ARTIFACT ARTIFACT

f u S e n I X EVALUATED EVALUATED
N

Fusenix susenix

’ THE ADVANCED §p rssocumon §p “ssocurion

COMPUTING SYSTEMS

ASSOCIATION REPRODUCED m

BWoS: Formally Verified Block-based Work
Stealing for Parallel Processing

Jiawei Wang!2, Bohdan Trach!, Ming Fu?, Diogo Behrens?, Jonathan Schwender?,
Yutao Liu?, Jitang Lei!, Viktor Vafeiadis3, Hermann Hartig?, Haibo Chen!4

2] 3]

(1] [(\
TECHNISCHE —_a
\S"é © UNIVERSITAT (a7
HUAWEI DRESDEN L)

MPI-SWS

Parallel Processing Scenarios

g |
= & -G6o %

Java

Parallel Processing Scenarios

= & -Go

Java

3¢ julia K Kotlin s

Parallel Processing Scenarios

¢ _
= @& -co

Java
3¢ julia K Kotlin s
e Cilk

Queues for Parallel Processing

Existing Approaches

(FIFO MPMC queue)

put

"IN

Queues for Parallel Processing

Existing Approaches

(FIFO MPMC queue) (Per-core Queue

put

"IN

Does not scale

Queues for Parallel Processing

Existing Approaches

(FIFO MPMC queue) (Per-core Queue (Work-Stealing Queue)

Does not scale Fast but imbalanced

put

Work Stealing

@ A worker (thread) puts on / gets from its own queue.

queue

Work Stealing

- B

@ A worker (thread) puts on / gets from its own queue.

queue

@ When its queue is empty, it selects another queue...

Work Stealing

@ A worker (thread) puts on / gets from its own queue.

[]
queue

@ When its queue is empty, it selects another queue...

@ and try to steal from it.

Work Stealing Becomes the Bottleneck

Work Stealing Becomes the Bottleneck

Example 1: GoJson Object Decoding Benchmark

Decoding Scheduling GC Worker CPU Idle

@@ github.com..
B github.com/.. |GiEUBIEOM/GNN

moE 51%
‘aithub.cor .

[W benchmark.Benchmark Decode SmallStruct Unmarshal GoJson

runtime.m.. |

Work Stealing Becomes the Bottleneck

Example 1: GoJson Object Decoding Benchmark

Decoding Scheduling GC Worker CPU Idle

|

l ay@ github.com..

' o, [Elgithub.com/.. |giubEoR/GE - | W
| @51% cy/gosjson/internal/decoder i U sv-.

Benchmark Decode SmallStruct_Unmarshal _Golson

testing.(*B).doBench.funcl
||| runtime.goexit.abi0

Example 2: Experience of Rust Tokio’s author

(1]

The run queue is at the heart of the scheduler. As such, it is probably the most critical component to get right. The
ariainal Tolkin echedilder 1icod crocscshoam's deaiie imnlementatinn which ie sinale-nradiicer miilti-congsiimer deaiie

AalriJurie Ur e o Ul PUPPITTY LT tadoN TTUTTT LT TUT T Yuouc, VTTOTT Ldonho TALLULL TUTD a TUTTY O TUW UT LITTIC, YUt uo

contention is reduced. However, Rust's asynchronous tasks are expected to take very little time executing when
popped from the run queue. In this scenario, the overhead from contending on the queue becomes significant.

[1] Making the Tokio scheduler 10x faster (https://tokio.rs/blog/2019-10-scheduler)

Queues for Parallel Processing

existing works

(FIFO MPMC queue) per-core queue (work-stealing queue)

Does not scale Fast but imbalanced Not fast enough

put

Sources of the Overhead

@ A worker (thread) puts on / gets from its own queue.
FIFO / LIFO

A) Cost of Synchronization Operations

[]

[]

[]
queue

@ When its queue is empty, it selects another queue...
Random, best of two, NUMA-aware, Batching ...

