
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Understanding iOS-based Crowdturfing
Through Hidden UI Analysis

Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, and XiaoFeng Wang,
Indiana University; Tongxin Li, Peking University; Xianghang Mi, Indiana University

https://www.usenix.org/conference/usenixsecurity19/presentation/lee

Understanding iOS-based Crowdturfing Through Hidden UI Analysis

Yeonjoon Lee1∗, Xueqiang Wang1∗, Kwangwuk Lee1, Xiaojing Liao1

XiaoFeng Wang1, Tongxin Li2, Xianghang Mi1
1Indiana University Bloomington, 2Peking University

Abstract

A new type of malicious crowdsourcing (a.k.a., crowdturfing)
clients, mobile apps with hidden crowdturfing user interface
(UI), is increasingly being utilized by miscreants to coordinate
crowdturfing workers and publish mobile-based crowdturfing
tasks (e.g., app ranking manipulation) even on the strictly con-
trolled Apple App Store. These apps hide their crowdturfing
content behind innocent-looking UIs to bypass app vetting
and infiltrate the app store. To the best of our knowledge,
little has been done so far to understand this new abusive
service, in terms of its scope, impact and techniques, not to
mention any effort to identify such stealthy crowdturfing apps
on a large scale, particularly on the Apple platform. In this
paper, we report the first measurement study on iOS apps
with hidden crowdturfing UIs. Our findings bring to light the
mobile-based crowdturfing ecosystem (e.g., app promotion
for worker recruitment, campaign identification) and the un-
derground developer’s tricks (e.g., scheme, logic bomb) for
evading app vetting.

1 Introduction

Crowdturfing is a term coined for underground crowdsourc-
ing [44], in which an illicit actor (typically a cybercriminal)
hires a large number of small-time workers to perform ques-
tionable and often malicious tasks online. Supporting such
an operation is a crowdturfing platform, the underground
counterpart of Amazon Mechanical Turk [1] that acts as an
intermediary for the cybercriminal to recruit small-time work-
ers for the hit jobs like creating fake accounts on an online
store, posting fake Yelp reviews, spreading rumors through
Twitter, etc. These attacks damage the quality of online social
media, manipulate political opinions, etc., thereby threatening
the public confidence in the cyberspace, which is the very
foundation of the open web ecosystem.

Mobile crowdturfing. With the fast growth of mobile mar-
kets today, crowdturfing is extending its reach to mobile com-
puting, serving illegal missions like inflation of an app’s rating
or mass collection of coupons or other bonus during a sales
promotion. For this purpose, a mobile client (app) needs to
be deployed to a large number of underground workers. Such
an app, however, is prohibited by both Apple and Android

∗The two lead authors contributed equally to this work.

Figure 1: A Word Game with hidden crowdturfing UIs.

app stores according to their guidelines [21, 28], and will be
taken down once detected. Although dissemination of the
crowdturfing apps is still possible in the fragmented Android
world, through less regulated third-party stores, on the Apple
platform, cybercriminals find it hard to reach out to the iPhone
users, due to the centralized app vetting and installation en-
forced by the Apple App Store. To circumvent this security
check, it has been reported [52] that crowdturfing Trojans
have been increasingly used to infiltrate the iOS App Store,
through embedding stealthy crowdturfing user interfaces (UI)
in innocent-looking iOS apps. An example is shown in Fig-
ure 1. Compared with web-based crowdturfing [37,45,46,49],
these apps are used to deliver mobile based crowdturfing tasks,
such as fake app review and app ranking manipulation. Also,
they are characterized by utilizing hidden UI techniques to by-
pass app vetting and deliver tasks for their small-time workers,
which raise the challenges for finding them. So far, little has
been done to systematically discover and analyze such hidden
crowdturfing apps, not to mention any effort to understand
the underground ecosystem behind them.

Finding crowdturfing apps. In this paper, we report the first
measurement study on iOS crowdturfing apps. The study
relies on the discovery of such malicious apps from the Ap-
ple App Store, which is challenging, due to the difficulty in
identifying their elusive hidden UIs. These UIs are under the
cover of benign ones and can only be invoked under some
specific conditions (e.g., time, commands from C2 servers).

USENIX Association 28th USENIX Security Symposium 765

Even when they indeed show up, likely they operate similarly
as the legitimate UIs: no malware downloading, no illicit use
of private APIs, etc. To capture their illegitimacy, one needs
to read their content and understand their semantics. This,
however, requires human involvement and therefore does not
scale during app vetting. The attempt to detect such UIs be-
comes even more complicated for the third party, who does
not have the source code of the related apps and therefore
needs to work on binary executables. Indeed, our research has
brought to light almost 100 such apps already published on
Apple App Store, completely bypassing its vetting protection.

To address these challenges, we come up with a new triage
methodology, Cruiser, that identifies the iOS apps likely to
contain hidden crowdturfing UIs for further manual inspection.
A key observation here is that such apps are characterized by
their conditionally triggered UIs (e.g., triggered not by user
actions but by network events), as demonstrated through UI
transitions. Also, the content of such hidden UIs is related to
crowdturfing semantically (e.g., app ranking manipulation),
which is inconsistent with their hosting app’s public descrip-
tion. These unique features make it possible to detect these
iOS apps through a combination of binary, UI layout and
content analyses. From 28,625 iOS apps covering 25 app
categories, our system reports 102 most likely involving hid-
den crowdturfing UIs; considering the large scale of Apple
App Store (2 million apps [3]) and the relatively high false
detection rate (8.8%) of our tool, we manually examined all
the 102 flagged apps, and found that 93 apps indeed contain
hidden crowdturfing UIs.

Measurement and discoveries. Looking into the apps with
hidden crowdturfing UIs reported by Cruiser, we are surprised
to find that this new threat is indeed trending, with a big im-
pact on today’s mobile ecosystem. More specifically, from the
93 apps detected, we discover 67 different mobile crowdturf-
ing platforms, which handle a variety of crowdturfing tasks,
such as app ranking manipulation, fraud account registration,
fake reviews, online blog reposting, and order scalping, etc.
Also importantly, these apps are found to bypass app vetting
several times and have a long lifetime. Such apps are popu-
lar, having been installed by a large number of users (32.4
million in total). Some of them even appear on the Apple
leaderboards, with 25 of them ranked among the top 100 in
their corresponding categories.

Also interesting is the ecosystem of mobile crowdturfing,
as discovered in our study, which includes app promotion for
worker recruitment, campaign identification, etc. In particular,
crowdturfing platform owners are found to advertise their
apps through multiple channels, including crowdturfing app
gateway sites, in-app promotion and a pyramid (or referral)
scheme that rewards the individuals for recommending crowd-
turfing apps to other users. In the crowdturfing app gateway
sites, we observe that around 50% of hidden crowdturfing
apps have been downloaded more than 18K times; there are
32.4 million downloads in total. Also, we find that the app

with hidden UIs is in high demand from the underground mar-
ket: e.g., cybercriminals are willing to pay hundreds of dollars
for developing such an app to circumvent Apple’s vetting.

Furthermore, we analyze the evasion techniques employed
by the crowdturfing apps, and bring to light new techniques
that utilize complicated conditions to trigger their malicious
behaviors: such apps not only know whether they have passed
Apple’s review so they can change their behaviors accord-
ingly, but also protect their hidden UIs with the conditions
involving user interactions or communication with a mali-
cious website. Up to our knowledge, such techniques have
not been reported to the Apple platform before, and therefore
bring new challenges to its vetting process. Further discov-
ered in our research is the way underground developers reuse
their product and work with each other: we see that different
developers inject different crowdturfing UIs to similar apps,
and the same developer hides the same UIs into her different
products. Also interestingly, almost identical apps, with both
over and cover UIs, are found to be submitted to the store
under different developer IDs. We disclosed our findings to
Apple, which acknowledged us and has removed all reported
apps from the App Store, though new attack apps of this type
continue to pop up due to Apple’s lack of effective means to
detect them; also upon Apple’s request, we provided a list of
fingerprints for eliminating the apps similar to the malicious
ones.
Contributions. The contributions of the paper are outlined
as follows:
• New methodology. We developed a novel approach that
utilizes a binary-code analysis on UI hierarchy and Natu-
ral Language Processing (NLP) analysis on UI semantics to
detect the iOS apps with hidden crowdturfing UI.
• New findings. Cruiser helps us gain new insights into the
mobile crowdturfing ecosystem and exposes the underground
developer’s new tricks for evading Apple’s app vetting. Also
importantly, our study sheds light on a new attack vector that
has long been ignored: use of hidden UIs to evade even most
restrictive app vetting to distribute illicit content.
Roadmap. The rest of the paper is organized as follows: Sec-
tion 2 provides background information for our study; Sec-
tion 3 elaborates on the design of Cruiser; Section 4 presents
our measurement study and new findings; Section 5 discusses
the limitations of our current design and potential future re-
search; Section 6 reviews related prior research and Section 7
concludes the paper

2 Background

Crowdturfing platform. As mentioned earlier, crowdturfing,
also called malicious crowdsourcing, is an illicit business
model, in which cybercriminals (i.e., intermediaries) recruit
small-time workers to carry out malicious tasks (e.g., app
ranking manipulation) for dishonest third parties (e.g., app

766 28th USENIX Security Symposium USENIX Association

Mobile
tasks

CP 1

Dishonest third party

Small-time worker

CP 2 CP 3

Online
tasks

Online
tasks

Mobile
tasks

Intermediary

Remote server

Desktop client

Mobile client

Figure 2: Overview of modern crowdturfing platforms, where
“CP” represents a crowdturfing platform.

owner). Moving from the desktop browser-based clients (e.g.,
Zhubajie [5] and Sandaha [4]) to mobile devices, crowdturf-
ing today increasingly happens through the apps deployed to
workers’ smartphones. As an example, consider a dishonest
app owner who intends to inflate the app’s installation vol-
ume and therefore seeks help from a crowdturfing platform;
through the platform, the owner can pay workers to download
and install his app so as to fake its popularity. Other hit jobs
performed by the platform include the spread of fake reviews,
defamatory rumors, etc.

