
Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

What Are You Searching For? A Remote
Keylogging Attack on Search Engine Autocomplete

John V. Monaco, Naval Postgraduate School

https://www.usenix.org/conference/usenixsecurity19/presentation/monaco

This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

What Are You Searching For?
A Remote Keylogging Attack on Search Engine Autocomplete

John V. Monaco
Naval Postgraduate School, Monterey, CA

Abstract
Many search engines have an autocomplete feature that
presents a list of suggested queries to the user as they type.
Autocomplete induces network traffic from the client upon
changes to the query in a web page. We describe a remote
keylogging attack on search engine autocomplete. The attack
integrates information leaked by three independent sources:
the timing of keystrokes manifested in packet inter-arrival
times, percent-encoded Space characters in a URL, and the
static Huffman code used in HTTP2 header compression.
While each source is a relatively weak predictor in its own
right, combined, and by leveraging the relatively low entropy
of English language, up to 15% of search queries are identi-
fied among a list of 50 hypothesis queries generated from a
dictionary with over 12k words. The attack succeeds despite
network traffic being encrypted. We demonstrate the attack
on two popular search engines and discuss some countermea-
sures to mitigate attack success.

1 Introduction

Search queries contain sensitive information about individ-
uals, such as political preferences, medical conditions, and
personally identifiable information [7, 25]. They can reveal
user demographics, hobbies, and interests, and are routinely
used for targeted advertising [4, 24]. To protect user privacy,
all major search engines now encrypt search query traffic.

Autocomplete is a feature that provides suggested queries
to the user as they type based on the partially completed query,
trending topics, and the user’s search history [2]. Intended
to enable the user to find information faster, autocomplete
requires the user’s client to communicate with the server as
keyboard input events are detected. As a result, the user’s
keystrokes manifest in network traffic.

We present a remote keylogging attack on websites that
implement autocomplete. The attack detects keystrokes in en-
crypted network traffic and identifies search queries using in-
formation from three independent sources: keystroke timings

manifested in packet inter-arrival times, percent-encoding of
Space characters in a URL, and the static Huffman code used
in HTTP2 header compression.

The attack we developed, called KREEP (Keystroke Recog-
nition and Entropy Elimination Program), consists of five
stages: keystroke detection, which separates packets that cor-
respond to keystrokes from background traffic; tokenization
to delineate words in the packet sequence; dictionary pruning,
which uses an HTTP2 header compression side channel to
eliminate words from a large dictionary; word identification,
performed by a neural network that predicts word probabili-
ties from packet inter-arrival times; and a beam search, which
generates hypothesis queries using a language model. KREEP
is a remote passive attack that operates entirely on encrypted
network traffic.

Autocomplete has been incorporated into almost every ma-
jor search engine. We demonstrate our attack on two popular
search engines and evaluate its performing using a collected
dataset of 16k search queries. Using a dictionary with over
12k words, KREEP identifies 15% of queries and recovers
up to 60% of the query text among a list of 50 hypothesis
queries. The attack is robust to packet delay variation (PDV).
We simulate up to ±32ms of network noise and find relatively
little loss in performance with moderate levels of PDV. How-
ever, the attack is not robust to padding and we propose a
simple padding defense that mitigates both the HTTP2 header
compression side channel and ability to delineate words.

To summarize, the main contributions of this work include:
1) A method to detect packets induced by autocomplete

and delineate words in a query. The pattern of autocomplete
packet sizes from each search engine is characterized by a de-
terministic finite automaton (DFA). We generalize the longest
increasing subsequence problem, which has an efficient dy-
namic programming solution, to that of finding the longest
subsequence accepted by the DFA. This approach can detect
keystrokes in network traffic with near-perfect accuracy and
delineate words with greater than 90% accuracy.

2) A side channel attack that leverages the static Huffman
code used in HPACK, the HTTP2 header compression for-

USENIX Association 28th USENIX Security Symposium 959

mat. Previously, it was shown that HPACK leaked relatively
little information through compressed size [50]. However,
with autocomplete, a search query is built up incrementally
one character at a time and then recompressed. Due to this
incremental compression, the information leaked is more than
previously thought. We describe a method to leverage this
information leakage to prune a dictionary, which increases
the accuracy of our remote keylogging attack.

3) A neural network that identifies words from keystroke
timings. We define a neural network architecture that takes
into account the preceding and succeeding context of each
observed timing and a method to identify words from a dictio-
nary containing over 12k entries. The network is trained on
keystrokes recorded from 83k typists, and words are correctly
identified with 19% accuracy.

4) The integration of a language model and keystroke tim-
ing attack to leverage the relatively low entropy of English
language. Previous keystroke timing attacks have noted the
relatively low entropy of natural language compared to pass-
word input [47]. We introduce a method that combines a
keystroke timing attack with a language model to generate
hypothesis search queries. The use of a language model sig-
nificantly improves performance.

In the next section, we provide background information on
keylogging side channels and autocomplete. The attack work-
flow and threat model are described in Section 3, followed by
keystroke detection and tokenization in Section 4. Dictionary
pruning and the HTTP2 header compression side channel are
described in Section 5. Word identification from timings and
the language model are described in Section 6. Sections 7 and
8 contain results and discussion, respectively, and Section 9
concludes.

2 Background

2.1 Keylogging side channels
A keylogging side channel attack aims to recover the
keystrokes of a victim through unintended information leak-
age. Such attacks have been demonstrated for a wide range of
modalities such as acoustics [5], seismic activity [31], hand
motion [54], and spikes in CPU load [46]. These generally
fall into two different categories: spatial attacks, which utilize
a channel that leaks spatial information about where a key is
located on the keyboard, and temporal attacks, which utilize a
channel that leaks only the timing of the keyboard events [34].
Our attack leverages both spatial and temporal information
leaked through network traffic generated by a website with
autocomplete.

Temporal keylogging attacks attempt to recognize which
keys a user typed based only on the key press and release
timings. This is possible because different key sequences can
result in characteristic time intervals, such as typing the key
sequence “th” quicker than “aq”. Consequently, the exposure

of keyboard event timings is a threat to user privacy. Remote
keystroke timing attacks may target applications in which a
keystroke induces network traffic from the victim’s host, such
as SSH [47] or a search engine with autocomplete functional-
ity [51]. Packet inter-arrival times, when observed remotely,
reveal the time between successive keystrokes. Keyboard in-
put events can also be detected from within a sandboxed
environment on the host [46] or on a multi-user system [59].

Keylogging attacks can be characterized by the type of
input that occurs. For password input, an attack may assume
that each key has an equal probability of occurrence, i.e.,
maximum entropy, whereas for natural language it is often
assumed that the user typed a word contained in a dictionary
[29]. For the purpose of identifying search queries, we assume
natural language input which enables KREEP to leverage a
language model in generating hypothesis queries.

Two main problems arise when trying to determine
keystrokes from timings. The first is keystroke detection:
given a sequence of events, such as network packets, spikes
in CPU load, or memory accesses, determine which events
correspond to keystrokes and which do not. This is a binary
classification problem. In our attack, we consider a sequence
of network packets emitted by the victim which includes
background traffic in addition to the HTTP requests induced
by autocomplete. The second problem is key identification:
given that a key press has occurred, the attacker must deter-
mine which key it was. This is a multi-class classification
problem. In our attack, we assume that each key is either an
English alphabetic character (A-Z) or the Space key, for a
total of 27 keys.

We address the problems of keystroke detection and key
identification separately. KREEP detects keystrokes by find-
ing a subsequence of packet sizes that are characteristic of
autocomplete requests. For key identification, KREEP lever-
ages both packet size and packet inter-arrival timings, which
faithfully preserve key-press latency.

2.2 Web search autocomplete

Many websites have autocomplete functionality. With this
feature, a list of suggested search queries is presented to the
user as they enter text into a search form. The list of sug-
gested queries is determined by an algorithm based on the
user’s search history, current trending topics, and geographic
location [2]. Because the suggestions are automated, this can
sometimes result in unfavorable associations implied between
search terms which has made autocomplete the focus of sev-
eral legal disputes [27].

As changes to the query are detected, the client sends an
HTTP GET request to the server and the server responds
with a list of suggested search queries [26]. This results in a
series of HTTP requests following keyboard events, such as
those shown in Figure 1. The request contains the partially
completed query in addition to other parameters, such as an

960 28th USENIX Security Symposium USENIX Association

G
oo

gl
e

Size URL
163 ?q=t&cp=1&...
164 ?q=th&cp=2&...
164 ?q=the&cp=3&...
166 ?q=the%20&cp=4&...
167 ?q=the%20l&cp=5&...
168 ?q=the%20la&cp=6&...
169 ?q=the%20laz&cp=7&...
170 ?q=the%20lazy&cp=8&...
172 ?q=the%20lazy%20&cp=9&...
173 ?q=the%20lazy%20d&cp=10&...
173 ?q=the%20lazy%20do&cp=11&...
174 ?q=the%20lazy%20dog&cp=12&...

B
ai

du

Size URL
661 ?wd=t&csor=1&...
668 ?wd=th&csor=2&pwd=t&...
670 ?wd=the&csor=3&pwd=th&...
674 ?wd=the%20&csor=4&pwd=the&...
678 ?wd=the%20l&csor=5&pwd=the%20&...
680 ?wd=the%20la&csor=6&pwd=the%20l&...
682 ?wd=the%20laz&csor=7&pwd=the%20la&...
684 ?wd=the%20lazy&csor=8&pwd=the%20laz&...
688 ?wd=the%20lazy%20&csor=9&pwd=the%20lazy&...
693 ?wd=the%20lazy%20d&csor=10&pwd=the%20lazy%20&...
695 ?wd=the%20lazy%20do&csor=11&pwd=the%20lazy%20d&...
697 ?wd=the%20lazy%20dog&csor=12&pwd=the%20lazy%20do&...

