
No Provisioned Concurrency:
Fast RDMA-codesigned Remote Fork for Serverless

Computing

Xingda Wei, Fangming Lu, Tianxia Wang,

Jinyu Gu, Yuhan Yang, Rong Chen, Haibo Chen

Problem: container startup is slow for ephemeral functions

E.g., docker run SOME_IMG python foobar.py

– The foorbar executes a simple program

– However, container startup causes 9,000X slower
to the program’s execution (18s)

MITOSIS: fast container startup with minimal resource usage

– Container startup < 5ms on a clean machine (fastest method)

– Start more than 100,000 containers on 5 machines in one second

2

E
n

d
-t

o
-e

n
d

 t
im

e

import time

print("hello world")

foobar.py

Fo
orb
ar.
py

+D
oc
ke
r

+M
ITO
SIS

2ms

18s

5ms

Why container (cold) start is slow?

Start containers to run the application code involve many steps:

– Download the container image from a registry

– Containerization: setup cgroup and namespaces

– Runtime initialization: initialize Python runtime, import libraries (e.g., import torch)

3

docker run SOME_IMG python foobar.py

Network

① Download image

② Containerization ③ Runtime initialization

Where foobar runs:

How to accelerate the startup?

Potential solutions to accelerate each step:

– Download image: optimize the pull, but still has a cost ([1])

– Containerization: use cgroup and namespace pooling to hide its cost [2]

– Runtime initialization:

4

docker run SOME_IMG python foobar.py

Network

① Download image

② Containerization ③ Runtime initialization

Where foobar runs:

0

50

100

150

Ti
m

e
(m

s)

0

50

100

150

Ti
m

e
(m

s)

1 2 3

+
fa

st
 n

et

[1] FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes
at Alibaba Cloud Function Compute, ATC’21
[2] SOCK: Rapid Task Provisioning with Serverless-Optimized Containers, ATC’18

+
po

ol
in

g

?

?

…

Idea: reusing initialized state from other containers

Observation: runtime initialization + image == initialize container virtual memory

5

③ Runtime initialization

VM

3.1 load the
downloaded

modules

3.2 Translate to
byte code

3.3 Execute module
init routines

…

Idea: reusing initialized state from other containers

Observation: runtime initialization + image == initialize container virtual memory

– A new container can inherit the state from another initialized container

– No need to download the image or initialize the runtime

6

③ Runtime initialization

In-memory
state

docker run borrow SOME_IMG python foobar.py

…

…Inherit

How to inherit?

Design requirement: no provisioned concurrency

Suppose we have n containers to start, how many initialized states to store?

– The required number of stored states is usually termed as provisioned concurrency

Ideal case: no provisioned concurrency

– The provisioned case is irrelevant to the started containers, e.g., O(1)

7

… n containers to start

…

…

Clusters to run the containers

We need minimal resources

Existing solutions need provisioned concurrency

Approach #1. Caching, a.k.a, warm start

– E.g., docker pause + docker unpause

Docker pause

– Stop a container and store its state in DRAM

Docker unpause

– Resume the container for execution

8

docker pause docker unpause

Existing solutions need provisioned concurrency

Approach #1. Caching, a.k.a, warm start

– E.g., docker pause + docker unpause

Docker pause

– Stop a container and store its state in DRAM

Docker unpause

– Resume the container for execution

9

docker pause docker unpause

docker pause

What about starting one more?

We need another paused container!

Cons: needs provisioned
concurrency!

O(n) containers provisioned,
n: the number of concurrent
invocations

Existing solutions need provisioned concurrency

Approach #2. Fork, a.k.a, start containers in a process forking manner [1,2]

Pros:

– Each machine only needs 1 parent to concurrently start many containers

– Achieve O(1) resource provisioned on a single machine

1010

docker pause Fork

Fork --- Create a new process from an existing one

Fork
Copy-on-write

[1] Catalyzer: Sub-millisecond Startup for Serverless Computing with Initialization-less Booting, ASPLOS’20
[2] SOCK: Rapid Task Provisioning with Serverless-Optimized Containers, ATC’18

Existing solutions need provisioned concurrency

What if there is a load spike that applications want start many containers?