Figure 2 illustrates modern crowdturfing platforms support-
ing both desktop browser-based clients and mobile clients.
Such a platform, generally created and maintained by interme-
diaries, is designed to coordinate crowdturfing tasks and orga-
nize small-time criminals (workers) to do the tasks. As shown
in the figure, a crowdturfing platform consists of servers to dis-
tribute crowdturfing tasks, and desktop browser-based clients
or mobile clients to interact with the workers (e.g., publish-
ing the tasks and checking the quality of the work). Unlike
the platforms with browser-based clients, those with mobile
clients mainly aimed at mobile-related crowdturfing (e.g., app
ranking manipulation).

However, mobile crowdturfing clients, in the form of apps,
are widely considered to be illicit by app stores, including
Apple App Store [21] and reputable Android App stores like
Google Play [28]. Especially for iOS crowdturfing clients, it is
extremely hard for such apps to get through Apple’s restrictive
vetting process. Actually, from the underground forum, we
find that some intermediaries seek experienced developers to
build apps capable of infiltrating the Apple store, by hiding
their crowdturfing UIs (Section 4.4). Also interestingly, due
to the difficulty in publishing crowdturfing apps, we find from
the Apple store that multiple servers even share one client
(Section 4).

iOS UI design. The UIs of an iOS app include view, view
controller (VC) and data: view defines the UI elements to be
displayed (e.g., button, image, and shape); data is the infor-
mation delivered through the defined UI elements; and a VC
controls both views and their data to present a UI. All the
VCs of an app and their relations, which describe the tran-
sitions between different UIs, form a VC hierarchy, with its
root (called anchor) being the initial VC of the app or the VC
launched by the iOS object AppDelegate. Implementing a
VC hierarchy can be done using either VC transition APIs
(e.g., pushViewController:animated), or storyboard [19], a
visual tool in the Xcode interface builder. In the storyboard,
a sequence of scenes are used to represent VCs, and they
are connected by segue objects, which describe transitions
between VCs. iOS employs layout files (a.k.a., nib files) to
implement UIs, which can be generated using storyboard.

Over a VC hierarchy, developers commonly define two
kinds of transitions between a pair of VCs: Modal and Push. A
modal VC does not contain any navigation bar or tab bar, and
is used when developers create outgoing connections between
two UIs. To present a modal VC, the developer can directly
use APIs (e.g., presentViewController:animated:completion:),
or define a modal segue object [20] in a storyboard. An API
needs to be called in order to dismiss such a modal VC. On the
other hand, Push uses a navigation interface for VC transitions.
Selecting an item in the VC pushes a new VC onscreen,
thereby hiding the previous VC. Tapping the back button
in the navigation bar removes the top VC and reveals the
background VC. More specifically, developers can display the
view of a VC by pushing it to the navigation stack using the
pushViewController:animated: API, or define a push segue in
a storyboard. In the meantime, tapping the back button will
pop up the top VC from the navigation stack and makes the
new top displayed.

In our research, we observe that hidden crowturfing UIs
exhibits conditionally triggered navigation patterns in an app’s
VC hierarchy, including multiple root VCs as entry UIs, entry
VC not triggered by the users nor dismissed by itself, etc.
(Section 3.2).

Natural language processing. The semantic information our
system relies on is automatically extracted from UIs using
Natural Language Processing (NLP). Below we briefly intro-
duce the key NLP techniques used in our research.

• Word embedding. Word Embedding is an NLP technique
that maps text (words or phrases) to high-dimensional vectors.
Such a mapping can be done in different ways, e.g., using
the continual bag-of-words model or the skip-gram technique
to analyze the context in which the words show up. Such a
vector representation ensures that synonyms are given similar
vectors and antonyms are mapped to different vectors. Tools
such as Word2vec [50] could be used to generate such vectors.
Word2vec takes a corpus of text (e.g., Wikipedia dataset)
as inputs, and assigns a vector to each unique word in the

USENIX Association 28th USENIX Security Symposium 767

corpus by training a neural network. In our study, we leverage
Word2vec to quantify the semantic similarity between the
words based on the cosine distance of their vectors.

• Topic model for keyword extraction. Topic model is a sta-
tistical model for finding the abstract "topics" of a document,
and topic modeling is a common text-mining tool for discov-
ering keywords from corpora. Among various topic modeling
approaches, Latent Dirichlet Allocation (LDA) [13] is one
of the most popular methods. The basic idea is that docu-
ments are represented as random mixtures over latent topics,
where a topic is characterized by a distribution over words,
and the statistically significant words are selected to represent
the topic. In our study, we leverage the LDA implementa-
tion of Stanford Topic Modeling Toolbox [48] for keyword
extraction.

Threat Model. In our research, we consider an adversary who
tries to publish iOS apps carrying hidden crowdturfing content
on Apple App Store. Examples of such crowdturfing activities
include fake review posting, app ranking manipulation and
order scalping [15], etc. For this purpose, the adversary creates
iOS apps with hidden crowdturfing UIs. These UIs are meant
for displaying the tasks assigned by a crowdturfing platform
and providing guidance on how to accomplish the tasks, so
typically they do not ask for additional capabilities (guarded
on iOS by entitlements). To publish such apps, the adversary is
supposed to be knowledgeable about Apple’s vetting process.
Use of private APIs or side-loading are the focus of Apple’s
vetting and therefore not considered in our research. Also,
in our research, we only cover native iOS apps. The cross-
platform framework (e.g., react native) based apps, which are
built using different languages (e.g., javascript), are out of the
scope of this work.

3 Methodology

Here we elaborate on the design and implementation of a new
technique for identifying apps with hidden crowturfing UIs.
We begin with an overview of the idea behind Cruiser, and
then present the design details of each component.

3.1 Overview

Architecture. Figure 3 illustrates the architecture of Cruiser,
which includes a Structure Miner and a Semantic Analyzer.
After fetching and decrypting iOS apps from App Store, Struc-
ture Miner takes as its input a set of decrypted iOS apps, and
disassemble them. The disassembled apps are then utilized
by the Structure Miner to construct a VC hierarchy for iden-
tifying the VCs with conditionally triggered UIs (e.g., two
entry UIs). Here we define checkpoint VCs as all VCs associ-
ated with conditionally triggered UIs and their corresponding
children VCs (see detail in Section 3.2). We also consider
children VC, since VCs with conditionally triggered patterns

Figure 3: Architecture of Cruiser.

Figure 4: Pseudocode and simplified LVCG with conditionally
triggered UIs.

sometimes may not contain sufficient texts for semantic anal-
ysis. On each checkpoint VC, the Semantic Analyzer further
extracts texts from it, and evaluates its content through a set
of NLP techniques to determine whether it is used for crowd-
turfing.

Example. To explain how Cruiser works, here we walk
through its workflow (Figure 3) using a Music Player app with
a hidden app ranking manipulation UI, com.sohouer.music.
Cruiser first automatically decrypts the app and disassembles
it into binary, UI layout files and resource files. Meanwhile,
we also crawl the app’s metadata (i.e., description for the
Music Player app) from the App Store as the input for the
Semantic Analyzer.

The Structure Miner processes the binary and UI layouts of
the com.sohouer.music app and creates a VC hierarchy in the
form of a labeled view controller graph (LVCG) (as shown
in Figure 4). From the LVCG, our approach extracts VCs
with conditionally triggered UIs and marks them as the check-
point VCs. More specifically, the Structure Miner identifies
VCs and VC transitions from the app binary and UI layout
files to construct the LVCG (Figure 4). From the LVCG, the
Structure Miner discovers the conditionally triggered UIs:
two root VCs of MusicListViewController and SHEMainView-
Controller, which indicate that there are two entry UIs for
the app. Depending on whether the app has received a par-
ticular scheme invocation before, different main UIs will be

768 28th USENIX Security Symposium USENIX Association

displayed when the app is launched. Therefore, these two
VCs are labeled as checkpoint VCs for the follow-up seman-
tic analysis.

Once the checkpoint VCs are found, the Seman-
tic Analyzer then processes their text data to identify
semantic features: the MusicListViewController VC
contains a series of Music Player related words, such
as {album,singer,shuffle,song,music,radio}, which are
consistent with the app’s description. On the other hand,
the topic words under SHEMainViewController are
{task,cash,earn,withdrawal, join,pay,reward}. Given the
semantic inconsistency discovered, the Semantic Analyzer
flags the app as a crowdturfing client.
Data collection. In our research, we collected 28,625 iOS
apps for discovering new hidden crowdturfing apps, which we
call unknown set. Specifically, we scanned the entire iOS app
list from iTunes Preview website [34] using an app crawler
running on an iPhone, and then selected the apps updated
after Jan. 1, 2016 to download and decrypt. This is because
apps with hidden crowdturfing UI is an emerging threat, and
recently updated apps tend to have more active users. In this
way, we collected 28,625 iOS apps, which cover 25 app cate-
gories.