Figure 1: Autocomplete requests for the query “the lazy dog” in Google (left) and Baidu (right). After each key press, the client
sends an HTTP GET request that contains the partially completed query in the URL (shown in bold). Packet size is in bytes.

authentication token and page load options, which generally
do not change between successive requests. As a result, each
request changes by only a single character, and the size of
each packet increases by about 1 byte over the previous.

There are primarily two methods to implement autocom-
plete [35]. The first is a polling model in which a web page
periodically checks the contents of the query input field at
fixed intervals. When a change is detected, an autocomplete
request is sent to the server to retrieve the query suggestions.
Depending on the polling rate and the speed of the typist,
an autocomplete request may not immediately follow every
keystroke. If two keystrokes occur before the polling timer
expires, then they will both be included in the next autocom-
plete request. In this situation when the typing rate exceeds
the polling rate, the keyboard input event times are not faith-
fully preserved in packet inter-arrival times due to multiple
keys being merged into a single request.

The second method of implementing autocomplete is a
callback model in which the requests are triggered by HTML
DOM keydown or keyup input events. In this approach, each
autocomplete request immediately follows each input event
such that the packet inter-arrival times faithfully preserve the
time between keyboard events. Non-printable characters, such
as Shift, Ctrl, and Alt, are ignored since these alone do not
result in visible changes to the query.

We focus only on search engines that implement auto-
complete requests triggered by keydown events. This results
in packet inter-arrival times that are highly correlated with
key-press latencies, i.e., time between successive keydown
events. Previously, we determined that Bing implements
a polling model with 100 ms timer, DuckDuckGo imple-
ments a callback model triggered by keyup events, and Baidu,
Google, and Yandex implement a callback model triggered
by keydown events [35]. Because Yandex is not vulnerable to
the method of tokenization described in Section 4, we con-
sider only search engines Google and Baidu. As of January,

2019, Google search comprises over 90% of worldwide mar-
ket share [49], and Baidu comprises over 70% of the market
share within China [48].

3 Attack overview

In this section, we define the threat model and describe the
attack workflow. We then summarize the performance metrics
used to evaluate each component of KREEP separately as
well as overall attack success.

3.1 Threat model

We assume a remote passive adversary who can capture en-
crypted network traffic emitted by a victim using a search
engine with autocomplete. We do not make any assumptions
about background traffic or the ability to detect when a web
page loaded; KREEP is able to isolate the subsequence of
packets that contain autocomplete requests.

We assume the victim types only alphabetic keys and the
Space key (27 keys total) to form a query made of lower-
case English words with each word separated by a Space.
This excludes queries that were copied and pasted, the use of
Backspace and Delete keys, and any other input that might
cause the cursor to change position, such as arrow keys. The
victim might select an autocomplete suggestion before typing
a complete query; KREEP can identify the query up to the
point a selection was made.

The query must contain words in a large English dictio-
nary known to the attacker. We use a dictionary of over 12k
words comprised of the 10k most common English words [32]
together with English words that appear in the Enron email
corpus and English gigaword newswire corpus [19] (used to
simulate search queries, see Section 7.1 for dataset details).
KREEP does not require any labeled data from the victim for
the keystroke timing attack; the neural network that performs

USENIX Association 28th USENIX Security Symposium 961

Keystroke detection

(Packet trace)

Tokenization

Dictionary pruning

Word identification

Beam search

and
are
the
...

lazy
onto
that
...

cat
dog
fox
...

the lazy dog
the lazy fox
and that dog

0.2

P(w|τ)τ))
0.1
0.4

0.1

P(w|τ)τ))0.3 P(w|τ)τ))
0.3
0.2

Figure 2: Attack workflow. Input to KREEP is a packet trace
containing autocomplete and background traffic; output is a
list of hypothesis search queries. Each component provides
input to the next. See text for component definitions.

word identification is trained on an independent dataset. We
assume that the attacker has access to this dataset.

3.2 Workflow
Our attack consists of five stages applied in a pipeline archi-
tecture shown in Figure 2 and summarized below.

Keystroke detection: packets that correspond to keyboard
events are first detected from the full packet trace. This is a
binary classification problem where each packet is labeled as
either key-press or non-key-press. Each autocomplete request
contains the query typed up to that point, so the sequence
of autocomplete packet sizes has approximate linear growth
over time. This makes it possible to separate keystrokes from
background traffic, described in Section 4.2.

Tokenization: from the detected subsequence of packets,
words are delineated based on packet size differences. Tok-
enization is also a binary classification problem where each
packet is labeled as either Space or non-Space. Space charac-
ters in a URL are encoded by a three-byte escape sequence
whereas other characters occupy a single byte. This behavior
enables tokenization, described in Section 4.3.

Dictionary pruning: packet size differences are compared
to a dictionary to eliminate words that could not have resulted
in the observed sequence. This effectively prunes the hypoth-
esis query search space. Dictionary pruning is possible due to
the static Huffman code in HTTP2 header compression. This
side channel is described in Section 5.

Word identification: the probability of each word remain-
ing in the dictionary is determined from the observed packet
inter-arrival times, which faithfully preserve key-press laten-
cies. Word identification is performed by a neural network
described in Section 6.1.

Beam search: word probabilities are combined with a
language model in a beam search that generates hypothe-
sis queries. The number of hypothesis queries is controlled by

the beam width. The beam search is described in Section 6.2.

3.3 Performance metrics
We measure the performance of each component of the attack
separately as well as overall attack success.

Both keystroke detection and tokenization are binary clas-
sification problems. For keystroke detection, a false positive
occurs when a packet is incorrectly labeled as an autocomplete
request, and a false negative occurs when an autocomplete
request packet is missed. Likewise, a tokenization false posi-
tive occurs when a letter is incorrectly labeled as a Space, and
false negative occurs when a Space is missed. Let fp, fn be the
number of false positives and false negatives, and let tn, tp be
the number of true negatives and true positives, respectively.
We measure the performance of both keystroke detection and
tokenization by the F-score,

F1 = 2× Precision×Recall
Precision+Recall

(1)

where

Precision =
tp

tp+fp
, Recall =

tp
tp+fn

. (2)

The F-score varies between 0, for missing all positives, and 1,
for perfect precision and recall. Both keystroke detection and
tokenization provide input to later stages of the attack, the
success of which critically depends on performing well at both
these tasks. As demonstrated in Section 7.2, making these
tasks more difficult significantly reduces overall performance.

The utility of dictionary pruning is measured by the infor-
mation gain due to incremental HTTP2 header compression.
We compare this to the information gain in a classical com-
pression side channel where only the total compressed size of
the query is known.

For word identification, we report the word classification
accuracy from packet timings, assuming perfect detection and
tokenization. This evaluates word identification separately
from the other components.

We consider two metrics to measure overall attack success.
First is the rate at which a query is correctly identified among
the list of hypothesis queries. Using a beam width of 50, this
corresponds to a top-50 classification accuracy. Since the
hypotheses may contain queries that are close, but do not ex-
actly match, the true query, we also consider the Levenshtein
edit distance between the true and hypothesis queries. Edit
distance is used instead of character or word classification
accuracy since failures in keystroke detection can result in a
predicted query that is either shorter or longer than the origi-
nal query. This metric is thought to better reflect the overall
performance of a keylogging attack in such cases [16]. We
report the minimum edit distance among the hypotheses to
the true query, which roughly corresponds to the maximum
proportion of keys that are correctly identified.

962 28th USENIX Security Symposium USENIX Association

4 Keystroke detection and tokenization

In this section, we characterize the network traffic emitted
by autocomplete in two different search engines. We then de-
scribe the first two stages of attack: a method to detect packets
that contain autocomplete requests and a method to delineate
words in the query. Both stages leverage characteristics of
autocomplete packet sizes.

4.1 Autocomplete packet sizes

The problem of keystroke detection involves deciding whether
each captured packet was induced by a keyboard event or not.
As the user types a query into a search engine with autocom-
plete, the client emits HTTP requests that contain the partially
completed query, such as those shown in Figure 1. However,
these are mixed together with requests to load page assets,
such as HTML and CSS files, AJAX requests supporting dy-
namic web content, and other background traffic. We found
that typing a query with 12 characters on Google search in-
duces 95 outgoing packets with payload greater than 0 bytes
(436 packets including those with empty payloads), only 12
of which correspond to autocomplete requests.

Each autocomplete request contains a new character ap-
pended to the URL path. As a result, the sequence of packet
sizes is monotonically increasing, shown in Figure 1. We
perform keystroke detection by isolating a subsequence of
packets that exhibit this pattern, taking into account the par-
ticular behavior of each search engine described below.

The behavior of each search engine is characterized by the
sequence of size differences between successive autocom-
plete request packets. That is, let si be the size in bytes of the
ith autocomplete request and s0 the size of the first request.
Packet size differences are given by di = si− si−1 for i > 0.
This sequence reflects packet size growth as a function of
query length, invariant to the size of other parameters con-
tained in the request which vary across hosts due to different
sized identifiers, authentication tokens, and page load options.
However, these parameters typically remained unchanged in
successive autocomplete requests from a single host.

Figure 3 shows the distribution of di as a function of query
length for both Google and Baidu. From this figure and a
manual inspection of several HTTP request packets, we make
several observations about the behavior of each search engine.
We then use these observations to build a DFA that accepts a
sequence of autocomplete packet size differences.

