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Abstract
We present EverParse, a framework for generating parsers
and serializers from tag-length-value binary message format
descriptions. The resulting code is verified to be safe (no
overflow, no use after free), correct (parsing is the inverse of
serialization) and non-malleable (each message has a unique
binary representation). These guarantees underpin the security
of cryptographic message authentication, and they enable
testing to focus on interoperability and performance issues.

EverParse consists of two parts: LowParse, a library of
parser combinators and their formal properties written in F?;
and QuackyDucky, a compiler from a domain-specific lan-
guage of RFC message formats down to low-level F? code
that calls LowParse. While LowParse is fully verified, we do
not formalize the semantics of the input language and keep
QuackyDucky outside our trusted computing base. Instead, it
also outputs a formal message specification, and F? automati-
cally verifies our implementation against this specification.

EverParse yields efficient zero-copy implementations, us-
able both in F? and in C. We evaluate it in practice by fully im-
plementing the message formats of the Transport Layer Secu-
rity standard and its extensions (TLS 1.0–1.3, 293 datatypes)
and by integrating them into MITLS, an F? implementation of
TLS. We illustrate its generality by implementing the Bitcoin
block and transaction formats, and the ASN.1 DER payload
of PKCS #1 RSA signatures. We integrate them into C ap-
plications and measure their runtime performance, showing
significant improvements over prior handwritten libraries.

1 Introduction

Because they are directly exposed to adversarial inputs,
parsers are often among the most vulnerable components
of security applications, and techniques to simplify their con-
struction while ensuring their safety and correctness are valu-
able. Hence, developers prefer self-describing formats like
JSON or XML (with universal implementations) or use auto-
mated tools and libraries to generate parsers from structured
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Figure 1: EverParse architecture

format specifications, or even from type declarations in Java
or C++. However, when parsing is on the critical path of
an application’s performance, or because of requirements of
the message format (such as compliance with a standard),
developers may be forced to write and maintain their own
parsers and serializers in low-level unsafe languages like C,
increasing the risk of attacks triggered by malicious inputs.

More specifically, when the application authenticates mes-
sages in some way—using for instance cryptographic hashes,
MACs, encryptions, or signatures—it is critical for security to
ensure that the messages are verified, parsed, and interpreted
by the receiver exactly as intended by the sender before serial-
ization. This is often at odds with general-purpose formats and
tools that may not provide such non-malleability guarantees.

This paper presents EverParse, a new framework to auto-
matically generate efficient, low-level parsers and serializers
in C from declarative descriptions of tag-length-value (TLV)
binary message formats. The generated parsers and serial-
izers are formally verified to be safe (no use-after-free, no
buffer overruns, no integer overflows, ...), functionally correct
(parsers and serializers are inverse of one another), and non-
malleable (valid messages have unique representations). With
EverParse, developers of low-level protocols can enjoy the
ease of programming and maintenance expected from parser
generators, and stop worrying about details of the message
format and trade-offs between security and performance.

USENIX Association 28th USENIX Security Symposium    1465



Architecture Overview. Figure 1 depicts the overall archi-
tecture of EverParse and its two main components: a simple,
untrusted frontend (named QuackyDucky) for compiling mes-
sage format descriptions; and a library of verified parsers and
serializers (named LowParse).

Verification is based on F? [48], a programming language
and proof assistant. Whereas F? is a high-level functional lan-
guage, whose code extracts by default to OCaml or F#, it also
embeds a language named Low? for writing verified low-level
code that extracts to C using a tool named KReMLin [38].
EverParse uses Low? to program efficient, low-level parsers
and serializers, proving them safe, correct and non-malleable
in F?, and then extracting them to C. The resulting C code can
be compiled using several off-the-shelf C compilers, includ-
ing CompCert [28] for highest assurance, or more mainstream
compilers like Clang or GCC.

The input of EverParse is a message format description for
a collection of types, in the C-like language commonly used
in RFCs and similar specifications. QuackyDucky translates
this description into a collection of F? modules, one for each
input type, and F? typechecks each of these modules to verify
their safety and security. The modules produced by Quacky-
Ducky include a formal parser specification (using high-level
F? datatypes) and two correct implementations of this spec-
ification: one high-level and the other in Low?, suitable for
extraction to safe C code. This lower-level implementation en-
ables efficient message processing; it automatically performs
the same input validation as the high-level parser, but it oper-
ates in-place using interior pointers to binary representations
within messages. Its performance is similar to handwritten C
code—but its safety, correctness, and security are automati-
cally verified. Hence, rather than verifying existing, ad hoc C
code by hand, which would require much effort and expertise
even for small protocols, our toolchain automatically yields
C code verified by construction.

The code generated by QuackyDucky consists of applica-
tions of combinators in LowParse, which are higher-order
functions on parsers. For instance, given a integer parser, one
can build a parser for pairs of integers by applying the con-
catenation combinator to two copies of the integer parser.
While parser combinators are widely used in functional lan-
guages [22, 27], they are usually more difficult to apply in
languages that do not easily support higher-order program-
ming with closures, like C. However, by employing partial
evaluation within F?, we specialize higher-order code to effi-
cient, ad hoc, first-order C code.

We carry out all proofs on combinators once and for all
within LowParse. Only the conditions for composing them
must be checked (by typing) in the code produced by Quacky-
Ducky. LowParse is split into three layers: one for specifi-
cations, where we prove non-malleability, one for high-level
functional implementations, which are proved functionally
correct with respect to specifications, and one for low-level
implementations, which operate on positions within buffers

and are proved functionally correct and memory safe.
EverParse code can be used in two ways. A verified F?

application can use the formal specification for its security
proof, and either the high-level or low-level implementation—
this is the approach adopted for verifying protocols as part of
the Everest project [6], and notably the MITLS [7] implemen-
tation of the TLS secure channel protocol. Alternatively, a
native C/C++ application can use the interface extracted from
the Low? implementation by the KReMLin compiler—this is
the approach taken in this paper for performance evaluation.

Our contributions We present the following contributions:
• A definition of message-format security, motivated by a

discussion of several vulnerabilities whose root cause is
malleability (§2).
• QuackyDucky, a compiler from tag-length-value mes-

sage format descriptions to their high-level datatype spec-
ifications and low-level implementations. It provides the
first implemented zero-copy and secure message format
language that captures several existing protocols and
standards, including TLS, PKCS #1 signature payloads,
and Bitcoin (§4).
• LowParse, a library of verified parser and formatter com-

binators, with support for non-malleability proofs (§5).
• A qualitative evaluation of EverParse: we present a com-

plete case study of applying EverParse to the message
formats of all TLS versions, featuring many improve-
ments and corrections over the standard’s descriptions.
We integrate the generated high-level implementation
into MITLS, an implementation of the TLS protocol in
F?. For a few select types, we also replace the high-level
implementation with the Low? one (§3).
• A quantitative evaluation of EverParse: we compare

the performance of our extracted low-level parsers for
Bitcoin blocks and the ASN.1 payload of PKCS #1
signatures with their counterparts in Bitcoin Core and
mbedTLS. We find that our automatically generated code
meets, and in some cases significantly exceeds, the per-
formance of hand-written C/C++ reference code (§6).

All the components of EverParse and its dependencies
are open-source and publicly available at https://github.
com/project-everest/everparse

2 Parsing Security: Definitions & Attacks

In this paper, we focus on applications that authenticate the
contents of serialized messages in some way. Cryptographic
mechanisms provide (serialized) bytestring authentication,
whereas applications rely on (parsed) message authentication.
Hence, correctness and runtime safety are not sufficient to
preserve authentication: a correct parser may accept inputs
outside the range of the serializer, or multiple serializations of
the same message, which may lead to subtle, and sometimes
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Figure 2: Parsing and serialization functions

devastating, vulnerabilities. We propose a security definition
for authenticated message formats to prevent such vulnerabil-
ities, and illustrate it using known high-impact attacks against
popular applications.

2.1 What is a Secure Message Format?
We first set up notations for parsers and serializers, illustrated
in Figure 2, and define their properties of interest. Given a set
V of valid messages,
• a parser is a function p : {0,1}∗→V ]{⊥} that returns

either a message m ∈ V or a parsing error ⊥;
• a serializer, or formatter, is a function s : V →{0,1}∗.

Informally, parsers and formatters are inverse of one another.
A parser is correct with respect to a serializer when it yields
back any formatted message: ∀m∈V , p(s(m))=m, and exact
when it accepts only serialized messages: p−1(V ) = s(V ).

Parsers may also be considered on their own. A parser
is non-malleable (or injective) when it accepts at most one
binary representation of each message: ∀x,y∈ {0,1}∗, p(x) =
p(y)⇒ (x= y∨ p(x) =⊥), and complete (or surjective) when
it accepts at least one binary representation of each message:
p({0,1}∗)\{⊥}= V . If p is a non-malleable parser for V ,
then p−1 is a serializer over p({0,1}∗)\{⊥}.

We say that p is a secure parser for V if p is non-malleable
and complete. If p is secure, then it is also correct and exact
with respect to the (unique) serializer p−1. We say a serializer
s is secure if there exists a secure parser p such that s = p−1.
(§5 provides more general definitions that account for parsers
that do not consume their whole input.)

In the rest of the paper, we only consider parsers that oper-
ate on strings of bytes B = {0,1}8.

2.2 Attacks on Parsers
Heartbleed Unsurprisingly, the most common type of parser
vulnerability is simply memory safety bugs. Indeed, one of
the most impactful attacks in the past decade, Heartbleed
(which is estimated to have affected up to 55% of the top
internet websites [17]) is a simple buffer overrun caused by
improper validation of the length field in the TLS messages
defined in OpenSSL’s implementation of the heartbeat pro-
tocol extension (shown in Figure 3). Interestingly, the spec-

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[payload_length];
opaque padding[padding_length];

} HeartbeatMessage;
The total length of a HeartbeatMessage MUST NOT exceed
2^14 or max_fragment_length when negotiated [RFC6066].
The padding is random content that MUST be ignored by
the receiver. The padding_length MUST be at least 16,
and equal to TLSPlaintext.length-payload_length-3 for
TLS and DTLSPlaintext.length-payload_length-3 for DTLS
The sender of a HeartbeatMessage MUST use a random
padding of at least 16 bytes. The padding of a
received HeartbeatMessage message MUST be ignored.

