{44 IPADS B) Eiars
[EES SHANG o

11V 505

ONG UNIVERSITY

No Provisioned Concurrency:
Fast RDMA-codesighed Remote Fork for Serverless
Computing

Xingda Wei, Fangming Lu, Tianxia Wang,
Jinyu Gu, Yuhan Yang, Rong Chen, Haibo Chen

Problem: container startup is slow for ephemeral functions

E.g.,docker run SOME_IMG python foobar.py

— The foorbar executes a simple program

— However, container startup causes 9,000X slower
to the program’s execution (18s)

foobar. py

import time

print("hello world"

18s
V
£
+
Qe -
o ¢
MITOSIS: fast container startup with minimal resource usage 2 .
5o
— Container startup < SmMS on a clean machine (fastest method) 0 22
S
X
— Start more than 100,000 containers on 5 machines in one second & @ &

Why container (cold) start is slow?

Start containers to run the application code involve many steps:
— Download the container image from a registry
— Containerization: setup cgroup and namespaces

— Runtime initialization: initialize Python runtime, import libraries (e.g., import torch)

docker run SOME_IMG python foobar.py] Where foobar rups:

& | 11 | |
I 11 |
/ @ Containerization (3 Runtime initialization
Network -
%‘docker

@® Download image

How to accelerate the startup?

Potential solutions to accelerate each step:

— Download image: optimize the pull, but still has a cost (1)

— Containerization: use cgroup and namespace pooling to hide its cost [2!

— Runtime initialization: ?

docker run SOME IMG python foobar.py

Where foobar runs:

S @

3 Runtime initialization

Network by 150
m
S 100
@ docker 0
@® Download image =
[1] FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes 0
at Alibaba Cloud Function Compute, ATC’21

[2] SOCK: Rapid Task Provisioning with Serverless-Optimized Containers, ATC’18

150

+ fast net

+ pooling

—

D

Idea: reusing initialized state from other containers

Observation: runtime initialization + image == initialize container virtual memory

v S
sll=n

& =
3 Runtime initialization

3.1 load the 3.2 Translate to 3.3 Execute module

downloaded byte code init routines
modules

Idea: reusing initialized state from other containers

Observation: runtime initialization + image == initialize container virtual memory
— A new container can inherit the state from another initialized container

— No need to download the image or initialize the runtime

In-memory
state "
L P

& l@ Runtime initialization |
Inherit j:lj
& @ =

[docker +run borrow SOME IMG python foobar*.py} .

How to inherit?

Design requirement: no provisioned concurrency

Suppose we have N containers to start, how many initialized states to store?

— Therequired number of stored states is usually termed as provisioned concurrency
Ideal case: no provisioned concurrency

— The provisioned case is irrelevant to the started containers, e.g., 0(1)

é\&% a a a a ncontalne{ We need mlnlwﬁj

AL oF AL AL o AL 7
iR o o - 4

Clusters to run the containers

Existing solutions need provisioned concurrency

Approach #1. Caching, ak.a, warm start

— E.g.,docker pause + docker unpause

Docker pause

— Stop a container and store its state in DRAM

Docker unpause

— Resume the container for execution

docker pause docker unpause

- A 2

C-l\ -

Existing solutions need provisioned concurrency

Approach #1. Caching, a.k.a, warm start Cons: needs provisioned

— E.g.,docker pause + docker unpause concurrency!

Docker pause O(n) containers provisioned,

— Stop a container and store its state in DRAM n: the number of concurrent
invocations

Docker unpause

— Resume the container for execution

docker pause docker unpause

I:_I | What about starting one more? }
= docker pause We need another paused container! J

Existing solutions need provisioned concurrency

Approach #2.Fork, a.k.a, start containers in a process forking manner (121

Fork --- Create a new process from an existing one

Pros:

— Each machine only needs 1 parent to concurrently start many containers

— Achieve O(1) resource provisioned on a single machine

-

e
N

docker pause Fork
/
1/
____________ L Fork
> Copy-on-write p

~ ”
~o -

~<o
- -

[1] Catalyzer: Sub-millisecond Startup for Serverless Computing with Initialization-less Booting, ASPLOS’20
[2] SOCK: Rapid Task Provisioning with Serverless-Optimized Containers, ATC’18

10

Existing solutions need provisioned concurrency

What if there is a load spike that applications want start many containers?

