
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Probability Model Transforming Encoders
Against Encoding Attacks

Haibo Cheng, Zhixiong Zheng, Wenting Li, and Ping Wang, Peking University;
Chao-Hsien Chu, Pennsylvania State University

https://www.usenix.org/conference/usenixsecurity19/presentation/cheng

Probability Model Transforming Encoders
Against Encoding Attacks

Haibo Cheng†,‡, Zhixiong Zheng†,‡, Wenting Li†,‡, Ping Wang†,‡,?, Chao-Hsien Chu§

†Peking University, {hbcheng,zxzheng,wentingli,pwang}@pku.edu.cn
‡ Key Laboratory of High Confidence Software Technologies (PKU), Ministry of Education, China

§Pennsylvania State University, chu@ist.psu.edu
?Corresponding author

Abstract
Honey encryption (HE) is a novel encryption scheme for
resisting brute-force attacks even using low-entropy keys
(e.g., passwords). HE introduces a distribution transforming
encoder (DTE) to yield plausible-looking decoy messages for
incorrect keys. Several HE applications were proposed for
specific messages with specially designed probability model
transforming encoders (PMTEs), DTEs transformed from
probability models which are used to characterize the intricate
message distributions.

We propose attacks against three typical PMTE schemes.
Using a simple machine learning algorithm, we propose a
distribution difference attack against genomic data PMTEs,
achieving 76.54%–100.00% accuracy in distinguishing real
data from decoy one. We then propose a new type of attack—
encoding attacks—against two password vault PMTEs,
achieving 98.56%–99.52% accuracy. Different from distribu-
tion difference attacks, encoding attacks do not require any
knowledge (statistics) about the real message distribution.

We also introduce a generic conceptual probability model—
generative probability model (GPM)—to formalize probabil-
ity models and design a generic method for transforming an
arbitrary GPM to a PMTE. We prove that our PMTEs are
information-theoretically indistinguishable from the corre-
sponding GPMs. Accordingly, they can resist encoding at-
tacks. For our PMTEs transformed from existing password
vault models, encoding attacks cannot achieve more than
52.56% accuracy, which is slightly better than the randomly
guessing attack (50% accuracy).

1 Introduction

Password-based encryption (PBE) is a fundamental scheme
in many real-world systems for file encryption or authentica-
tion. However, due to the limitations of human memory, users
often use weak passwords [26, 43] and reuse them [11, 30].
This leads to the vulnerability of traditional PBEs (e.g., PKCS
#5 [22]) against brute-force attacks (so-called password guess-

ing attacks), including trawling guessing attacks [25, 42] and
targeted guessing attacks [29, 41].

Several methods were proposed to address this threat. We
summarize these countermeasures into three types. The first
type is to increase the complexity of decryption for attack-
ers, including: 1) salting, which pressurizes attackers into
enumerating passwords for every user (salt); 2) using spe-
cial password-hashing functions (e.g., iterated hash func-
tions [22, 33] and memory-hard functions [6, 31]) as the key
derivation function (KDF) in PBE, which increases attack-
ers’ cost of computing and memory by a constant factor but
also consumes legitimate users’ extra cost by the same factor.
For example, LastPass, a password vault software, utilizes
these methods, including salting, 5,000 rounds of PBKDF2-
SHA256 on clients and 100,000 rounds on servers [38].

The second type of countermeasures is to harden passwords
with other factors (e.g., servers [12, 23], devices [19, 35, 37],
biometrics [9,28]) to generate high-entropy keys. These meth-
ods are widely used in authentication protocols, for example,
two-factor authentication [20, 36]. Note that LastPass also
supports YubiKey devices to secure password vaults [2]. How-
ever, these methods need additional devices (servers, biomet-
ric readers) and do worse than single password methods on
deployability [8]. Besides, if the additional factor gets stolen
or lost (without a backup), the message encrypted cannot be
recovered (e.g., [23]).

The last type of countermeasures is to generate plausible-
looking decoy messages for wrong keys to confuse attackers.
Several specific encryption schemes for specific data used this
method [5, 17], and Juels and Ristenpart proposed a generic
method called Honey Encryption (HE) [21]. HE introduces a
distribution-transforming encoder (DTE) and encodes a mes-
sage following a known distribution to a uniform seed before
encrypting. Therefore, plausible-looking decoy messages are
generated by DTE decoding incorrect seeds when decrypting
a ciphertext under wrong keys. If the DTE is perfectly secure,
i.e., decoy messages are indistinguishable from real ones, then
attackers enumerating all passwords only get many messages
and cannot distinguish the right one. This countermeasure

USENIX Association 28th USENIX Security Symposium 1573

achieves information-theoretic security without declining on
deployability and bringing legitimate users’ extra cost.

Owing to the security of HE, several applications of HE
[10,14,18] were proposed. In this paper, we focus on three typ-
ical ones, including two password vault schemes [10, 14] and
one genomic data protection scheme [18]. A password vault
contains an individual user’s multiple passwords on websites
or services and is usually encrypted under a user-chosen pass-
word, called master password. Passwords stored in password
vaults are of great value (e.g., PINs of credit cards, passwords
of virtual currency accounts) and hence greatly attract attack-
ers’ attention. Similar to password vaults, genomic data is
sensitive and needs long-term protection, as it is unchange-
able during one’s lifetime and correlated with his relatives.

The key of a HE scheme is to design a secure DTE. It is
easy for messages following a simple distribution, for exam-
ple, a uniform distribution, a normal distribution. Juels and
Ristenpart [21] designed a generic purpose DTE IS-DTE and
several specific DTEs for RSA secret keys. Notwithstanding,
it is still a great challenge to design a secure DTE for messages
following intricate distributions, e.g., natural language texts,
passwords, password vaults, and genomic data. Probability
models are usually needed to characterize the message distri-
butions. We call these DTEs probability model transforming
encoders (PMTEs), which are transformed from probability
models instead of distributions. Note that Chatterjee et al. [10]
named DTEs for natural language texts as natural language
encoders (NLEs), which are a subset of PMTEs. Though all
the existing PMTE schemes [10, 14, 18] are designed for spe-
cific messages, it is still of necessity to propose a generic
PMTE designing method.

In addition, the security evaluations of PMTEs are not com-
prehensive. The designers of password vault PMTEs [10, 14]
tried to use machine learning algorithms and Kullback-Leibler
divergence to distinguish real and decoy vaults, without con-
sidering the difference between the real and decoy seeds. For
the PMTEs in [18], it evaluated the goodness of probability
models with chi-square goodness-of-fit tests, but did not study
the influence of their goodness on the security of PMTEs.
These issues on PMTE study hinder the widespread use of
HE.

1.1 Our Contribution

In order to evaluate the security of PMTEs, we propose a
framework with encoding attacks and distribution difference
attacks. We show that password vault PMTEs [10, 14] suffer
from encoding attacks while genomic data PMTEs [18] can-
not resist distribution difference attacks. Encoding attacks,
which are a new type of attack we propose, do not require any
knowledge of real message distributions. The strong encoding
attack achieves 98.56%–99.52% accuracy (in distinguishing
a real vault from a decoy one) against password vault PMTEs.
Meanwhile, using a principal component analysis (PCA) and

a support vector machine (SVM) with a radial basis func-
tion (RBF) kernel, a distribution difference attack achieves
76.54%–100.00% accuracy against genomic data PMTEs.

We also propose a generic PMTE designing method for
arbitrary probability models, by introducing a generic con-
ceptual probability model—generative probability model
(GPM)—to formalize probability models. We prove that our
PMTEs are information-theoretically indistinguishable from
corresponding GPMs, which means that they can resist en-
coding attacks. For our proposed PMTEs of existing pass-
word vault models, encoding attacks cannot capture more
than 52.56% accuracy, compared with the randomly guessing
attack (50% accuracy).

2 Background and Related Works

We introduce the basic concepts of HE as well as three typical
HE applications with their specific PMTEs.

2.1 Honey Encryption
Honey Encryption (HE) [21], proposed by Juels and Risten-
part, is a novel encryption scheme using low-entropy keys
(e.g., passwords) which resists brute-force attack through gen-
erating a plausible decoy message for every incorrect key.
To produce decoy messages, HE introduces a randomized
encoder, called distribution transforming encoder (DTE).

M DTE PBE C

K

S

Figure 1: Honey Encryption

Figure 1 shows the encryption progress for a message M.
The encryption first encodes M into a seed S by DTE, then
encrypts S using PBE with the key K and finally outputs the
ciphertext C. The PBE used in HE is a traditional PBE but
must satisfy that decrypting any ciphertext under any key
yields a valid seed (e.g., AES in CTR-mode with PBKDF).
Therefore, decrypting C under an incorrect key K′ will yield
a wrong seed S′ and a decoy message M′ by decoding S′.
The key of HE is designing a secure DTE which generates
indistinguishable decoy messages. Juels and Ristenpart [21]
proposed a general purpose DTE IS-DTE, for the messages
following a simple distribution, such as a uniform distribution.

2.2 Password Vault Schemes
Two HE-based password vault schemes [10, 14] were pro-
posed to resist brute-force attack in the literature. A password
vault contains several passwords encrypted under a master

1574 28th USENIX Security Symposium USENIX Association

password and hence is a rich target for attackers due to the
value of passwords. Using HE, attackers who have stolen an
encrypted password vault will get many vaults by enumerating
master passwords offline and need to verify the correctness
of these vaults online. In contrast to offline guessing, online
guessing is more resource-consuming, because it is easily
blocked by remote servers with diversities of methods (e.g.,
login rate limiting [16,32] and malicious login detection [13]).
Hence, HE-based password vault schemes have great improve-
ments in security. Moreover, user surveys [11, 24, 30] and
empirical experiments on real data [7, 11, 41, 42] showed that
users often use weak passwords and reuse passwords on dif-
ferent services and websites. Therefore, designing a PMTE
for password vaults needs to characterize the single-password
distribution and the similarity between passwords in a vault.

Chatterjee et al. [10] proposed the first HE-based password
vault scheme NoCrack. They improved a kind of password
model—PCFG model [42]—and put forward a sub-grammar
approach for the password similarity based on PCFG models.
We denote this improved PCFG model as Chatterjee-PCFG
in this paper. By designing PMTEs for PCFG models and
sub-grammars respectively, they presented a PMTE for pass-
word vaults. Also, Chatterjee et al. [10] designed PMTEs for
another kind of password models—Markov models.

Golla et al. [14] put forward a new PMTE for password
vaults. In contrast to Chatterjee et al. [10], Golla et al. used a
Markov model [25] for the single-password distribution and a
reuse-rate approach for the password similarity. Their PMTE
for password vaults combines Chatterjee et al.’s PMTEs for
Markov models and IS-DTEs for normal distributions (as-
suming reuse-rates follow normal distributions). In addition,
Golla et al. [14] brought in the concept of adaptive PMTEs
(Golla et al. used the word adaptive NLEs). By adjusting the
Markov model according to the real vault, an adaptive PMTE
can generate decoy vaults which are more similar to the real
vault. Therefore, these decoy vaults are more difficult to be
distinguished from the real one. In this paper, we call adjusted
probability models according to the real message adaptive
probability models, in contrast to static probability models.

