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Abstract

Business email compromise (BEC) and employee imper-
sonation have become one of the most costly cyber-security
threats, causing over $12 billion in reported losses. Imperson-
ation emails take several forms: for example, some ask for
a wire transfer to the attacker’s account, while others lead
the recipient to following a link, which compromises their
credentials. Email security systems are not effective in detect-
ing these attacks, because the attacks do not contain a clearly
malicious payload, and are personalized to the recipient.

We present BEC-Guard, a detector used at Barracuda Net-
works that prevents business email compromise attacks in
real-time using supervised learning. BEC-Guard has been
in production since July 2017, and is part of the Barracuda
Sentinel email security product. BEC-Guard detects attacks
by relying on statistics about the historical email patterns that
can be accessed via cloud email provider APIs. The two main
challenges when designing BEC-Guard are the need to label
millions of emails to train its classifiers, and to properly train
the classifiers when the occurrence of employee imperson-
ation emails is very rare, which can bias the classification. Our
key insight is to split the classification problem into two parts,
one analyzing the header of the email, and the second apply-
ing natural language processing to detect phrases associated
with BEC or suspicious links in the email body. BEC-Guard
utilizes the public APIs of cloud email providers both to au-
tomatically learn the historical communication patterns of
each organization, and to quarantine emails in real-time. We
evaluated BEC-Guard on a commercial dataset containing
more than 4,000 attacks, and show it achieves a precision of
98.2% and a false positive rate of less than one in five million
emails.

1 Introduction
In recent years, email-borne employee impersonation, termed
by the FBI “Business Email Compromise” (BEC), has be-
come a major security threat. According to the FBI, US or-
ganizations have lost $2.7 billion in 2018 and cumulatively

$12 billion since 2013 [13]. Numerous well-known enter-
prises have fallen prey to such attacks, including Facebook,
Google [41], and Ubiquiti [44]. Studies have shown that BEC
is the cause of much higher direct financial loss than other
common cyberattacks, such as ransomware [11, 13]. BEC
attacks have also ensnared operators of critical government in-
frastructure [39]. Even consumers have become the targets of
employee impersonation. For example, attackers have imper-
sonated employees of real-estate firms to trick home buyers
to wire down payments to the wrong bank account [1, 7, 17].

BEC takes several forms: some emails ask the recipient
to wire transfer money to the attacker’s account, others ask
for W-2 forms that contain social security numbers, and some
lead the recipient to follow a phishing link, in order to steal
their credentials. The common theme is the impersonation
of a manager or colleague of the target [12]. In this work,
we focus on attacks where the attacker is external to the or-
ganization, and is trying to impersonate an employee. In §6
we discuss other scenarios, such as where the attacker uses a
compromised internal email account to impersonate employ-
ees [18, 19].

Most email security systems are not effective in detecting
BEC. When analyzing an incoming email, email security sys-
tems broadly look for two types of attributes: malicious and
volumetric. Examples of malicious attributes are an attach-
ment that contains malware, a link pointing to a compromised
website, or an email that is sent from a domain with a low
reputation. There are various well-known techniques to detect
malicious attributes, including sandboxing [49], and domain
reputation [2,48]. Volumetric attributes are detected when the
same email format is sent to hundreds of recipients or more.
Examples include the same text or sender email (e.g., spam),
and the same URL (e.g., mass phishing campaigns). However,
employee impersonation emails do not contain malicious or
volumetric attributes: they typically do not contain malware,
are not sent from well-known malicious IPs, often do not con-
tain a link, and are sent to a small number of recipients (with
the explicit intent of evading volumetric filters). When em-
ployee impersonation attacks do contain a link, it is typically
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a link to a fake sign up page on a legitimate website that was
compromised, which does not appear on any IP black lists. In
addition, the text of the attacks is tailored to the recipient, and
is typically not caught by volume-based filters.

Our design goal is to detect and quarantine BEC attacks in
real-time, at a low false positive rate (1 in a million emails)
and high precision (95%). We make the observations that
popular cloud email systems, such as Office 365 and Gmail,
provide APIs that enable account administrators to allow ex-
ternal applications to access historical emails. Therefore, we
design a system that detects BEC by relying on historical
emails available through these APIs.

Prior work on detecting impersonation has been conducted
either on very small datasets [10, 14, 20, 45]), or focused on
stopping a subset of BEC attacks (domain spoofing [14] or
emails with links [20]). In addition, most prior work suffers
from very low precision (only 1 in 500 alerts is an attack [20])
or very high false positive rates [10, 45]), which makes prior
work unsuitable for detecting BEC in real-time.

The main challenge in designing a system that can detect
BEC at a low false positive rate is that BEC emails are very
rare as a percentage of all emails. In fact, in our dataset, less
than one out of 50,000 emails is a BEC attack. Therefore, in
order to achieve low false positives, we design a system using
supervised learning, which relies on a large training set of
BEC emails. However, bootstrapping a supervised learning
systems presents two practical challenges. First, it is difficult
to label a sufficiently large training dataset that includes mil-
lions of emails. Second, it is challenging to train a classifier on
an imbalanced dataset, in which the training dataset contains
almost five orders of magnitude fewer positive samples (i.e.,
BEC attacks) than negative samples (i.e., innocent emails).

In this paper, we present how we initially trained BEC-
Guard, a security system that automatically detects and quar-
antines BEC attacks in real-time using historical emails. BEC-
Guard is part of a commercial product, Barracuda Sentinel,
used by thousands of corporate customers of Barracuda Net-
works to prevent BEC, account takeover, spear phishing and
other targeted attacks. BEC-Guard does not require an ana-
lyst to review the detected emails, but rather relies on offline
and infrequent re-training of classifiers. The key insight of
BEC-Guard is to split the training and classification into two
parts: header and body.

Instead of directly classifying BEC attacks, the imperson-
ation classifier detects impersonation attempts, by determin-
ing if an attacker is impersonating an employee in the com-
pany by inspecting the header of the email. It utilizes features
that include information about which email addresses em-
ployees typically utilize, how popular their name is, and char-
acteristics of the sender domain. The content classifiers are
only run on emails that were categorized as impersonation at-
tempts, and inspects the body of the email for BEC. For emails
that do not contain links, we use a k-nearest neighbors [43]
(KNN) classifier that weighs words using term frequency-

inverse document frequency [28, 42] (TFIDF). For emails
with links, we train a random forest classifier that relies on the
popularity as well as the position of the link in the text. Both
of the content classifiers can be retrained frequently using
customer feedback.

To create the initial classifiers, we individually label and
train each type of classifier: the labels of the impersonation
classifier are generated using scripts we ran on the training
dataset, while the content classifiers are trained over a manu-
ally labeled training dataset. Since we run the content classi-
fication only on emails that were detected as impersonation
attempts, we need to manually label a much smaller subset of
the training dataset. In addition, to ensure the impersonation
classifier is trained successfully over the imbalanced dataset,
we develop an under-sampling technique for legitimate emails
using Gaussian Mixture Models, an unsupervised clustering
algorithm. The classifiers are typically re-trained every few
weeks. The dataset available for initial training consists of
a year worth of historical emails from 1500 customers, with
an aggregate dataset of 2 million mailboxes and 2.5 billion
emails. Since training the initial classifiers, our dataset has
been expanded to include tens of millions of mailboxes.

BEC-Guard uses the APIs of cloud-based email systems
(e.g., Office 365 and Gmail), both to automatically learn the
historical communication patterns of each organization within
hours, and to quarantine emails in real-time. BEC-Guard sub-
scribes to API calls, which automatically alert BEC-Guard
whenever a new email enters the organization’s mailbox. Once
notified by the API call, BEC-Guard classifies the email for
BEC. If the email is determined to be BEC, BEC-Guard uses
the APIs to move the email from the inbox folder to a dedi-
cated quarantine folder on the end-user’s account.