3.2 Structure Miner
The Structure Miner is designed to identify the VCs with
conditionally triggered UIs from an app’s disassembled code
and UI layout files. Examples of such patterns include two
different main UIs, as discovered from com.sohouer.music,
and the UI that can only be invoked by a specific network or
other events, not directly by the user, indicating the potential
presence of evasive behaviors. To discover such patterns, we
first construct a VC hierarchy in the form of an LVCG through
analyzing the app’s binary and retrieving UIs from the UI
layout files to identify their corresponding VCs and establish
their transition relations among them. Then, from the LVCG,
we search for predefined conditionally triggered UIs and mark
those having these UIs as checkpoint VCs for further analysis.
LVCG. LVCG is a directed graph as shown in Figure 4, in
which each node is a VC and each directed edge describes a
transition from one VC (corresponding to a UI) to another.

Definition 1. An LVCG is a directed graph G = (V,E,α) over a
node label space Ω, where:

1. V is a node set, with each node being a VC;

2. Edge set E⊆ V×V is a set of transitions between VCs;

3. Node labeling function α : V → Ω marks each node with its
UI properties and text data. Each node is given four property
labels: entry, user, url, others. Table 1 shows the definition of
each property and the corresponding method names.

LVCG construction. The construction of an LVCG requires
both an app’s binary and its UI layout files. This is because
the VC of a UI is in the code and even the UI itself can be

programmed through APIs (e.g., initWithFrame: API in UIV-
iew) so becoming part of the VC, and in the meantime, all the
UIs built through storyboard can only be found in the layout
files, including the transitions between them. To address this
complexity, Cruiser builds two LVCGs, one from the binary
and the other from the layout files, before combining them
together.

Specifically, on the binary code, we look for system VC
class names (e.g., UIViewController) and method names (e.g.,
setNavigationBarHidden), which help identify individual VCs
and their properties (see Table 1). Then we track the data flows
from a VC to another to recover the transitions between the
detected VCs. For this purpose, our approach first maps the
addresses in the binary code to symbols (e.g., class name,
method name) using a binary analysis tool Capstone [7], and
then uses a set of targeted system VC class names (e.g., UIV-
iewController) and method names (e.g., setNavigationBarHid-
den) to recognize VCs and their properties (e.g., entry) from
the symbols. After that, the Structure Miner performs a data-
flow analysis using an implementation similar to the prior
techniques [18, 23], to connect the transition APIs (perform-
SegueWithIdentifier:sender:) discovered in a VC to another
one, the transition target.

To construct a LVCG on the layout files under the story-
board folder generated by Apple’s interface builder, we need
to extract VCs and VC transitions from the files. The former
can be found from the storyboard plist file that includes the
mappings from VC names to the obfuscated names of nib
files. The latter is recorded by the nib files, each of which
carries a subset of a VC’s properties, e.g., the types of some
elements (such as botton, textbox, etc.) and the transitions
between VCs.

Our approach directly recovers VCs from the plist file
and further detects each VC’s nib files from the mappings
it records. More challenging here, however, is to identify
the transitions between the VCs, since objects included in
a nib file are undocumented. To enable the Structure Miner
to interpret the file, we reverse-engineered part of its format
relevant to the transition and content extraction. Specifically,
we started from the interface builder, through which one can
define one or multiple scenes to represent a UI and a Segue
to describe a transition. Through a differential analysis, we
compared the compiled nib files with and without a specific
transition to pinpoint the nib objects corresponding to differ-
ent Segue types (e.g., push, modal, unwind), such as ClassS-
wapper. From such objects, the Structure Miner is then able to
collect the transitioning data, in the form of src, dst, type, etc..
This allows us to restore the recorded transition information
and build up the LVCG of an app.

Given the LVCGs generated from the binary and the layout
files, our approach automatically combines them together,
based on the relations between the VCs on these graphs:
particularly, when a transition is found from a VC in the
layout to the one defined in the code, two LVCGs can then

USENIX Association 28th USENIX Security Symposium 769

Table 1: LVCG node properties and their corresponding method names.

Property Definition Method/Class names
entry root VC setRootViewController:
user VC triggered by a user interaction addTarget:action:forControlEvents:
url VC rendering web content openURL:, UIWebViewController

others other properties (e.g., self-dismiss) dismissViewControllerAnimated:completion:

be linked together through this VC pair. On the combined
LVCG, further we remove the dead VCs introduced by the
part of libraries and other shared code not used by an app. To
this end, our approach performs a test to find out all the VCs
that cannot be reached from the app’s entry points (such as
AppDelegate, the initial VC of the main storyboard) and drops
them. In this way, we remove 1,053,161 dead VCs (55.4%)
from the 28,625 iOS apps we collect (see Section 3.1).

Conditionally triggered UI extraction. Given 17 apps with
hidden crowdturing UI collected from 91ssz [8] (see detail in
Section 3.4), without loss of generality, in our study, we con-
sider two types of conditionally triggered UIs on the LVCG,
as elaborated below:

•More than one root VCs. We consider an LVCG to be suspi-
cious if it has more than one root VCs, i.e., app has two entry
points, that is, two different root UIs. The root VC is the first
one launched (by AppDelegate) when an app starts running.
One evasion trick the adversary often plays is to run two root
VCs, one legitimate and the other illicit, depending on some
trigger conditions (e.g., the app’s execution environment).
For example, in the app com.sohouer.music (see Section 3.1),
besides the benign UI (i.e., MusicListViewController), the
hidden crowdturfing UI (i.e., SHEMainViewController) can
also be invoked by AppDelegate). Such a pattern can be de-
scribed as |α(v) == ‘root ′| ≥ 2. In this case, we label the two
VCs and their corresponding children VCs as checkpoint VCs
for further semantic analysis.

• VC not triggered by users. If an entry VC or intermediate VC
is not triggered by the user, but by other external events (e.g.,
network), i.e., α(v)[‘entry′] = True∧α(v)[‘user′] = False or
α(v)[‘user′] = False∧α(v)[‘url′] = True, we consider it as
suspicious, since such UI is difficult to be triggered during
app vetting. In such a case, we mark such a VC v and its
children VCs as checkpoint VCs.

Looking into all 28,625 apps, we discover 34,679 check-
point VCs using conditionally triggered UIs. These VCs are
further evaluated by the Semantic Analyzer. Our evaluation
(see Section 3.4) shows that the Structure Miner maintains a
good coverage on hidden crowdturfing UIs while filtering out
most legitimate apps.

3.3 Semantic Analyzer

The Semantic Analyzer determines whether checkpoint VCs
are crowdturfing UIs. Serving this purpose is a set of NLP

based semantic analysis techniques: we first extract UI texts
from the VCs, and then find out whether they are related to
crowdturfing by calculating the semantic distance between
the texts and crowdturfing keywords.

Text discovery. As mentioned earlier, the format of the UI
layout files (the nib files) is undocumented. However, they can
be converted into the XML form using ibtool [42]. From their
XML content, we can find plain-text strings under NSString
objects, a property of UI element objects like button, table,
textbox, font, color, etc. Some of these strings are part of the
content a UI displays, while the others are not, depending
on the type of the UI element objects. For example, UIFont
and UIColor carry strings such as “.HelveticaNeueInterface-
Regular” and “blackColor” for defining fonts and UI color,
respectively. To extract UI content from the nib files, we come
up with a blacklist of UI element objects that do not include
UI texts, and use that list to filter out irrelevant text strings.
More specifically, we randomly sampled 70 iOS apps from our
unknown set, which gives us 1,307 nib files including 28,469
NSString objects. We clustered them based on the types of
their UI element objects, and manually went over all 103 types
discovered. In this way, we constructed a blacklist with 21
patterns that cover 64 object types that do not contain any
meaningful UI texts. Table 8 in Appendix shows the blacklist.
When analyzing a given app, the Semantic Analyzer locates
all NSString objects from its checkpoint VCs and further
recovers their host UI element objects from the app’s UI
object tree (i.e., a tree built on layout files). If the element is
on the blacklist, we ignore its NSString object.

In addition to the text strings in the NSString objects, other
UI content can be embedded in images and therefore cannot
be easily extracted. To collect more semantic information for
crowdturfing UI detection, we utilize an app’s meaningful
variable names (e.g., _album_id), class names (e.g., Ticket-
DetailViewController) and method names (e.g., setSongIdsAr-
rayM), which are preserved in the binary’s symbol table by
the Object-C compiler. These human-readable symbols are
recovered by our approach from the variables, class names,
etc. output by Capstone [7] for each checkpoint VC. Also
for the VCs with Web UIs (e.g., UIWebViewController), we
include the text content collected from the URL embedded
in the VC. An example of the data gathered from both UI
layouts and a binary is presented in Table 2.

Crowdturfing UI identification. Given the UI content re-
covered from each checkpoint VC, we analyze whether such
data is semantically associated with crowdturfing: to this end,

770 28th USENIX Security Symposium USENIX Association

Table 2: Sample text data.

Object Type Text Data
UILabel “Proceed to checkout”

NSLocalizableString “start making money”

Class Name
“TaxiViewController”, “GameView”

“TicketDetailViewController”

Method Name
“setSongIdsArrayM:”,
“setBuyAllProductId:”

Instance Variables
“_album_id”, “_uploadMedia ”,

“_btnPaid”

CFString
“Select photo from photo library”

“more clear free voice calls”

URL
booking.com

“hotel” “city”, “trip”, “taxi”

we first preprocess the texts to address the issues like multi-
language, noisy words, and then identify the keywords rep-
resenting their semantics. In the meantime, we crawl a set
of popular crowdturfing websites (e.g., Zhubajie [5] and San-
daha [4]) to build a crowdturfing word list. Words on the list
are compared with the UI keywords using Word2vec [50]
to find out their semantic distances. When such a distance
becomes sufficiently small, the checkpoint VC is then flagged
as a hidden crowdturfing UI. In the following, we elaborate
on each step of this analysis.