Figure 3: Specification of the Heartbeat message (fragment)

ification of HeartbeatMessage is very unusual among TLS
types (explained in detail in §3), because it contains a variable
length field (padding) that is not prefixed by an explicit length
(padding_length is not defined in the struct, but its value is
defined semantically). Indeed, as specified, this type is not
expressible in QuackyDucky because the padding length de-
pends on a field of the parent TLSPlaintext type, and we only
capture dependencies between fields that are concatenated.
This forces applications to verify the padding_length seman-
tically, increasing the risk of error. The Heartbleed disaster
would likely have been averted if the format was specified
using standard TLS constructors for variable length fields:

struct {
HeartbeatMessageType type;
opaque payload<0..2^14-21>;
opaque padding<16..2^14-3>;

} HeartbeatMessage;

This example illustrates the benefits of writing message for-
mat descriptions in a constrained language: it encourages
uniform patterns and enables automated analysis.

PKCS #1 signature forgery The PKCS #1 v1.5 signature
format illustrates the risks of applying message parsing after
a cryptographic operation (in this case, modular exponenti-
ation). Given a public key (N = pq,e) where p and q are
large secret primes, the raw RSA signature σ over a mes-
sage m is computed as σ = md modN where the secret expo-
nent d = e−1 mod(p−1)(q−1) is hard to compute without
knowing p and q. As written, this scheme is not usable be-
cause m must be smaller than N, and it has the undesirable
homomorphic property that the signature of the product of
2 messages is equal (modulo N) to the product of the sig-
nature of each message (thus, it is easy to forge new valid
signatures from existing ones). To fix these shortcomings,
PKCS #1 v1.5 defines a standard for hashing and padding
the message to sign: given an arbitrary message m, it is first
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hashed into a digest h, then stored together with the identifier
a of the hash algorithm into an ASN.1 DER [36] structure.
The distinguished encoding rules are supposed to ensure that
the serializer ρ for this structure is secure. The final signature
is obtained by applying raw RSA to ρ(a,h) left-padded to the
size of N with padding of the form \x00\x01(\xFF)*\x00.

The security of the scheme relies heavily on (the integer
interpretation of) the padding: it is computationally hard to
forge a valid signature σ because σe modN must be of the
form 2dlog2(N)e−15−2dlog2(ρ(a,h)e+1+ρ(a,h) for some digest h
and hash identifier a. It is hard to find such a value by brute
force because all but the dlog2(ρ(a,h)e last bits are fixed, and
inverting the modular exponentiation by e is hard without
knowing d. However, if the ASN.1 parser π used after expo-
nentiation is malleable (or non exact), there may exist a large
class of inputs x such that π(x) = (a,h). If this class contains
inputs that fill most of the dlog2(N)e bits of the message, the
padding may be reduced to \x00\x01\x00. When e is small
(e = 3 is commonly used by legacy public keys), it may be
easy to find a value σ such that σe modN = 2dlog2(N)e−15 + x
with π(x)= (a,h) for any h. For instance, in Bleichenbacher’s
original description of the attack (retold by Finney [18]), the
parser ignores the bytes that appear after the encoded ASN.1
structure, i.e. if π(x) 6=⊥, π(x||z) = π(x) for all z. To forge a
valid signature for h, one can simply compute the cubic root
of 2dlog2(N)e−dlog2(ρ(a,h)e−16(\x0100||ρ(a,h)).

Ever since its publication, this attack has reappeared in
dozens of implementations, including several recent examples
(e.g. [9, 13, 37, 49]). Interestingly, the parser malleability
bugs that cause the attack are diverse: unparsed extra bytes are
tolerated at the end of the message [18, 49]; the parser accepts
arbitrary parameters in the algorithm identifier [9]; and a
length overflow causes only its last 4 bytes to be counted [13].
This diversity illustrates how difficult it is to write secure
parsers and to detect malleability vulnerabilities—some of
the attacks above have existed for years in popular libraries.
All variants lead to universal signature forgery: an attacker
can freely impersonate any client or server, sign malicious
code updates, etc.

Bitcoin transaction malleability Another well-documented
case of parser security attacks occurred against Bitcoin [34]
transactions, which are signed by the sender, then hashed (af-
ter serialization) and stored in Merkle trees. Transactions are
identified by their hash, which covers more data than what
the sender signs (in particular, the hash includes the signa-
ture itself). The format of transactions is malleable in several
ways: one example is the encoding of this signature, which
originally did not mandate the ASN.1 DER rules for non-
malleability. Another source comes from the ECDSA signing
algorithm, which is a randomized scheme (hence, there are
many valid signatures for the same message) that always has
two valid representations: if (r,s) is a valid signature, then
(r,−s) also is, and can be trivially computed without knowl-

edge of the private key. Other sources of malleability are
related to the scriptSig construct of the Bitcoin Script lan-
guage,1 inasmuch as the signature is passed to a stack-based
script to authorize spending. In total, BIP62 [50] lists 9 differ-
ent sources of malleability. Each of them allows an attacker
to alter a valid transaction t into a semantically-equivalent
valid transaction t ′ such that h(t) 6= h(t ′). One way to exploit
this is to try to fool someone into believing that a transac-
tion they submitted was rejected by the network, although
in reality, it was accepted under a different transaction hash.
The Mt. Gox bitcoin exchange blamed this attack for the
loss of over 850,000 bitcoins (worth $473M at the time of
bankruptcy) and although this claim is heavily disputed, later
forensic examination of the blockchain by Decker et al. [12]
revealed that in total, 300,000 bitcoins were spent over 30,000
transactions confirmed under a different identifier than origi-
nally submitted between Feb 1, 2014 and Feb 28, 2014.

Ambiguous TLS message Sometimes, the message spec-
ifications themselves are ambiguous, and cannot be im-
plemented by a secure parser. This is the case of the
ServerKeyExchange message in TLS:

enum {dh_anon, dhe, ecdhe, rsa,(255)} KeyExchange;
struct {
select (KeyExchange) {
case dh_anon: DHAnonServerKeyExchange;
case dhe: SignedDHKeyExchange;
case ecdhe: SignedECDHKeyExchange;
case rsa: Fail; /* Force error: no SKE in RSA */

} key_exchange;
} ServerKeyExchange;

This message represents an untagged union: the struct is
missing a field of type KeyExchange that clarifies which case
to use in the union. A parser for an untagged union can
only be secure if the format of all cases share no com-
mon prefix. The specification of TLS assumes that the
key exchange algorithm is available from the context (in
this case, it is part of the negotiation process). However,
it turns out that the security of the TLS negotiation de-
pends itself on the ServerKeyExchange message. This leads
to a real practical attack reported by Mavrogiannopoulos et
al. [32], where a SignedDHKeyExchange is interpreted as a
bogus SignedECDHKeyExchange. Worryingly, two other TLS
types use untagged unions: ClientKeyExchange (in TLS 1.2)
and CertificateEntry (in TLS 1.3).

3 Case Study: the TLS Message Format

We choose the TLS message format as our main case study
for several reasons: the message format description of TLS is
reasonably specified; it is designed to be secure and extensi-
ble; it defines hundreds of types that exercise the full range

1https://en.bitcoin.it/wiki/Script
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uint32 word; /* Type declaration */
word digest[16]; /* Fixed-length array of 4 words */
word phrase<0..2^8-1>; /* List of 0 to 16 words */
struct {
opaque id[32]; /* Array of 32 bytes */
uint16 payload<2..8>; /* List of 1 to 4 uint16 */
digest payload_digest;

} body; /* Struct with 3 fields */
enum {
request (0x2300), /* Constant tag */
response (0x2301),
(65535) /* Indicates 16 bit representation */

} header; /* Enum with 2 defined cases */
struct {
header tag;
select(tag) { /* Tagged union */
case request: body;
case response: phrase;

} x; /* Enum-dependent field type */
} message;
struct {
uint24 len; /* Explicit length */
message data[len]; /* Ensures length(data)=len */

} batch; /* Length encapsulation */

Figure 4: Sample type descriptions in TLS message format.

of available combinators in LowParse; and there exists a ver-
ified F? implementation of TLS that we can use to test the
integration of the generated parsers (including the integration
of parser security lemmas into the protocol security proof).

Language Description IETF’s RFC 2246 [14] specification
of TLS 1.0, published in 1999, includes a section that de-
scribes the presentation language of its message format, in-
spired by C and XDR [46], and illustrated in Figure 4. A
description consists of a sequence of type declarations. The
base types are unsigned fixed-length integers uint8, uint16,
uint24, and uint32, with opaque being used instead of uint8
to indicate raw bytes. The type constructors are fixed-length
arrays, variable-length lists, structs, enums, and tagged unions.
The length boundaries of arrays and lists are all counted in
bytes rather than in elements: for instance, type digest in
Figure 4 is an array of elements of type word whose binary
representation takes 16 bytes in total; since each word takes
4 bytes, this array holds exactly 4 elements. Arrays can be
constructed only from fixed-length types, whereas lists can be
defined for any types: as illustrated by answer and payload,
their format declares the range of their length; and their binary
representation embeds their actual length within that range.

