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Abstract

Malware detection is a popular application of Machine
Learning for Information Security (ML-Sec), in which an
ML classifier is trained to predict whether a given file is mal-
ware or benignware. Parameters of this classifier are typi-
cally optimized such that outputs from the model over a set
of input samples most closely match the samples true ma-
licious/benign (1/0) target labels. However, there are often
a number of other sources of contextual metadata for each
malware sample, beyond an aggregate malicious/benign la-
bel, including multiple labeling sources and malware type in-
formation (e.g. ransomware, trojan, etc.), which we can feed
to the classifier as auxiliary prediction targets. In this work,
we fit deep neural networks to multiple additional targets de-
rived from metadata in a threat intelligence feed for Portable
Executable (PE) malware and benignware, including a multi-
source malicious/benign loss, a count loss on multi-source
detections, and a semantic malware attribute tag loss. We
find that incorporating multiple auxiliary loss terms yields a
marked improvement in performance on the main detection
task. We also demonstrate that these gains likely stem from
a more informed neural network representation and are not
due to a regularization artifact of multi-target learning. Our
auxiliary loss architecture yields a significant reduction in
detection error rate (false negatives) of 42.6% at a false pos-
itive rate (FPR) of 10−3 when compared to a similar model
with only one target, and a decrease of 53.8% at 10−5 FPR.

1 Introduction

Machine learning (ML) for computer security (ML-Sec) has
proven to be a powerful tool for malware detection. ML
models are now integral parts of commercial anti-malware
engines and multiple vendors in the industry have dedicated
ML-Sec teams. For the malware detection problem, these
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models are typically tuned to predict a binary label (mali-
cious or benign) using features extracted from sample files.
Unlike signature engines, where the aim is to reactively
blacklist/whitelist malicious/benign samples that hard-match
manually-defined patterns (signatures), ML engines employ
numerical optimization on parameters of highly parameter-
ized models that aim to learn more general concepts of mal-
ware and benignware. This allows some degree of proactive
detection of previously unseen malware samples that is not
typically provided by signature-only engines.

Frequently, malware classification is framed as a binary
classification task using a simple binary cross-entropy or
two-class softmax loss function. However, there often ex-
ist substantial metadata available at training time that contain
more information about each input sample than just an aggre-
gate label of whether it is malicious or benign. Such meta-
data might include malicious/benign labels from multiple
sources (e.g., from various security vendors), malware fam-
ily information, file attributes, temporal information, geo-
graphical location information, counts of affected endpoints,
and associated tags. In many cases this metadata will not be
available when the model is deployed, and so in general it
is difficult to include this data as features in the model (al-
though see Vapnik et al. [28, 29] for one approach to doing
so with Support Vector Machines).

It is a popular practice in the domain of malware analysis
to derive binary malicious/benign labels based on a heuristic
combination of multiple detection sources for a given file,
and then use these noisy labels for training ML models [9].
However, there is nothing that precludes training a classifier
to predict each of these source labels simultaneously opti-
mizing classifier parameters over these predictions + labels.
In fact, one might argue intuitively that guiding a model to
develop representations capable of predicting multiple tar-
gets simultaneously may have a smoothing or regularizing
effect conducive to generalization, particularly if the auxil-
iary targets are related to the main target of interest. These
auxiliary targets can be ignored during test time if they are
ancillary to the task at hand (and in many cases the extra
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weights required to produce them can be removed from the
model prior to deployment), but nevertheless, there is much
reason to believe that forcing the model to fit multiple targets
simultaneously can improve performance on the key output
of interest. In this work, we take advantage of multi-target
learning [2] by exploring the use of metadata from threat in-
telligence feeds as auxiliary targets for model training.

Research in other domains of applied machine learning
supports this intuition [14, 19, 12, 31, 1, 22], however out-
side of the work of Huang et al. [11], multi-target learning
has not been widely applied in anti-malware literature. In
this paper, we present a wide-ranging study applying aux-
iliary loss functions to anti-malware classifiers. In contrast
to [11], which studies the addition of a single auxiliary la-
bel for a fundamentally different task, i.e., malware family
classification – we study both the addition of multiple la-
bel sources for the same task and multiple label sources for
multiple separate tasks. Also, in contrast to [11], we do not
presume the presence of all labels from all sources, and in-
troduce a per-sample weighting scheme on each loss term to
accommodate missing labels in the metadata. We further ex-
plore the use of multi-objective training as a way to expand
the number of trainable samples in cases where the aggregate
malicious/benign label is unclear, and where those samples
would otherwise be excluded from purely binary training.

Having established for which loss types and in which con-
texts auxiliary loss optimization works well, we then explore
why it works well, via experiments designed to test whether
performance gains are a result of a regularization effect from
multi-objective training or information from the content of
the target labels that the network has learned to correlate.

In summary, this paper makes the following contributions:

• A demonstration that including auxiliary losses yields
improved performance on the main task. When all of
our auxiliary loss terms are included, we see a reduc-
tion of 53.8% in detection error (false negative) rate at
10−5 false positive rate (FPR) and a 42.6% reduction in
detection error rate at 10−3 FPR compared to our base-
line model. We also see a consistently better and lower-
variance ROC curve across all false positive rates.

• A breakdown of performance improvements from dif-
ferent auxiliary loss types. We find that an auxiliary
Poisson loss on detection counts tends to yield im-
proved detection rates at higher FPR areas (≥ 10−3) of
the ROC curve, while multiple binary auxiliary losses
tend to yield improved detection performance in lower
FPR areas of the ROC curve (< 10−3). When combined
we see a net improvement across the entire ROC curve
over using any single auxiliary loss type.

• An investigation into the mechanism by which multi-
objective optimization yields enhanced performance,
including experiments to assess possible regularization
effects.

(a) Training

(b) Deployment

Figure 1: Schematic overview of our neural network archi-
tecture. (a) During training multiple output layers with cor-
responding loss functions are optionally connected to a com-
mon base topology consisting of five dense blocks (see Sec-
tion 3) of sizes 1024, 768, 512, 512, and 512. This base,
connected to our main malicious/benign output (solid line in
the figure) with a loss on the aggregate label, constitutes our
baseline architecture. Auxiliary outputs and their respective
losses are represented as dashed lines. The auxiliary losses
fall into three types: count loss, multi-label vendor loss, and
multi-label attribute tag loss. The formulation of each of
these auxiliary loss types is explained in Section 3. (b) At
deployment time, these auxiliary outputs are removed and
we predict only the main label.

We see our auxiliary loss approach as specifically useful
for both endpoint and cloud deployed models in cases when
the auxiliary information cannot be directly used as input
into the model at prediction time, but can be collected for
a training dataset. This could be due to high cost, perfor-
mance issues, latency concerns, or a multitude of other con-
straints during prediction time. For example, it is not feasible
to scan every new file executed on an endpoint via a threat
intelligence feed, because of prohibitive licensing fees, end-
point latency and bandwidth limitations, as well as customer
privacy concerns. However, procuring reports from such a
feed for large training sets might be feasible offline.

The remainder of this paper is laid out as follows: First,
in Section 2 we discuss some of the metadata available for
use as auxiliary targets, and feature extraction methods for
portable executable (PE) files. We then provide details on
how we converted the available metadata into auxiliary tar-
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gets and losses, as well as how the individual losses are
weighted and combined on a per-sample basis in Section 3.
We finish that Section with a description of how our dataset
was collected and provide summary statistics. In Section 4
we describe our experimental evaluations across a number of
combinations of auxiliary targets, and demonstrate the im-
pact of fitting these targets on the performance of the main
malware detection task. Section 5 presents discussion of our
results, as well as a set of experiments on synthetic targets
to explore potential explanations for the observed improve-
ments. Section 6 presents related work and Section 7 con-
cludes.