Google autocomplete emits packets that typically increase
by between 0 and 3 bytes. As each new character is appended
to the “q=” parameter of the URL, the size increases by about
a byte. The 2 and 3 byte increases correspond to the addition
of percent-encoded characters in the URL, described in Sec-
tion 4.3. The 0 byte increases are an artifact of HTTP2 header
compression, described in Section 5.1. A larger increase of
approximately 20 bytes occurs after about 12 requests. At

Figure 3: Density of packet size difference between successive
autocomplete requests for Google (left) and Baidu (right).

this point, an additional “gs_mss” parameter with the partially
completed query is added to the URL. This results in a sudden
increase of about 20 bytes: 8 bytes for “&gs_mss=” and 12
bytes for the query. The request then continues to increase by
about 1 byte per character thereafter.

The autocomplete packet sizes of Baidu typically increase
by either 2 or 4 bytes per character, with a larger increase
of 7 or 9 bytes at the beginning of the sequence. After the
first request, an additional parameter “pwd=” referring to the
previous query is appended to the URL. For example, if the
user types “th”, the first request will contain “wd=t” followed
by “wd=th&pwd=t”, resulting in a 7 byte increase (6 bytes for
“&pwd=t” and 1 byte for “h”). A 4 byte increase corresponds
to the addition of escaped characters in the URL, which oc-
cupy 3 bytes. Baidu requests also occasionally include a new
cookie not present in previous requests, resulting in a larger
increase of either 11 or 13 bytes.

Both search engines include a parameter that keeps track
of the request number. In Google, this parameter is “cp=”,
where “cp” increments with each request (see Figure 1), and
Baidu uses the “csor=” parameter. On the 10th request, “cp=9”
becomes “cp=10”, resulting in an additional 1 byte increase.

4.2 Keystroke detection

Since autocomplete request size is monotonically increasing,
keystroke detection could be performed by finding the longest
increasing subsequence (LIS) of packet sizes which has an
efficient solution through dynamic programming [44]. How-
ever, the LIS fails to capture the fact that packets typically
increase by a fixed amount and that two successive packets
may be the same size due to HTTP2 header compression. To
that end, we generalize the LIS problem to that of finding the
longest subsequence accepted by a sequence detector DFA
based on observations in the previous section.

We define a DFA that accepts a sequence of packet size
differences generated by the autocomplete of each search
engine. The DFA for Google autocomplete packets is shown
in Figure 4, where edges denote a constraint on d that must be
met to traverse to the next state. States a and b correspond to

USENIX Association 28th USENIX Security Symposium 963

a b c d

d= 0 d> 3 d= 0

1≤ d≤ 3

1≤ d≤ 3
1≤ d≤ 3

d> 3

1≤ d≤ 3

Figure 4: DFA that accepts a sequence of packet size differ-
ences generated by autocomplete in Google search.

increases of between 0 and 3 bytes prior to the large increase
from the addition of the “gs_mss” parameter, and states c
and d are reached after the large increase. The absence of
a recurrent connection on states b and d indicate that two
consecutive non-increases cannot occur. This DFA takes as
input a sequence of packet size differences, and if at any point
an unreachable state is met, it rejects the sequence.

Let the longest automaton subsequence (LAS) be the
longest subsequence accepted by the DFA. Keystrokes are de-
tected by finding the LAS in the sequence of packet sizes. The
LAS is determined efficiently through dynamic programming
in a similar manner to that of the LIS problem. Let F be an
acceptor DFA and Li the longest subsequence accepted by F
ending in the ith packet. Assume the LAS ending in element
Li must necessarily be part of the solution if it contains Li
(optimal substructure). Then Li need only be computed once
and may be considered as the prefix to any other subsequence
L j where j > i (overlapping subproblems). We then need only
check if the DFA that accepted the sequence ending in packet
i can transition to packet j. Note that in general, these as-
sumptions may not hold and thus the dynamic programming
solution might be suboptimal; however, we found this method
to work well in practice and leave for future work a formal
treatment of the LAS problem.

4.3 Tokenization
Tokenization is the process of delineating words in the se-
quence of autocomplete requests. Since we assume the search
query to be made of English words separated by a Space, this
enables the following stages of attack (dictionary pruning,
word identification, and beam search) to be conducted at the
word level. Like detection, tokenization is a binary classifi-
cation problem since each packet may be labeled as either a
delimiter or part of a word. We consider the Space character
as the only delimiter between words.

Percent-encoding is an escape sequence used to represent a
character in a URL that is outside the set of allowable charac-
ters [8]. A percent-encoded sequence consists of three ASCII
characters, “%” followed by two hexadecimal digits. The
Space character (ASCII=32) in a URL has percent-encoding
“%20”. When the user types a Space into the search query
field, this escape sequence is appended to the URL causing
the uncompressed request packet to increase by 3 bytes.

Google autocomplete packets increase by 2 bytes when the

10000011100100001111001100100011

d o g (Padding)(Byte length)(H) s

Figure 5: Huffman encoded string literal “dogs” in HPACK.

Space key is pressed as a result of HTTP2 header compression.
The Huffman code for characters “%”, “2”, and “0” have
bit lengths 6, 5, and 5 respectively, and the sequence “%20”
has a total compressed bit length of 16 bits. Tokenization is
performed by marking packets that increase by 2 bytes as
word boundaries.

Baidu does not use HTTP2, so the escape sequence “%20”
occupies 3 bytes. However, since the previous query is in-
cluded in each request, when a Space is pressed the packet
size increases by 4 bytes: 1 for the new character appended
to the “pwd” parameter, and 3 for “%20” appended to the
“wd” parameter. This also occurs twice in a row since when
another letter key is pressed following the Space, “%20” is
then appended to the “pwd” parameter. For example, see the
URL and sizes of the third and fourth packets in Figure 1
(right), which demonstrate two consecutive 4 byte increases.
Tokenization of Baidu queries is achieved by detecting the
first of any two consecutive 4 byte increases.

5 Dictionary pruning

We describe a side channel that leverages the static Huffman
code used in HTTP2 header compression. This enables prun-
ing the dictionary, but is only applicable to Google which
supports HTTP2. Baidu does not currently support HTTP2.

5.1 Incremental compression side channel

HPACK is the HTTP2 header compression format, which
uses a static Huffman code to encode string literals [39]. A
Huffman code is a near-optimal lossless compression scheme.
Symbols are encoded by bit string with length based on the
frequency of the symbol. Huffman codes are prefix-free, such
that the code for a symbol is not the prefix to any other. The
encoded string becomes the concatenation of all encoded
symbols, avoiding the need for symbol delimiters. In HPACK,
the encoded string is padded with between 0 and 7 bits to
align with the nearest octet boundary.

The static Huffman code in HPACK was determined using
a large sample of HTTP headers, and all HPACK implemen-
tations must use the same Huffman code defined in the speci-
fication [39]. The sizes of lowercase letters range from 5 bits
for frequently used characters, such as “e” and “t”, to 7 bits
for infrequent characters, such as “j” and “z”. As an example,
the compressed string literal “dogs” is shown in Figure 5. The
encoded symbols occupy 6+5+6+5=22 bits, which is then
padded with 2 bits for a total size of 3 bytes.

964 28th USENIX Security Symposium USENIX Association

It was previously determined that size alone does not leak
a considerable amount of information in HPACK [50]. Let
hi be the bit length of the ith symbol in a string as specified
by the static Huffman code and b = ∑hi the total bit length
of the compressed string. The size b reveals only that the
string must be some linear combination of encoded symbols
to achieve the same compressed size. For example, the string
“fish” has compressed length 6+5+5+6=22 bits, exactly the
same compressed size as “dogs” in Figure 5.

Less than 0.05 bits per character are revealed in this way,
making an HTTP2 compression side channel impractical [50].
This estimate is actually an upper bound since compressed
string literals in HPACK are padded to the nearest octet. In-
stead of b, an adversary observes byte size B = p+∑hi

8 where
0 ≤ p ≤ 7 is an unknown amount of padding to align the
compressed bit string with the nearest octet.

However, the query in a sequence of autocomplete requests
grows incrementally. Each request contains a single new char-
acter appended to the URL path, which then passes through
header compression before being sent to the server. We refer
to this as incremental compression. As a result, instead of
total size B, an adversary observes the sequence of cumula-
tive byte sizes B1, . . . ,Bn of the compressed query after each
new character is appended. Due to differences in the size of
each symbol, different words grow at different rates and the
cumulative byte size sequence can reveal the query.

To leverage the information leaked through incremental
compression, we compare the observed sequence of cumu-
lative byte sizes to the cumulative sizes of every word con-
tained in the dictionary. The sizes of words in the dictionary
are precomputed for each possible amount of padding, which
is unknown to the attacker. Words for which the observed
sequence never occurs can be eliminated from the dictionary.

Let di be the observed size increase in bytes of the ith
request packet and let B j = ∑i≤ j di for 1 ≤ j ≤ n be the ob-
served cumulative size up to the nth request. The sequence
B1, . . . ,Bn characterizes the size growth of a word after un-
dergoing incremental compression. The cumulative byte size
sequence Bw,p0

1 , . . . ,Bw,p0
n is computed for each word w in the

dictionary, given by

Bw,p0
j =

⌊ p0 +∑i≤ j hi

8

⌋
(3)

where 0≤ p0≤ 7 is an unknown amount of padding applied to
the compressed URL prior to the request containing the first
character of the word. The observed size sequence B1, . . . ,Bn
is compared to every sequence Bw,p0

1 , . . . ,Bw,p0
n in the dictio-

nary to discover potential matches and eliminate words that
could not have been typed by the user.

