
eZNS: An Elastic Zoned Namespace 
for Commodity ZNS SSDs

Jaehong Min, Frank Zhao, Ming Liu, and Arvind Krishnamurthy



Background



Conventional SSD Architecture

High-bandwidth with parallelism

A large DRAM to maintain FTL

Multi-tenancy incurs frequency Garbage Collection
• High WAF (Write Amplification Factor)

• I/O Interference due to the housekeeping

DRAM

NAND NAND

NAND

Block

NAND

Channel

SSD Controller

FTL

Parallelism

High 
WAF

H
o
st

 
In

te
rf

a
ce



ZNS (Zoned Name Space) SSD

A point of compromise between
Open-Channel SSD and Conventional SSD

What is the ZONE?
• Append-only, No random write
• Erase as a whole
• Zone is only writable in the Active states

Where is the zone placed?
• Small-zone : A single NAND erasure block 
• Large-zone : Striping across multiple blocks

‣ Focus on small-zone SSDs due to the multi-tenancy requirement

NAND NAND

NAND

Block

NAND

Channel

ZONE Placement

Inactive Active

OPEN

CLOSEDFULL

EMPTY

RESET

R
E

S
E

T

FINISH

ZONE State Diagram

OPEN



The unique features of ZNS SSD

Isolation
ZNS places data in an isolated block

No FTL, No garbage collection

Utilization
No need for over-provisioning area

No internal operations



Outline of the talk

Characterization
• Does isolated data placement imply performance isolation?

• Does ZNS deliver high performance utilization?

Our Design
• eZNS: An elastic ZNS interface

• Improve the performance in both isolation and utilization

Evaluation
• Microbenchmarks

• RocksDB over ZenFS*

* ZNS: Avoiding the Block Interface Tax for Flash-based SSDs (ATC 21’)



0

2000

4000

6000

8000

10000

12000

200 400 600 800 1000 1200 1400

P
9
9
.9

 R
e
a
d
 L

a
te

n
cy

 (
u
s)

Write B/W

Anticipated Promises for Performance in ZNS

Performance Isolation
• ZNS SSD isolates write streams in a zone

• Significant improvement in read tail latency

Better tail latencies than Conv-SSD

Conv. SSD

ZNS SSD



Will the promises be upheld
in real-world workloads?



Low per-zone B/W brings severe interference

While ZNS isolates at the zone level, there could be contention at 
other levels of the SSD (e.g., dies and write buffers)

Conventional SSD
• Minimal impact before the max B/W

ZNS SSD
• A busy-writer take all write buffers

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8

W
ri
te

 L
a
te

n
cy

Number of busy-writers

p50

p99.9

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8

W
ri
te

 L
a
te

n
cy

Number of busy-writers

p50

p99.9



0

2

4

6

8

10

12

14

16

0 50 100 150 200 250

N
u
m

b
e
r 

o
f 
Z
o
n
e
s

Time

Zone Utilization
Open Zones

Max. Active Zones

Maintaining high zone-utilization is not easy

It’s challenging for applications to fully utilize active zones
• Multi-tenancy in ZNS leads to wasted or congested resources

Waste valuable active zones and yield low utilizations

RocksDB w/ ZenFS*
Measured zone activity in 1sec window while running db_bench ‘fillrandom’ workload.

Number of inactive zones

* Matias Bjørling, et al. "{ZNS}: Avoiding the block interface tax for flash-based {SSDs}." USENIX ATC 21



eZNS (Elastic ZNS)

● Zoned I/O scheduler to minimize interference
○ Per-zone READ congestion control
○ Per-device WRITE admission control

● Centralized Zone Arbiter to maximize utilization
○ Collision-avoiding zone allocator
○ Application-aware dynamic resource manager

A software layer that provides a logical zone abstraction
• Maximize the devices utilization in an adaptive manner

• Reduce inter-tenant interference/congestion



➢ #1 Low performance utilization

(App-agnostic zone striping)

➢ #2 I/O Interference/Congestion 

(Tenant-agnostic scheduling)

➢ #3 Overlapped zone allocation 

(Device-agnostic placement)

✓ Logical Zone Ballooning

✓ Congestion/Admission Control

✓ Serial Zone Allocator

Challenges Proposed Solutions



Challenge #1: App-agnostic zone striping

ZNS lacks a support for flexible interface

The optimal zone striping requires a global view

Writing

Idle

Physical
Zone

App 1

1 2

3 4

App 2

1

3 4

2

Static Zones
(25% Util.)

App 3

3 4

21

App 1

1

App 2

1

Locally Optimized
(46% Util.)

App 3

3 4

21

2

3

4

2 3 4

Globally Optimized
(63% Util.)