– E.g., there is a load spike in the workload

– Fork still need provisioned concurrency (O(m)) : deploy one parent on each machine!

11

Reqs

…

Clusters w/ m machines to run the
containers

…

…
O(m)

MITOSIS: remote fork no provisioned concurrency

Remote fork is a primitive for no provisioned concurrency

– Observation: one parent is sufficient for starting containers across machines

– A generalization of fork to remote enabling no provisioned concurrency in a cluster

12

Fork --- Create a new process from an existing one

docker prepare SOME_IMG

docker fork SOME_IMG 192.168.12.113

192.168.12.113

Finished initialization

How to implement remote fork efficiently?

Current solution—Checkpoint & Restore (CRIU) is not efficient enough

– Checkpoint: stop and dump the memory to a file

– Restore: reconstruct the VM according to the file and resume the process

13

Distributed file system

VM checkpoint

Restore

① Checkpoint ② Transfer file ③ Restore

Parent

Child

Current remote fork is not designed for RDMA

14
Evaluation setup: CRIU for C/R, file is transferred via RDMA and is stored in-memory

0

500

1000

1500

2000

1 4 8 16 32 64 128
256

512
1024

Parent container in-memory state (MB)

C/R for remote fork
Remote fork (C/R)
Vanilla container start

Start + Execution time(ms)

1) Checkpoint entire
container is costly

2) Transferring file via DFS
is also costly

C
hi

ld

NIC

Pa
re

nt

DRAM

NIC

Opportunity: Remote Direct Memory Access (RDMA)

A fast datacenter networking feature that allows direct remote memory access

– High bandwidth (400Gbps) & low latency (600ns)

– CPU bypassing: the memory read/writes are offloaded to the NIC hardware

15

TCP/IP RDMA READ

Read page at 0xdeadbeaf

C
hi

ld

NIC

Pa
re

nt

DRAM

NIC

Read page at 0xdeadbeaf

Server 0

We can imitate local fork w/ RDMA!

MITOSIS co-designs remote fork with RDMA

Upon fork, we first use RDMA-based RPC to read the page table to the child

– One-sided RDMA is not efficient at this step due to network amplification

Afterward, the child retrieves memory pages in a RDMA-on-access manner (on demand)

16

Fork

prepare

1. Mark as copy-on-write 2. RPC 3. RDMA

3. Create a container w/ the read page table

Parent

Child

MITOSIS co-designs remote fork with RDMA

44—80% faster than basic C/R[1] not co-designed with RDMA

– The C/R implementation has used RDMA-based DFS to restore states

17

0

500

1000

1500

2000

1 4 8 16 32 64 128
256

512
1024

Start + Execution time(ms)

0

500

1000

1500

2000

1 4 8 16 32 64 128
256

512
1024

Start + Execution time(ms)

Parent container in-memory state (MB)

MITOSISC/R

[1] CRIU: The state-of-the-art impl of C/R

1) Checkpoint entire
container is costly

2) Transferring file via DFS
is also costly

MITOSIS vs. The state of the arts

18

Container startup performance

Concurrency provisioned

Better

Better

0 1 O(m) O(n)

n: # containers to start

m: # machines to run containers

Cold
Start

No provisioned concurrency

Warm start
e.g., AWS lambdaFork e.g.,

SOCK@ATC18

C/R e.g.,
vHive@ASPLOS21

MITOSIS

Killer application of MITOSIS: Serverless Computing

A new paradigm on building cloud applications

– Users upload application as functions

– Each function is executed in a container for the ease of deployment

Two key attributes to serverless computing

1. Fast container startup for resource-efficient auto-scaling

2. Fast state transfer between serverless functions---no (de)serialization !

19

AWS Lambda Microsoft Azure Google Functions Huawei cloud functions Opensoruce platforms

