 ⁻⁴ , 10 ⁰) momentum: (0.5, 0.999) batchsize: [128, 256,512] gamma: (0.01, 0.9)	WideResNet-50	32	200	20.3 ×	+1.18% acc*
		MobileNetV3-L	16	500	12.3 ×	+0.05% acc
		VGG-11	8	500	10.8 ×	+0.09% acc
		ResNet-18	8	1000	16.2 ×	+0.02% acc

^{*} Compared with the official hyperparameter setting as the model quality baseline

Job-level

Joint optimization of theory and system techniques

Datacenter-level

Leverage idle bubble resources of pretraining jobs

https://github.com/S-Lab-System-Group/Hydro

qinghao.hu@ntu.edu.sg