An example is shown in Figure 6 where the user typed a
4 letter word with cumulative byte size [1,2,3,3]. Compar-
ing this sequence to the dictionary, there are two potential
matches: the observed sequence [1,2,3,3] appears for the
word “dogs” with padding p0 = 0 and for the word “guns”

Observed packet sizes

Dictionary

Figure 6: Dictionary pruning. The dictionary contains every
possible sequence of cumulative packet size, determined for
each word in the dictionary under each unknown prior padding
amount (0 to 7 bytes). The cumulative size of an observed
query is compared to each sequence in the dictionary. Words
that don’t have any matches to the observed sequence are
eliminated. The observed sequence [1,2,3,3] matches “dogs”
with no padding and “guns” with 0 or 1 byte padding; “cats”
has no matches and can be safely eliminated.

with p0 = 0 or p0 = 1. It’s therefore possible that the query
contains either the word “dogs” or “guns”. However, the
user definitely did not search for “cats” since the sequence
[1,2,3,3] is not attainable for the word “cats” under any
padding p0. The total size alone does not reveal this much
information since all words in the dictionary could have the
same total compressed size as the query (3 bytes) given some
unknown amount of padding.

Note that in general, if hi ≤ pi−1, then di = 0, where pi
is the padding applied after the ith character. That is, when
the bit length of a new character is equal to or less than the
previous amount of padding used, the packet size will remain
the same. Since the lengths of lowercase ASCII characters
range from 5 to 7 bits, an increase of at least 1 byte is guaran-
teed when pi−1 < 5. It is also never the case that di = 0 and
di+1 = 0, i.e., every two consecutive requests must increase
by at least one byte.

USENIX Association 28th USENIX Security Symposium 965

2 4 6 8 10 12 14
Word length

0

2

4

6

8

10

In
fo

rm
at

io
n

(b
its

)

Marginal entropy
Info gain (cumulative size)
Info gain (total size)

Figure 7: Information gain from an incremental compression
side channel, where the cumulative size of a string is exposed,
compared to a conventional compression side channel, where
only the total size is exposed.

5.2 Pruning and information gain
To measure the impact of this side channel, we determined the
expected information gain using a dictionary of 12k common
English words and compare this to the information gained
from total size alone. Given observed cumulative byte size
sequence B = B1, . . . ,Bn, the probability of each word in the
dictionary may be computed by Bayes’ formula,

P(w|B) = P(B|w)P(w)
P(B)

(4)

where P(B|w) is the probability of sequence B given word w,
P(w) is the marginal probability of word w, and P(B) is the
marginal probability the sequence B. Note that multiple byte
size sequences could be observed for a particular word depend-
ing on the amount of padding used. For example in Figure
6, P([1,2,3,3] |"guns") = 2

8 since the sequence [1,2,3,3] is
possible for the word “guns” with paddings of 0 and 1 out of 8
possible padding amounts. In the same example, the marginal
P([1,2,3,3]) = 3

24 since the sequence [1,2,3,3] appears 3
times in the dictionary with 24 precomputed sequences (3
words × 8 padding amounts). Words for which P(w|B)> 0
are retained in the dictionary in the later stages of the attack
and words for which P(w|B) = 0 are eliminated.

From P(w|B), the conditional entropy H (wn|B) is deter-
mined for words of length n. Information gain is given by
I (wn;B) = H (wn)−H (wn|B), where H (wn) is the marginal
entropy of words of length n. We assume each word has an
equal probability of occurrence, i.e., H (wn) has maximum
entropy. The information gain is shown in Figure 7. Note
that information gain from total byte size B is negligible
as previously reported [50]. However, the information gain
from cumulative size increases for longer words due to the
“uniqueness” of the cumulative byte sizes revealed through
incremental compression. These gains lead to more accurate
query identification.

k2

τ0

k1

τ1Input:

Backward RNN:

Forward RNN:

Output:

τ2

1D Convolution:

Figure 8: Neural network architecture that predicts n keys
from n+1 packet inter-arrival times.

6 Word identification and beam search

In the last stages of KREEP, packet inter-arrival timings are
used to predict which words the user typed. Word probabilities
are determined for the remaining words in the dictionary after
pruning, and these probabilities are combined with a language
model in a beam search to generate hypothesis queries.

6.1 Word identification from timings
Since each autocomplete request is triggered by a key-press
event, packet inter-arrival times faithfully preserve key-press
latencies. These latencies are used to predict which keys the
user pressed. Unlike previous work which considered either
each latency in isolation [47], or words in a limited dictio-
nary [29], we define a model that predicts key probabilities
considering their surrounding context and also able to recog-
nize words not seen during training.

We use a three-layer neural network to predict key prob-
abilities. Generally, each word of length n has n+1 packet
inter-arrival times since a Space precedes the first character
and follows the last character. The model takes as input the
sequence of latencies τi for 0≤ i≤ n and predicts P(ki), the
probability of each key ki for 1≤ i≤ n.

The first layer of the network is a bidirectional recurrent
neural network (RNN) with gated recurrent units (GRU) that
takes as input the sequence of n+1 time intervals. The second
layer is a 1-dimensional convolutional layer with kernel size
2 and no padding. The convolutional layer reduces the size
of the output from n+1 to n. The last layer is a dense layer
with softmax activation that predicts the probability of each
key (26 classes) at each time step. This architecture is shown
in Figure 8.

The network architecture was motivated by several factors.
The use of a bidirectional RNN ensures that the predictions at
key i are made within the context of latencies preceding and
following i. The convolutional layer with kernel size 2 com-
bines the latency immediately before and after key i, reducing
the size of the sequence from n+1 (number of latencies) to n
(number of keys). Note that while generally a word of length
n has n+1 latencies, the first and last words in the query each
have n latencies due to missing the leading Space and trailing

966 28th USENIX Security Symposium USENIX Association

Space, respectively. We augment the missing intervals with
the mean latency obtained over the entire training dataset.

Word probabilities are determined from the sequence of
key probabilities output by the network. The probability of
word w is the joint probability of all keys in that word,

P(w|τ) = ∏
ki∈w

P(ki) (5)

where τ is the sequence of observed latencies. Making predic-
tions at the key-level and then calculating word probability
by the joint key probability has several advantages. First,
the number of output classes in the network remains small
(26 keys) compared to the number of possible words (over
12k). Second, the probability of any word can be determined
whether or not it was contained in the dataset used to train the
model. In this way, the dictionary used to generate hypothesis
queries is independent of the key identification model.

Finally, learned features may be shared across words. For
example, if a particular pattern of latencies is indicative of
the sequence “th”, the model can learn to recognize “th” in
different words such as “the”, “there”, “beneath”, and so on. If
instead predictions were made at the word level, these features
would have to be learned separately for each word.

6.2 Language model and beam search
In the last stage, word probabilities are combined with a lan-
guage model to generate hypothesis queries in a beam search.

We assume the query to be a sequence of N words wi for
1≤ i≤ N and take advantage of the fact that some words are
more likely to follow others in natural language. As an exam-
ple, consider trying to predict an 8-letter word that follows
the sequence “recovering from a _”. The probability of words
such as “sprained” and “fractured” should be relatively higher
than other words such as “purchase” and “position”.

The use of a language model enables constraints of English
language to be leveraged in conjunction with word probabil-
ities from packet timings. A language model estimates the
probability of a word given the words that preceded it, de-
noted by P(wi|w1 . . .wi−1). We combine the language model
with the keystroke timing model to determine the probability
of an entire query w = [w1, . . . ,wN], given by

P(w) = ∏
wi∈w

P(wi|τ)P(wi|w1 . . .wi−1)
α (6)

where α is a parameter that controls the weight of the language
model. Smaller α places more weight in the packet inter-
arrival timings, while larger α places more weight on the
language model. In this work, we found α in the range of 0.2
to 0.5 work well and we use α = 0.2. The language model is
a 5-gram model with Kneser-Ney smoothing [21] trained on
the Billion Word corpus [11].

Determining the sequence with maximum a posterior prob-
ability (MAP) is NP-hard due to the exponential growth of the

search space. It is also unlikely that the MAP sequence itself
exactly matches the true query. Instead, KREEP generates a
list of hypothesis queries using a beam search. Beam search is
a breadth-first greedy search algorithm that maintains a list of
top candidates (the “beam”) as it progresses the search tree.

For each token, all the words in the dictionary are appended
to each hypothesis in the beam, which starts with the empty
string. This results in a list of W ×D candidates, where W
is the beam width and D is the size of the dictionary. The
W sequences with highest likelihood are retained, and the
rest discarded. This repeats until the last token is reached, at
which point the search returns a list of W hypothesis queries.
We use a beam width of 50. To measure the performance of
KREEP, we determine the rate at which the query is correctly
identified among the 50 hypotheses as well as the minimum
edit distance in the list of 50 hypotheses to the true query.

7 Results

In this section, we describe our data collection setup and eval-
uate attack performance. KREEP is first tested under ideal
conditions. We then evaluate performance with increasing lev-
els of simulated network noise and propose a simple padding
defense to mitigate attack success.

7.1 Data collection

We built a system that captures network traffic while a query
is typed into a search engine with autocomplete. The mea-
surement setup consists of a keystroke dataset previously
collected from human subjects, browser automation with Se-
lenium WebDriver, and a process to replay keystrokes by
writing keyboard events to /dev/uinput in real time.

To train the neural network, we used a subset of a publicly
available keystroke dataset collected from over 100k users
typing excerpts from the Enron email corpus and English gi-
gaword newswire corpus [15]. From this dataset, we retained
83k users with US English locale on either desktop or laptop
keyboards and QWERTY keyboard layout.

To simulate search queries, we randomly selected 4k
phrases between 1 and 20 words in length containing only let-
ters and the Space key. This selection contains a wide variety
of typing speeds, ranging from 1.5 to 22 keys per second. Of
the 4k phrases, 3k are unique. They contain a total of 1717
unique words ranging from 1 to 14 characters with an average
word size of 6 characters. None of the users in the evaluation
data appeared in the dataset used to train the neural network.

