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Why Persistent Memory (PM)?
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What is Persistent Memory (PM)?
• PM is a collective term:
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Ferroelectric RAM
(FeRAM)

Magnetic RAM
(MRAM)

Phase-Change RAM
(PCRAM)

Resistive RAM
(ReRAM)

• The first PM product is commercially available in 2019.
Intel® Optane� DCPMMStorage-like Capacity

- 128, 256, 512 GB 
- Native persistence

Memory-like Speed
- DRAM-level latency

- DRAM-level bandwidth
- Direct load/store access



Differences exist between DRAM & PM!

• Indexes/algorithms need to be “re-tailored” for PM!
– Tree: NV-tree [FAST’15], wB+-Tree [VLDB’15], WORT [FAST’16], BzTree [VLDB’18],

FAST&FAIR [FAST’18], LB+-Trees [VLDB’20], and ROART [FAST’21], etc.
– Hashing: Level Hashing [OSDI’18], CCEH [FAST’19], Clevel Hashing [ATC’20],

Dash [VLDB’20], etc. 4
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Existing PM Hashing Schemes: Two Series
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• Level-based PM Hashing
(Level Hashing[OSDI’18], Clevel Hashing[ATC’20])

– Sharing-based two-level structure
– Cost-efficient resizing to mitigate 

the performance degradation

• EH-based PM Hashing
(CCEH [FAST’19], Dash [VLDB’20])

– Inherited from Extendible Hashing
– Cacheline-conscious designs for 

high throughput
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Motivation (1/2)
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Efficiency
(High Average Throughput)

Predictability
(Low Resizing Overhead)

• Observation 1: Existing PM hashing schemes face the
dilemma between the performance efficiency and predictability.



Motivation (2/2)
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• Observation 2: Performance scalability is limited due to
excessive writes in handling concurrency control.
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Our Goal
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Efficiency
(e.g., EH-based)

Predictability
(e.g., Level-based)

Scalability

Dilemma between efficiency and predictability?
Level Segment Structure & Low-Overhead Split

Limited scalability?
Semi Lock-Free Concurrency Control

∅SEPH



SEPH: Level Segment based Hash Table
• Level segment (LS), a novel structure proposed to combine

the respective strengths of the two series of PM hashing.
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• Physical Segment ⇒ cacheline-conscious designs (for efficiency) 
• Level Segment ⇒ cost-efficient resizing (for predictability)

Level Segment 0 (LS 0) Level Segment 1 (LS 1)

Physical  Segment 0 (PS 0)

Physical  Segment 1 (PS 1) Physical  Segment 2 (PS 2)
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SEPH: Low-Overhead Split (1/2)
• One-third Split

– Splits one LS into two, but only rehashes “1/3” of the KV items
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SEPH: Low-Overhead Split (2/2)
• Common Practice: Variable-length key ⇒ store KV pointers
• Potential Problem: �Rehashing requires pointer dereferences

to calculate Hash(key)

• Dereference-Free Rehashing
– Only two bits of Hash(key) are needed for �Rehashing.
– We stores these bits in advance, as a foreseer of KV’s future position.
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↪	PM random read



SEPH: Semi Lock-Free Concurrency Control
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• Scalability ☹ ⇐ excessive PM writes for concurrency control

• SEPH solves it by

Lock-based Designs
(e.g. Level Hashing, CCEH, Dash)

Lock-free Designs
(e.g. Clevel Hashing)

PM writes are to Manage Locks Guarantee Correctness

Frequent Operations
(e.g. insert, search, update, delete)

Infrequent operatoins
(e.g. split)

Be Lock-free
(to save PM writes)

Be Lock-based
(to ease correctness guarantee)

• Thus, SEPH achieves nearly minimal PM writes and scales well.



Evaluation Setup
• The following hashing schemes are compared with SEPH:

– DRAM-converted: PCLHT [SOSP’19]
– Level-based: Level Hashing [OSDI’18], Clevel Hashing [ATC’20],
– EH-based: CCEH/CCEH-C [FAST’19], Dash [VLDB’20]

• All experiments are conducted on
– Intel Xeon Platinum 8260 CPU
– Six 128 GB Intel® Optane� DCPMM 100 series in App Direct mode.
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Evaluation Results (1/3): Efficiency & Predictability

• Efficiency: 2.12X better average throughput.
• Predictability: best worst-case throughput
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2.12Xé

even > peak throughput of other designs



Evaluation Results (2/3): Scalability
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Evaluation Results (3/3): Performance Breakdown
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Summary
• SEPH: scalable, efficient, and predictable hashing for PM

– Efficiency vs. Predictability
• Level segment structure & low-overhead split algorithm.
• To combine the strengths of two series of PM hashing.

– Scalability
• Semi lock-free concurrency control
• To minimizing the PM writes for concurrency control

• SEPH is rigorously validated on Intel Optane and
demonstrates its potential value to the time-sensitive
applications.
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