Chatterjee et al.’s [10] and Golla et al.’s [14] PMTEs for
password vaults have the same form named encode-then-
concatenate. Taking the Chatterjee et al.’s PMTE for a PCFG
model as an example, when encoding a password, this PMTE:
1) parses the derivation of the password; 2) encodes each
production rule in the derivation to a seed respectively; 3)
concatenates these seeds of production rules in order and
pads the concatenation to a fix length. Other PMTEs are
similar, which encode each character or reuse-rate and then
concatenate these seeds.

2.3 Genomic Data Protection Scheme

Genomic data is more sensitive than password vault and needs
long-term protection. Once a person’s genomic data is com-

promised, it will affect him during his lifetime and even his
relatives, because of the correlation between relatives’ ge-
nomic data. Huang et al. [18] proposed a genomic data pro-
tection scheme called GenoGuard based on HE. The genomic
data protected by GenoGuard is represented by a sequence of
single nucleotide variants (SNVs), which can be viewed as a
string of the alphabet {0,1,2}.

To fit genomic data, Huang et al. [18] evaluated four types
of models with chi-square goodness-of-fit tests, including a
uniform distribution model, a public LD (linkage disequi-
librium) model, three Markov models, and a recombination
model. Since the recombination model delivers the best per-
formance, they chose it for GenoGuard. Furthermore, Huang
et al. [18] proposed a novel PMTE for these sequences with
a different form named shrink-then-encode. When encoding,
this PMTE shrinks the seed interval for each character in
the string according to the probability of the character and
randomly picks a seed in the final seed interval.

3 Attacks Against Typical PMTEs

A PMTE is secure (i.e., decoy messages generated by a PMTE
are indistinguishable from real ones), if and only if the proba-
bility model is accurate for the real message distribution and
the PMTE is secure for the probability model. Based on that,
we propose a framework to evaluate the security of PMTEs
with two types of attacks: 1) distribution difference attacks ex-
ploiting the difference between the real message distribution
and the message probability model (i.e., the decoy message
distribution); 2) encoding attacks exploiting the difference
between the probability model and the PMTE.

3.1 Attacker Model
Attackers that we study in this paper have stolen ciphertext
of a message and further want to recover it. Based on the
Kerckhoffs’s principle, we assume that attackers know the
HE algorithm, including DTEs, but do not know the key or
any information of the message. It is reasonable because the
program shipped to users usually contains the encryption/
decryption module. Moreover, this is an essential assumption
for an attacker to carry out decrypting. More advanced at-
tackers (e.g., attackers in [10]) may equip themselves with
some knowledge about the real message distribution (e.g.,
the character distribution of messages). However, encoding
attackers we employed do not need any information about the
real message distribution. Merely relying on the DTEs, such
attackers can distinguish real and decoy messages with high
accuracy.

To recover the message, attackers: 1) decrypt the ciphertext
under N keys {ki}N

i=1 and get N messages {Mi}N
i=1; 2) choose

the most likely message. For some special types of messages
which can be verified online, for example, authentication cer-
tificates (passwords, password vaults or authentication keys),

USENIX Association 28th USENIX Security Symposium 1575

Algorithm 1: The attack process to recover a stolen
ciphertext.

Input: a stolen ciphertext c, N keys/passwords {ki}N
i=1 for

decryption, and a weight function p.
Output: a guessing list for messages (in decreasing order of p).

1 for i← 1 to N do
2 Si← decryptki

(c)
3 Mi← decode(Si)

4 end
5 Sort {Mi}N

i=1 in decreasing order of p(Mi) (or p(Si)), then output
the list. /* Different attacks are equipped with
different weight functions p, where p(Mi) usually
reflects the probability that Mi is real. */

attackers need to sort these N messages to minimize the num-
ber of online verifications. To characterize attackers in a uni-
fied form, we consider an attacker only picking one message
also as a sorting attacker who picks the first one in his order.
Assuming an attacker sorts the messages in decreasing order
of a weight function p, the attack process can be represented
as Algorithm 1.

The efficiency of an attacker depends on 1) the guessing
order of keys and 2) the sorted order of messages. These
two orders correspond to two factors—keys and DTEs, af-
fecting the security of HE schemes. The stronger the keys
are, the harder they are to be cracked. Keys used by HE are
usually human-memorable passwords. Password researches
have attracted great attention recently, such as password guess-
ing [25,41,42], password strength meter [15,39,40], password
generation policy [3, 34]. However, same as previous litera-
ture [10, 14], we ignore the influence of keys on the security
of HE schemes and only focus on the security of DTEs, i.e.,
the indistinguishability of decoy messages.

3.2 Analyses of Password Vault PMTEs
Chatterjee et al.’s PMTE [10] for password vaults uses a sub-
grammar approach to model the similarity of passwords in
one vault. Specifically, the sub-grammar (based on Chatterjee-
PCFG) of vault V = (password,password1) is {S→ W, S→
WD, W→ password, D→ 1}, where W represents an English
word and D represents a digit string. In fact, Chatterjee-PCFG
is more comprehensive. We simplify it for ease of explana-
tion. To encode a vault, this PMTE 1) first parses the sub-
grammar of the vault, 2) then encodes the sub-grammar, and
3) finally encodes the passwords in the vault according to the
sub-grammar. Decoding is in the opposite direction.

Because sub-grammars are parsed from the real vaults
when encoding, all production rules in sub-grammars are
used by passwords in the real vaults. Unfortunately, it may
not hold when decoding a random seed. For example, de-
coding a random seed, the sub-grammar may be SG = {S→
W, S→ WD, W→ password, D→ 1}, and the vault may be
V = (password,password). As passwords are generated inde-

pendently based on sub-grammars when decoding, production
rules (e.g., S→ WD) in the sub-grammar may not be used by
any password in the vault. In addition, decoded sub-grammars
may contain identical rules, but encoded ones do not, because
the rules are also independently generated when decoding a
random seed.

Similar phenomena also appear in Golla et al.’s PMTEs
[14]. They used a reuse-rate approach to model password
similarity. Given V = (password1,password1,password@),
Golla et al.’s PMTEs take “password1” as the base password
of V and “password@” as a password modified from the base
password. When encoding, they 1) encode the base pass-
word (“password1”) and the reuse-rate of the base password
(2

3), 2) encode reuse-rates of modified passwords (1
3) and the

modified characters (“@”). More specifically, Golla et al.’s
PMTEs divide the vault into six subsets {Vi}5

i=0: passwords
with an edit distance of i to the base passwords Vi (0≤ i≤ 4)
and the remaining passwords V5. Assuming the proportion
(reuse-rate) of Vi in V follow a normal distribution with a
small variance, |Vi| (the cardinality of Vi) is encoded by the
DTE of the normal distribution, for 0 ≤ i ≤ 4. In addition,
the base password, modified characters (of passwords in Vi
for 1≤ i≤ 4) and remaining passwords in V5 are encoded by
PMTEs of Markov models.

The sum of |Vi| for 0 ≤ i ≤ 4 (without |V5|) is less than
or equal to |V | when encoding. However, it may not hold
when decoding a random seed, because proportions of Vi are
generated independently. Further, the modified character of
password pw in Vi may be the same as the original character
of the base password when decoding a random seed, which
means pw actually belongs to Vj with j < i. But this is not
possible when encoding a real vault.

3.3 Attacks Against Password Vault PMTEs
In the above analyses of password vault PMTEs, we dig out
some features that real seeds (encoding from real vaults) must
have but decoy seeds (random seeds) may not have. Therefore,
an attacker is able to exclude some decoy seeds if they do not
have these features. Let pF denote the weight function based
on the feature F :

pF(S) =

{
1, if the seed S has feature F ,
0, otherwise.

We now present four features for exploration, the first two
features for the Chatterjee et al.’s PMTE [10] and the last two
features for Golla et al.’s PMTEs [14]:

1. Feature UR (unused rule): there is no unused rule in the
sub-grammar decoded from the seed.

2. Feature DR (duplicate rule): there is no duplicate rule in
the sub-grammar decoded from the seed.

3. Feature ED (edit distance): every password in the vault
has the same value of i as the one decoded from the seed.

1576 28th USENIX Security Symposium USENIX Association

Algorithm 2: The weight function pPCA+SVM of the
PCA+SVM attack

1 training:
Input: a dataset snvsList containing the same number of real

and decoy SNV sequences with the label (0 for decoy
and 1 for real) list labelList.

Output: a PCA model pca and a SVM model svm.
2 /* The classes SVC and PCA we use are svm.SVC and

decomposition.PCA in Scikit-learn, a machine
learning library for Python. */

3 pca← PCA(n_components = 10) /* We use the default
parameters except n_components as 10. */

4 pca. f it(snvsList)
5 reducedSNV sList← pca.trans f orm(snvsList)
6 svm← SVC(probability = True)
7 svm. f it(reducedSNV sList, labelList)
8 end
9 function pPCA+SVM(s)

Input: an SNV sequence s.
Output: the SVM-estimated probability that s is real.

10 reducedSNV s← pca.trans f orm([s])[0]
11 p← svm.predict_proba([reducedSNV s])[0,1]
12 return p
13 end

4. Feature PN (password number): the sum of |Vi| (0≤i≤4)
is no larger than V .

To evaluate the security of PMTEs, Chatterjee et al. [10]
used a Support Vector Machine (SVM) to distinguish the real
and decoy vaults, and Golla et al. [14] used Kullback-Leibler
(KL) divergence. These attacks only exploit the difference
between the real and decoy vault distributions but neglect the
seeds. We call this type of attack distribution difference attack.
These attacks cannot exploit the features discussed above. In
contrast, our proposed feature attacks only exploit seeds with
PMTEs and do not require any knowledge of the real vault
distribution. We call this new type of attack encoding attack.

3.4 Attacks Against Genomic Data PMTEs
Huang et al. [18] provided a formal proof for the security
of their PMTEs. They proved that their PMTEs are indistin-
guishable from probability models, but did not consider the
difference between the real message distribution and probabil-
ity models. This means their PMTEs resist encoding attacks
but have not been evaluated by distribution difference attacks.
Although Huang et al. evaluated six probability models with
chi-square goodness-of-fit tests, they did not study the influ-
ence of their goodness on the security of PMTEs.

In order to evaluate the security, we propose a simple ma-
chine learning algorithm to distinguish the real and decoy
data (i.e., SNV sequences). As shown in Algorithm 2, we use
a training set to train a principal component analysis (PCA)
model and a support vector machine (SVM) with a radial
basis function (RBF) kernel, where the training set contains
the same number of real and decoy SNV sequences, the real

sequences are randomly picked from the real dataset, and the
decoy sequences are generated by decoding random seeds
with the corresponding PMTEs. Specifically, the PCA model
is trained and used to reduce the 1000-dimensional sequences
in training set to 10 dimensions, and the SVM is trained with
the 10-dimensional sequences and the “real/decoy” labels. To
estimate the probability that a test sequence s is real, we first
use the trained PCA model to reduce s to 10 dimensions, then
resort to the trained SVM to classify the reduced sequence
and output the probability of it being real. All parameters of
the PCA and the SVM are default except “n_components” as
10. Since the default parameters deliver good performance,
we do not adjust them. We denote the SVM-estimated proba-
bility of s as pPCA+SVM(s) and propose a PCA+SVM attack
with the weight function pPCA+SVM.

