Communicating Differential Privacy Guarantees to Data Subjects

Priyanka Nanayakkara

PhD Candidate, Computer Science & Communication

Northwestern University

Based on joint work with Rachel Cummings, Gabriel Kaptchuk, Elissa M. Redmiles, Mary Anne Smart

Ν

USENIX PEPR | September 11, 2023 | Santa Clara, California

Photo: Unsplash

Diagram adapted from

Wood, Altman, Bembenek et al. (2020). Differential Privacy: A Primer for a Non-Technical Audience Near, Darais, Boeckl (2020). Differential Privacy for Privacy-Preserving Data Analysis: An Introduction to our Blog Series

Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith. (2011). What can we learn privately?

"differential privacy," the new gold standard in data privacy

protection.

When a differential privacy algorithm is applied to a data set, those **links get blurred**, and bits of data can no longer be traced to their source.

In short, differential privacy allows general statistical analysis

without revealing information about a particular individual in the data

In ideal implementations, this **risk remains close to zero**,

guaranteeing... virtually no adverse effect on them from an informational standpoint.

Differential privacy works by algorithmically **scrambling individual user data** so that it cannot be traced back

"differential privacy," which alters the numbers but **does not change core findings** to protect the identities of individual respondents.

Slide courtesy of Gabriel Kaptchuk

Design effective explanations that expose information about:

Metaphors

Diagrams

Privacy Labels

Improved comprehension of *information flows*

9

Who Can See Your Data	Without Privacy Protection	With Privacy Protection

Kelley, Bresee, Cranor, Reeder (2009). A "nutrition label" for privacy Smart, Nanayakkara, Cummings, Kaptchuk, Redmiles (2023). Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy

Who Can See Your Data	Without Privacy Protection	With Privacy Protection
Viewers of graphs or informational charts created using information given to the non-profit		
Hackers—like criminals or foreign governments— who successfully attack the non-profit		
Law enforcement with a court order requesting your information from the non-profit		
Employees of the non-profit, such as data analysts, who work with the non-profit's data		
Organizations collaborating with the non-profit that are given access to the non-profit's data		

Who Can See Your Data	Without Privacy Protection	With Privacy Protection
Viewers of graphs or informational charts created using information given to the non-profit	might be able to see your information.	
Hackers—like criminals or foreign governments— who successfully attack the non-profit	Medical Info> E	
Law enforcement with a court order requesting your information from the non-profit	Medical Info> information.	
Employees of the non-profit, such as data analysts, who work with the non-profit's data	Medical Info>	
Organizations collaborating with the non-profit that are given access to the non-profit's data	Medical Info>	

Local DP

Who Can See Your Data	Without Privacy Protection	With Privacy Protection
Viewers of graphs or informational charts created using information given to the non-profit	Medical Info► Contraction might be able to see your information.	Medical Info → ► ► will <u>not</u> be able to see your information.
Hackers—like criminals or foreign governments— who successfully attack the non-profit	Medical Info►might be able to see your information.	Medical Info -X-> E
Law enforcement with a court order requesting your information from the non-profit	Medical Info► ↓ might be able to see your information.	Medical Info -X-> Solution will not be able to see your information.
Employees of the non-profit, such as data analysts, who work with the non-profit's data	Medical Info► might be able to see your information.	Medical → → ▲ Info → → ▲ will not be able to see your information.
Organizations collaborating with the non-profit that are given access to the non-profit's data	Medical Info► ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔	Medical Info -X

Central DP

Who Can See Your Data	Without Privacy Protection	With Privacy Protection
Viewers of graphs or informational charts created using information given to the non-profit	Medical Info> Contraction	Medical Into X -> Contraction will <u>not</u> be able to see your information.
Hackers—like criminals or foreign governments— who successfully attack the non-profit	Medical Info> E	Medical Info> E.
Law enforcement with a court order requesting your information from the non-profit	Medical Info> might be able to see your information.	Medical Info>
Employees of the non-profit, such as data analysts, who work with the non-profit's data	Medical Info>	Medical Info Soft might be able to see your information.
Organizations collaborating with the non-profit that are given access to the non-profit's data	Medical Info>	Medical Info might be able to see your information.

To protect your information, your data will be randomly modified before it is sent to the organization. Only the modified version will be stored, so that your exact data is never collected by the organization.

Improved trust

self-efficacy (enough info)

If you **do not participate**,

x out of 100 potential *DP* outputs will lead adversary A to believe you responded d_{true} .

If you **participate**, y out of 100 potential *DP outputs* will lead adversary A to believe you responded d_{true} .

Framing probabilities as frequencies vs. percentages

supports statistical reasoning & has been applied in privacy contexts

If you **do not participate**,

<u>x out of 100</u> potential *DP outputs* will lead adversary *A* to believe you responded d_{true} .

If you **participate**,

→ <u>y out of 100</u> potential *DP outputs* will lead adversary *A* to believe you responded *d*_{true}.

Nanayakkara, Smart, Cummings, Kaptchuk, Redmiles (2023). What Are the Chances? Explaining the Epsilon Parameter in Differential Privacy Gigerenzer and Hoffrage (1995). How to improve Bayesian reasoning without instruction: Frequency formats Hoffrage and Gigerenzer (1998). Using natural frequencies to improve diagnostic inferences Slovic (2000). The perception of risk Kaptchuk, Goldstein, Hargittai, Hofman, and Redmiles (2020). How good is good enough for COVID19 apps? ...

Franzen, Nuñez von Voigt, Sörries, Tschorsch, Müller-Birn (2022). "Am I private and if so, how many?" ...

If you **do not participate**, x out of 100 potential DP outputs will lead adversary A to believe you responded d_{true} . 100

Icon arrays assume x = 39 *and* y = 61 *for illustration purposes.*

Nanayakkara, Smart, Cummings, Kaptchuk, Redmiles (2023). What Are the Chances? Explaining the Epsilon Parameter in Differential Privacy Galesic, Garcia-Retamero, Gigerenzer (2009). Using icon arrays to communicate medical risks: Overcoming low numeracy

Increased **willingness to share** with increased **privacy strength**

Takeaways | How Organizations Can Explain DP

Privacy labels improve comprehension of information flows

Adding process text improves trust

22

Improves risk comprehension, self efficacy (enough info)

People are sensitive to changes in $m{arepsilon}$

Smart, Nanayakkara, Cummings, Kaptchuk, Redmiles (2023). Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy Nanayakkara, Smart, Cummings, Kaptchuk, Redmiles (2023). What Are the Chances? Explaining the Epsilon Parameter in Differential Privacy

Takeaways | Lessons for Explaining PETs Beyond DP

Expose key decision-making information, even if it's complicated. **Make complexity interpretable**.

Describe implications + process to increase comprehension & trust.

Explain utility as well as privacy.

Thank you!

Priyanka Nanayakkara (priyankan@u.northwestern.edu | @priyakalot | @priyakalot@hci.social) Coauthors: Rachel Cummings, Gabriel Kaptchuk, Elissa M. Redmiles, Mary Anne Smart