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Disaggregated Memory (DM)

Compute Nodes (CNs)

Memory Nodes (MNs)

Resource utilization
 Elasticity

Benefits:
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…

Fast Network (e.g., RDMA)

…



B+ Tree

Tree Indexes
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Radix Tree

• Each internal node stores entire keys
• Each leaf node holds multiple KVs 

• Each internal node stores partial keys
• Each leaf node holds a single KV 
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Tree Indexes on Disaggregated Memory

Existing tree indexes on DM are based on the B+ tree:

Clients
…

[1] Tobias Ziegler et al. Designing distributed tree-based index structures for fast RDMA-capable networks. SIGMOD 2019.
[2] Qing Wang et al. Sherman: A write-optimized distributed B+ tree index on disaggregated memory. SIGMOD 2022.

FG [1], Sherman [2]

Read/write amplifications of B+ trees

Problem:
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computing-side

memory-side
Read/write nodes

 Exacerbate the network bandwidth 
bottleneck of DM
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Tree Indexes on Disaggregated Memory
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Cached internal nodes

B+ Tree

Read and write amplification factors:
B+ Tree Sherman

Read amplification

Write amplification

span size = 32

≈ 33≈ 32
≈ 32 ≈ 1
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Tree Indexes on Disaggregated Memory
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Read and write amplification factors:

Cached internal nodes

B+ Tree Sherman Radix Tree

Read amplification

Write amplification

B+ Tree Radix Tree

Cached internal nodes

≈ 32 ≈ 33
≈ 32 ≈ 1

≈ 1
≈ 1

span size = 32 span size = 1



Tree Indexes on Disaggregated Memory
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Read and write amplification factors:
B+ Tree Sherman Radix Tree

Read amplification

Write amplification

Our Idea: Using radix tree to build a high-performance tree index on DM

Insight: The radix tree is more suitable for DM than the B+ tree due 
to smaller read/write amplifications 

≈ 32 ≈ 33
≈ 32 ≈ 1

≈ 1
≈ 1



Challenge 1: Expensive Lock-based Concurrency Control

Lock-based concurrency control of radix trees causes poor write performance

Coarse-grained Lock
Expensive on DM
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computing-side

memory-side

…

Radix Tree

Clients



Bounded IOPS of RNICsBounded IOPS of RNICs

Challenge 2: Bounded Memory-side IOPS

Inter-client redundant I/Os on DM waste the limited IOPS of RNICs
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computing-side

memory-side

…

read 
66050

read 
513

read 
513

write 
716

write 
716

Small-sized Read/Write 
Operations

Radix Tree

Redundant Read I/Os
Peak throughput

Clients

Redundant Write I/Os
Concurrency conflicts
Peak throughput



Challenge 3: Complicated Computing-side Cache Validation

Structural features of radix trees complicate the problem of cache invalidation
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Common Optimizations:
• Path compression
• Adaptive nodes

Cachescomputing-side

memory-side

…

Cache Invalidation
Is a cache entry outdated?

complicate

Radix Tree

outdate

Structural modifications 
from other CNs

Clients



Challenge Summary

CNs

MNs

Clients
…

Caches

Radix Tree

1. Expensive lock-based concurrency control

2. Bounded memory-side IOPS

3. Complicated computing-side cache validation
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DiSaggregated-meMory-friendly Adaptive Radix Tree (SMART)
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CNs

MNs

Clients
…

Caches

SMART

 Solution 2: Read-delegation and write-combining technique

 Solution 1: Hybrid concurrency control scheme

 Solution 3: Reverse check mechanism

1. Expensive lock-based concurrency control

2. Bounded memory-side IOPS

3. Complicated computing-side cache validation



Hybrid Concurrency Control
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MNs

Radix Tree

CNs

Clients
…

Caches

Partial Key ArrayHeader Child Pointer Array

The internal node of the state-of-the-art radix tree [3]:

Store partial keys and child pointers separately

[3] Viktor Leis et al. “The adaptive radix tree: ARTful indexing for main-memory databases.” ICDE 2013.

Problem: Expensive lock-based concurrency control



Hybrid Concurrency Control

MNs

SMART

8B

Partial Key Child Pointer

8bit 48bit

8B

Problem: Expensive lock-based concurrency control
 Solution: Lock-free internal nodes

CNs

Clients
…

Caches

Key Idea:
• Embed each partial key and child pointer into 

an 8-byte slot
• 8-byte header

SlotHeader Slot Slot … …Slot

14



Hybrid Concurrency Control
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MNs

Radix Tree

CNs

Clients
…

Caches

Cache leaf node addresses

Problem: Out-of-place update causes cache thrashing

Out-of-place update changes 
leaf node addresses frequently



Hybrid Concurrency Control

MNs

SMART

Problem: Out-of-place update causes cache thrashing
 Solution: Lock-based update-in-place leaf nodes

CNs

Clients
…

Caches

1B8B
fixed size

Checksum Key Value Lock

Key Idea:
• Write-write conflict

• Combine lock release with writing back
 Rear embedded lock
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 Checksum-based method• Read-write conflict 
• Writer: checksum := CRC(KV)
• Reader: checksum == CRC(KV)?