At the preprocessing step, our approach runs Google Trans-
late [2] to convert content in other languages into English.
For the text in the languages without delimiters, Chinese in
particular, we first use open source tools [27, 30] to segment
texts into words before the translation; for the class/method
names extracted from the binary, we tokenize them using
regular expressions that cover common naming conventions
(e.g., CamelCase style). Further, we drop all common stop
words (e.g., NLTK stop words), and the frequent words from
iOS frameworks and programming languages (e.g., “UIV-
iewController”, “ignoreTouch:forEvent:” and “raiseExcep-
tion”), as well as program language and debugging related
texts (e.g., “socket”, “connection”, “memory”, “allocation”).
These words come from 74 framework-libraries of iOS 8.2.1,
and are gathered in our research from sections such as __cf-
string and __objc_methname. Selected from these documents
are 1,806 frequent words whose inverse document frequency
(IDF) values are larger than a threshold (we use log(5) in our
implementation). Also 1,031 program language and debug-
ging related words are hand-picked for Objective-C, Swift,
and Javascript.

After removing these words from a checkpoint VC, the
remaining words are then analyzed using affinity propaga-
tion [26], which clusters them based upon their semantics
(represented by the vectors computed using an embedding
technique) and reports the most significant cluster. The words
in such a cluster are then used by our approach to represent
the semantics of their hosting VC.

To collect crowdturfing keywords, we crawl 280 web pages
from the popular crowdturfing websites (i.e., Zhubajie [5] and
Shandaha [4]). From these pages, we identify their topic key-
words using the Latent Dirichlet Allocation (LDA) method.
In this way, we build a crowdturfing list of 214 words. A
problem for directly using these words is the observation that
some of the crowdturfing words may also appear in legiti-
mate apps: for example, “coupon” is certainly a meaningful
word for a shopping app, not necessarily referring to the illicit
task of bounty hunting. To address this problem, we compare
these words with the keywords extracted from an app’s de-
scription, dropping those related to the app’s publicly stated
functionality before the comparison below.

Given keywords discovered from the checkpoint VCs and
the list of crowdturfing words, we run Word2vec [50] on each
of these words, which maps the word to a vector that describes
its semantics. Using these vectors, our approach measures the
semantic relations between the UI keywords and the crowd-
turfing keywords by calculating their vectors’ cosine simi-
larities. For each UI keyword, its average similarity with all
the crowdturfing keywords is used to determine its relevance
with crowdturfing. We find that when the average relevance
score of all the keywords of a checkpoint VC reaches 0.525
or above, the VC is nearly certain to be a crowdturfing UI.

3.4 Challenges in Identification

Here we evaluate Cruiser and elaborate on the challenges in
crowdturfing app identification.
Evaluation with ground-truth set and unknown set. We
evaluated Cruiser over the following ground-truth datasets:
for the bad set, we collected the apps with hidden crowdturfing
UIs from 91ssz [8]. 91ssz is a website that hosts the apps with
the features (e.g., spam forums, earn money) violating Apple’s
guidelines. We manually examined 290 apps and confirmed
17 with hidden crowdturfing UIs (the other 273 apps do not
have hidden UIs and are only accessible through third-party
black markets). The good set were gathered from the top
paid app list found from Apple App Store charts, which are
considered to be mostly clean. We randomly sampled 17 of
them (the same size of the bad set) to build the good set. Note
that we manually examined those apps and verified that they
are indeed benign. Running on these sets, Cruiser shows a
precision of 88.9% and a recall of 94.1%.

Next we further report the results when running our ap-
proach on the unknown set, including all the apps collected
from the Apple App Store (Section 3.1), at each stage of our
analysis pipeline. We statically analyzed disassembled code
and UI layout files over the 28,625 iOS apps, and discovered
34,679 checkpoint VCs, which are related to 3,999 (14.0%)
apps using conditionally triggered UIs. Then, we executed
the Semantic Analyzer, which flagged 102 apps. We man-
ually examined all of them and found that 93 apps indeed
contain hidden crowdturfing UIs. This gives us a precision

USENIX Association 28th USENIX Security Symposium 771

of 91.2%. The 9 falsely detected apps, though not including
crowdturfing UIs, also turned out to be less legitimate. Below
we elaborate on the missed apps and the falsely detected apps.

Missed apps. On the ground-truth set, only one crowdturfing
app was missed by Cruiser. The app fell through the cracks
due to inadequate semantic content extracted from their UIs.
It is found to construct the URL for the content to be displayed
during its runtime and dynamically loads crowdturfing pages
through the URL. While Cruiser can find the suspicious view
controller, it cannot statically gather semantic content from
the crowdturfing pages and therefore fail to provide enough
semantic information for the Semantic Analyzer to make a
decision.

Determining the number of missed crowdturfing apps in
the unknown set (with 28K iOS apps) is challenging. Given
the low density of such malicious apps in the dataset, we
could not randomly sample from the set hoping to capture
ones missed by our methodology. So what we did in our study
is to lower down the threshold used by the Semantic Analyzer
for detection, which improved the recall, at the expense of
precision. With the threshold decreasing from 0.525 to 0.513,
our approach flagged 313 more apps. We manually analyzed
all these apps and found only 3 new crowdturfing apps (false
negatives), while the remaining 310 were all false positives.
Looking into these 3 missed apps, interestingly we found
that they were all web-based apps that dynamically download
crowdturfing content from the web during their runtime, as
we observed on the ground-truth set.

Falsely detected apps. All false detections reported come
from the apps indeed carrying conditionally triggered UIs.
These apps are not only structurally but also semantically
related to a true crowdturfing app. More specifically, their
hidden UIs all contain monetary content, which is one of the
semantic features for crowdturfing apps. For example, among
the 9 false detections, 7 are about “Health & Fitness” but
actually include hidden lottery UIs. The remaining two are
“Education” apps, which declare to be free but later display
a remotely controllable UI asking for payment. Note that all
these UIs are potentially unwanted, since they are undocu-
mented (in the apps’ description) and forbidden by Apple’s
guideline [21]. We consider these apps (with illicit UIs) as
false detections, just because they are not directly related to
crowdturfing.

Legitimate use of conditionally triggered UI. In Section 3,
we report the observation of 14% apps including conditionally
triggered UIs. Through a manual analysis, we found that these
apps use two entry UIs to display notifications, a tour or a
guide for the app, special events (e.g., New Year) and etc. All
their hidden UIs cannot be reached through user interactions.
This demonstrates the importance of the Semantic Analyzer,
which utilizes NLP to determine the irrelevance of these apps
to crowdturfing, thereby controlling the FDR of our approach.

3.5 Comparison to Other Approaches

NaiveCruiser: Semantic analysis on all VCs. Cruiser is
characterized by a two-step analysis (by the Structure Miner
and then the Semantic Analyzer), first filtering out the VCs
with normal navigation pattern and then analyzing the seman-
tics of suspicious VCs. This strategy is designed to minimize
the overheads incurred by the Semantic Analyzer, which is
crucial for making our system scalable for analyzing the 28K
apps in the wild. In the meantime, there is a concern whether
the performance benefit comes with an impact on the tech-
nique’s effectiveness, making it less accurate. To understand
the problem, we compared our implementation of Cruiser
with an alternative solution, called NaiveCruiser, which con-
ducts a semantic analysis on all VCs in the app. This approach
is fully tuned toward effectiveness, completely ignoring the
performance impact.

In particular, we also evaluated the NaiveCruiser over the
same ground-truth datasets we used to evaluate Cruiser. Run-
ning on these sets, NaiveCruiser shows a precision of 90.9%
and a recall of 93.2%, which is in line with Cruiser (preci-
sion of 88.9% and recall of 94.1%). This indicates that our
two-step design does not affect the effectiveness of detection.
We also show the large performance degrade of NaiveCruiser,
compared to Cruiser, in Appendix.

Crowdturfing keyword search. Simply searching for crowd-
turfing keywords is not effective. This is because the words
used in crowdturfing UI (e.g., money, withdrawal, cash) are
common, which often appear on other legitimate UIs (e.g.,
stock apps, accounting apps). Therefore, a simple keyword-
based approach would bring in a high FDR (see below). Our
approach utilizes a suite of techniques (e.g., looking for struc-
tural features of conditionally triggered UIs and correspond-
ing VCs, removing words related to app descriptions) to avoid
false reporting of legitimate UIs.

To understand how effective these techniques are, we eval-
uated the baseline – the naive keyword search on the 28K
iOS apps. Specifically, we automatically extracted keywords
from crowdturfing content collected from our ground-truth
set, and then manually crafted a list of 32 most representa-
tive keywords for crowdturfing tasks (e.g., reward, task and
installation). In the experiment, we studied the effectiveness
of these keywords by first searching for the apps contain-
ing individual words and then analyzing their combinations
(those including 2, 3, · · · , 32 words). The more keywords an
app includes, the more likely it is problematic but the fewer
such apps would be found. In the end, we did not see any
app involving more than 8 keywords. Among those carrying
no more than 8 words, the highest precision achieved was
15.38% (an FDR of 84.62%), for those with 8 words. In this
case, only 5 apps were reported. By comparison, our approach
achieved a precision of 91.2%, reporting 93 malicious apps
on the unknown set. This result demonstrates that the naive
keyword search is indeed inadequate.

772 28th USENIX Security Symposium USENIX Association

Figure 5: Overview of modern crowdturfing value chain,
which consists of hidden crowdturfing app development (Ê-
Ï) and mobile crowdturfing operations (a - d).

4 Understanding iOS-based Crowdturfing

Based on the detected crowdturfing apps, we further per-
formed a measurement study to understand the iOS-based
crowdturfing ecosystem. In this section, we first present as
an example a real value chain of modern crowdturfing (Sec-
tion 4.1), and then describe the scope and magnitude of this
malicious activity as discovered in our research (Section 4.2),
before elaborating the two key components of the value chain:
crowdturfing app development and promotion (Section 4.3)
and mobile crowdturfing operations (Section 4.4).

