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Abstract
Despite the fact that cyberattacks are constantly growing in

complexity, the research community still lacks effective tools
to easily monitor and understand them. In particular, there is a
need for techniques that are able to not only track how promi-
nently certain malicious actions, such as the exploitation of
specific vulnerabilities, are exploited in the wild, but also (and
more importantly) how these malicious actions factor in as
attack steps in more complex cyberattacks. In this paper we
present ATTACK2VEC, a system that uses temporal word em-
beddings to model how attack steps are exploited in the wild,
and track how they evolve. We test ATTACK2VEC on a dataset
of billions of security events collected from the customers of a
commercial Intrusion Prevention System over a period of two
years, and show that our approach is effective in monitoring
the emergence of new attack strategies in the wild and in flag-
ging which attack steps are often used together by attackers
(e.g., vulnerabilities that are frequently exploited together).
ATTACK2VEC provides a useful tool for researchers and prac-
titioners to better understand cyberattacks and their evolution,
and use this knowledge to improve situational awareness and
develop proactive defenses.

1 Introduction

Modern cyberattacks have reached high levels of complexity.
An attacker who is trying to compromise a computer sys-
tem has to perform a number of attack steps to achieve her
goal [16], including reconnaissance (i.e., identifying weak-
nesses on the victim machine), the actual exploitation, and
installing mechanisms to ensure persistence (e.g., installing a
remote access trojan (RAT) on the machine [10]). Moreover,
getting access to the victim machine might not be enough
for attackers to achieve what they want, therefore they might
have to perform additional attack steps (e.g., exploiting an-
other vulnerability to escalate privileges [36]). Additionally,
for each of the attack steps that compose the attack, attack-
ers have a choice of executing a variety of malicious actions

(e.g., exploiting different known vulnerabilities on the victim
system), depending on the exploits that they have available,
on the software configuration of the victim machine, and on
its security hygiene (i.e., which known vulnerabilities on it
have not been patched).

Previous research studied how attack steps (e.g., specific
Common Vulnerabilities and Exposures (CVEs) being ex-
ploited) evolve and are used in isolation [5, 33, 39]. While
doing so is useful to understand how prominently certain
attack steps are exploited in the wild, it does not tell us any-
thing on how these attack steps are used as part of complex
cyberattacks. Instead, looking at attack steps in relation to
each other can provide researchers and practitioners with
invaluable insights into the modus operandi of attackers, high-
lighting important trends in the way attacks are conducted.
In this paper, we define the sequence of attack steps that are
commonly performed together with an attack step of interest
as its context.

Understanding the context in which a vulnerability is ex-
ploited in the wild as well as detecting when this context
suddenly changes can be very useful for researchers, to bet-
ter understand the modus operandi of attackers, to improve
situational awareness in organizations, and to develop more
proactive defenses. For example, when a new CVE is pub-
lished, attackers will start attempting to exploit it, and in this
process they will first try a number of strategies. Eventually,
once an attacker will succeed in developing an attack that
reliably compromises machines, we will observe this strategy
being consistently exploited in the wild, potentially because
this consolidated attack was commoditized and added to an
exploit kit for multiple attackers to use [12]. This information
is useful for defenders, since it allows to design better miti-
gation strategies that take into account the entire attack, and
it can possibly also be used for attack attribution, since the
same attacker often uses similar strategies to carry out their
attacks [38].

However, attack strategies are not stable over time, because
new defenses might be deployed that make them ineffective
(e.g., vulnerabilities getting patched), or simply because the
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attackers might develop more efficient strategies. Looking
at the context of an attack step (e.g., a particular CVE) can
help identifying these sudden changes in the way attacks are
performed, and prompt proactive defenses. For example, a
number of systems have been proposed that use supervised
learning to detect attacks [4, 13, 14, 41]. These systems typi-
cally need periodic retraining due to the fact that the evolution
of attacks over time makes the model that the system was
trained on obsolete [18]. Having a system able to track sig-
nificant changes in the context associated to a security event
could be used to perform a timely retraining of such systems.

