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Abstract

The TLS protocol provides encryption, data integrity, and
authentication on the modern Internet. Despite the protocol’s
importance, currently-deployed TLS versions use obsolete
cryptographic algorithms which have been broken using var-
ious attacks. One prominent class of such attacks is CBC
padding oracle attacks. These attacks allow an adversary to
decrypt TLS traffic by observing different server behaviors
which depend on the validity of CBC padding.

We present the first large-scale scan for CBC padding
oracle vulnerabilities in TLS implementations on the mod-
ern Internet. Our scan revealed vulnerabilities in 1.83% of
the Alexa Top Million websites, detecting nearly 100 differ-
ent vulnerabilities. Our scanner observes subtle differences
in server behavior, such as responding with different TLS
alerts, or with different TCP header flags.

We used a novel scanning methodology consisting of three
steps. First, we created a large set of probes that detect vul-
nerabilities at a considerable scanning cost. We then reduced
the number of probes using a preliminary scan, such that a
smaller set of probes has the same detection rate but is small
enough to be used in large-scale scans. Finally, we used the
reduced set to scan at scale, and clustered our findings with
a novel approach using graph drawing algorithms.

Contrary to common wisdom, exploiting CBC padding or-
acles does not necessarily require performing precise timing
measurements. We detected vulnerabilities that can be ex-
ploited simply by observing the content of different server
responses. These vulnerabilities pose a significantly larger
threat in practice than previously assumed.

1 Introduction

In 2002, Vaudenay presented an attack which targets mes-
sages encrypted with the Cipher Block Chaining (CBC)
mode of operation [39]. The attack exploits the malleability
of the CBC mode, which allows altering the ciphertext such
that specific cleartext bits are flipped, without knowledge of

the encryption key. The attack requires a server that decrypts
a message and responds with 1 or 0 based on the message va-
lidity. This behavior essentially provides the attacker with a
cryptographic oracle which can be used to mount an adaptive
chosen-ciphertext attack. The attacker exploits this behavior
to decrypt messages by executing adaptive queries. Vaudenay
exploited a specific form of vulnerable behavior, where im-
plementations validate the CBC padding structure and re-
spond with 1 or 0 accordingly.

This class of attacks has been termed padding oracle
attacks. Different forms of padding oracle attacks were
demonstrated to break cryptographic hardware [6], XML
Encryption [23], or web technologies like Java Server
Faces [33] and ASP.NET web applications [15]. Rizzo and
Duong used a padding oracle attack to steal secrets and forge
authentication tokens, gaining access to sensitive data [15].
In all of these works, the attacker was able to use a direct side
channel — different error messages — to instantiate a padding
oracle and decrypt confidential data.

Transport Layer Security (TLS) employs CBC mode in a
MAC-then-Pad-then-Encrypt scheme which makes it poten-
tially vulnerable to these attacks. Indeed, different types of
CBC padding oracles have been used to break confidential-
ity TLS connections [39, 4, 3, 20]. All these attacks require
the attacker to perform precise timing measurements. This
requirement stems from the properties of the TLS protocol;
after establishing a TLS connection, all TLS error messages
are sent encrypted and are of the same length. Therefore,
even if an attacker is able to cause the server to send differ-
ent error messages, the attacker is generally unable to distin-
guish between the different encrypted responses.

Since most previous analyses have only analyzed padding
oracle attacks based on timing side channels, they required
testing an implementation in a local environment. These
evaluations uncovered many new vulnerabilities [4, 3, 20].
However, implementing a proper countermeasure to these
vulnerabilities is very challenging and requires complex
constant-time implementations. It is not surprising that the
implementation of such countermeasures could introduce
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new attacks. For example, in an attempt to fix the Lucky
13 padding oracle, the OpenSSL cryptographic library intro-
duced a different vulnerability where OpenSSL responded
with different TLS alert messages [37]. Analysis of imple-
mentations in lab settings therefore requires laborious test-
ing for each new version of different implementations. This
is obviously unrealistic, and therefore this type of analysis is
performed sporadically.

Given the complexity of constant-time TLS padding veri-
fication, we expect that vulnerabilities similar to the one in-
troduced by OpenSSL [37] could have been introduced in
other implementations as well. Therefore, this work moves
away from the above method of lab analyses and evaluates
CBC padding oracles using large-scale Internet scans. We
attempt to answer the two following questions: How preva-
lent are padding oracle vulnerabilities? Are these attacks
only exploitable by using timing side-channels?

Contributions. In our work, we employ a novel scan-
ning methodology that is capable of scanning for TLS CBC
padding oracles at scale. We use this methodology to find
new padding oracle vulnerabilities and perform responsi-
ble disclosures. We identify nearly 100 different padding
oracles. We show that some of them can be exploitable
without subtle timing side channels and thus pose a signif-
icantly larger threat in practice compared to most recently-
discovered padding oracles.

New large-scale scanning methodology. Scanning at
scale for padding oracles is challenging. Such scans detect
vulnerabilities by sending different malformed inputs and
observing server behavior. As shown by Bock et al. [9], in
some cases these inputs only trigger vulnerabilities when us-
ing specific TLS versions or cipher suites. Scanning with
all possible combinations of protocol versions, cipher suites
and malformed inputs is not feasible since it would require
an enormous number of connections to each scanned host.

We overcome this limitation by carefully selecting a set
of probes, which allows for effective scans at scale. We sys-
tematically analyzed padding oracles previously described in
the literature [39, 4, 3, 20, 37, 27, 25, 10, 29, 28]. We then
carefully selected 25 inputs exhibiting padding oracle mal-
formities, which we refer to as malformed records. These
TLS records exhibit different combinations of valid and in-
valid padding and MAC, and are generated using the TLS-
Attacker framework [37].

Even with only 25 malformed records, scanning with ev-
ery combination of malformed record, TLS version and ci-
pher suite would be impractical. We refer to these combi-
nations as fest vectors. We performed a preliminary scan
on 50,000 random TLS hosts with all test vectors. We then
reduced our test vector set, such that all vulnerabilities de-
tected in the preliminary scan are still triggered by the re-
duced set. We were able to scan the Alexa Top 1 Million

websites with this reduced test vector set within three days.
Our scanner observes different server responses, not only in
the TLS layer, but also in the TCP layer, similar to [9]. Our
results indicate that about 1.83% of TLS servers are vulner-
able to CBC padding oracle attacks.

Minimizing false positives. When a host first displays vul-
nerable behavior, we rescan it to make sure the behavior is
not a scanning artifact. We only consider a host to be vulner-
able if it responds identically in three separate scans to each
of our test vectors. It is unlikely that hosts will be mislabeled
as vulnerable under this criterion. We therefore believe our
statistics for vulnerability are a conservative lower estimate.

Nearly 100 different padding oracle vulnerabilities. The
detected vulnerabilities have to be clustered in order to notify
different vendors. Until now, this was done manually [9].
To achieve this automatically, we re-scan vulnerable hosts
against a larger set of test vectors. We refer to the set of the
host responses to all test vectors as the host’s response map.
This response map is essentially a fingerprint of the host’s
vulnerability. We then cluster the scanned hosts according
to their response maps. This process identified 93 different
response maps, i.e., 93 different vulnerabilities. These vul-
nerabilities include different behaviors, ranging from typical
padding oracles with different TLS alert messages [39], to
TCP connection timeouts triggered by specific invalid MAC
bytes, or closed connections observed when using invalid
padding values.

We treat distinct response maps as distinct vulnerabilities.
We argue that this is the natural way to count vulnerabilities
since it captures the case of the same vulnerability occurring
in similar, yet different implementations. Consider two hosts
that respond identically to all test vectors. These hosts likely
share an identical or very similar part of the implementation
that causes the vulnerability to manifest with identical re-
sponse maps. However, they do not necessarily share the ex-
act same code. They may use different versions of the same
TLS library, or two different libraries with a shared compo-
nent.

Effective clustering of vulnerable hosts. Before we re-
sponsibly disclosed our findings to the affected parties, we
grouped the vulnerable hosts by their response maps. To fur-
ther refine our grouped servers, we used a novel approach
based on a two-dimensional force-directed graph drawing
ForceAtlas2 algorithm [21]. This algorithm allowed us to
create a graph of vulnerable server hosts and thus, efficiently
handle our responsible disclosure process.

New vulnerabilities that are realistic to exploit. For
padding vulnerabilities to be exploitable, the attacker needs
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to distinguish between different responses to correct and in-
correct padding. This is usually not the case in TLS: Even
if a server sends two different alert messages, the messages
are encrypted, and the attacker cannot observe the difference.
For this reason, most previous padding oracle attacks against
TLS relied on timing measurements to distinguish between
different error cases [4, 3, 20].

However, we show that many TLS implementations ex-
hibit observable differences between correct and incorrect
padding. For example, a server may gracefully close the TCP
connection in one error case and ungracefully close it in a
different case. Similarly, some servers send a different num-
ber of alert messages depending on specific padding errors.
Both behaviors are easily observable.