To evaluate the effectiveness of our approach, we measured
BEC-Guard’s performance on a dataset of emails taken from
several hundred organizations. Within this labeled dataset,
BEC-Guard achieves a a precision of 98.2%, a false positive
rate of only one in 5.3 million. To summarize, we make the
following contributions:

• First real-time system for preventing BEC that achieves
high precision and low false positive rates.

• BEC-Guard’s novel design relies on cloud email provider
APIs both to learn the historical communication patterns
of each organization, and to detect attacks in real-time.

• To cope with labeling millions of emails, we split the
detection problem into two sets of classifiers run sequen-
tially.

• We use different types of classifiers for the header and
text of the email. The headers are classified using a ran-
dom forest, while the text classification relies primarily
on a KNN model that is not dependent on any hard-coded
features, and can be easily re-trained.

• To train the impersonation classifier on an imbalanced
dataset, we utilize a sampling technique for the legiti-
mate emails using a clustering algorithm.
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BEC Objective Link? Percentage

Wire transfer No 46.9%
Click Link Yes 40.1%
Establish Rapport No 12.2%
Steal PII No 0.8%

Table 1: The objective of BEC attacks as a percentage of 3,000
randomly chosen attacks. 59.9% of attacks do not involve a phishing
link.

Role Recipient % Impersonated %

CEO 2.2% 42.9%
CFO 16.9% 2.2%
C-level 10.2% 4.5%
Finance/HR 16.9% 2.2%
Other 53.7% 48.1%

Table 2: The roles of recipients and impersonated employees from
a sample of BEC attacks chosen from 50 random companies. C-
level includes all executives that are not the CEO and CFO, and
Finance/HR does not include executives.

2 Background
Business email compromise, also known as employee im-
personation, CEO fraud, and whaling,1 is a class of email
attacks where an attacker impersonates an employee of the
company (e.g., the CEO, a manager in HR or finance), and
crafts a personalized email to a specific employee. The intent
of this email is typically to trick the target to wire money,
send sensitive information (e.g., HR or medical records), or
lead the employee to follow a phishing link in order to steal
their credentials or download malware to their endpoint.

BEC has become one of the most damaging email-borne
attacks in recent years, equaling or surpassing other types of
attacks, such as spam and ransomware. Due to the severity of
BEC attacks, the FBI started compiling annual reports based
on US-based organizations that have reported their fraudulent
wire transfers to the FBI. Based on the FBI data, between
2013 and 2018, $12 billion have been lost [13]. To put this in
perspective, a Google study estimates that the total amount of
ransomware payments in 2016 was only $25 million [11].

In this section, we review common examples of BEC, and
provide intuition on how their unique characteristics can be
exploited for supervised learning classification.

2.1 Statistics
To better understand the goals and methodology of BEC at-
tacks, we compiled statistics for 3,000 randomly selected
BEC attacks in our dataset (for more information about our
dataset, see §4.2). Table 1 summarizes the objectives of the
attacks. The results show that the most common BEC in the
sampled attacks is try to deceive the recipient to perform a
wire transfer to a bank account owned by the attacker, while
about 0.8% of the attacks ask the recipient to send the attacker

1We refer to this attack throughout the paper as BEC.

personal identifiable information (PII), typically in the form
of W-2 forms that contain social security numbers. About
40% of attacks ask the recipient to click on a link. 12% of
attacks try to establish rapport with the target by starting a
conversation with the recipient (e.g., the attacker will ask the
recipient whether they are available for an urgent task). For
the “rapport” emails, in the vast majority of cases, after the
initial email is responded to the attacker will ask to perform a
wire transfer.

An important observation is that about 60% of BEC attacks
do not involve a link: the attack is simply a plain text email
that fools the recipient to commit a wire transfer or send
sensitive information. These plain text emails are especially
difficult for existing email security systems, as well as prior
academic work to detect [20], because they are often sent
from legitimate email accounts, tailored to each recipient, and
do not contain any suspicious links.

We also sampled attacks from 50 random companies in
our dataset, and classified the roles of the recipient of the
attack, as well as the impersonated sender. Table 2 presents
the results. Based on the results, the term “CEO fraud” used
to describe BEC is indeed justified: about 43% of the imper-
sonated senders were the CEO or founder. The targets of the
attacks are spread much more equally across different roles.
However, even for impersonated senders, the majority (about
57%) are not the CEO. Almost half of the impersonated roles
and more than half of targets are not of “sensitive” positions,
such as executives, finance or HR. Therefore, simply protect-
ing employees in sensitive departments in not sufficient to
protect against BEC.

2.2 Common Types of BEC
To guide the discussion, we describe the three most common
examples of BEC attacks within our dataset: wire transfer,
rapport, and impersonation phishing. In §6 we will discuss
other attacks that are not covered by this paper. All three
examples we present are real BEC attacks from within our
dataset, in which the names, companies, email addresses and
links have been anonymized.

Example 1: Wire transfer example

From: "Jane Smith" <jsmith@acrne.com>
To: "Joe Barnes" <jbarnes@acme.com>
Subject: Vendor Payment

Hey Joe,

Are you around? I need to send a wire
transfer ASAP to a vendor.

Jane

In Example 1, the attacker asks to execute a wire transfer.
Other similar requests include asking for W-2 forms, medical
information or passwords. In the example the attacker spoofs
the name of an employee, but uses an email address that
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Example 2: Rapport example

From: "Jane Smith" <jsmith@acme.com>
Reply -to: "Jane Smith" <ceo.executive@outlook.com>
To: "Joe Barnes" <jbarnes@acme.com>
Subject: At desk?

Joe, are you available for something urgent?

Example 3: Spoofed Name with Phishing Link

From: "Jane Smith" <greyowl1234@comcast.net>
To: "Joe Barnes" <jbarnes@acme.com>
Subject: Invoice due number 381202214

I tried to reach you by phone today but I
couldn ’t get through. Please get back to me
with the status of the invoice below.

Invoice due number 381202214:
[http://firetruck4u.net/past-due-invoice/]

does not belong to the organization’s domain. Some attackers
even use a domain that looks similar to the target organiza-
tion’s domain (e.g., instead of acme.com, the attacker would
use acrne.com). Since many email clients do not display the
sender email address, some recipients will be deceived even
if the attacker uses an unrelated email address.

Example 2 tries to create a sense of urgency. After the recip-
ient responds to the email, the attacker will typically ask for a
wire transfer. The email has the from address of the employee,
while the reply-to address will relay the response back to the
attacker. Email authentication technologies such as DMARC,
SPF and DKIM can help stop spoofed emails. However, the
vast majority of organizations do not enforce email authenti-
cation [25], because it can be difficult to implement correctly
and often causes legitimate emails to be blocked.2 Therefore,
our goal is to detect these attacks without relying on DMARC,
SPF and DKIM.

Example 3 uses a spoofed name, and tries to get the re-
cipient to follow a phishing link. Such phishing links are
typically not detected by existing solutions, because the link
is unique to the recipient (“zero-day”) and will not appear
in any black lists. In addition, attackers often compromise
relatively reputable websites (e.g., small business websites)
for phishing links, which are often classified as high repu-
tation links by email security systems. The link within the
email will typically lead the recipient to a website, where they
will be prompted to log in a web service (e.g., an invoicing
application) or download malware.