2 ML-Sec Detection Pipelines: From Single
Objective to Multi-Objective

In the following, we describe a simplified ML-Sec pipeline
for training a malicious file classifier, and propose a simple
extension that allows the use of metadata available during
training (but not at test time) and improves performance on
the classification task.

ML-Sec detection pipelines use powerful machine learn-
ing models that require many labeled malicious and be-
nign samples to train. Data is typically gathered from sev-
eral sources, including deployed anti-malware products and
vendor aggregation services, which run uploaded samples
through vendor products and provide reports containing per-
vendor detections and metadata. The exact nature of the
metadata varies, but typically, malicious and benign scores
are provided for each of M individual samples on a per-
vendor basis, such that, given V vendors, between 0 and V of
them will designate a sample malicious. For a given sample,
some vendors may choose not to answer, resulting in a miss-
ing label for that vendor. Furthermore, many vendors also
provide a detection name (or malware family name) when
they issue a detection for a given file. Additional information
may also be available, but crucially, the following metadata
are presumed present for the models presented in this paper:
i) per-vendor labels for each sample, either malicious/benign
(mapped to binary 1/0, respectively) or NULL; ii) textual
per-vendor labels on the sample describing the family and
variant of the malware (an empty string if benign or NULL);
and iii) time at which the sample was first seen.

Using the individual vendor detections, an aggregate label
can be derived either by a voting mechanism or by thresh-
olding the net number of vendors that identify a given sam-
ple as malicious. The use of aggregated anti-malware ven-
dor detections as a noisy labeling source presumes that the
vendor diagnoses are generally accurate. While this is not
necessarily a valid assumption, e.g., for novel malware and
benignware, this is typically accounted for by using samples
and metadata that are slightly dated so that vendors can cor-
rect their respective mistakes (e.g., by blacklisting samples

in their signature databases).
Each malware/benignware sample must also be converted

to a numerical vector to be able to train a classifier, a process
called feature extraction. In this work we focus on static
malware detection, meaning that we assume only access to
the binary file, as opposed to dynamic detection, in which
the features used predominantly come from the execution of
the file. The feature extraction mechanism varies depending
on the format type at hand, but consists of some numerical
transformation that preserves aggregate and fine-grained in-
formation throughout each sample, for example, the feature
extraction proposed by Saxe et al. [25] – which we use in
this work – uses windowed byte statistics, 2D histograms of
delimited string hash vs. length, and histograms of hashes of
PE-format specific metadata – e.g., imports from the import
address table (IAT).

Given extracted features and derived labels, a classi-
fier is then trained, tuning parameters to minimize mis-
classification as measured by some loss criterion, which un-
der the constraints of a statistical noise model measures the
deviation of predictions from their ground truth. For both
neural networks and ensemble methods a logistic sigmoid is
commonly used to constrain predictions to a [0,1] range, and
a cross-entropy loss between predictions and labels is used
as the minimization criterion under a Bernoulli noise model
per-label.

While the prior description roughly characterizes ML-Sec
pipelines discussed in literature to date, note that much infor-
mation in the metadata, which is often not used to determine
the sample label but is correlated to the aggregate classifica-
tion, is not used in training, e.g., the individual vendor classi-
fications, the combined number of detections across all ven-
dors, and information related to malware type that could be
derived from the detection names. In this work, we augment
a deep neural network malicious/benign classifier with addi-
tional output predictions of vendor counts, individual vendor
labels, and/or attribute tags. These separate prediction arms
were given their own loss functions which we jointly min-
imized through backpropagation. The difference between a
conventional malware detection pipeline and our model can
be visualized by considering Figure 1 in the absence and
presence of auxiliary outputs (and their associated losses)
connected by the dashed lines. In the next section, we shall
explore the precise formulation and implementation of these
different loss functions.

3 Implementation Details

In this section we describe our implementation of the experi-
ments sketched above. We first introduce our model immedi-
ately below, followed by the various loss functions – denoted
by Lloss type (X ,Y ) for some input features X and targets Y –
associated with the various outputs of the model, as well as
how the labels Y representing the targets of these outputs are
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constructed. Finally we discuss how our data set of M sam-
ples associated with V vendor targets is collected. We use
the same feature representation as well as the same general
model class and topology for all experiments. Each portable
executable file is converted into a feature vector as described
in [25].

The base for our model (see Figure 1) is a feedforward
neural network incorporating multiple blocks composed of
Dropout [27], a dense layer, batch normalization [13], and
an exponential linear unit (ELU) activation [7]. The core
of the model contains five such blocks with 1024, 768, 512,
512, and 512 hidden units, respectively. This base topology
applies the function f (·) to the input vector to produce an
intermediate 512 dimensional representation of the input file
h = f (x). We then append to this model an additional block,
consisting of one or more dense layers and activation func-
tions, for each output of the model. We denote the composi-
tion of our base topology and our target-specific final dense
layers and activations applied to features x by ftarget(x). The
output for the main malware/benign prediction task – fmal(x)
– is always present and consists of a single dense layer fol-
lowed by a sigmoid activation on top of the base shared net-
work that aims to estimate the probability of the input sample
being malicious. A network architecture with only this mal-
ware/benign output serves as the baseline for our evaluations.
To this baseline model we add auxiliary outputs with similar
structure as described above: one fully connected layer (two
for the tag prediction task in Section 3.4) which produces
some task-specific number of outputs (a single output, with
the exception of the restricted generalized Poisson distribu-
tion output, which uses two) and some task-specific activa-
tion described in the associated sections below.

Except where noted otherwise, all multi-task losses were
produced by computing the sum, across all tasks, of the per-
task loss multiplied by a task-specific weight (1.0 for the
malware/benign task and 0.1 for all other tasks; see Section
4). Training was standardized at 10 epochs; for all experi-
ments we used a training set of 9 million samples and a test
set of approximately 7 million samples. Additional details
about the training and test data are reported in Section 3.6.
Additionally, we used a validation set of 100,000 samples to
ensure that each network had converged to an approximate
minimum on validation loss after 10 epochs. All of our mod-
els were implemented in Keras [6] and optimized using the
Adam optimizer [15] with Keras’s default parameters.

3.1 Malware Loss

As explained in Section 2, for the task of predicting if a given
binary file, represented by its features x(i), is malicious or
benign we used a binary cross-entropy loss between the mal-
ware/benign output of the network ŷ(i) = fmal(x(i)) and the
malicious label y(i). This results in the following loss for a
dataset with M samples:

Lmal(X ,Y ) =
1
M

M

∑
i=1

`mal( fmal(x(i)),y(i))

=− 1
M

M

∑
i=1

y(i) log(ŷ(i))+(1− y(i)) log(1− ŷ(i)).

(1)

In this paper, we use a “1-/5+” criterion for labeling a
given file as malicious or benign: if a file has one or fewer
vendors reporting it as malicious, we label the file as ‘be-
nign’ and use a weight of 1.0 for the malware loss for that
sample. Similarly, if a sample has five or more vendors re-
porting it as malicious, we label the file as ‘malicious’ and
use a weight of 1.0 for the malware loss for that sample.

3.2 Vendor Count Loss
To more finely distinguish between positive results, we in-
vestigate the use of the total number of ‘malicious’ reports
for a given sample from the vendor aggregation service as
an additional target; the rationale being that a sample with a
higher number of malicious vendor reports should, all things
being equal, be more likely to be malicious. In order to prop-
erly model this target, we require a suitable noise model for
count data. A popular candidate is a Poisson noise model,
parameterized by a single parameter µ , which assumes that
counts follow a Poisson process, where µ is the mean and
variance of the Poisson distribution. The probability of an
observation of y counts conditional on µ is

P(y|µ) = µ
ye−µ/y!. (2)

In our problem, as we expect the mean number of posi-
tive results for a given sample to be related to the file it-
self, we attempt to learn to estimate µ conditional on each
sample x(i) in such a way that the likelihood of y(i)|µ(i) is
maximized (or, equivalently, the negative log-likelihood is
minimized). Denote the output of the neural network with
which we are attempting to estimate the mean count of ven-
dor positives for sample i as fcnt(x(i)). Note that under a
non-distributional loss, this would be denoted by ŷ(i), how-
ever since we are fitting a parameter of a distribution, and
not the sample label y directly, we use different notation in
this section. By taking some appropriate activation function
a(·) that maps fcnt(x(i)) to the non-negative real numbers, we
can write µ(i) = a

(
fcnt(x(i))

)
. Consistent with generalized

linear model (GLM) literature [18], we use an exponential
activation for a, though one could equally well employ some
other transformation with the correct output range, for in-
stance the ReLU function.

