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Modern DNNs Being Increasingly Memory Intensive

* Increasing needs to process higher fidelity data
* E.g., larger images, longer sentences, high-definition graphics

* Memory throughput increased much slower than compute core
* E.g., TensorCore could impose larger pressure on memory
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Call For Extreme Data Reuse Optimization

* Memory-intensive operators: Element-wise, Normalization, Softmax, DW/PW-

conv ... A lot of memory access on intermediate results.
Read/A Read/B

* Memory hierarchy in DNN accelerators (high-speed cache) Y
MatMul
Device Memory hierarchy +
GPU (CUDA) Global memory -> Shared memory -> Registers
Read+Write/
GPU (ROCM) Global memory -> LDS -> vGPR intermediates
GraphCore / SambaNova  Global memory -> Local buffer

Multi-GPUs Host memory -> Device memory

* Call for a systematic inter-operator co-schedule approach to reuse
intermediate results.

* Place element-wise on Registers & regional operators (e.g., Normalization)
on Shared memory



Current Practice: Focus on Intra-operator Data Reuse

* High performance kernels use multi-level tiling to evenly partition the workload
onto computation cores. (e.g., CUTLASS, Triton, TVM, Roller ...)

* Improves intra-operator memory reuse by caching data tiles on each memory layer.

* No Inter-operator memory reuse.
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Opportunity: Explore Inter-operator Data Reuse

* Tile-graph: a tile-level abstraction to enable graph-level data tiling.
* By default, all operators are connected on the lowest memory layer.

* Tile-graph allows two operators to be connected at a higher memory layer
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What’s the Challenges?

* Huge optimization space
* Collectively schedule connection-layer and the tile-shape of
multiple connected operators

* Conflict tile shape across operators
* Operators require different tile shape and cannot be directly
connected



Welder System Overview

DNN Model

* Frontend {
* DNN models -> Tile-graph
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Design |: Resolve Conflict by Tile Propagation

* Within a subgraph, tile can be propagated with regard to the output node’s tile shape.
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* Dependent Regions are inferred by analyzing the node’s Tensor Expression.



Design Il: Lightweight Traffic Cost Model

Tile graph’s execution can be
viewed as data tiles moving
vertically (LOAD/STORE) and
horizontally (COMPUTE).

Memory intensive workloads
can be optimized by minimizing
the data tile’s vertical movement
(Traffic).
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Design lll: Decouple Optimization Space

* (different layers) Traffic on L2->L1 1s
only dependent on L1 tiles, and 1s not

related to LO tiles.

Lo |

* (different operators) Traffic on L1->L0

can be optimized independently as
they are not directly connected on tha

layer.
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Welder’s Workflow (1) X N/ Connect decision

Graph connecting
[N
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method. | ] ] Tile Propagation Tile shape ranking
]
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* Graph Connecting:

* Try connecting on a higher memory
level

* Try lower memory layer if scheduling
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Welder’s Workflow (lI)

* Tile shape Iterator: try out
different tile shape

* Tile Propagation: By
analyzing the expression,
Welder deduces read/write
dependent region regarding

Graph connecting
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to the given tile. |
* Footprint & Traffic,
Device Cost Model: static
information used to roughly
score and rank the tile.
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Welder’s Workflow (l1)

* Device profiler: Only a

few tile config (top k from Graph connecting

the device cost model) will
be profiled.
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What About Compute-intensive Operators?

* Generating high-performance MMA IR: C[N, M] += A[N, K] * B[K, M]
kernels (while preserving the Tile-graph

connection features)

* Tensorized with high-performance
block/warp level micro-kernel from expert
libraries (e.g., CUTLASS)

* Other adopted optimizations: Multi-stage
software pipeline, layout swizzle ...

PASCAL VOLTA TENSOR CORES




Speedup Compilation

Tile-graph Initialization:
* Inmitialize some element-wise connection to register-level, saving
additional cost to search for them.

Subgraph Cache:

* Generate a hash string for each subgraph

* Best schedule plan will be cached after tuning.

* For models like BERT, only one layer will be tuned.

Multi-process Support:
* Support parallel build and compile for each generated config.



Evaluation Setup

Model Type Task Year
° Benchmarks: MobileNet CNN Image Classification 2018
BERT Transformer NLP 2018
ViT Transformer Image Classification 2020
Conformer CNN+Transformer Speech Recognition 2020
MobileViT CNN+Transformer Image Classification 2021
Swin-Transformer Transformer Image Classification 2021
NeRF MLP 3D-scene Generation 2021
NAFNet CNN Image Restoration 2022
Restormer CNN-+Transformer Image Restoration 2022
BSRN CNN Image Super-resolution 2022
e Evaluated Baselines:  Hardware:
e Pytorch v1.12.0  NVIDIA V100
e onnx_runtime v1.12 * NVIDIA RTX-3090
e TensorRT v8.4 « AMD MI50

Ansor v0.9 (tuned 800 steps each task)
Astitch (Implemented in BladeDISC v0.3)
Rammer

Nimble

Welder (ours)

16



Performance on V100 (float+SIMT)
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Other devices (AMD-MI50 & RTX-3090)
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Other Metrics

Memory Access Analysis:

* Welder can effectively save kernel

counts, memory transactions,
intermediate results as well as

latency.
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Compilation time: Welder-base :
Model Ansor Time(s)| Ansor Trials [Welder Time(s), Welder Trials
BERT 15285 8000 244 651

Mobilenet 45527 25600 561 927

~5 min for a model
~100x faster than Ansor

NAFNet

only enable element-wise kernel fusion



Conclusion

Increasing memory challenge 1s observed in modern DNN inference workloads

Welder proposes a Tile-graph abstraction that

* Optimizes both inter- and intra-operator data reuses in a holistic space
* Provides a general operator fusion mechanism

Welder is exploring a systematic approach to take advantage of emerging trends in

future model and accelerators

Thank you
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