4 Generative Probability Models and Generic
Encoding Attacks

In this section, we propose a generic conceptual probability
model—Generative Probability Model (GPM)—to formalize
all the existing probability models. This formalization uncov-
ers the principle of encoding attacks. Based on this principle,
we propose two generic encoding attacks—a weak encoding
attack and a strong encoding attack.

4.1 Definition

Simple models (e.g., uniform distribution models) assign ev-
ery message a probability directly, but other complex mod-
els cannot. Most complex models (e.g., PCFG models [42])
design a generative method for messages and assign every
message a probability with the generated probability of the
message. By assigning probabilities to the generating rules,
one can get a probability model for the messages. From this
point of view, we give a formal definition of Generative Prob-
ability Model.

Definition 1. A Generative Probability Model (GPM) is a
5-tuple (M ,R ,R S ,G,P), where M is the message space, R
is the set of generating rules, R S ⊂ R ∗ is the set of valid
generating sequences, G is the generating function mapping
a generating sequence RS in R S to a message M in M , and
P is the probability density function on R S . Here M ,R ,R S
are finite sets and G is surjective. Then the GPM gives M a
probability distribution by

P(M) = ∑
RS∈G−1(M)

P(RS). (1)

In addition, if G is bijective (i.e., for every message in M ,
there is only one generating sequence which can generate it),
the GPM is unambiguous, and otherwise, it is ambiguous.

USENIX Association 28th USENIX Security Symposium 1577

Usually, the probability density function P on R S is given
by the conditional probability distribution as follows:

P(RS) =
n

∏
i=1

P(ri|r1r2 . . .ri−1), (2)

where RS = (r1,r2, . . . ,rn). The conditional probability
P(ri|r1r2 . . .ri−1) is usually given in a simple form. Note that
the generating sequences in R S have variable lengths, there-
fore, the above equation requires that R S is prefix-free, i.e.,
no sequence in R S is a prefix of another sequence. Other-
wise, the function P defined by Equation 2 is not a probability
density function on R S , because ∑RS∈R S P(RS)> 1. Fortu-
nately, if R S is not prefix-free, it can easily be converted to
a prefix-free sequence space R S ′ by two simple methods: 1)
add a special rule at the beginning of the sequence to represent
the length of the sequence; 2) add a special rule at the end of
the sequence to represent the end of the sequence. Therefore,
without loss of generality, we assume generating sequence
spaces of GPMs are all prefix-free.

4.2 Formalization of Existing Models
For a Markov model of order n, a generating rule is a character,
and a valid generating sequence is a string. The conditional
probability of a rule only depends on last n rules, formally

P(ai|a1a2 . . .ai−1) = P(ai|ai−nai−n+1 . . .ai−1),

where i > n and P(ai|ai−nai−n+1 . . .ai−1) is trained on a
training set (RockYou for password vault schemes). The
Markov model with distribution-based normalization adds
some extra rules {L = l}lmax

l=1 to R , L = l represents that
the password length is equal to l, where 1 ≤ l ≤ lmax and
lmax is the max password length (e.g., 30). A valid gen-
erating sequence has the form (L = l,a1,a2, . . . ,al) which
means generating the length first and then generating the char-
acters. P(L = l,a1,a2, . . . ,al) = P(L = l)P(a1,a2, . . . ,al),
where P(a1,a2, . . . ,al) can be calculated as the ordinary
Markov model and P(L = l) represents the probability that
the length of a password is l. Note that lmax < ∞, because the
message space M is finite (the seed space S is finite).

For a PCFG model, a generating rule is a production rule of
the PCFG, a valid generating sequence is a leftmost derivation
of a string. The conditional probability of a rule does not
depend on any previous rule, formally

P(ri|r1r2 . . .ri−1) = P(ri),

where P(ri) is also trained on a training set.
For the Golla et al.’s model [14] of password vaults, a gen-

erating rule is a character or a value of |Vi| for 0 ≤ i ≤ 4. A
valid generating sequence of a vault consists of the following
rules: 1) characters of the base password, 2) |Vi|, 3) modified
characters of passwords in Vi and 4) characters of passwords

in V5. In this case, the conditional probabilities of characters
are calculated as the Markov model and |Vi| is calculated by
normal distributions.

For the Chatterjee et al.’s model [10] of password vaults, a
generating rule is a production rule of the PCFG or a number
of production rules with a certain lefthand-side in a vault, a
valid generating sequence contains a generating sequence of
a sub-grammar and leftmost derivations of passwords based
on the sub-grammar. More specifically, a valid generating se-
quence of the sub-grammar {S→ D, S→ W, D→ 123456, W→
password} is (#S = 2, S→ D, S→ W, #D = 1, D→ 123456,
#W= 1, W→ password). The rule #X= i represents that there
are i rules with the lefthand-side X in sub-grammar, it is for
the sake of the prefix-free property of R S . The conditional
probability of the rule #X= i only depends on the rule itself,
denoted as P(#X = i), which is trained on a password vault
dataset (Pastebin). The conditional probability of the rule
X→ str is the same as that in PCFG models.

For Huang et al.’s models [18] for genomic data, a gener-
ating rule is a character of {0,1,2} (representing an SNV), a
valid generating sequence is a string. The conditional prob-
ability of a rule relies on the genomic data model: for the
uniform distribution model, it is equal to 1

3 for each rule; for
the public LD model (as discussed above), it depends on the
last rule; for Markov model of order n, it depends on the last
n rules; for the recombination model, it is calculated by the
forward-backward algorithm with a hidden Markov model.

Up to this point, the existing models are all formalized
with our proposed GPMs and the distributions of generating
sequences are defined by the conditional distributions of gen-
erating rules. Beyond that, more probability models can be
formalized. For example, neural networks for passwords [27]
can be formalized as the same as Markov models except that
condition probabilities are calculated by neural networks.

4.3 Generating Graphs

To represent a GPM visually, we propose a generating graph,
which is a connected directed acyclic graph with a single
source and with edges labeled by generating rules. In a gen-
erating graph, a generating sequence is illustrated by a path
whose edges denote the corresponding generating rules in
order. Moreover, a message is figured by a sink (because the
generating sequence space is prefix-free) and a path from
the source to the sink illustrates one generating sequence of
the message. Hence, the path is called a generating path of
the message. Note that the generating graph of a model is an
arborescence, if and only if the model is unambiguous. (Note
an arborescence is a directed graph in which there is only one
single source and each other vertex has only one directed path
from the source.)

As shown in Figure 2, in Chatterjee-PCFG model, there are
two generating paths for “password”. These two generating
paths correspond to two generating sequences: {S→ W, W→

1578 28th USENIX Security Symposium USENIX Association

S

D W WW.

.

a
0.002

(0.2×0.01)

. password

0.02002
(0.2×0.1+0.1×0.02×0.01)

passW

.

S → D

0.1
S → W

0.2
S → WW

0.1

W → a
0.01

W → password
0.1

W → pass
0.02

W → word
0.01

Figure 2: Generating graph of Chatterjee-PCFG

password} and {S→ WW, W→ pass, W→ word}. Further, the
probability of the first sequence is 0.2×0.1 = 0.02 and that
of the second one is 0.1×0.02×0.01 = 0.00002. This makes
the probability of “password” be 0.02+0.00002 = 0.02002.
Since “password” has two generating sequences, Chatterjee-
PCFG model is ambiguous.

4.4 The Principle of Encoding Attacks
The features used by encoding attacks in Section 3 are all
based on heuristic analyses of specific PMTEs. Some other
features are still neglected due to the lack of a systematic
analysis. For example, on Chatterjee et al.’s password vault
PMTE [10], the order of rules in the sub-grammar is determin-
istic for real vaults, but not for decoy seeds. When encoding
the vault V = (123456,password), the first two rules in the
sub-grammar are S→ D, S→ W in order. But if the vault V is
decoded by a decoy seed, the first two rules may be S→ W,
S→ D in a different order from the real vault.

Fortunately, with the formalizations by GPMs and the vi-
sual representations by generating graphs, the principle of
encoding attacks is uncovered: existing PMTEs neglect the
ambiguity of GPMs. More specifically, in an ambiguous GPM,
there may exist multiple generating paths for a message, but
the existing PMTEs only select one deterministic path when
encoding. We name these paths encoding paths which can
be selected when encoding and meanwhile name these cor-
responding generating sequences encoding sequences. The
generating sequence of a seed can be obtained by decoding
the seed. Due to the determinacy of encoding paths, encod-
ing attacks can exclude some decoy seeds by checking if the
generating path of a seed is an encoding path, without any
information of the real message distribution.

We then take Chatterjee et al.’s PMTE [10] for Chatterjee-
PCFG as an example. As shown in Figure 2, this PMTE only
uses the blue dotted path when encoding “password”, but
the generating path of a decoy seed may be the red dashed
one. In fact, Chatterjee et al. [10] noticed the ambiguity
of Chatterjee-PCFG and briefly mentioned that the PMTE
needs to choose one parse tree randomly in all parse trees

Algorithm 3: The weight function pWEA (= pEC) of
the weak encoding attack

1 function pWEA(S)
Input: a seed S.
Output: the weight of S (for sorting in Algorithm 1).

2 Obtain the generating sequence RS and the message M of S by
decoding S

3 S′← encode(M) /* Since encode is a randomized
algorithm, S′ is probably not equal to S. */

4 Obtain the generating sequence RS′ of S′ by decoding S′

5 if RS = RS′ then return 1 /* S may be a real seed. */
6 else return 0 /* S is definitely a decoy seed. */

7 end

when encoding. However, in Chatterjee et al.’s code [10],
they have not implemented the random selection method un-
til now (June 1, 2019) and only one parse tree is selected
when encoding. Moreover, Chatterjee et al. [10] completely
neglected the ambiguity of the sub-grammar approach. For
example, a vault V = (123456,password) is encoded only
with the sub-grammar SG = {S→ D, S→ W, D→ 123456,
W → password}, but V can be generated by multiple sub-
grammars as long as they contain SG. Therefore, the encoding
paths definitely have feature UR while other generating paths
may not.

Similarly, Golla et al. [14] also did not consider the ambigu-
ity of the reuse-rate approach. For example, V = (password1,
password1,password@) can be generated by “password1” as
the base password with reuse-rates |V0|= 2

3 and |V1|= 1
3 . It

also can be generated by “password1” as the base password
with reuse-rates |V0|= 1

3 and |V1|= 2
3 . In addition, Golla et

al.’s GPMs [14] allow modifying the character of the base
password to the same character. Therefore, “password@” may
be in V2 (with “@” modified from “1” and “d” modified from
itself). This brings ambiguity to the GPM, i.e., a huge num-
ber of generating paths for a vault. Only one deterministic
path (the first one for V) is chosen when encoding. Therefore,
the encoding paths definitely have feature ED while other
generating paths may not.

Any feature utilized by any encoding attack, including fea-
tures proposed in Section 3.3, the rule-order feature or the
base-password feature discussed above, can be seen as a fea-
ture of encoding paths.

4.5 Generic Encoding Attacks

Due to the determinacy of encoding paths, we further propose
two generic encoding attacks—a weak encoding attack and a
strong encoding attack.