Each capture proceeded as follows. The web browser was
opened and cookies cleared before starting the capture pro-
cess (tshark). One second after the capture began, the website
was loaded using Selenium. There was then a two second de-
lay before replaying the keystrokes. The keystroke sequence
was replayed by writing the sequence of key events to the

USENIX Association 28th USENIX Security Symposium 967

Google Baidu
Chrome Firefox Chrome Firefox

Detect F-score 99.99 99.96 99.62 99.98
Perfect detect rate 99.72 98.70 96.35 99.52

Token F-score 97.26 95.45 96.85 97.33
Perfect token rate 81.12 74.89 86.70 88.30

Table 1: Keystroke detection and tokenization F-scores (%)
and rates (%) of achieving perfect accuracy (F-score=100%).

uinput device with delays between each event that corre-
spond to the original keystroke sequence. The data collection
was performed on an Ubuntu Linux desktop machine with
kernel version 4.15 compiled with the CONFIG_NO_HZ=y
option, which omits scheduling clock ticks when the CPU is
idle [1]. This ensures keyboard event times are replayed with
high fidelity and not quantized due to the presence of a global
system timer.

We captured 4k unique queries on search engines Google
and Baidu, both of which default to an HTTPS connection and
generate autocomplete requests upon key-press events. All
results were obtained on the encrypted traffic: TLSv1.3 for
Google and TLSv1.2 for Baidu. Both sites leak information
through the size of the TLS records, which includes the size
of the payload plus a fixed amount for the authentication code
(GMAC). Thus, TLS preserves differences in payload length,
although TLSv1.3 does contain a provision for record padding
to hide length [40].

To understand how the browser itself might affect network
timings, the data collect was performed in both Chrome (v.71,
with QUIC disabled) and Firefox (v.64). The captured dataset
contains a total of 16k queries (4k queries × 2 search en-
gines× 2 web browsers), obtained over approximately 7 days.
During this time, we did not experience any rate limiting.
However, a small number of captures did miss some of the
outgoing traffic (< 1%). The unsuccessful captures were re-
peated until success.

7.2 Attack performance

The first step of the attack is to detect keystrokes. Keystroke
detection accuracy is reported separately for each website
in each browser in Table 1. In both websites and browsers,
keystrokes are detected with near perfect accuracy with a high
rate of achieving perfect detection. Tokenization F-scores
are also shown in Table 1. The rates of achieving perfect
tokenization are strictly lower than that of detection since
tokenization is applied after detection.

We examined the cases in which tokenization failed. We
found that false positives in Google were due mainly to
rollover of the String Length field in the HPACK header,
which specifies the size in bytes of a compressed string. In
HPACK, the string length starts as a 7-bit integer (see Figure

Google Google (no prune) Baidu
Chrome Firefox Chrome Firefox Chrome Firefox

15.83 15.13 14.20 13.55 12.85 12.63

Table 2: Top-50 classification accuracy: % of queries that are
correctly identified among the 50 hypothesis queries.

5). When the number of compressed bytes exceeds 27− 1,
an additional byte is allocated for the string length, resulting
in an overall increase of 2 bytes (+1 from the String Length
increase and +1 from the new character in the query). Since it
is generally not known where this rollover occurs, we cannot
distinguish whether the 2 byte increase was due to String
Length rollover or the addition of a percent-encoded Space.

False negatives in both Google and Baidu were due mainly
to larger changes in packet size coinciding with a Space. In
Google, this occurs when the “gs_mss” parameter is added
to the query in the same request as a Space, and in Baidu,
from the inclusion of a cookie that was not previously present.
These larger changes (> 10 bytes) mask the change in size
due to the Space key (2 or 4 bytes).

Following detection and tokenization, the dictionary is
pruned, word probabilities from packet inter-arrival timings
are determined, and hypothesis phrases are generated in a
beam search. Attack success critically depends on accurate
keystroke detection and tokenization. This is because the
later stages of the attack assume that word lengths have been
correctly identified. If the wrong word lengths have been de-
termined, due either to a failure in detection or tokenization,
then the correct query cannot be identified.

This behavior is shown qualitatively in Figure 9. In this
example, perfect detection and tokenization result in hypoth-
esis queries that have the correct word lengths and low edit
distance to the true query. When either a false negative or
false positive detection error occurs, the hypothesis queries
will have a different length than the true query. In Figure 9
(middle), the 7th packet (containing the 1st “r” in “recover-
ing”) is incorrectly labeled as non-keystroke. As a result, the
third word in the hypothesis has 9 letters instead of 10. This
results in sequences that have relatively high edit distance to
the true query. Tokenization errors have a similar effect in
that word lengths in the hypothesis will not match the query.
In Figure 9 (right) the 11th packet (containing the 2nd “e” in
“recovering”) is incorrectly labeled as a Space. The hypothesis
queries have the same total length as the true query but differ
in word lengths, resulting in relatively high edit distance.

The proportion of attacks in which the true query is iden-
tified among the hypotheses queries, analogous to a top-50
classification accuracy, is shown Table 2. We also determined
the minimum edit distance for each search engine as a func-
tion of query length and compare this to a baseline attack
in which the timing and language model probabilities are ig-
nored. Baseline performance is obtained by generating 50 ran-

968 28th USENIX Security Symposium USENIX Association

Perfect detection/tokenization Keystroke detection false negative Tokenization false positive
he is recovering from a sprained 0 to be president from a position 18 is to learn from such a position 23
he is recovering from a strained 1 to be president from a business 17 is to learn from such a purchase 23
he is recovering from a fracture 7 to be president just a fraction 22 is to learn more from a position 20
he is recovering from a position 7 to be president from a possible 18 is to learn from such a pressing 22
he is recovering from a possible 7 to be president from a southern 18 is to learn from such a practice 21

Figure 9: Query hypotheses in three different scenarios: perfect detection and tokenization (left), false negative keystroke
detection (center, the 7th packet is missed), and false positive tokenization (right, the 11th packet is labeled as a Space). The edit
distance to the true query “he is recovering from a sprained”, is shown to the right of each hypothesis.

2 4 6 8 10 12
Query length (words)

0.2

0.3

0.4

0.5

0.6

Ed
it

di
st

an
ce

Baseline
Baidu
Google

Figure 10: Minimum edit distance (the closest query among
50 hypotheses to the true query) vs query length.

dom hypotheses, choosing dictionary words the same length
as the detected tokens. Note that this baseline still uses infor-
mation gained through keystroke detection and tokenization.
These results are shown in Figure 10.

Generally, the difficulty in identifying the query increases
with query length. The hypotheses have an average minimum
edit distance of 0.37 to the true query. Note that edit distance
reduces to Hamming distance for strings of equal length, and
perfect detection (F-score of 100%) is achieved in about 98%
of queries. Therefore, 0.37 edit distance is roughly a 63% key
identification accuracy. We did not find any significant differ-
ence in performance across browsers, but did achieve overall
higher query identification rates on Google due information
leaked through incremental compression.

We found the example in Figure 9 to be representative of
attack success which generally had polarized outcomes: the
hypotheses were either very similar to or very different from
the true query. This behavior is revealed in the distribution of
minimum edit distances shown in Figure 11, which has two
modes: one occurring near the baseline (0.55, achieved by
guessing random words) and the other at 0.

7.3 Information sources
To better understand the relative contribution of each com-
ponent, we evaluate attack performance ignoring the packet
timings, language model probabilities, or header compression.

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance

0

2

4

6

De
ns

ity

Figure 11: Minimum edit distance distribution. Two modes
indicate that KREEP either exactly identifies a query (0 edit
distance) or performs near the baseline (0.55 edit distance).

Considering only queries in Google (Baidu does not support
HTTP2), performance is evaluated for three scenarios: using
only the packet timings (TM only), using timings and the
language model (TM+LM), and using both with dictionary
pruning applied (TM+LM+Pruning).

These results are shown in Figure 12 with baseline per-
formance as described in the previous section. The largest
gains are achieved with the use of packet timings and lan-
guage model. The neural network alone identifies words with
19.1% accuracy. Incremental gains are then achieved when
the dictionary is pruned.

7.4 Effects of network noise

We tested the robustness of the attack to network noise. Since
key identification uses packet inter-arrival times, packet delay
variation (PDV) can potentially reduce attack success. PDV
corresponds to changes in network latency, which can obfus-
cate the key-press timings in packet inter-arrival times. In
this regard, variations in routing delay potentially provide a
natural defense to remote keystroke timing attack.

The Laplace distribution has previously been proposed as
a model for PDV [60]. We simulate PDV by drawing sam-
ples from a Laplace distribution parameterized by the mean
absolute deviation (MAD). The simulated PDV is added to

USENIX Association 28th USENIX Security Symposium 969

2 4 6 8 10 12
Query length (words)

0.2

0.3

0.4

0.5

0.6

Ed
it

di
st

an
ce

None
TM only
TM+LM
TM+LM+Prune

Figure 12: Performance with/without the use of the timing
model (TM), language model (LM) and dictionary pruning.

012 4 8 16 32
PDV (ms)

0.2

0.3

0.4

0.5

0.6

Ed
it

di
st

an
ce

Baseline
Baidu
Google

Figure 13: Effects of packet delay variation. Baseline ignores
packet timing, uses only packet size to generate hypotheses.

the captured packet times before attempting to identify the
query with KREEP. Performance as a function of increasing
PDV is shown in Figure 13. The attack is relatively robust
to PDV less then 8 ms, but approaches baseline performance
with PDV in excess of 32 ms.

