
SMART: A High-Performance Adaptive Radix Tree 
for Disaggregated Memory

Xuchuan Luo1, Pengfei Zuo2, Jiacheng Shen3, Jiazhen Gu3,
Xin Wang1,4, Michael R. Lyu3, and Yangfan Zhou1,4

1School of Computer Science, Fudan University
2Huawei Cloud 3The Chinese University of Hong Kong

4Shanghai Key Laboratory of Intelligent Information Processing, Shanghai, China



Disaggregated Memory (DM)

Compute Nodes (CNs)

Memory Nodes (MNs)

Resource utilization
 Elasticity

Benefits:

2

…

Fast Network (e.g., RDMA)

…



B+ Tree

Tree Indexes

3

Radix Tree

• Each internal node stores entire keys
• Each leaf node holds multiple KVs 

• Each internal node stores partial keys
• Each leaf node holds a single KV 

Key1

KV

Key2 Key3

KV

Key4

… KV KV… KV KV… KV KV…

…

KV KV…

……

00 …01 FF

KV KV KV KV

00 01 FF 00 01 FF



Key1

KV

Key2 Key3

KV

Key4

… KV KV… KV KV… KV KV…

…

KV KV…

Tree Indexes on Disaggregated Memory

Existing tree indexes on DM are based on the B+ tree:

Clients
…

[1] Tobias Ziegler et al. Designing distributed tree-based index structures for fast RDMA-capable networks. SIGMOD 2019.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.

FG [1], Sherman [2]

Read/write amplifications of B+ trees

Problem:

4

computing-side

memory-side
Read/write nodes

 Exacerbate the network bandwidth 
bottleneck of DM



Key1

KV

Key2 Key3

KV

Key4

… KV KV… KV KV… KV KV…

…

KV KV…

Tree Indexes on Disaggregated Memory

5

Cached internal nodes

B+ Tree

Read and write amplification factors:
B+ Tree Sherman

Read amplification

Write amplification

span size = 32

≈ 33≈ 32
≈ 32 ≈ 1



……

00 …01 FF

KV KV KV KV

00 01 FF 00 01 FF

Key1

KV

Key2 Key3

KV

Key4

… KV KV… KV KV… KV KV…

…

KV KV…

Tree Indexes on Disaggregated Memory

6

Read and write amplification factors:

Cached internal nodes

B+ Tree Sherman Radix Tree

Read amplification

Write amplification

B+ Tree Radix Tree

Cached internal nodes

≈ 32 ≈ 33
≈ 32 ≈ 1

≈ 1
≈ 1

span size = 32 span size = 1



Tree Indexes on Disaggregated Memory

7

Read and write amplification factors:
B+ Tree Sherman Radix Tree

Read amplification

Write amplification

Our Idea: Using radix tree to build a high-performance tree index on DM

Insight: The radix tree is more suitable for DM than the B+ tree due 
to smaller read/write amplifications 

≈ 32 ≈ 33
≈ 32 ≈ 1

≈ 1
≈ 1



Challenge 1: Expensive Lock-based Concurrency Control

Lock-based concurrency control of radix trees causes poor write performance

Coarse-grained Lock
Expensive on DM

8

computing-side

memory-side

…

Radix Tree

Clients



Bounded IOPS of RNICsBounded IOPS of RNICs

Challenge 2: Bounded Memory-side IOPS

Inter-client redundant I/Os on DM waste the limited IOPS of RNICs

9

computing-side

memory-side

…

read 
66050

read 
513

read 
513

write 
716

write 
716

Small-sized Read/Write 
Operations

Radix Tree

Redundant Read I/Os
Peak throughput

Clients

Redundant Write I/Os
Concurrency conflicts
Peak throughput



Challenge 3: Complicated Computing-side Cache Validation

Structural features of radix trees complicate the problem of cache invalidation

10

Common Optimizations:
• Path compression
• Adaptive nodes

Cachescomputing-side

memory-side

…

Cache Invalidation
Is a cache entry outdated?

complicate

Radix Tree

outdate

Structural modifications 
from other CNs

Clients



Challenge Summary

CNs

MNs

Clients
…

Caches

Radix Tree

1. Expensive lock-based concurrency control

2. Bounded memory-side IOPS

3. Complicated computing-side cache validation

11



DiSaggregated-meMory-friendly Adaptive Radix Tree (SMART)

12

CNs

MNs

Clients
…

Caches

SMART

 Solution 2: Read-delegation and write-combining technique

 Solution 1: Hybrid concurrency control scheme

 Solution 3: Reverse check mechanism

1. Expensive lock-based concurrency control

2. Bounded memory-side IOPS

3. Complicated computing-side cache validation



Hybrid Concurrency Control

13

MNs

Radix Tree

CNs

Clients
…

Caches

Partial Key ArrayHeader Child Pointer Array

The internal node of the state-of-the-art radix tree [3]:

Store partial keys and child pointers separately

[3] Viktor Leis et al. “The adaptive radix tree: ARTful indexing for main-memory databases.” ICDE 2013.