The weak encoding attack is accordance with feature EC
(encoding consistency) that the generating path is an encoding
path, i.e., the weight function pWEA = pEC. We use the ab-
breviation of the attack as the subscript of p for convenience.
More specifically, pWEA (i.e., whether a seed S has feature

USENIX Association 28th USENIX Security Symposium 1579

EC) can be calculated as Algorithm 3.
In contrast to the feature attacks (proposed in Section 3.3)

based on some features of encoding path, the weak encoding
attack is based on feature EC. Therefore, the seeds having
feature EC certainly have other features proposed in Section
3.3. In other words, the weak encoding attack excludes all
decoy vaults which are excluded by any feature attack.

As the seeds with feature EC are sorted randomly by the
weak encoding attack, we propose a strong encoding attack
to sort them. Let RS denote the generating sequence of the
seed S, then the weight function pSEA is defined as

pSEA(S) =
1

P(RS)
× pWEA(S).

4.6 Efficiency of Encoding Attacks
These two generic encoding attacks are efficient for PMTEs
with significantly ambiguous GPMs and deterministic encod-
ing paths, such as all existing PMTEs for password vaults. In
other words, these attacks recover the encrypted real vaults
with a high probability but a small number of online verifica-
tions. To make it clear, the weak encoding attack excludes the
seeds whose generating paths are not encoding paths, e.g., the
red dashed path in Figure 2. Namely, the excluded proportion
of the weak encoding attack is equal to the total probability of
all generating paths except encoding paths. This means that
the more ambiguous the GPM is, the more efficiency the weak
encoding attack can achieve. As discussed in Section 4.4, in
the existing GPMs for password vaults [10,14], every vault
has countless generating paths. Due to the great ambiguity
of these GPMs, the weak encoding attack is efficient for the
corresponding existing PMTEs with deterministic encoding
paths. On the other hand, if a GPM is unambiguous (e.g.,
the models of genomic data [18]), the PMTE for it can re-
sist encoding attacks naturally. Besides, the strong encoding
attack excludes all decoy seeds which are excluded by the
weak encoding attacks. Therefore, the strong encoding attack
is always more efficient than the weak encoding attack.

5 Probability Model Transforming Encoders

We propose a generic transforming method which transforms
an arbitrary GPM to a secure PMTE. Further, we give a formal
proof that the PMTE transformed by our method is indistin-
guishable from the GPM.

5.1 Conditional DTEs
Inspired by the way Chatterjee et al.’s PMTEs [10] encoding
password character by character or rule by rule, we propose
a fundamental concept of PMTE—conditional distribution
transforming encoder (CDTE)—to encode message rule by
rule. A DTE is an encoder transformed from a probability

distribution, while a CDTE is an encoder transformed from a
conditional probability distribution. Unlike a DTE, a CDTE
needs not only the message M but also the condition X to
encode M (denoted as encode(M|X)) by the conditional prob-
ability distribution P(·|X). It also needs the condition X to
decode the seed S (denoted as decode(S|X)). In this aspect,
for every condition X , the CDTE (encode(·|X),decode(·|X))
is a DTE. Interestingly, if the condition X and the message M
are mutually independent (i.e., the conditional probability dis-
tribution P(·|X) is the same for every condition X), a CDTE
degenerates into a DTE. Therefore, we state that DTEs can
be seen as a special case of CDTEs. Juels and Ristenpart [21]
proposed a generic method to transform a distribution to a
DTE and named the DTE IS-DTE. For the general conditional
distribution, we get a DTE IS-DTEX for each condition X by
means of Juels-Ristenpart method and thus we give a general
CDTE scheme IS-CDTE by the combination {IS-DTEX}X .

In the following, we give the details of our IS-CDTE. Let
X denote the condition, X denote the condition space, and
MX = {Mi}i denote the message space under the condition X .
The corresponding conditional probability is P(Mi|X), and
the cumulative distribution function is Fi = ∑

i
i′=1 P(Mi′ |X).

When encoding the message M under the condition X , the
IS-CDTE randomly generates a real number S in the interval
[Fi−1,Fi) as a seed of M. When decoding the seed S under
condition X , the IS-CDTE searches the interval [Fi−1,Fi) con-
taining S and then outputs the corresponding message Mi.
Encoding or decoding only requires a binary search of the
corresponding CDF (cumulative distribution function) table
{(Mi,Fi)}i under the condition. Therefore, the space complex-
ity and the time complexity of the IS-CDTE are O(|X | · |M |)
and O(log(|M |)), respectively.

For implementing with encryption, real-number seeds are
usually represented as bit strings of length l, i.e., integers
in [0,2l), where l is a storage overhead parameter. IS-DTEs
use the function roundl(x) converting a real-number seed
to an integer seed, where roundl(x) = round(2lx) and round
represents rounding function. We use the same method for
IS-CDTEs. In such case, the integer seed interval of Mi is
[round(2lFi−1), round(2lFi)). Hence, to ensure that each mes-
sage has at least one integer seed, l must be greater than
or equal to − log2(mini P(Mi|X)). The loss of precision by
the discretization with roundl causes a slight difference be-
tween these two conditional distributions PrIS-CDTE(M|X) =
Pr[M = M′ : S←$ S ;M′← decode(S|X)] and P(M|X), where
IS-CDTE = (encode(·|·),decode(·|·)). Fortunately, the dif-
ference is negligible in l (see Theorem 4). For convenience,
we let P(d) denote the discretization PrIS-CDTE of P.

5.2 Probability Model Transforming Encoder

Combining IS-CDTEs for the conditional distributions of gen-
erating rules, we present a PMTE for the messages, which we
call an IS-PMTE. Let l denote the storage overhead parameter,

1580 28th USENIX Security Symposium USENIX Association

then the IS-PMTE encodes the message M as follows:

1. Parse M and get all generating sequences G−1(M).
2. Calculate the probability P(d)(RS) for each generat-

ing sequence RS in G−1(M), where P(d)(r1r2 . . .rn) =

∏
n
i=1 P(d)(ri|r1r2 . . .ri−1) and P(d)(ri|r1r2 . . .ri−1) is the

discretization of P(ri|r1r2 . . .ri−1).
3. Choose a generating sequence RS in G−1(M) with

the probability P(d)(RS|M), where P(d)(RS|M) =
P(d)(RS)

∑RS′∈G−1(M)
P(d)(RS′)

.

4. Encode each rule ri in RS = (ri)i by the IS-CDTE
encode(·|r1r2 . . .ri−1) to a l-bit string Si.

5. Concatenate (Si)i, pad the concatenation to a string S of
length lnmax with random bits and then output S as a seed
for M, where nmax is the maximum length of generating
sequences in R S (i.e., the depth of the generating graph).

In opposite, the IS-PMTE decodes the seed S as follows:

1. Split S into nmax l-bit strings (Si)
nmax
i=1 .

2. Decode Si to the rule ri by decode(·|r1r2 . . .ri−1) in turn
and ignore the padding bits.

3. Generate the message M from the generating sequence
RS = (ri)

n
i=1 by M = G(RS), then output M as the mes-

sage of S.

Note that generating sequences vary in length. Because
seeds in S are of fixed length, padding is necessary for some
sequences when encoding. Furthermore, as the sequence
space R S is prefix-free, padding bits can be ignored unam-
biguously when decoding. In addition, note that in Step 2) of
encoding the probabilities of sequences are calculated as the
discretization P(d) of P, which is necessary to guarantee the
uniformity of seeds (see Theorem 3).

Due to the generality of GPMs, IS-PMTEs not only apply
to probability models discussed in this paper, but also apply
to general probability models, such as neural networks for
passwords [27].

Figure 3 depicts how “password” is encoded by our IS-
PMTE for the Chatterjee-PCFG model. First, parse all gen-
erating sequences of “password”. Corresponding to Fig-
ure 2, “password” has two generating sequences {S→ W,
W→ password} and {S→ WW, W→ pass, W→ word}. Sec-
ond, choose a sequence with the probability (0.02/0.02002≈
0.999 for the first one and 0.001 for the second one). Here we
take the second one as an example. Third, encode each gen-
erating rule in the sequence by searching the CDF table and
translate real-number seeds to bit-string seeds with roundl .
Note that in the PCFG models, the conditional probabilities
of generating rules do not depend on the previous rules and
the rules with the same lefthand-side have the same CDF ta-
ble. Therefore, the same CDF table is searched for generating
rules W→ pass and W→ word. Finally, concatenate seeds of
rules, pad the concatenation to a fixed length with random
bits and get a seed for “password”.

password

Parse and obtain all generating sequences with probabilities:
(S → W, W → password) 0.02

(S → WW, W → pass, W → word) 0.00002

Choose a generating sequence with normalized probability
(take the second sequence as an example)

Encode
W → a 0.01

an 0.001
...

...
pass 0.02

...
...

word 0.01
...

...

0

0.01

0.011

0.6

0.62

0.78

0.79

1

0.615

S → D 0.1
DW 0.05
...

...
W 0.2
...

...
WW 0.1
...

...

0

0.1

0.15

0.4

0.6

0.74

0.84

1

0.77

W → a 0.01
an 0.001
...

...
pass 0.02

...
...

word 0.01
...

...

0

0.01

0.011

0.6

0.62

0.78

0.79

1

0.787

Translate to bit string

Concatenate and pad

11000 . . . ∥10011 . . . ∥11001 . . . ∥ . . . ∥ . . .

W → pass W → wordS → WW

0.615 0.7870.77

10011. . . 11001. . .11000. . .

Figure 3: Encode “password” by our IS-PMTE for the
Chatterjee-PCFG model

5.3 Difference Between IS-PMTEs and Exist-
ing PMTEs

It is easy to get IS-PMTEs from existing GPMs of password
vaults and genomic data by our proposed generic transforming
method. The following are the differences between the IS-
PMTEs and the existing PMTEs [10, 14] for password vaults:

1. IS-PMTEs randomly choose a generating sequence,
while the existing PMTEs only choose a deterministic
generating sequence. This is the key to resist encoding
attacks. Note that the random selection may have high
time complexity, fortunately there is a method to reduce
it. We leave the details in Appendix C.

2. IS-PMTEs use roundl(x) to convert a real-number seed
to an integer seed, while Chatterjee et al. [10] designed
another method to convert a rational-number seed to an
integer seed. Unfortunately, Chatterjee et al.’s method
cannot be applied to some distributions, e.g., normal dis-
tribution. This is because probabilities may be irrational
numbers. The method we use (proposed by Juels and
Ristenpart [21]) is applicable to arbitrary distributions.

In addition, IS-PMTEs have the same form as the ex-
isting PMTEs for password vaults, which is encode-then-
concatenate. At the same time, the existing PMTEs [18] for
genomic data use another shrink-then-encode form. When

USENIX Association 28th USENIX Security Symposium 1581

encoding a string, these genomic data PMTEs shrink the seed
interval for each character in the string and further pick a
random seed in the final seed interval as the seed for the
string. Unfortunately, each interval-shrinking needs to com-
plete large integer arithmetic of length ln to calculate the
interval boundary, where l is the storage overhead parameter,
and n is the length of the string. This arithmetic costs Ω(ln)
time for each character and Ω(ln2) time for the string. In
contrast, our IS-PMTEs only need to do integer arithmetic of
length l for each character with lower time complexity Θ(ln)
for a string.