To model the context of an attack step, in this paper we
adapt techniques that have been proposed in the area of natural
language processing. Word embeddings [30, 35] are a power-
ful tool for modeling relationships between words. This tech-
nique represents words with low-dimensional vectors based
on the surrounding words that appear in the same sentence
(i.e., the context). These vectors are able to capture the con-
text of a word and its relationship with the other words, allow-
ing researchers to understand the way in which words are used
in various types of language (e.g., on social media [8]). In a
similar way, we can calculate the embedding of an attack step
by considering the entire attack sequence as a sentence, and
each step as a word. Upon encoding the relationship between
attack steps within the vector space, we can quantitatively
study the attack steps appearing in similar contexts in the
latent space and understand them in a more meaningful and
measurable way.

As a proxy for the attack steps performed by attackers in
the wild, we use the security alerts generated by a commercial
Intrusion Prevention System (IPS), collected over a period of
two years. Throughout this observation period, we collect 102
snapshots on a weekly basis. Each snapshot contains over 190
million alerts collected from tens of millions unique machines.
Each alert is indicative of the attack step that is performed
by an attacker, and our dataset contains over 8k possible alert
types, spanning from port scans to exploits for specific CVEs.
Similar data was used in our previous work, which showed
that, although a proxy (e.g., they can only monitor attacks
for which a detection signature exists), these alerts are useful
to study the behavior of attackers in the wild [40]. In the
remainder of the paper, we define each alert generated by the
IPS a security event.

We implement our approach in a system, ATTACK2VEC.
Our system takes a stream of security events and computes
their context by using temporal word embeddings. By running
ATTACK2VEC on our data, we show that our approach is able
to effectively monitor how security events are exploited in the
wild. For example, we can identify when a certain CVE starts
getting exploited, when its exploitation becomes stable, and
when attackers change strategy in exploiting it. By leveraging
the similarity between the context of different security events,
we can infer which events are often used as part of the same
malicious campaign, and this allows us to identify emerging

attacks in a more timely manner than the state of the art. For
example, we were able to identify a variant of the Mirai botnet
that was scanning the Internet attempting to exploit a CVE
relative to Apache Struts, together with IoT-related exploits
over 72 weeks before this variant was officially identified.
These findings show that ATTACK2VEC can be an effective
tool for researchers and practitioners who need to understand
how security events are exploited in the wild and react to
sudden changes.

In summary, this paper makes the following contributions:

• We show that temporal word embeddings are an effective
way to study how attack steps are exploited in the wild
and how they evolve.

• We show how ATTACK2VEC can be used to understand
the emergence, the evolution, and the characteristics of
attack steps in relation to the wider context in which they
are exploited.

• We discuss how ATTACK2VEC can be effectively used
to identify emerging attack campaigns several weeks
before they are publicly disclosed.

2 Motivation

This paper presents the first approach to characterize not only
single security events, but the context in which they are used
in the wild. The problem of characterizing the evolution of
security events, however, is a complex one and presents mul-
tiple challenges. To illustrate its complexity, consider the
real-world example in Figure 1, showing several machines un-
dergoing two coordinated attacks across time, C1 and C2. Both
attacks leverage the attack step e11, “CVE-2018-7602 Drupal
core RCE.” C1: {e4, e10, e11, e12} mainly functions as a recon-
naissance attack including “Joomla JCE security bypass and
XSS vulnerabilities” (e4), “Wordpress RevSlider/ShowBiz
security byPass” (e10) and “Symposium plugin shell upload”
(e12), together with e11. C2: {e7, e5, e11, e6}, is an attack tar-
geted at the Drupal ecosystem, consisting of “phpMyAdmin
RFI CVE-2018-12613” (e7), “Drupal SQL Injection CVE-
2014-3704” (e5), and “Apache Flex BlazeDS RCE CVE-2017-
3066” (e6), and the aforementioned e11. Our goal is to develop
a system that allows to automatically analyze the context in
which e11 is exploited, and identify changing trends.