3 Intuition: Exploiting the Unique Attributes
of Each Attack

The three examples all contain unique characteristics, which
set them apart from innocent email messages. We first de-

2Many organizations have legitimate systems that send emails on their
behalf, for example, marketing automation systems, which can be erroneously
blocked if email authentication is not setup properly.

scribe the unique attributes in the header of each example,
and then discuss the attributes of the email body and how they
can be used to construct the features of a machine learning
classifier. We also discuss legitimate corner cases of these
attributes that might fool a classifier and cause false positives.
Header attributes. In Example 1 and 3, the attacker im-
personates the name of a person, but uses a different email
address than the corporate email address. Therefore, if an
email contains a name of an employee, but uses an email
address that is not the typical email address of that employee,
there is a higher probability that the sender is an imposter.

However, there are legitimate use cases of non-corporate
emails by employees. First, an employee might use a personal
email address to send or forward information to themselves
or other employees in the company. Ideally, a machine learn-
ing classifier should be able to learn all the email addresses
that belong to a certain individual, including corporate and
personal email addresses. Second, if an external sender has
the same name as an internal employee, it might seem like an
impersonation.

In Example 2, the attacker spoofs the legitimate email ad-
dress of the sender, but the reply-to email address is different
than the sender address, which is unusual (we will also dis-
cuss the case where the attacker sends a message from the
legitimate address of the sender without changing the reply-to
field in §6). However, such a pattern has legitimate corner
cases as well. Some web services and IT systems, such as
LinkedIn, Salesforce, and other support and HR applications,
“legitimately impersonate” employees to send notifications,
and change the reply-to field to make sure the response to the
message is recorded by their system.

Other header attributes might aid in the detection of BEC
attacks. For example, if an email is sent at an abnormal time of
day, or from an abnormal IP or from a foreign country. How-
ever, many BEC attacks are designed to seem legitimate, and
are sent in normal times of day and from seemingly legitimate
email addresses.
Body attributes. The body of Example 1 contains two
unique semantic attributes. First, it discusses sensitive in-
formation (a wire transfer). Second, it is asking for a special,
immediate request. Similarly, the text of Example 2 is ask-
ing whether the recipient is available for an urgent request.
Such an urgent request for sensitive information or availabil-
ity might be legitimate in certain circumstances (for example,
in an urgent communication within the finance team).

The unique attribute in the body of Example 3 is the link
itself. The link is pointing to a website that does not have
anything to do with the company: it does not belong to a web
service the company typically uses, and it is not related to the
company’s domain.

Finally, all three examples contain certain textual and visual
elements that are unique to the identity of the sender. For
example, Example 1 contains the signature of the CEO and
all of the emails contain a particular grammar and writing
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style. If any of these elements deviate from the style of a
normal email from a particular sender, they can be exploited
to detect an impersonation. Since in many BEC emails the
attackers take great care in making the email appear legitimate,
we cannot overly-depend on detecting stylistic aberrations.

As shown above, each of the examples has unique anoma-
lous attributes that can be used to categorize it as a BEC attack.
However, as we will show in §7, none of these attributes on
its own is sufficient to classify an email with a satisfactory
false positive rate.

Leveraging historical emails. Much of prior work in de-
tecting email-borne threats relies on detecting malicious sig-
nals in the email, such as sender and link domain reputa-
tion [2, 48], malicious attachments [49], as well as relying on
link click logs and IP logins [20]. However, as Table 1 and
the examples we surveyed demonstrate, most BEC attacks
do not contain any obviously malicious attachments or links.
Intuitively, access to the historical emails of an organization
would enable a supervised learning system to identify the
common types of BEC attacks by identifying anomalies in
the header and body attributes. We make the observation that
popular cloud-based email providers, such as Office 365 and
Gmail, enable their customers to allow third party applications
to access their account with certain permissions via public
APIs. In particular, these APIs can enable third-party applica-
tions to access historical emails. This allows us to design a
system that uses historical emails to identify BEC attacks.

4 Classifier and Feature Design
In this section, we describe BEC-Guard’s design goals, and its
training dataset. We then describe the initial set of classifiers
we used in BEC-Guard, and present our approach to training
and labeling.

4.1 Design Goals
The goal of BEC-Guard is to detect BEC attacks in real-time,
without requiring the users of the system to utilize security
analysts to manually sift through suspected attacks. To meet
this goal, we need to optimize two metrics: the false positive
rate, and the precision. The false positive rate is the rate of
false positives as a percentage of total received emails. If we
assume an average user receives over 100 emails a day, in
an organization with 10,000 employees, our goal is that it
will be infrequent to encounter a false positive (e.g., once a
day for the entire organization). Therefore, our target false
positive rate is less than one in a million. The precision is the
rate of true positives (correctly detected BEC attacks) as a
percentage of attacks detected by the system, while the false
positive rate is a percentage of false positives of all emails
(not just emails detected by the system). If the precision is not
high, users of BEC-Guard will lose confidence in the validity
of its predictions. In addition to these two metrics, we need
to ensure high coverage, i.e., that the system catches the vast

majority of BEC attacks.

4.2 Dataset and Privacy
We developed the initial version of BEC-Guard using a dataset
of corporate emails from 1,500 organizations, which are ac-
tively paying customers of Barracuda Networks. The organi-
zations in our dataset vary widely in their type and size. The
organizations include companies from different industries
(healthcare, energy, finance, transportation, media, education,
etc.). The size of the organization varies from 10 mailboxes to
more than 100,000. Overall, to train BEC-Guard, we labeled
over 7,000 examples of BEC attacks, randomly selected from
the 1,500 organizations.

To access the data, these organizations granted us permis-
sion to access to the APIs of their Office 365 email environ-
ments. The APIs provide access to all historical corporate
emails. This includes emails sent internally within the orga-
nization, and from all folders (inbox, sent, junk, etc.). The
API also allows us to determine which domains are owned by
each organization, and even whether an email was read.

Ethical and privacy considerations. BEC-Guard is part
of a commercial product, and the 1,500 customers that partic-
ipate in the dataset provided their legal consent to Barracuda
Networks to access their historical corporate emails for the
purpose identifying BEC. Customers also have the option of
revoking access to BEC-Guard at any time.

Due to the sensitivity of the dataset, it was only exposed to
the five researchers who developed BEC-Guard, under strict
access control policies. The research team only accessed his-
torical emails for the purposes of labeling data to develop
BEC-Guard’s classifiers. Once the classifiers were developed,
we permanently deleted all of the emails that are not actively
used for training the classifiers. The emails used for classifi-
cation are stored encrypted, and access to them is limited to
the research team.

4.3 Dividing the Classification into Two Parts
The relative rare occurrence of BEC attacks influenced several
of our design choices. Our first design choice was to rule out
unsupervised learning. Unsupervised learning typically uses
clustering algorithms (e.g., k-means [15]) to group email cat-
egories, such as BEC emails. However, a clustering algorithm
would typically categorize many common categories (e.g.,
social emails, marketing emails), but since BEC is so rare, it
results in low precision and many false positives. Therefore,
supervised learning algorithms are more suitable for detecting
BEC at a high precision. However, using supervised learning
presents its own set of challenges.

In particular, BEC is an extreme case of imbalanced data.
When sampled uniformly, in our dataset, “legitimate” emails
are 50,000× more likely to appear than the BEC emails. This
presents two challenges. First, in order to label a modest
number of BEC emails (e.g., 1,000), we need to label a corpus
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on the order of 50 million legitimate emails. Second, even
with a large number of labeled emails, training a supervised
classifier over imbalanced datasets is known to cause various
problems, including biasing the classifier to prefer the larger
class (i.e., legitimate emails) [24,26,47,51]. To deal with this
extreme case of imbalanced data, we divided the classification
and labeling problem into two parts. The first classifier looks
only at the metadata of the email, while the second classifier
only examines the body and subject of the email.