4.1 Mobile-Crowdturfing Value Chain

Before coming to the details of our measurement findings,
first let us summarize the mobile-crowdturfing value chain
discovered in our research.

A cybercriminal (i.e., intermediary), who owns a modern
crowdturfing platform chinazmob, intends to publish a mobile
client, which is downloadable from the App Store, to publish
crowdturfing tasks and coordinate with small-time workers.
Hence, the intermediary seeks underground app developers
to build an app with hidden crowdturfing UIs (Ê, see Sec-
tion 4.3). The hidden crowdturfing UI will only be triggered
when app users visit the website ioswall.chinazmob.com.
Once done, the app Pleasant Music (id115****781), which
disguises as a music player, passes the vetting of the App Store
and is published (Ë). Then, the intermediary promotes this
app on social networks (Ì) with links to the App Store and
the triggering website ioswall.chinazmob.com. Small-time
workers, who observe the promotion (Í) and download the
Pleasant Music app (Î), will access the mobile crowdturfing
client after triggering the hidden UI (Ï) to execute crowdturf-
ing tasks. Meanwhile, in the underground business of mobile
crowdturfing, a dishonest mobile app owner of Anjuke who
plans to inflate the app’s installation volume reported by the
App Store, pays for a crowdturfing platform chinazmob to

manage crowdsourced app downloading tasks (a). Then, the
intermediary will publish a task on its mobile client and re-
cruit small-time workers (b) to do the task. These workers
will install Anjuke and write fake reviews for the app (c).
Once done and verified by the crowdturfing platform (d), the
workers will get commissions from the platform.

In the rest of the section, we discuss the security implica-
tion introduced by these hidden UI apps, considering both
crowdturfing app development and promotion and mobile
crowdturfing operations in the value chain. As evidence for
their impacts, those apps successfully infiltrated the App Store,
even reached a high rank and bypassed the app vetting mul-
tiple times. In addition, we discovered various hidden UI
techniques and the underground services that support the de-
velopment of such apps. In particular, we revealed a set of
techniques (e.g., logic bomb, scheme) deployed by the cyber-
criminals, as well as the underground services that are willing
to pay $450 for developing such iOS apps. For app promo-
tion, we identified 40 crowdturfing app gateway sites used by
cybercriminals to promote 67.7% of such apps, which also
enabled us to estimate the volume of the users. Furthermore,
we report the findings related to mobile-based crowdturfing
and discuss their insights, which have never been done be-
fore. For example, in contrast to the web-based crowdturfing
dominated by a small number of platforms, on the mobile
side we observed a fragmented crowdturfing market and a
stealthy iOS crowdturfing ecosystem: we detected 93 hidden
crowdturfing apps related to 9 campaigns, after clustering
them based on similar app information, code structure and
network behavior. Finally, we report a case study on an app
with a hidden app ranking manipulation UI.

4.2 Landscape

Scope and magnitude. Our study reveals that apps with hid-
den crowdturfing UI are indeed trending in the Apple App
store. Altogether, Cruiser detected 93 apps with hidden crowd-
turfing UIs, which are related to 67 crowdturfing platforms.
To the best of our knowledge, this is the largest finding on
mobile crowdturfing ever reported.

Apps with hidden crowdturfing UI, as discovered in our
experiment, are found in 15 categories of the Apple App
Store. As shown in Table 3, over 77.4% of the apps are in
the categories of Music, Utilities, LifeStyle, and Entertain-
ment. These apps are often built upon existing open source
projects (see Section 4.4). Surprisingly, we found that some
crowdturfing apps are of high ranks: six apps, including the
wifi helper app (cn.qimai2014.polarbearwifi), the recorder
utility app (com.amzhushou.app), the Temple Run style app
(com.funinteract.ballgame) and several word guessing game
apps reached top 20 of the leaderboard across different coun-
tries (e.g., China, Laos), based on the ranking data available
from App Annie [6]; also, we observed that at least 14 apps
were once ranked within the top 50, and 25 apps were in the

USENIX Association 28th USENIX Security Symposium 773

Table 3: Top 5 app store categories of apps with hidden crowd-
turfing UI.

Category # apps Benign UI examples
Music 32 (34.4%) Ringtones, Piano Pieces
Utilities 15 (16.1%) Recorder, File Manager
LifeStyle 15 (16.1%) Story Teller
Entertainment 10 (10.8%) Web Browsers, Jeopardy-style Quiz
Games 5 (5.4%) Word Guess, Fruit Cutting

top 100 of their corresponding categories.

Impact of hidden crowdturfing apps. Furthermore, our
study shows that the apps with hidden crowdturfing UIs have
indeed successfully infiltrated App Store. Figure 6 illustrates
the Version distribution of the crowdturfing apps. Most of
them (73%) have only few updates, with a version number
in the range from 0 to 1.5. However, still a non-negligible
portion of apps (27% apps have Version ≥ 2.0) seem to be
capable of carrying their suspicious payloads even to their
higher versions. This is interesting since apps need to go
through Apple’s inspection for every new version submitted
to the App Store.

Then, we analyzed the trend of the infiltration performed
by the crowdturfing apps. Figure 7 shows the distribution
of the number of such apps on the Apple App store over
their release date. The trend-line based on the linear forecast
regression indicates that those apps are still on the rise and
require further attention. We observed that the newly-released
apps with hidden crowdturfing UI have increased by 150%
from Jan. 2015 to Jun. 2017.

4.3 App Development and Promotion
App development. Apparently, the development of crowd-
turfing apps is in strong demand on the underground market.
Our research shows that one could get an illicit app, with
desired hidden UIs, on the App Store for $450 [25]. Specifi-
cally, a quick search on Google yields dozens of recruitment
posts for such app development; e.g., freelancer [24,25], Code
Mart [17], witmart [51], dongcoder [22], Code4App [16]. As
shown in the task description [25], the illicit app to be devel-
oped should be capable of displaying a benign UI during app
vetting, and switching to an illicit UI once it is published on
the App Store.

Also illicit app developers tend to minimize the effort to
develop the benign UIs for covering the crowdturfing ones.
One common approach they take is to hide the crowdturfing
UIs to the app built upon an open source project ([31,35,43]).
In particular, we extracted strings from the benign VCs of the
detected crowdturfing apps, and then searched them in leading
code repositories (e.g., Github). Interestingly, we found that
the benign UIs of six crowdturfing apps come from two open
source projects: ESTMusicPlayer and LittleFrog-MusicPlayer.
Note that according to Apple’s guidelines [21] (4.3 and 4.2.6),

such template apps should have been rejected. However, we
observe that Apple seems to loosen its policy, which makes
developing such illicit apps easier. To verify the observation,
we designed a hidden crowdturfing app by utilizing one of
the open source projects, ESTMusicPlayer [35], as the benign
template. The app successfully got into the App Store in
two days (we removed the app immediately before any user
downloaded it).

UI hiding techniques: Triggers. We found that such illicit
apps utilize a spectrum of UI hiding techniques to evade app
vetting, which are described as follows:

• Logic bomb. Apparently, the adversary tends to trigger hid-
den crowdturfing UI when certain conditions are met (e.g., af-
ter app vetting). Some detected hidden crowdturfing apps con-
tain logic bombs; e.g., the app sets off the hidden crowdturfing
UI when a specified time (e.g., after “2017-01-18 00:00:00”),
location (e.g., “isCN”), or device information (e.g., connected
to cellular) conditions are met. For instance, the crowdturf-
ing UI in cn.music.s3b is only activated when the device is
connected to network and has its area/language code set to
"zh".

• C2 server. Like bots, apps with hidden crowdturfing UI
are also found to leverage command and control servers
(C2 servers) to trigger their hidden UIs. For instance,
com.catTestPlay.app retrieves a “status” code from its
web server http://[domain]/itunes_app/sound_dog to decide
whether to switch to its hidden UI.

• Scheme. Another interesting observation is that the app de-
velopers utilize extremely sophisticated triggering conditions,
which even require the user to take certain actions. An inter-
esting example is that a hidden crowdturfing UI can only be
invoked by a specific scheme. Those apps promoted them-
selves on the social networks or websites; when users down-
load those hidden crowdturfing apps from the App Store, the
promoted sites provide the users an activation link to trigger
the hidden crowdturfing UIs. More specifically, when the acti-
vation link is clicked, a scheme (e.g., babyforring://[params]),
that releases the illicit UI, is sent to the app.

• Others. Several other techniques are also used to differen-
tiate normal users’ devices and vetting environment. As an
example, we observe that a UI is hidden by the combination
of scheme and logic bomb: the app com.qianying.music will
first determine whether a user has logged into her WeChat
app on the device, and then release its illicit UI only when
receiving a scheme from a specific website.

App Clones. We observed that illicit app owners resub-
mitting clones of removed or existing illicit apps by only
changing their bundle IDs through different Apple developer
IDs; e.g., after com.cloud.NHCore was removed from App
Store, it was quickly resubmitted as com.good.jingling. De-
velopers also submitted multiple repackaged apps contain-
ing the same hidden crowdturfing UI; e.g., two apps, music

774 28th USENIX Security Symposium USENIX Association

Figure 6: Version distribution of apps with hidden crowd-
turfing UIs.

Figure 7: Release date distribution of apps with hidden
crowdturfing UIs.

Figure 8: Cumulative distribution of crowdturfing app down-
loads.

player com.yueyuemusic and eBook reader com.Qingyu app,
were found to integrate the identical crowdturfing platform
(i.e., rehulu.com). To mitigate the threat of such persistent
infiltration attempts, we provided a list of words that could
help to fingerprint such apps upon Apple’s request, and mean-
while are actively collecting resubmitted/repackaged hidden
crowdturfing apps.