The first challenge that we can immediately notice from
Figure 1 is that even though the machines at a certain times-
tamp are going through the same type of attack (e.g., C1 at
ti), there are no obvious event relationships reflected in the
telemetry recorded by the IPS due to noise (e.g., other secu-
rity events not related to the coordinated attack observed, or
certain events relating to the coordinated attack being not ob-
served). If we take the IPS data recorded at timestamp ti, it is
not trivial to understand how e11 is leveraged by the attackers
by directly inspecting the security events, what attack vectors
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Figure 1: A real-world example of security event evolution. Over time, e11 evolves from being an “add-on” reconnaissance vector
to part of a targeted attack on the Drupal ecosystem.

are used together with e11, etc. Additionally, it is worth noting
that not all security events may be observed in a given obser-
vation period. For example, e7 is not observed until timestamp
t j.

The second challenge is that attacks change over time, con-
sequently, the context of a security event and its relationship
with other attack steps may drift. It is possible that C1 and C2
can be operated by the same attackers, and that at some point
they changed their attack scripts to leverage newly disclosed
vulnerabilities (i.e., , phpMyAdmin RFI CVE-2018-12613
(e7)). As we can see in Figure 1, from timestamp ti to t j attack
C1 gradually migrated to or was replaced by attack C2. How-
ever, it is difficult to determine if these new relationships (e.g.,
e11 starting to appear in close proximity of e5) at timestamp
tk with respect to those of timestamp ti are due to noise or
are actually indicators of a change in the way e11 is being
used in the wild. Considering all these temporal factors, it is
desirable to have a model that is able to understand the con-
text of a security event and its changes over time, and whose
output can be quantitatively measured and studied. This is
what ATTACK2VEC aims to do.

Problem formulation. We formalize our temporal security
event evolution approach as follows. A security event ei ∈ E

is a timestamped observation recorded at timestamp i, where
E denotes the set of all unique events and |E| denotes the
size of E. A security event sequence observed in an endpoint
s j is a sequence of events ordered by their observation time,
s j = {e

( j)
1 ,e( j)

2 , ...,e( j)
l }. Let St = {st

1, ...,s
t
i, ...,s

t
z} denote the

set of the security events from z endpoints during the t-th
observation period. Finally we denote S= {S1, ...,St , ...,ST},
t = 1, ...,T , as the total security events over time T . It is
worth noting that not all security events may be observed in a
given St . For example, security events associated with CVEs
reported in 2018 are not present in the set of security events
collected in 2017. Our goal is to find a mapping function
M(ei,S,T )→{ηt

ei
}, where t = 1, ...,T and ηt

ei
∈Rd , d�|E|

denotes a d-dimensional vector representation of the security
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Figure 2: The distribution of events in our IPS security event
dataset follows a power-law, much like the distribution of
words in natural language, confirming the appropriateness of
word embeddings to study the evolution of the use of security
events over time.

event ei at timestamp t. In the next section, we describe the
data used in this paper in more detail. Then, in Section 4 we
describe the methodology used by ATTACK2VEC.