App 1

App 3

1 2 3 4

App 2
1

2

3 4

1

2

3 4Wider width for
currently writing zone

Move available resources
to busy application



Zone Ballooning : essentials and spares

Divide active zones into two groups:

Essentials
• Exclusive resources

• Guarantee number of active zones for app

• Sufficient to achieve device utilization

Spares
• Dynamic resources

• Temporarily boost the striping width

• Lend across namespaces (typically, apps)

Device

Active Resources

essential spare

Active



Zone Ballooning: Local Overdrive

When a namespace has available spares,
a new stripe becomes an Overdrive zone

• Namespaces monitor the average number of active zones

• It widens the stripe width by adding spares to the default width

essential

spare
spare

spare
spare
spare

spare

+

spare
spare

=

=

4-zones striping

8-zones striping



NS1

Zone Ballooning: Global Overdrive

A centralized Zone Arbiter monitors per-namespace utilization
• A namespace which has no write activity is marked as “inactive”

• Redistribute unused spares in the “inactive” NS to other NS-es

essential spare

NS2

Lent



Challenge #2: Tenant-agnostic scheduling

Little performance isolation and lack of fairness guarantees
• Channel/Die congestion

• Write buffer congestion

NAND NAND
Controller

NAND NAND
Write 
Buffer

Die
Congestion

Channel
CongestionBuffer

Congestion



I/O Scheduler: Per-zone Read congestion control

Delay-based CC for per-zone read scheduling 
• Detect congestion via device read latency measurement within a zone

• The maximum latency threshold determines the congestion signal

Zone

CC

Zone

CC

Zone

CC

Zone

CC

…

Read I/Os

Latency

Monitoring

Device



I/O Scheduler: Per-device Write admission control

Write congestion occurs at the shard buffer
• The equal admission rate for all zone ensures fair resource allocation

• eZNS utilizes the average write latency to determine the admission rate

Device
Average

Write Latency

Admission
Control

Zone Zone Zone

…

Zone

Token
Generator

Write I/Os



Evaluation



Evaluation Setup

eZNS is implemented as a thin layer in the SPDK framework
• Tenants connect to eZNS via NVMe over RDMA

Our testbed SSD
• Commodity Small-zone SSD

Parameters Specification

Capacity 3,816 GB

Zone Capacity 96 MB

Maximum Active Zones 256

Number of Channels 16

Number of Dies 128 (8 dies per channel)



Zone Ballooning: Global Overdrive

Namespace Configuration
• 4 namespace with 16 active logical zones each

Moving spares boosts the write bandwidth (30~40 sec)

Lent spares are immediately returned (80 sec)

I/O Bandwidth Device Utilization



RocksDB w/ ZenFS : YCSB

eZNS improves the tail latency and throughput significantly
• YCSB workloads running on namespaces over eZNS and Static-zone

• A: Update-heavy, B: Read mostly, C: Read-only, F: Read-Modify-Write

Improve P99.9 latency by avg. 76.3% Increase the throughput by avg. 9.5%



Summary

ZNS opens a new way of using SSDs, but has challenges
• Zone striping needs to be aware of the app characteristics and device utilization

• Zone striping must avoid overlapped allocation

• Zone incurs severe congestion due to narrower bandwidth

We design eZNS to provide an adaptive and high-performing interface
• Logical Zone Ballooning → Improves Utilization

• Read Congestion Control & Write Admission Control → Improves Isolation

• Serialized Zone Allocation → Eliminate Overlapped Allocations

eZNS significantly improves application performance in multi-tenancy

Source code will be available at https://github.com/jaehongm/eZNS soon

https://github.com/jaehongm/eZNS


Thank you!


	Default Section
	Slide 1: eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

	Intro
	Slide 2: Background
	Slide 3: Conventional SSD Architecture
	Slide 4: ZNS (Zoned Name Space) SSD
	Slide 5: The unique features of ZNS SSD
	Slide 6: Outline of the talk

	Characterization
	Slide 7: Anticipated Promises for Performance in ZNS
	Slide 8: Will the promises be upheld in real-world workloads?
	Slide 9: Low per-zone B/W brings severe interference
	Slide 10: Maintaining high zone-utilization is not easy

	Design
	Slide 11: eZNS (Elastic ZNS)
	Slide 12
	Slide 13: Challenge #1: App-agnostic zone striping
	Slide 14: Zone Ballooning : essentials and spares
	Slide 15: Zone Ballooning: Local Overdrive
	Slide 16: Zone Ballooning: Global Overdrive
	Slide 17: Challenge #2: Tenant-agnostic scheduling
	Slide 18: I/O Scheduler: Per-zone Read congestion control
	Slide 19: I/O Scheduler: Per-device Write admission control

	Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation Setup
	Slide 22: Zone Ballooning: Global Overdrive
	Slide 23: RocksDB w/ ZenFS : YCSB
	Slide 24: Summary
	Slide 25: Thank you!