B) Overhead due to Victim Selection (see paper)

©)

steal @ and try to steal from it.
get /@' C) Interference Cost with Thieves

worker

Sources of the Overhead

A) Cost of Synchronization Operations

sequential queues
(no barriers) existing works

v

o x108

° 7

4-15' /

-

o

e

S

o 0-

c o o O O U T T o

— CUCI)_Q_QCU_QCCU
o o 8 5 T 3
L o o

(@) (@)

Sources of the Overhead

A) Cost of Synchronization Operations

sequential queues

(no barriers) existing works

)
:OD. x10 / ® Throughput of existing works is far away from
T 5- 4 N sequential queues (theoretical upper bound)
3 4_5X
e slower
S
o 0-
c o T T 9 U T T T
— Q o O QO L QO C Q

wn v v (C - @] Q c

o o © B o B

T T - 3 o 3

o - — —

l@)) o

Sources of the Overhead

A) Cost of Synchronization Operations

Throughput (op/s)

sequential queues

(no barriers)

existing works

® Throughput of existing works is far away from

x108
/

q
q

tokioq

)
0
@)
o
L

)
;v
o
—
=

~4-5x
slower

/
/

abp
bbq
eigenq

goroutineq

coroutineq

sequential queues (theoretical upper bound)

® As steals may happen at any time
strong atomic barriers are introduced

Sources of the Overhead

C) Cost of Interference with Thieves

* Thieves affect the throughput of the owner

Sources of the Overhead

C) Cost of Interference with Thieves

* Thieves affect the throughput of the owner

* Stealing 1% of the elements:

x108

Same NUMA: 17.8% |

o

Diff. NUMA: 25.2% %
| |

0.00 0.01 0.02 0.03
Thief (op/s) x10°

BWoS — Block-based Work Stealing

(FIFO MPMC queue

getI

Does not scale

existing works

(per-core queue

Fast but imbalanced

(work-stealing queue)

Not fast enough

our work

|

block-based
work-stealing queue

]

get

steal

Fast & Balanced

10

BWoS — Block-based Work Stealing

worker

@ A worker (thread) puts on / gets from its own queue.
FIFO / LIFO

Block-level synchronization: no barriers inside
blocks

@ When its queue is empty, it selects another queue...
Random, best of two, NUMA-aware, Batching ...
Randomized Victim Selection Policy

@ and try to steal from it.

No Interference when stealing from a
different block

11

BWoS — Block-based Work Stealing

B
Blocksﬁ

put

®

get

worker

BWoS — Block-based Work Stealing

Workload items

Blocks

worker

BWoS — Block-based Work Stealing

Blocks

“.-J
IIIII

worker

Workload items

Blocks

12

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

® Block-level synchronization: Each block is owned
either by the owner or by the thieves

13

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

® Block-level synchronization: Each block is owned
either by the owner or by the thieves

® When crossing block boundary: use barriers
(takeover, grant)

13

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

® Block-level synchronization: Each block is owned
either by the owner or by the thieves

® When crossing block boundary: use barriers
(takeover, grant)

13

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

® Block-level synchronization: Each block is owned
either by the owner or by the thieves

® When crossing block boundary: use barriers
(takeover, grant)

13

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

Block-level synchronization: Each block is owned
either by the owner or by the thieves

When crossing block boundary: use barriers
(takeover, grant)

Within block boundaries: use relaxed atomics, no
barriers (fast path)

Get position
(no barriers)

<— Put position

14

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

Block-level synchronization: Each block is owned
either by the owner or by the thieves

When crossing block boundary: use barriers
(takeover, grant)

Within block boundaries: use relaxed atomics, no
barriers (fast path)

Get position
(no barriers)

<— Put position

14

BWoS — Block-based Work Stealing

A) Cost of Synchronization Operations

® Block-level synchronization: Each block is owned
either by the owner or by the thieves

