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Cloud is Finite

Admission Control: Should a new request be accepted?
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Admission Control in Azure

Admission Control: Should a new request be accepted?

Available Resources = Total Resources — Allocated Resources

Why is it hard? |« Network and Machine Failures e VM Requests
* Scheduled Maintenance e Capacity Reservations
* Unscheduled Maintenance e Customer Scale-Outs

* Variability affecting supply and demand
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Admission Control in Azure

Admission Control: Should a new request be accepted?

Cores

Why is it hard?

* Variability affecting supply and demand

 Hardware and VM type heterogeneity
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Admission Control in Azure
Admission Control: Should a new request be accepted?
Why is it hard?

e Variability affecting supply and demand

 Hardware and VM type heterogeneity
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Admission Control in Azure

Admission Control: Should a new request be accepted?

Why is it hard?

e Variability affecting supply and demand

 Hardware and VM type heterogeneity Availability Zone <O
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060 Déo ro DI‘J Dt‘:lo
* Placement constraints Cluster 5°° 88 888 8B 8°°
Rack I EEEE

Machine |j @ @ E]—@ Ij—@ E_E Eél Ij




Admission Control in Azure

Admission Control: Should a new request be accepted?

Solution=> Kerveros: Cloud admission control at scale

Why is it hard? Goals
* Variability affecting supply and demand * Fast and Scalable
e Hardware and VM type heterogeneity e Throughput = 120,000+ requests/minutell]

* Avg. lLatency=5-10ms

- fragmentation o
e Resource Efficient

* Placement constraints « 1% efficiency gain = $100+ M/year savings [1!

[1] Protean, OSDI 20



Kerveros

Main ldea:
Late Binding of Reserved Capacity for Admission Control

Why Late Binding?
* High packing efficiency
* Accurate accounting
* Tracks across different VM types
* Flexible packing with low overhead

e Fast admission decision

 Unclaimed reserved resources reused as preemptable VMs (e.g., spot VMs)

- maximize ROI



Challenges with Late Blndlng Accept Request?
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Challenges with Late Blndlng Accept Request?
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Challenges with Late Blndlng Accept Request?
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Challenges with Late Blndlng Accept Request?
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Admission Control depends on shape (i.e., VM type) of the reserved capacity

Solution: Allocable VM (AV)



Allocable VM (AV)

* Novel bookkeeping of available capacity
* For every VM type, count of additional VMs that can fit
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Allocable VM (AV)

* Novel bookkeeping of available capacity
* For every VM type, count of additional VMs that can fit

* Converts multi-dimensional demand to a single-dimension

* Develop two algorithms to adjust AV count for reserved capacity
* Conversion Ratio Algorithm (CRA)
* Linear Adjustment Algorithm (LAA)

VM Type Multi-dimensional Resource demand

S { CPU: 1, RAM: 2 GB, Disk: 64 GB, ... } 27408
M { CPU: 4, RAM: 8 GB, Disk: 256 GB, ... } 6724

L { CPU: 16, RAM: 32 GB, Disk: 1024 GB, ... } 1588
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Kerveros In Action

Client Services

Allocation Worker Instances

e Zonal admission control

* Considers all reserved capacity in zone
AV Count * Handles both VM and reservation requests
Estimator (CRA)
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Kerveros In Action

Client Services

, AV Count Estimation
Allocation Worker Instances e s :
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Client Services
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AV Count Estimation
* |Initialize AV count in zone

e Uses in-memory state snapshot

* Counted independently for each VM type
e Subtracts AV count for reserved capacity

e Convert between VM types

Conversion Ratio Algorithm (CRA)

|

* Converts AV count between VM types
* Handles multi-dimensional conversion
* Frequent AV count estimation: 1 minute
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Kerveros In Action

Linear Adjustment Algorithm (LAA)

Accurate = Resource efficient

Slow, compute intensive




Kerveros In Action
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Kerveros In Action

Client Services

Load
Balancer

Fast but
Conservative

Slow but Accurate

Kerveros: Fast and Accurate




Alternate Solutions

* Partition (PT)[05P 21l
e Approach: Reserve capacity by partitioning machines
* Pro: Greater control over resources and isolation = Works on private cloud
* Con: Fragmentation with high heterogeneity = Wastes resources in public cloud

* Placeholder (PH)

* Approach: Allocate and reserve resources for reservations
* Pro: Simple and Guarantees SLA
» Con: Early binding to allocated resources = Low packing efficiency



How Resource Efficient is Kerveros?
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Kerveros ensures high resource utilization



How does Kerveros Deal with Failures?
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How Scalable is Kerveros?
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Kerveros scales well with inventory size



Conclusion

* Kerveros : Admission control system in Microsoft Azure
* Variable supply and demand
* Hardware and VM type heterogeneity

* Scalable and resource efficient in cloud scale

* Achieves high resource utilization while maintaining SLA

* Late binding of reserved resources for admission control
* Allocable VM (AV)

= Mﬁgze arch A Microsoft Azure @ PennState