The first classifier looks for impersonation emails. We de-
fine an impersonation as an email that is sent with the name of
a person, but was not actually sent by that person. Imperson-
ation emails include malicious BEC attacks, and they also in-
clude emails that legitimately impersonate an employee, such
as internal systems that send automated emails on behalf of
an employee. The impersonation classifier only analyzes the
metadata of the email (i.e., sender, receiver, CC, BCC fields).
The impersonation classifier detects both spoofed name (Ex-
ample 1 and 3) and spoofed emails (Example 2). The second
set of classifiers, the content classifiers, only classify emails
that were detected as impersonation emails, by examining
the email’s subject and body to look for anomalies. We use
two different content classifiers that each look for different
types of BEC attacks.3 The two content classifiers are: the
text classifier, which relies on natural language processing to
analyze the text of the email, and the link classifier, which
classifies any links that might appear in the email.

All of our classifiers are trained globally on the same
dataset. However, to compute some of the features (e.g., the
number of time the sender name and email address appeared
together), we rely on statistics that are unique to each organi-
zation.

4.4 Impersonation Classifier
Table 3 includes the main features used by the impersonation
classifier. The features describe the number of times specific
email addresses and names have appeared before in the sender
and reply-to fields, as well as statistics about the sender’s
identity.

To demonstrate why it is helpful to maintain historical
statistics of a particular organization, consider Figure 1. The
figure depicts the number of email addresses that were used
by each sender in an organization with 44,000 mailboxes
over three months. 82% of the users had emails sent from
only one address, and the rest had emails that were sent from
more than one address. The reason that some of the senders
used a large number of email addresses, is that they were
repeatedly impersonated in BEC attacks. For instance, the
CEO is a common target for impersonation. and is often
targeted dozens of times. However, this signal alone is not

3There is no inherent advantage in using multiple content classifiers in
terms of the false positive rate or precision. We decided to use two different
content classifiers, because it made it easier for us debug and maintain them
separately.

Feature Description

Sender has corp domain? Is sender address from corp domain?

Reply-to != sender ad-
dress?

Reply-to and sender addresses different?

Num times sender and
email

Number of times sender name and email
address appeared

Num times reply-to ad-
dress

Number of times reply-to address ap-
peared

Known reply-to service? Is reply-to from known web service (e.g.,
LinkedIn)?

Sender name popularity How popular is sender name

Table 3: Main features used by the impersonation classifier, which
looks for impersonation attempts, including spoofed names and
emails.
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Figure 1: Number of unique emails addresses that were observed
for each user in an organization with 44,400 mailboxes. The X
axis is the number of unique email addresses that were observed,
as a percentage (in the Y axis) of the total number of users of the
organization.

sufficient to detect impersonation,. For example, some of the
senders that have a large number of email addresses represent
shared mailboxes (e.g., “IT” or “HR”), and are legitimate.

Hence, several of the features in the impersonation clas-
sifier rely on the historical communication patterns of the
organization. This influenced BEC-Guard’s architecture. In
addition, we maintain a list of known web services that “legit-
imately” send emails with reply-to addresses that are different
than the sender address (e.g., LinkedIn, Salesforce), in order
to capture the response. The original list of commonly-used
services was populated from a list of the domains of the major
web services. We then augmented this list with additional ser-
vices when we encountered them during the labeling process
(in §6 we discuss possible evasion techniques related to this
list of legitimate reply-to senders). The sender name popu-
larity score is computed offline by maintaining a list of how
frequently names appear across different organizations in our
dataset. The more popular a name, the higher the likelihood
that a name with an email address the employee typically
does not use is another person (a name collision).

Name and nickname matching. In order to detect name
spoofing, the impersonation classifier needs to match the
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sender name with a name of an employee. However, names
can be written in various forms. For example: “Jane Smith”
can be written as: “Smith, Jane”, “Jane J. Smith” or “Jane
Jones Smith”. In addition, we need to deal with special char-
acters that might appear in names, such as ì or ä.

To address these problems, BEC-Guard normalizes names.
It stores employee name as <first name, last name> tuples, and
checks all the variants of the sender name to see if it matches
a name of an employee with a corporate email address. These
variants include stripping the middle name or initial, reversing
order of the first name and surname, and stripping suffixes.
Suffixes include examples like “Jr.” or when the email address
is sent as part of the sender name. In addition, we match the
first name against a publicly available list of nicknames [36],
to catch cases for example when the attacker sends an email
as “Bill Clinton”, and the name of the employee is stored as
“William Clinton”.

Content classifiers. Our system uses two content classi-
fiers: the text classifier and link classifier. The text classifier
catches attacks similar to Example 1 and 2, and the link classi-
fier stops attacks that are similar to Example 3. By design, the
content classifiers are meant to be updated more frequently
than the impersonation classifier, and should be easily re-
trained based on false negatives and false positives reported
by users.

Text classifier. In BEC attacks similar to Example 1 and 2,
the body contains words that are indicative of a sensitive or
special request, such as “wire transfer” or “urgent”. Therefore,
our first iteration of the text classifier was designed to look for
specific words that might imply a special request or a financial
or HR transaction. The features of the classifiers described
the position in the text of a list of sensitive words and phrases.
However, over time, we noticed this approach suffered from
several problems. First, a classifier that relies on hard-coded
keywords can miss attacks when attackers slightly vary a
specific word or phrase. Second, to successfully retrain the
classifier, we had to modify the lists of keywords that it looks
for, which required manually updating the keyword list on a
daily basis.

Instead, we developed a text classifier that learns expres-
sions that are indicative of BEC on its own. The first step is to
pre-process the text. BEC-Guard removes information from
the subject and body of the email that would not be useful for
classifying the email. It removes regular expression patterns
that include salutations (“Dear”, “Hi”), pre-canned headers,
as well as footers (“Best,”) and signatures. It also removes all
English stopwords, as well as any names that may appear in
the email.

The second step is to compute the frequency-inverse docu-
ment frequency [42] (TFIDF) score of each word in the email.
TFIDF represents how important each word is in an email,
and is defined as:

T F(w) =
num times w appears in email

num words in email

IDF(w) =
log(num emails)

num emails with w

Where w is a given word in an email. T F(w) · IDF(w)
gives a higher score to a word that appears frequently in a
specific email, but which is relatively rare in the whole email
corpus. The intuition is that in BEC emails, words for example
that denote urgency or a special request would have a high
TFIDF score, because they appear frequently in BEC emails
but less so in legitimate emails.

When training the text classifier, we compute the TFIDF
score of each word in each email of the training set. We also
compute the TFIDF for pairs of words (bigrams). We store
the global statistics of the IDF as a dictionary, which con-
tains number of emails in the training set that contain unique
phrases encountered in the training of the text classifier. We
limit the dictionary size to 10,000 of the top ranked words (we
evaluate how the size of the dictionary impacts classification
precision in §7.2).

The feature vector of each email is equal to the the number
of words in the dictionary, and each number represents the
TFIDF of each one of the words in the dictionary. Words
that do not appear in the email, or that do not appear in the
dictionary have a TFIDF of zero. The last step is to run a
classifier based on these features. Table 4 presents the top
10 phrases (unigram and bigram) in the BEC emails in our
dataset. Note that the top phrases all indicate some form of
urgency.

Top phrases in BEC emails by TFIDF

1. got moment 6. need complete

2. response 7. ASAP

3. moment need 8. urgent response

4. moment 9. urgent

5. need 10. complete task

Table 4: The top 10 phrases of BEC emails, sorted by their TFIDF
ranking from our evaluation dataset (for more information on evalu-
ation dataset see §7.1). The TFIDF was computed for each word in
all of the BEC emails in our evaluation dataset.