Letting y(i) here denote the actual number of vendors that
recognized sample x(i) as malicious, the corresponding neg-
ative log-likelihood loss over the dataset is
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Lp(X ,Y ) =
1
M

M

∑
i=1

`p

(
a
(

fcnt(x(i))
)
,y(i)

)
=

1
M

M

∑
i=1

µ
(i)− y(i) log(µ(i))+ log(y(i)!), (3)

which we will refer to as the Poisson or vendor count loss.
In practice, we ignore the log(y(i)!) term when minimizing
this loss since it does not depend on the parameters of the
network.

A Poisson loss is more intuitive for dealing with count
data than other common loss functions, even for count data
not generated by a Poisson process. This is partly due to the
discrete nature of the distribution and partly because the as-
sumption of increased variance with predicted mean is more
accurate than a homoscedastic – i.e., constant variance –
noise model.

While the assumption of increasing variance with pre-
dicted count value seems reasonable, it is very unlikely that
vendor counts perfectly follow a Poisson process – where
the mean is the variance – due to correlations between ven-
dors, which might occur from modeling choice and licens-
ing/OEM between vendor products. The variance might in-
crease at a higher or lower rate than the count and might not
even be directly proportional to or increase monotonically
with the count. Therefore, we also implemented a Restricted
Generalized Poisson distribution [10] – a slightly more intri-
cate noise model that accommodates dispersion in the vari-
ance of vendor counts. Given dispersion parameter α , the
Restricted Generalized Poisson distribution has a probability
mass function (pmf):

P(y|α,µ)=

(
µ

1+αµ

)y

(1+αy)y−1 exp
(
−µ(1+αy)

1+αµ

)
/y!.

(4)
When α = 0, this reduces to Eq. 2. α > 0 accounts for

over-dispersion, while α < 0 accounts for under-dispersion.
Note that in our use case α , like µ , is estimated by the neu-
ral network and conditioned on the feature vector, allowing
varying dispersion per-sample. Given the density function in
Eq. 4, the resultant log-likelihood loss for a dataset with M
samples is defined as:

Lgp(X ,Y ) =− 1
M

M

∑
i=1

[
y(i)

(
log µ

(i)− log(1+α
(i)

µ
(i))

)
+(y(i)−1) log(1+α

(i)y(i))

− µ(i)(1+α(i)y(i))
1+α(i)µ(i)

+ log(y(i)!)
]
, (5)

where α(i) and µ(i) are obtained as transformed outputs of
the neural network in a similar fashion as we obtain µ(i) for

the Poisson loss. In practice, as for the Poisson loss, we
dropped the term related to y! since it does not affect the
optimization of the network parameters.

Note also that restrictions must be placed on the negative
value of the α(i) term to keep the arguments of the logarithm
positive. For numerical convenience, we used an exponential
activation over the dense layer for our α(i) estimator, which
accommodates over-dispersion but not under-dispersion. Re-
sults from experiments comparing the use of Poisson and
Generalized Poisson auxiliary losses are presented in Sec-
tion 4.1.

While the Poisson distribution is a widely used model for
count data, other discrete probability distributions could also
be used to model the count of vendor positive results. Dur-
ing early experimentation we also examined the binomial,
geometric, and negative binomial distributions as models for
vendor counts, but found that they produced unsatisfactory
results and so do not discuss them further.

3.3 Per-Vendor Malware Loss

The aggregation service from which we collected our data
sets contains a breakout of individual vendor results per sam-
ple. We identified a subset V = {v1, . . . ,vV} of 9 vendors
that each produced a result for (nearly) every sample in our
data. Each vendor result was added as a target in addition to
the malware target by adding an extra fully connected layer
per vendor followed by a sigmoid activation function to the
end of the shared architecture. We employed a binary cross-
entropy loss per vendor during training. Note that this differs
from the vendor count loss presented above in that each high-
coverage vendor is used as an individual binary target, rather
than being aggregated into a count. The aggregate vendors
loss Lvdr for the V = 9 selected vendors is simply the sum of
the individual vendor losses:

Lvdr(X ,Y ) =
1
M

M

∑
i=1

V

∑
j=1

`vdr

(
fvdr j

(
x(i)

)
,y(i)v j

)
=− 1

M

M

∑
i=1

V

∑
j=1

y(i)v j log(ŷ(i)v j )+(1− y(i)v j ) log(1− ŷ(i)v j ),

(6)

where `vdr is the per-sample binary cross-entropy function
and fvdr j

(
x(i)

)
= ŷ(i)v j is the output of the network that is

trained to predict the label y(i)v j assigned by vendor j to in-
put sample x(i).

Results from experiments exploring the use of individual
vendor targets in addition to malware label targets are pre-
sented in Section 4.2.
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3.4 Malicious Tags Loss

In this experiment we attempt exploit information contained
in family detection names provided by different vendors in
the form of malicious tags. We define each tag as a high level
description of the purpose of a given malicious sample. The
tags used as auxiliary targets in our experiments are: flooder,
downloader, dropper, ransomware, crypto-miner, worm, ad-
ware, spyware, packed, file-infector, and installer.

We create these tags from a parse of individual vendor
detection names, using a set of 10 vendors which from
our experience provide high quality detection names. Once
we have extracted the most common tokens, we filter them
to keep only tokens related to well-known malware family
names or tokens that could easily be associated with one or
more of our tags, for example, the token xmrig – even though
it is not a malware family – can be recognized as referring to
a crypto-currency mining software and therefore can be asso-
ciated with the crytpo-miner tag. We then create a mapping
from tokens to tags based on prior knowledge. We label a
sample as associated with tag ti if any of the tokens associ-
ated with ti are present in any of the detection names assigned
to the sample by the set of trusted vendors.

Annotating our dataset with these tags, allows us to de-
fine the tag prediction task as multi-label binary classifica-
tion, since zero or more tags from the set of possible tags
T = {t1, . . . , tT} can be present at the same time for a given
sample. We introduce this prediction task in order to have
targets in our loss function that are not not directly related
to the number of vendors that recognize the sample as ma-
licious. The vendor counts and the individual vendor labels
are closely related with the definition of our main target, i.e.
the malicious label, which classifies a sample as malicious if
5 or more vendors identify the sample as malware (see Sec-
tion 3.1). In the case of the tag targets, this information is
not present. For instance, if all the vendors recognize a given
sample as coming from the WannaCry family in their detec-
tion names, the sample will be associated only once with the
ransomware tag. On the converse, because of our tagging
mechanism, if only one vendor considers that a given sam-
ple is malicious and classifies it as coming from the Wan-
naCry family, the ransomware tag will be present (although
our malicious label will be 0).