Responsible disclosure and ethical considerations. In
collaboration with affected website owners, we responsibly
disclosed our findings to several vulnerable vendors. As a
result of a successful attack, the attacker is able to decrypt
secret values repeatedly transmitted in the TLS connection.
By performing our scans, we were not able to reconstruct
server private keys or other confidential data. We performed
our scans with dummy data and never attempted to decrypt
real user traffic.

We responsibly disclosed our findings among others to
the following vendors and affected parties: IBM, Amazon,
Slack, Cisco, Citrix, Oracle, Heroku, Netflix, Sonicwall,
Venmo and Vine.

2 Background

The TLS protocol provides confidentiality, integrity, and au-
thentication on the modern Internet. The latest version of the
protocol is TLS 1.3 [31]. This version is gradually being de-
ployed as of this writing. Until TLS 1.3 is fully deployed,
the latest version in widespread use is TLS 1.2 [14]. Modern
clients and servers typically also support two previous ver-
sions, TLS 1.0 and 1.1 [12, 13]. In the rest of the paper, we
discuss only versions 1.0 to 1.2, which are commonly used
today and share a similar structure.

The TLS protocol consists of two phases. In the first
phase, called the handshake, the client and server choose the
cryptographic algorithms that will be used for the session and
establish session keys. In the second phase, the peers can se-
curely send and receive application data, which is encrypted
and authenticated using the keys and algorithms established
in the previous phase.

The aforementioned choice of cryptographic algorithms is
called a TLS cipher suite [14]. More precisely, a cipher suite
is a concrete selection of algorithms for all of the required
cryptographic tasks. Cipher suites are named by concate-
nating their choices for these algorithms. For example, the
cipher suite TLS_RSA_WITH_AES_128_CBC_SHA uses RSA
public-key encryption in order to establish a shared session

key in the first phase, and also uses symmetric AES-CBC
encryption with a 128-bit key and SHA-1-based HMACsS in
order to encrypt and authenticate data in the second phase.

2.1 The TLS Handshake

The client initiates the TLS handshake with a ClientHello
message. This message advertises the TLS versions and ci-
pher suites supported by the client. The server then responds
with a ServerHello message specifying the selected ci-
pher suite. It also sends its certificate in the Certificate
message and indicates the end of transmission with the
ServerHelloDone message. The client then generates a
secret value called the premaster secret, encrypts it un-
der the server’s RSA key, and sends the encrypted cipher-
text in a ClientKeyExchange message. Having shared
knowledge of the premaster secret, both parties now de-
rive symmetric encryption and MAC keys to be used in the
session, based on the premaster secret. Finally, both par-
ties send the ChangeCipherSpec and Finished messages.
The ChangeCipherSpec message notifies the receiving peer
that subsequent messages will be encrypted and authenti-
cated under the session keys, and using the symmetric en-
cryption and HMAC algorithms specified in the cipher suite.
The Finished message contains an HMAC computed over
all the previous handshake messages based on a key derived
from the premaster secret. As this message is sent after the
ChangeCipherSpec message, it is the first message in the
session which is encrypted and authenticated using symmet-
ric encryption and MAC. If the Finished message correctly
decrypts and verifies on both sides, both parties can now se-
curely exchange application data.

2.2 CBC Mode

There are many possible encryption algorithms in TLS, but
we focus on the CBC encryption mode in this work. In CBC
mode, each plaintext block is XOR’ed to the previous ci-
phertext block before being encrypted by the block cipher.
Formally, if we denote plaintext blocks by p;,i =0,..., ci-
phertext blocks by ¢; and the encryption with a block cipher
under key k as Ency(-), then ¢; = Ency(pi ®ci—1),i=1,....
The above holds for all blocks except the first one, where
there is no previous ciphertext block — instead, that block is
XOR’ed with an initialization vector (IV) before encryption:
co = Enci(po®IV).

CBC mode malleability. The CBC mode allows an at-
tacker to perform meaningful plaintext modifications with-
out knowing the symmetric key. Concretely, assume the at-
tacker knows some block of the original plaintext p;, and
wants to alter the ciphertext such that block i instead de-
crypts to p}. The attacker can change the previous ciphertext
block ¢;—j to ¢}_; = ¢j—1 ® p; ® p}. This comes at the cost of
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corrupting the previous block, which now decrypts to some
value that the attacker, in general, cannot predict.

Furthermore, the attacker can change the order of blocks
while using this technique. If the attacker knows the plain-
text block p; and replaces ciphertext block c¢; with ¢;, then
block j will now decrypt to p'; = p; i1 Dcj1.

This “malleability” property of CBC mode has been used
in many cryptographic attacks, and is also a cornerstone of
the attacks presented here.

2.3 TLS Record Layer

The TLS record layer encapsulates protocol messages. In
essence, the record layer wraps the protocol message with
a header containing the message length, message type, and
protocol version. Once ChangeCipherSpec messages are
exchanged, subsequent TLS records will encapsulate mes-
sages which are encrypted.

In our work, we focus on cipher suites using the CBC
mode of operation. These cipher suites use a Message Au-
thentication Code (MAC) to protect the authenticity of TLS
records and encrypt application data using a block cipher
in CBC mode (e.g., AES or 3DES). The TLS specification
prescribes the MAC-then-Pad-then-Encrypt mechanism [14].
The encryptor first computes a MAC over the plaintext, con-
catenates the MAC to the plaintext, pads the message such
that its length is a multiple of the block length, and finally
encrypts the MAC’ed and padded plaintext using a block ci-
pher in CBC mode.

TLS specifies the exact value of the padding bytes. The
last byte of the padded plaintext specifies how many padding
bytes are used, excluding that last byte. The value of the rest
of the padding bytes is identical to the value of the last byte.
For example, if 4 padding bytes are used including the last
byte, then the value of all four bytes will be 0x03.

To demonstrate the full process, if the en-
cryptor encrypts five bytes of data with the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite, he
uses HMAC-SHA (whose output is 20 bytes long) and
AES-CBC. After applying HMAC-SHA to the original
plaintext, the concatenation is 25 bytes in length, which fits
into two AES 16-byte blocks. The encryptor will typically
select the minimum viable amount of padding, which would
be 7 bytes in this case. The first block contains the data and
the first 11 HMAC bytes. The second block contains the
remaining 9 HMAC bytes and 7 bytes of padding 0x06, see
Figure 1. Note that the encryptor can also choose longer
padding and append 23, 39, ...or 247 padding bytes (while
setting the value of the padding bytes accordingly).

3 A Brief History of Padding Oracle Attacks

One of the main design failures in SSLv3 and TLS is the
specification of the MAC-then-Pad-then-Encrypt scheme in

[41]42[43]44[45/MIMIMIMIMIM MMM MM
‘M MM (MM MM M| m[06706106106106/06106]

Figure 1: When processing five plaintext bytes with AES-
CBC and HMAC-SHA, the encryptor needs to append 20
bytes of the HMAC-SHA output and seven bytes of padding.

CBC cipher suites. This scheme was responsible for a series
of attacks on TLS implementations named padding oracle at-
tacks. Even though the countermeasures are explicitly sum-
marized in the TLS specification [14, Section 6.2.3.2], their
correct implementation is challenging.'

3.1 Vaudenay’s Padding Oracles

In 2002, Vaudenay showed that the MAC-then-Pad-then-
Encrypt scheme introduces potential vulnerabilities in secu-
rity protocols, in the form of so-called padding oracles [39].
The attacks leveraging these vulnerabilities are based on the
malleability of the CBC mode of operation. We focus on the
case of TLS.

Consider the TLS record layer when using CBC mode.
After decryption, the decrypting party needs to verify the
padding bytes and the MAC bytes. The natural way to im-
plement these two checks is first to verify the padding bytes
and, if they verify correctly, then verify the MAC bytes. If
the padding bytes are invalid, it is natural for an implemen-
tation to emit an error message, without checking the MAC
bytes. On the other hand, if the padding bytes are valid but
the MAC is invalid, it is then natural to emit a (potentially
different) error message.

Assume a decryptor that indeed emits two different error
messages in these cases. The attacker can decrypt the last
byte of any message block p; as follows. He sets the last ci-
phertext block to ¢; and replaces the last byte of the previous
block c¢;_ with a value between 0 and 255. If the last cleart-
ext byte is 0x00, then the padding will be valid (other forms
of valid padding are much less likely). When the padding
byte correctly verifies, the attacker detects this by observ-
ing that the decryptor emitted an “invalid MAC" error, rather
than an “invalid padding" error. The attacker learns the value
of the last byte of p; after sending at most 255 ciphertexts to
the decryptor.

Using his knowledge of the last plaintext byte, the attacker
can proceed to decrypt the second-to-last byte of p;. By do-
ing so, he aims to create valid padding of length 2. More
generally, using this technique, the attacker can iteratively
decrypt every byte in p;. We omit the formal description of
the rest of the attack and refer the reader to [39].

I'We note that the countermeasures summarized in [14] do not protect
from timing-based attacks [4].
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Note that the above attack relies on the ability to distin-
guish between ciphertexts decrypting to valid and invalid
padding. It would therefore appear trivial for TLS imple-
mentations to prevent this attack by making sure they always
emit the same error message. Indeed, Vaudenay was unaware
of a way for an attacker to directly distinguish between these
two cases in the context of TLS. The reason is that even if
the TLS error messages differ, their distinction is impossible
since they are encrypted with TLS session keys. This is one
of the challenges we address in our work.