5.4 Security of IS-PMTEs
The weak and strong encoding attacks have more generic
forms for the PMTEs such as IS-PMTEs who may ran-
domly choose a generating path when encoding. If the PMTE
chooses a deterministic generating path when encoding, these
generic forms will degenerate to the given forms in Section
4.5. For the weak encoding attack, the more generic form of
feature EC is

S ∈ encode(decode(S)),

where encode(M) represents all encoded seeds from M. If
the seed S does not have feature EC, then S can be de-
coded to the message M = decode(S) but cannot be encoded
from the message M. Therefore, S is a decoy seed. In or-
der to resist weak encoding attack, it is necessary to ensure
that encode(M) = decode−1(M) for every message M ∈M ,
where decode−1(M) represents all seeds which can be de-
coded into M. In PMTEs with deterministic encoding paths,
the generating paths for all seeds in encode(M) are the same
one. In this case, the weak encoding attack degenerates to the
given form in Section 4.5.

For the strong encoding attack, the more generic form of
the weight function is

Prencode(S|decode(S)),

where Prencode(S|M) represents the probability that M is en-
coded as S under the condition of message M. We denote
it as pGSEA(S). In order to resist strong encoding attack,
it is necessary to ensure that Prencode(S|M) are equal for
every S ∈ decode−1(S), i.e., all valid seeds are uniformly
chosen when encoding. We call this property seed unifor-
mity. Further, if a DTE has this property, attackers cannot
get any useful information except the message from a seed
(see Theorem 2). This well explains why our IS-PMTEs
choose a generating sequence RS in G−1(M) with the proba-
bility P(d)(RS|M) when encoding—it precisely guarantees
that seeds are uniform (see Theorem 3). In addition, for
PMTEs with deterministic encoding path, the strong en-
coding attack degenerates to the form in Section 4.5, be-
cause pGSEA ∝ pSEA. Let M denote the message, RS = (ri)i

denote the deterministic generating sequence of M, S de-
note the seed of M, then we have: 1) if S ∈ encode(M),
pGSEA(S)= 1

|encode(M)| =
1

|encode(RS)| =
1

|S |P(RS) =
1
|S | pSEA(S);

2) otherwise, pGSEA(S) = 0 = pSEA(S).
In the following, we prove the security of IS-PMTEs, i.e.,

decoy seeds/messages are indistinguishable from real ones
by any adversary. Let M denote the message space, Prreal
denote the probability density function of real messages, S
denote the seed space, and DTE = (encode,decode) denote
the DTE. Juels and Ristenpart [21] used the advantage of
an attacker A who distinguishes between the real and de-
coy message-seed pairs to evaluate the security of a DTE,
where the advantage is Advdte

DTE,real(A) = |Pr[A(S,M) = 1 :
M←Prreal M ; S←$encode(M)]−Pr[A(S,M) = 1 : S←$ S ;
M← decode(S)]|. This advantage can be simplified, if DTE
has some properties. Correctness is the most basic prop-
erty of a DTE, which means seeds encoded from the mes-
sage M can be decoded to M correctly for every message M,
i.e., encode(M) ⊆ decode−1(M) for every M ∈M . If DTE
is correct, attackers can get the message M from the seed
S. Therefore, Advdte

DTE,real(A) can be simplified to the ad-
vantage of attacker B , who distinguishes between the real
and decoy seeds, where the advantage is Advdte,S

DTE,real(B) =

|Pr[B(S) = 1 : M←Prreal M ; S←$encode(M)]−Pr[B(S) =
1 : S←$ S]| (see Theorem 1). Moreover, if DTE is correct
and seed-uniform, Advdte

DTE,real(A) can be further simplified
to the advantage of an attacker B , who distinguishes be-
tween the real and decoy messages, where the advantage is
Advdte,M

DTE,real(B)= |Pr[B(M)= 1 : M←Prreal M]−Pr[B(M)=

1 : S←$ S ; M← decode(S)]| (see Theorem 2). The proof de-
tails are given in Appendix A.

Theorem 1. If DTE is correct, then for any attacker A , who
distinguishes between the real and decoy message-seed pairs,
there exists an attacker B (as follows), who distinguishes
between the real and decoy seeds with Advdte,S

DTE,real(B) =

Advdte
DTE,real(A).

B(S)

M← decode(S)

return A(S,M)

Theorem 2. If DTE is correct and seed-uniform, for any at-
tacker A , who distinguishes between the real and decoy seeds,
there exists an attacker B (as follows), who distinguishes be-
tween the real and decoy messages with Advdte,M

DTE,real(B) =

Advdte,S
DTE,real(A).

B(M)

S←$encode(M)

return A(S)

1582 28th USENIX Security Symposium USENIX Association

Our proposed IS-PMTEs have the above two properties,
thus we neglect the difference between these three types
of attackers. Let GPM denote the GPM and IS-PMTE de-
note the IS-PMTE of GPM. The message generated by IS-
PMTE (decoding random seed) is indistinguishable from
the message generated by GPM. Formally, the advantage
maxA Adv

gpm
IS-PMTE,GPM(A) is negligible in l (Theorem 5),

where Adv
gpm
IS-PMTE,GPM(A) = |Pr[A(M) = 1 : M←PrIS-PMTE

M]− Pr[A(M) = 1 : M ←PrGPM M]|, PrGPM is the prob-
ability density function P of GPM and PrIS-PMTE(M) =
P(d)(M) = Pr[M = M′ : S←$ S ;M′ ← decode(S)]. This
means that we design a secure PMTE for a GPM.
In addition, Advdte

IS-PMTE,real(A) ≤ Adv
gpm
IS-PMTE,GPM(A) +

Adv
gpm
GPM,real(A). If GPM is an accurate probability model

for real messages, i.e., Advgpm
GPM,real(A) is negligible, then

Advdte
IS-PMTE,real is negligible, i.e., IS-PMTE is secure for the

real message distribution.

Theorem 3. IS-PMTE is correct and seed-uniform.

Theorem 4. IS-CDTE is transformed from the condi-
tional probability Prreal(M|X), the seed length is l and m =
|M |. Then for any condition X and any distinguishing at-
tacker A ,Advdte

IS-CDTEX ,realX (A)≤ m
2l , where PrIS-CDTEX (M)=

PrIS-CDTE(M|X) and PrrealX (M) = Prreal(M|X).

Theorem 5. Assume the maximum length of generating paths
is n and each vertex has at most m children in the generat-
ing graph of GPM, then Adv

gpm
IS-PMTE,GPM(A) ≤ nm

2l for any
attacker A . Further, Advdte

IS-PMTE,real(A)≤ Adv
gpm
GPM,real(A)+

Adv
gpm
IS-PMTE,GPM(A)≤ Adv

gpm
GPM,real(A)+ nm

2l .

In summary, we propose a generic method for transforming
a GPM to a PMTE. The PMTE is secure for the GPM, which
means the PMTE is able to resist encoding attacks. To resist
distribution difference attacks, an appropriate GPM is needed,
for example, statistical language models for natural language
texts. Designing such a GPM, however, needs professional
knowledge of the real messages, we leave it to experts in
related fields.

6 Experimental Results

In this section, we evaluate the security of the existing PMTEs
on real datasets under the attacks we propose. In the literature,
none of the PMTEs for password vaults can resist encoding
attacks as well as none of the PMTEs for genomic data can
resist the PCA+SVM attack. But here, we show that our pro-
posed IS-PMTEs for existing password vault models [10, 14]
achieve the expected security against encoding attacks as
stated in Section 5.4.

6.1 Security Metrics
The ranks of real messages in the order sorted by attackers
reflect the security of DTEs. If a DTE is perfectly secure, the
real message ranks are evenly distributed under any attack.
Accordingly, we use the real message rank distribution as a
security metric like [10, 14].

More specifically, we calculate the rank of the message
M as follows: 1) generate N decoy messages {Mi}N

i=1 (by
decoding random seeds); 2) calculate the proportion r̂−(M)
(resp. r̂+(M)) of decoy messages with greater (resp. greater
or equal) weight than M in {Mi}N

i=1; 3) pick a random real
number in [r̂−(M), r̂+(M)] as the rank r̂(M). Same as [10,14],
we set N = 999. But different from [10,14] using average rank
r (of real messages) and accuracy α (of distinguishing a real
message from a decoy one), we use rank cumulative distribu-
tion functions (RCDFs) F(x) of real messages to represent
attack results. This presentation is more comprehensive than
r and α. For example, F−1(1) indicates the max rank of real
messages, and F(0) indicates the proportion of real messages
of rank 0 (i.e., ranking the first). In other words, the attacker
excludes 1−F−1(1) proportion decoy messages for all real
messages and excludes all decoy messages for F(0) propor-
tion of real messages. In addition, r and α can be calculated
from F(x) as:

r = 1−
∫ 1

0
F(x)dx, (3)

α = 1− r. (4)

6.2 Datasets
For a fair comparison, we use the same datasets as the pre-
vious literature [10, 14, 18]: a password dataset RockYou
and a password vault dataset Pastebin for password vault
schemes [10, 14], real genomic datasets from HapMap [1] for
the genomic data protection scheme [18]. RockYou is a pass-
word dataset widely used in password security research, some
notable ones like [4, 25, 27, 41], which includes 32.6 million
passwords. To the best of our knowledge, Pastebin is the only
publicly available dataset for real password vaults so far, and
it contains 276 real vaults. Because RockYou and Pastebin
are already public and no further harm will be caused, we
believe it is ethical to use them for experiments. Multiple
types of genomic datasets from HapMap are used, including
a diploid genotype dataset, a haploid genotype dataset, allele
frequency (AF) and linkage disequilibrium (LD) datasets, and
recombination rates. The diploid genotype dataset contains
165 persons’ SNV sequences. For other details of the above
datasets, please refer to [10, 18].