App Promotion and worker recruitment. To understand
how crowdturfing platform owners disseminate such apps and
recruit workers, we searched for the apps’ names on the search
engine and manually analyzed top-10 results to identify their
promotion websites. In this way, we gathered 50 websites
advertising 78 (83.9%) hidden crowdturfing apps. We found
that the owners of these hidden crowdturfing apps promote
their apps through multiple channels: advertising on the online
communities (e.g., BBS, tieba), social networks (e.g., youtube,
weibo), and crowdturfing app gateway sites (e.g., app522.com,
i8i3.com).

Of particular interest is the crowdturfing app gateway
sites, which refer the visitors to multiple hidden crowdturf-
ing apps. We identified 40 such gateway sites that promoted
63 (67.7%) hidden crowdturfing apps. For example, the

com.cq.diaoqianyaner.pro.bookstore app was found to be pro-
moted on eight crowdturfing sites: qisw123.com, ydzapp.com,
eshiwan.com, etc. Most intriguing is the discovery that all
the apps actively promoted on those gateway websites have
been detected by Cruiser from the unknown set. Since those
websites record apps’ download volume, we were able to es-
timate the number of these apps’ users. Figure 8 illustrates
the cumulative distribution of the number of downloads per
crowdturfing app. As shown in the figures, around 50% of the
crowdturfing apps were downloaded more than 18K times,
with 32.4 million downloads in total.

Another interesting promotion channel is the referral bonus
policy, which is provided through the app: the app’s owner
pays workers (users) if they invite other workers to use this
app for crowdturfing. We found that 23% of the crowdturfing
apps are using such a channel to recruit workers.

4.4 Mobile Crowdturfing Operations

Crowdturfing tasks. Table 4 illustrates the top-6 most com-
mon illicit crowdturfing tasks found in the apps with hidden
crowdturfing UIs. As we can see here, most of them are mo-
bile based crowdturfing tasks. According to our findings, app
ranking manipulation is supported by a significant portion
(88.2%) of crowdturfing apps, followed by fraud account reg-
istration, and fake review. Figure 9 illustrates the cumulative
distribution of the task categories per app. We observe that
about 62.5% apps only provide one kind of crowdturfing tasks,
among which 86.7% are designed for iOS app ranking ma-
nipulation. Surprisingly, when analyzing apps seeking crowd-
turfing for iOS app ranking manipulation, we observe several
popular and reputable apps. Examples include a calendar app,
which ranked Top 10 in the App Store category of Utilities
across 15 countries, and a restaurant review app, which ranked
Top 10 in Lifestyle category across 49 countries.

To measure the task volume of an app (i.e., number of tasks
× number of required workers per task), we crawled five apps’
task information and the number of required workers through
their crowdturfing UIs. Table 5 presents the average daily task
volume for each app. For instance, the app ranking manip-

USENIX Association 28th USENIX Security Symposium 775

Figure 9: Distribution of the categories of crowdturfing tasks
per app.

Table 4: Top-6 most common illicit crowdturfing tasks in apps
with hidden crowdturfing UIs.

Crowdturfing tasks # apps # download (K)
Highest
ranking

App ranking
manipulation

82 32,268 5

Fraud account
registration

28 15,618 64

Fake review 13 1,218 79
Bonus scalping 11 13,990 18

Online blog
reposting

9 14,602 19

Order scalping 9 601 122

ulation app com.zhang.samusic has a daily task volume of
42,064 for manipulating 24 apps. Given an average task price
of $0.14, the revenue for all those tasks is around $5.88K.

Furthermore, we analyze network traffic of such apps to
study their servers, which distribute the tasks to the apps (see
Figure 2). Interestingly, due to the difficulty in publishing
crowdturfing apps, we find that multiple servers even share
one client. In particular, besides their own servers, six apps are
found to receive crowdturfing tasks from seven other servers
(e.g., qumi.com and domob.cn) and all these tasks are related
to app ranking manipulation.

Campaign discovery. In contrast to the web-based crowd-
turfing platforms [49], which are dominated by a few popular
websites, we observed that the iOS-based crowdturfing plat-
forms are more diverse. To study the relations among these
crowdturfing apps, we built a graph for campaign discovery
and further manually analyzed large campaigns identified. In
the graph, each app is regarded as a node, and an edge con-
necting two apps represents that they are all from the same
developer, with similar code or similar network behaviors. In
particular, we crawled apps’ developer information from the

Table 5: Task volume and price of five apps with hidden
crowdturfing UIs

App # tasks task volume
Per task

price
com.zhang.samusic 24 42,064 0.14
com.roidmi.mifm 29 29,000 0.12

com.miaolaierge.iosapp 12 7,500 0.13
com.applyape.yycuimian 15 16,715 0.11

com.jialiang.weka 8 10,000 0.14

Table 6: Top-3 campaigns with most apps with hidden crowd-
turfing UI.

Campaign # apps Remote server
uxiaowei 9 uxiaowei.com

apptyk 6
apptyk.com

laizhuan.com
diaoqianyaner.com.cn

rehulu 6 rehulu.com

iTunes Preview website [34]. Then, we checked the common
strings referenced by different apps’ hidden crowdturfing UIs.
If the strings from two different apps have more than 90%
in common, we link them together. To capture the network
behavior, we triggered all these apps by signing onto their
platforms. If two apps’ hidden crowdturfing UIs connect to
the same server, we consider them to belong to the same
campaign.

Table 6 shows top-3 campaigns with most crowdturfing
apps. The largest one includes nine apps with hidden app
ranking manipulation UIs, and all of them connect to the
server uxiaowei.com. Interestingly, we observe that seven
crowdturfing app owners (e.g., id109****906, id110****416,
id110****262, id114****820) are related to this campaign.
This campaign enjoyed a long lifetime, from May 2016 to
March 2018.

4.5 Case Study

Here we introduce a typical app with hidden crowdturfing
UI sohouermusic, which disguises as a music player, but also
receives app ranking manipulation tasks (download, install,
make up fake reviews, etc.). We observed that triggering the
illicit service is surprisingly difficult, and such triggering pro-
cess is designed to evade app vetting. Specifically, the so-
houermusic app is promoted on popular social networks (e.g.,
WeChat), which redirect users to a website (play.sohouer.com).
Only when a user visits the website on his iPhone and requires
an invitation scheme sohouermusic://invite=[serial number]
to be sent, will the app load its hidden UI. However, before
the UI is actually rendered, the sohouer app checks whether
it has passed the vetting process via its server, and the hidden
crowdturfing UI shows up only when the remote server re-

776 28th USENIX Security Symposium USENIX Association

sponds with “isreview: 0” and a scripturl. Besides acting as a
client of a crowdturfing platform, such an app also stealthily
collects user’s data ; e.g., device type, version, jailbreak status,
location. Another interesting observation is that the sohouer-
music developers are persistent: after the sohouermusic app
was removed (after we reported to Apple), the hidden crowd-
turfing UI was quickly repackaged into a sohouercamera app
and was submitted through a different developer account.

5 Discussion

Evasion. The current implementation of Cruiser is based on
identifying two types of conditionally triggered UIs for further
semantic analysis (see Section 3.2). Hence, to evade Cruiser,
the adversary may use the hidden crowdturfing UI, which is
triggered by users and also avoids the root UI. Such evasion
techniques, however, will cause the possible crowdturfing
UIs to be triggered during app vetting. This is because all
clickable elements may be triggered by Apple employee’s
manual or automatic analysis during app vetting [47]. This
defeats the purpose of hidden UI.

The adversary may play other evasion tricks, by hiding
semantic texts on the hidden crowdturfing UI to downgrade
the accuracy of the Semantic Analyzer. In particular, the ad-
versary can show crowdturfing related texts in the images, or
obfuscate class names and method names, even dynamically
fetch the crowdturfing related content. One possible solution
is to run an Optical Character Recognition (OCR) tool [36]
to extract the texts from images in the resource files, which
enables to identify enough UI semantic even when the code
is obfuscated. Considering the dynamically fetched hidden
crowdturfing content, the adversary may deliver it on runtime
using dynamic code loading (e.g., JSPatch [12]). However,
Apple regulates and carefully monitors those dynamic code
enabling techniques (e.g., hot patching frameworks) to mini-
mize the attack vector; recently, Apple even bans or rejects
any apps that use hot patch [39] from their App Store.

Limitations. Although Cruiser can already achieve a preci-
sion around 90%, still human involvement is needed to ensure
that the apps reported are indeed problematic. Therefore, in
the current form, it can only serve as a triage tool, instead
of a full-fledged detection system. Also, as mentioned ear-
lier, our current design is focused on iOS based apps, since
cybercriminals have more intentions to utilize hidden UI to
infiltrate the iOS app store than that of Android: centralized
app vetting and installation make it hard for the crowdturfing
app to reach out to the iPhone users. In the meantime, based
on our observations, such hidden crowdturfing apps exist,
though less pervasive, in the Android world. In particular, we
conducted a small-scale study to find whether our detected
apps have Android versions by searching for app names on
Google Play, third-party stores and app download portals, and
further manually examining them. We did not find any hidden

crowdturfing apps, but did observe blatant crowdturfing apps
(without hidden UIs) in less regulated third-party Android
app stores.