3.2 BEAST Attack Model

One question left open in Vaudenay’s paper is how to exploit
what he terms an “exploding oracle” — an oracle that is usable
only until it first returns a negative answer. This models the
problem where a TLS implementation will abort the session
as soon as a message doesn’t decrypt correctly. Hence, an
attacker that relies on changing messages in a TLS session
would not be able to continue the attack as soon as the first
decryption error arises.

Canvel et al. used a model where the client repeatedly
connects to the server [11], observing that this occurs due to
polling behavior of email clients at the time, and exfiltrating
an authentication password. The BEAST attack [34] essen-
tially used the same model, but rather relied on the behavior
of modern web browsers. In the simplest form of the BEAST
model, a victim is tricked into visiting a malicious website
controlled by the attacker. That website contains javascript
which causes the victim browser to repeatedly connect to
the victim website. Every website request then contains the
user authentication cookie, which is automatically sent by
the browser. This behavior allows the attacker to force the
victim to repeatedly send encrypted values to the server.

Our attacks work in this model. We assume that the at-
tacker can cause the victim client to repeatedly connect to a
victim server while retransmitting the same sensitive infor-
mation. We also assume the attacker is a man in the middle
(MitM) and can change messages in transit. This model has
now become standard in literature for modern attacks.

3.3 POODLE

The predecessor to TLS, SSLv3, uses a similar MAC-then-
Pad-then-Encrypt scheme. However, unlike TLS, the value
of the padding bytes in SSLv3 is under-specified. The last
byte of the plaintext denotes how many padding bytes are
present, but the rest of the padding bytes can take any value.

Consider a message with one full block of 16 padding
bytes. The last block of plaintext will have a last byte of
0xOF, and the first 15 bytes can take any value. Therefore,
an attacker can use the techniques described in Section 3.1
to replace the last block with any block whose last byte de-
crypts to 0xOF, and obtain a validly padded message. This

property of SSLv3 led to a devastating attack called “POO-
DLE”. See [27] for a full description of the attack.

Although POODLE relies on the under-specification of
the padding bytes in SSLv3, it surprisingly also affects TLS
implementations. In essence, there is nothing forcing a care-
less TLS developer to verify the (specified) padding bytes af-
ter decryption; a TLS implementation will interoperate just
fine even if it does not check the padding bytes at all. In fact,
it is easier for the developer to reuse the same code that han-
dles SSLv3 padding in a TLS implementation. This has led
to a variant of the POODLE attack that affects TLS imple-
mentations [25]. Even after these two high-profile discover-
ies, variants of POODLE continued emerging [10, 29, 28].
These works detected different TLS record processing vul-
nerabilities; some TLS implementations only verified the
first MAC byte, the others skipped validation of specific
padding bytes.

3.4 Lucky 13 and Other Timing Attacks

In 2013, AlFardan and Paterson [4] used a similar technique
to break TLS confidentiality and dubbed their attack “Lucky
13”. The attack relies on an important observation: Common
HMAC functions require different processing times when
processing inputs of different lengths. By performing clever
padding byte manipulations, the attacker can force the server
to execute HMAC computations on plaintexts of different
lengths. This is because the padding length determines the
amount of data used as input into the HMAC function. The
attacker can then measure the different processing times and
learn information about the padding byte. We refer the reader
to [4] for the full attack description.

The fix to Lucky 13 was to change the MAC verification
code in TLS implementations to be constant-time, regardless
of the number of processed cleartext blocks. This is possible,
but writing and maintaining such code is hard, even for ex-
perts. In 2016, Somorovsky identified a bug in the patched
code of OpenSSL [37]. The bug introduced a similar and
even more severe vulnerability which allowed an attacker to
distinguish between two alert messages. A different message
could be triggered if the decrypted message only contained
two or more valid padding blocks.

Amazon’s s2n TLS library was released in 2015 [24], af-
ter the Lucky 13 attack was published. s2n’s developers were
aware of Lucky 13 and introduced specific countermeasures
that seemed to render the code constant-time, thereby pre-
venting the attack. They also introduced randomized timing
delays to make the attack more difficult, in the unexpected
case that the code turned out to be vulnerable. Despite all
these efforts, s2n was still vulnerable to variants of Lucky
13 [3, 35]. All vulnerabilities were found despite the code
having been formally verified.
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3.5 Bleichenbacher’s Attack and its Variants

Bleichenbacher’s attack [8] is also a form of a padding oracle
attack. Rather than targeting symmetric encryption, it targets
a padding scheme used in RSA encryption, called PKCS#1
v1.5. It also similarly exploits a malleability property of
RSA encryption and relies on a decryptor (i.e., a server)
emitting error messages in case of invalidly-padded cleart-
exts. The standard countermeasure is similar to that of CBC
padding oracles; the server must not behave differently when
encountering error states in RSA decryption. This counter-
measure has become part of the TLS standard.

However, implementing the countermeasure correctly is
challenging. Bock et al. scanned for vulnerable TLS servers
vulnerable to Bleichenbacher’s attack [9]. They found vul-
nerabilities in servers used by high-profile websites such
as Facebook and Paypal. Interestingly, their vulnerabilities
could be triggered by using different TLS protocol flows
or exploiting TCP connection states (TCP resets or time-
outs). As with CBC padding oracles, Bleichenbacher’s at-
tack shows a similar sequence of an attack variant being dis-
covered every few years in different contexts [26, 22, 6].

4 Scanning and Evaluation Methodology

The ultimate goal of our research is to estimate the number
and the impact of padding oracle vulnerabilities and report
our findings to the responsible vendors. To accomplish this,
we proceed in three steps. We first define a list of test vectors
potentially triggering observable differences which result in
padding oracles. We then reduce this test vector list and per-
form a large-scale scan. Finally, we analyze the identified
vulnerabilities and responsible vendors.

4.1 Test Vector Generation

In order to detect padding oracles in implementations, we
connect and send various malformed records. These records
contain different malformities in regards to the padding,
MAC, and application data. We then observe if there are
any differences in responses, in the TLS layer, or in lower
layers. An implementation that responds differently to two
malformed records may be vulnerable.

It is infeasible to test with all possible malformed records.
For example, a vulnerable implementation could correctly
check all padding bytes unless the padding bytes are exactly
16 bytes long, in which case the implementation does not
check a specific bit in the padding.> Since there could be
up to 256 padding bytes, testing the correct validation of
each bit for all possible padding lengths would require test-
ing with Zizi? 8i = 263, 168 different records. These records

2The above behavior may sound contrived, but similar behaviors have
been found in the wild, see e.g. [29, 28, 37].

need to be tested with different cipher suites or protocol ver-
sions which makes such a comprehensive test infeasible. We
therefore carefully selected a set of malformed records which
are motivated by previous research.

We concede this way of selecting the set of malformed
records means we can only detect vulnerabilities that are
similar to known ones. However, this approach is cost-
effective and well-suited to large-scale scans. Since only a
limited number of messages can be sent to individual servers
during large-scale scans, automatic approaches for the test
vector generation, like fuzzing, are usually infeasible.

4.1.1 Malformed Records

Our malformed records are all 80 bytes in length. Equal
lengths ensure that differences in responses are likely caused
by a padding oracle vulnerability and are not false positives
triggered by different record lengths. Unusual record lengths
may lead to errors that are unrelated to decryption; for exam-
ple, recent OpenSSL versions respond with a different error
message if the encrypted TLS record is shorter than the MAC
length. We decided to use 80 bytes to have enough room for
an HMAC output combined with two full padding blocks.
This allows us to construct records protected by SHA-384,
whose output is 48 bytes in length. We summarize our 25
malformed records in the following paragraphs. See also Ta-
ble 1 for a summary of these malformed records for the case
of TLS_RSA_WITH_AES_128_CBC_SHA.

Flipped MAC bits. We start with a valid record containing
application data, a MAC, and four padding bytes. We then
create three malformed records based on this record: One by
flipping the most significant bit in the first MAC byte, one
by flipping a middle bit in the middle of the MAC bytes,
and one by flipping the least significant bit of the last MAC
byte. We chose these malformed records to detect imple-
mentations where the MAC is not completely checked. The
specific bit flipping positions are motivated by the recent
OpenSSL vulnerability [1], where OpenSSL only checked
the least significant bit of each byte on some platforms, and
by further vulnerabilities caused by incomplete MAC valida-
tions [29, 28].

Missing One MAC byte. We start with a valid record con-
taining empty application data, but with valid MAC and
padding. We then modify it to create two malformed records:
One where we delete the first MAC byte, and one where we
delete the last MAC byte. We then add another padding byte
in both messages. These malformed records could also trig-
ger vulnerabilities caused by incomplete MAC validations
and are indirectly motivated by [28].