Following the convention of RFCs, we interpret types in
terms of the byte sequences that represent their elements. The
representation of a struct is the concatenation of the represen-
tations of each of its fields in sequence, without any padding.
Arrays are the concatenation of elements whose total length
in bytes is the array’s annotated size. Lists are represented by

a length field encoded in a fixed number of bytes (determined
by the maximum length of the list, encoded in big endian),
followed by a concatenation of the elements. A special case
of structs are length-dependent fields, e.g., the batch type in
Figure 4. In these types the first field describes the length
of a single (variable-length) element of the specified type of
the second field represented adjacently. The interpretation of
enumerations contains the big endian encodings of its ele-
ments in a constant number of bytes determined by the size
descriptor of the enum type. Tagged unions (like message in
the figure) are encoded as the concatenation of the tag’s enum
representation followed by the encoding of the correspond-
ing case’s type. TLS messages are more compact than many
TLV formats: explicit tags only appear for tagged unions, and
lengths only for lists (or when ascribed). All structural infor-
mation is erased, in contrast with BSON [33] (which encodes
field names) or Protocol Buffers [20] (which encodes field
numbers).

We automatically extracted the data format descriptions
from the RFCs for TLS 1.2 [15] (including descriptions also
for TLS 1.0 and TLS 1.1), for TLS 1.3 [40], for TLS ex-
tensions (RFC 6066), and from the TLS IANA parameter
assignments, which defines additional constants for enumer-
ations. We then merged them together by hand, and edited
some of them to fix minor mistakes, avoid name clashes in
the original descriptions, and gain precision (e.g. by adding
length dependencies documented in the RFC text).

Extensibility A difficult issue for any format description lan-
guages is extensibility: as new versions of the protocol are
defined, it is often necessary to extend messages with new
fields and cases while maintaining compatibility with older
implementations. To address this problem, TLS was designed
with extensibility through open enumerations. As a simple
example, TLS has an enum type that defines the possible ci-
pher suites to negotiate. Receiving a value that doesn’t match
any of the defined cases of the enum is not a parsing error—
instead, the value should be treated as unknown but valid, and
the receiver should ignore it in the rest of the negotiation. This
also applies to enums that act as a tag for unions. For instance,
the hello messages contain a list of extensions tagged with
an extension type. Although this is implicit in the standard,
it is possible to define a default type for unknown values in
a select. The protocol is extended by defining new values
for enums (such as new cipher suites or new group names),
and new defined cases for tagged unions (for instance, new
extensions). Interestingly, many TLS implementations fail
to understand this concept, and incorrectly reject unknown
values. To fight this problem, Google recently introduced
GREASE [4], which causes Chrome to randomly include un-
defined values in all extensible fields of the protocol, thereby
enforcing that implementations that interoperate with Chrome
be extensible.

Unfortunately, the TLS standard does not clearly say which
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/* All TLS versions*/
struct {
ExtensionType extension_type;
opaque extension_data<0..2^16-1>;
} Extension;

/* From RFC 5246, section 7.4.2 */
opaque ASN.1Cert<1..2^24-1>;
struct {
ASN.1Cert certificate_list<0..2^24-1>;

} Certificate;

/* From RFC 8446, section 4.4.2 */
enum { X509(0), RawPublicKey(2), (255)} CertType;
opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
struct {
select (certificate_type) {
case RawPublicKey: ASN1_subjectPublicKeyInfo;
case X509: ASN.1Cert; } cert;

Extension extensions<0..2^16-1>;
} CertificateEntry;
struct {
opaque certificate_request_context<0..2^8-1>;
CertificateEntry certificate_list<0..2^24-1>;

} Certificate;

Figure 5: The Certificate type for TLS 1.2 vs TLS 1.3.

enums and which tagged unions are extensible in the message
format, and instead explain their intended semantics in text. In
QuackyDucky, we add an explicit annotation to mark which
enums are extensible, and we extend the syntax of select

to support default cases. For instance, we mark the tag of
extensions ExtensionType with the /*@open*/ attribute, but
not the tag of messages HandshakeType, as the RFC states that
receiving any unknown message is an error.

Protocol versions Another complication stems from ver-
sion differences not captured by extensibility. Consider the
Certificate message in TLS 1.2 [15] and TLS 1.3 [40].
Its format, listed in Figure 5, illustrates several problems
with the TLS specification. First, the two definitions of the
Certificate type are mutually incompatible, even though the
Certificate message is defined in both versions using the
same handshakeType tag. Second, the CertificateEntry type
of TLS 1.3 uses an untagged union, where the value of the tag
depends on the context rather than on a value sent over the
network (as in ServerKeyExchange and ClientKeyExchange

where the key exchange algorithm is omitted). Third, the
Extension type is under-specified: there are complex rules
and tables about which extension may appear in which mes-
sage (see [40, §4.2]), and the type of each extension contents
depends on which message it appears in. None of these con-
straints are currently captured in type definitions.

To address the issue of conflicting definitions across ver-
sions, we split the definitions of incompatible types such as

TLS 1.2 TLS 1.3
struct {
HandshakeType type;
uint24 length;
select (type) {
case hello_request:
Empty;

case certificate:
Certificate12;

/* ... */
case finished:
Finished;

} m[length];
} Handshake12;

struct {
HandshakeType type;
uint24 length;
select (msg_type) {
case eoed:
Empty;

case certificate:
Certificate13;

/* ... */
case key_update:
KeyUpdate;

} m[length];
} Handshake13;

Figure 6: Specialized Handshake types for TLS 1.2 and 1.3

Certificate and we define version-specific variants of the
handshake message type, shown in Figure 6. Before version
negotiation, hello messages are parsed using a third, version-
agnostic Handshake type. We then switch to parsers for the
negotiated version, thus ensuring that the following messages
are parsed using precise, version-specific types.

To address the problem of untagged unions, we introduce
an /*@implicit*/ attribute for tags, which instructs Quacky-
Ducky to generate an interface where the value of the tag is
passed as an additional argument to the parser and formatter.
This approach is not compositional, and comes with a restric-
tion: if a type that contains an implicit tag appears in another
type, it must appear at a location that includes an explicit
length. The parsing will be staged: when it reaches the sur-
rounding length, it skips its contents, leaving it uninterpreted.
The application needs to manually call the parser for the un-
tagged union by providing the tag value. The presence of
untagged unions is a clear mistake in message formats, as the
application is responsible for providing the correct tag when
it calls the parser, and thus, we only provide a conditional
security guarantee in this case.

Similarly to what we did with message types, we split and
specialize the definition of extension types for each message
that may include them (hellos, hello retry, encrypted exten-
sions, certificate, certificate request, new session ticket). This
also reveals some interesting mistakes in RFCs. For instance,
in [41, Appendix A], the authors fail to understand the pur-
pose of the explicit length around extensions, and incorrectly
believe it is redundant with the length of the list in the exten-
sion contents. They claim merging the two lengths makes the
extension less ambiguous; in reality, their change makes the
format more ambiguous: it is no longer possible to distinguish
between receiving no ticket and receiving an empty ticket. To
handle such corner cases, we add support in QuackyDucky
to coerce opaque arrays with explicit lengths to opaque lists
after parsing.
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4 Compiling Message Format Descriptions

We now present our compiler from the message formats of §3
to parsers and serializers for processing these messages in
Low? [38]. We briefly review F? and Low? (§4.1), then ex-
plain the code generated by QuackyDucky in three parts:
datatypes and parser specifications for verification purposes
(§4.2); high-level functional parsers and serializers (§4.3);
and lower-lever code for reading (§4.4) and writing (§4.5)
messages.

QuackyDucky recursively descends through the structure of
the format description, generating parsers and serializers for
compound types from those previously generated, while keep-
ing track of their properties (notably their length boundaries).
QuackyDucky mostly composes the combinators provided by
LowParse, described in §5. In contrast with this library, which
involves complex proofs for a few generic combinators, the
generated code is verbose but shallow, enabling us to auto-
matically verify its safety, correctness, and non-malleability
using the properties verified in LowParse.

4.1 Verified Programming in Low? (Review)

The F? language and proof assistant We carry out our
specification, implementation and proofs using F? [48], a
functional language and proof assistant based on dependent
types. A simple form of dependent types supported in F?

is refinement types, to represent types of values satisfying
additional properties: whereas int is the F? type of mathe-
matical integers, the type nat of non-negative mathematical
integers is defined as the refinement type (x: int { x ≥ 0 }). F?

supports types that depend on other types and values. It
also supports functions where argument types can depend
on the values of the previous arguments and the type of the
return value of a function can depend on the values of its
arguments. For instance, the integer division function, which
would have a simple type int→ int→ int in a functional lan-
guage such as OCaml, can be given a more precise type,
such as (a: int)→ (b: int {b > 0})→ (q: int { 0 ≤ a − b ∗ q < b }) mean-
ing that F? will reject, at typechecking time, any call to such a
function if it cannot prove the second argument is strictly pos-
itive (b > 0). Conversely, the caller can use the postcondition
on its return value 0 ≤ a − b ∗ q < b to prove further goals.

F? is not just a proof assistant: it is also a programming
language enjoying automatic translation (extraction) into ex-
ecutable languages such as OCaml or C; in this extraction
process, the user can mark some of their F? functions as ghost,
to have them erased at extraction time, such as lemmas and
proofs, but also auxiliary functions that need not, or cannot, be
executed at run time. To this end, F? equips its function types
with an effect system. By default, given two types t and u, all
functions from type t to u, in the type t→ u, will be extracted,
one says that they are in the Tot effect, so their type can be
written as t→ Tot u; to mark a function ghost, the user needs

to use the GTot effect, hence using the function type t→ GTot u

instead. Stateful functions that operate on mutable objects
(such as a mutable array of bytes, i.e. uint8_t* in C) live in
the ST effect and are extracted to stateful OCaml or C code.

All F? proofs rely on automatic encoding of proof obliga-
tions to first-order logic, which are then solved by automatic
theorem provers such as Z3, leading to reduced overall proof
effort. F? also has a tactic system [31] that can be used in
cooperation with, or in replacement of, Z3-based proofs.