3 Dataset

Data origin. As a proxy for the attack steps performed by mis-
creants in the wild, we use security event data collected from
Symantec’s intrusion prevention system (IPS). The company
offers end users to explicitly opt in to its data sharing program
to help improving its detection capabilities. To preserve the
anonymity of users, endpoint identifiers are anonymized and
it is not possible to link the collected data back to the users
that originated it. Meta-information associated with a security
event is recorded when the product detects network-level or
system-level activity that matches a predefined signature (i.e.,
a security event).
Data collection. To thoroughly investigate security event evo-
lution, we collected 102 days (one observation day per week
for 102 consecutive weeks) of data between December 1,
2016 and November 08, 2018. From this data we extract the
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following information: anonymized machine ID, timestamp,
security event ID, event description, system actions, etc. On
average, we collect 190 million security events collected from
tens of millions unique machines per day. These security
events were then reconstructed on a per machine basis and
sorted chronologically. Note that for privacy reasons we use
the anonymized endpoint ID to reconstruct a series of security
events detected in a given mahcine and discard it after the
reconstruction process is done. In total, the monitored ma-
chines generated 8,087 unique security events over the 102
observation days.
Data Limitations. It is important to note that the security
event data is collected passively. That is, these security events
are recorded only when corresponding attack signatures are
triggered. Any events preemptively blocked by other security
products cannot be observed. Additionally, any events that
did not match the predefined signatures are also not observed.
Hence the findings in this paper reflect security event evo-
lution observed by Symantec’s IPS, and the data can only
be considered as a proxy for the actual attacker behavior
in the wild. For example, we are unable to trace how zero
day attacks are exploited in the wild [5]. However, as we
show in Section 5 this data still allows ATTACK2VEC to iden-
tify meaningful trends in how security events are used and
evolve. Additionally, ATTACK2VEC could be applied to any
dataset with similar characteristics (i.e., a sequence of secu-
rity events). Another limitation is that our dataset is composed
of weekly snapshots, and we are therefore unable to charac-
terize the evolution of security events that are faster than that.
While this could prevent us from detecting quick anomalies
in the way security events are used (i.e., those that go back to
“normal” in a matter of a few days), this data is still represen-
tative enough to identify long term trends. We provide a more
detailed discussion on the limitations of our data in Section 6.
Appropriateness for word embeddings. As we mentioned,
the word embedding techniques used by ATTACK2VEC come
from the natural language processing field. Word frequency
in natural language follows a power-law distribution, and
techniques from language modeling account for this distri-
butional behavior. For these techniques to be appropriate to
our data, therefore, it is ideal that our security events follow
a similar distribution. Figure 2 shows that the events in our
dataset indeed follows a power-law distribution. This similar-
ity forms a solid theoretical foundation for us to use word em-
bedding techniques to encode latent forms of security events,
by considering sequences of security events in the IPS logs
as short sentences and phrases in a special language. In the
next section, we describe how ATTACK2VEC builds temporal
embeddings from a sequence of security events in detail.

4 Methodology

In this section we first define the context window used in
this work. We then formalize the techniques used to generate
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Figure 3: Illustration of context window (c = 4).

vector embeddings of security events. Finally, we describe
ATTACK2VEC’s architecture.

4.1 Context Window

Previous research made several interesting observations that
different attack vectors are often packed together by attackers
for a given period of time. For example, Kwon et al. [21]
observed that silent delivery campaigns exhibit synchronized
activity among a group of downloaders or domains and access
the same set of domains to retrieve payloads within a short
bounded time period. Shen et al. [40] pointed out that some
machines may potentially observe different attacks from var-
ious adversary groups happening at the same time, and one
coordinated attack may be observed by different machines.
On the defense side (i.e., IPS telemetry), we consequently
observe that related security events co-occur within a context
(i.e., the sequence of attack steps that are commonly per-
formed together with an attack step of interest). Note that this
context can be defined as a time window [21] or a rollback
window [40].

In this paper, we define the context as a sliding window,
denoted as c, centering around a given security event ei (see
Figure 3). The purpose of using this symmetric context win-
dow is to deal with the noise incurred by concurrency at the
telemetry level (see Section 2). For example, given a real-
world coordinated attack e7,e5,e11,e6 (highlighted in bold in
Figure 3), each endpoint may observe the attack vectors in dif-
ferent order (e.g., e7 and e5 may switch orders), attack vectors
might be diluted by other unrelated security events (e.g., e71
observed between e6 and e5 in s2), or certain security events
are not observed, for example because they have been blocked
by other security products before the IPS was able to log them
(e.g., e6 not observed in s4). The proposed context window
mechanism is able to capture the events surrounding a given
security event (i.e., before and after), minimizing the impact
of noise incurred by concurrency.
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4.2 Temporal Security Event Embedding

The proposed temporal security event embedding is adapted
from dynamic word embeddings by Yao et al. [48]. We use
pointwise mutual information (PMI), a popular measure for
word associations, to calculate weights between two security
events given a contextual window c and an observation period
t. PMI measures the extent to which the events co-occur more
than by chance or are independent. The assumption is that if
two events co-occur more than expected under independence
there must be some kind of relationship between them. For
each t-th observation period, we build a |E|× |E| PMI matrix,
where a PMI value between ei and e j is defined as follows.