6.3 Evaluating Password Vault PMTEs
As shown in Figure 4a and Table 1, in Chatterjee et al.’s
PMTE [10], the average ranks r of real vaults under the feature

USENIX Association 28th USENIX Security Symposium 1583

KL divergence attack

Feature UR attack

Feature DR attack

Weak encoding attack

Strong encoding attack

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Chatterjee et al.’s PMTE [10]

KL divergence attack

Feature ED attack

Feature PN attack

Weak encoding attack

Strong encoding attack

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Golla et al.’s static PMTE [14]

KL divergence attack

Feature ED attack

Feature PN attack

Weak encoding attack

Strong encoding attack

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Golla et al.’s adaptive PMTE [14]

Uniform distribution model
Public LD model
0-th order Markov model
1-st order Markov model
2-nd order Markov model
Recombination model
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Huang et al.’s PMTEs [18] under the PCA+SVM attack

Figure 4: Rank cumulative distribution functions (RCDFs) F(x) of the existing PMTEs

Table 1: The existing PMTEs under encoding attacks or distribution difference attacks

Application PMTE/Probability model Attack r α F(0) F−1(1)

Password vault

Chatterjee et al.’s PMTE [10]

KL divergence attack 11.83% 88.17% 1.82% 98.80%
Feature UR attack 15.14% 84.86% 0.36% 42.24%
Feature DR attack 26.96% 73.04% 0.00% 54.95%
Weak encoding attack 8.74% 91.26% 0.36% 19.42%
Strong encoding attack 1.44% 98.56% 70.55% 15.02%

Golla et al.’s static PMTE [14]

KL divergence attack 48.26% 51.74% 0.00% 98.70%
Feature ED attack 6.04% 93.96% 26.23% 41.14%
Feature PN attack 10.03% 89.97% 53.28% 99.20%
Weak encoding attack 2.25% 97.75% 58.20% 26.03%
Strong encoding attack 0.48% 99.52% 80.74% 16.12%

Golla et al.’s adaptive PMTE [14]

KL divergence attack 53.58% 46.42% 0.00% 100.00%
Feature ED attack 5.18% 94.82% 28.69% 35.44%
Feature PN attack 8.60% 91.40% 55.74% 91.79%
Weak encoding attack 2.01% 97.99% 59.02% 21.22%
Strong encoding attack 0.58% 99.42% 77.87% 17.22%

Genomic data
protection [18]

Uniform distribution model

PCA+SVM attack

0.00% 100.00% 100.00% 0.00%
Public LD model 0.00% 100.00% 99.39% 0.20%
0-th order Markov model 0.00% 100.00% 100.00% 0.00%
1-st order Markov model 0.01% 99.99% 99.39% 1.30%
2-nd order Markov model 0.53% 99.47% 55.76% 23.92%
Recombination model 23.46% 76.54% 47.88% 99.90%

1584 28th USENIX Security Symposium USENIX Association

UR attack and the feature DR attack are 15.14% and 26.96%
respectively, the accuracies α are 84.86% and 73.04%. More-
over, under the feature UR attack, the max rank (i.e., F−1(1))
is 42.24%; under the feature DR attack, this number is 54.95%.
This means the feature UR attack can exclude at least 57.76%
(i.e., 1−F−1(1)) decoy vaults for every real vault and the
feature DR attack can exclude at least 45.05%. Figures 4b,
4c and Table 1 show the performance of Golla et al.’s static
PMTE and adaptive PMTE [14], the average ranks under the
feature ED attack are 6.04% and 5.18%, while under the fea-
ture PN attack are 10.03% and 8.60%. Further, in Golla et al.’s
static PMTE, the feature ED attack excludes all decoy vaults
for 26.23% (i.e., F(0)) real vaults and meanwhile, it excludes
at least 58.86% decoy vaults for each real vault. F(0) and
1−F−1(1) under the feature PN attack are 53.28% and 0.8%
respectively. In Golla et al.’s adaptive PMTE, these numbers
are 28.69%, 64.56% under the feature ED attack, and 55.74%,
8.21% under the feature PN attack.

Compared to the above feature attacks, the weak encoding
attack has a significant improvement, where the average ranks
r of Chatterjee et al.’s PMTE [10] and Golla et al.’s (static
and adaptive) PMTEs [14] are 8.74%, 2.25%, and 2.01% re-
spectively. The excluded proportions 1−F−1(1) are 80.58%,
78.78%, and 73.97%. The strong encoding attack has a fur-
ther significant improvement compared to the weak encoding
attack. The average ranks r of these three PMTEs are 1.44%,
0.48%, and 0.57% respectively, which decrease by 84.99%,
83.88%, and 82.78% . Excluded proportions 1−F−1(1) are
84.99%, 83.88%, and 82.78% respectively, which also slightly
increase by 5.47%, 13.40%, and 5.08%.

Because the KL divergence attack performs better than
SVM attacks on all existing PMTEs for password vaults [14],
we use it for comparison. As shown in Figures 4a, 4b, 4c
and Table 1, the KL divergence attack performs well on the
Chatterjee et al.’s PMTE [10], achieving 88.17% accuracy, but
it performs almost the same as the randomly guessing attack
on Golla et al.’s PMTEs [14], only achieving 46.42%–51.74%
accuracy. Further, the RCDFs on Golla et al.’s PMTEs under
the KL divergence attack are close to the baseline (the RCDFs
under the randomly guessing attack).

For all the existing PMTEs, the curves of RCDFs under
the strong encoding attack are all above those under the KL
divergence attack. This means that every metric in Table 1
under the strong encoding attack is better than that of the
KL divergence attack. More specifically, the average ranks
of these three PMTEs under the KL divergence attack are
11.83%, 48.26%, and 53.58%, the accuracies α are 88.17%,
51.74%, and 46.42%. In contrast, the accuracies of the strong
encoding attack are 98.56%, 99.52%, and 99.43%, which are
11.78%, 92.35%, and 114.20% higher than those of the KL
divergence attack.

In addition, metric values in Table 1 under the KL diver-
gence attack are different from those given in [14], owing to
a couple of reasons: 1) for Chatterjee et al.’s PMTE [10], the

version of NoCrack used by Golla et al. [14] cannot decode
some seeds correctly, therefore have to remedy and reimple-
ment it in the experiments; 2) for Golla et al.’s PMTEs [14],
we set the pseudocount of Markov for Laplace smoothing
as 1, because under this setting the PMTEs achieve the best
security (see Appendix B).

To conclude, the Chatterjee et al.’s PMTE [10] and Golla
et al.’s PMTEs [14] are all vulnerable to encoding attacks;
meanwhile, Golla et al.’s PMTEs [14] are perfectly secure
against the best-reported distribution difference attack.

6.4 Evaluating Genomic Data PMTEs
Different from encoding attacks, the PCA+SVM attack is
a distribution difference attack which needs a training set
consisting of real and decoy data. We randomly pick 83 indi-
vidual’s SNV sequences in the real dataset1, generate a decoy
sequence for each real sequence, and use them to train our
PCA and SVM in the PCA+SVM attack. Then we use remain-
ing 82 individual’s sequences in the real dataset and generate
N (= 999) decoy sequences for each of them as the test set to
compute the RCDF F(x) with the weight function pPCA+SVM.
To avoid the impact of randomness on results, we repeat the
attack 10 times with different random divisions of the real
SNV sequences and newly generated decoy sequences for
training/testing, and calculate the average of F(x).

As shown in Figure 4d and Table 1, the PCA+SVM at-
tack achieves more than 99.47% accuracy for all probability
models except the recombination model. Even for the recom-
bination model, this attack achieves 76.54% accuracy. This
is consistent with Huang et al.’s result [18] that the recom-
bination model performs best. However, it still falls short of
the desired security, as our attack excludes all decoy data for
47.88% persons.

To summarize, Huang et al.’s PMTEs for all six models [18]
resist encoding attacks but none of them can resist distribution
difference attacks. Even the recombination model cannot be
rejected at the significance level of 0.2. This means the chi-
square goodness-of-fit test is unable to correctly evaluate the
security of probability models for generating decoy data.

6.5 Evaluating IS-PMTEs
As stated in Section 5.4, IS-PMTEs resist any encoding at-
tack in theory, we confirm that in practice with IS-PMTEs
transformed from existing password vault models. Formally,
Theorem 5 demonstrates that the IS-PMTE of an accurate
GPM resists arbitrary attacks including encoding attacks. In
fact, the IS-PMTE for an arbitrary GPM resists the weak en-
coding attack. The weight function of the weak encoding
attack is constant because every generating path has a chance
to be chosen when encoding. This means the weak encoding

1We use the small dataset published with the code of GenoGuard on
GitHub, which includes 165 persons’ SNV sequences of length 1000.

USENIX Association 28th USENIX Security Symposium 1585

Chatterjee et al.'s GPM

Golla et al.'s static GPM

Golla et al.'s adaptive GPM

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: RCDFs of our proposed IS-PMTEs under the strong
encoding attack. Note that RCDFs of IS-PMTEs under the
weak encoding attack are all equal to the baseline and these
under the KL divergence attack are the same as those of the
corresponding existing PMTEs in Figure 4.

Table 2: Our IS-PMTEs under the strong encoding attack

Probability model r α F(0) F−1(1)
Chatterjee et al.’s GPM 47.44% 52.56% 0.00% 97.60%
Golla et al.’s static GPM 53.62% 46.38% 0.41% 100.00%
Golla et al.’s adaptive GPM 54.25% 45.75% 0.00% 100.00%

Note: RCDFs of IS-PMTEs under the KL divergence attack are
the same as those of existing PMTEs, therefore these metrics
under this attack are the same as those in Table 1. RCDFs of
IS-PMTEs under the weak encoding attack are the same as those
under the randomly guessing attack, therefore these metrics are
trivial (50% for r, 50% for α, 0% for F(0) and 100% for F−1(1)).

attack degenerates to the randomly guessing attack (with a
constant weight function). In contrast, the weight function
pGSEA of the strong encoding attack is inconstant, therefore,
RCDFs under the strong encoding attack depend on GPMs.

To evaluate the security of IS-PMTEs for existing vault
models under the strong encoding attack, it is necessary to
implement the random selection method for generating paths
with the parsing function G−1. However, in existing GPMs for
password vaults, there are numerous generating paths for mes-
sages (as discussed in Section 4.4), therefore, it has high time
complexity to parse all generating paths (see the discussion
in Appendix C). For example, in Chatterjee et al.’s GPM [10],
a vault V = (123456,password) can be generated by any sub-
grammar containing SG = {S → D, S → W, D → 123456,
W→ password}. It has high time complexity to enumerate all
these sub-grammars and calculate the probabilities of generat-
ing V by them. Instead, we carry out simulation experiments
under the degenerated form of the strong encoding attack
with the weight function pSEA. Because all generating paths
are encoding paths, there is no seed S with pSEA(S) = 0, i.e.,
pSEA(S) = 1

P(RS) for every seed S. Accordingly, we use this
weight function to sort the seeds in simulation experiments.

Compared to the existing PMTEs, IS-PMTEs transformed

from the existing GPMs have a significant improvement on
security. As shown in Figure 5 and Table 2, all RCDFs of the
IS-PMTEs under the strong encoding attack are approaching
to the baseline, i.e., the RCDF under the randomly guessing
attack. Average ranks r are all near to the expected value of
50%, which are 47.44%, 53.62%, and 54.25%, respectively.
Meanwhile, the accuracies are 52.56%, 46.38%, and 45.75%,
respectively. Recall that accuracies of existing PMTEs under
the strong encoding attacks are 98.56%, 99.52%, and 99.42%,
respectively.

Note that our IS-PMTEs have the same decoy message
distributions with the corresponding GPMs. This means our
IS-PMTEs achieve the same security as the existing PMTEs
for the same GPMs under distribution difference attacks. Due
to the good performance of Golla et al.’s PMTEs [14] against
the best-reported distribution difference attack, our IS-PMTEs
for Golla et al.’s GPMs achieve the expected security under
both encoding attacks and distribution difference attacks.

7 Conclusion

With encoding attacks and distribution difference attacks, we
evaluate three typical existing PMTEs, including two for pass-
word vaults and one for genomic data. Using a PCA and an
SVM, a distribution difference attack can distinguish real and
decoy genomic data with high accuracy. Different from dis-
tribution difference attacks exploiting the difference between
real and decoy message distributions, encoding attacks are a
new type of attack we propose, which exploit the difference
between probability models and PMTEs. Encoding attacks
can exclude most decoy password vaults/seeds, without any
knowledge of real vault distributions.