7.5 Effects of padding
With the attack being robust to low levels of network noise,
we explored other means of mitigating attack success. Query
identification critically depends on accurate detection and
tokenization, and chances of attack success can be greatly
reduced with a simple padding scheme.

We simulate random padding by modifying the captured
packet sizes. The size of each autocomplete packet is in-
creased by 1 byte with probability 0.5. The sizes of other

Detect F-score Token F-score Min edit distance
Original Padded Original Padded Original Padded

99.89 94.46 96.72 51.23 37.76 61.32

Table 3: Effects of randomly padding packets with 0 or 1 byte.

packets in the trace remain unchanged such that the padding
defense could be implemented entirely in the client side auto-
complete logic.

The effects of this defense nearly double the minimum edit
distance, shown in Table 3. While this scheme does not greatly
reduce the ability to detect keystrokes, it makes tokenization
difficult which poisons later stages of the attack. Note that
tokenization could also be made more difficult by encoding
the Space key as a single character, such as “+” instead of the
3 byte sequence “%20”. Search engines Yandex and Duck-
DuckGo both use this strategy. However, this does not exclude
the possibility of tokenization through other means such as
timings, an item we leave for future work.

8 Discussion

Search engines with autocomplete are part of a larger class of
applications in which the manifestation of human-computer
interactions in network traffic can lead to a remote side chan-
nel attack. This includes VoIP: as utterances are compressed
and transmitted in real time, spoken phrases can be identified
in encrypted network traffic [55, 56]; SSH: single characters
are transmitted to and echoed back by the server, exposing the
timing of key presses [47]; HTTP: unencrypted network traces
contain a user’s web browsing activity [36, 57]; and HTTPS:
in dynamic web applications, server response size can reveal
interactions with specific elements on a web page [12].

8.1 Related work
Keystroke timing attacks Keystroke timing attacks were
introduced in [47], which considered the identification of key
pairs (bigrams) from key-press latencies to aid in password
inference. Such an attack is generally possible because of
the non-zero mutual information between keys and keystroke
timings, e.g., keys far apart are usually pressed in quicker suc-
cession than keys that are close together [43]. This behavior
generalizes across subjects, similar to other phenomena in
human-computer interaction (HCI) such as Fitts’ Law [17].
There has been some debate whether a remote keystroke tim-
ing attack poses a credible threat [3, 22]. Evidence suggests
that while information gain is generally possible, attack suc-
cess is user-dependent with some users being more vulnerable
than others [33, 34].

In [47], a hidden Markov model and generalization of the
Viterbi algorithm were used to generate candidate passwords
from timings. The key-press latencies used to train the model
were recorded in isolation, wherein subjects pressed a key
pair as opposed to typing a full password. In addition, the
keystrokes were recorded on the host under the assumption
that the key-press latencies would be faithfully preserved in
the network traffic. Our work confirms that assumption by
using timings obtained from actual network traffic and users
typing complete phrases instead of isolated bigrams.

970 28th USENIX Security Symposium USENIX Association

There have been numerous works focused on the detec-
tion of keyboard events (which enables a timing attack), such
as through spikes in CPU load [45], cache and memory us-
age [41], and the proc filesystem [23]. Few works have con-
sidered remote keylogging attacks [12,58]. In [51], the authors
examine the extent to which autocomplete exposes key-press
latencies in network traffic and found that multiple observa-
tions were required to recover the true latency. In a recent
work, we characterized the autocomplete network traffic of
five major search engines and measured the correlation be-
tween key-press latencies on the host and packet inter-arrival
times observed remotely [35], finding search engines Google
and Baidu to leak the most information. The findings in [35]
partly motivated the development of KREEP.

Since the work [47], several studies have examined timing
attacks on password [6, 59] and PIN [29, 30] input. We de-
part from prior work, which has focused on sequences with
maximum prior entropy, by targeting natural language input,
which is more susceptible to keystroke timing attack due to a
relatively lower prior entropy (roughly 1 bit per char, as noted
in [47]). We introduced a method to combine language model
probabilities with information leaked through keystroke tim-
ings, inspired by the use of language models in conjunction
with acoustic models in automatic speech recognition [20]. In
addition, our attack combines multiple independent sources
of information leakage beyond keystroke timings, including
URL escape sequences and HTTP2 header compression.

Compression side channels A compression side channel
leverages information leaked through the compression of a
plaintext prior to encryption [28]. Because different strings
compress to different sizes, compressed size can reveal infor-
mation about the plaintext. HTTPS exposes the length of an
encrypted payload, making it vulnerable to attack when the
payload is compressed. There have been several attacks on
HTTPS based on this principle.

The CRIME attack exploits compression in TLS and in
the now deprecated SPDY protocol [42]. This attack requires
a man-in-the-middle vantage in which an attacker inserts a
guess for a secret, e.g., an HTTP cookie or a CSRF token, into
a message and observes the compressed size. The DEFLATE
compression algorithm in SPDY uses redundancy to com-
press a string [14] such that the compressed size of a packet
containing the correct guess will be smaller than an incorrect
guess. The BREACH attack leveraged a similar principle for
server responses, targeting compression at the HTTP level
(e.g., gzip) [18], and the TIME attack used server response
time as a proxy to measure response size [9].

HEIST lowered the bar for attack, enabling CRIME-like
attacks to be deployed remotely within a victim’s web browser
[52]. The size of a compressed server response is determined
at the application level by examining whether the response
time spans multiple round trips, an indication that the entire
response exceeded the TCP congestion window. This general

technique can be used in a variety of side channel attacks
beside guessing secrets, such as determining whether a user
is logged into a particular site [52].

DEFLATE, the compression algorithm used in gzip, uses
a combination of LZ77 and Huffman coding [14]. To date,
all compression attacks against HTTPS have exploited the
LZ77 component of DEFLATE, which builds a dictionary
from the redundant parts of a string. The Huffman code in
DEFLATE has been treated as noise, typically dealt with by
making guesses in pairs. For example, to find out whether a
secret starts with “p”, an attacker guesses “secret=p_” and
“secret=_p”: if the sizes are the same, then only Huffman
coding is used and the guess is wrong; otherwise, if the sizes
are different, the LZ77 component was invoked based on
redundancy between the first guess and the secret, and only
Huffman coding was invoked in the second guess.

HPACK, the header compression format in HTTP2, was
designed to be resistant to CRIME-like attacks targeting LZ77
compression, although HTTP2 borrowed many concepts from
SPDY [39]. Commonly used header fields are compressed
with a dictionary lookup, and string literals are compressed us-
ing a static Huffman code, which was previously determined
to leak relatively little information [50]. But unlike previous
attacks, KREEP leverages the static Huffman code in HPACK
rather than an LZ77 dictionary. We found considerably more
information is leaked due to several contributing factors:

1. HTTPS exposes payload size. HTTPS was previously
shown to leak information by exposing the length of an en-
crypted payload. The HTTPS Bicycle attack uses the size
differences between HTTP requests to infer the size of an
unknown secret [53]. An attacker simply subtracts the size
of all known parts of the request, leaving only the size of
the secret. Our attack relies on a similar principle, taking the
difference in size between successive autocomplete requests.

2. Characters are independently compressed. The size dif-
ference between two compressed payloads that differ only
by the insertion of a single character reveals the compressed
size of that character. However, Huffman encoded strings
in HPACK are padded to the nearest octet, mitigating the
amount of information that would otherwise be leaked with-
out padding. Since byte, and not bit, size differences are ob-
served, the symbol size is known only to within a margin of
error that depends on an unknown amount of padding.

3) The Huffman code is standard. Every HPACK implemen-
tation uses the same Huffman code, which is publicly avail-
able [39]. An attacker needs only to map dictionary words
to their cumulative compressed sizes, taking into account the
unknown amount of padding applied beforehand. Potential
matches to a secret are revealed by comparing its cumulative
compressed size to every word in the dictionary.

Search query identification Previous work on identifying
search queries has utilized features obtained primarily through
traffic analysis. In [37], keywords in search queries are identi-

USENIX Association 28th USENIX Security Symposium 971

fied over Tor using both inbound and outbound autocomplete
traffic. Keystrokes were replayed in a data collection setup
similar to ours described in Section 7.1. Packet inter-arrival
times were not considered since the replayed keystrokes used
random, and not human, timings. Instead, each search query
is characterized by packet counts and sizes, inbound and out-
bound Tor cell counts, and other features specific to Tor traffic.
The work of [37] did not attempt keystroke detection but in-
stead focused on the identification of queries that contain a
particular keyword from a set of target keywords. With this
approach, a query containing any one of 300 target keywords
could be identified with 85% accuracy, and individual key-
words with 48% accuracy.

We instead aim to reconstruct an entire query rather than
identify the presence of some target words, and we leverage in-
formation leaked through packet size, which is obfuscated by
cell size in Tor traffic. While keystroke detection may be pos-
sible in traffic over Tor, for example by detecting traffic that
has “keystroke-like” packet inter-arrival times, tokenization
and dictionary pruning cannot be applied since the autocom-
plete packet sizes are masked behind Tor cell sizes. An attack
that uses only packet inter-arrival times might be feasible in
Tor, but would require a different approach than our attack.

While previous work has shown HTTP response size to
leak a considerable amount of information about a user’s
query when autocomplete suggestions are provided [12], we
chose to focus only on HTTP requests. In [12], an attacker
guesses a victim’s query one letter at a time by trying all
combinations and matching the server response size. This
assumes the attacker can submit queries that induce the same
suggestions as the victim received. In practice, this is difficult
because autocomplete suggestions depend on the victim’s
search history and location, among other factors [2]. To our
knowledge, KREEP is the first attack targeting autocomplete
traffic from the client independent of these factors, relying
only on packet inter-arrival times and packet size differences.