® When crossing block boundary: use barriers
(takeover, grant)

<— Put position

® \Within block boundaries: use relaxed atomics, no
barriers (fast path)

Get position
(no barriers)

BWoS — Block-based Work Stealing

rm——

worker

B) Overhead due to Victim Selection

15

BWoS — Block-based Work Stealing

——
Mo
Mo
Mo
m
ut
D e
()

worker

B) Overhead due to Victim Selection

®* Each block has a dedicated metadata instance

15

BWoS — Block-based Work Stealing

——

Mo

Mo

Mo
m

ut

D e
()

worker

B) Overhead due to Victim Selection

®* Each block has a dedicated metadata instance

* Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

* Thieves read only block-level metadata, and steal from

longer queues with higher probability

15

BWoS — Block-based Work Stealing

——
Mo
Mo
Mo
m
ut
D e
()

worker

— —)
Mo Mo .
Mo Mo .
Sl [
Mo Mo

e’ —

M M
~— —_——

B) Overhead due to Victim Selection

®* Each block has a dedicated metadata instance

* Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

* Thieves read only block-level metadata, and steal from

longer queues with higher probability

15

BWoS — Block-based Work Stealing

——
Mo
Mo
Mo
m
ut
D e
()

worker

— —)
Mo Mo .
Mo Mo .
m | (Il m | ([
Mo Mo
 — S—
M M
(3)1rnd_choose
~— —_——

steal
@/'

B) Overhead due to Victim Selection

®* Each block has a dedicated metadata instance

* Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

* Thieves read only block-level metadata, and steal from

longer queues with higher probability

15

BWoS — Block-based Work Stealing

— q— —)
Mo Mo Mo .
Mo Mo Mo .
n Il
@try
steal
Mo —>| Mo Mo
 — x e’ S—
M M M
D out @Qnd_choose
get steal @

worker

B) Overhead due to Victim Selection

®* Each block has a dedicated metadata instance

* Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

* Thieves read only block-level metadata, and steal from

longer queues with higher probability

15

BWoS — Block-based Work Stealing

——
Mo
Mo
Mo
m
ut
D e
()

worker

e

@try
steal

-
HEENED

M

(3)frnd_choose

B) Overhead due to Victim Selection

®* Each block has a dedicated metadata instance

* Novel probabilistic stealing policy:

Use sampling to estimate Size/Capacity.

* Thieves read only block-level metadata, and steal from

longer queues with higher probability

15

BWoS — Block-based Work Stealing

C) Cost of Interference with Thieves

* Fixed by Block-Level Synchronization and Randomized Stealing

16

BWoS — Block-based Work Stealing

C) Cost of Interference with Thieves

—

mb

* Fixed by Block-Level Synchronization and Randomized Stealing
Mo * Thieves and the owner update different metadata, thus

interference is reduced

Mo

* Thieves and the owner are likely to operate on different blocks
Mo 1
put
get | steal

16

BWoS — Verification and Optimization

VSync Framework

17

BWoS — Verification and Optimization

Algorithms in C

= 3 | =

\

VSync Framework

17

BWoS — Verification and Optimization

\

>)4

Client Code VSync Framework

trigger edge cases x e clang "R mutation Ml R o
. . crecke_’ T result checker
with assertions ‘
combination % N,
VSync ock barrier barrier X optimization
atomics client code analyzer #b rriers | optimizer report

Algorithms in C J

& =) ' = @@k =

BWoS — Verification and Optimization

Algorithms in C

(Te || TL || T2) ; T3

Client Code

trigger edge cases
with assertions

i 2

3; {a)

4; {q)

5; (q)

(ql:

q)=
{b.sum == f.sum
l.sum + s2.sum});
1 A

VSync Framework

. L input IR mutation _MUEted IR - hodel

primitive.c —— clang "
checker ™ _ checker

r ult
mports rrier r\w.urla_ \.\ ceatue
+ \ W
avnc [s]nf parrier parrier [e] iﬂ\\?J on