Further, we introduce a generic conceptual probability
model—generative probability model (GPM)—to formalize
probability models. With the formalization by GPMs, the prin-
ciple of encoding attacks is uncovered. Based on this principle,
we propose two generic and more efficient encoding attacks.
In addition, we propose a generic method for transforming an
arbitrary GPM to a PMTE. We prove that PMTEs transformed
by this method are information-theoretically indistinguishable
from the corresponding GPMs, thus can resist encoding at-
tacks. Using this transforming method, we simplify the task of
designing a secure PMTE to the task of designing an accurate
GPM. Designing such a GPM needs professional knowledge
of real messages, we leave it to experts in related fields for
future work.

Acknowledgment

The authors are grateful to the anonymous reviewers and the
shepherd, Prof. Vincent Bindschaedler, for their invaluable
comments that highly improve the completeness of the paper.
We also give our special thanks to Prof. Kaitai Liang and

1586 28th USENIX Security Symposium USENIX Association

Qianchen Gu for their insightful suggestions and invaluable
help. This research was supported by the National Key R&D
Program of China under Grant No.2017YFB1200700, and by
the National Natural Science Foundation of China (NSFC)
under Grant No.61672059.

References

[1] Hapmap. http://hapmap.ncbi.nlm.nih.gov/
downloads/index.html.en.

[2] LastPass and YubiKey. https://lastpass.com/
yubico/.

[3] Ingolf Becker, Simon Parkin, and M Angela Sasse. The
rewards and costs of stronger passwords in a university:
linking password lifetime to strength. In Proc. USENIX
Security 2018, pages 239–253, 2018.

[4] Jeremiah Blocki, Ben Harsha, and Samson Zhou. On
the economics of offline password cracking. In Proc.
IEEE S&P 2018, pages 35–53.

[5] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan
Boneh. Kamouflage: Loss-resistant password man-
agement. In Proc. ESORICS 2010, pages 286–302.
Springer.

[6] Dan Boneh, Henry Corrigan-Gibbs, and Stuart
Schechter. Balloon hashing: A memory-hard function
providing provable protection against sequential attacks.
In Proc. ASIACRYPT 2016, pages 220–248. Springer.

[7] Joseph Bonneau. The science of guessing: Analyzing
an anonymized corpus of 70 million passwords. In Proc.
IEEE S&P 2012, pages 538–552, 2012.

[8] Joseph Bonneau, Cormac Herley, Paul C Oorschot, and
Frank Stajano. The quest to replace passwords: A frame-
work for comparative evaluation of web authentication
schemes. In Proc. IEEE S&P 2012, pages 553–567.

[9] Daniel Buschek, Alexander De Luca, and Florian Alt.
Improving accuracy, applicability and usability of
keystroke biometrics on mobile touchscreen devices.
In Proc. ACM CHI 2015, pages 1393–1402.

[10] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and
Thomas Ristenpart. Cracking-resistant password vaults
using natural language encoders. In Proc. IEEE S&P
2015, pages 481–498.

[11] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of pass-
word reuse. In Proc. NDSS 2014.

[12] Warwick Ford and Burton S Kaliski. Server-assisted
generation of a strong secret from a password. In Proc.
WETICE 2000, pages 176–180.

[13] David Freeman, Sakshi Jain, Markus Dürmuth, Battista
Biggio, and Giorgio Giacinto. Who are you? a statistical

approach to measuring user authenticity. In Proc. NDSS
2016, pages 1–15.

[14] Maximilian Golla, Benedict Beuscher, and Markus Dür-
muth. On the security of cracking-resistant password
vaults. In Proc. ACM CCS 2016, pages 1230–1241.

[15] Maximilian Golla and Markus Dürmuth. On the accu-
racy of password strength meters. In Proc. ACM CCS
2018, pages 1567–1582.

[16] Paul A Grassi, James L Fenton, Elaine M Newton, Ray A
Perlner, Andrew R Regenscheid, William E Burr, and
Justin P Richer. Nist special publication 800-63b. Digi-
tal identity guidelines: Authentication and lifecycle man-
agement. Bericht, NIST, 2017.

[17] Douglas N Hoover and BN Kausik. Software smart
cards via cryptographic camouflage. In Proc. IEEE
S&P 1999, pages 208–215.

[18] Zhicong Huang, Erman Ayday, Jacques Fellay, Jean-
Pierre Hubaux, and Ari Juels. Genoguard: Protecting
genomic data against brute-force attacks. In Proc. IEEE
S&P 2015, pages 447–462.

[19] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian,
and Nitesh Saxena. Device-enhanced password proto-
cols with optimal online-offline protection. In Proc.
ACM CCS 2016, pages 177–188.

[20] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian,
and Nitesh Saxena. Two-factor authentication with end-
to-end password security. In Proc. PKC 2018, pages
431–461. Springer.

[21] Ari Juels and Thomas Ristenpart. Honey encryption:
Security beyond the brute-force bound. In Proc. EURO-
CRYPT 2014, pages 293–310. Springer.

[22] Burt Kaliski. PKCS #5: Password-based cryptography
specification version 2.0. 2000.

[23] Russell WF Lai, Christoph Egger, Manuel Reinert, Sher-
man SM Chow, Matteo Maffei, and Dominique Schröder.
Simple password-hardened encryption services. In Proc.
USENIX Security 2018, pages 1405–1421.

[24] Sanam Ghorbani Lyastani, Michael Schilling, Sascha
Fahl, Sven Bugiel, and Michael Backes. Better managed
than memorized? studying the impact of managers on
password strength and reuse. In Proc. USENIX Security
2018, pages 203–220.

[25] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A
study of probabilistic password models. In Proc. IEEE
S&P 2014, pages 538–552.

[26] Michelle L Mazurek, Saranga Komanduri, Timothy Vi-
das, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Patrick Gage Kelley, Richard Shay, and Blase Ur. Mea-
suring password guessability for an entire university. In
Proc. ACM CCS 2013, pages 173–186.

[27] William Melicher, Blase Ur, Sean M Segreti, Saranga

USENIX Association 28th USENIX Security Symposium 1587

http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en
http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en
https://lastpass.com/yubico/
https://lastpass.com/yubico/

Komanduri, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Proc.
USENIX Security 2016, pages 175–191.

[28] Fabian Monrose, Michael K Reiter, and Susanne Wetzel.
Password hardening based on keystroke dynamics. Int.
J. Netw. Secur., 1(2):69–83, 2002.

[29] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart. Beyond credential stuffing: Password sim-
ilarity models using neural networks. In Proc. IEEE
S&P 2019, pages 814–831.

[30] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in
for a closer look: Observing passwords in their natural
habitat. In Proc. ACM CCS 2017, pages 295–310.

[31] Colin Percival. Stronger key derivation via sequential
memory-hard functions. Self-published, pages 1–16,
2009.

[32] Benny Pinkas and Tomas Sander. Securing passwords
against dictionary attacks. In Proc. ACM CCS 2002,
pages 161–170.

[33] Niels Provos and David Mazieres. A future-adaptable
password scheme. In Proc. USENIX ATC 1999, pages
81–91.

[34] Richard Shay, Saranga Komanduri, Adam L Durity,
Phillip Seyoung Huh, Michelle L Mazurek, Sean M
Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. Designing password policies for
strength and usability. ACM Trans. Inform. Syst. Secur.,
18(4):13, 2016.

[35] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena,
and Naveen Nathan. Two-factor authentication resilient
to server compromise using mix-bandwidth devices. In
Proc. NDSS 2014.

[36] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena,
and Naveen Nathan. Two-factor authentication resilient
to server compromise using mix-bandwidth devices. In
Proc. NDSS 2014, pages 1–16. The Internet Society.

[37] Maliheh Shirvanian, Stanislaw Jareckiy, Hugo
Krawczykz, and Nitesh Saxena. Sphinx: A password
store that perfectly hides passwords from itself. In Proc.
ICDCS 2017, pages 1094–1104.

[38] Joe Siegrist. LastPass security notification, July
2015. https://blog.lastpass.com/2015/06/
lastpass-security-notice.html/.

[39] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer,
Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor,
Henry Dixon, Pardis Emami Naeini, Hana Habib, et al.
Design and evaluation of a data-driven password meter.
In Proc. ACM CHI 2017, pages 3775–3786.

[40] Ding Wang, Debiao He, Haibo Cheng, and Ping Wang.
fuzzypsm: A new password strength meter using fuzzy
probabilistic context-free grammars. In Proc. IEEE
DSN 2016, pages 595–606.

[41] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang. Targeted online password guessing: An
underestimated threat. In Proc. ACM CCS 2016, pages
1242–1254.

[42] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and
Bill Glodek. Password cracking using probabilistic
context-free grammars. In Proc. IEEE S&P 2009, pages
391–405.

[43] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair
Grant. Password memorability and security: Empirical
results. IEEE Secur. & Priv., 2(5):25–31, 2004.

A Proofs in Section 5

Proof of Theorem 1.

Advdte,S
DTE,real(B)

=|Pr[B(S)=1:M←Prreal M ;S←$encode(M)]

−Pr[B(S)=1:S←$ S]|
=|Pr[A(S,M′)=1:M←Prreal M ;S←$encode(M);

M′← decode(S)]

−Pr[A(S,M′)=1:S←$ S ;M′← decode(S)]|
=|Pr[A(S,M)=1:M←Prreal M ;S←$encode(M)]

−Pr[A(S,M)=1:S←$ S ;M← decode(S)]|
=Advdte

DTE,real(A).

Proof of Theorem 2.

Advdte,M
DTE,real(B)

=|Pr[B(M)=1:M←Prreal M]

−Pr[B(M)=1:S←$ S ;M← decode(S)]|
=|Pr[A(S′)=1:M←Prreal M ;S′←$encode(M)]

−Pr[A(S′)=1:S←$ S ;M← decode(S);
S′←$encode(M)]|

=|Pr[A(S)=1:M←Prreal M ;S←$encode(M)]

−Pr[A(S)=1:S←$ S]|
=Advdte,S

DTE,real(A).

Proof of Theorem 3. IS-DTE is correct, therefore, the com-
bination IS-CDTE = {IS-DTEX}X∈X is correct. In addition,
because R S is prefix-free, the padding bits can be ignored
unambiguously when decoding. Thus, IS-PMTE is correct.

Let S be a seed of the message M, RS = (ri)
n
i=1 be the

generating sequence of S, then the length of padding bits is
lnmax− ln and

Prencode(S|M)

1588 28th USENIX Security Symposium USENIX Association

https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/

=
P(d)(RS)
P(d)(M)

· 1
2lnmax−ln

n

∏
i=1

1
|encode(ri|r1r2 . . .ri−1)|

=
P(d)(RS)
P(d)(M)

· 1
2lnmax−ln

n

∏
i=1

1
2lP(d)(ri|r1r2 . . .ri−1)

=
P(d)(RS)
P(d)(M)

· 1
2lnmax

n

∏
i=1

1
P(d)(ri|r1r2 . . .ri−1)

=
P(d)(RS)
P(d)(M)

· 1
2lnmax P(d)(RS)

=
1

2lnmaxP(d)(M)
.