Missing MAC. Motivated by [37], we created two mal-
formed records which only contain padding and do not con-
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Nr. MAC Padding
Len Pos Modification Len Pos  Modification
1 20 20 & 0x01 56 - -
2 20 11 @ 0x08 56 - -
3 20 1 & 0x80 56 - -
4 19 1 DEL 56 - -
5 19 20 DEL 56 - -
6 0 - - 80 ALL 0x4F
7 0 - - 80 ALL OxFF
8 20 - - 60 1 & 0x80
9 20 - - 60 31 @ 0x08
10 20 - - 60 60 & 0x01
11 20 1 & 0x80 60 - -
12 20 9 @ 0x08 60 - -
13 20 16 @ 0x01 60 - -
14 20 1 @ 0x01 60 1 @ 0x80
15 20 1 @ 0x01 60 31 @ 0x08
16 20 1 @ 0x01 60 60 @ 0x01
17 20 - - 6 1 & 0x80
18 20 - - 6 3 @ 0x08
19 20 - - 6 6 @ 0x01
20 20 1 @ 0x80 6 - -
21 20 9 @ 0x08 6 -
22 20 16 @ 0x01 6 - -
23 20 1 @ 0x01 6 1 @ 0x80
24 20 1 & 0x01 6 3 & 0x08
25 20 1 @ 0x01 6 6 @ 0x01

Table 1: A summary of our malformed records, as
constructed for TLS_RSA_WITH_AES_128_CBC_SHA. The
columns indicate length, position, and modification for MAC
and padding bytes, respectively. @ denotes XOR’ing the
listed value in the listed position. DEL denotes deleting one
byte in the listed position.

tain a MAC at all: One where we supply exactly 80 bytes
of valid padding (0x4F), and one where we supply 80 bytes
of incomplete padding of value OxFF. The latter is not only
missing the MAC but also contains invalid padding since
if the value of the last byte is OxFF, there should be 256
padding bytes.

Combining valid and invalid MAC and padding. The
last group of malformed records contains messages with
combinations of valid and invalid MAC and padding of three
types: valid MAC and invalid padding, invalid MAC and in-
valid padding, and invalid MAC and valid padding. For each
of these three types, we create three sub-types, depending
on which bit positions we flip; we flip either the most sig-
nificant, middle, or least significant bit in the first, middle,
or 16th byte, respectively. For each of these nine sub-types,
we create one version which contains application data, and
one without. The length of the application data is chosen
such that the padding bytes are contained within one plain-
text block, while the malformed records without application
data contain more than one block of padding. This aims to
detect implementations which check only the last block of
padding bytes.

4.1.2 Combining Malformed Records with Protocol
Versions and Cipher Suites

We use each malformed record with several TLS protocol
versions and cipher suites. As previously stated, we use the
term test vector to refer to the combination of a malformed
record, protocol version, and cipher suite. As we later show,
testing each malformed record with different protocol ver-
sions and cipher suites is necessary; some vulnerabilities
are only triggered with such specific combinations. At first
glance this is surprising, but this actually follows the find-
ings of [9]. We conjecture that implementations may use
completely different code stacks depending on the negoti-
ated version and cipher suite, and some vulnerabilities are
only present in a subset of those code stacks.

4.2 Empirical Test Vector Reduction

Depending on the configuration of the server, the above set
of test vectors is quite large. Assuming a server supporting
TLS 1.0 and TLS 1.1 with 10 CBC cipher suites, there would
be 10-2-25 = 500 test vectors. Note that every test vector
requires establishing a new TLS connection and performing
an expensive handshake. This large number of test vectors
would not allow us to perform large-scale scans. On the other
hand, removing test vectors could lead to false negatives and
missing vulnerabilities. To reduce the number of test vectors
without lowering the detection rate, we propose an empirical
test vector reduction approach. We sample 50,000 random
hosts which respond on port 443. We then perform a full
scan on these hosts with the aforementioned 25 malformed
records and all supported cipher suites and TLS version com-
binations. We can then analyze our test vector combina-
tions and create the smallest set of test vectors detecting all
padding oracle vulnerabilities. These empirical steps ensure
that 1) with high probability we do not miss vulnerabilities,
and 2) we can use the reduced set for large-scale analyses.

4.3 Clustering Vulnerabilities

Once we reduce the number of test vectors we can perform
our full scan. For this purpose, we use one of the Internet
top lists which typically contain a good mixture of up-to-date
server implementations. Among Internet top lists, the Alexa
Top 1 Million dataset contains the most significant number
of hosts responding to TLS connections (about 75%) and is
recommended for TLS scans [36].

After performing the TLS scan with a reduced vector set,
we create a list of vulnerable hosts. We re-scan these hosts
with our full test vector list. For every host, we store its re-
sponse map. The response map describes the complete host
behavior when responding to our test vectors. The response
map consists of cipher suite fingerprints. A cipher suite fin-
gerprint describes the server response behavior for a specific
cipher suite and TLS version.
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One of our major goals is to notify vulnerable vendors.
For this purpose, it is necessary to group vulnerable hosts
using the resulting response maps and contact their admin-
istrators to find out the vulnerable implementation version.
Bock et al. performed this step manually and were able to
approach the most important vendors [9]. However, such an
approach is laborious and error-prone. We aim to group vul-
nerable implementations automatically.

Although grouping vulnerable hosts appears to be easy
given all response maps, response maps differ even if they
use the same vulnerable implementation version. TLS
servers running identical implementations can use differ-
ent configurations, enabling different cipher suites and TLS
versions. For example, server A may be vulnerable to a
padding oracle attack and has only one TLS cipher suite
enabled: TLS_RSA_WITH_AES_128_CBC_SHA256. Server B
is vulnerable using the same cipher suite fingerprint. How-
ever, server B is configured to use additional cipher suites
as well which are not vulnerable to the attack. Are these
two servers using the same implementation or just a sim-
ilar one? To estimate this, we devised a novel approach
based on a two-dimensional force-directed graph drawing al-
gorithm [21]. These algorithms embed a network of nodes
on a plane that allows for spatially interpreting the network.
They do so by creating a two-dimensional graph which con-
tains as few crossing edges as possible. In our approach we
use the ForceAtlas2 algorithm [21]: ForceAtlas2 simulates a
physical system in order to spatialize a network. Nodes re-
pulse each other like charged particles, while edges attract
their nodes, like springs. These forces create a movement
that converges to a balanced state. This final configuration
is expected to help the interpretation of the data [21].

We represent the scanning results as a graph as follows:
Each node in the graph represents a host. Each pair of hosts
is connected by an edge if their response maps do not include
different cipher suite fingerprints for the same cipher suite.

This approach works well on our dataset, and servers ex-
hibiting similar vulnerabilities are grouped closely. We aug-
ment the graph by coloring nodes according to their degree
(i.e., their number of edges). The resulting visualization in-
deed allows identifying similar implementations. We show
the concrete results in Section 8.

5 Large Scale TLS Scanning

We developed our padding oracle test vectors with TLS-
Attacker [37], a framework for systematic analyses of TLS
implementations. TLS-Attacker supports creating malicious
TLS workflows and message malformities. TLS-Attacker
has already been used for detecting padding oracle attacks,
but only against specific implementations in lab conditions,
not at scale. Our approach of creating an optimized set of
test vectors was not previously included in this framework.

TLS-Crawler Director Instance |

Persistence Provider | | Orchestration Provider
| A

v y

Persistence Provider Backend Orchestration Provider Backend

L]
&8 redis
[y
TLS-Crawler Worker Instance |

¥ v
‘ Worker Organizer Thread ‘

A A
Worker Thread Worker Thread

TLS-Attacker TLS-Attacker
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Worker Thread
TLS-Attacker

Worker Thread
TLS-Attacker

Figure 2: Our TLS scanning infrastructure is based on well-
established components for data persistence and on TLS-
Attacker for performing TLS evaluations.

5.1 TLS-Crawler

In order to scan a large number of hosts, we developed
a framework which scans multiple servers in parallel and
writes the results to a database. This allows us to parallelize
the scan by using multiple machines. The database provides
a querying interface for the scan data, which allows for easier
analysis of the large result datasets. We call our framework
TLS-Crawler.

TLS-Crawler is split into a director instance and poten-
tially multiple worker instances. The worker instances per-
form the actual TLS host scans. Each worker instance imple-
ments a thread pool which distributes scanning work across
available threads. The instance then bundles the results and
coordinates parallelized database access. A director instance
coordinates the worker instances. The director instance con-
tains an orchestration provider responsible for the coordi-
nation and distribution of scanning tasks across workers.
The results are persisted in a database using a persistence
provider. We use MongoDB? as the persistence provider, and
orchestrate instances via a Redis queue.* Figure 2 visualizes
the TLS-Crawler architecture.

5.2 Performing the TLS Scans

Before scanning each host with test vectors, we perform a
brief scan in order to learn the CBC cipher suites and TLS
protocol versions supported by the host. We excluded export
and anonymous cipher suites from these tests since they are
already trivially broken by a MitM attacker. We then perform
our scan using our set of test vectors for each CBC cipher

3https://www.mongodb. com
‘https://redis.io
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suite and its supported protocol version.