The Low? subset of F? and its extraction to C code Users
who wish to use our parsers and serializers not only demand
performance, but also the ability to integrate our code into
their codebases. Therefore, OCaml is oftentimes not a viable
option; instead, we compile our F? code to C.

As shown in Figure 1, specifications are first implemented
in F?. This implementation can already be compiled to C
using a dedicated compiler, KReMLin. However, lacking fur-
ther restrictions, this F? implementation relies on lists and
bytes as values, meaning that compiling the F? implementa-
tion through KReMLin generates code that (i) is inefficient,
because it uses functional byte copies and linked lists; (ii) is
not idiomatic: no C programmer would write such code; and
(iii) requires a garbage collector, since lists and bytes are
persistent values with no lifetime (as in, say, OCaml).

To avoid these shortcomings, the Low? [38] subset of F?

defines a C-like memory model that talks about the stack and
the heap, along with corresponding abstractions and libraries,
e.g. for mutable arrays, machine integers and in-place loops.
Using Low? requires the programmer to rewrite their code
and reason about spatial and temporal safety; in exchange for
these added constraints, the F? code is compiled by KReM-
Lin to idiomatic, readable, efficient C code that does not re-
quire a garbage collector. The Low? restrictions only apply to
executable code; computationally-irrelevant portions of the
program, such as proofs and ghost code, retain the full power
of F?, since they are eliminated when compiled to C.

4.2 Datatypes and Parser Specifications
Continuing from §2.1, we use F? types to represent sets of
parsed values. Hence, QuackyDucky generates a parsed type t
for each named format description in its input.

Our F? types for parser and serializer specifications are
listed below.

type parser (t:Type) (k:meta) =
p: (input: seq uint8→ GTot (option (t ∗ l: nat{l ≤ length input})))
{ parser_prop k p }

type serializer (#t:Type) (#k:meta) (p: parser t k) =
s: (t → GTot (seq uint8))
{ ∀ (x:t) . p (s v) == Some (v, length (s v)) }

The parser type definition is parameterized by a parsed type t
and some metadata k (explained below) that records verified
properties of the parser. It states that a parser is a pure function
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that takes as input a sequence of bytes (of arbitrary length) and
returns an optional result that consists of some parsed value
of type t and the number of input bytes consumed. GTot states
that this parser is ghost, that is, used only for verification;
option indicates that it may return nothing in case parsing fails;
the refinement l ≤ length input ensures that it consumes at most
a prefix of its input; the refinement parser_prop k p states that
p is non-malleable (see formal definition in §5) and that it
satisfies the properties recorded in k.

The metadata k includes a verified range of lengths of input
that the parser may consume. This range provides useful
bounds for programming with this parser, for instance to wait
for a minimal number of input bytes before parsing, or to
allocate I/O buffers of adequate sizes. Internally, Quacky-
Ducky also relies on this information to select more efficient
implementations (for example when the input length is fixed)
and to require that some parsers consume at least one byte (for
example to compute the length of a list from its binary format).
The metadata may include additional properties, indicating for
instance that the parser always fails; or that it always succeeds
given enough input bytes; or that it is no-lookahead (see §5).

The serializer type definition is indexed by a parser for t,
not just by t (the # makes this parameter an implicit argument,
as it can be inferred from p). It states that a serializer specifi-
cation is a pure, total, ghost function from values of type t to
sequences of bytes, such that parsing its output for any value
v of type t succeeds and yields back v and its binary length.

Running Example Consider the following excerpt of the
TLS 1.3 wire format description [40] for the body of its first
ClientHello message.

struct {
ProtocolVersion version;
opaque random[32];
opaque session_id<0..32>;
CipherSuite cipher_suites<2..2^16-2>;
Compression compressions<1..2^8-1>;
ClientHelloExtension extensions<0..2^16-1>;

} ClientHello;

This message includes a 2-byte protocol version, a 32-byte
random nonce, a variable-length session identifier for resump-
tion, and variable-length list of proposed cipher suites, com-
pression methods, and extensions. QuackyDucky translates it
to a corresponding F? record type:

let in_range x min max = min ≤ x ∧ x ≤ max
type clientHello = {
version : protocolVersion;
random : (b:bytes {Bytes.length b == 32});
session_id : (b:bytes{in_range (Bytes.length b) 0 32});
cipher_suites : (l:list cipherSuite{in_range (List.length x) 1 32767});
compressions : (l: list compression{in_range (List.length l) 1 255});
extensions : (l: list extension{in_range (extensions_bytesize l) 0 65535});}

This high-level type includes precise length information,
coded as refinements. Since the elements of the first three

lists have constant binary lengths, QuackyDucky computes
precise bounds on their numbers of elements. Conversely, the
extensions in the last list are themselves of variable lengths,
hence QuackyDucky captures the bounds on its total binary
size using an auxiliary function extension_list_bytesize previously
defined from the extension serializer. The main benefit of cap-
turing these constraints is to ensure that all messages of type
clientHello can be serialized to a standard-compliant bytestring.

QuackyDucky also generates the corresponding metadata,
parser and serializer specifications.

let clientHello_meta = {low=43;high=131396; ...}
val clientHello_parser: parser clientHello_meta clientHello
val clientHello_serializer: serializer clientHello_parser

The parser metadata is exposed in the generated interface
(indicating, e.g., that the shortest TLS clientHello body message
takes 43 bytes) whereas the parser and serializer specs are kept
abstract—the interface gives their types, but hides the details
of their wire format. Thus, the three lines above state the
abstract, joint properties of our generated parser and serializer
specs (including non-malleability and round-trip properties)
and typechecking these specs ensures these properties hold.

Anticipating on the combinators defined in §5, we give
below an outline of the generated definition of clientHello_parser,
which parses our sample message by successively calling the
parsers corresponding to each of its fields:

let clientHello_parser =
((protocolVersion_parser × clientHello_random_parser) × ...)
synth (fun ((pv, r), ...)→ { protocolVersion = pv; random = r; ... })

These definitions are used only as reference implementa-
tions and are not extracted to C. In a second stage, Quacky-
Ducky generates actual parsers and serializers, and typecheck-
ing their code ensures they safely implement these specs.

4.3 Functional Parsers and Serializers
QuackyDucky generates high-level functional parsers and
serializers, with the following interface. (The “32” suffix in-
dicates that their code uses 32-bit machine integers instead of
the unbounded integers in their specs.)

val clientHello_parser32: parser32 clientHello_parser
val clientHello_serializer32: serializer32 clientHello_serializer

We systematically index our implementations by their specifi-
cations. Here, for instance, the type definition parser32 p used
above simply states that a high-level parser for the parser-
specification p is a pure function that takes a (bounded, im-
mutable) F? bytestring and returns the same result as p on the
corresponding sequence of bytes except that the consumed
length is an unsigned 32-bit integer.

We give below an F? code sample illustrating their use: a
‘reader’ function that counts the number of cipher suites in
a given ClientHello message in wire format, and a ‘writer’
function that builds a message given a configuration.
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let count_ciphersuites (input: bytes): UInt32.t =
match clientHello_parser32 input with
| None→ 0ul
| Some ch→ List.length ch.ciphersuites

let compute_extensions config: (l: list extension {...} ) = ...

let hello (cfg: config) : bytes =
clientHello_serializer32 {

version = TLS_1p3;
random = config.random;
...;
extensions = compute_extensions config; }

This code and its supporting parsers and formatters op-
erate on immutable bytestrings. Although it can be safely
extracted to C, it is inefficient, and the implicit allocations and
copies mandate the use of a garbage-collector. For example,
clientHello_parser32 allocates 4 lists and briefly uses only one.

4.4 Low-Level Accessors and Readers
To provide more efficient implementations, QuackyDucky
also generates code for a lower-level API that enables in-place
processing of messages in their binary formats.

We begin with a low-level alternative to parsing. For each
parser specification p, QuackyDucky provides functions that
operate on an input buffer. A validator reads the input buffer
and returns either the number of bytes that p would consume
by successfully parsing its contents, or an error code. Thus,
successful validation ensures the existence of a high-level
message in binary format, but does not construct it. Assuming
the input buffer is valid, then, for each field of the message,
an accessor computes the position of the first byte in its
binary representation. This guarantees in particular that this
representation of this element of the message is also valid.
Accessor computations are similar to pointer arithmetic in
C, or “get element pointer” computations in LLVM, but they
sometimes require reading the lengths of intermediate parts in
order to skip them. For each base type (e.g. 16-byte unsigned
integers), a reader takes an input buffer and position and
actually parses and returns a value of that type.

Continuing with our example, QuackyDucky produces a
validator for clientHello and an accessor for every field (shown
below only for its cipherSuites).

val clientHello_validator : validator clientHello_parser
val accessor_clientHello_cipherSuites :
accessor

clientHello_parser
clientHello_cipherSuites
clientHello_cipherSuites_parser

The type definitions validator and accessor are still parameter-
ized by parser specifications, but they are more complex, since
they describe functions that operate on pointers to mutable
buffers. We represent their input as a slice, that is, a Low?

buffer (§4.1) and its length, and a position within this slice.

(Experimentally, computations on integer positions based on
a single pointer are simpler to verify, and better optimized
by C compilers.) Accordingly, our validators return either the
final position in the slice after successful validation, or an
error coded as a large integer. We illustrate their use by re-
implementing the count_cipherSuites example of §4.3 in Low?.

let count_ciphersuites_inplace (input:slice) (pos:UInt32.t) =
let pos_final = clientHello_validator input pos in
if max_length < pos_final then 0ul (∗ invalid input ∗)
else
let pos_ciphersuites = accessor_clientHello_ciphersuites input pos in
clientHello_cipherSuites_count input pos_ciphersuites

The last line calls another QuackyDucky-generated function
that returns the length of a list of cipher suites in wire for-
mat. In this case, since each cipher suite takes exactly two
bytes, this length is computed without actually reading the
list content, by dividing its binary length by two.