Moreover, besides crowdturfing, we do think that cyber-
criminals can use hidden UI techniques for other abusive
services, such as delivering unauthorized content, or even
malware. When looking into such apps (those found in our
research to carry hidden UIs but not perform crowdturfing),
we found instances such as covering a phishing UI behind
a travel app. A natural follow-up step is to investigate all
abusive services exploring hidden UI to infiltrate the iOS app
store and characterize the underground markets behind them.
We will leave this as our future work.
Ethical issue. Our research only involved analysis of pre-
existing code and app content and did not collect new data
during the study. Therefore, it is just a secondary analysis of
already published materials, which does not constitute human-
subject research. Another ethical concern comes from the
potential that Cruiser could be used to identify possible be-
nign hidden UIs; e.g., for censorship circumvention. Here
we clarify that Cruiser is just a methodology for discovery
and understanding of a new type of cybercrime, and during
our study, we did not observe any such censorship evasion
attempts. We acknowledge that any evasion detection tech-
niques, including ours, could also be used for censorship. In
the meantime, our methodology has been tailored towards
crowdturfing detection: e.g., the features used by the structure
miner are based upon the structures of real-world crowdturf-
ing apps, the Word2vec model and other NLP components are
all built on crowdturfing data. We are not sure how effective
our approach would be when applying it to detect other types
of hidden content, and how much additional effort is needed
to make it a full-fledged censorship tool.

Responsible disclosure. Since the discovery of apps with
hidden crowdturfing UI, we have been in active communica-
tion with Apple. So far, we have reported all the apps detected
in our research to Apple, who has removed all of them from
the App Store; also upon Apple’s request, we provided a list
of fingerprints for eliminating the similar apps.

6 Related Work

Study on crowdturfing. The ecosystem of web-based crowd-
turfing has been studied for long. Motoyama et al. [37] identi-
fied the labor market Freelance involved in service abuse (e.g.,
fraud account creation) and characterized how pricing and
demand evolved in supporting this activity. Wang et al. [49]
studied two Chinese online crowdturfing platforms and also
revealed the impact of the crowdturfing followers task on
those platforms to microblogging sites. Stringhini el al. [45]
investigated five Twitter follower markets to study the size
of these markets and the price distribution of their service.
Su et al. [46] studied the spamming activity of “Add To Fa-

USENIX Association 28th USENIX Security Symposium 777

vorites” by collecting the several “Add To Favorites” tasks
information from one crowdturfing platform. In our research,
to the best of our knowledge we for the first time investigate
the crowdturfing platforms on the mobile devices, and reveal
several unique characteristics; e.g., fragmented crowdturfing
markets, mobile targeted crowdturfing tasks, stealthy worker
recruitment channel, hidden crowdturfing UI techniques.

Illicit iOS app detection. Compared with Android, the Ap-
ple platforms are much less studied in terms of their security
protection. Egele et al [23] proposed PiOS, which uses con-
trol flow analysis to detect privacy leaks in iOS apps. Deng et
al [18] presented an approach to detect private API abuse by
binary instrumentation and static analysis. Chen et al. [14] de-
termines potentially harmful iOS libraries by looking for their
counterparts on Android. Bai et al. [11] and Xing et al. [53]
uncovered several zero configuration and cross-app resource
sharing vulnerabilities, and proposed the corresponding de-
tection methods. Understanding the security implications of
hidden crowdturfing UI in iOS apps has never been done
before. Also, none of the prior research provides a UI based
detection mechanism to identify illicit iOS apps with hidden
UI.

Text analysis for mobile security. Numerous studies have
looked into apps’ UI texts to detect mobile threats such as task
jacking, mobile phishing attack, ransomware, or to protect
user privacy. AsDroid [33] checks the coherence between the
semantics of the UI text (e.g., text of button) and program be-
havior associated with the UI (e.g., button) to detect malicious
behavior (e.g., sensitive API) in Android apps such as sending
short messages and making phone calls. Heldroid [10] uses a
supervised classifier to detect threatening sentences from An-
droid apps to detect ransomware. SUPOR [32], UIPicker [38]
and UiRef [9] identify sensitive user inputs within user in-
terfaces to protect user privacy. In particular, SUPOR [32]
extracts layouts by modifying the static rendering engine of
the Android Developer Tool (ADT). UIPicker [38] operates di-
rectly on the XML specification of layouts. UiRef [9] resolves
the semantics of user-input widgets by analyzing the GUIs
of Android applications. It improves the accuracy of SUPOR
by addressing ambiguity of descriptive text through word
embedding. In addition to UI texts, researchers intensively
leverage Natural Language Processing (NLP) to process app
descriptions for mobile security research. Examples include
WHYPER [40] and AutoCog [41], which check whether an
Android app properly indicates its permission usage in its
app description, CHABADA [29] applied topic modeling
technique on an app’s text description to help infer user’s
expectation of security and privacy relevant actions. Different
from previous works, our work compared the semantics of
conditionally triggered UI texts of iOS apps, crowdturfing key-
words and app descriptions to identify hidden crowdturfing
apps. Also, sensitive or private APIs are not used for detection
in our work as the illicit behavior of the app we detect are

based on UI not API. Also, different from SUPOR, UIPicker
and UiRef, we extract UI texts from UI hierarchies (LVCG)
we generated from iOS apps.

7 Conclusion

In this paper, we report our study on illicit iOS apps with hid-
den crowdturfing UIs, which introduce conditionally triggered
UIs and a large semantic gap between hidden crowdturfing
UI and other UIs in the app. Exploiting these features, our
crowdturfing UI scanner for iOS, Cruiser, utilizes iOS UI hier-
archy analysis technique and NLP techniques to automatically
generate a UI hierarchy from binary and UI layout files and
investigate conditionally triggered UI and the semantic gap
to identify such illicit apps. Our study shows that Cruiser in-
troduces a reasonable false detection rate (about 11.1%) with
over 94.1% coverage. Running on 28K iOS apps, Cruiser
automatically detects 93 apps with hidden crowdturfing UIs,
which brings to light the significant impact of such illicit apps:
they indeed successfully infiltrate App Store, even bypassing
app vetting several times. What is worse, we observed an
increasing trend of the number of such apps in App Store.
Our research further uncovers a set of unique characteristics
of iOS crowdturfing, which has never been revealed before:
for example, we observe several remote crowdturfing servers
share one iOS crowdturfing app as a client, which may be
due to the difficulty of infiltration; also, such illicit apps were
promoted by crowdturfing gateway sites to recruit workers,
etc. Moving forward, we further investigate the hidden UI
techniques providing by illicit app developers, including logic
bomb, command and control infrastructure, and scheme tech-
nique etc.

8 Acknowledgements

We are grateful to our shepherd Gianluca Stringhini and the
anonymous reviewers for their insightful comments. This
work is supported in part by NSF CNS-1801365, 1527141,
1618493, 1801432, 1838083 and ARO W911NF1610127.

References
[1] Amazon mechanical turk: Access a global, on-demand, 24x7 workforce. https:

//www.mturk.com.

[2] Google translate. https://translate.google.com.

[3] Number of apps available in leading app stores
2018. https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/.

[4] Sandaha. http://sandaha.cc.

[5] Zhubajie. https://www.zbj.com.

[6] App annie. https://www.appannie.com/en/, Mar. 2010.

[7] Capstone: The ultimate disassembler. http://www.capstone-engine.org,
Nov. 2013.

778 28th USENIX Security Symposium USENIX Association

https://www.mturk.com
https://www.mturk.com
https://translate.google.com
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://sandaha.cc
https://www.zbj.com
https://www.appannie.com/en/
http://www.capstone-engine.org

[8] 91ssz. A website that provides ios apps with illicit features. http://www.91ssz.
com/app/iphone/, Mar. 2017.

[9] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie. Uiref: analysis
of sensitive user inputs in android applications. In Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pages
23–34. ACM, 2017.

[10] N. Andronio. Heldroid: Fast and Efficient Linguistic-Based Ransomware Detec-
tion. PhD thesis, 2015.

[11] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-M. Hu. Staying
secure and unprepared: understanding and mitigating the security risks of apple
zeroconf. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 655–
674. IEEE, 2016.

[12] bang590. Jspatch: bridging objective-c and javascript using the objective-c run-
time. https://github.com/bang590/JSPatch, May 2015.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[14] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou. Following devil’s footprints: Cross-platform analysis
of potentially harmful libraries on android and ios. In Security and Privacy (SP),
2016 IEEE Symposium on, pages 357–376. IEEE, 2016.

[15] G. Cheng. 7 Winning Strategies For Trading Forex: Real and actionable tech-
niques for profiting from the currency markets. Harriman House Limited, 2007.

[16] Code4App. Code4app: Looking for ios chameleon app developer. http://www.
code4app.com/thread-14820-1-1.html, Sep. 2017.

[17] coding mart. Recruitement for ios chameleon app developer. https://mart.
coding.net/project/11325, Nov. 2017.

[18] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu. iris: Vetting private api abuse
in ios applications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 44–56. ACM, 2015.

[19] A. Developer. Storyboard: Guides and sample code. https://developer.
apple.com/library/content/documentation/General/Conceptual/
Devpedia-CocoaApp/Storyboard.html, Sep. 2013.

[20] A. Developer. Using segues. https://developer.apple.com/
library/content/featuredarticles/ViewControllerPGforiPhoneOS/
UsingSegues.html, Sep. 2015.

[21] A. Developer. App store review guidelines. https://developer.apple.com/
app-store/review/guidelines/, Dec. 2017.

[22] dongcoder. In demand of chameleon for app vetting. http://www.dongcoder.
com/detail-678294.html, Sep. 2017.

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in
ios applications. In NDSS, pages 177–183, 2011.

[24] Freelancer. Freelancer: looking for developer for lottery chameleon app. https:
//www.freelancer.com/projects/php/app-edt-15321896/, Apr. 2017.