Previous large-scale TLS scans have mostly focused on
vulnerabilities in the TLS handshake [9, 2], certificates [19],
or vulnerabilities which could be triggered before the TLS
handshake succeeds [17]. These previous scans only require
performing a successful handshake once, usually with a com-
monly supported cipher suite. In contrast, in order to test for
padding oracle vulnerabilities, it is necessary to perform a
full TLS handshake for each tested cipher suite. This is com-
plicated by TLS implementations exhibiting intolerances [7]
which might prevent a server from completing the TLS hand-
shake, or even responding to the initial ClientHello mes-
sage. We tried to minimize the effect of these intolerances on
our scans, but 20% of servers exhibited enough intolerances
that we could not effectively scan them.

Even completing a TLS handshake does not guarantee we
can effectively scan a host. For example, in some tests, the
target hosts temporarily stopped responding for a few sec-
onds. This is likely because the servers crashed or blocked
our requests as part of a Denial-of-Service defense. In order
to avoid false negatives from such scans, we scan multiple
hosts in parallel (up to 2000) such that no host is overloaded
by our requests. Additionally, we wait at least 10 seconds
between scanning a host with two cipher suite/version pairs,
further limiting the load on scanned hosts.

When performing these scans it is critical to select an ap-
propriate timeout. If the timeout is too low, we might miss
responses due to high server load. Conversely, a high time-
out value would decrease the scanning performance. Set-
ting a high timeout value also means we no longer distin-
guish between a server immediately closing the connection,
and requiring a noticeable time to recover and close the con-
nection. Additionally, the server’s answers may span mul-
tiple TCP packets, so there is no simple way to ascertain
the scanner has received the server’s answer in full at any
point in time. (Some responses do not include a TCP RST
or FIN packet.) We empirically determined that a timeout
of one second works well in practice, and mostly guarantees
that the server did have enough time to process our record
and respond. However, even when using this timeout value,
we found servers that responded non-deterministically due
to high load or various bugs.

To work around non-deterministic responses, we re-
scanned each suspected vulnerability in order to avoid false
positives. We only consider a server as vulnerable if it re-
sponds identically in three separate scans to each of our test
vectors.

6 Evaluation

For the scans, we used a machine with 2 Xeon E5-2683v5
CPUs (with a total of 64 cores) and 48 GB of RAM. The scan
used an average of SMbit/s of upstream data and 15Mbit/s of
downstream data.

6.1 Pre-Scanning with All Malformed

Records

We performed a preliminary scan of 50,000 random TLS
hosts, aimed at reducing the set of malformed records. The
scan took place in October 2018 and required three days.
The results confirmed that the choice of key exchange algo-
rithm and protocol version indeed affects whether a given
host exhibits CBC padding oracle vulnerabilities. We then
reduced the set of malformed records. To do this, we first
identified all vulnerable hosts, i.e. hosts that would be iden-
tified when scanning with the full set of malformed records.
We then examined subsets of malformed records of increas-
ing sizes, and for each subset, examined the number of hosts
that would be identified when scanning only with this sub-
set of malformed records. This process was stopped when
a subset of four malformed records identified all vulnerable
hosts. That is, all hosts that would be identified when scan-
ning with the full set of malformed records, would also be
identified when scanning with the reduced set of malformed
records. This reduced set includes the following malformed
records (all of these records are 80 bytes in length):

1. A record with missing MAC and correct padding (of
value 0x4F).

2. A record with missing MAC and incorrect padding (of
value OxFF).

3. An empty record with no application data, with invalid
padding and valid MAC. The highest bit in the first
padding byte is flipped.

4. An empty record with no application data, with valid
padding and invalid MAC. The lowest bit in the first
MAC byte is flipped.

Please note that we still test every TLS host with all of its
supported cipher suites and TLS protocol versions.

Is the malformed record set reduction lossy? The re-
duced malformed record set detects all vulnerabilities de-
tected by the larger, original malformed record set, on the
sample data of the preliminary scan. 1t is natural to ask
whether there are hosts that are vulnerable to a malformed
record from the original set, but not to a malformed record
from the reduced set. There are obviously no such hosts in
the sample data, but there could be such hosts outside of the
sample. If there is a large number of such hosts on the In-
ternet, then the malformed record reduction process would
be lossy, i.e. by using fewer malformed records, we detect
fewer vulnerabilities in the full scan. As we now explain, this
source of scanning inaccuracy is likely small enough to not
materially affect our results. Put another way, the reduced
set of malformed records likely detects most vulnerabilities
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triggered by the full set of malformed records, not just on the
sample data.

Indeed, let p denote the percentage of hosts, out of all
TLS-speaking hosts, that are vulnerable to one malformed
record from the full set of malformed records, but not to any
malformed records from the reduced set. L.e., p describes the
percentage of hosts that the reduction misses; we will now
show it is rather small. In the random sample of N = 50000
hosts used for the preliminary scan, we did not encounter
any such hosts. In order to compute the 99% confidence in-
terval, we require (1 — p)V = 0.01. Solving for p, we obtain
p =0.0092%. We therefore determine with 99% confidence
that there are at most 0.0092% additional vulnerable hosts
that our scans miss due to the malformed record reduction.

We provide an intuitive explanation of the above, for the
reader’s convenience. As per the above calculation, we esti-
mate the percentage of vulnerable hosts on the Internet that
would be missed because we scan with the reduced set of
malformed records is 0.0092%. Censys [16] estimates there
are about 42.4 million hosts which serve TLS on port 443
as of February 2019. Therefore, our estimate is that the re-
duction misses at most 42400000 - 0.0092% = 3900 hosts.
Intuitively, the term "99% confidence interval" means there
is roughly a 1% chance that this estimate is wrong, i.e. that
there are more than 3900 such hosts on the Internet.

6.2 Alexa Top Million Scan

We used the reduced set of malformed records to scan the
Alexa Top Million websites. Among the top lists, Alexa Top
1 Million provides the highest percentage of hosts supporting
TLS [36] and is thus suitable for large-scale TLS scans. The
list likely includes most high-profile TLS implementations.

The scan required approximately 72 hours. Of the initial
one million hosts, 785,295 responded on port 443. We were
able to perform TLS handshakes with CBC cipher suites
with 627,493 hosts. We excluded all other hosts from the
evaluation. We discovered a total of 18,257 Alexa Top Mil-
lion hosts (1.83%) which are vulnerable to padding oracle
attacks.

The data supports our conjecture that implementations
may be vulnerable on a cipher suite with one protocol ver-
sion, but not vulnerable on the same cipher suite with a dif-
ferent protocol version. A total of 649 servers were only
vulnerable in either TLS 1.0 or TLS 1.1/1.2 although the vul-
nerable cipher suite was supported in the other version. Sim-
ilarly, in some cases, the negotiated key exchange algorithm
affects whether implementations exhibit a CBC vulnerabil-
ity. 601 hosts were vulnerable on one cipher suite, but not on
another cipher suite with a different key exchange algorithm
but the same symmetric cipher and HMAC function. A total
of 3,247 hosts were vulnerable on all CBC cipher suites they
supported.

After identifying vulnerable hosts, we rescanned them

with the full set of test vectors to get their full response maps.
As noted above, to label a host as vulnerable we require the
response maps to be consistent across three different scans.

6.3 Results of Our Clustering Approach

Analyzing each vulnerable host manually is infeasible. We
therefore clustered the vulnerable hosts, such that hosts ex-
hibiting the same cipher suite fingerprints are clustered to-
gether. This minimizes the manual work required to iden-
tify the vendor (or vendors) responsible for each vulnerable
behavior. We reiterate that this clustering is not trivial, as
explained in Section 4.3.

We identified 93 different cipher suite fingerprints. Table 2
summarizes the 40 most common cipher suite fingerprints.
Using the first row as an example, 7297 hosts responded with
BAD_RECORD_MAC and CLOSE_NOTIFY TLS alerts and timed
out the connection for malformed records 11 and 12 (©).
For all other malformed records these hosts closed the TCP
connection (@) after sending the same TLS alerts.

We also identified four groups exhibiting behavior similar
to the CVE-2016-2107 vulnerability in OpenSSL [37] (ci-
pher suite fingerprints #41, #75, #14, and #54 in Table 2).
They respond to malformed records 6 and 7 (see Table 1)
with a RECORD_OVERFLOW TLS alert. To all other mal-
formed records they respond with BAD_RECORD_MAC. These
are likely unpatched OpenSSL implementations, or security
appliances running older OpenSSL versions.

For vulnerable cipher suites on the same host, cipher suite
fingerprints are largely consistent. Of hosts exhibiting at
least one vulnerable cipher suite, 99.6% have an identical
cipher suite fingerprint on all vulnerable cipher suites. We
removed the remaining 0.4% of hosts to make clustering eas-
ier. However, hosts sharing the same cipher suite fingerprint
on vulnerable cipher suites don’t necessarily share the same
implementation. As an example, consider two hosts, A and
B, with two cipher suites supported by both hosts, 1 and 2.
A is vulnerable on cipher suite 1 with cipher suite fingerprint
X, but is not vulnerable on cipher suite 2. B is not vulnera-
ble on cipher suite 1, but is vulnerable on cipher suite 2 with
the same cipher suite fingerprint X. This difference indicates
the hosts don’t share the same implementation, as we would
expect the shared implementation to have a consistent set of
vulnerable cipher suites. (We concede that it is possible the
hosts exhibit different behavior because of different configu-
ration flags despite sharing the same implementation, but we
consider this unlikely).