Problem: Expensive lock-based concurrency control



Hybrid Concurrency Control

MNs

SMART

8B

Partial Key Child Pointer

8bit 48bit

8B

Problem: Expensive lock-based concurrency control
 Solution: Lock-free internal nodes

CNs

Clients
…

Caches

Key Idea:
• Embed each partial key and child pointer into 

an 8-byte slot
• 8-byte header

SlotHeader Slot Slot … …Slot

14



Hybrid Concurrency Control

15

MNs

Radix Tree

CNs

Clients
…

Caches

Cache leaf node addresses

Problem: Out-of-place update causes cache thrashing

Out-of-place update changes 
leaf node addresses frequently



Hybrid Concurrency Control

MNs

SMART

Problem: Out-of-place update causes cache thrashing
 Solution: Lock-based update-in-place leaf nodes

CNs

Clients
…

Caches

1B8B
fixed size

Checksum Key Value Lock

Key Idea:
• Write-write conflict

• Combine lock release with writing back
 Rear embedded lock

16

 Checksum-based method• Read-write conflict 
• Writer: checksum := CRC(KV)
• Reader: checksum == CRC(KV)?



Caches

Read Delegation and Write Combining

17

CNs

MNs

Problem: Redundant read I/Os

Identical Tree Search

…R R R R

Reading the same key
from the same CN 



Caches

Read Delegation and Write Combining

18

CNs

MNs

R
R
R

Delegated Read

Problem: Redundant read I/Os
 Solution: Read delegation

Key Idea:
• Choose a delegation client on each 

CN to execute the same readR



Caches

19

CNs

MNs

R

R
R
R

Delegated Read

R R R R…

Local locks

lock fails
NoYes

Problem: Redundant read I/Os
 Solution: Read delegation

Key Idea:
• Choose a delegation client on each 

CN to execute the same read
• Use local locks to collect 

concurrent identical reads

Read Delegation and Write Combining



Caches

20

CNs

MNs

Problem: Redundant write I/Os

Remote Synchronization

…W W W W

Writing the same key
from the same CN 

Read Delegation and Write Combining



21

Problem: Redundant write I/Os
 Solution: Write combining

Key Idea:
• Combine these writes on a local 

write combining buffer (WCB)

WW W W…

CachesCNs

MNs

W
W
W

WCB

write

W
read

Combined Write

Read Delegation and Write Combining



22

Problem: Redundant write I/Os
 Solution: Write combining

Key Idea:
• Combine these writes on a local 

write combining buffer (WCB)
• Use local locks to collect 

concurrent writes with the same 
target keyCachesCNs

MNs

W
W
W

WCB

W
read

lock fails

write

No

write

Yes

W W W W…
Local locks

Combined Write

Read Delegation and Write Combining



Reverse Check

23

Clients
…

CNs

MNs

Caches

Structural modifications 
from other CNs

Problem: Cache invalidation of the radix tree

Radix Tree

outdate



Reverse Check

24

Other Cache Contents Cached Internal Node

Cache entry:

Remote Tree NodeCheck Information

Clients
…

CNs

MNs

Reverse check

Problem: Cache invalidation of the radix tree
 Solution: Reverse check mechanism

Key Idea:
• Store check information in each remote node

Read remote node

• Check: check information == cache content ?



Other Cache Contents

Reverse Check

25

Node Address Cached Internal Node

Cache entry:

Remote Tree NodeReverse Pointer

Clients
…

CNs

MNs

Example:
• Cache invalidation: adjustments on the parent-

child relationship of remote nodes

Problem: Cache invalidation of the radix tree
 Solution: Reverse check mechanism

Key Idea:
• Store check information in each remote node
• Check: check information == cache content ?

Reverse check

Read remote node

• Store a reverse pointer in the front of each node
• Check: Reverse Pointer == cached Node Address ?



More Details

 Concurrent operations
Hash-based local locks
 Complete reverse check designs
 Support for variable-sized keys and 

values
……

26



Evaluation

Workloads

Comparisons

• YCSB workloads
• 2 key types: integer, string

• Sherman [SIGMOD’22]
• The state-of-the-art B+ tree design on DM

• ART [ICDE’13]
• The state-of-the-art radix tree design
• We port it to DM

16 CNs (4GB DRAM + 64 CPU cores each)

…

2 MNs (64GB DRAM + 1 CPU core each)

100Gbps CX6 RNIC

100Gbps CX6 RNIC

100Gbps 
Ethernet Switch

27



YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert

Performance Comparison

• Compared with Sherman, SMART achieves up to:
 6.1x higher throughput and 1.4x lower latency under write-intensive workloads

28

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

6.1x
2.8x

 2.8x higher throughput with similar latency under read-only workloads



Factor Analysis for SMART design

29

• Start with the ART design and apply each proposed technique one by one

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design

30

1.5x

 The lock-free internal node brings 1.5x improvement in throughput 
under the YCSB LOAD workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design

31

1.5x

 The update-in-place leaf node brings 1.5x improvement in throughput 
under the YCSB B workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design

32

3.0x

 The rear embedded lock brings 3.0x improvement in throughput 
under the YCSB A workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design

33

1.1x

 The read delegation brings 1.1x improvement in throughput 
under the YCSB C workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design

34

1.1x

 The write combining brings 1.1x improvement in throughput 
under the YCSB A workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Conclusion

• Existing tree indexes on DM are based on B+ trees, which suffer from large 
inherent read and write amplifications

• We propose SMART, a high-performance adaptive radix tree for DM
 Hybrid concurrency control scheme
 Read-delegation and write-combining technique
 Reverse check mechanism

• SMART outperforms the state-of-the-art B+ tree on DM by up to 6.1x under 
YCSB write-intensive workloads and 2.8x under YCSB read-only workloads

35



Thank you! Q&A
https://github.com/dmemsys/SMART

https://github.com/dmemsys/SMART

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36

