eZNS: An Elastic Zoned Namespace
for Commodity ZNS SSDs

Jaehong Min, Frank Zhao, Ming Liu, and Arvind Krishnamurthy

PAUL G. ALLEN SCHOOL WISCONSIN

OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF WISCONSIN-MADISON

Background

Conventional SSD Architecture

High-bandwidth with parallelism
A large DRAM to maintain FTL

Multi-tenancy incurs frequency Garbage Collection
e High WAF (Write Amplification Factor)
I/O Interference due to the housekeeping

N
DRAM\FI'-/
| s (o | T
8 Channel I I
e © —]
§ E — SSD Controller e
[

|
| E Parallelism g

ZNS (Zoned Name Space) SSD

A point of compromise between Inacfive °f' Active |
Open-Channel SSD and Conventional SSD

~

RESET
p N

What is the ZONE?))

* Append-only, No random write W

e Erase as a whole ZONE State Diagram

* Zone is only writable in the Active states
DLAND AAND
Where is the zone placed?

* Small-zone : A single NAND erasure block e e e —
: Striping across multiple blocks NAND NAND

» Focus on small-zone SSDs due to the multi-tenancy requirement

ZONE Placement

The unique features of ZNS SSD

Isolation Utilization

ZNS places data in an isolated block No need for over-provisioning area

No FTL, No garbage collection No internal operations

Qutline of the talk

Does isolated data placement imply performance isolation?

Characterization Does ZNS deliver high performance utilization?

* eZNS: An elastic ZNS interface
* Improve the performance in both isolation and utilization

Our Design

 Microbenchmarks

Evaluation * RocksDB over ZenFS*

* ZNS: Avoiding the Block Interface Tax for Flash-based SSDs (ATC 21°)

Anticipated Promises for Performance in ZNS

Performance Isolation
e ZNS SSD isolates write streams in a zone
e Significant improvement in read tail latency

12000 .

@ Conv. SSD "™

2 10000 LN

g

§ 8000

©

— 6000

©

3

2 4000

o)} - :‘(

g 2000 ﬁ_*_‘_‘___.__./

o 0 ZNS S$D
200 400 600 800 1000 1200 1400

Write B/W

Better tail latencies than Conv-SSD

Will the promises be upheld
in real-world workloads?

Low per-zone B/W brings severe interference

While ZNS isolates at the zone level, there could be contention at
other levels of the SSD (e.g., dies and write buffers)

Conventional SSD ZNS SSD
* Minimal impact before the max B/W * A busy-writer take all write buffers
2000 550 2000 b50
> 1500 p93.9 > 1500 p99.9
§ lllllll é
3 1000 8 1000
) b’
= 500 = 500
0 A 0 :
o 1 2 3 4 5 6 78 O SRS N A

Number of busy-writers Number of busy-writers

Maintaining high zone-utilization is not easy

It’s challenging for applications to fully utilize active zones
e Multi-tenancy in ZNS leads to wasted or congested resources

Waste valuable active zones and yield low utilizations

Zone Utilization Open Zones
= Max. Active Zones

Number of Zones
e =
o N N (o))

o N B~ OO @

0 50 100 150 200 250

RocksDB w/ ZenFS* Time

Measured zone activity in 1sec window while running db_bench ‘fillrandom’ workload.

* Matias Bjerling, et al. "{ZNS}: Avoiding the block interface tax for flash-based {SSDs}." USENIX ATC 21

eZNS (Elastic ZNS)

A software layer that provides a logical zone abstraction
* Maximize the devices utilization in an adaptive manner
* Reduce inter-tenant interference/congestion

Zone |/O Scheduler

Zones (1...m)

e Zoned I/0 scheduler to minimize interference
Rii’ﬂis F({ldlr:C)) joones L. o Per-zonfe READ congest-lop control
< ¥, X, o Per-device WRITE admission control

Zone Arbiter e Centralized Zone Arbiter to maximize utilization
Serial Zone AFI{ocator Zone o Collision-avoiding zone allocator
TTI | 7enes |||Ballconing o Application-aware dynamic resource manager

HAL | Device Shadow View |

Challenges

» #1 Low performance utilization
(App-agnostic zone striping)

» #2 1/0O Interference/Congestion
(Tenant-agnostic scheduling)

Proposed Solutions

v Logical Zone Ballooning

v' Congestion/Admission Control

Challenge #1: App-agnostic zone striping

ZNS lacks a support for flexible interface

The optimal zone striping requires a global view

4 N\ N\ 4 N\

App 1 App 1 App 1 Writing
1] 20]] 1 1] [Idle
I:|3|:| I:|4|:| I:l I:|2|:| I:l Physical

) @ Wider width for L) Zone
currently writing zone e N

App 2 App 2 App 2
(1] CJ20] > O] O 1 1] [

(s 4]] 2] (3] [4] OO0 @
e N e N \)

App 3 App 3 - \
1] 20 110 2] App 3
1300 41 100 4[]

Static Zones Locally Optimized Globally Optimized

(25% Util.) (46% Util.) (63% Util.)