Link classifier. The link classifier detects attacks similar
to Example 3. In these attacks, the attacker tries to get the
recipient to follow a phishing link. As we described earlier,
these personalized phishing links are typically not detected by
IP blacklists, and are usually unique to the recipient. In this
case, since the content classifier only classifies emails that
were already classified as impersonation emails, it can mark
links as “suspicious”, even if they would have a high false
positive rate otherwise. For example, a link that points to a
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small website, or one that was recently registered, combined
with an impersonation attempt would have a high probability
of being a BEC email.

Feature Description

Domain popularity How popular is the link’s least popular
domain

URL field length Length of least popular URL (long URLs
are more suspicious)

Domain registration date Date of domain registration of least popu-
lar domain (new domains are suspicious)

Table 5: Main features used by the link request classifier, which
stops attacks like in Example 3.

Table 5 describes the main features used by the link request
classifier. The domain popularity is calculated by measur-
ing the Alexa score of the domain. In order to deal with link
shorteners or link redirections, BEC-Guard expands the URLs
before computing their features for the link classifier. In addi-
tion, several of the URL characteristics require determining
information about the domain (popularity and score). For the
domain popularity feature, we cache a list of the top popular
domains, and update it offline. To determine the domain reg-
istration date, BEC-Guard does a real-time WHOIS lookup.
Note that unlike the impersonation classifier, which needs to
map the distribution of email address per sender name, none
of the features of the text and link classifier are organization-
specific. This allows us to easily retrain them based on user
reported emails.

4.5 Classifier Algorithm
The impersonation and link classifiers use random forest [5]
classification. Random forests are comprised of randomly
formed decision trees [40], where each tree contributes a
vote, and the decision is determined by the majority of the
trees. Our system uses random forests rather than individual
decision trees, since we found they provide better precision,
but for offline debugging and analysis we often visualize
individual decision trees. We decided to use KNN for the text
classifier, because it had slightly better coverage than random
forests. However, we found that since the text classifier uses a
very large number of features (a dictionary of 10,000 phrases),
its efficacy was similar across different classifiers. In §7.2 we
evaluate the performance of the different classifier algorithms.

In addition, we have explored deep-learning based tech-
niques, such as word2vec [34] and sense2vec [46], which
expand each word to a vector that represents its different mean-
ings. We currently do not use such deep-learning techniques,
because they are computationally heavy both for training and
online classification.

Detecting impersonation of new employees. When a new
employee joins the organization, the impersonation classi-
fier will not have sufficient historical information about that

employee, since they will not have any historical emails. As
that employee receives more emails, BEC-Guard will be start
compiling statistics for the employee. A similar problem may
also arise in organizations that periodically purge their old
emails. In practice, we found that the classifier performs well
after only one month of data.

4.6 Labeling
In order to label the initial training set, we made several as-
sumptions about the BEC attack model. First we assumed
attackers impersonate employees using their name (under a
set of allowed variations, as explained above). Second, we as-
sumed the impersonation does not occur more than 100 times
using the same email address. Third, we assumed the attacker
uses an email address that is different than the corporate ad-
dress, either as the from address or the reply-to address. We
discuss other types of attacks that do not fit these assumptions,
as well as how attackers may evade these assumptions in §6.
Under these constraints, we fully covered all of the possible
attacks and manually labeled them. In addition, we incorpo-
rated missed attacks reported from customers (we discuss this
process in §7.3).

The reason we assumed a BEC email does not impersonate
an employee using the same email address more than 100
times is that BEC-Guard is designed with the assumption
that the organization is already using at a spam filter, which
provides protection against volume-based attacks (e.g., the
default spam protection of Office 365 or Gmail). Therefore, an
attacker that would send an email from an unknown address
more than 100 times to the same recipient would likely be
blocked by the spam filter. In fact, in our entire dataset, which
is only composed of post spam-filtered emails, we have never
witnessed an attacker using the email address to impersonate
an employee more than 20 times. Note that we only used
this assumption for labeling the original training set, and do
not use it for ongoing retraining (since retraining is based on
customer reported attacks).

Impersonation classifier. In order to label training data for
the impersonation classifier, we ran queries on the headers of
the raw emails to uncover all emails that might contain BEC
attacks under our labeling assumptions (see above). We then
labeled the results of all the queried emails as impersonation
emails, and all the emails that were not found by the queries
as legitimate emails.

Content classifiers. The training dataset for the content
classifiers is constructed by running a trained impersonation
classifier on a fresh dataset, which is then labeled manually.
The initial training set we used for the content classifiers in-
cluded 300,000 impersonation emails from randomly selected
organizations over a year of data. Even within this training
data set, we were able significantly further limit the number
of emails that needed to be manually labeled. This is due to
the fact that the vast majority of these emails were obviously
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not BEC attacks, because they were due to a legitimate web
services that impersonates a large number of employees (e.g.,
a helpdesk system sending emails on behalf of the IT staff).

After constructing the initial dataset, training content clas-
sifiers is very straightforward, since we continuously collect
false negative and false positive emails from users and add
them into the training set. Note that we still manually review
these samples before retraining as a measure of quality con-
trol, to ensure that adversaries do not “poison” our training
set, as well as to make sure that users did not label emails
erroneously.

Sampling the dataset. Naïvely training a classifier over an
imbalanced dataset typically biases the classifier to prefer the
majority class. Specifically, it can result in a classifier that
will simply always choose to predict the majority class, i.e.,
legitimate emails, and will thus achieve very high accuracy
(i.e., accuracy = (t p+ tn)/(t p+ tn+ f p+ f n), where t p is
true positives, tn is true negatives, f p is false positives, and
f n is false negatives). Since BEC is so rare in our dataset,
a classifier that always predicts that an email is legitimate
would achieve a high accuracy. This problem is especially
acute in the case of our impersonation classifier, which needs
to do the initial filtering between legitimate and BEC emails.
In the case of content classifiers, we did not have to sample the
dataset, because it deals with a much smaller training dataset.

There are various methods of dealing with imbalanced
datasets, including over-sampling the minority class and
under-sampling the majority class [6,24,27,29,30], as well as
assigning higher costs to incorrectly predicting the minority
class [9, 38].

Our second major design choice was to under-sample the
majority class (the legitimate emails). We made this decision
for two reasons. First, if we decided to over-sample the BEC
attacks, we would need to do so by a large factor. This might
overfit our classifier and bias the results based on a relatively
small number of positive samples. Second, over-sampling
makes training more expensive computationally.

A naïve way to under-sample would be to uniformly sam-
ple the legitimate emails. However, this results in a classifier
with a low precision, because the different categories of legiti-
mate emails are not well represented. For example, uniformly
sampling emails might miss emails from web services that
legitimately impersonate employees. The impersonation clas-
sifier will flag these emails as BEC attacks, because they are
relatively rare in the training dataset.

The main challenge in under-sampling the majority class
is how to represent the entire universe of legitimate emails
with a relatively small number of samples (i.e., comparable
or equal to the number of BEC email samples). To do so, we
cluster the legitimate emails using an unsupervised learning
algorithm, Gaussian Mixture Models (GMM). The cluster-
ing algorithm splits the samples into clusters, each of which
is represented by a Normal distribution, projected onto the
impersonation classifier feature space. Figure 2 illustrates an
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Figure 2: Depiction of running clustering algorithm on a set legiti-
mate emails in a two-dimensional feature space with three clusters.
After clustering the legitimate emails, we choose the number of
samples from each cluster in proportion to the size of the cluster.

example with two features and 14 legitimate email samples.
In this example, the samples are split into three clusters. To
choose a representative sample of legitimate emails, we ran-
domly pick a certain number of samples from each cluster,
proportional to the number of legitimate emails that belong
to each cluster. If for example our goal is to use a total of 7
samples, we would choose 4 samples from the first cluster,
2 samples from the second cluster, and 1 sample from the
third cluster, because the original number of samples in each
cluster is 8, 4, and 2, respectively.