VSy k L . ; pt t
atomics client code analyzer #barriers optimizer ! report

Verification

Properties:

Memory safety

« Data race freedom
« Loop termination

« Consistency

WMM Optimization

VERI/OPT memory barriers #executions
time #SEQ | #ACQ | #REL | #RLX explored
BWos | 62 min. I 0 I 2 | 2 | 14 | 139M
g{,fo% 53 min. | 0 | 3 3 16 1.43 M
ABP | 16 min. 4 3 1 7 205M

17

BWoS — Verification and Optimization

WMM Optimization Results
ot oo a5 '\\ — _~BWoS relaxed
data = q. buf); b "2} b
maul 1) { T}.L “8‘_]K . .
rese P o = BWoS SC
tealique 114 (Te [TL || T2) ; T3 o 8
< 10%; Q=—0—9
. [@)]]
Client Code VSync Framework S —TABP
—
trigger edge cases & pimitvec - clang " mutation 21, model < , : : : : .
with assertions S \ 0 1 2 5 10 20
/ VSync lock bar'rlcrr \barrlcf %optir‘mzat\on Stolen Percentage
atomics client code analyzer #barriers optimizer - report
WMM Optimization
VERI/OPT memory barriers #executions
time #SEQ #ACQ #REL #RLX explored
J k ;\}Vf)g 62 min. I 0 I 2 2 14 1.39 M
Algorithms in C FRO | s3min. | 0 fl 3 | 3 | 16 | 143m
ABP 16 min. 4 3 1 7 205M
=Y =2 ORI E= = o @B=g) o | L0 5, O
=Y 5 E:> =Py] :./ L1

18

BWoS — Verification and Optimization

g WMM Optimization Results
! B quel j :1: 5‘1}.52: ~? \ f — /BWOS relaxed
d lJ E‘:qu E |)‘-,qI| “J'E' P o (.n]
maul 1) { T}.L “8‘_]K . .
. P s 3‘5.’ 5.4x% BWoS SC
tealique 104 (Te || TL || T2) ; T3 Q_ 8
< 10%; Q=—0—9
) o]
Client Code VSync Framework S —TABP
[l 4
trigger edge cases & pimitvec - clang " mutation 21, model / < , : : : : .
with assertions s moa\ \ 0 1 2 5 10 20
/ VSync lock bar'rlcrr \barrlcf . optimization \ Stolen Percentage
atomics client code analyzer #barriers optimizer - report
WMM Optimization
VERI/OPT memory barriers #executions
time #SEQ #ACQ #REL #RLX explored
J ;\}Vf)g 62 min. I 0 I 2 2 14 1.39 M
Algorithms in C PO | 53 min. | 0 | 3 3 | 16 | 143M
ABP 16 min. 4 3 1 7 205M
= | a5 o> @BBEe oy’ @EEs) 5 | o i R
o> EEEE o5) 2) I) o, O
back anf :.;-v - fron ack onf 18

Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

s [TeTe=o—e—o
= A —@— bwos_cpp O eigenq
S 10 _ | L _ o
= 5 —<¢~ bbg - |deal
-§, Elj ﬁﬁ‘% —+— tokiog
O ' L]
7 _
-IE 10 T | T I

0 1 2 5 10 20
Stolen Percentage

Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

g [FreT———0

= [—@— bwos_cpp O eigenq
S 10 _ | L _ o

= 5 —<¢~ bbg - ideal
-§, Elj S ﬁ% —+— tokioq

O ' [

£ 107_ T T T T

= : ,
‘Higher IS better 0 1 2 5 10 20
Stolen Percentage

Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

Performs close to theoretical maximum

= A —@— bwos_cpp O eigenq
=S 10 _ | L _ o
= 5 —<¢~ bbg - ideal
-§, Elj ="\ ﬁ% —+— tokioq
O ' L]

7
I‘E].O T | | I n

0 1 2 5 10 20
Stolen Percentage

Micro-benchmark Results

Compared against state-of-the-art work-stealing queues

Each queue has a capacity of 8k entries, with 8-byte data items; BWoS is configured to have 8 blocks.