We denote the above situation (in its general form) as
“contradictory response maps”; two hosts exhibiting the
same cipher suite fingerprint on vulnerable cipher suites, but
where there exists a cipher suite supported by both hosts such
that one host is vulnerable on that cipher suite and the other
host is not. We refer to the complement situation as “com-
patible response maps”.
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Nr. Cipher suite fingerprint Strength  Count

1,2,3,20,21 4,5 6 7 8,9 10,16,19,22-25 11,12 13,14,15 17,18 R1 R2

15 FyuWag@ FoWa@ FpoWa@ FyWag®@ FyWa@ FoyWa@ FyuWa® FyuWa@ FyWa@ ® S 7297
41 Fa0a @ Fag @ F2a @ Fa @ Fa0a @ Fa0g @ Fag @ Fa0a @ Fa@ ® w 4387
84 b b b '/ S b b 'I Fog? @® P 2313
75  FWa@ FWg@®@ FuWg@ FnuWg@ FyyWg@ FoyWg®@ FyyWg@ FyWg@®@ FyWg@ @& W 940
21 Fyoa @ Fyog @ Fya @ Fa @ Fgoa @ Fyoa @ Fyog @ Fyoa @ Fya@ @ W 687
23 onWa (7)) onWﬂ (7)) onWa @ F20WE (7)) onWe (4] onWa (7)) ona S) onWa (7)) onWﬂ (7)) @ w 458
68 Q Q Q Q &) o Q o © @ P 248

0 L4 L4 L4 L4 © L4 L4 L4 A @ P 194
79 o Q o %] 7} Q@ FyyWg© Qo Q ® W 151
10 Fy0a @ Fi0a @ Fya @ Fa @ Fiya @ Fi0a @ Fi0a @ Fi0a @ Fg®@ ®» W 98
85 o o (7] o (&) Q %) Qo AQ @® P 83

2 L4 b &) Faog &) Foa &) Faog S (&) Faog S Faog &) @ S 76
61 Fya @ Fya @ Fya @ ¥ '! '/ Fya @ 'I y & S 54

6 b b b ’/ Fia @ 4 b b Fig@ @ P 52
62 &) &) (&) Faog &) Faoa &) Faog &) (&) Faog &) Faog &) @ S 47
33 L4 L4 L4 L © L4 L4 L4 o @ P 43
31 o o (7] Q ) ) o ) © @® P 36
76 Fya @ Fya @ Fya @ Fya @ o Faa @ Fya @ Fra @ © ® P 34
77 FxoWg@ F5oWaq@ FsoWg@ FyWg@ FyWa@ FyyWa@ FyWag@ FyWg@ FyWg@ @& S 28
14 Faoa ¥ Faa ¥ Frng ¥ Frna ¥ Fa ¥ Fag ¥ Fyg ¥ Fg ¥ Fa? ®» W 24
24 FyWa¥  FoWa¥%  FoWa¥% FxWah FoWa¥ FyWa¥ FyWa® FyWah FyWab @ W 21
38 Fgoa @ Fsog @ Fsoa @ b b y Fsog @ 5 )y @ S 19

4 4 '/ 'I '/ &) 4 4 'I Fpa® @ P 15
54 Faa @ Fa0a @ Fg @ Fpa @ Fyg © Faa @ Fa0a @ Faa @ Fra® ® W 12
74 FyyWa@ FyyWg©® FyWag® FyWg@ FyWg@ FoyWg®@ FyWg® FyWg@®@ FyWg@ @& W 9

7 ’I '/ ’! '/ (7] 4 '/ ’I © ® »p 8
37 Fr0a @ Fsoa @ Fsoa @ Fya @ Fr0a @ Fia @ Fya @ Fa0a @ Fa@ ® W 7
51 (7} o 7} o S) %] o (7} Q@ ® W 7
59 AQ 4 b ¥ ¥ 4 © ¥ y ® 7
66 L4 14 © b © L4 © © y ® w 7
70 A AQ (&) Frog © Faog © Frg © &) Fyg © Faog ©@ @ S 7
11 Fag @ o © © © ©  Fnag® © © ® P 5
42 ong@ F21g® F21g® Fz]g@ Fz]g@ Fzm@ ong@ Fzm@ legz » S 5
89 5 '/ © 7} Q 7} © Q Q ® S 5

3 &) Fya @ Fya @ Fya @ Fya @ Fra @ © Fra @ Fg@ @ § 4
26 Fig @ Fra @ Fyg @ Fiog @ Fya @ Fag @ Fya @ Fig @ Fa®@ ® W 4
28 Fya @ Fyg @ Fya @ Fra @ © Fra @ Fyg @ Fya @ AWg0 @ P 4
35 L4 i L4 b FooWg @ L4 b k¥ Fy Wa @ @ P 4
73 (7)) Fsoa Q Fsoa (7)) Q Q o Q (7)) Q0 @ w 4

9 Fag @ Fa0a @ Fag @ Fa0a @ Fg @ Fa0a @ Fyg @ Fag @ Fa® @ W 3

Table 2: Analysis of the 40 most common cipher suite fingerprints, each consisting of responses to 25 malformed records.
For ease of reading, we group together malformed records for which responses are identical within each cipher suite finger-
prints. We use the following notation: Application message (A), Fatal Alert with error code k (Fj), Warning Alert (W),
connection closed (@), TCP reset (¥), timeout (©). We use the following TLS Alert codes: UNEXPECTED_MESSAGE (10),
BAD_RECORD_MAC (20), DECRYPTION_FAILED_RESERVED (21), RECORD_OVERFLOW (22), DECOMPRESSION_FAILURE (30),
HANDSHAKE_FAILURE (40), ILLEGAL_PARAMETER (47), DECODE_ERROR (50), DECRYPT_ERROR (51), INTERNAL_ERROR (80).
Alerts with code CLOSE_NOTIFY always used the warning level. @ denotes an encrypted response. The oracle strength defi-
nition is provided in Section 7; observable differences are depicted with @, unobservable differences with &. We use W and S
for weak and strong padding oracles, respectively (a strong and observable oracle is exploitable). P represents behavior similar
to POODLE (which is also exploitable if it is observable).
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We then use a graph algorithm in order to further split
host groups. For each group of hosts with an identical ci-
pher suite fingerprint, we construct a graph where each node
represents a host. We draw an edge between two hosts if
and only if their response maps are compatible. We then em-
bed the graph in a two-dimensional plane using the ForceAt-
las2 algorithm, as implemented in the Gephi software.’ The
ForceAtlas2 algorithm clusters together nodes connected by
an edge, so nodes with compatible response maps are clus-
tered together. Identically configured servers which behave
identically will be connected to the same nodes and will
therefore have the same degree. Since these servers are con-
nected to the same nodes, ForceAtlas2 will draw them close
to one another. By coloring the nodes by their degree it be-
comes easy to manually spot similarly configured and iden-
tically behaving implementations in the graph. These sub-
groups can then be examined for candidates for manual anal-
ysis and responsible disclosure. ©

Example for one vulnerability group. An exam-
ple of this visualization is provided in Figure 3. The
figure clearly shows two distinct sub-groups which
do not share edges (meaning their response maps
are contradictory and they likely do not share the
same implementation). Hosts shown in green are
vulnerable on TLS_RSA_WITH_AES_128_CBC_SHA
and TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
while servers shown in pink are only vulnerable to
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA and not on
TLS_RSA_WITH_AES_128_CBC_SHA. Interestingly the hosts
in the middle of the graph (mostly in teal) do not support
TLS_RSA_WITH_AES_128_CBC_SHA (they are vulnerable
on TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA). They may
share their implementation with either the green or pink
group and therefore share edges with the members of both
groups. Hosts in red are very similar to the pink group but
do not share edges with the teal group. This means that
either a third group exists, or the teal group actually belongs
to the green group and the red group belongs to the pink
group. Individual nodes are likely rare configurations of one
of the implementations of the bigger groups. We performed
a DNS lookup and determined both groups are operated by
a Czech hosting company.

This approach allowed us to also contact other prominent
websites in each group and ask what TLS implementation
they use.

Shttps://github.com/gephi/gephi

SWe note that further grouping by the server agent string could provide
more insights into the different groups. However, it is also very likely that it
would also falsify our results. In many cases, TLS is terminated in reverse
proxies or firewalls, and the server agent string is generated on a different
machine handling HTTP traffic.

Figure 3: Visualisation of group #23 from Table 2.

Breakdown of response maps. Figure 4 visualizes the
prevalence of the various cipher suite fingerprints. A few
very common vulnerabilities account for the majority of vul-
nerable hosts. The newly-discovered vulnerabilities in Ama-
zon/OpenSSL and Citrix account for slightly more than half
of all vulnerable hosts. These are listed as #15 and #84 and
described in more detail in Section 8.2. In addition, response
maps #41 and #75, which likely stem from implementations
based on unpatched OpenSSL versions, account for roughly
a third of vulnerable hosts. Response map #23 is found in
the above-mentioned Czech hosting company.