We chose the number of clusters that guarantee a minimal
representation for each major “category” of legitimate email.
We found that using 85 clusters was sufficient for capturing
the legitimate emails in our dataset. When we tried using
more than 85 clusters, the clusters beyond the 85th one would
be nearly or entirely empty. Even after several iterations of
retraining the impersonation classifier, we have have found
that 85 clusters are sufficient to represent our dataset.

5 System Design
BEC-Guard consists of two key stages: an online classifica-
tion stage and an offline training stage. Offline training is
conducted periodically (every few days). When a new email
arrives, BEC-Guard combines the impersonation and con-
tent classifiers to determine whether the email is BEC or not.
These classifiers are trained ahead of time in the offline train-
ing stage. We describe the key components of our system
design in more detail below.

Traditionally, commercial email security solutions have a
gateway architecture, or in other words, they sit in the data
path of inbound emails and filter malicious emails. As de-
scribed above, some of BEC-Guard’s impersonation classifier
features rely on historical statistics of internal communica-
tions. The gateway architecture imposes constraints on detect-
ing BEC attacks for two reasons. First, a gateway typically
cannot observe internal communications. Second, the gateway
usually does not have access to historical communications, so
it would require several months or more of observing the com-
munication patterns before the system would be able to detect
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Figure 3: Comparison between the architecture of traditional email
security systems, which sit as a gateway that filters emails before
they arrive in the mail system, and BEC-Guard’s architecture, which
relies on APIs for learning the historical communication patterns of
each organization, and detecting attacks in real-time.

incoming BEC attacks. Fortunately, cloud-based email ser-
vices, such as Office 365 and Gmail, provide APIs that enable
access to historical communications, as well as to monitor and
move emails in real-time. BEC-Guard leverages these APIs
both to gain access to historical communication, and also to
do near real-time BEC detection. Figure 3 compares the gate-
way architecture with BEC-Guard’s API based architecture.
We describe BEC-Guard’s design and implementation using
the Office 365 APIs.
Warmup phase. We name the process of analyzing each
organization’s historical communications, the warmup phase.
In order to start the warmup, the organization enables BEC-
Guard to get access to its Office 365 account with an authen-
tication token using OAuth with an Office 365 administrator
account. This allows BEC-Guard to access the APIs for all
the users associated with the account. Once authenticated,
BEC-Guard starts collecting statistics necessary for the imper-
sonation classifier (e.g., number of times a certain user sent an
email from a certain email address). The statistics collected
by BEC-Guard go back one year. We found that the classifier
performs well with as little as one month of historical data.
Online classification. After the warmup phase, BEC-
Guard is ready to detect incoming BEC attacks in real-time.
To do so, BEC-Guard waits for a webhook API call from any
of the users in the organization’s Office 365 account. The
webhook API calls BEC-Guard anytime there is any new
activity for a specific user. When the webhook is triggered,
BEC-Guard checks if there is a new received email. If so,
BEC-Guard retrieves the email, and classifies it, first using
the impersonation classifier, using a database that contains the
historical communication statistics unique to each organiza-
tion. Then, only if it was classified as an impersonation email,
BEC-Guard classifies the email using the content classifiers.

If at least one of the content classifiers classifies the email
as a BEC attack, BEC-Guard quarantines the email. This is
performed by removing the email from the folder where it
was received by the user (typically the inbox folder), and
moving it into a designated quarantine folder in the end user’s

mailbox. Since the email is quarantined on the server side,
when the user’s email clients synchronize the email it will
also get quarantined on the user’s email clients. In addition,
the vast majority of emails get quarantined by BEC-Guard
before they are synchronized to the user’s email client.

6 Evasion
In this section we discuss attacks that are currently not stopped
by BEC-Guard, and evasion techniques that can be used by at-
tackers to bypass BEC-Guard and how they can be addressed.

BEC-Guard is a live service in production, and has evolved
rapidly since it was first launched in 2017. We have deployed
additional classifiers to augment the ones described in this
paper in response to some of the evasion techniques presented
below, and the existing classifiers have been retrained multiple
times. Another benefit of the API-based architecture is that if
we find some attacks were missed by an evasion we can go
back in time and find them, and update the system accordingly.
The email threat landscape is rapidly changing, and while
it is important that the detectors maintain high precision, it
is equally important that the security system can be easily
adapted and retrained.

6.1 Stopping Other Attacks
BEC-Guard focuses on stopping BEC attacks, in which an
external attacker impersonates an employee. However, there
are other types of BEC that are not covered by BEC-Guard.

Account takeover. When attackers steal the credentials of
an employee, they can login remotely to send BEC emails to
other employees. We term this use case “account takeover”.
There are several approaches to detecting account takeover,
including monitoring internal emails for anomalies (e.g., an
employee suddenly sending many emails to other employees
they typically do not communicate with), monitoring suspi-
cious IP logins, and monitoring suspicious inbox rule changes
(e.g., an employee suddenly creates a rule to delete outbound
emails) [18–20]. This scenario is not the focus of BEC-Guard,
but is covered by our commercial product.

Impersonating both sender name and email without
changing reply-to address. It is possible that external at-
tackers could send emails that impersonate both the sender’s
name and email address, without using a different reply-to
address. We have not observed such attacks in our dataset,
but they are possible, especially in the case where the attacker
asks the recipient to follow a link to steal their credentials.
Similar to account takeover, such attacks can be detected by
looking for abnormal email patterns. Another possible ap-
proach, used by Gascon et al., is to look for anomalies in the
actual MIME header [14].

Impersonation of external people. BEC-Guard’s imper-
sonation classifier currently relies on having access to the
historical inbound email of employees. In order to detect im-
personation of external people that frequently communicate
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with the organization, BEC-Guard can incorporate emails that
are sent from external people to the company.

Text classification in any language. BEC-Guard is cur-
rently optimized to catch BEC in languages that appear fre-
quently in our dataset. Both the impersonation classifier and
the link classifier are not language-dependent, but the text
classifier relies on the TFIDF dictionary is dependent on the
language of the labeled dataset. There are a few possible ways
to make BEC-Guard’s text classifier completely language ag-
nostic. One is to deliberately collect sufficient samples in a
variety of languages (either based on user reports or generate
them synthetically), and label and train on those emails. An-
other potentially more scalable approach is to translate the
labeled emails (e.g., using Google Translate or a similar tool).

Generic sender names. BEC-Guard explicitly tries to de-
tect impersonations of employee names. However, attackers
may impersonate more generic names, such as “HR team” or
“IT”. This attack is beyond the scope of this paper, but we
address it using a similar approach to BEC-Guard in order to
detect these attacks: we combine our content classifiers with
a new impersonation classifier, which looks for sender names
that commonly occur across different organizations, but are
sent from a non-corporate email address or have a different
reply-to address.

Brand impersonation. Similar to the “generic sender” at-
tack, attackers often impersonate popular online services (e.g.,
Google Drive or Docusign). These types of attacks are out of
the scope for this paper, but we detect them using a similar
methodology of combining content classifier, with an imper-
sonation classifier that looks for an anomalous sender (e.g.,
the sender name has “Docusign”, but the sender domain has
no relation to Docusign).

