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Evolution of Blockchain Performance

Early blockchain systems are slow

@ @ (< 30 transactions / second)

Reaches 20,000 transactions/second

Resolved bottlenecks (reaches 20,000 transactions/second)

A Transaction Broadcast Consensus for Transaction Order 1
Resolved by bandwidth-efficient Resolved by high performance consensus g —1
protocol protocols -

User transaction Blockchain nodes Ordered transaction
receive transactions with consensus

Next bottleneck
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— Impedes by inefficient
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Ordered transaction
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Architecture of Blockchain Execution Layer
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Architecture of Blockchain Execution Layer

Ordered Execute Stack-based | >etvalue of key 0x45
. : . Cache
Transactions Virtual Machine J

Flush all the changes at
Opcode Stack the end of block execution

PUSH 0x23 | [0x23]

\
SLOAD [val]

PUSH 0x45 | [val, 0x45] A Key-value

storage

mmdp | SSTORE []




Architecture of Blockchain Execution Layer
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Authenticated Storage
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The Merkle Tree

Vector Commitment protocol: Merkle Tree

Variants for blockchain system: MPT, RainBlocks, LMPTs

Each node is the hash

* When an input element changes, the / \ value of its children.

nodes along the path also changes. ’/C>\‘ ’/O\‘
* Each node is a key-value pair in backend R g R R
- 0(log n) read-write amplification

Input vector




The Merkle Tree

Vector Commitment protocol: AMT

Variants for blockchain system: LVMT (our work)

CCommitmenD

* AMT removes the inner nodes and
achieves 0(1) cost in maintaining

commitment.

Input vector




Challenges in using AMT

« Fast in complexity # fast in practice
 AMT has slow cryptographic operations.

« AMT is not scalable.
« Max capacity of AMT = Size of public parameters.

* Proof generation is Expensive

« Maintaining data for generating proofs is also
O(logn)



Challenge 1: Costly cryptographic
operations

In AMT, each time a value changes as,
a — Cli’

the commitment adjusts accordingly

C-C+ (ai'—ai) Gl
® T ®

L Precomputed Parameter (200 byte)

Elliptic Curve Multiplication (92 us)

Big Integer Subtraction (<0.01 us)
Elliptic Curve Addition (0.34 us)




Challenge 1: Costly cryptographic
operations

In AMT, each time a value changes as,

a — Cli’ (Assumes a; — a; = 1)
the commitment adjusts accordingly

C>C+ 1 -G

L Precomputed Parameter (200 byte)

Elliptic Curve Addition (0.34 us)



Solution 1: Version-based database

Set (key,val)

Increase ver of Store tuple
key by 1 (key,ver,val, loc)
Multi-level AMTs Append-only
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Prove the current Prove existence of tuple
ver of key (key,ver,val, loc)
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Challenge 2: AMT is not scalable

254-bit value _l

Maintain
= { AMT } - (Commitment)

l—Vector Index
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Input vector of size 2%

(for any k)

1. Determined at
the setup phase

\Stores
2. Precomputed parameters
in size of 2%

3. Blockchain has 256-bit key space,
but k = 256 is infeasible.



Solution 2: Use multiple-level AMT.
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Challenge 3: Maintaining proof data incurs
significant costs

Nodes not serving clients only need to

maintain commitment in 0 (1) time -(CommltmenD

Nodes serving clients maintain
auxiliary information for

| |
| |
| |
| |
| |
| |
generating proofin O(logn) time. \_ R g g R 1
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Solution 3: Proof Shardlng
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Modular Authenticated Storage Benchmark Tool
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Throughput on micro-benchmarks

Throughput of Authenticated Storage Systems
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Read Amplification

Read Amplification of Authenticated Storage Systems
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Throughput on a Blockchain Node

Transactions per Second (x1000)

Throughput for Simple Transactions
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Time Usage Breakdown

Time Usage Breakdown for Simple Transactions
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Conclusion

* LVMT utilizes the superior vector commitment protocol AMT,
offering higher optimization potential.

* Through the version-based design, multi-level AMT, and proof
sharding, LVMT addresses challenges effectively.

* LVMT enhances the execution throughput of a blockchain
system by up to 2.7x.



Thank you and see you in Q&A

Email: lylcx2007@gmail.com

Github: https://github.com/Chenxingli/authenticated-storage-benchmarks

https://github.com/Conflux-Chain/conflux-rust/tree/asb-e2e
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