In order to predict these tags, we use a multi-headed archi-
tecture in which we add two additional layers per tag to the
end of the shared base architecture, a fully connected layer
of size 512-to-256, followed by a fully connected layer of
size 256-to-1, followed by a sigmoid activation function, as
shown in Figure 1. Each tag t j out of the possible T = 11 tags
has its own loss term computed with binary cross-entropy.
Like the per-vendor malware loss, the aggregate tag loss is
the sum of the individual tag losses. For the dataset with M
samples it becomes:

Ltag(X ,Y ) =
1
M

M

∑
i=1

T

∑
j=1

`tag

(
ftag j

(
x(i)

)
,y(i)t j

)
=− 1

M

M

∑
i=1

T

∑
j=1

y(i)t j log(ŷ(i)t j )+(1− y(i)t j ) log(1− ŷ(i)t j ),

(7)

where y(i)t j indicates if sample i is annotated with tag j, and

ŷ(i)t j = ftag j

(
x(i)

)
is the prediction issued by the network for

that value.

3.5 Sample Weights
While our multi-objective network has the advantage that
multiple labels and loss functions serve as additional sources
of information, this introduces an additional complexity:
given many (potentially missing) labels for each sample, we
cannot rely on having all labels for a large quantity of the
samples. Moreover, this problem gets worse as more la-
bels are added. To address this, we incorporated per-sample
weights, depending on the presence and absence of each la-
bel. For labels that are missing, we assign them to a default
value and then set the associated weights to zero in the loss
computation so a sample with a missing target label will not
add to the loss computation for that target. Though this in-
troduces slight implementation overhead, it allows us to train
our network, even in the presence of partially labeled sam-
ples (e.g., when a vendor decides not to answer).

3.6 Dataset
We collected two datasets of PE files and associated meta-
data from a threat intelligence feed: a set for train-
ing/validation and a test set. For the training/validation
set, we pulled 20M PE files and associated metadata, ran-
domly sub-selecting over a year – from September 6, 2017
to September 6, 2018. For the test set, we pulled files from
October 6, 2018 to December 6, 2018. Note also that we
indexed files based on unique SHA for first seen time, so ev-
ery PE in the test set comes temporally after the ones in the
training set. We do not use a randomized cross-validation
training/test split as is common in other fields, because that
would allow the set on which the classifier was trained to
contain files “from the future”, leading to spuriously opti-
mistic results. The reason for the one month gap between the
end of the training/validation set and the start of the test set is
to simulate a realistic worst-case deployment scenario where
the detection model of interest is updated on a monthly basis.
All files used in the following experiments – both malicious
and benign – were obtained from the threat intelligence feed.

We then extracted 1024-element feature vectors for all
those files using feature type described in [25] and derived
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an aggregate malicious/benign label using a 1-/5+ criterion
as described above. Invalid PE files were discarded.

Of the valid PE files from which we were able to ex-
tract features we further subsampled our training dataset to
9,000,000 training samples, with 7,188,150 (79.87%) ma-
licious and 1,587,035 (17.63%) benign. The remaining
224,815 (2.5%) are gray samples, without a benign or ma-
licious label, i.e., samples where the total number of vendor
detections is between 2 and 4 and thus do not meet our 1-/5+
labeling criterion. Our validation set was also randomly sub-
sampled from the same period as the training data and used to
monitor convergence during training. It consisted of 100,000
samples; of these, 17,620 were benign (17.62%), 79,819
were malicious (79.82%) , and 2,561 were gray (2.56%).
Our test set exhibited similar statistics, with 7,656,573 to-
tal samples, 1,606,787 benign (21.8%), 5,762,064 malicious
(78.2%), and 287,722 gray (3.76%). Further statistics for
the distribution of vendor counts and tags in our datasets are
presented in Appendix A.1.

The ratios of malicious to benign data in our training, test,
and validation sets are comparable, with malicious samples
more prevalent than benign samples. Note that this class bal-
ance differs substantially from a real-world deployment sce-
nario, where malware is rarely seen. Increasing the preva-
lence of this low-occurrence class when training on unbal-
anced data sets is commonly done to avoid overfitting [3]
(we have also observed this in practice), and using a data set
with a higher proportion of malicious samples assuming a
sufficient number of benign samples – may lead to a more
precise decision boundary, and better overall performance as
measured by the full ROC curve. Further, when using our
malicious tags loss, a greater diversity in malware can yield
a more diverse tag set to learn from during training.

Note that ROC curves, which we use as performance mea-
sures in Sections 4 and 5, are independent of class ratio in the
test set (unlike accuracy), since false positive rate (FPR) val-
ues depend only on the benign data, and true positive rate
(TPR) values depend only on malware. We also focus on
improvements in detection at the very low FPR of 0.1% or
below, where we see the most dramatic improvements, since
several publications by anti-virus vendors [25, 30] and our
experience suggest that 0.1% or lower is indeed a practi-
cal FPR target for most deployment scenarios. Our model
outputs can also be easily (without retraining) rescaled to
the desired deployment class ratio, based on the provided
ROC curve and/or standard calibration methods, e.g., fit-
ting a weighted isotonic regressor on scores from the vali-
dation set with each score contribution weighted according
to its ground truth label to correct the class balance discrep-
ancy between the validation set and the expected deployment
setting, then using that regressor to calibrate scores during
test/deployment.

4 Experimental Evaluation

In this section, we apply the auxiliary losses presented in in
Section 3, first individually, each loss in conjunction with
a main malicious/benign loss, and then simultaneously in
one combined model. We then compare to a baseline model,
finding that each loss term yields an improvement, either in
Receiver Operating Characteristic (ROC) net area under the
curve (AUC) or in terms of detection performance at low
false positive rates (FPR). We note that none of the auxil-
iary losses we present below harmed classification relative
to the baseline model; at worst, our loss-augmented models
had equivalent performance to the baseline model with re-
spect to AUC and low-FPR ROC performance on the aggre-
gate malicious/benign label. Each model used a loss weight
of 1.0 on the aggregate malicious/benign loss and 0.1 on each
auxiliary loss, i.e. when we add K targets to the main loss,
the final loss that gets backpropagated through the model be-
comes

L(X ,Y ) = Lmal(X ,Y )+0.1
K

∑
k=1

Lk(X ,Y ). (8)

Results are depicted in graphical form in Figure 2 and in
tabular form in Table 1.

As the training process for deep neural networks has some
degree of intrinsic randomness, which can result in varia-
tions in their performance, we report our results in terms of
both the mean and standard deviation for the test statistics of
interest across five runs. Each model was trained five times,
each time with a different random initialization and differ-
ent randomization over minibatches, and all other parameters
(optimizer and learning rate, training data, model structure,
number of epochs, etc.) held identical. We compute the test
statistic of interest (e.g. the detection rate at a false positive
rate of 10−3) for each model, and then compute the aver-
age and standard deviation of those results. Notice that the
ROC curves in Figure 2 are plotted on a logarithmic scale
for visibility, since the baseline performance is already quite
high and significant marginal improvements are difficult to
discern. For this reason, we also include relative reductions
in mean true positive detection error (the rate at which the
model fails to detect malware samples – or false negative
rate – averaged over the five model results) and in standard
deviation from the baseline for our best model in Table 1,
and for all models in Table C.1 in the appendix.

4.1 Vendor Count Loss
We employed the same base PE model topology as for our
other experiments, with a primary malicious/benign binary
cross-entropy loss, and an auxiliary count loss. We experi-
mented with two different loss functions for the count loss
– a Poisson loss and a Restricted Generalized Poisson loss

USENIX Association 28th USENIX Security Symposium    309



(a) Count Loss (b) Vendor Loss

(c) Tag Loss (d) Combined Loss

Figure 2: ROC curves and AUC statistics for count, vendor, and tag experiments compared to our baseline. Lines represent the
mean TPR at a given FPR, while shaded regions represent±1 standard deviation. Statistics were computed over 5 training runs,
each with random parameter initialization. (a) Count loss. Our baseline model (blue solid line) is shown compared to a model
employing a Poisson auxiliary loss (red dashed line), and a dispersed Poisson auxiliary loss (green dotted line). (b) Auxiliary
loss on multiple vendors malicious/benign labels (red dashed line) and baseline (blue solid line). (c) Auxiliary loss on semantic
attribute tags (red dashed line) and baseline (blue solid line). (d) Our combined model (red dashed line) and baseline (blue solid
line). The combined model utilizes an aggregate malicious/benign loss with an auxiliary Poisson count loss, a multi-vendor
malicious/benign loss, and a malware attribute tag loss.