Therefore, IS-PMTE is seed-uniform.

Proof of Theorem 4. According to the definition
of IS-CDTEX , PrIS-CDTEX (Mi) = Pr(d)realX (Mi) =
roundl(Fi) − roundl(Fi−1) and PrrealX (Mi) = Fi − Fi−1,
so that |PrIS-CDTEX (Mi) − PrrealX (Mi)| ≤ 1

2l . To summa-
rize, Advdte

IS-CDTEX ,realX (A) ≤ ∑M∈M |PrIS-CDTEX (M) −
PrrealX (M)| ≤ m

2l .

Proof of Theorem 5. PrIS-PMTE is the discretization of
PrGPM. Similarly, discretizing the first i levels of the generat-
ing graph (and keeping the rest levels unchanged) gets a GPM,
denoted as GPMi. Therefore, PrGPMi(r j|r1r2 . . .r j−1) =
PrGPMi−1(r j|r1r2 . . .r j−1) for j 6= i and by Theorem 4
|PrGPMi(ri|r1r2 . . .ri−1) − PrGPMi−1(ri|r1r2 . . .ri−1)| ≤ 1

2l ,
then

Adv
gpm
GPMi,GPMi−1

(A)

≤ ∑
M∈M

|PrGPMi(M)−PrGPMi−1(M)|

≤ ∑
RS∈R S

|PrGPMi(RS)−PrGPMi−1(RS)|

= ∑
(r j) j∈R S

∣∣∏
j

PrGPMi(r j|r1r2 . . .r j−1)

−∏
j

PrGPMi−1(r j|r1r2 . . .r j−1)
∣∣

= ∑
(r j) j∈R S

∏
j 6=i

PrGPMi(r j|r1r2 . . .r j−1)×

|PrGPMi(ri|r1r2 . . .ri−1)−PrGPMi−1(ri|r1r2 . . .ri−1)|

≤ ∑
(r j) j∈R S

∏
j 6=i

PrGPMi(r j|r1r2 . . .r j−1)
1
2l

=
m
2l .

Because PrGPM0 = PrGPM and PrGPMn = PrIS-PMTE,
Adv

gpm
IS-PMTE,GPM(A) ≤ ∑

n
i=1Adv

gpm
GPMi,GPMi−1

(A) ≤ nm
2l .

Moreover, Advdte
IS-PMTE,real(A) ≤ Adv

gpm
IS-PMTE,GPM(A) +

Adv
gpm
GPM,real(A)≤ Adv

gpm
GPM,real(A)+ nm

2l .

KL divergence attack (static)

KL divergence attack (adaptive)

Strong encoding attack (static)

Strong encoding attack (adaptive)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1
0.0

0.1

0.2

0.3

0.4

0.5

Pseudocount

A
ve
ra
ge
ra
nk

Figure 6: Average rank vs. pseudocount for Golla et al.’s
PMTEs [14]

B The Security of Golla et al.’s PMTEs [14]
with Different Pseudocounts

We find out that pseudocounts (smoothing parameter) of
Markov models with Laplace smoothing in Golla et al.’s
PMTEs [14] have a significant influence on the security of
PMTEs. As shown in Figure 6 and Table 3, the average rank
r increases as pseudocount increases under both the KL di-
vergence attack and the strong encoding attacks, and mean-
while, the accuracy α decreases. This means that Golla et al.’s
PMTEs [14] achieve the best security when pseudocount is 1.
Other metrics in Table 3 also support this conclusion.

Further, when pseudocount is 1, α of the KL divergence at-
tacks are 51.74% and 46.42% on Golla et al.’s static and adap-
tive PMTEs, respectively. This means Golla et al.’s PMTEs/
GPMs almost achieve the expected security (α = 50%) under
the best-reported distribution difference attacks.

C The Complexity of IS-PMTEs and Opti-
mization for Encoding

The complexity of an IS-PMTE is of the same order as that
of the corresponding GPM. The IS-PMTE stores the CDF
table as well as the GPM stores the PDF (probability density
function) table. These two tables are of the same size, which
means the PMTE and the GPM have the same order of space
complexity. When encoding a message, the IS-PMTE needs
to obtain all generating sequences for the message and calcu-
late the probability of each sequence, which also needs to be
done when the GPM calculates the (total) probability of the
message. Moreover, encoding/decoding a sequence needs to
do binary search on CDF tables, and meanwhile, calculating
the probability of the sequence needs to do binary search on
PDF tables. Therefore, the IS-PMTE and the GPM have the
same order of time complexity (for encoding messages and
calculating message probabilities, respectively).

However, it suffers from high time complexity to obtain all
generating paths for some GPMs with great ambiguity. As

USENIX Association 28th USENIX Security Symposium 1589

Table 3: Golla et al.’s PMTEs [14] with different pseudocounts

Pseudo-
count

Attack
Golla et al.’s static PMTE [14] Golla et al.’s adaptive PMTE [14]

r α F(0) F−1(1) r α F(0) F−1(1)
1

KL diver-
gence
attack

48.26% 51.74% 0.00% 98.70% 53.58% 46.42% 0.00% 100.00%
10−1 37.13% 62.87% 0.00% 99.50% 43.42% 56.58% 0.00% 100.00%
10−2 33.59% 66.41% 2.46% 99.40% 39.55% 60.45% 2.87% 100.00%
10−4 31.11% 68.89% 11.89% 99.20% 36.71% 63.29% 11.89% 100.00%
10−6 30.11% 69.89% 14.75% 99.00% 35.91% 64.09% 14.75% 100.00%
10−8 29.42% 70.58% 17.21% 99.50% 34.62% 65.38% 16.80% 100.00%
1

Strong
encoding
attack

0.48% 99.52% 80.74% 16.12% 0.58% 99.42% 77.87% 17.22%
10−1 0.22% 99.78% 87.30% 10.11% 0.23% 99.77% 82.38% 9.81%
10−2 0.12% 99.88% 90.57% 9.51% 0.14% 99.86% 90.16% 7.81%
10−4 0.12% 99.88% 92.21% 10.51% 0.10% 99.90% 92.21% 6.41%
10−6 0.11% 99.89% 91.80% 7.91% 0.11% 99.89% 90.98% 8.41%
10−8 0.11% 99.89% 91.80% 8.61% 0.13% 99.87% 92.62% 9.51%

discussed in Section 4.4, in Chatterjee et al.’s GPM [10], a
vault can be generated by numerous sub-grammars in Chat-
terjee et al.’s GPMs. In Golla et al.’s [14] GPMs, a vault can
be generated by different base passwords, different cardinali-
ties of subsets and different modified characters. Fortunately,
some generating paths can be pruned to reduce the time com-
plexity of encoding. In some models, the dependency of some
rules is ignored (by assuming the rules are independent). This
triggers some unnecessary paths which can be pruned. For
example, in Golla et al.’s GPMs [14], the modified character
bi of passwords in Vi (1≤ i≤ 4) and the corresponding char-
acter ai of the base password are assumed to be independent.
In other words, the character of the base password can be
modified to itself, i.e., ai = bi. This yields significant ambi-
guity. By prohibiting this, we can prune the branch of the
original character ai when generating the modified character
bi. More specifically, the steps of the pruned encoding are as
follows: 1) copy a CDF table and delete ai in the new table;
2) renormalize remaining characters; 3) encode bi through
the renormalized CDF table; 4) abandon the copied CDF
table (use the original table for encoding other characters).
From the view of the generating graph, the branch of ai on
the node of generating bi are pruned, resulting in a decrease
of time complexity. Besides, the following branches can also
be pruned: 1) the character of passwords in V5 which is the
same as the corresponding character of the base password; 2)
the cardinality of Vi which is larger than the number of rest
passwords. By pruning unnecessary branches on some nodes
in the generating graph, we greatly reduce the ambiguity of
Golla et al.’s GPMs [14]. For the vaults V , there are only n′

generating paths left, where n′ is the number of unique pass-
words in V . Each path corresponds to a different password
for generating the vault as the base password.

In Chatterjee et al.’s GPM [10], some unnecessary branches
can also be pruned efficiently, e.g., the branches of duplicate
rules. However, the branches of unused rules are difficult
to be pruned. For example, a vault V of size 2 is generated

by the sub-grammar SG = {S→ D, S→ W, D→ 123456,
W→ password}. If the first password in V is “123456”, then
the second one must be “password” to avoid unused rules, i.e.,
the branch of the rule S→ D should be pruned when gener-
ating the second password. In addition, some sub-grammars
cannot generate a vault of size 2 without unused rules, for
example, the sub-grammars consist of three rules with the
lefthand-side S. It also needs to be pruned the branches of
all these sub-grammars and renormalize the rest branches.
Therefore, in order to prune the branches of unused rules, it
is necessary to prune and renormalize branches on almost all
nodes in the generating graph. This pruning is difficult be-
cause of the high time complexity, especially for the vaults of
large sizes. Another simple and straightforward method is to
add extra rules in the sub-grammar randomly when encoding.
It seems to address this problem. However, the Chatterjee et
al.’s GPM [10] with this rule-adding method resists the weak
encoding attack but still suffers from the strong encoding at-
tack unless the probability of adding extra rules is equal to the
probability of the generating path. This is because the DTE
must be seed-uniform in order to resist the strong encoding
attack. Moreover, calculating the probability of adding extra
rules has the same order of time complexity as calculating
the probability of the generating path. Therefore, if this rule-
adding method guarantees the property of seed-uniformity, it
is equivalent to our method which randomly chooses a gener-
ating path with its probability. In other words, the rule-adding
method does not perform efficiently in resisting the strong
encoding attack. To conclude, we state that a secure DTE of
the sub-grammar approach does have high time complexity.

To get rid of the high time complexity of encoding
sub-grammars, we propose a design principle for GPMs—
minimizing the ambiguity of the GPM—to reduce the time
complexity of encoding in the corresponding PMTEs. Instead
of optimizing the encoding algorithm after designing a GPM
with great ambiguity, it may be better to minimize the ambi-
guity when designing the GPM.

1590 28th USENIX Security Symposium USENIX Association

	Introduction
	Our Contribution

	Background and Related Works
	Honey Encryption
	Password Vault Schemes
	Genomic Data Protection Scheme

	Attacks Against Typical PMTEs
	Attacker Model
	Analyses of Password Vault PMTEs
	Attacks Against Password Vault PMTEs
	Attacks Against Genomic Data PMTEs

	Generative Probability Models and Generic Encoding Attacks
	Definition
	Formalization of Existing Models
	Generating Graphs
	The Principle of Encoding Attacks
	Generic Encoding Attacks
	Efficiency of Encoding Attacks

	Probability Model Transforming Encoders
	Conditional DTEs
	Probability Model Transforming Encoder
	Difference Between IS-PMTEs and Existing PMTEs
	Security of IS-PMTEs

	Experimental Results
	Security Metrics
	Datasets
	Evaluating Password Vault PMTEs
	Evaluating Genomic Data PMTEs
	Evaluating IS-PMTEs

	Conclusion
	Proofs in Section 5
	The Security of Golla et al.'s PMTEs Golla16ccs with Different Pseudocounts
	The Complexity of IS-PMTEs and Optimization for Encoding