PMIt(ei,e j,c,S) = max(log
(

pt(ei,e j)

pt(ei)p(e j)

)
,0),

pt(ei,e j) =
W (ei,e j)

|St |
,

pt(ei) =
W (ei)

|St |
, (1)

where W (ei) and W (e j) respectively count the occurrences
of security events ei and e j in St , and W (ei,e j) counts the
number of times ei and e j co-occur within a context window
(see Figure 3, Section 4.1) in St . Note that when W (ei,e j), the
number of times ei and e j co-occurring in a given contextual

window is small, log
(

pt (ei,e j)

pt (ei)p(e j)

)
can be negative and affects

the numerical stability. Therefore, we only keep the positive
values in Eq 1 (see [22]).

Following the definition of PMIt , the security event embed-
ding H(t), e.g., ηt

ei
∈H(t), at t-th observation time is defined

as a factorization of PMIt(c,S),

H(t)H(t)T ≈ PMIt(c,S). (2)

The denser representation H(t) reduces the noise [37] and
is able to capture events with high-order co-occurrence (i.e.,
that appear in similar contexts) [30, 35]. These characteristics
enable us to use word embedding techniques to encode latent
forms of security events, and interpret the security event evo-
lution in a meaningful and measurable way. Note that Li et
al. [25] and Levy et al. [22] have theoretically proven that the
skip-gram negative sampling (SGNS) used by the word2vec
model can be viewed as explicitly (implicitly) factorizing a
word co-occurrence matrix. We refer interested readers to
[22, 25] for theoretical proofs.

Across time T , we also require that ηt
ei
≈ ηt+1

ei
. This means

that the same security event should be placed in the same
latent space so that their changes across time can be reliably
studied. This requirement roots upon a practical implication.
For example, a security event was observed after its associated
CVE was disclosed. Its embeddings must therefore approxi-
mately stay the same before the disclosure date. Otherwise,

we would observe unwanted embedding changes and inval-
idate the findings. To this end, Yao et al. [48] identified the
solution of the following joint optimization problem as the
temporal embedding results. Note that throughout this section,
‖.‖ denotes squared Frobenius norm of a vector.

min
H(1),...,H(T )

1
2

T

∑
t=1
‖PMIt(c,S)−H(t)H(t)T‖2

+
α

2

T

∑
t=1
‖H(t)‖2 +

β

2

T

∑
t=1
‖H(t−1)−H(t)‖2,

(3)

where α and β are parameters respectively regularizing H(t),
and making sure that H(t−1) and H(t) are aligned (i.e., em-
beddings should be close if their associated contexts don’t
change between subsequent times.). In this way, all embed-
dings across time T are taken into consideration. At the same
time, this method can accommodate extreme cases such as the
one in which security event ei is not observed in (S)t since the
optimization is applied across all time slices in Eq 3. We refer
interested readers to [48] for theoretical proofs and empirical
comparison studies with other state-of-the-art embedding ap-
proaches. Following [48], we use grid search to identify the
best parameters and experimentally set α = 10, β = 40, c = 8,
d = 50 and run 5 epochs for all the evaluations throughout
our paper.

