ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

usenix usenix usenix
‘ AAAAAAAAAAA ’ AAAAAAAAAAAAAAAA IATION

AVAILABLE REPRODUCED

WELDER: Scheduling Deep Learning Memory Access via Tile-
graph

Yining Shif¥, Zhi YangT, Jilong Xue?, Lingxiao Ma¥, Yuqing Xia¥,
Ziming Miao#, Yuxiao Guo#, Fan Yang?*, Lidong Zhou*
tPeking Unilversity, #$Microsoft Research

ZIN) z N i
) ez K Be Microsoft

PEKING UNIVERSITY

Modern DNNs Being Increasingly Memory Intensive

* Increasing needs to process higher fidelity data
* E.g., larger images, longer sentences, high-definition graphics

* Memory throughput increased much slower than compute core
* E.g., TensorCore could impose larger pressure on memory

p—
-
S
X

80%
60%
40%
20%

0%

Hardware Utilizaiton (%)

6%

80%

97%

82%

8%

[91%

63%]

112

19%

53%

96%

76%0

28%

2 0
7/c61%

32%

13%

53%)

—

36%0

~ Memory

43%

[62%

—

o Bottleneck

—

ResNet
(2015)

BERT
(2018)

(2020)

0O Compute

ViT swin-T mobileViT NAFNet
(2021)

(2021)

(2021)

OMemLoad OMemStore

—, Underutilized

NeRF Computation
(2022)

~96% memory bandwidth utilization, while only ~51% for computing core

Call For Extreme Data Reuse Optimization

* Memory-intensive operators: Element-wise, Normalization, Softmax, DW/PW-

conv ... A lot of memory access on intermediate results.
Read/A Read/B

* Memory hierarchy in DNN accelerators (high-speed cache) Y
MatMul
Device Memory hierarchy +
GPU (CUDA) Global memory -> Shared memory -> Registers
Read+Write/
GPU (ROCM) Global memory -> LDS -> vGPR intermediates
GraphCore / SambaNova Global memory -> Local buffer

Multi-GPUs Host memory -> Device memory

* Call for a systematic inter-operator co-schedule approach to reuse
intermediate results.

* Place element-wise on Registers & regional operators (e.g., Normalization)
on Shared memory

Current Practice: Focus on Intra-operator Data Reuse

* High performance kernels use multi-level tiling to evenly partition the workload
onto computation cores. (e.g., CUTLASS, Triton, TVM, Roller ...)

* Improves intra-operator memory reuse by caching data tiles on each memory layer.

* No Inter-operator memory reuse.

Register

Shared
memory

Global Id
memory

Opportunity: Explore Inter-operator Data Reuse

* Tile-graph: a tile-level abstraction to enable graph-level data tiling.
* By default, all operators are connected on the lowest memory layer.

* Tile-graph allows two operators to be connected at a higher memory layer

Dot Relu Dot Dot Relu Dot
T —r—— = R T S s e R
1 : \ 1 : 1 : I : 1 : 1 : _ : : __‘._ : . : | : . : . __‘._ : .
Register = :‘1‘. A op g I R Register (g W EE— R B I B
I 1 I I 1 ! [] | 1 1 ! 1 ! 1 ! 1 1 1 !
SRR A B L S A AN UL N
“+ r . i i il s el
i e i o
1 1

Shared Memory E : i | o Shared Memory | i ! E ¢ E |
-5 % | F LA —1C --
S A = L
! _ ! ! ! ! _ ! Global Memory oo e -=- o

1 1 1

Global Memory i — i i

i

1
Dot DorW Dotout Reluin Reluout [')'O't]n Dot w Detout Dotin DotW Dotout Reluin Reluout Dotin DotW Dotout

Fig. Left :Original, Right: Connect Relu on Register layer and connect second Dot on shared memory layer.

What’s the Challenges?

* Huge optimization space
* Collectively schedule connection-layer and the tile-shape of
multiple connected operators

* Conflict tile shape across operators
* Operators require different tile shape and cannot be directly
connected

Welder System Overview

DNN Model

* Frontend {
* DNN models -> Tile-graph

: — Tile-graph
_ Graph Connecting ‘--| Sub-graph Scheduling | Scheduler
* Tlle-graph Scheduler Tile-graph Scheduling Interface J '
- l ooy
* Graph-connecting Y e e W s R—] {Memon
. L0-Mem %j E;;| I%}] . {
* Sub-graph scheduling I T = T SR
_—
o Hierarchical Tile-Graph
¢ COde Generatlﬂn L2-Mem on Abstracted Acceleitur
i
* Schedule -> Fused kernel code Hardware Accelerators

Fig. Welder Overview

Design |: Resolve Conflict by Tile Propagation

* Within a subgraph, tile can be propagated with regard to the output node’s tile shape.