Caches

Read Delegation and Write Combining
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CNs

MNs

Problem: Redundant read I/Os

Identical Tree Search

…R R R R

Reading the same key
from the same CN 



Caches

Read Delegation and Write Combining
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CNs

MNs

R
R
R

Delegated Read

Problem: Redundant read I/Os
 Solution: Read delegation

Key Idea:
• Choose a delegation client on each 

CN to execute the same readR



Caches
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CNs

MNs

R

R
R
R

Delegated Read

R R R R…

Local locks

lock fails
NoYes

Problem: Redundant read I/Os
 Solution: Read delegation

Key Idea:
• Choose a delegation client on each 

CN to execute the same read
• Use local locks to collect 

concurrent identical reads

Read Delegation and Write Combining



Caches
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CNs

MNs

Problem: Redundant write I/Os

Remote Synchronization

…W W W W

Writing the same key
from the same CN 

Read Delegation and Write Combining
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Problem: Redundant write I/Os
 Solution: Write combining

Key Idea:
• Combine these writes on a local 

write combining buffer (WCB)

WW W W…

CachesCNs

MNs

W
W
W

WCB

write

W
read

Combined Write

Read Delegation and Write Combining
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Problem: Redundant write I/Os
 Solution: Write combining

Key Idea:
• Combine these writes on a local 

write combining buffer (WCB)
• Use local locks to collect 

concurrent writes with the same 
target keyCachesCNs

MNs

W
W
W

WCB

W
read

lock fails

write

No

write

Yes

W W W W…
Local locks

Combined Write

Read Delegation and Write Combining



Reverse Check
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Clients
…

CNs

MNs

Caches

Structural modifications 
from other CNs

Problem: Cache invalidation of the radix tree

Radix Tree

outdate



Reverse Check
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Other Cache Contents Cached Internal Node

Cache entry:

Remote Tree NodeCheck Information

Clients
…

CNs

MNs

Reverse check

Problem: Cache invalidation of the radix tree
 Solution: Reverse check mechanism

Key Idea:
• Store check information in each remote node

Read remote node

• Check: check information == cache content ?



Other Cache Contents

Reverse Check
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Node Address Cached Internal Node

Cache entry:

Remote Tree NodeReverse Pointer

Clients
…

CNs

MNs

Example:
• Cache invalidation: adjustments on the parent-

child relationship of remote nodes

Problem: Cache invalidation of the radix tree
 Solution: Reverse check mechanism

Key Idea:
• Store check information in each remote node
• Check: check information == cache content ?

Reverse check

Read remote node

• Store a reverse pointer in the front of each node
• Check: Reverse Pointer == cached Node Address ?



More Details

 Concurrent operations
Hash-based local locks
 Complete reverse check designs
 Support for variable-sized keys and 

values
……
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Evaluation

Workloads

Comparisons

• YCSB workloads
• 2 key types: integer, string

• Sherman [SIGMOD’22]
• The state-of-the-art B+ tree design on DM

• ART [ICDE’13]
• The state-of-the-art radix tree design
• We port it to DM

16 CNs (4GB DRAM + 64 CPU cores each)

…

2 MNs (64GB DRAM + 1 CPU core each)

100Gbps CX6 RNIC

100Gbps CX6 RNIC

100Gbps 
Ethernet Switch

27



YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert

Performance Comparison

• Compared with Sherman, SMART achieves up to:
 6.1x higher throughput and 1.4x lower latency under write-intensive workloads

28

YCSB LOAD YCSB A YCSB B YCSB C YCSB D

6.1x
2.8x

 2.8x higher throughput with similar latency under read-only workloads



Factor Analysis for SMART design
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• Start with the ART design and apply each proposed technique one by one

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design
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1.5x

 The lock-free internal node brings 1.5x improvement in throughput 
under the YCSB LOAD workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design
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1.5x

 The update-in-place leaf node brings 1.5x improvement in throughput 
under the YCSB B workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design
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3.0x

 The rear embedded lock brings 3.0x improvement in throughput 
under the YCSB A workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design
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1.1x

 The read delegation brings 1.1x improvement in throughput 
under the YCSB C workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Factor Analysis for SMART design
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1.1x

 The write combining brings 1.1x improvement in throughput 
under the YCSB A workload

YCSB LOAD YCSB A YCSB B YCSB C YCSB D
100% insert 50% read, 50% update 95% read, 5% update 100% read 95% read, 5% insert



Conclusion

• Existing tree indexes on DM are based on B+ trees, which suffer from large 
inherent read and write amplifications

• We propose SMART, a high-performance adaptive radix tree for DM
 Hybrid concurrency control scheme
 Read-delegation and write-combining technique
 Reverse check mechanism

• SMART outperforms the state-of-the-art B+ tree on DM by up to 6.1x under 
YCSB write-intensive workloads and 2.8x under YCSB read-only workloads
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Thank you! Q&A
https://github.com/dmemsys/SMART

https://github.com/dmemsys/SMART
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