— E.g., thereis aload spike in the workload

— Fork still need provisioned concurrency (O(m)) : deploy one parent on each machine!

o b = oo -a

88 Req\ /%A\ O(m)

\ | o
Y T 0

\ Clusters w/ M machines to run the
containers

11

MITOSIS: remote fork ﬁ) no provisioned concurrency

Fork --- Create a new process from an existing one

Remote fork is a primitive for no provisioned concurrency
— Observation: one parent is sufficient for starting containers across machines

— A generalization of fork to remote enabling no provisioned concurrency in a cluster

docker prepare SOME_IMG]

192.168.12.113
& _Finished initaization _, (98
| 1 \j:P

&[docker‘ fork SOME IMG 192.168.12.113

>}

12

How to implement remote fork efficiently?

Current solution—Checkpoint & Restore (CRIU) is not efficient enough

— Checkpoint: stop and dump the memory to afile
— Restore: reconstruct the VM according to the file and resume the process

VM checkpoint

L |
B
j&)

ALY
Q
)
D
>
—~

@ o

Distributed file system Restore F_\
h qu |

@ Checkpoint @ Transfer file 3 Restore

|o
z‘ @
o1

13

Current remote fork is not designed for RDMA

Start + Execution time(ms) C/R for remote fork
-3Remote fork (C/R)

2000 =A-Vanilla container start
1500 : : :

2) Transferring file via DFS
1000 is also costly

500 A N N A (1) Checkpoint entire
container is costly

7 "4 (o 7, o (o) 7 < S 7,
(o} < 4 <. S 7 ()
[o% (o) < <37

Parent container in-memory state (MB)

Evaluation setup: CRIU for C/R, file is transferred via RDMA and is stored in-memory
14

Opportunity: Remote Direct Memory Access (RDMA)

A fast datacenter networking feature that allows direct remote memory access
— High bandwidth (400Gbps) & low latency (600ns)
— CPU bypassing: the memory read/writes are offloaded to the NIC hardware

Read page at Oxdeadbeaf Read page at Oxdeadbeaf
o K
: - W
O NIC O NIC -

TCP/IP RDMA READ

- NIC \ - NIC \-/
5 . ; \
g DRAM ull 5| DRAM
o o

L’VVl/ We can imitate local fork w/ RDMA!

MITOSIS co-designs remote fork with RDMA

Upon fork, we first use RDMA-based RPC to read the page table to the child

— One-sided RDMA is not efficient at this step due to network amplification

Afterward, the child retrieves memory pages in a RDMA-on-access manner (on demand)

prepare }

& e 5 Jm

Parent 1. Mark as copﬁon-write - 2. RPC 3. RDMA
Fork T X/
8 L e
Child :IEI

3. Create a container w/ the read page table

16

MITOSIS co-designs remote fork with RDMA

44—80% faster than basic C/RI1 not co-designed with RDMA
— The C/R implementation has used RDMA-based DFS to restore states

Start + Execution time(ms) Start + Execution time(ms)
2000 C/R 2000 MITOSIS
1500 2) Transferring file via DFS 1500
is also costly
1000 1000
500 1) Chgckppmt entire 500
container is costly
0 0 X——x—x%—X
7 7 & 7 Q () 7 <. by 7, 7 v & 76 QO O 7y S O, 7
¢ R R TH ¢RI N TH o

Parent container in-memory state (MB)
[1] CRIU: The state-of-the-art impl of C/R

MITOSIS vs. The state of the arts

Container startup performance

@A

N: # containers to start
IM: # machines to run containers

Better <— No provisioned concurrency
O Warm start
MITOSIS (OForkesg,
‘ SOCK@ATC18 e.g., AWS lambda

Cold N O CReg,

Srort (l) vHive@ASPLOS21

>
0o 1 O(m) O(n)

<}3 Better

Concurrency provisioned

18

Killer application of MITOSIS: Serverless Computing

A new paradigm on building cloud applications
— Users upload application as functions

— Each function is executed in a container for the ease of deployment

AWS Lambda Microsoft Azure Google Functions Huawei cloud functions Opensoruce platforms

Two key attributes to serverless computing
1. Fast container startup for resource-efficient auto-scaling

2. Fast state transfer between serverless functions---no (de)serialization !

19

Case study #1. Resource-efficient auto-scaling

For elasticity, each serverless function invocation will start a new container

fn a:fun()

curl -H SR
http://call.a_fun.xxx o
}
-—)
Start container CleaV
\
Machine Cl y JZD/

Result
Run the function

In-memory | |
state

Case study #1. Resource-efficient auto-scaling

For elasticity, each serverless function invocation will start a new container

— The container can be cached for a short period (e.g., 30 secs) to prevent cold start

fn a‘:fun()
@ Request icur‘l -H } |$ =>
http://call.a_fun.xxx

Gateway E»: n

Result Result
Start container \ Cleanup (Background)
MachineCl \ JZ|
Run the function CaChedA Run the function
In-memory ~ { \I

state

Results: handling load spikes in a more resource efficient way

Workloads: trace from the Azure function (1! (Instance #660323) 2 fn
— Concurrent function invocations in a load spike manner