4.3 ATTACK2VEC Architecture

The architecture and workflow of ATTACK2VEC is depicted
in Figure 4. Its operation consists of three phases: ¶ data
collection and preprocessing, · temporal event embedding,
and ¸ event tracking and monitoring.
Data collection and preprocessing (¶). ATTACK2VEC takes
the security event stream generated by endpoints (e.g., com-
puters that installed an IPS). The goal of the data collection
and preprocessing module is to prepare the data for the tem-
poral event embedding method detailed in Section 4.2. AT-
TACK2VEC then consumes this timestamped security event
data generated from millions of machines that send back their
activity reports. The collection and preprocessing module re-
constructs the security events observed on a given machine s j
as a sequence of events ordered by timestamps, in the format
of s j = {e

( j)
1 ,e( j)

2 , ...,e( j)
l }. The output of the data collection

and preprocessing module is St = {st
1, ...,s

t
i, ...,s

t
z} where z

denotes the number of machines.
Temporal event embedding (·). The core operation of AT-
TACK2VEC is embedding these security events into a low
dimensional space over time. This phase takes S as input and
encodes latent forms of security events, by considering se-
quences of security events in the IPS logs as short sentences
and phrases in a special language. In this way, each security
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Figure 4: ATTACK2VEC’s Architecture.

event, at a timestamp t, is represented by a d-dimensional
vector representation ηt

ei
, and later aligned across time.

Detection and monitoring (¸). Once the security events
are encoded in low-dimensional space, ATTACK2VEC is able
to use various metrics (Section 5.1) to detect changes (Sec-
tion 5.2), identify event trends (Section 5.3), and monitor how
security events are exploited in the wild (Section 5.4) in a
measurable and quantifiable way.

5 Evaluation

In this section, we provide a thorough evaluation of temporal
event embeddings and ATTACK2VEC. We designed a number
of experiments that allow us to answer the following ques-
tions:

• Can we use the temporal embeddings calculated by AT-
TACK2VEC to identify changes in how a security event is
used in the wild (see Section 5.2)? To this end, we need
our temporal embeddings to present high fidelity over
time. The rationale behind this question is that the same
security event should be placed in the same latent space
by the proposed temporal event embedding method (see
Section 4). Their changes across time can be reliably
studied (see Section 5.6).

• Can we leverage temporal embeddings to identify trends
in the use of security events (see Section 5.3)? The ra-
tionale behind this evaluation is that embedding vector
norms across time should be more robust to the changes
than word frequency which is static (i.e., calculated at a
specific point of time) and sporadic.

• Can we leverage temporal embeddings to meaningfully
understand the evolution of security events, and mon-
itor how security events are exploited in the wild (see
Section 5.4)?

In the following, we first define the metrics used by our eval-
uation. We then proceed to show that ATTACK2VEC is effec-
tive in answering these three research questions, and discuss
the performance of our approach, showing that ATTACK2VEC
is able to process a day of data within minutes. Finally, we

present further evaluation of ATTACK2VEC, showing an end-
to-end case on how our system can be used to assess the
evolution in the use of a specific vulnerability in the wild.

5.1 Evaluation Metric
We use cosine similarity as the distance metric to quantify the
temporal embedding changes at time t in the latent space. That
is, for any two embeddings (i.e., η

(t)
ei and η

(t)
e j ), the similarity

is measured as

similarity(η(t)
ei ,η

(t)
e j ) =

η
(t)
ei

T
η
(t)
e j

‖η(t)
ei ‖2‖η

(t)
e j ‖2

. (4)

Note that in this paper the cosine similarity is used in positive
space, where the outcome is bounded in [0, 1]. That is, two
vectors with the same orientation have a cosine similarity of
1 (most similar), two vectors oriented at 90◦ relative to each
other have a similarity of 0 (not similar).

Following Eq 4, we denote the neighborhood of a security
event embedding e(t)i as N(e(t)i ), and accordingly defined as

N(e(t)i ) = argsort
e(t)j

(similarity(e(t)i ,e(t)j )). (5)

N(e(t)i ) enables us to use temporal embeddings to discover
and analyze how different security events are used together
with ei. We use Nk(e

(t)
i ) to denote the top k closest neighbors

of ei. As we show in Section 5.4, this can be used to identify
security events that are frequently used together as part of a
multi-step attack.