Unsurprisingly, this function yields C code of the form:

// A slice is the pair of a byte array and its size
typedef struct {uint8_t ∗ base; uint32_t len; } slice;
uint32 count_ciphersuites_inplace(slice input, uint32 pos) {

uint32 pos_final = clientHello_validator(input,pos);
if (max_length < pos_final) return 0;
else {
uint32 pos_ciphersuites = accessor_clientHello_ciphersuites(input,pos);
return clientHello_cipherSuites_count(input,pos_ciphersuites);

}

Once compiled by Clang, we can check on the resulting ma-
chine code that the ‘else’ branch eventually boils down to (1)
adding 34 to pos to skip the first two fields; (2) reading and
adding the one-byte length of the third field; (3) reading the
two-byte length of the fourth field and shifting it by one.

Validators, accessors, jumpers and readers are specified
using a validity predicate, valid(p,m,b, i) stating that the
parser p succeeds when provided the bytes in buffer b start-
ing from offset i in memory state m. If this predicate holds,
then, thanks to the injectivity property of p, there is a unique
value contents(p,m,b, i) returned by the parser, and an offset
getpos(p,m,b, i) within b one past the end of the representa-
tion of that value. This validity predicate is the post-condition
of validators when they succeed, and is the precondition of
jumpers and readers; accessors for struct fields have the valid-
ity predicate for the struct (resp. field) parser as a precondition
(resp. postcondition). We give below the type definitions for
validators and readers:

type validator (#k: meta) (#t: Type) (p: parser k t) =
(input: slice)→ (pos: U32.t)→ ST U32.t
(requires (fun m→ live_slice input pos ∧ input.len ≤ max_length))
(ensures (fun m pos’ m’→ m ≡ m’ ∧
(valid(p, m, input, pos)⇔ pos’ ≤ max_length) ∧
(pos’ ≤ max_length⇒ pos’ == getpos(p, m, input, pos))))

type reader (#k: meta) (#t: Type) (p: parser k t) =
(input: slice)→ (pos: U32.t)→ ST t
(requires (fun m→ valid(p, m, input, pos)))
(ensures (fun m res m’→ m ≡ m’ ∧ res == contents(p, m, input, pos)))
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4.5 Low-Level Writers

We finally describe our low-level API for serializing a mes-
sage in an output buffer. Our goal is to avoid intermediate
allocations and copies; for example, our high-level hello func-
tion constructs the whole message before serializing. To this
end, QuackyDucky generates families of low-level writers
and auxiliary functions that take as parameter an output slice
(that is, a buffer and a length) and a write position, modify the
buffer between this position and the end of the buffer, and re-
turn a new write position. These functions either require that
the output buffer is large enough (based on parser metadata)
or may also return an error in case the buffer is too small.

In contrast to accessors, which enable random access to
validated input in binary format, it is not generally possible to
know in advance where to write data before writing any pre-
ceding variable-length data. Thus, our API assumes that data
will be written sequentially, with the flexibility for the pro-
grammer to use an intermediate buffer whenever they choose
to write data out of order. A notable exception is for encoding
the lengths of variable-length data, which is usually known
only after writing the raw data itself. To this end, Quacky-
Ducky provides a finalizer that takes two positions in the
output buffer, requires as a precondition that the buffer con-
tain a placeholder for the length followed by a valid binary
representation of the raw data, computes and writes its length,
and ensures as a post-condition that the buffer now contains a
valid variable-length representation of this data.

We illustrate these different cases on a low-level variant
of the hello function, whose Low? and extracted C code are
shown in Figure 7. The first field, version, is an enumeration
formatted in a fixed two-byte format: it is directly written
using the QuackyDucky writer for protocolVersions. The second
field, random, is a fixed-length, previously-allocated bytestring
that can be copied from the configuration. Omitting interme-
diate fields, which may be handled similarly, the last field
is a complex list of extensions. The list itself is written by
repeatedly calling the extension writer on each element, af-
ter skipping the 2 bytes required for their total length. The
computed length of the list is finally written by calling a
QuackyDucky finalizer.

As a cumulative post-condition of all these steps, we know
that the output buffer now contains the concatenation of a
valid binary format for each of its fields, and we can conclude
that it thus also contains a valid representation of a clientHello

message by calling the validity lemma clientHello_valid also gen-
erated by QuackyDucky and verified by F?. The call to this
lemma is erased before extraction to C code.

As an important simplification, our sample code requires
as static precondition that the output buffer be large enough
to hold any valid clientHello message. In more realistic code,
one would need to dynamically check this length. (Each of
these writer functions are fail-safe, but their errors still need
to be propagated.)

let write_extension_list cfg output pos = ...
(∗ write a list of extensions computed from the configuration ∗)

let write_hello cfg output pos =
(∗ write 2 bytes of protocol version ∗)
let pos_after_protocol_version =
write_protocolVersion output pos TLS_1p3 in

(∗ copy 32 bytes from the configuration ∗)
memcpy cfg.random 0ul out.base pos_after_protocol_version 32ul;
let pos_after_random = pos_after_protocol_version + 32ul in
(∗ similarly write or copy the other fields ∗)
let pos_after_session_id = ... in
let pos_after_ciphersuites = ... in
let pos_after_compressions = ... in
(∗ leave two bytes for the total length of the extension list ∗)
let pos_list = pos_after_compressions in
(∗ calls an auxiliary function to write the extension list in−place ∗)
let pos_after_extensions =
write_extension_list cfg output pos_list in

(∗ computes and writes the extensions length at pos_after_compressions ∗)
finalize_clientHelloExtensions
output pos_after_compressions pos_after_extensions;

(∗ call the validity lemma for the clientHello message ∗)
let m = get () in clientHello_valid m output pos;
(∗ return the final position ∗)
pos_after_extensions

uint32_t write_extension_list(config cfg, slice output, uint32_t pos);
uint32_t write_hello(config cfg, slice output, uint32_t pos)
{

uint32_t pos_after_protocol_version =
write_protocolVersion(output, pos0, TLS_1p3);

memcpy(cfg.random + 0, output.base + pos_after_protocol_version, 32);
uint32_t pos_after_random = pos_after_protocol_version + 32;
...
uint32_t pos_list = pos_after_compressions + 2;
uint32_t pos_after_extensions =
write_extension_list(cfg, output, pos_after_compressions);

finalize_clientHelloExtensions
(output, pos_after_compressions, pos_after_extensions);

return(pos_after_extensions);
}

Figure 7: Sample Low? code for writing a TLS client hello
(above) and its translation to C (below).

5 LowParse: Secure Parser Combinators

As we have seen in §4.2, QuackyDucky produces parser im-
plementations by composing basic parsers using combinators,
which are higher-order functions on parsers. For example, a
combinator for pairs may take parsers for types t and u and
yield a parser for type t×u. Its implementation may first parse
a message of type t, then parse a message of type u.

LowParse is our library of parser combinators, based on
the long tradition of monadic parser combinators [22] in the
functional programming community. However, LowParse is
unique in that it is tailored to support the verification of non-
malleable, correct parsers. We focus on combinators at the
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QuackyDucky Syntax Data Type Parser Combinator
uintN, N ∈ {8,16,32,64} Unsigned integer within 0..2N −1 parse_uN
t[N], N ∈ N Fixed-size array of ts of length N plist[p] truncN
t<M..N> List of ts, of variable length M..N vldata(plist[p], M, N)
t{M..N} List of ts of variable element count M..N (parse_uk filter (n 7→M ≤ n≤ N)). (n 7→ pn)

where k = 8× log256 N
struct{t1 x1; . . .; tn xn;} Record with n fields named (xi) of type (ti) (p1×·· ·× pn) synth

((v1, . . . ,vn) 7→ {x1 = v1; . . . ;xn = vn})
struct {. . .; uintN x; t y[x]; . . .} Variable-length field y prefixed by its length x vldata(p,0,256N/8−1)
enum {E1(N1), . . ., En(Nn), (M)} Constant integer enumeration

(with maximal value M = 2N −1)
penum(parse_uN, [(E1,N1); . . . ;(En,Nn)])

struct {t x; select(x) {
case E1: t1; . . .; case En: tn } y}

Tagged union (t must be an enum type) p. f q where f (Ei,x) = Ei
and q(Ei) = pi synth (y 7→ (Ei,y))

Figure 8: The QuackyDucky input language and the corresponding LowParse combinators: everywhere in this table, pi is the
parser for type ti. All lengths are counted in bytes except otherwise mentioned.

specification level and their security properties, then discuss
more briefly their implementations. For each specification
combinator, we prove non-malleability and inverse properties;
for each implementation combinator, we prove both safety and
correctness. All properties are verified by typing the library.

Figure 8 summarizes the QuackyDucky input language
and the corresponding LowParse combinators. We designed
QuackyDucky and LowParse in a modular way, making it easy
to extend the surface syntax of QuackyDucky by providing
additional combinators. For instance, the t x{M..N} syntax for
variable-size lists prefixed with their number of elements is a
late addition to support the Bitcoin application in §6.2 but is
not required for TLS.

We first define the properties attached to the specifications
of §4.2. We prove a stronger version of non-malleability than
the one given in §2.1, extending the definition there to handle
parsers that may not consume all their input.

Definition 1 A parser p for type t is non-malleable if, when-
ever it succeeds and returns the same parsed value on two
inputs, it also returns the same number of consumed bytes,
and the two inputs coincide of these bytes.

We also rely on the following no-lookahead property:

Definition 2 A parser p has the strong prefix property when,
if it succeeds on an input and consumes ` bytes, then it returns
the same result on any inputs with the same first ` bytes.