— Setup: Fn, alocal cluster w/ 24 machines; function: image processing

Function requests rate Memory used per machine (MB) CDF (%)
160000 1200 1001 Tail latency
000t 1000 ‘ | ’ ’ reduction!
o lalalnla An n. i 7
80000 6 MITOSIS saves memory 0
thanks to no provisioned concurrency
40000 \ —%—Fn
QTSI UECITRELL T
1 201 401 601 801 100112011401 201 401) 4
Timeline (normalize) Tlmellne (normallze) Latency (ms)
22

[1] Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider. ATC’20

Case study #2: accelerate state transfer between functions

Serverless function can compose multiple functions together

— The functions are typically organized into a DAG (Direct acyclic graph)

e Rl

def produce():
data = pd.read_csv(some_csv)
return dq§a

N

def consumer_1(data):
process_data_1(data)

——CD-—%:D (:D

DAG request

SIS
o\’
] o
= ch

/

Run the function

23

Case study #2: accelerate state transfer between functions

Serverless function can compose multiple functions together
— The functions are typically organized into a DAG (Direct acyclic graph)

— Problem: Transferring states are costly due to (de)serialization + memory copies

= A

——@—>@ O

-—)
_.m re
-—)
def produce(): /
data = pd.read _csv(some_csv) l:l I:I

return dq§a

N] &

def consumer_1(data):

process_data_1(data) _:l E
e

e o o Data serialization, deserialization + memory copies

Case study #2: accelerate state transfer between functions

Remote fork can completely address the costs of (de)serialization + memory copies

— Thedata has been pre-materialized in the parent memory

— Whichis directly inherited by the child containers w/ the help of remote fork

e Rl

def produce():
data = pd.read_csv(some_csv)
return dq$a

N

def consumer_1(data):
process_data_1(data)

-
-
-

-
-
)

——(D——%:D

DAG

DAG request

Remote
fork

a3 QO

=i

DAG executlon accelerated

25

Transfer state has a high cost, MITOSIS can accelerate it!

Workloads: FINRA---a real-world serverless application Fetch data ——>\ @

— Validate trades concurrently with serverless functions

— Setup: Fn, baseline adopts pickle for (de)serialization FINRA DAG

Workflow 3000
execution

. 2500

Time (ms) Fn —MITOSIS

2000 Not scale due to
{? 1500 the cost of

1000 (de)serialization!
Better ., | H

| | I I I I ! I
O | | |
0 50 100 150 200

Number of concurrent rules

[1] https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/

Many technical challenges to bring RDMA to remote fork

1. Detailed implementation w/ RDMA e e e

Xingda Wei'2, Fangming Lu', Tianxia Wang', Jinyu Gu!, Yuhan Yang', Rong Chen*!?2, and Haibo Chen!

UInstitute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

B On-demand vs. eager state inherit

Abstract

Serverless platforms essentially face a tradeoff between con-
arup ime and provis dmmummy Gie. cuchcd
lich is further e

2180 Func 6609231 1g0 [Funciion 9a3ede

) f120 F
|
g sz ' j[l ‘ |]]e

0
O ap 40 &0 &0 0 20 40 G0 B0

B Performance optimizations, e.g., caching or prefetch

Func660323] 45 [Funcasede

Ellnl:___x

o g 4(00 a0 800’0 mp o &0 &0
ime (minute

2. Memory management w/ RDMA

‘machines within a second, while dlluwmglhcncw contain- F,gm 1. The timelines of call fre ey () and s
ers to efficiently transfer the pre-materialized states of the source provisioning (bottom) for two serverless functions in a real-
forked one. We have implemented MITOSIS on Linux and in- orid oacefrom Acure Funciions [59).

tegrated it with FX, a popular serverless platform. Under load

B A co-design with advanced RDMA technologies

3. Integration w/ serverless framework

B A strong cooperation is needed so as to fully utilize the power of MITOSIS

4. More detailed evaluations

B Where the performance improvement comes, & the bottleneck of approach, etc.

Please check our paper if you have interests!

Conclusion, Thanks & QA

MITOSIS: Fast remote fork design & implementation for starting containers
— With a codesign between OS and RDMA

Achieve no provisioned concurrency

— O(1) resource usage for starting serverless containers

Killer application: serverless computing
— Achieve resource—performance—efficient coldstart mitigation

— Achieve (de)serialization-free state transfer between serverless functions

Publicly available at:

O https://github.com/ProjectMitosisOS/ProjectMitosisOS