[25] Freelancer. We need to do a universal application on ios, and then display our
url through the interface. https://www.freelancer.com/projects/iphone/
need-universal-application-ios-then/, Apr. 2017.

[26] B. J. Frey and D. Dueck. Clustering by passing messages between data points.
science, 315(5814):972–976, 2007.

[27] fxsjy. Jieba chinese text segmentation. https://github.com/fxsjy/jieba,
Jul. 2013.

[28] Google. Developer policy center. https://play.google.com/about/
developer-content-policy/#!?modal_active=none, Dec. 2017.

[29] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against
app descriptions. In Proceedings of the 36th International Conference on Soft-
ware Engineering, pages 1025–1035. ACM, 2014.

[30] T. S. N. L. P. Group. Stanford word segmenter. https://nlp.stanford.edu/
software/segmenter.shtml, May 2006.

[31] hellclq. ios app: Happy english sentences 8k. https://github.com/
helloclq/HappyEnglishSentences8000, Aug. 2013.

[32] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang. Supor: Precise
and scalable sensitive user input detection for android apps. In USENIX Security
Symposium, pages 977–992, 2015.

[33] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid: Detecting stealthy
behaviors in android applications by user interface and program behavior con-
tradiction. In Proceedings of the 36th International Conference on Software
Engineering, pages 1036–1046. ACM, 2014.

[34] A. Inc. itunes preview (app store). https://itunes.apple.com/genre/ios/
id36?mt=8, Jul. 2008.

[35] P. King. Estmusicplayer. https://github.com/Aufree/ESTMusicPlayer,
Nov. 2015.

[36] S. Mori, H. Nishida, and H. Yamada. Optical character recognition. John Wiley
& Sons, Inc., 1999.

[37] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker. Dirty
jobs: The role of freelance labor in web service abuse. In Proceedings of the 20th
USENIX conference on Security, pages 14–14. USENIX Association, 2011.

[38] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang. Uipicker: User-input
privacy identification in mobile applications. In USENIX Security Symposium,
pages 993–1008, 2015.

[39] T. C. P. N. NETWORK. Apple removes 45,000 apps in china. http://www.
asiaone.com/digital/apple-removes-45000-apps-china, Jun. 2017.

[40] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper: Towards automating
risk assessment of mobile applications. In USENIX Security Symposium, pages
527–542, 2013.

[41] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen. Autocog: Measuring
the description-to-permission fidelity in android applications. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 1354–1365. ACM, 2014.

[42] D. Quesada. ios interface builder utility. https://github.com/
davidquesada/ibtool.

[43] SimonLo. Hulumusic. https://github.com/SimonLo/HuluMusic, Apr.
2017.

[44] J. Song, S. Lee, and J. Kim. Crowdtarget: Target-based detection of crowdturfing
in online social networks. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 793–804. ACM, 2015.

[45] G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and B. Y.
Zhao. Follow the green: growth and dynamics in twitter follower markets. In
Proceedings of the 2013 conference on Internet measurement conference, pages
163–176. ACM, 2013.

[46] N. Su, Y. Liu, Z. Li, Y. Liu, M. Zhang, and S. Ma. Detecting crowdturfing
add to favorites activities in online shopping. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, pages 1673–1682. International World
Wide Web Conferences Steering Committee, 2018.

[47] M. Tabini. How apple is improving mobile app se-
curity. https://www.macworld.com/article/2047567/
how-apple-is-improving-mobile-app-security.html, SEP 2013.

[48] S. T. M. Toolbox. Stanford word segmenter. https://nlp.stanford.edu/
software/tmt/tmt-0.4/, May 2006.

[49] G. Wang, C. Wilson, X. Zhao, Y. Zhu, M. Mohanlal, H. Zheng, and B. Y. Zhao.
Serf and turf: crowdturfing for fun and profit. In Proceedings of the 21st interna-
tional conference on World Wide Web, pages 679–688. ACM, 2012.

[50] Wikipedia. Word2vec: a model to produce word embeddings. https://en.
wikipedia.org/wiki/Word2vec, Feb. 2018.

[51] witmart. Buy covering ios apps for 30,000 cny. http://www.witmart.com/cn/
app-software/jobs/jobid_34788.html, Oct. 2017.

[52] C. Xiao. Pirated ios app store’s client successfully evaded apple ios code review.
https://researchcenter.paloaltonetworks.com/2016/02/
pirated-ios-app-stores-client-successfully-evaded-apple-ios-c
ode-review/, Feb. 2016.

[53] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu, and X. Han. Crack-
ing app isolation on apple: Unauthorized cross-app resource access on mac os.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 31–43. ACM, 2015.

USENIX Association 28th USENIX Security Symposium 779

http://www.91ssz.com/app/iphone/
http://www.91ssz.com/app/iphone/
https://github.com/bang590/JSPatch
http://www.code4app.com/thread-14820-1-1.html
http://www.code4app.com/thread-14820-1-1.html
https://mart.coding.net/project/11325
https://mart.coding.net/project/11325
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://www.dongcoder.com/detail-678294.html
http://www.dongcoder.com/detail-678294.html
https://www.freelancer.com/projects/php/app-edt-15321896/
https://www.freelancer.com/projects/php/app-edt-15321896/
https://www.freelancer.com/projects/iphone/need-universal-application-ios-then/
https://www.freelancer.com/projects/iphone/need-universal-application-ios-then/
https://github.com/fxsjy/jieba
https://play.google.com/about/developer-content-policy/#!?modal_active=none
https://play.google.com/about/developer-content-policy/#!?modal_active=none
https://nlp.stanford.edu/software/segmenter.shtml
https://nlp.stanford.edu/software/segmenter.shtml
https://github.com/helloclq/HappyEnglishSentences8000
https://github.com/helloclq/HappyEnglishSentences8000
https://itunes.apple.com/genre/ios/id36?mt=8
https://itunes.apple.com/genre/ios/id36?mt=8
https://github.com/Aufree/ESTMusicPlayer
http://www.asiaone.com/digital/apple-removes-45000-apps-china
http://www.asiaone.com/digital/apple-removes-45000-apps-china
https://github.com/davidquesada/ibtool
https://github.com/davidquesada/ibtool
https://github.com/SimonLo/HuluMusic
https://www.macworld.com/article/2047567/how-apple-is-improving-mobile-app-security.html
https://www.macworld.com/article/2047567/how-apple-is-improving-mobile-app-security.html
https://nlp.stanford.edu/software/tmt/tmt-0.4/
https://nlp.stanford.edu/software/tmt/tmt-0.4/
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec
http://www.witmart.com/cn/app-software/jobs/jobid_34788.html
http://www.witmart.com/cn/app-software/jobs/jobid_34788.html
https://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/
https://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/
https://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/

9 Appendix

9.1 Performance evaluation of Cruiser and
NaiveCruiser

To understand the performance of Cruiser, we measured the
time it takes to process all the apps in the unknown set, on our
Red Hat server using 14 processes. The breakdowns of the
delays observed at each stage (Structure Miner and Semantic
Analyzer) are reported in Table 7. As we can see here, on
average, 27.4 seconds were spent on each app. The results
demonstrate that Cruiser scales well and can easily process
a large number of iOS apps. Furthermore, we evaluated the
performance of NaiveCruiser (Table 7). As we can see, in the
absence of the conditionally triggered UI detection step to
first filter out legitimate VCs, the performance overhead of
the Semantic Analyzer became overwhelming: introducing
a delay at least 14 times as large as our original approach,
which makes it difficult to scale. In addition, we evaluated the

performance of app collection. On average, downloading an
app took 15 seconds and decrypting it took 10 seconds; how-
ever, the time varied greatly depending on the network speed,
program sizes and etc. In total collecting and decrypting apps
took 3 months.

Table 7: Running time at different stages, where SM means
Structure Miner and SA means Semantic Analyzer.

Cruiser
Average time

(s/app)
NaiveCruiser

Average time
(s/app)

SM 18.88 LVCG construction 16.2
SA 8.56 SA 122.95

Total 27.43 Total 139.15

9.2 UI element objects without semantic UI
texts

780 28th USENIX Security Symposium USENIX Association

Table 8: UI element objects without semantic UI texts

Pattern type UI element object Parent UI element object1

A3 NSKey *2

A UIColor *
A UIFont *
A UINibKeyValuePair *
A NS.rectval *
A UIViewContentHuggingPriority *
A UIViewContentCompressionResistancePriority *
A UIOriginalClassName *
A UINibName *
A UIDestinationViewControllerIdentifier *
A UIActionName *
A UISource *
A UIDestination *
A UIStoryboardIdentifier *
A NSLayoutIdentifier *
B4 UIProxiedObjectIdentifier UIProxyObject
B UIAction UIStoryboardUnwindSegueTemplate
B UIKeyPath _UIAttributeTraitStorage
B _UILayoutGuideIdentifier _UILayoutGuide
B UIKeyPath _UIRelationshipTraitStorage
B runtimeCollectionClassName UIRuntimeOutletCollectionConnection

1 Parent UI element object: The parent UI object of UI element object.
2 *(asterisk): Any Object.
3 Type A: The string of a UI element object will be removed regardless its parent.
4 Type B: The string of a UI element object will be removed only if its parent UI element object also

matches.

USENIX Association 28th USENIX Security Symposium 781

	Introduction
	Background
	Methodology
	Overview
	Structure Miner
	Semantic Analyzer
	Challenges in Identification
	Comparison to Other Approaches

	Understanding iOS-based Crowdturfing
	Mobile-Crowdturfing Value Chain
	Landscape
	App Development and Promotion
	Mobile Crowdturfing Operations
	Case Study

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Performance evaluation of Cruiser and NaiveCruiser
	UI element objects without semantic UI texts