6.2 Evading detection
Beyond BEC attacks that BEC-Guard is not designed to detect
(as noted above), there are other several ways attackers can
try to evade BEC-Guard. We discuss these below and discuss
how we have adapted BEC-Guard to address them.

Legitimizing the sender email address. Any system that
uses signals based on anomaly detection is vulnerable to at-
tackers that invest extra effort in not appearing “anomalous”.
For example, when labeling our dataset, we assume that the
impersonated employee was not impersonated by the same
sender email address more than 100 times. While this thresh-
old is not hard coded into the impersonation classifier, it was
a threshold we used to filter emails for the initial training
set, and therefore may bias the classifier. Note that we have
never observed an attacker impersonating an employee with
the same email more than 20 times.

We believe this assumption is valid since BEC-Guard as-
sumes that the organization is already using a volume-based
security filter (e.g., the default spam protection of O365 or

Gmail or another spam filter), which would pick up a “volu-
metric” attack. Typically these systems would flag an email
that was sent at once from an unknown address to more than
100 employees as spam.

However, a sophisticated attacker may try to bypass these
filters by sending a large number of legitimate emails from the
impersonated email address to a particular organization, and
only after sending hundreds of legitimate emails they would
send a BEC using that address. Of course the downside of this
approach is that it would require more investment from the
attacker, and increase the economic cost of executing a suc-
cessful BEC campaign. One way to overcome such an attack,
is to add artificial samples to the impersonation classifier that
have higher thresholds, in order to remove the bias. Of course
this may reduce the overall precision of BEC-Guard.

Using infrequent synonyms. Another evasion technique is
to send emails that contain text that is different or has a lower
TFIDF than the labeled emails used to train our text classifier.
For example, the word “bank” has a higher TFIDF, than the
word “fund”. As mentioned before, one way to overcome
these types of attacks is to cover synonyms using a technique,
such as word2vec [34].

Manipulating fonts. Attackers have employed various font
manipulations to avoid text-based detectors. For example, one
technique is to use fonts with a size of zero [35], which are
not displayed to the end user, but can be used to obfuscate
the impersonation or meaning of the text. Another technique
is to use non-Latin letters, such as letters in Cyrillic, which
appear similar to the Latin letters to the end user, but are not
interpreted as Latin by the text-based detector [16].

In order to deal with these types of techniques, we always
normalize any text before feeding it to BEC-Guard’s clas-
sifiers. For example, we ignore any text with a font size of
zero. If we encounter Cyrillic or Greek in conjunction with
Latin text, we normalize the non-Latin letters to match the
Latin letter that is closest in appearance to it. While these
techniques are heuristic based, they have proved effective in
stopping the common forms of font-based evasion.

Hiding text in an image. Instead of using text within the
email, attackers can hide the text within an embedded image.
We have observed this use case very rarely in practice, most
likely because these attacks are probably less effective. Many
email clients do not display images by default and even when
they do, the email may seem odd to the recipient. Therefore,
we currently do not address this use case, but a straightforward
way to address it would be to use OCR to extract the text
within the image.

Using a legitimate reply-to address. As mentioned in §4.4
BEC-Guard relies on a list of legitimate reply-to domains to
reduce false positives. This list could potentially be exploited.
For example, attackers could craft a LinkedIn or Salesforce
profile with the same name of the employee being imper-
sonated and send an impersonation email from that service.
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Precision FP Recall

BEC-Guard 98.2% 0.000019% 96.9%
(Combined) (1 in 5,260,000)
Impersonation Only 11.7% 0.016% 100%

(1 in 6,300)

Table 6: Precision, false positive rate, and recall of BEC-Guard
compared to the impersonation classifier alone.

While this is indeed a potential evasion technique, these third
party services often have their own anti-fraud mechanisms
to stop impersonation. In addition, we believe an imperson-
ation attempt is less likely to succeed if it going through a
third-party service, since it would probably seem much less
natural than simply sending an email from the email account
of the employee. Regardless, we have never seen this evasion
technique being used by attackers.

7 Evaluation
In this section, we evaluate the efficacy of BEC-Guard. We
first analyze the end-to-end performance of BEC-Guard, using
a combination of the impersonation and content classifiers.
We then break down the performance of each set of classifiers,
and analyze the performance of different classifier algorithms.
We also try to estimate the extent of unknown attacks that
are not caught by BEC-Guard, by comparing the number of
reported missed attacks by customers to the number of true
positives.

7.1 End-to-end Evaluation
For the end-to-end evaluation, we randomly sampled emails
that were processed by BEC-Guard in June 2018. We manu-
ally labeled the emails, and evaluated BEC-Guard’s classifiers
on the labeled data. We labeled the emails for the evalua-
tion dataset similar to the way we labeled the training data
for BEC-Guard’s classifiers (see §4.6). We first ran a set of
queries that uncover all the BEC attacks that we could find
under our labeling assumptions. We then manually labeled
the resulting emails, and found 4,221 BEC emails. The entire
process took about a week of work for one person. The emails
that were not labeled as BEC attacks were assumed to be
innocent (In §7.3 we discuss emails that might have been
missed by our labeling process).

To evaluate the classifiers, we randomly split the evaluation
dataset in half: we used half of the emails for training, and the
rest to test the classifiers. The dataset includes 200 million
emails from several hundred organizations.

To test the end-to-end efficacy of BEC-Guard, we ran the
content classifiers only on the emails that were detected as
impersonation emails by the impersonation classifier. Table 6
summarizes the efficacy results. The recall of BEC-Guard is
high within the emails we labeled: 96.9% of the BEC emails
we labeled were successfully classified by the impersonation
classifier as well as one of the content classifiers. The com-
bined false positive rate is only one in 5.3 million emails are

Text classifier

Algorithm Precision FP Recall

Logistic Regression 97.1% 6.1·10−5% 98.4%
Linear SVM 98.3% 3.6·10−5% 98.7%
Decision Tree 96.0% 8.5·10−5% 97.1%
Random Forest 99.2% 1.7·10−5% 96.4%
KNN 98.9% 2.3·10−5% 97.5%

Table 7: Text classifier algorithm efficacy using a dictionary of
10,000 words. There is very little difference between the efficacy of
the algorithms for the text classifier.

Link classifier

Algorithm Precision FP Recall

Logistic Regression 33.3% 85.7·10−5% 96.0%
Linear SVM 92.3% 3.2·10−5% 90.8%
Decision Tree 94.9% 2.3·10−5% 96.3%
Random Forest 97.1% 1.3·10−5% 96.0%
KNN 92.5% 3.3·10−5% 93.5%

Table 8: Link classifier algorithm efficacy. Random forest provides
superior results over the other algorithms.

falsely detected, which is above our design goal of 1 in a
million email. The precision is 98.2%.

The false positives of the combined classifiers were due
to unlikely incidents where the impersonation classifier de-
tected the email (e.g., due to a personal email address) that
also contained anomalous content (e.g., an employee uses a
personal email to forward links with low popularity domains
to a colleague). Another common false positive occurs when
employees leave the organization, and request W-2 forms for
tax purposes or other personal information. We plan on ad-
dressing such false positives by incorporating features that
would indicate whether a sender is no longer an employee
of the organization (e.g., if they have stopped sending emails
from their corporate address). The false negatives are mostly
due to instances where the URL is not deemed suspicious,
because it belongs to a domain that got compromised that
had a relatively high domain popularity, or because the text
of the email is not classified as suspicious. The latter case is
typically because the attacker did not use phrases that were
similar to any of the BEC attacks that were used to train the
text classifier. For example, one of the false negatives asked
the recipient for gift card information, which was not a request
that was used in any prior attacks.

