The 17th USENIX Symposium on Operating Systems Design and Implementation

ARTIFACT ARTIFACT ARTIFACT

C 0 n F UX A EVALUATED EVALUATED EVALUATED
L o AVAILABLE REPRODUCED

LVMT: An Efficient Authenticated
Storage for Blockchain

Chenxing Li ', Sidi Mohamed Beillahi? , Guang Yang', Ming Wu', Wei Xu3, Fan Long'-?

IShanghai Tree-Graph Blockchain Research Institute
2University of Toronto 3Tsinghua University

Evolution of Blockchain Performance

Early blockchain systems are slow

@ @ (< 30 transactions / second)

Reaches 20,000 transactions/second

Resolved bottlenecks (reaches 20,000 transactions/second)

A Transaction Broadcast Consensus for Transaction Order 1
Resolved by bandwidth-efficient Resolved by high performance consensus g —1
protocol protocols -

User transaction Blockchain nodes Ordered transaction
receive transactions with consensus

Next bottleneck

—l Transaction Execution |
— Impedes by inefficient
- authenticated storage.

Ordered transaction

Execution Receipt
with consensus

Architecture of Blockchain Execution Layer

[

Ordered
Transactions

—

I Execute |

Stack-based
Virtual Machine

Fetch value of key 0x23

|

;

Push the value to stack

Opcode Stack

PUSH 0x23
SLOAD
PUSH 0x45
SSTORE

[0x23]
[val]

\

Cache]

If not exists, load the
value from the storage

A Key-value
storage

Architecture of Blockchain Execution Layer

Ordered Execute Stack-based | >etvalue of key 0x45
. : . Cache
Transactions Virtual Machine J

Flush all the changes at
Opcode Stack the end of block execution

PUSH 0x23 | [0x23]

\
SLOAD [val]

PUSH 0x45 | [val, 0x45] A Key-value

storage

mmdp | SSTORE []

Architecture of Blockchain Execution Layer

Ordered Execute Stack-based Cache
Transactions Virtual Machine

1r, 1w
Opcode Stack

PUSH 0x23 | [0x23] [

Authenticated
SLOAD [val]

Data Structure

PUSH 0x45 | [val, 0x45]

4 r, 8 w
SSTORE [] (By our experiments)

Backend Key-value
Database

Authenticated Storage

Server Client
Query a key
— ¢ .
. -

Answer (Reveal) the value with proof

A key-value storage Client
| |
Compute a Verify proof with
succinct digest commitment

Put in block Read from block

Commitment Commitment

The Merkle Tree

Vector Commitment protocol: Merkle Tree

Variants for blockchain system: MPT, RainBlocks, LMPTs

Each node is the hash

* When an input element changes, the / \ value of its children.

nodes along the path also changes. ’/C>\‘ ’/O\‘
* Each node is a key-value pair in backend R g R R
- 0(log n) read-write amplification

Input vector

The Merkle Tree

Vector Commitment protocol: AMT

Variants for blockchain system: LVMT (our work)

CCommitmenD

* AMT removes the inner nodes and
achieves 0(1) cost in maintaining

commitment.

Input vector

Challenges in using AMT

« Fast in complexity # fast in practice
 AMT has slow cryptographic operations.

« AMT is not scalable.
« Max capacity of AMT = Size of public parameters.

* Proof generation is Expensive

« Maintaining data for generating proofs is also
O(logn)

Challenge 1: Costly cryptographic
operations

In AMT, each time a value changes as,
a — Cli’

the commitment adjusts accordingly

C-C+ (ai'—ai) Gl
® T ®

L Precomputed Parameter (200 byte)

Elliptic Curve Multiplication (92 us)

Big Integer Subtraction (<0.01 us)
Elliptic Curve Addition (0.34 us)

Challenge 1: Costly cryptographic
operations

In AMT, each time a value changes as,

a — Cli’ (Assumes a; — a; = 1)
the commitment adjusts accordingly

C>C+ 1 -G

L Precomputed Parameter (200 byte)

Elliptic Curve Addition (0.34 us)

Solution 1: Version-based database

Set (key,val)

Increase ver of Store tuple
key by 1 (key,ver,val, loc)
Multi-level AMTs Append-only
Merkle trees
Prove the current Prove existence of tuple
ver of key (key,ver,val, loc)

Prove key

Challenge 2: AMT is not scalable

254-bit value _l

Maintain
= { AMT } - (Commitment)

l—Vector Index
00
01 Take as input
10
11

Input vector of size 2%

(for any k)

1. Determined at
the setup phase

\Stores
2. Precomputed parameters
in size of 2%

3. Blockchain has 256-bit key space,
but k = 256 is infeasible.

Solution 2: Use multiple-level AMT.