(equations 3 and 5 respectively). For the Poisson loss, we
used an exponential activation over a dense layer atop the
base to estimate µ(i). For the Restricted Generalized Pois-
son (RG-Poisson) loss, we followed a similar pattern us-
ing two separate dense layers with exponential activations
on top; one for the µ(i) parameter and another for the α(i)

parameter. The choice of an exponential activation is consis-
tent with statistics literature on Generalized Linear Models
(GLMs) [18].

Results on the malware detection task using Poisson and
RG-Poisson losses as an auxiliary loss function are shown
in Figure 2a. When compared to a baseline using no auxil-

iary loss, we see a statistically significant improvement with
the Poisson loss function in both AUC and ROC curve, par-
ticularly in low false positive rate (FPR) regions. The RG-
Poisson loss, by contrast, yields no statistically significant
gains over the baseline in terms of AUC, nor does it appear
to yield statistically significant gains at any point along the
ROC curve.

This suggests that the RG-Poisson loss model is ill-fit,
which could stem from a variety of issues. First, if counts
are under-dispersed, an over-dispersed Poisson loss could be
an inappropriate model. Under-dispersion could occur if cer-
tain vendors disproportionately trigger simultaneously or be-
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FPR
10−5 10−4 10−3 10−2 10−1

TPR Baseline 0.427 ± 0.076 0.692 ± 0.049 0.864 ± 0.031 0.965 ± 0.007 0.9928 ± 0.0007
TPR Poisson 0.645 ± 0.029 0.785 ± 0.034 0.903 ± 0.016 0.970 ± 0.001 0.9932 ± 0.0002
TPR RG Poisson 0.427 ± 0.116 0.711 ± 0.041 0.870 ± 0.016 0.966 ± 0.003 0.9930 ± 0.0003
TPR Vendors 0.697 ± 0.034 0.792 ± 0.024 0.889 ± 0.020 0.970 ± 0.004 0.9928 ± 0.0014
TPR Tags 0.677 ± 0.027 0.792 ± 0.009 0.875 ± 0.022 0.971 ± 0.004 0.9932 ± 0.0008
TPR All Targets 0.735 ± 0.014 0.806 ± 0.017 0.922 ± 0.004 0.972 ± 0.003 0.9934 ± 0.0004
% Error Reduction (All Targets) 53.8% 37.0% 42.7% 20.0% 8.3%
% Variance Reduction (All Targets) 81.6% 65.3% 87.1% 57.1% 94.3%

Table 1: Top: Mean and standard deviation true positive rates (TPRs) for the different experiments in Section 4 at false positive
rates (FPRs) of interest. Results were aggregated over five training runs with different weight initializations and minibatch
orderings. Best results consistently occurred when using all auxiliary losses and are shown in bold. Bottom: Percentage
reduction in missed true positive detections and percentage reductions in ROC curve standard deviation resulting from the best
model (All Targets) compared to the baseline across various FPRs. State-of-the-art results are shown in bold.

cause counts are inherently bounded by the net number of
vendors. Second, a Poisson model, even with added disper-
sion parameters, is an ill-posed model of count data, but re-
moving the dispersion parameter removes a dimension in the
parameter space to over-fit on. Inspecting the dispersion pa-
rameters predicted by the RG-Poisson model, we noted that
they were relatively large, which supports the latter hypoth-
esis. We also noticed that the RG-Poisson model converged
significantly faster than the Poisson model in terms of mal-
ware detection loss.

4.2 Modeling Individual Vendor Responses
Incorporating an auxiliary multi-label binary cross-entropy
loss across vendors (cf. Section 3.3) in conjunction with the
main malicious/benign loss yields a similar increase in the
TPR at low FPR regions of the ROC curve (see Figure 2b)
to the Poisson experiment. Though we do not see a signif-
icant increase in AUC, since the improvement is integrated
across an extremely narrow range of FPRs, this improvement
in TPR at lower FPRs may still be operationally significant,
and does indicate an improvement in the model.

4.3 Incorporating Tags as Targets
In this experiment we extend the architecture of our base
network to predict, not only the malware/benign label, but
also the set of 11 tags defined in Section 3.4. For this, we
add two fully connected layers per tag to the end of the
base architecture (see Section 3.4) which serve to identify
each tag from the shared representation. Each of these tag-
specialized layers predicts a binary output corresponding to
presence/absence of the tag and has an associated binary
cross-entropy loss that gets added to the other tag losses and
the main malicious/benign loss. The overall loss for this ex-
periment is a sum containing one term per tag, weighted by

a loss weight of 0.1 (as mentioned at the beginning of this
section), and one term for the loss incurred on the main task.

The result of this experiment is represented via the ROC
curves of Figure 2c. Similar to section 4.2 we see no statisti-
cal difference in the AUC values with respect to the baseline,
but we do observe substantial statistical improvement in the
predictions of the model in low FPR regions, particularly for
FPR values lower than 10−3. Furthermore, we also witness
a substantial decrease in the variance of the ROC curve.

4.4 Combined Model
Finally, we extend our model to predict all auxiliary targets
in conjunction with the aggregate label, with a net loss term
containing a combination of all auxiliary losses used in pre-
vious experiments. The final loss function for the experi-
ment is the sum of all the individual losses where the mal-
ware/benign loss has a weight of 1.0 while the rest of the
losses have a weight of 0.1.

The resulting ROC curve and AUC are shown in Figure
2d. The AUC of 0.9972± 0.0001 is the highest obtained
across all the experiments conducted in this study. More-
over, in contrast to utilizing any single auxiliary loss, we see
a noticeable improvement in the ROC curve not only in very
low FPR regions, but also at 10−3 FPR. Additionally, vari-
ance is consistently lower across a range of low-FPR values
for this combined model than for our baseline or any previ-
ous models. An exception is near 10−6 FPR where measur-
ing variance is an ill-posed problem because even with a test
dataset of over 7M samples, detecting or misdetecting even
one or two of them can significantly affect detection rate.

In order to account for the effect of gray samples in the
evaluation of our detection model, we re-scanned a subset of
those at a later point in time, giving the AV community time
to update their detection rules, and evaluated the prediction
issued by the model. Even though it is naturally harder to
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determine maliciousness of these samples (otherwise they
would not initially have been categorized as gray), we find
that our model predicts the correct labels for more than 77%
of them. A more in depth analysis of grey samples is de-
ferred to Appendix B.

5 Discussion

In this section, we examine the effects of different types of
auxiliary loss functions on main task ROC curve. We then
perform a sanity check to establish whether our performance
increases result from additional information added to our
neural networks by the auxiliary loss functions or are the ar-
tifact of some regularization effect.

5.1 Modes of Improvement
Examining the plots in Figure 2, we see three different types
of improvement that result from our auxiliary losses:

1. A bump in TPR at low FPR (< 10−3).
2. A net increase in AUC and a small bump in performance

at higher FPRs (≥ 10−3).
3. A reduction in variance.