We also ran the impersonation classifier on the evaluation
dataset. Its precision is 11.7%, and its false positive rate is
0.016%. Organizations that are only concerned about recall
and have the ability to tolerate a relatively large number of
false alerts can run the impersonation classifier on its own.
The vast majority of false positives of the impersonation clas-
sifier are due to employees using their personal or university
(alumni) email addresses.
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Figure 4: ROC curve of text classifier with different algorithms. All
four algorithms perform very similarly, and reach a precision cliff at
about 99% recall.

Figure 5: ROC curve of text classifier using KNN with different
dictionary sizes. A dictionary size of 1,000 already provides most of
the benefit.

7.2 Classifier Algorithms
Table 7 compares the results of the text classifier using dif-
ferent classifier algorithms. As the results show, there is a
very small difference between the different classifiers. This
is primarily due to the fact that we use a dictionary with a
large number of features (10,000). Table 8 shows the results
for the link classifier. In the case of the link classifier, random
forest more clearly provides superior results than the other
classifiers, including KNN. The link classifier is more sensi-
tive to the classification algorithm, because it uses a smaller
number of features. Figure 4 presents the ROC curve for four
of the classifier algorithms that have a probabilistic output.
The ROC curve shows the how each classifier can be tweaked
to trade-off precision for recall. All four algorithms behave
almost identically: they provide a high level of precision, until
a recall level close to 99% where their precision drops. Note
that to generate the ROC curves we ran the text classifier
only on the emails that were already classified as imperson-
ations. Therefore, its minimum precision in the ROC curve is
equal to about 11.7%, which is equal to the precision of the

Org TPs FNs Reason

A 31 1 Generic Sender Name
B 4 1 Misclassified Content
C 12 1 External Impersonation
D 8 1 External Impersonation
E 5 1 Misclassified Content

Total 60 5

Table 9: True positives (TPs) and reported false negatives (FNs)
among five organizations, where the administrator has reported at
least one false negative.

impersonation classifier.
To analyze the effect of the dictionary size on the classifi-

cation, Figure 5 plots the efficacy of the text classifier using
KNN with different dictionary sizes. The graph shows that
most of the marginal benefit is achieved with a dictionary size
of 1,000. We observed no noticeable difference in efficacy
when using a dictionary larger than 10,000.

7.3 Evaluating Missed Attacks
A general limitation of evaluating imbalanced datasets is that
it is difficult to accurately estimate the true false negative
rate. In our evaluation dataset, we can only estimate the false
negative rate in relation to the data that we labeled. If we
missed an attack during labeling, and it was not detected by
the classifiers, we would not count it as a false negative.

To deal with “unknown” attacks, our production system
allows users to report attacks that it did not detect. We es-
timate the number of missed attacks among organizations
that have reported missed attacks. We selected five random
organizations that reported missed attacks, and analyzed their
detections in the month during which they reported missed
attacks. Table 9 provides the number of true and missed de-
tections among these five organizations, as well as the reason
for each false negative.

In organization A the attack was missed because the email
did not impersonate an employee name, but rather the sender
name had a generic title (e.g., “Accountant”). BEC-Guard
only detects the impersonation of an employee’s name. As we
explained in our labeling assumptions (see §4.6), BEC-Guard
is only designed to detect attacks that explicitly imperson-
ate an employee name. We speculate that this type of email
would be less successful, because the recipient might find it
unusual to get an email from a sender name with a generic
title, which is not normally used in their company. Neverthe-
less, our commercial product utilizes other detectors that find
“generic titles” as well (see §6). In organization B and E the
impersonation classifier successfully detected an imperson-
ation, but the text classifier did not deem the text of the email
as suspicious. In both instances, we have since retrained BEC-
Guard’s text classifiers using the reported emails. In the case
of organization C and D, the reported missed email was due
to the impersonation of an external colleague (e.g., a vendor
the company works with that got impersonated). In §6 we
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discuss how to extend BEC-Guard to detect such attacks.

8 Related Work
The growing threat of BEC is widely known and has been
described in many in industry and government reports [13,22,
23]. However, the existing academic work uses very small or
synthetic datasets, and suffers from high false positives. In ad-
dition, since existing related work is based on limited datasets,
it fails to address many of the real-world issues discussed in
our paper, such as dealing with the imbalanced dataset, the us-
age of personal email addresses by employees or “legitimate”
impersonations. We believe the reason for the small body of
related work is that BEC primarily affects corporate users
(not consumers), and it is generally difficult for academic
researchers to obtain access to corporate email data.

EmailProfiler [10] builds a behavioral model on incoming
emails in order to stop BEC. However, it is based on only 20
mailboxes, has no examples of real-world attacks and does
not report false positive rates. In addition, there is prior work
on systems that detect emails, which compromise employee
credentials with a phishing link [20,45]. There is some overlap
between BEC attacks and emails that compromise credentials:
in our dataset, 40% of BEC attacks try to phish employee
credentials with links. However, the remaining BEC attacks
do not contain a phishing link that compromises credentials,
and cannot be detected by these systems.

Gascon et al. [14] design a model to stop emails that
spoof the domain of the receiver. Similar to BEC-Guard, they
base their model on the historical communication patterns
of senders. However, in our dataset, spoofing emails repre-
sent only about 1% of BEC attacks. Therefore, their model
would not catch the other 99% of BEC attacks. The reason
domain spoofing represents a small percentage of our dataset,
is our dataset only contains emails that were already filtered
by an existing spam filter (e.g., Office 365’s default filter). Do-
main spoofing emails contain a mismatch between the sender
and reply-to domains, or between the sender domain and the
from email envelope. For this reason, traditional spam filters
already stop a large number of spoofing emails [33]. In addi-
tion, their model is based on a dataset of only 92 mailboxes.

DAS [20] uses unsupervised learning techniques to identify
that result in credential theft, which are a subset of BEC at-
tacks. However, it cannot detect attacks that contain only plain
text, and is based on a dataset from a single organization with
only 19 known attacks. It also suffers from a 0.2% precision,
and a much higher false positive rate than BEC-Guard. Simi-
larly, IdentityMailer [45] tries to prevent employee credential
compromise by modeling employee behavior, and detecting
anomalies in outbound emails. Once an anomaly is detected,
the employee is asked to re-authenticate with two-factor au-
thentication. However, their technique suffers from very high
false positive rates (1%-8%, compared with 1 in millions of
emails in BEC-Guard), and the analysis is based on a small
corpus of emails.

Another contemporaneous study done at Barracuda Net-
works by Ho et al. [18,19] examines the behavior of attackers
using compromised accounts and possible ways to detect ac-
count takeover incidents. The techniques presented in this
paper are complimentary with the other study, and focus on a
different type of attack.

Finally, there is a large body of work on adverserial learn-
ing in the context of spam detection [3, 4, 8, 21, 31, 32, 37, 50]
that is relevant to our work. In the future, we plan to incorpo-
rate some of the evasion techniques introduced in past work,
including randomization and the use of honey pots to trick
adversaries.

9 Conclusions
BEC is a significant cyber security threat that results in bil-
lions of dollars of losses a year. We present the first system
that detects a wide variety of BEC attacks at a high precision
and false positives, and is used by thousands of organizations.
BEC-Guard prevents these attacks in real-time using a novel
API-based architecture combined with supervised learning.

One of the main lessons we have learned in developing
and deploying BEC-Guard, is that attackers constantly adapt
their tactics and approaches. While our supervised learning
approach does require continuously retraining our classifiers,
and is not fully generalizable, we have found the general
approach of using historical email patterns via an API-based
architecture has been very useful in quickly developing new
classifiers for evolving threats. We have employed a similar
approach to the one described in this paper in other contexts,
such as detecting brand impersonation, generic sender names
and account takeover.
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