8.2 Countermeasures
Keylogging attacks require successful keystroke detection
and key identification. Therefore, it is sufficient to prevent
keystroke detection or key identification to counter the attack.
We consider the tradeoffs of several countermeasures and how
they affect each source of information leakage.

Padding Padding could be applied in two different ways:
pad each request by a random amount, or pad to ensure all
requests are the same size. To increase keystroke detection
false negatives, the pad amounts must be sufficiently large to
disguise autocomplete traffic with other background traffic,
the size of which is generally not known a priori. Therefore,
padding may not be effective to mitigate keystroke detection
and does not provide any protection against a timing attack.
However, we have confirmed that padding by a small random

amount (1 byte with probability 0.5) does effectively mitigate
tokenization and incremental compression. Note that padding
in this way should be applied only to alphabetic characters
and not to the addition of a Space; otherwise, some packets
with a Space will increase by 3 bytes (2 bytes + 1 padding
byte), while all other packets increase by no more than 2 bytes.
The pad amounts should be chosen such that the observed
packet size differences closely follow a uniform distribution.

Dummy traffic While padding aims to increase detection
false negatives, generating dummy traffic aims to increase
false positives. A false positive occurs when background traf-
fic is labeled as a keystroke. Generating dummy autocomplete
requests with approximately the same size as the actual re-
quest would make keystroke detection a difficult task. With
each autocomplete request, the client could send a burst of
several packets with similar size (within several bytes), ran-
domly ordering the actual request within the dummy request.
While an attacker might still be able to perform detection with
a low false negative rate, this comes at a cost of an increased
false positive rate. This method mitigates tokenization, com-
pression, and timing attacks. The background traffic would
overwhelm the actual requests, similar to the generation of
dummy keyboard events in KeyDrown [45]. This approach
has the cost of increased bandwidth, a tradeoff reminiscent of
the anonymity trilemma [13], and requires some cooperation
from the server to ignore the dummy requests.

Merge requests Most search engines make an autocom-
plete request immediately following each new character ap-
pended to the input field [35]. Instead, combining multiple
characters into a single request would mitigate our attack in
two different ways. First, with multiple characters merged into
a single request, the number of false negative detection errors
must increase since a packet contains multiple keystrokes.
This conceals the timing information of all but the last char-
acter in the merged request, reducing information leakage
through a keystroke timing attack.

Additionally, merged requests effectively eliminate the in-
cremental compression side channel since the increase in
packet size corresponds not to a single character but to multi-
ple characters. The compressed size of the merged characters
must be some linear combination of symbols in the Huffman
code, and as string length increases, the number of combina-
tions grows exponentially [50].

Combining requests could be achieved in several ways: 1)
update the list of autocomplete suggestions after every other,
or every nth, key (similar to Nagle’s algorithm, except at the
application level); 2) use a polling model with polling rate
slower than the user’s typing speed (Bing performs polling
with 100ms interval, making this attack impractical for fast
typists); or 3) trigger callbacks on keyup events instead of
keydown events (DuckDuckGo does this), which merges re-
quests when consecutive keystrokes overlap [35], a typing

972 28th USENIX Security Symposium USENIX Association

phenomenon referred to as rollover [15]. The drawback in all
cases is that merging requests could adversely affect usability
since the suggested queries are delayed to the user.

8.3 Limitations and future work
We point out several limitations of our attack, emphasizing
the conditions under which it succeeds, and identify ways in
which KREEP could be extended or improved.

Other websites In this work, KREEP has only been tested
on search engines Google and Baidu. Keystroke detection
and tokenization are both application-specific, based on the
packet size pattern each search engine emits. Extensions to
other search engines or websites would require modification to
these components. For websites that aren’t vulnerable to tok-
enization, delimiters might be identified based on packet inter-
arrival times (e.g., larger intervals indicate Space, smaller
intervals indicate letters).

Other modalities Since autocomplete requests are induced
by keyboard events, KREEP is applicable only up to the point
when a user stops typing or selects a suggested query. We
assumed that no deletions or corrections were made and that
the user did not press any non-printable keys, e.g., arrow keys,
that cause the caret to change position. However, selecting a
query from the provided suggestions does not preclude the
possibility of other attacks that incorporate the timing of both
autocomplete requests and server responses. It may be the
case that the way the user interacts with the autocomplete
suggestions also leaks course-grained information, such as
user identity or the type of query (navigational, informational,
or transactional) [10]. One might also consider the timing of
mouse clicks that induce network traffic as a source of infor-
mation leakage by leveraging a general model that governs
click behavior, such as Fitts’ Law [17].

Targeted attacks Finally, while we made an effort to eval-
uate our attack on phrases that are representative of natural
language, the content of actual search queries is quite differ-
ent and varies between users as evidenced by the AOL search
dataset [7, 38]. Some strings that have a low probability of
occurrence in natural language, such as “www”, tend to occur
frequently in search queries. This affects the prior probability
of each symbol, which must be properly accounted for in the
language model. We verified this difference by comparing
the frequency of characters in the AOL search dataset to the
keystroke dataset we used to evaluate KREEP (which itself
borrowed phrases from the Enron email corpus [15]). These
are shown in Figure 14. Notably, the frequencies of “w” and
“c” in search queries are about twice that of natural language,
likely due to the presence of navigational queries to a specific
URL, such as “www.example.com”. Likewise, Space charac-
ters in search are about half as frequent compared to natural

_ a b c d e f g h i j k l m n o p q r s t u v w x y z
0.00

0.05

0.10

0.15

De
ns

ity

Natural language
Search query

Figure 14: Character frequency in natural language (Enron
corpus) compared to search queries (AOL search dataset).

language. In a targeted attack, the language model in KREEP
could be tailored towards a particular victim, leveraging in-
formation such as the victim’s native language, geographic
location, and public blog entries.

9 Conclusion

KREEP leverages multiple independent sources of leaked
information to identify search queries in encrypted network
traffic. Autocomplete request packets are detected based on
packet size; queries are tokenized by detecting the presence of
URL-escaped characters; keys are identified based on packet
inter-arrival times; and impossible words are eliminated from
a dictionary based on incremental compression. Despite many
moving pieces, the attack obtains a reasonable success rate,
recovering more than half the characters in a query on average.
But more importantly, the pieces that contribute to this attack
present some starting points for future research.

The static Huffman code used in HTTP2 header compres-
sion leaks more information than previously thought [50]
when incremental changes are made to a string in the header.
This kind of attack is not limited to search engines with auto-
complete but could apply to any website with dynamic con-
tent that updates incrementally. It will be beneficial to identify
other web applications that exhibit incremental compression.
Besides websites that provide search suggestions, this could
include mapping services, which modify the geographic coor-
dinates in a URL as the user drags the map center location, or
websites that autosave the contents of a text field.

Likewise, websites that generate network traffic in response
to user input events may be vulnerable to timing attack. Sites
that support remote document editing, such as Google Docs,
frequently transmit the document state from the client to
the server. When this process is event driven, i.e., triggered
by keydown events, the network traffic can leak information
about the user’s actions or document content. Similarly, chat
applications that aim to provide real-time updates about a con-
versation partner’s activity, e.g., by displaying a notification
that “X is typing”, also risk exposing keystroke timings in
network traffic if those notifications are directly driven by the
conversation partner’s keystrokes.

USENIX Association 28th USENIX Security Symposium 973

Availability

KREEP is available at https://github.com/vmonaco/
kreep. The keystroke dataset is publicly available [15].

Acknowledgements

We thank the anonymous reviewers and our shepherd for valu-
able feedback during the review process. The manuscript
was much improved based on insightful discussions with col-
leagues Justin Rohrer and Robert Beverly, who also provided
comments on an early draft.

References

[1] NO_HZ: Reducing Scheduling-Clock Ticks.
http://web.archive.org/web/20190208124417/https://
www.kernel.org/doc/Documentation/timers/NO_HZ.txt.
Accessed: 2019-02-08.

[2] Search using autocomplete. http://web.archive.org/
web/20190209193857/https://support.google.com/web
search/answer/106230?hl=en. Accessed: 2019-02-09.

[3] Timing analysis is not a real-life threat to ssh secure shell
users. http://web.archive.org/web/20010831024537/
http://www.ssh.com/products/ssh/timing_analysis.cfm.
Accessed: 2019-02-09.

[4] Eytan Adar. User 4xxxxx9: Anonymizing query logs.
In Proc of Query Log Analysis Workshop, International
Conference on World Wide Web, 2007.

[5] Dmitri Asonov and Rakesh Agrawal. Keyboard acoustic
emanations. In Proc. IEEE Symp. on Security & Privacy
(SP), pages 3–11. IEEE, 2004.

[6] Kiran S. Balagani, Mauro Conti, Paolo Gasti, Martin
Georgiev, Tristan Gurtler, Daniele Lain, Charissa Miller,
Kendall Molas, Nikita Samarin, Eugen Saraci, Gene
Tsudik, and Lynn Wu. SILK-TV: Secret information
leakage from keystroke timing videos. In Computer
Security, pages 263–280. Springer International Publish-
ing, 2018.

[7] Michael Barbaro, Tom Zeller, and Saul Hansell. A face
is exposed for aol searcher no. 4417749. New York
Times, 9(2008):8, 2006.

[8] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
resource identifier (URI): Generic syntax. Technical
report, jan 2005.

[9] Tal Be’ery and Amichai Shulman. A perfect crime?
only time will tell. Black Hat Europe, 2013, 2013.

[10] Andrei Broder. A taxonomy of web search. In ACM
Sigir forum, volume 36, pages 3–10. ACM, 2002.