For a serializer to exist for a format that requires concate-
nating two value representations valid with respect to two
parsers p1, p2 (such as pairs, lists, tagged unions, or variable-
length data), p1 is required to have the strong prefix prop-
erty. Consider for instance serializing a pair of two pieces
of data x1,x2 using serializers s1,s2 correct with respect
to parsers p1, p2. We would like to prove that the serial-
ization s(x1,x2) = s1(x1) · s2(x2) obtained by concatenating
the two serializations, is correct with respect to the parser
for pairs. By correctness of s1, p1(s1(x1)) succeeds and

returns (x1, |s1(x1)|), but this is not enough to know that
p1(s1(x1) · s2(x2)) succeeds and also returns (x1, |s1(x1)|) (so
that we can cut the input after |s1(x1)| and apply p2 on the
remainder, s2(x2)), unless p1 has the strong prefix property.

These properties are included in the definition of parser_prop

on the metadata generated by QuackyDucky, hence enforced
by typing for all its parser specifications.

5.1 Specification Combinators
LowParse is an extensible library of combinators. For each
parser specification combinator, we attach a corresponding
metadata combinator; then, we define, when possible, a seri-
alizer combinator.

Parser combinators We define primitive parser combina-
tors below. For each of them, we prove injectivity and any
relevant additional properties indicated in their metadata, such
as the strong prefix property. We also define derived combina-
tors; in contrast, all their properties are established automati-
cally as the result of their definitions (by type unification and
matching on their metadata). The code produced by Quacky-
Ducky only inserts annotations to prove their composability
conditions, for instance, by computing the length boundaries
of the derived metadata, which are then verified by F?.

We start by defining primitive parser combinators: fail,
which consumes no input and fails; ret[x], which consumes no
input and succeeds returning x; read_byte, which consumes
and returns a single byte of input; and and_then, which se-
quentially composes two parsers where the second parser
depends on the value parsed by the first parser (i.e., monadic
composition). For each of these basic combinators, we prove
non-malleability and/or the strong prefix property under suit-
able conditions. For instance, p and_then q has the strong
prefix property provided that p has it, q[x] has it for all x,
and, moreover, if q[x1] and q[x2] succeed on inputs b1 and b2,
respectively, and return the same value, then x1 = x2. (Other-
wise, consider for example p = read_byte and q = ret[0].)
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Using those primitive combinators, we define derived com-
binators, for which verification of non-malleability and meta-
data correctness automatically follows by typing. Given
parsers p0 and p1 for t0 and t1, respectively, we can derive a
parser for pairs of type t0× t1 using p×q; mapping functions
over parsed results using p synth f ; filtering parsed results by
some predicate using p filter f ; etc. proving non-malleability
and the strong prefix property for them under suitable condi-
tions.

More specifically, we derive parsers for fixed-length ma-
chine integers, and we prove their non-malleability for both
endiannesses. For instance, we define little-endian 16-bit pars-
ing as (read_byte× read_byte) synth ((x,y) 7→ x+256× y).

Our next combinators support variable-length data and lists:
• Given a parser p for type t, the parser plist[p] is defined

by repeatedly applying p to its input. It fails as soon
as p fails or consumes zero bytes. If succeeds when p
eventually consumes its whole input and then returns the
resulting list of values.
• Given a parser p for type t and n > 0, the parser ptruncn

succeeds when p succeeds on its input truncated to its
first n bytes and consumes exactly n bytes.

The parser plist[p] does not have the strong prefix property,
but it consumes all its input. The parser p trunc n always has
the strong prefix property, even if p does not. If s is a correct
serializer for p at type t, then p trunc n is a parser for type
x : t{|s(x)|= n} and s is its correct serializer at that type.

We finally present further derived combinators, whose prop-
erties are automatically verified by construction:

Tagged unions: if p is a parser for type t and f : u→ t and
q[x] is a parser for type (y : u{ f (y) = x}) for every x : t, then:

p. f q = p and_then (x 7→ q[x] synth (y 7→ y))

is a parser for type u. This combinator is a strengthening of
and_then that enforces non-malleability of q by making its
codomain dependent: u is the union type, and t is the tag type,
and f gives the tag of an element of the union type. From
there, we define a combinator for sum types, which can be
used for tagged unions.

Enum types: if l is a list of key-value pairs where each key
and each value only appear once, then it defines both a closed
enum type (whose elements are the keys that appear in l)
and an open enum type (whose elements are the known keys
that appear in l and the unknown values that do not appear
in l). We define parsers for both variants penum(p, l) (where
p is the value parser), using filter, synth and the dictionary
function on key-value pair lists.

Variable-sized data: formats such as TLS often specify
variable-length data as a payload prefixed by its size in bytes.
If p is a parser for the payload, and if s is a serializer correct
with respect to p, then we define

vldata(p, l,h) = parse_u` ◦filter(n 7→ l ≤ n≤ h)

. f (n 7→ p trunc n)

as a parser for the refined type (x : t{l ≤ |s(x)| ≤ h}), where
`= 8×| log256(h)|, is the bit size of the size integer prefix, and
f (x) = |s(x)|. Such parsers inherit the strong prefix property
from the parser for the prefix size, regardless of whether it
holds for p.

Correct Serializers Not all parser specifications have cor-
rect serializers. For instance, ret[x] and and_then do not have
a generic serializer. So, in LowParse, we provide serializer
combinators for read_byte, fail, plist, synth, and ., for each of
which we prove correctness with respect to its corresponding
parser combinator (i.e., that they are inverse of one another).
We also easily prove that a correct serializer for p is also cor-
rect for p trunc n and p filter f (once its domain is restricted
accordingly). From there, we derive correct serializers for
×,nlist, vldata, etc. for which the correctness proof automati-
cally follows by typing.

5.2 Implementation Combinators
For each parser-specification combinator, LowParse provides
combinators for its high-level parser and for its low-level
validators and jumpers (and similarly for serializers). For
primitive combinators, we implement their corresponding val-
idators jumpers and serializers; for each of them we prove
memory safety and functional correctness with respect to their
specification. We implement most derived combinators by
following the same construction as for their specs, by assem-
bling the corresponding implementation combinators. Thus,
their memory safety and functional correctness automatically
follow by typing. We also define accessor combinators for
synth and tagged unions, and accessors for pair elements,
from which QuackyDucky derives accessors for struct fields
and sum types.

By design, our combinators are inherently higher-order and
so they cannot directly be extracted to C. Instead, we rely
on meta-programming features of F? and KReMLin, based
on source code annotations, to ensure that all combinator
code is inlined and specialized before extraction. In most
cases, this is achieved by annotating our source code. In other
cases, we extend LowParse with F? tactics [31], pieces of
F? metaprograms written once and for all and evaluated at
typechecking time to automatically generate Low? valida-
tors from some type definitions. For example, our validators
for enum values and tagged unions are specified using con-
stant key-value lists. Instead of programming a loop on these
lists, we meta-program their unrolling at compile-time, which
yields a cascade of ifs automatically turned into a switch by
many C compilers. In rare cases, such as unions tagged with
an enum value, we write additional validator combinators to
more precisely control their inlining by F? and KReMLin.

In addition, metadata allow us to provide some generic
validator combinators that apply regardless of the actual parser
combinator. For example, if we know that a parser consumes
a constant n bytes and always succeeds, then we can use a

1476    28th USENIX Security Symposium USENIX Association



QD F? LoC Verify Extract C LoC Obj.
TLS 1601 69,534 46m 25m 192,229 717KB
Bitcoin 31 1,925 1m56s 1m14s 1,344 8KB
PKCS #1 117 4,452 2m14s 2m39s 3,368 26KB
LowParse N/A 32,210 3m5s 1m5s 185 739 B

Table 1: Overview of EverParse Applications

validator that just jumps n bytes. QuackyDucky selects these
combinators based on the metadata it computes.

6 Integration and Evaluation

We evaluate the integration of EverParse-generated parsers for
three applications: the TLS message format, integrated into
MITLS; the Bitcoin block and transaction format, integrated
into the Bitcoin Core benchmark; and the ASN.1 payload of
PKCS #1 signatures, integrated into mbedTLS.

Table 1 shows for each application the lines of Quacky-
Ducky input specification, the amount of F? code generated,
the time required for verification and KReMLin extraction,
and the size of the C code and compiled objects. The Bitcoin
evaluation was performed on a 28-core Xeon E5-2680 v4
CPU with 128GB of RAM, running with turbo boost and all
but one core disabled. The rest of the figures were collected on
a 10-core Xeon W-2155 CPU with 128GB of RAM, running
F? commit 7b6d77 with Z3 4.5.1 and GCC 7.4.

6.1 TLS Message Format
As described in §3, we have specified the TLS message format
for all versions of TLS from 1.0 to 1.3. However, integrat-
ing the generated parsers presents some major challenges:
implementations tend to define their own representations
of messages, with field and tag names that differ from the
RFC, and some of them like mbedTLS interleave the pars-
ing and processing of messages. MITLS [7] uses functional,
high-level parser implementations and types, operating on
values. Most of the basic data types (such as cipher suite
names) are defined in a module called TLSConstants, while
some specialized ones scattered in other modules (e.g. group
names in CommonDH). Extension types and parsers are in the
Extensions module, while message types and parsers are
in HandshakeMessage. We noticed that these files contain
many assumptions and incomplete proofs, many of which
have been completed for earlier drafts of TLS 1.3, but not
updated as the formats changed (with EverParse, such up-
dates and extensions only require a few changes to the format
description).

In total, in order to switch to the high-level implementation
produced by QuackyDucky, we update or rename over 200
types (and propagate these changes), which requires 2,865
additions and 3,266 deletions over 38 files (according to our
Github pull request). Unlike LowParse, MITLS individually
proves the non-malleability of each parser as a lemma separate
from parser definitions instead of a refinement; the MITLS

proofs for such lemmas are lengthy and intricate. So, we
define a LowParseWrappers module to replace such proofs
with a uniform call to LowParse parser property lemmas. Our
changes do not break other existing proofs, but several gener-
ated types are more precise than the handwritten ones (notably,
all lists are refined to ensure they can be serialized), which
leads to additional conditions to prove in many functions. The
generated parsers are also a lot stricter: for instance, we now
check at parsing which extensions can appear in a message,
and which messages can appear for the negotiated version.

