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Graphs are everywhere, and GNN is the key!

Credit: Google Image 2
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GNN: Graph Neural Networks
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GNNs are Scaling Up! 
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Ø 1. Graph Structural Scaling. Ø 2. Graph/Node Embedding Scaling.

Rich structural information 
(e.g., Community) for various 
tasks (e.g., link prediction)

Fruitful Node/Graph-level 
Propertities for various tasks 

(e.g., node classification)

ogbn-paper100M has 
111M nodes and 1.6B edges

Reddit graphs has 
602 embedding dimension

...
Hundreds to Thousands Dimensions

.........

.........

...
Node Embeddings
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DL Infrastructures are Scaling to Catch Up!
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Single GPU

High Comm. 
Bandwidth

Building Blocks 
for Large Clusters

High Comp/Mem 
Capacity

GPU SuperPod

NVIDIA DGX-pod
NVIDIA A100



Powerful Multi-GPU Platforms Cannot Solve Everything!

o Communication and computation 
in separated phases.

o Remote neighbor access are 
fine-grained and irregular.

Wang, Minjie, "Deep graph library: Towards efficient and scalable deep learning on 
graphs." ICLR workshop on representation learning on graphs and manifolds. 2019. 6

Weakness:
o High individual neighbor access cost.
o GPU idleness between the computation 

and communication phases.

Ø Single-GPU solution does not work well for 
multiple GPUs. (e.g., DGL): D
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Traditional Distributed Graph Solutions Do Not Work Well!

Weakness:
o Additional algorithmic modification.
o Redundant data movements.

o Decreased computation efficiency,

• Ma, Lingxiao, et al. "NeuGraph: Parallel Deep Neural Network Computation on Large Graphs." USENIX Annual Technical Conference. 2019.
• Gandhi, Swapnil, and Anand Padmanabha Iyer. "P3: Distributed Deep Graph Learning at Scale." OSDI. 2021.
• Jia, Zhihao, et al. "Improving the accuracy, scalability, and performance of graph neural networks with roc." Proceedings of Machine 

Learning and Systems 2 (2020).
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o Neighbor aggregation is divided into 
multiple rounds.

o Neighbor movement are dense, regular 
and coarse-grained.

o Neighbor access in each round of 
aggregation is all local.

Ø Schedule Transformation for Dense 
Communication (e.g., NeuGraph, P3, ROC): 
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Algorithm-Observation: Opportunity for Fine-grained Pipelining

Fine-grained neighbor aggregation dependency. 

New opportunities: we can amortize 
communication costs by fine-grained overlapping 
neighbor aggregation from different nodes.
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LL: Load Local Neighbor
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SM SM SMSM SM SM

Hardware-Observation: SM Multiplexing for Operation Overlapping

SM
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...

... ... ...

Logical Ops.

Remote Access.
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Local Access.
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Hardware-Observation: SM Multiplexing for Operation Overlapping
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Hardware-Observation: SM Multiplexing for Operation Overlapping
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Arithmetic Ops.
Local Access.

Remote Access.

SM

Logical Ops.

CUDA Cores

GPU



MGG Overview

Graph 
Loader 
& Model 

Init. 

SHMEM 
Library

MGG
Runtime 
Param. 

Optimizer
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Kernel & Runtime Manager

GNN-tailored 
Pipeline 

Construction

GPU-aware 
Pipeline 
Mapping

Tackling Input  
Dynamicity

Tackling Hardware 
Diversity

Novel pipeline view/abstraction 
for hiding communication latency

...

...

...

Sparse and 
Irregular GNN 

Workloads

Fine-grained and 
balanced pipelines

…

NVIDIA DGX



Contribution-1: Pipeline View and Abstraction.

Key insight: Communication overhead 
can be offset by fine-grained operation 
overlapping.
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Neighbor
Access 
Latency

Challenges: 
• Communication overweight the local 

computations/access and dominate 
the execution.