7 Realistically Exploitable Padding Oracles

Not all of the oracles we identified enable effective decryp-
tion attacks. The rest of this section explains exploitation in
more detail.

The padding oracles we discovered are based on direct
message side channels, i.e. on TLS implementations where
two error states trigger different error responses from the
TLS server. They may be exploitable in the BEAST attacker
model, which relies on two assumptions: (a) the victim client
visits a website under the attacker’s control, which triggers
HTTPS requests to the victim server, and (b) the attacker is
a MitM and can observe the session and modify transmitted
ciphertexts. In addition to those standard assumptions, an or-
acle is exploitable if it satisfies two additional requirements:
(R1) Observability and (R2) Perfect padding distinguishabil-
ity.

7.1 (R1) Observability

Unlike timing side channels, little attention has been paid to
direct message side channels in the case of TLS, and com-
mon wisdom seems to assume they are unobservable to the
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[ #15 Amazon / OpenSSL

O #41 Unpatched OpenSSL 1

[ #84 Citrix

O #75 Unpatched OpenSSL 2

@ #21 (unidentified implementation as of this writing)
@ #23 (unidentified implementation, disclosure ongoing)

O Other

Figure 4: A visualization of the prevalence of cipher suite
fingerprints. A few widely-prevalent vulnerabilities account
for the majority of vulnerable hosts. Out of the above cipher
suite fingerprints, #84 and #15 are exploitable. They are de-
scribed in more detail in Section 8.2.

attacker. Indeed, this is true for implementations which send
a single alert in all error cases and the behavior is identical
except perhaps for the content of the alert message. Such
behavior cannot be exploited by the attacker to create a side
channel because the alert message is encrypted. However,
we identified many cases where implementations do exhibit
an observable difference in behavior. These observable dif-
ferences can roughly be divided into two classes:

e TCP layer. We found implementations which leak in-
formation about the padding validity in the TCP layer.
For example, in the case of Amazon, most test vectors
with invalid padding caused the server to immediately
close the TCP connection. However, specific, carefully
crafted test vectors caused the server to abort the TLS
session while keeping the TCP connection open.

e Number of TLS records. We observed TLS servers
that responded with a different number of records based
on the padding validity. While the attacker cannot de-
crypt these records, he is able to observe the total ci-
phertext length. For example, the servers from group
23 (see Table 2) responded with one TLS alert in the
case of valid padding, while for invalid padding they
responded with rwo TLS alerts.

Client U Server
modify last
send ciphertext block
HTTPS | TLS —
requests

— @
observe differences
in ciphertext length

Figure 5: Exploiting observable error-based padding oracles
in a BEAST scenario. Differences in total ciphertext length
result from different numbers of TLS alerts being sent.

Consider an attacker <7 who can distinguish between the
two cases of valid_padding and invalid_padding based
on the validity of the last padding byte (see Figure 6). The
attacker decrypts an HTTPS session cookie as follows:’

1. .o/ lures the victim client to load a web page he controls.
This web page contains JavaScript code which sends
HTTPS requests to the victim server, with a URL of
@7’s’ choice.

2. «/ observes the first TLS handshake and determines if
the negotiated cipher suite is vulnerable to padding or-
acle attacks. If not, he aborts.

3. If a vulnerable cipher suite is used, 2 instructs the
client to send another HTTPS request, modifying the
URL such that the first character of the session cookie
is the last byte in cipher block c;.

4. AsaMitM, < intercepts the ciphertext (c1,...,Ci, .., Cp)
and modifies it such that ¢; becomes the last ciphertext
block, for example by replacing ¢, with c;.

5. Decryption of this last block c; is a pseudorandom trans-
form, so the padding will likely be invalid, triggering an
observable invalid_padding error event.

6. In about 1 out of 256 requests, the padding will ran-
domly be valid. When the padding is valid, it is most
likely to be one byte in length, as depicted in Figure 6.
The preceding bytes will be parsed by the TLS server as
MAC data, and will be invalid with overwhelming prob-
ability. In this case, </ observes a valid_padding er-
ror event, and computes the first character of the HTTPS

7We present here a more general form of the attack, which is also appli-
cable to POODLE-style oracles. This form requires 256 sessions on average
in order to decrypt one plaintext byte [27]. For oracles which completely
disregard the MAC, there is a faster form which requires 128 sessions on
average to decrypt one plaintext byte.
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Figure 6: Our attacks rely on a vulnerable server that delivers
different responses based on the validity of the last padding
byte.

session cookie as c¢,—1[—1] @ ¢;—1[—1], where the [—1]
operator denotes taking the last byte of a block.

7. of then prepares another HTTPS URL where the sec-
ond character of the session cookie is shifted to the last
byte of ¢;, and starts again with step 3.

7.2 (R2) Perfect Padding Distinguishability

In the above example, we considered a simple oracle
that allows for distinguishing between valid_padding and
invalid_padding based on the validity of the last padding
byte. However, even when providing different responses, im-
plementations do not necessarily expose such simple oracles.
For example, an older OpenSSL version responds with a dif-
ferent alert message only in the specific case of an empty
record containing at least two full valid padding blocks [37].
We identified vulnerable implementations that only respond
differently to ciphertexts containing several valid padding or
MAC bytes. Such vulnerabilities are less likely to be ex-
ploitable since using the algorithm above, the attacker would
need to perform far more than 256 oracle queries to de-
crypt each byte. The attacker may be able to overcome this
limitation by inserting bytes of his choice directly after the
cookie value. Due to the malleability property of CBC, it is
only possible to insert one block of successive chosen data.
Therefore, CBC allows for the creation of practical exploits
if the number of chosen padding bytes is smaller than the
block size.?

Therefore, in our impact estimation, we take a con-
servative approach. To consider a vulnerable implemen-
tation as exploitable, we require that it responds with
valid_padding to ciphertexts with at most one block of
valid padding. We call such oracles strong and refer to other
oracles as weak. In addition to these two oracles, we con-
sider oracles which do not correctly validate the complete
CBC padding and only validate the MAC. We refer to such
oracles as POODLE oracles. These oracles could also be
exploited by applying attacks similar to POODLE.

Column R2 in Table 2 identifies the oracle strength. For
example, servers with the second most prevalent cipher suite

8Decrypting parts of the cookies with weak oracles or exploiting weak
oracles could also be possible with extended techniques. We do not analyze
the exploitability of these more complex oracles. Such an analysis would
likely need to be done manually for each oracle and would need to consider
specific browser behaviors.

fingerprint (#41) respond to malformed records #6 and #7
from Table 1 with a RECORD_OVERFLOW. In all other cases,
the servers send the BAD_RECORD_MAC alerts. We con-
sider this group to be weak since the attacker needs to
send more than one block of valid padding to trigger the
RECORD_OVERFLOW alert with a malformed record #6 or #7.

We consider servers with cipher suite fingerprint #2 to be
strong oracles. The servers from this group respond with a
TCP connection reset (¥) if they receive a malformed record
with a valid padding (see malformed records #20 and #21).
There are also several groups with behavior similar to POO-
DLE. These groups ignore modifications in the MAC bytes
and respond differently to malformed records #8, #9, #17,
and #18.

7.3 Exploitability

We consider observable POODLE and observable strong or-
acles as exploitable. We consider all other oracles as non-
exploitable. However, note that weak oracles may be ex-
ploitable using more advanced techniques. Our estimate of
the number of exploitable hosts is, therefore, a conservative
lower estimate.

Estimation of exploitable hosts. Our scan identified
18,257 hosts vulnerable to padding oracle attacks. Of those,
11,225 (61.4%) exhibit observable vulnerabilities that allow
an attacker to distinguish between two malformed records.
See also column R/ in Table 2. At least 10,688 hosts pro-
vided strong or POODLE-styled oracles, which is 58% of
vulnerable hosts. See also column R2 in Table 2. In total,
10,501 hosts are practically exploitable, i.e. they meet both
requirements.

Are CBC cipher suites negotiated? Most modern
browsers support AEAD cipher suites. If a vulnerable server
prefers AEAD cipher suites, they would likely be negotiated,
and this precludes CBC attacks. 31,651 hosts or 4.03% only
support RC4 or CBC cipher suites. Most modern browsers
have disabled support for RC4 cipher suites due to [30], so
modern browsers would likely negotiate CBC cipher suites
with these hosts. Of those hosts, 1,400 were vulnerable to
padding oracle attacks.

8 Findings

In this section we review our assumptions and present no-
table vulnerabilities we found in different implementations.

8.1 Do our Initial Assumptions Hold?

We performed our scans under the assumption that scanning
with different cipher suites and protocol version is necessary
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in order to detect vulnerable hosts. As explained below, our
findings confirm this assumption.

Is scanning with different protocol versions necessary?
Bock et al. found that some servers exhibit RSA padding
oracle vulnerabilities only on some of the protocol versions
they support [9]. As noted in Section 3.5, we suspected the
same holds for CBC padding vulnerabilities. Our findings
confirm this assumption: We identified at least 744 hosts that
support the same cipher suite in both TLS 1.0 and 1.2, but are
vulnerable when using that cipher suite only in one of those
versions. In some cases the vulnerable protocol version is the
newer version, and in other cases, the older one. As an exam-
ple of the former case, vine.co was vulnerable using TLS 1.2
with the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite,
but was not vulnerable when using the same cipher suite in
TLS 1.0.