Case study #1. Resource-efficient auto-scaling

For elasticity, each serverless function invocation will start a new container

20

Request

Gateway

curl –H
http://call.a_fun.xxx

In-memory
state

Start container Cleanup

Run the function

Result

Machine

Case study #1. Resource-efficient auto-scaling

For elasticity, each serverless function invocation will start a new container

– The container can be cached for a short period (e.g., 30 secs) to prevent cold start

21

Request

Gateway

Machine

curl –H
http://call.a_fun.xxx

In-memory
state

Start container

Run the function

Result

Cached period

Cleanup (Background)

Run the function

Result

Results: handling load spikes in a more resource efficient way

Workloads: trace from the Azure function [1] (Instance #660323)

– Concurrent function invocations in a load spike manner

– Setup: Fn , a local cluster w/ 24 machines; function: image processing

22
[1] Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider. ATC’20

0

40000

80000

120000

160000

1 201 401 601 801 100112011401

Function requests rate

Timeline (normalize)

Memory used per machine (MB)

Timeline (normalize)

0

200

400

600

800

1000

1200

1 101 201 301 401 501
0

25

50

75

100

0 2 4

Fn

+MITOSIS

CDF (%)

Latency (ms)

MITOSIS saves memory
thanks to no provisioned concurrency

Tail latency
reduction!

Case study #2: accelerate state transfer between functions

Serverless function can compose multiple functions together

– The functions are typically organized into a DAG (Direct acyclic graph)

23

def produce():
data = pd.read_csv(some_csv)
return data

def consumer_1(data):
process_data_1(data)

...

p c_1

c_2

c_3

...DAG DAG request

Run the function

Case study #2: accelerate state transfer between functions

Serverless function can compose multiple functions together

– The functions are typically organized into a DAG (Direct acyclic graph)

– Problem: Transferring states are costly due to (de)serialization + memory copies

24

def produce():
data = pd.read_csv(some_csv)
return data

def consumer_1(data):
process_data_1(data)

...

p c_1

c_2

c_3

...DAG DAG request

Data serialization, deserialization + memory copies

Case study #2: accelerate state transfer between functions

Remote fork can completely address the costs of (de)serialization + memory copies

– The data has been pre-materialized in the parent memory

– Which is directly inherited by the child containers w/ the help of remote fork

25

def produce():
data = pd.read_csv(some_csv)
return data

def consumer_1(data):
process_data_1(data)

...

p c_1

c_2

c_3

...DAG DAG request

DAG execution accelerated

Remote
fork

Transfer state has a high cost, MITOSIS can accelerate it!

Workloads: FINRA---a real-world serverless application

– Validate trades concurrently with serverless functions

– Setup: Fn, baseline adopts pickle for (de)serialization

26
[1] https://aws.amazon.com/cn/solutions/case-studies/finra-data-validation/

Run rule 1
Fetch data

Run rule 2

...FINRA DAG

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

Fn MITOSIS

Number of concurrent rules

Workflow
execution
Time (ms)

Better

Not scale due to
the cost of
(de)serialization!

Many technical challenges to bring RDMA to remote fork

1. Detailed implementation w/ RDMA

n On-demand vs. eager state inherit

n Performance optimizations, e.g., caching or prefetch

2. Memory management w/ RDMA

n A co-design with advanced RDMA technologies

3. Integration w/ serverless framework

n A strong cooperation is needed so as to fully utilize the power of MITOSIS

4. More detailed evaluations

n Where the performance improvement comes, & the bottleneck of approach, etc.

27
Please check our paper if you have interests!

Conclusion, Thanks & QA

MITOSIS: Fast remote fork design & implementation for starting containers

– With a codesign between OS and RDMA

Achieve no provisioned concurrency

– O(1) resource usage for starting serverless containers

Killer application: serverless computing

– Achieve resource—performance—efficient coldstart mitigation

– Achieve (de)serialization-free state transfer between serverless functions

Publicly available at:

28https://github.com/ProjectMitosisOS/ProjectMitosisOS

