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@ A worker (thread) puts on / gets from its own queue.

[ ]
queue

@ When its queue is empty, it selects another queue...

@ and try to steal from it.
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Work Stealing Becomes the Bottleneck

Example 1: GoJson Object Decoding Benchmark

Decoding Scheduling  GC Worker CPU Idle

|

l ay@  github.com..

' o,  [Elgithub.com/.. |giubEoR/GE - | W
|  @51%  cy/gosjson/internal/decoder i U sv-.

Benchmark Decode SmallStruct_Unmarshal _Golson

testing.(*B).doBench.funcl
||| runtime.goexit.abi0

Example 2: Experience of Rust Tokio’s author

(1]

The run queue is at the heart of the scheduler. As such, it is probably the most critical component to get right. The
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contention is reduced. However, Rust's asynchronous tasks are expected to take very little time executing when
popped from the run queue. In this scenario, the overhead from contending on the queue becomes significant.

[1] Making the Tokio scheduler 10x faster (https://tokio.rs/blog/2019-10-scheduler)
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Sources of the Overhead

@ A worker (thread) puts on / gets from its own queue.
FIFO / LIFO

A) Cost of Synchronization Operations

[ ]
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queue

@ When its queue is empty, it selects another queue...
Random, best of two, NUMA-aware, Batching ...

B) Overhead due to Victim Selection (see paper)
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A) Cost of Synchronization Operations
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A) Cost of Synchronization Operations

sequential queues

(no barriers) existing works
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Sources of the Overhead

A) Cost of Synchronization Operations

Throughput (op/s)

sequential queues

(no barriers)

existing works

® Throughput of existing works is far away from
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sequential queues (theoretical upper bound)

® As steals may happen at any time
strong atomic barriers are introduced
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* Thieves affect the throughput of the owner




Sources of the Overhead

C) Cost of Interference with Thieves

* Thieves affect the throughput of the owner

* Stealing 1% of the elements:

x108

Same NUMA: 17.8% |

o

Diff. NUMA: 25.2% %
| |

0.00 0.01 0.02 0.03
Thief (op/s) x10°




BWoS — Block-based Work Stealing

( FIFO MPMC queue

getI

Does not scale

existing works

( per-core queue

Fast but imbalanced

( work-stealing queue )

Not fast enough

our work

|

block-based
work-stealing queue

]

get

steal

Fast & Balanced
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BWoS — Block-based Work Stealing

worker

@ A worker (thread) puts on / gets from its own queue.
FIFO / LIFO

Block-level synchronization: no barriers inside
blocks

@ When its queue is empty, it selects another queue...
Random, best of two, NUMA-aware, Batching ...
Randomized Victim Selection Policy

@ and try to steal from it.

No Interference when stealing from a
different block
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A) Cost of Synchronization Operations

® Block-level synchronization: Each block is owned
either by the owner or by the thieves
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C) Cost of Interference with Thieves

* Fixed by Block-Level Synchronization and Randomized Stealing
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BWoS — Block-based Work Stealing

C) Cost of Interference with Thieves

—
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* Fixed by Block-Level Synchronization and Randomized Stealing
Mo * Thieves and the owner update different metadata, thus

interference is reduced

Mo

* Thieves and the owner are likely to operate on different blocks
Mo 1
put
get | steal
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BWoS — Verification and Optimization

VSync Framework
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BWoS — Verification and Optimization

Algorithms in C

(Te || TL || T2) ; T3

Client Code

trigger edge cases
with assertions

i 2

3; {a)

4; {q)

5; (q)

(ql:

q)=
{b.sum == f.sum
l.sum + s2.sum});
1 A

VSync Framework

. L input IR mutation _MUEted IR - hodel

primitive.c —— clang "
checker ™ _ checker

r ult
mports rrier r\w.urla\\_ \.\ ceatue
+ \ W
avnc [s]nf parrier parrier [e] iﬂ\\?J on

VSy k L . ; pt t
atomics client code analyzer #barriers optimizer ! report

Verification

Properties:

Memory safety

« Data race freedom
« Loop termination

« Consistency

WMM Optimization

VERI/OPT memory barriers #executions
time #SEQ | #ACQ | #REL | #RLX explored
BWos | 62 min. I 0 I 2 | 2 | 14 | 139M
g{,fo% 53 min. | 0 | 3 3 16 1.43 M
ABP | 16 min. 4 3 1 7 205M
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BWoS — Verification and Optimization

WMM Optimization Results
ot oo a5 '\\ — _~BWoS relaxed
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atomics client code analyzer #barriers optimizer - report
WMM Optimization
VERI/OPT memory barriers #executions
time #SEQ #ACQ #REL #RLX explored
J k ;\}Vf)g 62 min. I 0 I 2 2 14 1.39 M
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g WMM Optimization Results
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Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.
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Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

Performs close to theoretical maximum
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Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

10% stolen: up 30x throughput

== o000
I —@— bwos_cpp L]
a5 —¢ bbq - %~
flj ﬁﬁ o N*# —+— tokioq
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)

~

o

)
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> 8
Q_10

c
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>
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- 7
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I_10

—

1 2 5 110 | 20
Stolen Percentage

Summary: BWoS outperforms state-of-the-art queues by
1.6x — 10x without thieves, 1.6x - 30x with thieves.

eigeng
ideal
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BWoS in Go’s Runtime

Original

BWoS

GoJson Object Decoding Benchmark

GC Worker CPU Idle

|
| @[ github.com..
I GAEEBEN | github.comy.. | GilBEOM/GE -
- dithub.com/goccy/go-json/internal/decoder.(..  ru. sy
sonummarshal o uinkime newehiert |
[ g0 e o
eeeee ecode mal U nmarsha son
| 8 | benchmark 5 O/p Decode SmaliStruct Unmarshal Gol
| ru. EESUNGIGRE
| Jru.. |[testingi(*E Haunch i ——
| ru.. testing.(*E

|| runtime.goexit.ab )

‘github.com/goccy/..
[GiERUBEN | github.com/gocey/go.. [ github.com/gocey/g..

71%

| testing.(*B).d Bench.fur o1

Decoding Scheduling

Summary: GoJson benchmarks experience 28.2% speedup on average for Arm (see paper).

BWoS improves performance of real-world computational workloads.
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BWoS in Rust Tokio Runtime

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

—4— bwos A original
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BWoS in Rust Tokio Runtime

We replace the run queue in Rust Tokio with FIFO BWoS
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BWoS in Rust Tokio Runtime

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

A - 40 A ¢
, —}— bwos original . —— bwos A ¥y original
» 10 - X
e =30 -
: /e
T 5- 5 20 -
+ -
3 5
10 ~
0 i “l_- ;+ _-_-_.I- I 1 1 1
0.6 0.8 1.0 0.6 0.8 1.0
Throughput (op/s) 1e6 Throughput (op/s) 1e6

Summary: BWoS increases throughput by 12% with 7% lower latency and 61% lower CPU utilization.
BWoS improves performance of real-world |0 servers.

We have published our changes for the Tokio runtime: https://github.com/tokio-rs/tokio/pull/5283
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Summary

* The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
* BWoS: Work Stealing (this work)
 BBQ: Producer-Consumer Queues (ATC’22)

e Verified software can be faster than unverified software.

Thanks!