Improvement 1 is particularly pronounced in the plots due
to the logarithmic scale, but it does not substantially con-
tribute to net AUC due to the narrow FPR range. How-
ever, this low-FPR part of the ROC is important from an
operational perspective when deploying a malware detection
model in practice. Substantially higher TPRs at low FPR
could allow for novel use cases in an operational scenario.
Notice that this effect is more pronounced for auxiliary
losses containing multi-objective binary labels (Figs. 2b, 2c,
and 2d) than for the Poisson loss, suggesting that it occurs
most prominently when employing our multi-objective bi-
nary label losses. Let us consider why a multi-objective bi-
nary loss might cause such an effect to occur: At low FPRs,
we see high thresholds on the detection score from the main
output of the network. To surpass this threshold and register
as a detection, the main sigmoid output must be very close to
1.0, i.e., very high response. Under a latent correlation with
the main output, a high-response hit for an auxiliary target
label could also boost the response for the main detector out-
put, while a baseline model without this information might
wrongly classify the sample as benign. We hypothesize that
improvement 1 occurs from having many objectives simulta-
neously and thereby increasing chances for a high-response
target hit. The loss type may or may not be incidental, which
is consistent with its noticeable but less pronounced presence
under a single-objective Poisson auxiliary loss (Figure 2a).

Improvement 2 likely stems from improvements in detec-
tion rate that we see around 10−3 FPR and higher. Notice
that these effects are more pronounced in Figs. 2a and 2d, are
somewhat noticeable in Figure 2b, and are not noticeable in

Figure 3: When we remove the attribute tags loss (green dot-
ted line) we get a similar shaped ROC curve with similar
ROC compared to using all losses (red dashed line), but with
slightly higher variance in the ROC. This supports our hy-
potheses about effects of different loss functions on the shape
of the ROC curve. The baseline is shown as a blue solid line
for comparison.

Figure 2c, consistent with the resultant AUCs. This suggests
that the effect occurs most prominently in the presence of an
auxiliary count loss. We postulate that this occurs because
our aggregate detection label is derived by thresholding the
net number of vendor detections for each sample but doing
so removes a notional view of confidence that a sample is
malicious. Alternatively stated, thresholding removes infor-
mation on the difficulty of classifying a malicious sample or
the extent of “maliciousness” that the number of detection
counts provides. Bear in mind that some detectors are better
at detecting different types of malware than others, so more
detections suggest a more malicious file, e.g., with more mal-
ware components, or a more widely blacklisted file (higher
confidence). Providing information on the number of counts
in an auxiliary loss function may therefore provide the clas-
sifier more principled information on how to order detection
scores, thus allowing for more effective thresholding and a
better ROC curve.

Improvement 3 occurs across all loss types, particularly
in low FPR ranges, with the exception of very low FPRs
(e.g., 10−6), where accurately measuring mean and variance
is an ill-posed problem due to the size of the dataset (cf. sec-
tion 4.4). Comparing the ROC plots in Figure 2, the reduc-
tion in variance appears more pronounced as the number of
losses increases. Intuitively, this is not a surprising result
since adding objectives/tasks imposes constrains the allow-
able weight space – while many choices of weights might
allow a network to perform a single task well only a subset
of these choices will work well for all tasks simultaneously.
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Thus, assuming equivalent base topology, we expect a net-
work that is able to perform at least as well on multiple tasks
as many single-task networks to exhibit lower variance.

Combining all losses seems to accentuate all improve-
ments (1-3) with predictable modes which we attribute to
our various loss types (Figure 2d) – higher detection rate at
low FPR brought about primarily by multi-objective binary
losses, a net AUC increase and a detection bump at 10−3

FPR brought about by the count loss, and a reduced vari-
ance brought about by many loss functions. To convince
ourselves that this is not a coincidence, we also trained a
network using only Poisson and vendor auxiliary losses but
no attribute tags (cf. Figure 3). As expected, we see that this
curve exhibits similar general shape and AUC characteristics
that occur when training with all loss terms, but the variance
appears slightly increased.

In the variance reduction sense, we can view our auxiliary
losses as regularizers. This raises a question: are improve-
ments 1 and 2 actually occurring for the reasons that we hy-
pothesize or are they merely naive result of regularization?

5.2 Representation or Regularization?

While the introduction of some kinds of auxiliary targets ap-
pears to improve the model’s performance on the main task,
it is less clear why this is the case. The reduction in variance
produced by the addition of extra targets suggests one po-
tential alternative explanation for the observed improvement:
rather than inducing a more discriminative representation in
the hidden layers of the network, the additional targets may
be acting as constraints on the network, reducing the space of
viable weights for the final trained network, and thus acting
as a form of additional regularization. Alternatively, the ad-
dition of extra targets may simply be accelerating training by
amplifying the gradient; while this seems unlikely given our
use of a validation set to monitor approximate convergence,
we nevertheless also investigate this possibility.

To evaluate these hypotheses, we constructed three addi-
tional targets (and associated loss functions) that provided
uninformative targets to the model: i) a pseudo-random tar-
get that is approximately independent of either the input fea-
tures or the malware/benign label; ii) an additional copy of
the main malware target transformed to act as a regression
target; and iii) an extra copy of the main malware target.

The random target approach attempts to directly evaluate
whether or not an additional pseudo-random target might im-
prove network performance by ‘using up’ excess capacity
that might otherwise lead to overfitting. We generate pseudo-
random labels for each sample based off of the parity of a
hash of the file contents. While this value is effectively ran-
dom and independent of the actual malware/benignware la-
bel of the file, the use of a hash value ensures that a given
sample will always produce the same pseudo-random tar-
get. This target is fit via standard binary cross-entropy loss

against a sigmoid output,

Lrnd(X ,Y ) =− 1
M

M

∑
i=1

y(i) log frnd(x(i))+

(1− y(i)) log
(

1− frnd(x(i))
)
, (9)

where frnd

(
x(i)

)
is the output of the network which is being

fit to the random target y(i).
In contrast, the duplicated regression target evaluates

whether further constraining the weights without requiring
excess capacity to model additional independent targets has
an effect on the performance on the main task. The model
is forced to adopt an internal representation that can satisfy
two different loss functions for perfectly correlated targets,
thus inducing a constraint that does not add additional infor-
mation. To do this, we convert our binary labels (taking on
values of 0 and 1 for benign and malware, respectively) to
-10 and 10, and add them as additional regression targets fit
via mean squared error (MSE). Taking y(i) as the ith binary
target and fMSE(x(i)) as the regression output of the network,
we can express the MSE loss as:

Lmse(X ,Y ) =
M

∑
i=1

(
fmse

(
x(i)

)
−20

(
y(i)−0.5

))2
. (10)

Finally, in the case of the duplicated target, the model ef-
fectively receives a larger gradient due to a duplication of the
loss. The loss for this label uses the same cross-entropy loss
as for the main target, obtained by substituting fdup(x(i)) for
fmal(x(i)) in equation 1 as the additional model output that
is fit to the duplicated target. Note that we performed two
variants of the duplicated target experiment: one in which
both the dense layer prior to the main malware target and
the dense layer prior to the duplicated target were trainable,
and one in which the dense layer for the duplicate target was
frozen at its initialization values to avoid the trivial solution
where the pre-activation layer for both the main and dupli-
cate target were identical. In both cases, the results were
equivalent; only results for the trainable case are shown.

Both frnd and fdup are obtained by applying a dense layer
followed by a sigmoid activation function to the intermediate
output of the input sample from the shared base layer (h in
Figure 1), while fmse(x(i)) is obtained by passing the inter-
mediate representation of the input sample h through a fully
connected layer with no output non-linearity.

Results of all three experiments are shown in Figure 4. In
no case did the performance of the model on the main task
improve statistically significantly over the baseline. This
suggests that auxiliary tasks must encode relevant informa-
tion to improve the model’s performance on the main task.
For each of the three auxiliary loss types in Figure 4, there is
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Figure 4: ROC curves comparing classification capabilities
of models on the malware target when either random (green
dotted line), regression (red dashed line), or duplicated tar-
gets (magenta dashed and dotted line) are added as auxiliary
losses. Note that with the exception of the regression loss
– which appears to harm performance – there is little dis-
cernible difference between the remaining ROC curves. The
baseline is shown as a blue solid line for comparison.

no additional information provided by the auxiliary targets:
the random target is completely uncorrelated from any in-
formation in the file (and indeed the final layer is ultimately
dominated by the bias weights and produces a constant out-
put of 0.5 regardless of the inputs to the layer), while the
duplicated and MSE layers are perfectly correlated with the
final target. In either case, there is no incentive for the net-
work to develop a richer representation in layers closer to
the input; the final layer alone is sufficient given an adequate
representation in the core of the model.