10% stolen: up 30x throughput

== o000
I —@— bwos_cpp L]
a5 —¢ bbq - %~
flj ﬁﬁ o N*# —+— tokioq
[
[1

)

~

o

)

-

> 8
Q_10

c

@)

>

o

- 7
c _
I_10

—

1 2 5 110 | 20
Stolen Percentage

Summary: BWoS outperforms state-of-the-art queues by
1.6x — 10x without thieves, 1.6x - 30x with thieves.

eigeng
ideal

19

BWoS in Go’s Runtime

Original

BWoS

GoJson Object Decoding Benchmark

GC Worker CPU Idle

|
| @[github.com..
I GAEEBEN | github.comy.. | GilBEOM/GE -
- dithub.com/goccy/go-json/internal/decoder.(.. ru. sy
sonummarshal o uinkime newehiert |
[g0 e o
eeeee ecode mal U nmarsha son
| 8 | benchmark 5 O/p Decode SmaliStruct Unmarshal Gol
| ru. EESUNGIGRE
| Jru.. |[testingi(*E Haunch i ——
| ru.. testing.(*E

|| runtime.goexit.ab)

‘github.com/goccy/..
[GiERUBEN | github.com/gocey/go.. [github.com/gocey/g..

71%

| testing.(*B).d Bench.fur o1

Decoding Scheduling

Summary: GoJson benchmarks experience 28.2% speedup on average for Arm (see paper).

BWoS improves performance of real-world computational workloads.
20

BWoS in Rust Tokio Runtime

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

—4— bwos A original
10 -
5 - *
4
0 19———"

0.6 0.8 1.0
Throughput (op/s) 1e6

(%)

w
o
1

CPU usage

N
o
1

N
o
1

=
o
1

—4— bwos A *x.original

+

&

0.6 0.8 1.0
Throughput (op/s) 1e6

21

https://github.com/tokio-rs/tokio/pull/5283

BWoS in Rust Tokio Runtime

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

l Lower is better

0.6 0.8 1.0
Throughput (op/s) 1e6

Higher is better

0.6 0.8 1.0
Throughput (op/s) 1e6

21

https://github.com/tokio-rs/tokio/pull/5283

BWoS in Rust Tokio Runtime

We replace the run queue in Rust Tokio with FIFO BWoS

Hyper HTTP server, 1k connections

A - 40 A ¢
, —}— bwos original . —— bwos A ¥y original
» 10 - X
e =30 -
: /e
T 5- 5 20 -
+ -
3 5
10 ~
0 i “l_- ;+ _-_-_.I- I 1 1 1
0.6 0.8 1.0 0.6 0.8 1.0
Throughput (op/s) 1e6 Throughput (op/s) 1e6

Summary: BWoS increases throughput by 12% with 7% lower latency and 61% lower CPU utilization.
BWoS improves performance of real-world |0 servers.

We have published our changes for the Tokio runtime: https://github.com/tokio-rs/tokio/pull/5283

https://github.com/tokio-rs/tokio/pull/5283

Summary

* The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
* BWOoS: Work Stealing (this work)
 BBQ: Producer-Consumer Queues (ATC’22)

Summary

* The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
* BWOoS: Work Stealing (this work)
 BBQ: Producer-Consumer Queues (ATC’22)

e Verified software can be faster than unverified software.

Summary

* The benefit of the block-based design is manyfold, and can be applied in many concurrent algorithms:
* BWoS: Work Stealing (this work)
 BBQ: Producer-Consumer Queues (ATC’22)

e Verified software can be faster than unverified software.

Thanks!