[11] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
One billion word benchmark for measuring progress
in statistical language modeling. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

[12] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-channel leaks in web applications: A reality
today, a challenge tomorrow. In Proc. IEEE Symp. on
Security & Privacy (SP), pages 191–206. IEEE, 2010.

[13] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latencychoose
two. In Proc. IEEE Symp. on Security & Privacy (SP).
IEEE, 2018.

[14] P. Deutsch. DEFLATE compressed data format specifi-
cation version 1.3. Technical report, may 1996.

[15] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson,
and Antti Oulasvirta. Observations on typing from 136
million keystrokes. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems -
CHI 18. ACM Press, 2018.

[16] Tobias Fiebig, Janis Danisevskis, and Marta Piekarska.
A metric for the evaluation and comparison of keylog-
ger performance. In Proc. 7th Usenix Conf. on Cyber
Security Experimentation and Test, pages 7–7. USENIX
Association, 2014.

[17] Paul M Fitts. The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of experimental psychology, 47(6):381, 1954.

[18] Yoel Gluck, Neal Harris, and Angelo Prado. Breach:
reviving the crime attack. 2013.

[19] David Graff, Junbo Kong, Ke Chen, and Kazuaki
Maeda. English gigaword. Linguistic Data Consor-
tium, Philadelphia, 4(1):34, 2003.

[20] Alex Graves and Navdeep Jaitly. Towards end-to-end
speech recognition with recurrent neural networks. In
International conference on machine learning, pages
1764–1772, 2014.

[21] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. Scalable modified Kneser-Ney lan-
guage model estimation. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Lin-
guistics, pages 690–696, Sofia, Bulgaria, August 2013.

974 28th USENIX Security Symposium USENIX Association

https://github.com/vmonaco/kreep
https://github.com/vmonaco/kreep

[22] Michael Augustus Hogye, Christopher Thaddeus
Hughes, Joshua Michael Sarfaty, and Joseph David Wolf.
Analysis of the feasibility of keystroke timing attacks
over ssh connections. Research Project at University of
Virginia, 2001.

[23] Suman Jana and Vitaly Shmatikov. Memento: Learning
secrets from process footprints. In Proc. IEEE Symp. on
Security & Privacy (SP), pages 143–157. IEEE, 2012.

[24] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic.
Real life, real users, and real needs: a study and analysis
of user queries on the web. Information Processing &
Management, 36(2):207–227, mar 2000.

[25] Rosie Jones, Ravi Kumar, Bo Pang, Andrew Tomkins,
Andrew Tomkins, and Andrew Tomkins. I know what
you did last summer: query logs and user privacy. In
Proceedings of the sixteenth ACM conference on Confer-
ence on information and knowledge management, pages
909–914. ACM, 2007.

[26] Sepandar D Kamvar et al. Anticipated query generation
and processing in a search engine, 2004.

[27] Stavroula Karapapa and Maurizio Borghi. Search en-
gine liability for autocomplete suggestions: personality,
privacy and the power of the algorithm. International
Journal of Law and Information Technology, 23(3):261–
289, jul 2015.

[28] John Kelsey. Compression and information leakage of
plaintext. In Fast Software Encryption, pages 263–276.
Springer Berlin Heidelberg, 2002.

[29] Moritz Lipp, Daniel Gruss, Michael Schwarz, David
Bidner, Clémentine Maurice, and Stefan Mangard. Prac-
tical keystroke timing attacks in sandboxed javascript.
In Proc. 22nd European Symp. on Research in Computer
Security, 2017.

[30] Ximing Liu, Yingjiu Li, Robert H. Deng, Shujun Li, and
Bing Chang. When human cognitive modeling meets
PINs: User-independent inter-keystroke timing attacks.
Computers & Security, sep 2018.

[31] Philip Marquardt, Arunabh Verma, Henry Carter, and
Patrick Traynor. (sp) iphone: Decoding vibrations from
nearby keyboards using mobile phone accelerometers.
In Proc. 18th ACM Conf. on Computer and Communi-
cations Security (CCS), pages 551–562. ACM, 2011.

[32] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P Pickett,
Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant,
et al. Quantitative analysis of culture using millions of
digitized books. science, 331(6014):176–182, 2011.

[33] John V Monaco. Poster: The side channel menagerie.
In Proc. IEEE Symp. on Security & Privacy (SP). IEEE,
2018.

[34] John V Monaco. Sok: Keylogging side channels. In
Proc. IEEE Symp. on Security & Privacy (SP). IEEE,
2018.

[35] John V Monaco. Feasibility of a keystroke timing at-
tackon search engines with autocomplete. In 2019 IEEE
Security and Privacy Workshops (SPW). IEEE, 2019.

[36] Christopher Neasbitt, Roberto Perdisci, Kang Li, and
Terry Nelms. ClickMiner. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security - CCS '14. ACM Press, 2014.

[37] Se Eun Oh, Shuai Li, and Nicholas Hopper. Fingerprint-
ing keywords in search queries over tor. Proceedings on
Privacy Enhancing Technologies, 2017(4):251–270, oct
2017.

[38] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A
picture of search. In InfoScale, volume 152, page 1,
2006.

[39] R. Peon and H. Ruellan. HPACK: Header compression
for HTTP/2. Technical report, may 2015.

[40] E. Rescorla. The transport layer security (tls) protocol
version 1.3. Technical report, aug 2018.

[41] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proc. 16th ACM Conf. on Computer and Communica-
tions Security (CCS), pages 199–212. ACM, 2009.

[42] Juliano Rizzo and Thai Duong. The crime attack. In
Ekoparty Security Conference, 2012.

[43] Timothy A Salthouse. Perceptual, cognitive, and motoric
aspects of transcription typing. Psychological bulletin,
99(3):303, 1986.

[44] C. Schensted. Longest increasing and decreasing sub-
sequences. Canadian Journal of Mathematics, 13:179–
191, 1961.

[45] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel
Weiser, Clémentine Maurice, Raphael Spreitzer, and Ste-
fan Mangard. Keydrown: Eliminating keystroke timing
side-channel attacks. In Proc. Network and Distributed
System Security Symp (NDSS), 2018.

[46] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic timers and where to
find them: High-resolution microarchitectural attacks
in javascript. In Proc. 21st Intl. Conf. on Financial

USENIX Association 28th USENIX Security Symposium 975

Cryptography and Data Security (FC), page 11. IFCA,
2017.

[47] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on ssh.
In Proc. Usenix Security Symp., 2001.

[48] Statcounter. Search engine market share china.
http://web.archive.org/web/20190209193125/
http://gs.statcounter.com/search-engine-market-
share/all/china. Accessed: 2019-02-09.

[49] Statcounter. Search engine market share world-
wide. http://web.archive.org/web/20190209193145/
http://gs.statcounter.com/search-engine-market-share.
Accessed: 2019-02-09.

[50] Jiaqi Tan and Jayvardhan Nahata. Petal: Preset encoding
table information leakage. Technical report, 2013.

[51] Chee Meng Tey, Payas Gupta, Debin Gao, and Yan
Zhang. Keystroke timing analysis of on-the-fly web
apps. In Proc. Intl. Conf. on Applied Cryptography and
Network Security, pages 405–413. Springer, 2013.

[52] Mathy Vanhoef and Tom Van Goethem. Heist: Http en-
crypted information can be stolen through tcp-windows.
Black Hat USA 2016, page 1, 2016.

[53] Guido Vranken. Https bicycle attack. Technical report,
dec 2015. Accessed: 2019-05-10.

[54] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury.
Mole: Motion leaks through smartwatch sensors. In
Proc. 21st Annual Intl. Conf. on Mobile Computing and
Networking (MobiCom), pages 155–166. ACM, 2015.

[55] Andrew M. White, Austin R. Matthews, Kevin Z. Snow,
and Fabian Monrose. Phonotactic reconstruction of
encrypted VoIP conversations: Hookt on fon-iks. In
2011 IEEE Symposium on Security and Privacy. IEEE,
may 2011.

[56] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M. Masson. Spot me if you can:
Uncovering spoken phrases in encrypted VoIP conversa-
tions. In 2008 IEEE Symposium on Security and Privacy
(sp 2008). IEEE, may 2008.

[57] Guowu Xie, Marios Iliofotou, Thomas Karagiannis,
Michalis Faloutsos, and Yaohui Jin. Resurf: Recon-
structing web-surfing activity from network traffic. In
IFIP Networking Conference, 2013, pages 1–9. IEEE,
2013.

[58] Ge Zhang and Simone Fischer-Hübner. Timing attacks
on pin input in voip networks (short paper). In Proc. Intl.
Conf. on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 75–84. Springer, 2011.

[59] Kehuan Zhang and XiaoFeng Wang. Peeping tom in the
neighborhood: Keystroke eavesdropping on multi-user
systems. analysis, 20:23, 2009.

[60] Li Zheng, Liren Zhang, and Dong Xu. Characteristics
of network delay and delay jitter and its effect on voice
over IP (VoIP). In ICC 2001. IEEE International Con-
ference on Communications. Conference Record (Cat.
No.01CH37240). IEEE.

976 28th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Keylogging side channels
	Web search autocomplete

	Attack overview
	Threat model
	Workflow
	Performance metrics

	Keystroke detection and tokenization
	Autocomplete packet sizes
	Keystroke detection
	Tokenization

	Dictionary pruning
	Incremental compression side channel
	Pruning and information gain

	Word identification and beam search
	Word identification from timings
	Language model and beam search

	Results
	Data collection
	Attack performance
	Information sources
	Effects of network noise
	Effects of padding

	Discussion
	Related work
	Countermeasures
	Limitations and future work

	Conclusion