Zone Ballooning : essentials and spares

Divide active zones into two groups:

Essentials
* Exclusive resources
* Guarantee number of active zones for app
» Sufficient to achieve device utilization

Spares
* Dynamic resources
* Temporarily boost the striping width
* Lend across namespaces (typically, apps)

Device

Active Resources

Active

> >

essential

Zone Ballooning: Local Overdrive

When a namespace has available spares,
a new stripe becomes an Overdrive zone
* Namespaces monitor the average number of active zones
* It widens the stripe width by adding spares to the default width

spare

4-zones striping

essential +

spare

8-zones striping

Zone Ballooning: Global Overdrive

A centralized Zone Arbiter monitors per-namespace utilization
* A namespace which has no write activity is marked as “inactive”
* Redistribute unused spares in the “inactive” NS to other NS-es

| essential | | spare i Lent

__

Challenge #2: Tenant-agnostic scheduling

Little performance isolation and lack of fairness guarantees
* Channel/Die congestion
e Write buffer congestion

Controller NAND

Congestio:;nv ite :

I/O Scheduler: Per-zone Read congestion control

Delay-based CC for per-zone read scheduling
* Detect congestion via device read latency measurement within a zone
* The maximum latency threshold determines the congestion signal

Zone Zone Zone Zone
Latency
Monitoring
I
Device

I/O Scheduler: Per-device Write admission control

Write congestion occurs at the shard buffer
e The equal admission rate for all zone ensures fair resource allocation
e eZNS utilizes the average write latency to determine the admission rate

Qrite 1/0?»
1
Admission
Control
Zone Zone Zone Zone
Token ven
Generator \d \d \d \d

v v v v

Average

Write Latency Device

Evaluation

Evaluation Setup

eZNS is implemented as a thin layer in the SPDK framework
* Tenants connect to eZNS via NVMe over RDMA

Our testbed SSD

* Commodity Small-zone SSD

Specification

Capacity 3,816 GB
Zone Capacity 96 MB
Maximum Active Zones 256
Number of Channels 16
Number of Dies 128 (8 dies per channel)

Zone Ballooning: Global Overdrive

Namespace Configuration
* 4 namespace with 16 active logical zones each

Moving spares boosts the write bandwidth (30~40 sec)

Lent spares are immediately returned (80 sec)

3500 _ 60
%3000 —NS1 —NS2 —NS3 —NS4 ® 50 —NS1 —NS2 —NS3 —NS4
D 5500 IR : sl o i =
=] : ; a S 40 : : S\
52000 u : ™ : n : .]
5 1500 - " . = o 30 - " . n
2 : : s\ 8 20 : - T
£ 1000 : : B & : : : /_J
500 n ™ : ™ o 10 : = : .
S : :) 2 | - : Sl
llllllll T -} O L ssnnnns Benn
0 10 20 30 40 S0 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
ime (s) Time (s)
I/O Bandwidth Device Utilization

RocksDB w/ ZenFS : YCSB

eZNS improves the tail latency and throughput significantly
e YCSB workloads running on namespaces over eZNS and Static-zone
* A:Update-heavy, B: Read mostly, C: Read-only, F: Read-Modify-Write

10000
A (Static) mm C (Static) 120000 F 4 Static
- 8000 HA (eZNS) mm C (eZNS) == M 2 100000 L eZNS ===
=) B (Static) mmm F (Static) 3 l =
& 6000 HB(eZNS) mm F (eZNS) 1 l S 80000 |
C S
3 5
= 60000 |
S 4000 £
s S 40000 }
& 2000 2
£ 20000 |
0 0
P99 P99.9 P99.99 A B C F
Percentiles Workloads
Improve P99.9 latency by avg. 76.3% Increase the throughput by avg. 9.5%

Summary

ZNS opens a new way of using SSDs, but has challenges
e Zone striping needs to be aware of the app characteristics and device utilization
e Zone striping must avoid overlapped allocation
e Zone incurs severe congestion due to narrower bandwidth

We design eZNS to provide an adaptive and high-performing interface
* Logical Zone Ballooning = Improves Utilization
* Read Congestion Control & Write Admission Control = Improves Isolation
» Serialized Zone Allocation = Eliminate Overlapped Allocations

eZNS significantly improves application performance in multi-tenancy

Source code will be available at https://github.com/jaehongm/eZNS soon

https://github.com/jaehongm/eZNS

Thank you!

	Default Section
	Slide 1: eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

	Intro
	Slide 2: Background
	Slide 3: Conventional SSD Architecture
	Slide 4: ZNS (Zoned Name Space) SSD
	Slide 5: The unique features of ZNS SSD
	Slide 6: Outline of the talk

	Characterization
	Slide 7: Anticipated Promises for Performance in ZNS
	Slide 8: Will the promises be upheld in real-world workloads?
	Slide 9: Low per-zone B/W brings severe interference
	Slide 10: Maintaining high zone-utilization is not easy

	Design
	Slide 11: eZNS (Elastic ZNS)
	Slide 12
	Slide 13: Challenge #1: App-agnostic zone striping
	Slide 14: Zone Ballooning : essentials and spares
	Slide 15: Zone Ballooning: Local Overdrive
	Slide 16: Zone Ballooning: Global Overdrive
	Slide 17: Challenge #2: Tenant-agnostic scheduling
	Slide 18: I/O Scheduler: Per-zone Read congestion control
	Slide 19: I/O Scheduler: Per-device Write admission control

	Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation Setup
	Slide 22: Zone Ballooning: Global Overdrive
	Slide 23: RocksDB w/ ZenFS : YCSB
	Slide 24: Summary
	Slide 25: Thank you!