• Communication exacerbate the 
workload imbalance.
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• The idle cycles of GPUs communication can be 
fulfilled by other local computing.

• Multi-GPU GNN workload can be abstracted as a 
fine-grained dynamic software pipeline.



A three-stage dynamic software pipeline.
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Ø Loading remote neighbors (LR)1 Ø Loading local neighbors (LL) 2 Ø Aggregation computation (AC). 3
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Contribution-2: Pipeline-aware Workload Management.
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Input 
Dynamicity

Key Insight: Pipeline can be tailored for maximizing 
efficiency based on diverse GNN inputs properties 
(e.g., #nodes, #edges and node degree).

Challenge:  Input diversity (e.g., graph 
size/sparsity) would affect the pipeline 
efficiency (e.g., bubble ratio).

Heterogeneity & Granularity-aware 
pipeline enhancement.



Facilitate a more balanced workload 
distribution among pipeline stages

LR
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AC Timeline

Raw Pipeline
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1 2 4 5 0 3 1 5

0 4 6
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7 10 6 9 8 11

LR
LL
AC

LL
AC

Heterogeneity & Granularity-aware 
Pipeline Enhancement.

LNP: Local Neighbor Partition
RNP: Remote Neighbor Partition



Contribution-3: GPU-Aware Pipeline Mapping.

Specialized Memory Design & Optimization.

Intelligent Runtime Design.

Key insight: Dynamically configurable 
pipeline-workload-to-SM mapping can 
maximize pipeline execution performance.
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Challenges: Hardware diversity (e.g., Comp/Comm 
Speed) would affect the pipeline execution 
performance (e.g., SM utilization and occupancy).

Hardware Diversity

w/o 
interleaving (IL) LNP RNP...

IL=2 ...

IL=1 ...

SM-0 SM-1 ...

Warp-0 Wapr-1 Warp-2 Warp-3 ...2-to-1

Interleaving

Warp-based 
Mapping

Execution

4-to-1 Warp-0 Warp-1 ...



Evaluation

Ø GNN Models.

Ø Evaluation Platform.

v Graph Convolutional Network (GCN): 
2 layers with 16 hidden dimensions.

v Graph Isomorphism Network (GIN): 
5 layers with 64 hidden dimensions.

v NVIDIA DGX-A100 with dual AMD Rome 
7742 processors (each with 64 cores, 2.25 
GHz), 1TB host memory, and 8x(A100-
40GB) connected via NVSwitch.

Ø Baseline.
v  Deep Graph Library [ICLR’19].
v  Unified Memory [NVIDIA].
v  ROC [MLSys’20].
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Evaluation: Overall Performance

Averaged 4.41x speedup in comparison 
with DGL on GCN and GIN.

Ø Compare with DGL.
(Seperated Commmunication and Computation)
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Averaged 10.83x speedup in comparison 
with ROC (8xA100) on GCN and GIN.

Ø Compare with ROC. 
(Schedule Transformation for Dense Communication)



Evaluation: Additional Comparisons
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Averaged 4.81x speedup in comparison 
with MGG-UVM on GCN and GIN.

Ø Compare with MGG-UVM. 
(Pipeline with Coarse-grained Communication)

Averaged 2.24x with NP

Ø Neighbor Partitioning (input Dynamicity)

Averaged 1.88x with WL

Ø Workload Interleaving (Hardware Diversity) 



q Capatializing pipelining benefits 
for input dynamicity.

A novel and unique multi-stage 
pipeline view/abstraction

GNN-tailored pipeline 
construction

GPU-aware pipeline mapping
q Enhance pipeline efficiency for 

diverse hardware.

q Exploting the joint optimization of 
the communication and computation.

Contribution Summary
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Thank You

Q & A

Code: https://github.com/YukeWang96/MGG-OSDI23-AE.git

Contact: yuke_wang@cs.ucsb.edu
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