To test the impact of EverParse parsers, we run the sim-
ple HTTP client and server tool distributed with MITLS to
compare how many requests can be served, using the default
algorithm choices. This tool is not optimized for production
and processes requests sequentially. We compare the time to
process 500 requests between the original MITLS parsers and
EverParse high-level parser implementations.

MITLS MITLS-EverParse
HTTP requests 49.8 req/s 53.3 req/s

Integrating the low-level Low? implementations into
MITLS requires a large effort, as many functions that are
currently pure (operating on values such as lists) become
stateful (the buffer that contains the valid positions matching
each value must be live). To anticipate the benefits of this
effort, we run a synthetic benchmark that validates all mes-
sages from a public dataset of TLS handshakes published by
Lumen [39]. This dataset contains handshake produced by a
wide range of clients and servers, and contains over 13GB
of data (including the BSON overhead). As a baseline, we
compare in-place validation time with the cost of checking
the message length, allocating a buffer of the message size,
and copying the contents of the message in the buffer.

Memcpy EverParse
1,864 MB/s 1.761 cy/B 2,684 MB/s 1.177 cy/B

6.2 Bitcoin Blocks and Transactions
To show that EverParse is extensible and evaluate the per-
formance of its low-level parsers, we implement the Bitcoin
block and transaction format, listed in Figure 9. We do not
implement Segregated Witness (“segwit”), an extension that
overloads the semantics of a length in the block format to
conditionally add a new field to the block structure, because it
requires a very ad-hoc combinator. Bitcoin requires two Low-
Parse extensions: one for the encoding of "compact integers"
(bitcoin_varint), and one for lists prefixed by their size in
elements rather than in bytes.

For compact integers, the representation may either use
1, 3, 5, or 9 bytes depending on whether the value of the
first byte is respectively less than 252, 253, 254, or 255. It
is not clear from the Bitcoin documentation and wiki that
the format of compact integer is not malleable (e.g. 4636
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opaque sha256[32];
struct {
sha256 prev_hash; uint32_le prev_idx;
opaque scriptSig<0..10000 : bitcoin_varint>;
uint32_le seq_no;

} txin;
struct {
uint64_le value;
opaque scriptPubKey<0..10000 : bitcoin_varint>;

} txout;
struct {
uint32_le version;
txin inputs{0..1000 : bitcoin_varint};
txout outputs{0..11110 : bitcoin_varint};
uint32_le lock_time;

} transaction;
struct {
uint32_le version;
sha256 prev_block; sha256 merkle_root;
uint32_le timestamp;
uint32_le bits; uint32_le nonce;
transaction tx{0..2^16 : bitcoin_varint};

} block;

Figure 9: QuackyDucky specification of Bitcoin blocks

could be represented as fd121c, or fe0000121c). However,
we checked that the Core implementation enforces the short-
est representation in the ReadCompactSize function. Ad-
ditionally, we allow list types to specify in their range the
type of integer used to encode the prefix length or size (e.g.
txin inputs{0..2^14 : bitcoin_varint}). A drawback of
prefixing lists by their number of elements is that the theoreti-
cal maximum length of the formatted list can get extremely
large. For instance, the maximal size of a well-formed Bitcoin
block is over 2320 bytes (in practice, it is well-known that
non-segwit blocks are at most 1MB). To avoid overflowing
OCaml’s 63-bit arithmetic in the parser metadata length com-
putations in QuackyDucky, we must write more conservative
boundaries. Scripts are known to be at most 10,000 bytes.
Historically, all non-segwit blocks in the main chain contain
less than 216 transactions (although the maximum is higher).
It is more difficult to bound the number of inputs and outputs
of a transaction. If we assume a transaction is standard (at
most 100,000 bytes) and all inputs are signed (their script is at
least 64 bytes), there are less than 1000 inputs. Since outputs
can be as short as 9 bytes, a transaction can have over 11000.
Our test data is blocks 100,000 to 110,000 of the Bitcoin
blockchain, totaling 21MB. To experimentally check those
assumptions, we parsed all of these blocks and confirmed they
are accepted by our validator.

For benchmarking, we measure: first, the performance of
our zero-copy block validator compared with the built-in de-
serialization function of the Bitcoin Core client (commit

Figure 10: Synthetic performance comparison for validating
10,001 Bitcoin blocks. Throughput in kiB/s, higher is better.

cbe7efe); second, the performance variations of our zero-
copy block validator across compilers and optimization levels;
third, the performance impact of fine-grained code-generation
options passed to KReMLin (Figure 10). For each one of those
benchmarks, we report numbers in kiB/s, i.e. the throughput;
we only occasionally report cycles per byte since most of our
validators run at less than 1 cy/B.

The first measurement compares the performance of our
code against a reference implementation, namely, Bitcoin
Core. Bitcoin uses a custom template for serializing C++ ob-
jects. This template is well-optimized and tries to rely on
casts and the in-memory representation of base types as much
as possible. However, it is not zero-copy: parsing relies on
the memory allocated for the C++ object, and serialization
requires a copy to the output buffer. The benefit is that the data
can be accessed using standard data structure libraries such
as std::vector for lists. Bitcoin provides a built-in bench-
marking tool for many of its features, including block deseri-
alization and validation in src/bench/checkblock.cpp.

We modify this benchmark to use our test data of 10,001
blocks and deserialize all of them in each run. The benchmark
deserializes 130 times, and reports the median over 5 runs.
We keep the default compiler options (gcc-8, O2 optimization
level). The measured throughput is 152,786 kiB/s, which
translates to 15 cy/B on the test machine used for the Bitcoin
measurements. We then validate the same 21MB of data using
our validators, with the same compiler and optimization levels.
We obtain a throughput of 4,568,632 kiB/s, which is less than
a cycle per byte, for the default KReMLin configuration.

While the validation performance of our code is excellent,
we do not claim that this benchmark is representative of real
application usage, as it doesn’t account for the overhead of
accessor functions to read the block and transaction contents.
Nevertheless, this shows that our verified low-level implemen-
tation is competitive with hand-optimized formatters.
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Second, we measure performance variations across com-
piler versions. The performance is comparable between the
two most recent versions of Clang and GCC, for optimiza-
tion levels O2 and O3. Unsurprisingly, the default setting
without optimization yields much slower code, but even then,
we remain considerably faster than the original Bitcoin code.
We also measure the performance of our code compiled with
CompCert [28]. We find that CompCert is consistently 42%
slower than GCC and Clang with optimizations, but still more
than twice as fast as GCC or Clang without optimizations. We
conclude that our code lends itself well to optimizations by
modern compilers, and that users do not need to enable the
(risky) O3 performance level to get maximum performance
out of Clang or GCC.

Third, we experiment with various compilation
schemes of the KReMLin compiler for the core type
LowParse.slice.slice, a two-field C struct (representing a
byte buffer through its base pointer and length) which in the
default configuration is passed by value (§4.4). Two alternate
compilation schemes are considered. First, passing both the
base pointer and length as separate arguments to functions;
this is the “struct-explode” category, and yields no perfor-
mance improvement. Second, we pass those structures by
address, relying on an unverified transformation in the KReM-
Lin compiler, similar to CompCert’s -fstruct-passing

feature. This yields modest performance improvements for
GCC 7 and GCC 8 at the higher optimization levels (3% to
9%). We conclude that our generated C code is satisfactory
and that we don’t need to either rewrite our code to pass
slices by address (a substantial proof burden) or instruct
KReMLin to perform this transformation (which would
increase the trusted computing base).

Finally, we perform fuzz testing on the X64 machine code
of our generated bitcoin-block validator as compiled with
gcc-8 -O2. (Although our verification results ensure memory
safety for all inputs, fuzzing may still, in principle, detect bugs
in our toolchain and the C compilers we use.) We use SAGE
[19], a fuzzer specialized to parsers, which generates random
input, valid or not, and feeds them to the validator which
SAGE automatically instruments to check for buffer over-
flows. As expected, SAGE reported no bugs after 21,664,448
inputs tested at an average rate of 599 inputs per minute.

6.3 ASN.1 Payload of PKCS #1 Signatures
Our last example is the payload of PKCS #1 signatures intro-
duced in § 2.2. We extend LowParse with a combinator for
the encoding of ASN.1 DER lengths. This encoding is partic-
ularly convoluted: if a length is less than 127, it is represented
over a single byte. Otherwise, the 7 least significant bits of the
first byte encode the length in byte of the shortest big endian
representation of the length. This means the length can be at
most 221016−1. To avoid overflows, we only support values of
the first byte less than 132 (i.e. 32-bit lengths). An issue with

the specification is the lack of dependency between the object
identifier of the hash algorithm and the octet string of the
actual digest: the application is required to check the digest is
of the correct length if it tries to parse the signature contents.
We capture this dependency by only making the outermost
sequence variable length, and by parsing the object identifier
as a constant tag of an union of fixed-length arrays. (Note
that this is for illustration only, the recommended approach
is to serialize the computed hash, and use a constant time
comparison with the un-padded signature contents instead).