Surprisingly, when only one protocol version is vulnerable
with the same cipher suite, there are more cases where the
newer version is vulnerable. Out of those 744 hosts, 120
hosts are vulnerable in TLS 1.0 but not in TLS 1.2, and 624
are vulnerable in TLS 1.2 but not in TLS 1.0.

Is scanning with different cipher suites necessary?
Bock et al. also found that scanning with different cipher
suites is necessary to detect as many vulnerabilities as possi-
ble [9]. In the above work, this finding held even when scan-
ning with cipher suites using different symmetric ciphers,
while the vulnerability was in the (theoretically unrelated)
RSA implementation.

We find similar behavior in our results. We identified
at least 601 hosts with two cipher suites, one vulnerable
and one secure, where the only difference between the two
cipher suites is the key exchange algorithm. This finding is
unintuitive, as one would expect an implementation to be
uniformly vulnerable or secure on all cipher suites with the
same symmetric cipher. To give one example, one website is
secure when using TLS_RSA_WITH_AES_256_CBC_SHA256
with TLS 1.2, but 1is vulnerable when using
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, also with
TLS 1.2.

Rationale behind the server behaviors. Both behaviors
may seem unintuitive but are actually expected. Many im-
plementations take completely different code paths depend-
ing on the negotiated cipher suite or protocol version. These
code paths may, for example, rely on hardware acceleration
or use an optimized assembly implementation when possi-
ble. It is therefore likely (and, as we see, common) to find
implementations that exhibit vulnerabilities only in some of
the supported cipher suites and protocol versions, even when
the same symmetric cipher is used.

ENC [Plaintext MAC,qjg 04 04 04 04 FF 98... 01 ]

w| =|

RST

ENC [Plaintext MACyzjg 04 04 04 04 3F 2D... E2 i)

BAD RECORD MAC, RST

Vulnerable Server

Figure 7: Behavior of Citrix implementations with cipher
suite fingerprint #84.

8.2 Notable Vulnerabilities

In our scans we identified multiple devices from Cisco, two
different IBM servers, and multiple devices from Sonicwall
and Oracle. In the following, we describe specific vulner-
abilities we identified and responsibly disclosed in Citrix,
OpenSSL, and IBM servers.

Our disclosure is still an ongoing process. Our recent find-
ings and the current state of countermeasures implemented
by affected vendors are summarized on https://github.
com/RUB-NDS/TLS-Padding-0racles.

Amazon/OpenSSL. With the help of the Amazon secu-
rity team, we identified a vulnerability (cipher suite fin-
gerprint #15) which was mostly found on Amazon servers
and Amazon Web Services (AWS). Hosts affected by this
vulnerability immediately respond to most records with
BAD_RECORD_MAC and CLOSE_NQOTIFY alerts, and then close
the connection. However, if the hosts encounter a zero-
length record with valid padding and a MAC present, they do
not immediately close the TCP connection, regardless of the
validity of the MAC. Instead, they keep the connection alive
for more than 4 seconds after sending the CLOSE_NOTIFY
alert. This difference in behavior is easily observable over
the network. Note that the MAC value does not need to be
correct for triggering this timeout, it is sufficient to create
valid padding which causes the decrypted data to be of zero
length. Therefore, we classify this as a strong oracle which
is also exploitable.

Further investigations revealed that the Amazon servers
were running an implementation which uses the OpenSSL
1.0.2 APIL In some cases, the function calls to the API re-
turn different error codes depending on whether a MAC or
padding error occurred. The Amazon application then takes
different code paths based on these error codes, and the dif-
ferent paths result in an observable difference in the TCP
layer. The vulnerable behavior only occurs when AES-NI is
not used.

We had in fact previously tested the vulnerable OpenSSL
code manually, in lab settings, but had not identified this vul-
nerability. This is because the vulnerability only manifests
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under a combination of specific conditions: subtle interac-
tions between OpenSSL and external code, and only when
AES-NI is not used, which is rare nowadays. We view this
as an illustrative example of the usefulness of large-scale
scans in detecting vulnerabilities that lab tests may some-
times miss.

We suspect this OpenSSL behavior underlies a number
of similar vulnerabilities we identified, not only vulnerabil-
ity #15. Therefore, we hope that once OpenSSL releases a
patch, other vulnerabilities will be fixed as a result. The issue
was assigned CVE-2019-1559.

The IBM vulnerabilities. We found multiple vulnerabili-
ties in servers hosted by IBM. One of the vulnerabilities is
described by cipher suite fingerprint #77 in Table 2. Af-
fected servers respond with a BAD_RECORD_MAC alert if ei-
ther the MAC or the padding is incorrect. If the padding is
correct and the MAC is incomplete or not present, the server
responds with a DECODE_ERROR alert. The latter behavior
occurs even if the records are too short to contain a MAC, as
long as the record contains at least two blocks of ciphertext,
independently of the used MAC algorithm. An attacker can
send only two blocks with an IV, which guarantees there is
not enough room for a MAC. This provides the attacker with
a classic CBC padding oracle. We therefore consider this a
strong oracle. Since the alerts are encrypted, we classify this
vulnerability as unobservable, and the oracle is therefore not
exploitable.

The IBM security team decided to disable CBC cipher
suites on the affected servers and to only support AES-GCM.

Citrix. The described vulnerability is identified by cipher
suite fingerprint #84 in Table 2. The vulnerable implemen-
tation first checks the last padding byte and then verifies the
MAC. If the MAC is invalid, the server closes the connec-
tion. This is done with either a connection timeout or an
RST, depending on the validity of the remaining padding
bytes. However, if the MAC is valid, the server checks if
all other remaining padding bytes are correct. If they are
not, the server responds with a BAD_RECORD_MAC and an
RST (if they are valid, the record is well-formed and is ac-
cepted). We visualize this behavior in Figure 7. This be-
havior can be exploited with an attack similar to POODLE.
Since the oracle is also observable, we consider this group
as exploitable. We first detected this vulnerability in Ama-
zon Web Services. In cooperation with the Amazon security
team, we determined that Citrix Application Delivery Con-
troller (ADC) and NetScaler Gateway are responsible for this
behavior. The vulnerability was assigned CVE-2019-6485.

9 Related Work

‘We now highlight past work that focused on large-scale scans
for vulnerabilities on the modern Internet. For a survey of re-

lated work on padding oracle attacks, we refer the reader to
Section 3. ZMap [18] is a network scanner capable of reach-
ing high scanning speeds. Durumeric et al. [17] used ZMap
to scan the IPv4 address space to quantify the impact of the
Heartbleed vulnerability [32]. Heninger et al. [19] scanned
TLS and SSH for weak keys generated using insufficient en-
tropy. Adrian et al. [2] introduced the Logjam vulnerability
and used Internet-wide scanning to quantify its effects, de-
pending on attacker computational resources. Aviram et al.
[5] introduced the DROWN vulnerability and similarly used
Internet-wide scanning to quantify its effects. Bock et al.
[9] performed large-scale scans for Bleichenbacher’s vulner-
ability, while also observing side channels such as changes
in the TCP connection state, as we do here. Valenta et al.
[38] scanned for known vulnerabilities in elliptic curve im-
plementations, searching for a combination that could enable
a powerful attack named CurveSwap.

10 Conclusions and Future Work

This work demonstrates that padding oracle vulnerabilities
still exist on the modern Internet and will likely continue to
threaten users’ security. These vulnerabilities are often hard
to detect: they may rely on subtle side channels or require
specifically-crafted inputs in order to trigger.

In the past, major new TLS attacks had positive effects on
the ecosystem. For example, the work by Adrian et al. [2]
resulted in an “enforcement” effort, where major browsers
changed their behavior and refused to connect to servers with
weak DH parameters. It is an interesting open question how
the security community can better help server operators de-
tect and remediate more subtle kind of vulnerabilities (CBC
oracles in particular, and other classes of vulnerabilities in
general).

One solution in the context of CBC oracles would be
to disallow CBC cipher suites altogether. Recently, major
browser vendors have declared their intention to remove sup-
port for the old 1.0 and 1.1 TLS versions. This forces many
server operators to upgrade their implementations or change
configuration. Indeed, a case could be made that browser
vendors can also remove support for CBC cipher suites, forc-
ing again server operators to upgrade. These changes are
not without their costs; they usually require notice of months
in advance, may require coordination between browser ven-
dors, and obviously, create additional work for server opera-
tors.

Our results again confirm that large-scale scans make it
feasible to uncover a large variety of security vulnerabilities,
previously not detected by lab testing. We believe that our
approach is of general interest when performing large-scale
scans, not only in the context of TLS. One open question
is how to identify vulnerable implementation versions and
their vendors. In the SSH and IPsec protocols, these data
are typically transmitted as message fields in the protocol.
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Transmitting such data in TLS would make disclosure easier,
but on the other hand would lead to privacy issues and easier
fingerprinting.
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