C/, ’/i C/, Y tc ’/i
‘I W ,f ‘/ £
A c - C
! W : : : : :
1 1 I
| h 1 1
Conv 3x3 H: i : i Conv 3x3 Hi : : Dot
|
: L : ~ T W
L L ___ [b ___L___ v’ :
R , 2 A , Zl :
» R 7 .71 Normalize :
R P A K -
: o | B |
| 1 | | 1
Convixl | . 1 DW-Conv | B
| ! | | 1 |
: L ! 7 . .
| ', | ' Tile shape iterator:
""""""""""" Dot
s g 1. N]
i e |
1 ! 2 N
Maxpool 2x2 1 ¢ o Out[N, C, H, W] = ReduceMax(In[N, C, H*2+KH, W*2+KW]) 2, N]
1 1 /
1]

, where KH in 2, KW in 2

* Dependent Regions are inferred by analyzing the node’s Tensor Expression.

Design Il: Lightweight Traffic Cost Model

Tile graph’s execution can be
viewed as data tiles moving
vertically (LOAD/STORE) and
horizontally (COMPUTE).

Memory intensive workloads
can be optimized by minimizing
the data tile’s vertical movement
(Traffic).

Register

Shared Memory

Global Memory

Dot

Relu

Dot

Dot.in DotW Dot.out

Relu.in Relu.out

V. __
Dot.in DotW Dot.out

Design lll: Decouple Optimization Space

* (different layers) Traffic on L2->L1 1s
only dependent on L1 tiles, and 1s not

related to LO tiles.

Lo |

* (different operators) Traffic on L1->L0

can be optimized independently as
they are not directly connected on tha

layer.

Schedule
(Start)_’ joint L1 Tile

P

Schedule the
first LO Tile

Schedule the
second LO tile

Welder’s Workflow (1) X N/ Connect decision

Graph connecting
[N
[<] Subgraph Profiled best kernel
scheduling

fl ;
. n

]
-

Tile Shape Iterator Device Profiler
connect then schedule” ainnlne
method. |]] Tile Propagation Tile shape ranking
]
Footprint & Traffic I Device Cost Model

Follows the “first

* Graph Connecting:

* Try connecting on a higher memory
level

* Try lower memory layer if scheduling

fails

Batch-
matmul

Batch-
matmul

Batch- |::>
matmul

* Continue 1f potential fusion gain
observed

Welder’s Workflow (lI)

* Tile shape Iterator: try out
different tile shape

* Tile Propagation: By
analyzing the expression,
Welder deduces read/write
dependent region regarding

Graph connecting

L]

|

l

to the given tile. |
* Footprint & Traffic,
Device Cost Model: static
information used to roughly
score and rank the tile.

I
|

1

]

]

] Subgraph
scheduling

BE —

Tile Shape Iterator

Tile Propagation

Footprint & Traffic

x \/ Connect decision

h
Profiled best kernel

L3

Device Profiler

Tile shape ranking

Device Cost Model

Welder’s Workflow (l1)

* Device profiler: Only a

few tile config (top k from Graph connecting

the device cost model) will
be profiled.

Subgraph
scheduling

Tile Shape Iterator

e Connect decision:
¥

o
ot

Connect if latency gain can L

|
]

Tile Propagation

l
be observed against
unconnected case.

L

Footprint & Traffic I

x V Connect decision

N
Profiled best kernel

L

Device Profiler

Tile shape ranking

Device Cost Model

What About Compute-intensive Operators?

* Generating high-performance MMA IR: C[N, M] += A[N, K] * B[K, M]
kernels (while preserving the Tile-graph

connection features)

* Tensorized with high-performance
block/warp level micro-kernel from expert
libraries (e.g., CUTLASS)

* Other adopted optimizations: Multi-stage
software pipeline, layout swizzle ...