Change value for ~ 'Stlevel 2ndfevel . drdlevel o <
k 100111 ! Occupied slot for
ey o ' The root AMT Sub-AMT-2 Sub-AMT-@2,1) key-version pairs
|
Commitment of AMT Rt A ' Vacant slot for
. : - E key-version pairs
Input vector with __| 00 oo| ! & Allocated slot for
four elements ! | key 100111...
| 01 01 :
Multiple slots for version | J o o] Slot for sub-AMT
numbers in one element | i with label
' 1 ok 1l Commitment
i______________, T ______________J \@) with label)
Set (key,val) Prove key
1. Incease version numbersin|*|, [B|and A | by 1 1. Prove the version numbers with respect to the AMT
and update commitments. commitment:
2. Add the following tuples to the Merkle trees. *—>(B) B—>(A) |A—(Rt)

(key , |%| , val, (3,2))

((2,1), |B|, (B)) T—Theslo’t index
The sub-AMT level

(2 , A, (A)) allocating this key

2. Prove the existence of the left three tuples in Merkle
trees to demonstrate the commitments at specifined
version numbers.

*

B

(o—

A

Challenge 3: Maintaining proof data incurs
significant costs

Nodes not serving clients only need to

maintain commitment in 0 (1) time -(CommltmenD

Nodes serving clients maintain
auxiliary information for

| |
| |
| |
| |
| |
| |
generating proofin O(logn) time. _ R g g R 1

Input vector

Solution 3: Proof Shardlng

CComm|tment)

Consensus node
, L. Commitment
Don’t maintain proof and
do not serve users
_ J

Auxiliary information

for generating proofs R R R R
Input vector

(Version numbers)

Sub-AMTs M /\ /\ /\ /\ /\ /\

4 h

RPC provider CCommitment) CCommitment) CCommitment) CCommitment)

. . } Proof shard Proof shard Proof shard Proof shard
@ Maintain proofs with a [] [) [) [)
cluster to serve users

| |
\ J

il
il
fil
fil

Modular Authenticated Storage Benchmark Tool

€ A Random task on various ledger size (in million)
Execution Task Randomly access new keys only
Real Ethereum trace
- I J
4)

. Only maintains commitment
Authenticated Data |
#: the fraction of proof shards

SIEL R Baselines

- J

|

4)

Key-Value Database
_ _J

Throughput on micro-benchmarks

Throughput of Authenticated Storage Systems

300

N

(0)

o
I

N

o

o
1

150 A

100 -

Operations per second (1000x)

261

real fresh Im 10m
Workloads

LVMT-r
LVMT64
LVMT16
RAIN
MPT
LVMT1

100m

Read Amplification

Read Amplification of Authenticated Storage Systems

5
LVMT-r

4. LVMT64 4.1
LVMT16

RAIN
MPT

Reads per Operation

real fresh Im 10m 100m
Workloads

Throughput on a Blockchain Node

Transactions per Second (x1000)

Throughput for Simple Transactions

36 36 35

LVMT-r
LVMT64
LVMT16
RAIN
LMPTs
MPT

1m 3m 5m
Number of Initialized Keys

Time Usage Breakdown

Time Usage Breakdown for Simple Transactions

50
B Execution Engine 42

i Authenticated Structure
B Backend

Time (us)

LVMT16 RAIN MPT
Authenticated Storage Systems

RAW LVMT-r LVMT64

Conclusion

* LVMT utilizes the superior vector commitment protocol AMT,
offering higher optimization potential.

* Through the version-based design, multi-level AMT, and proof
sharding, LVMT addresses challenges effectively.

* LVMT enhances the execution throughput of a blockchain
system by up to 2.7x.

Thank you and see you in Q&A

Email: lylcx2007@gmail.com

Github: https://github.com/Chenxingli/authenticated-storage-benchmarks

https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e

mailto:lylcx2007@gmail.com?subject=Questions%20about%20LVMT%20paper
https://github.com/ChenxingLi/authenticated-storage-benchmarks
https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e

