
1

SEPH: Scalable, Efficient, and Predictable Hashing
on Persistent Memory

Chao Wang, Junliang Hu, Tsun-Yu Yang, Yuhong Liang, and Ming-Chang Yang
The Chinese University of Hong Kong

17th USENIX Symposium on Operating Systems Design and
Implementation
JULY 10–12, 2023
BOSTON, MA, USA

≈ 0.1
ns

1~10
ns

≈ 100
ns

0.1~10
ms

Speed
KB

KB
~

MB

Capacity

MB
~

GB

TB
~

PB

Why Persistent Memory (PM)?

2

Cache

Main Memory

Secondary Storage

Reg.

Byte-Addressable
Persistent Memory

< 1
us

GB
~

TB
Memory
-like

Storage
-like HUGE GAP EXISTS!?

1000x

1000x

106x

10x

10x

1000x

What is Persistent Memory (PM)?
• PM is a collective term:

3

Ferroelectric RAM
(FeRAM)

Magnetic RAM
(MRAM)

Phase-Change RAM
(PCRAM)

Resistive RAM
(ReRAM)

• The first PM product is commercially available in 2019.
Intel® Optane� DCPMMStorage-like Capacity

- 128, 256, 512 GB
- Native persistence

Memory-like Speed
- DRAM-level latency

- DRAM-level bandwidth
- Direct load/store access

Differences exist between DRAM & PM!

• Indexes/algorithms need to be “re-tailored” for PM!
– Tree: NV-tree [FAST’15], wB+-Tree [VLDB’15], WORT [FAST’16], BzTree [VLDB’18],

FAST&FAIR [FAST’18], LB+-Trees [VLDB’20], and ROART [FAST’21], etc.
– Hashing: Level Hashing [OSDI’18], CCEH [FAST’19], Clevel Hashing [ATC’20],

Dash [VLDB’20], etc. 4

0

50

100

150

200

250

300

350

Write Sequential Read Random Read

La
te

nc
y

(n
s) DRAM PM

0

20

40

60

80

100

120

Write Read

B
an

dw
id

th

(G
B

/s
)

DRAM PM3X

1/6

2X
1/3

Existing PM Hashing Schemes: Two Series

...

...

...

Slot 0
Slot 1
Slot 2
Slot 3

Top
Level

Bottom
Level

Bucket

�
Rehash

0

H2(key)

1 2N-12N-2

0

key

N-1

� Expand

New
Top
Level

0 1 2 4N-3 4N-2 4N-1

H1(key)

• Level-based PM Hashing
(Level Hashing[OSDI’18], Clevel Hashing[ATC’20])

– Sharing-based two-level structure
– Cost-efficient resizing to mitigate

the performance degradation

• EH-based PM Hashing
(CCEH [FAST’19], Dash [VLDB’20])

– Inherited from Extendible Hashing
– Cacheline-conscious designs for

high throughput

Directory

Bucket
0

Hash(key)

Seg. 0

Bucket
1

Rehash

Seg. 1 Seg. 2 Seg. 3

Slot

0011…0
0000…0

0011…1
0010…1

1101…0
free

1100…1
1110…1

0100…0
0111…0

0101…1
0111…1

1001…0
1101…0

1011…1
1100…1

11101110

00 01 10 11

key

Motivation (1/2)

6

Efficiency
(High Average Throughput)

Predictability
(Low Resizing Overhead)

• Observation 1: Existing PM hashing schemes face the
dilemma between the performance efficiency and predictability.

Motivation (2/2)

7

• Observation 2: Performance scalability is limited due to
excessive writes in handling concurrency control.

2.0
X 1.6

X

4.4
X

3.0
X

Sc
al

ab
ili

ty
?

Our Goal

8

Efficiency
(e.g., EH-based)

Predictability
(e.g., Level-based)

Scalability

Dilemma between efficiency and predictability?
Level Segment Structure & Low-Overhead Split

Limited scalability?
Semi Lock-Free Concurrency Control

∅SEPH

SEPH: Level Segment based Hash Table
• Level segment (LS), a novel structure proposed to combine

the respective strengths of the two series of PM hashing.

9

• Physical Segment ⇒ cacheline-conscious designs (for efficiency)
• Level Segment ⇒ cost-efficient resizing (for predictability)

Level Segment 0 (LS 0) Level Segment 1 (LS 1)

Physical Segment 0 (PS 0)

Physical Segment 1 (PS 1) Physical Segment 2 (PS 2)

0 1Directory

Level 1
(L1)

Level 0
(L0)

Hash(key) = 01010...

000 001 010 011 100 101 101 111

000 001 010 011 100 101 101 111000 001 010 011 100 101 101 111

Slot 0
Slot 1

…
Slot S-1

SEPH: Low-Overhead Split (1/2)
• One-third Split

– Splits one LS into two, but only rehashes “1/3” of the KV items

10
LS 0

LS 2 (New) LS 3 (New)

LS 1

PS 1 PS 2

PS 3 (New) PS 4 (New)

00 01 10 11

L2

L1

L0

�Allocate two new PSs

� Rehash lower-level buckets

� Rehash
lower-level
buckets

� Modify directory entries

� Deallocate the lower-level buckets

LS 0 LS 1

Directory

PS 0

SEPH: Low-Overhead Split (2/2)
• Common Practice: Variable-length key ⇒ store KV pointers
• Potential Problem: �Rehashing requires pointer dereferences

to calculate Hash(key)

• Dereference-Free Rehashing
– Only two bits of Hash(key) are needed for �Rehashing.
– We stores these bits in advance, as a foreseer of KV’s future position.

11

↪	PM random read

SEPH: Semi Lock-Free Concurrency Control

12

• Scalability ☹ ⇐ excessive PM writes for concurrency control

• SEPH solves it by

Lock-based Designs
(e.g. Level Hashing, CCEH, Dash)

Lock-free Designs
(e.g. Clevel Hashing)

PM writes are to Manage Locks Guarantee Correctness

Frequent Operations
(e.g. insert, search, update, delete)

Infrequent operatoins
(e.g. split)

Be Lock-free
(to save PM writes)

Be Lock-based
(to ease correctness guarantee)

• Thus, SEPH achieves nearly minimal PM writes and scales well.

Evaluation Setup
• The following hashing schemes are compared with SEPH:

– DRAM-converted: PCLHT [SOSP’19]
– Level-based: Level Hashing [OSDI’18], Clevel Hashing [ATC’20],
– EH-based: CCEH/CCEH-C [FAST’19], Dash [VLDB’20]

• All experiments are conducted on
– Intel Xeon Platinum 8260 CPU
– Six 128 GB Intel® Optane� DCPMM 100 series in App Direct mode.

13

Evaluation Results (1/3): Efficiency & Predictability

• Efficiency: 2.12X better average throughput.
• Predictability: best worst-case throughput

14

2.12Xé

even > peak throughput of other designs

Evaluation Results (2/3): Scalability

15

optimal

Evaluation Results (3/3): Performance Breakdown

16

é
68.71%

é
71.46%

51.04%
ê

é
55.85%

92.50%
ê

61.64%
ê

(a) Throughput Profile (b) Reason: PM Writes (c) Reason: Resizing Time

😊

😊 😊

Summary
• SEPH: scalable, efficient, and predictable hashing for PM

– Efficiency vs. Predictability
• Level segment structure & low-overhead split algorithm.
• To combine the strengths of two series of PM hashing.

– Scalability
• Semi lock-free concurrency control
• To minimizing the PM writes for concurrency control

• SEPH is rigorously validated on Intel Optane and
demonstrates its potential value to the time-sensitive
applications.

17