6 Related Work

Applications of ML to computer security date back to the
1990’s [21], but large-scale commercial deployments of deep
neural networks (DNNs) that have led to transformative per-
formance gains are a more recent phenomenon. Several
works from the ML-Sec community have leveraged DNNs
for statically detecting malicious content across a variety of
different formats and file types [25, 26, 23]. However, these
works predominantly focus on applying regularized cross-
entropy loss functions between single network outputs and
malicious/benign labels per-sample, leaving the potential of
multiple-objective optimization largely untapped.

A notable exception, which we build upon in this work, is
[11], in which Huang et al. add a multiclass label for Mi-
crosoft’s malware families to their classification model us-
ing a categorical cross-entropy loss function atop a softmax

output as an auxiliary objective. They observed that adding
targets in this fashion increased performance both on the de-
tection task and on the malware family classification task.
Our work builds upon theirs in several respects. First, while
their work used 4000-dimensional dynamic features derived
from Windows API calls, we extend multi-target approaches
to lower-dimensional static features on a larger data set. In
this respect, our work pioneers a more scalable approach,
but lacks the advantages of dynamic features that their ap-
proach provides. Second, we demonstrate that improvements
from multi-target learning also occur using far more targets,
and we introduce heterogeneous loss functions, i.e., binary
cross-entropy and Poisson, whereas their work employs only
two categorical cross-entropy losses. Finally, our work in-
troduces loss-weighting to account for potentially missing
labels, which may not be problematic for only two targets
but become more prevalent with additional targets.

Despite the lack of attention from the ML-Sec commu-
nity, multi-target learning has been applied to other areas of
ML for a long time. The work of Abu-Mostafa [2] predates
most explicit references to multi-task learning by introducing
the concept of hints, in which known invariances of a solu-
tion (e.g., translation invariance, invariance under negation)
can be incorporated into network structure and used to gen-
erate additional training samples by applying the invariant
operation to the existing samples, or – most relevant to our
work – used as an additional target by enforcing that samples
modified by an invariant function should be both correctly
classified and explicitly classified identically. Caruna [5]
first introduced multi-task learning in neural networks as a
“source of inductive bias” (also reframed as inductive trans-
fer in [4]), in which more difficult tasks could be combined
in order to exploit similarities between tasks that could serve
as complementary signals during training. While his work
predates the general availability of modern GPUs, and thus
the models and tasks he examines are fairly simple, Caruna
nevertheless demonstrates that jointly learning related tasks
produces better generalization on a task-by-task basis than
learning them individually. It is interesting to note that in
[5] he also demonstrated that learning multiple copies of the
same task can also lead to a modest improvement in perfor-
mance (which we did not observe in this work, possibly due
to the larger scale and complexity of our task).

Kumar and Duame [17] consider a refinement on the basic
multi-task learning approach that leads to clustering related
tasks, in an effort to mitigate the potential of negative trans-
fer in which unrelated tasks degrade performance on the tar-
get task. Similarly, the work of Rudd et al. [22] explores the
use of domain-adaptive weighting of tasks during the train-
ing process.

Multi-target learning has been applied to extremely com-
plex image classification tasks, including predicting charac-
ters and ngrams within unconstrained images of text [14],
joint facial landmark localization and detection [19], image
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tagging and retrieval [12, 31], and attribute prediction [1, 22]
where a common auxiliary task is to challenge the network
to classify additional attributes of the image, such as manner
of dress for full-body images of people or facial attributes
(e.g., smiling, narrow eyes, race, gender). While a range of
neural network structures are possible, common exemplars
include largely independent networks with a limited number
of shared weights (e.g., [1]), a single network with minimal
separation between tasks (e.g., [22]), or a number of parallel
single-task classifiers in which the weights are constrained to
be similar to each other. A more complex approach may be
found in [24], in which the sharing between tasks is learned
automatically in an online fashion.

Other, more distantly connected domains of ML research
reinforce the intuition that learning on disparate tasks can im-
prove model performance. Work in semi-supervised learn-
ing, such as [16] and [20], has shown the value of additional
reconstruction and denoising tasks to learn representations
valuable for a core classification model, both through reg-
ularization and through access to a larger dataset than is
available with labels. The widespread success of transfer
learning is also a testament to the value of training a sin-
gle model on nominally distinct tasks. BERT [8], a recent
example from the Natural Language Processing literature,
shows strong performance gains from pre-training a model
on masked-word prediction and predictions of whether two
sentences appear in sequence, even when the true task of in-
terest is quite distinct (e.g. question answering, translation).

Multi-view learning (see [32] for a survey) is a related ap-
proach in which multiple inputs are trained to a single tar-
get. This approach also arguably leads to the same general
mechanism for improvement: the model is forced to learn
relationships between sets of features that improve the per-
formance using any particular set. While this approach often
requires all sets of features to be available at test time, there
are other approaches, such as [28], that relax this constraint.

7 Conclusion

In this paper, we have demonstrated the effectiveness of
auxiliary losses for malware classification. We have also
provided experimental evidence which suggests that perfor-
mance gains result from an improved and more informa-
tive representation, not merely a regularization artifact. This
is consistent with our observation that improvements occur
as additional auxiliary losses and different loss types are
added. We also note that different loss types have differ-
ent effects on the ROC; multi-label vendor and semantic at-
tribute tag losses have greatest effect at low false positive
rates (≤ 10−3), while Poisson counts have a substantial net
impact on AUC, the bulk of which stems from detection
boosts at higher FPR.

While we experimented on PE malware in this paper, our
auxiliary loss technique could be applied to many other prob-

lems in the ML-Sec community, including utilizing a label
on format/file type for format-agnostic features (e.g., office
document type in [23]) or file type under a given format, for
example APKs and JARs both share an underlying ZIP for-
mat; a zip-archive malware detector could use tags on the
file type for auxiliary targets. Additionally, tags on topics
and classifications of embedded URLs could serve as auxil-
iary targets when classifying emails or websites.

One open question is whether or not multiple auxiliary
losses improve each others’ performances as well as the main
task’s. If the multiple outputs of operational interest (such
as the tagging output) can be trained simultaneously while
also increasing (or at least not decreasing) their joint accu-
racy, this could lead to models that are both more compact
and more accurate than individually deployed ones. In addi-
tion to potential accuracy gains, this has significant potential
operational benefits, particularly when it comes to model de-
ployment and updates. We defer a more complete evaluation
of this question to future work.

While this work has focused on applying auxiliary losses
in the context of deep neural networks, there is nothing math-
ematically that precludes using them in conjunction with a
number of other classifier types. Notably, gradient boosted
classifier ensembles, which are also popular in the ML-Sec
community could take very similar auxiliary loss functions
even though the structure of these classifiers is much dif-
ferent. We encourage the ML-Sec research community to
implement multi-objective ensemble classifiers and compare
with our results. Our choice of deep neural networks for
this paper is infrastructural more than anything else; while
several deep learning platforms, including PyTorch, Keras,
and Tensorflow among others easily support multiple ob-
jectives and custom loss functions, popular boosting frame-
works such as lightGBM and XGBoost have yet to imple-
ment this functionality.