PASCAL VOLTA TENSOR CORES

Speedup Compilation

Tile-graph Initialization:
* Inmitialize some element-wise connection to register-level, saving
additional cost to search for them.

Subgraph Cache:

* Generate a hash string for each subgraph

* Best schedule plan will be cached after tuning.

* For models like BERT, only one layer will be tuned.

Multi-process Support:
* Support parallel build and compile for each generated config.

Evaluation Setup

Model Type Task Year
° Benchmarks: MobileNet CNN Image Classification 2018
BERT Transformer NLP 2018
ViT Transformer Image Classification 2020
Conformer CNN+Transformer Speech Recognition 2020
MobileViT CNN+Transformer Image Classification 2021
Swin-Transformer Transformer Image Classification 2021
NeRF MLP 3D-scene Generation 2021
NAFNet CNN Image Restoration 2022
Restormer CNN-+Transformer Image Restoration 2022
BSRN CNN Image Super-resolution 2022
e Evaluated Baselines: Hardware:
e Pytorch v1.12.0 NVIDIA V100
e onnx_runtime v1.12 * NVIDIA RTX-3090
e TensorRT v8.4 « AMD MI50

Ansor v0.9 (tuned 800 steps each task)
Astitch (Implemented in BladeDISC v0.3)
Rammer

Nimble

Welder (ours)

16

Performance on V100 (float+SIMT)

Bl pytorch HE onnx_runtime [Rammer [Ansor I TensorRT M Welder [_] BladeDISC [_1 Nimble

0_1'2 End to end model Performance (V100, FP32, bs=1)
% 1.0 - = = = . i
Se 1
A7 il
il
\‘\o‘o‘\\eﬁ \ 5\“‘\(\/ \ Qe®
On average: ~1.4x to TensorRT
Performance on V100 (half+TensorCore) 5.~
~ 2X to onnxruntime ~1.5x to Ansor
I pytorch I onnx_runtime [Rammer [TensorRT I Welder [_1 BladeDISC [Nimble
. (V100, FP16, bs=64)
2 1.0 . - - -
. .
2 os. I |
N
S 02] ll_|w |.I'| .
" L Aol] B
.\\e\\e& @g\\e& *.\’\

Other devices (AMD-MI50 & RTX-3090)

Bl pytorch N Rammer B onnx_runtime ™ Ansor B Velder

o - -
o~ oo o N
! I 1

Normal ized speedup
o

o 4 4 I

o N

End to end model Performance (MI50, FP32, bs=1)

.

4 A Fig : AMD ROCm MI50
I 1L GPU performance

] i

ﬁJJ_lLI_ILILILILILlJI_ILIL

R RN G\ A RS ™ R G
\o\\ Q?‘ \o\\ N (\&0 5&0

WO \S o W

107 1

1 —o— dtype=fp32 bsz=1 —o— dtype=fp16 bsz=1

% dtype=fp32 bsz=64 —o— dtype=fp16 bsz=64
©
m .
g Fig : RTX-3090 performance
(9] .
o (Compared with TensorRT)
>
p (1.402x speedup averaged)
B 100 “
o

R CORN
\
NP

Other Metrics

Memory Access Analysis:

* Welder can effectively save kernel

counts, memory transactions,
intermediate results as well as

latency.

E-~-1 Welder—none

Latency (ms)

o

Transactions (G)
N

Swin-T

:Sa—i Fm
liia §
. QI |_|7:I_h ::m

NAFNet

Kernel Cnt (K)

IRS (GB)

Welder—base

A
e

o

©
&)

©
o

N
o
1

N
o

o

1 Ansor

B Welder

'Hm. o

3

LI
3

LI
.

L]
3

L]
o

I

Swin-T VT

Welder-none : disable all tile connection

Compilation time: Welder-base :
Model Ansor Time(s)| Ansor Trials [Welder Time(s), Welder Trials
BERT 15285 8000 244 651

Mobilenet 45527 25600 561 927

~5 min for a model
~100x faster than Ansor

NAFNet

only enable element-wise kernel fusion

Conclusion

Increasing memory challenge 1s observed in modern DNN inference workloads

Welder proposes a Tile-graph abstraction that

* Optimizes both inter- and intra-operator data reuses in a holistic space
* Provides a general operator fusion mechanism

Welder is exploring a systematic approach to take advantage of emerging trends in

future model and accelerators

Thank you

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20

