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Background



Conventional SSD Architecture

High-bandwidth with parallelism
A large DRAM to maintain FTL

Multi-tenancy incurs frequency Garbage Collection
e High WAF (Write Amplification Factor)
I/O Interference due to the housekeeping
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ZNS (Zoned Name Space) SSD

A point of compromise between Inacfive °f' Active |
Open-Channel SSD and Conventional SSD
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What is the ZONE? ) )

* Append-only, No random write W

e Erase as a whole ZONE State Diagram

* Zone is only writable in the Active states
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Where is the zone placed?

*  Small-zone : A single NAND erasure block e e e —
: Striping across multiple blocks NAND NAND

» Focus on small-zone SSDs due to the multi-tenancy requirement

ZONE Placement




The unique features of ZNS SSD

Isolation Utilization

ZNS places data in an isolated block No need for over-provisioning area

No FTL, No garbage collection No internal operations




Qutline of the talk

Does isolated data placement imply performance isolation?

Characterization Does ZNS deliver high performance utilization?

* eZNS: An elastic ZNS interface
* Improve the performance in both isolation and utilization

Our Design

 Microbenchmarks

Evaluation * RocksDB over ZenFS*

* ZNS: Avoiding the Block Interface Tax for Flash-based SSDs (ATC 21°)



Anticipated Promises for Performance in ZNS

Performance Isolation
e ZNS SSD isolates write streams in a zone
e Significant improvement in read tail latency
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Will the promises be upheld
in real-world workloads?



Low per-zone B/W brings severe interference

While ZNS isolates at the zone level, there could be contention at
other levels of the SSD (e.g., dies and write buffers)

Conventional SSD ZNS SSD
* Minimal impact before the max B/W * A busy-writer take all write buffers
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Maintaining high zone-utilization is not easy

It’s challenging for applications to fully utilize active zones
e Multi-tenancy in ZNS leads to wasted or congested resources

Waste valuable active zones and yield low utilizations
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RocksDB w/ ZenFS* Time

Measured zone activity in 1sec window while running db_bench ‘fillrandom’ workload.

* Matias Bjerling, et al. "{ZNS}: Avoiding the block interface tax for flash-based {SSDs}." USENIX ATC 21



eZNS (Elastic ZNS)

A software layer that provides a logical zone abstraction
* Maximize the devices utilization in an adaptive manner
* Reduce inter-tenant interference/congestion

Zone |/O Scheduler

Zones (1...m)

e Zoned I/0 scheduler to minimize interference
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Challenges

» #1 Low performance utilization
(App-agnostic zone striping)

» #2 1/0O Interference/Congestion
(Tenant-agnostic scheduling)

Proposed Solutions

v Logical Zone Ballooning

v' Congestion/Admission Control




Challenge #1: App-agnostic zone striping

ZNS lacks a support for flexible interface

The optimal zone striping requires a global view
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Zone Ballooning : essentials and spares

Divide active zones into two groups:

Essentials
* Exclusive resources
* Guarantee number of active zones for app
» Sufficient to achieve device utilization

Spares
* Dynamic resources
* Temporarily boost the striping width
* Lend across namespaces (typically, apps)
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Zone Ballooning: Local Overdrive

When a namespace has available spares,
a new stripe becomes an Overdrive zone
* Namespaces monitor the average number of active zones
* It widens the stripe width by adding spares to the default width

spare

4-zones striping
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Zone Ballooning: Global Overdrive

A centralized Zone Arbiter monitors per-namespace utilization
* A namespace which has no write activity is marked as “inactive”
* Redistribute unused spares in the “inactive” NS to other NS-es
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Challenge #2: Tenant-agnostic scheduling

Little performance isolation and lack of fairness guarantees
* Channel/Die congestion
e Write buffer congestion

Controller NAND

Congestio:;nv ite :




I/O Scheduler: Per-zone Read congestion control

Delay-based CC for per-zone read scheduling
* Detect congestion via device read latency measurement within a zone
* The maximum latency threshold determines the congestion signal
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I/O Scheduler: Per-device Write admission control

Write congestion occurs at the shard buffer
e The equal admission rate for all zone ensures fair resource allocation
e eZNS utilizes the average write latency to determine the admission rate
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Evaluation



Evaluation Setup

eZNS is implemented as a thin layer in the SPDK framework
* Tenants connect to eZNS via NVMe over RDMA

Our testbed SSD

*  Commodity Small-zone SSD

Specification

Capacity 3,816 GB
Zone Capacity 96 MB
Maximum Active Zones 256
Number of Channels 16
Number of Dies 128 (8 dies per channel)



Zone Ballooning: Global Overdrive

Namespace Configuration
* 4 namespace with 16 active logical zones each

Moving spares boosts the write bandwidth (30~40 sec)

Lent spares are immediately returned (80 sec)

3500 _ 60
%3000 —NS1 —NS2 —NS3 —NS4 ® 50 —NS1 —NS2 —NS3 —NS4
D 5500 IR : sl o i =
=] : ; a S 40 : : S\
52000 u : ™ : n : . ]
5 1500 - " . = o 30 - " . n
2 : : s\ 8 20 : - T
£ 1000 : : B & : : : /_J
500 n ™ : ™ o 10 : = : .
S : : ) 2 | - : Sl
llllllll T -} O L ssnnnns Benn
0 10 20 30 40 S0 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
ime (s) Time (s)
I/O Bandwidth Device Utilization




RocksDB w/ ZenFS : YCSB

eZNS improves the tail latency and throughput significantly
e YCSB workloads running on namespaces over eZNS and Static-zone
* A:Update-heavy, B: Read mostly, C: Read-only, F: Read-Modify-Write
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Summary

ZNS opens a new way of using SSDs, but has challenges
e Zone striping needs to be aware of the app characteristics and device utilization
e Zone striping must avoid overlapped allocation
e Zone incurs severe congestion due to narrower bandwidth

We design eZNS to provide an adaptive and high-performing interface
* Logical Zone Ballooning = Improves Utilization
* Read Congestion Control & Write Admission Control = Improves Isolation
» Serialized Zone Allocation = Eliminate Overlapped Allocations

eZNS significantly improves application performance in multi-tenancy

Source code will be available at https://github.com/jaehongm/eZNS soon



https://github.com/jaehongm/eZNS

Thank you!
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