The analyses conducted herein used metadata that can nat-
urally be transformed into a label source and impart addi-
tional information to the classifier with no extra data collec-
tion burden on behalf of the threat intelligence feed. More-
over, our auxiliary loss technique does not change the under-
lying feature space representation. Other types of metadata,
e.g., the file path of the malicious binary or URLs extracted
from within the binary might be more useful in a multi-view
context, serving as input to the classifier, but this approach
raises challenges associated with missing data that our loss
weighting scheme trivially addresses. Perhaps our weight-
ing scheme could even be extended, e.g., by weighting each
sample’s loss contribution according to certainty/uncertainty
in that sample’s label, or re-balancing the per-task loss ac-
cording to the expected frequency of the label in the target
distribution. This could open up novel applications, e.g., de-
tectors customized to a particular user endpoints and remove
sampling biases inherent to multi-task data.
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A Dataset Statistics

A.1 Vendor Counts Distribution

To better characterize the distribution of the Vendor Counts
auxiliary target for our Poisson loss experiment, we plot a
histogram representing the distribution of the number of ven-
dor convictions in Figure A.1. The x-axis depicts the number
of vendors that identify a given sample as malicious, while
the y-axis represents the number of samples for which that
number of detections was observed in our training dataset
(note the logarithmic scale). The statistics of the test and val-
idation datasets are similar and not shown here due to space
considerations.

We note that there is a peak at zero detections, accounting
for the majority of the benign files. Most of the samples
considered malicious by our labeling scheme have more than
20 individual detections out of 67 total vendors considered,
with a peak around 57 detections.

Figure A.1: Histogram of vendor detections per file. Files
with zero or one detections (green bars) are considered be-
nign under our labeling scheme, samples with two, three or
four vendor detections (gray bars) are considered gray files,
and files with more than four detections (red bars) are con-
sidered malicious.

A.2 Individual Vendor Responses

Table A.1 summarizes the number of samples identified as
malware, benign and number of missing samples per ven-
dor for the nine vendors used to compute the auxiliary per-
vendor malware loss. In Figure A.2 we plot the pairwise
similarity of the predictions between vendors. The value in
the j, k position of the matrix is the fraction of samples for
which the predictions of vendor j are equal to the predictions
for vendor k. Even though the predictions by each vendor are
created in a quasi independent manner, they tend to agree for
most of the samples. The diagonal elements of the matrix
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indicate the fraction of samples for which we have a classifi-
cation by the vendor (fraction of non-missing values).

Malware Benign None
v1 13,752,004 (69%) 6,110,180 (31%) 20,979 (<1%)
v2 14,751,413 (74%) 5,122,728 (26%) 9,022 (<1%)
v3 14,084,689 (71%) 5,713,116 (29%) 85,358 (<1%)
v4 14,438,043 (73%) 5,239,896 (26%) 205,224 (1 %)
v5 13,778,367 (69%) 5,922,859 (30%) 181,937 (1 %)
v6 15,065,196 (76%) 4,704,695 (24%) 113,272 (1 %)
v7 14,935,624 (75%) 4,927,436 (25%) 20,103 (<1%)
v8 12,704,512 (64%) 7,009,855 (35%) 168,796 (1 %)
v9 14,234,545 (72%) 5,613,604 (28%) 35,014 (<1%)

Table A.1: Individual vendor counts for files in the training
set identified as malicious, benign, or missing value for the
set of nine vendors used in the per-vendor malware loss 3.3.

A.3 Semantic Tags Distribution

In this section we analyze the distribution of the semantic
tags over three sets of samples: i) samples in the training
set; ii) samples in the test set; and iii) those which the base-
line model classifies incorrectly but our model trained with
all targets classifies correctly either as malicious or benign
samples. The percentages in Table A.2 represent the number
of samples in each set labeled with a given tag. The total
number of samples in the test set for which the improved
model makes correct conviction classification but the base-
line model fails is 665,944. The binarization of the predic-
tions for the baseline and the final model was done such that
each would have a FPR of 10−3 in the test set. As shown be-
low, those samples with the adware tag are the ones that most
benefit from the addition of auxiliary losses during training,
however we also see notable improvements on packed sam-
ples, spyware, and droppers.

B Gray Samples Evaluation

In Section 3.6 we observed that 2.5% of the samples in our
training set, and 3.7% of the samples in our test set are con-
sidered gray samples by our labeling function. While train-
ing this is not necessarily an issue since we can assign a
weight of zero for those samples in their malware/benign
label as noted in Section 3.5. For the evaluation of the
detection algorithms though, the performance on those be-
comes more relevant. To evaluate how our proposed detec-
tion model performs on those samples we re-scanned a ran-
dom selection of 10,000 gray samples in the test set 5 months
later than the original collection. From these, 5,000 were
predicted by the model as benign and 5,000 as malicious.
We expect, after this time-lag, that, with updated detection

Figure A.2: Vendor predictions similarity matrix. Each en-
try in the matrix represents the percentage of samples that are
the same for any two vendors. The elements in the diagonal
of the matrix represent the percentage of the samples for pre-
dictions from the vendor are present (i.e., not missing). Note
that diagonal values of less than 1.0 are due to missing labels
(compare to the final column of table A.1), which we treat as
disagreeing with any label.

Train Set Test Set
Improvement

over
baseline

adware 21 % 18% 41 %
crypto-miner 7 % 2% 1 %
downloader 25 % 18% 11 %
dropper 29 % 22% 17 %
file-infector 19 % 12% 9 %
flooder 1 % 1% <1%
installer 7 % 1 % 5 %
packed 34 % 25% 19 %
ransomware 5 % 6% 1 %
spyware 40 % 25% 18 %

Table A.2: Tag statistics for three sets of interest: train set;
test set; and the set of samples for which the full model clas-
sifies correctly but the baseline model fails.

rules from the AV community, that samples originally la-
beled as “gray” that are effectively malicious will accrue ad-
ditional detections and samples originally labeled as “gray”
that are effectively benign will accrue fewer detections as
vendors have re-written their rules to suppress false positives
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and recognize false negatives. Thus, the gray sample labels
will tend to converge to either malicious or benign under our
1-/5+ criterion. Out of these 10,000 rescans, we were able
to label 5,653 gray samples: 3,877 (68.6%) as malicious and
1,776 (31.4%) as benign.

In Figure B.1 we plot the ROC curve for the predictions
on the re-scanned samples for our final model trained with
all targets, which achieves an AUC of 0.84. Even though
the AUC is much lower than the one obtained on our test set,
our model trained with knowledge from 5 months earlier (af-
ter the first collection) still correctly predicts more than 77%
of the samples correctly. We measure this by binarizing the
predictions using a threshold that would achieve an FPR of
10−3 on the original test set. Furthermore we note that the
samples we are evaluating on in this case are more difficult
or even ambiguous in nature, to the point that at the origi-
nal collection time there was not consensus across the AV
community.

Figure B.1: Mean and standard deviation ROC curve over
rescanned samples.
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C Relative Improvements

In Table C.1 we present the relative percentage reduction both in true positive detection error and standard deviation with
respect to the baseline model trained only using the malware/benign target for various values of false positive rates.

FPR
10−5 10−4 10−3 10−2 10−1

Poisson 38.05, 61.84 30.19, 30.61 28.68, 48.39 14.29, 85.71 5.56, 97.14
RG Poisson 0.00, -52.63 6.17, 16.33 4.41, 48.39 2.86, 57.14 2.78, 95.71
Vendors 47.12, 55.26 32.47, 51.02 18.38, 35.48 14.29, 42.86 0.00, 80.00
Tags 43.63, 64.47 32.47, 81.63 8.09, 29.03 17.14, 42.86 5.56, 88.57
All Targets 53.75, 81.58 37.01, 65.31 42.65, 87.10 20.00, 57.14 8.33, 94.29

Table C.1: Relative percentage reductions in true positive detection error and standard deviation compared to the baseline
model (displayed as detection error reduction, standard deviation reduction) at different false positive rates (FPRs) for the
different experiments in Section 4. Results were evaluated over five different weight initializations and minibatch orderings.
Best detection error reduction consistently occurred when using all auxiliary losses. Best results are shown in bold.
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