We integrate our code into pkcs1_v15_verify function
of mbedTLS, and modify the built-in benchmarking tool
to measure the PKCS #1 signature verification time in-
stead of the raw public key and private key operation time
measured by default. In addition, we also export the inter-
nal function to format the ASN.1 payload of the signature
(pkcs1_v15_encode), and compare it with our extracted for-
matter functions. The following table compares the amount
of operations per second and cycles per operation for com-
plete signature verification, and for the encoding of the ASN.1
payload:

Operation mbedTLS EverParse
Verify 79K op/s 5,700 cy/op 79K op/s 5,649 cy/op
Encode 31M op/s 14 cy/op 134M op/s 3 cy/op

As expected, the verification time is dominated by the cost
of the RSA exponentiation: even though our validator is over
4 times faster and avoids the allocation of a modulus-sized
intermediate buffer to compare the expected and computed
digests, the impact on overall validation performance is negli-
gible. For signing and encoding, the constant constant parts of
the signature payload must be written manually, and separate
finalizers must be called for to write the bytes we depend on
for the algorithm choice and the outermost ASN.1 length.

We tested our implementation against all variants of the
Bleichenbacher’s attack listed in §2.2 and confirmed they are
properly rejected.

7 Related work

Parsing combinators are widely used in functional program-
ming languages, and there exist several libraries for network
protocols [29], including TLS and X.509 [30].

For well-behaved language classes (e.g. regular, context-
free), there is a long history on verification of parser correct-
ness with respect to simple specifications (regular expressions,
grammars). Jourdan et al. [25] propose a certifying compiler
for LR(1) grammars, which translates the grammar into a
pushdown automaton and a certificate of language equiva-
lence between the grammar and the automaton. The certifi-
cate is checked by a validator verified in Coq [1], while the
automaton is interpreted by a verified interpreter. Barthwal
et al. [3] propose a verified grammar compiler and automa-
ton interpreter for the simpler class of SLR languages, ver-
ified in HOL [42]. For regular languages, Koprowski et al.
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introduced TRX [26], an interpreter for regular expressions
verified in Coq. All of these works require runtime interpre-
tation, which greatly degrades the performance compared to
compilation. Furthermore, they target garbage-collected func-
tional language runtimes like OCaml, which cannot easily be
integrated into high-performance, native C applications.

For TLV languages, there have been some attempts [2] to
create context-free or even regular specifications for X.509.
However, due to the context-sensitive nature of ASN.1, these
efforts rely on discretizations of some fields (such as variable-
length integers) and drastic simplifications of the format (such
as limiting the choice of extensions to a known subset). The
combinatorial explosion required to achieve interoperability
makes these approaches impractical for real implementations,
although some authors claim otherwise [21].

For runtime safety, fuzzing techniques [19, 43] are widely
deployed and often included into test suites for cryptographic
libraries. Although best practice, fuzzing is by nature incom-
plete, and may be difficult to apply to authenticated mes-
sages (as fuzzing invalidates hashes, signatures and MACs).
Dynamic analysis tools like Valgrind [35] or AddressSani-
tizer [44] are widely used but also incomplete, while static
analysis tools like Frama-C [11] require higher expertise, a
significant time investment, and tend to scale poorly with
large codebases. Because of past attacks, specific tools have
been created for TLS and cryptographic libraries, including
TLS-Attacker [45], FlexTLS [5], and Wycheproof [8], but
their focus is to uncover known vulnerability patterns in pro-
tocol implementations rather than prove formal guarantees on
their message formats.

Another related line of work [10, 16] applies abstract in-
terpretation and symbolic execution to study the properties
of parsers, such as whether two implementations of a format
accept the same message. These techniques can be applied to
existing implementations, but cannot generate new ones.

Narcissus [47] also constructs correct binary parsers from a
verified library of combinators written in Coq. There are two
major differences with EverParse: first, Narcissus only proves
the correctness of its parsers, while we also prove parser secu-
rity; second, Narcissus only generates higher-order, functional
implementations while our compiled approach means that our
parsers are entirely specialized at F? extraction, and can be
compiled in zero-copy mode. Building on Narcissus, Ye and
Delaware [51] build a verified compiler in Coq for parsers
and formatters described using Protocol Buffers [20]. Like
EverParse, their parsers and formatters are proven to be cor-
rect. Their library produces high-level functional code, which
is memory-safe by construction—in contrast, EverParse pro-
duces low-level C code, together with memory safety proofs.
Further, due to the inherent structure of the Protocol Buffers
format, their work does not consider non-malleability.

Jim and Mandelbaum [23, 24] have formalized and devel-
oped parser generators for a wide class of context-free gram-
mars extended with data dependency, including tag-length-

value encodings, tagged unions, and other forms of depen-
dence supported by QuackyDucky. They also provide tooling,
like QuackyDucky, to automatically extract message format
descriptions from RFCs and have applied their work to net-
work message formats like IMAP, the popular mail protocol.
While the input language of their framework is significantly
more expressive than ours, EverParse, in contrast, produces
provably safe, secure and functionally correct parsers. Jim
and Mandelbaum also do not address message formatting.

8 Limitations and Future Work

Trusted computing base: we statically guarantee at the F?

source level memory safety, functional correctness, and non-
malleability for all code generated by QuackyDucky. Pre-
serving non-malleability down to machine code requires only
preserving functional correctness, since non-malleability is
a specification-level guarantee. All our verification results,
including preservation of memory safety and functional cor-
rectness down to machine code, relies on a trusted computing
base (TCB) that includes:
• the F? proof assistant and the Z3 theorem prover, al-

though work by Swamy et al. [48] provides a model of a
subset of F? and proves its soundness;
• the KReMLin compiler from Low? to C, although work

by Protzenko et al. [38] provides a model of a sub-
set of Low?, its compilation to CompCert Clight, and
proofs (on paper) that compilation to C preserves mem-
ory safety and functional correctness;
• the C compiler, although one can use the CompCert [28]

verified C compiler, which ensures the preservation of
memory safety and functional correctness, at the expense
of some performance.

This trusted base is comparable to Coq-based verified imple-
mentations, which trust Coq, the Coq extraction to OCaml,
and the OCaml compiler and runtime. Ongoing research aims
to reduce this TCB by verifying Coq extraction; similar efforts
could, in principle, be applied to F? and KReMLin.

Conversely, neither LowParse nor QuackyDucky are in the
TCB. LowParse is fully verified. The input format specifi-
cation of QuackyDucky is trusted for liveness, but not for
security: if there is a mistake in the format specification, the
worse that can happen is that the generated messages are in-
compatible with implementations of the correct format. We
rely on interoperability testing to detect such mistakes. Con-
versely, EverParse can be used during the standardization of
a new message format, as it can prove that the specification is
secure regardless of the generated implementation.

Expressiveness QuackyDucky currently focuses on sup-
porting tag-length-value encodings of non-malleable data
formats. We show that the message formats of several im-
portant protocols and standards, including TLS, PKCS #1
signature payloads and Bitcoin, fall into this class. LowParse,
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being the target language of QuackyDucky’s translation, is
also currently restricted to supporting non-malleable data
formats. However, it would be straightforward to make non-
malleability conditional on a flag set in the parser metadata
in order to define combinators for zero-copy malleable for-
mats, including MessagePack, CBOR, Apache Arrow, Cap’n
proto, and Protocol Buffers which are malleable at least by de-
fault (some have canonical representation rules). Generalized
to support malleable formats, LowParse, being a library of
verified monadic parser combinators, would support parsing
with arbitrary data dependence and lookahead, beyond the
class of context-free languages—however, coming up with
efficient verified implementations of parsers for such language
classes is an open question. In the future, we will also consider
generalizing QuackyDucky to target the class of languages
supported by LowParse.

Side-channel attacks: the implementation produced by
EverParse branches on values read from the input buffer,
which may leak (through timing side-channels) information
when used on confidential data. We may in principle verify
properties such as constant-time execution for the process-
ing of simple message formats, reusing F? and KReMLin
techniques and libraries for side-channel protection of crypto-
graphic algorithms. For example, we may provide constant-
time combinators for fixed-length secret bytestrings. We leave
such extensions for future work.

Fuzzing: since we expect our extracted C code to be com-
piled by unverified toolchains (such as GCC and LLVM, with
optimizations), fuzz testing can provide additional assurance
that the compilation from F? to binary does not break our
verified safety properties. We started using fuzzers optimized
for parsers, such as SAGE [19], to fuzz the generated bitcoin
block validator; we plan to extend their use to fuzz application
code that uses generated validators and accessors.

Integration: we have integrated the high-level implemen-
tation of EverParse TLS parsers into MITLS, but our goal
is to transition to the low-level implementation, thus avoid-
ing many unnecessary heap allocations and copies. This is a
major step towards making MITLS practical in performance-
sensitive deployments.

9 Conclusion

Developers should prefer the convenience and robustness of
writing high-level format specifications compiled by parser
generation tools to programming tedious and error-prone cus-
tom parsers, although the latter is sometimes required for
performance reasons. EverParse offers a unique combination
of high performance, zero-copy implementations and high-
assurance formal verification of the generated parsers.
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[48] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In ACM
Symposium on Principles of Programming Languages, pages
256–270, 2016. https://www.fstar-lang.org.

[49] F. Valsorda. Bleichenbacher’06 signature forgery in Python-
RSA, 2016.

[50] P. Wuille et al. BIP62: Dealing with malleability, 2014.
[51] Q. Ye and B. Delaware. A verified protocol buffer compiler.

In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2019, pages
222–233, 2019.

1482    28th USENIX Security Symposium USENIX Association

https://www.fstar-lang.org

	Introduction
	Parsing Security: Definitions & Attacks
	What is a Secure Message Format?
	Attacks on Parsers

	Case Study: the TLS Message Format
	Compiling Message Format Descriptions
	Verified Programming in Low (Review)
	Datatypes and Parser Specifications
	Functional Parsers and Serializers
	Low-Level Accessors and Readers
	Low-Level Writers

	LowParse: Secure Parser Combinators
	Specification Combinators
	Implementation Combinators

	Integration and Evaluation
	TLS Message Format
	Bitcoin Blocks and Transactions
	ASN.1 Payload of PKCS #1 Signatures

	Related work
	Limitations and Future Work
	Conclusion