We also use a weighted drift metric to measure a security
event relative changes. This metric is defined in Eq 6 as

weighted_dri f t(ei) = argsortt

(
‖η(t−1)

ei ,η
(t)
ei ‖

∑e∈E ‖η
(t−1)
e ,η

(t)
e ‖

)
.

(6)
Eq 6 normalizes a security event’s embedding change by
the sum of all security event changes within that observation
period. This metric enables us to measure how a security
event changes comparing to the other security events within a
given observation point.
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(a) CVE-2017-9791 disclosure date: July 10 2017

June 21 2018

(b) CVE-2018-12613 disclosure date: June 21 2018

August 22 2018

(c) CVE-2018-11776 disclosure date: August 22 2018

Figure 5: Temporal embedding results of “Apache Struts
Showcase App CVE-2017-9791” (5a), “phpMyAdmin RFI
CVE-2018-12613” (5b), and “Apache Struts RCE CVE-2018-
11776” (5c). The cosine similarities of the CVE embeddings
are stable before they are publicly disclosed, and decline
swiftly after the disclosure.

5.2 Change Detection

One of the key practical questions when evaluating the tem-
poral security event embeddings built by ATTACK2VEC is
determining the fidelity of the embedding results over time.
In this paper, fidelity refers to the condition that the same se-
curity event should be placed in the same latent space. That is,
if the frequency and the contexts of a security event between
subsequent time slices don’t change, its latent embedding
should stay the same. This consistency allows the change
to be reliably detected. This requirement lays the founda-
tion to quantitatively study their changes. The concept of
fidelity is different from the stability term used in previous
research approaches in which stability was used to evaluate
how classifiers perform after certain period of time. Bearing
this difference in mind, we use the following two criteria to
evaluate the fidelity of temporal embeddings and show how
ATTACK2VEC can faithfully capture both single event usage

change and global changes:

• criterion a. The cosine similarity of the event embed-
dings must be stable when an event usage does not
change between subsequent time slices.

• criterion b. The cosine similarity of these embeddings
should change swiftly if these events are used in different
attacks or emerge as a new attack vector.

It is important to note that while these criteria are helpful
in demonstrating the power of word embeddings extracted by
ATTACK2VEC, they are self-referential and not in themselves
sufficient to validate the effectiveness of our approach.
Single event change detection. To evaluate whether our two
criteria hold for our dataset, we use three CVEs, “Apache
Struts Showcase App CVE-2017-9791” (Figure 5a), “php-
MyAdmin RFI CVE-2018-12613” (Figure 5b), and “Apache
Struts RCE CVE-2018-11776” (Figure 5c). These CVEs were
disclosed between 2017 and 2018. Regarding the aforemen-
tioned two evaluation criteria, these vulnerabilities were not
disclosed in 2016, and therefore they did not have a matching
signature in the IPS from which we collected our data. Thus,
they form a good baseline for temporal fidelity evaluation. We
therefore expect the following properties to hold:

response to a. Before a vulnerability was disclosed, its cor-
responding signature does not exist hence its non-
existent context should stay the same until timestamp
t. That is, if the vulnerability’s disclosure date is t,
similarity(η(0)

ei ,η
(z)
ei ), where z ∈ (0, t], should be stable.

response to b. After the disclosure date, the cosine similar-
ity values of its embeddings should change swiftly. The
justification is obvious. If attackers start exploiting a vul-
nerability, its corresponding security event moves away
from its non-existent context and such drift leads to em-
bedding changes.

For each CVE, we calculate the cosine similarity between
each event’s current representation (i.e., at timestamp
t) and its original representation (i.e., at timestamp 0,
on December 1 2016) over our observation period (i.e.,
similarity(η(0)

ei ,η
(t)
ei ), where t = 1...T . See Eq 4). The results

are shown in Figure 5. As we can observe, the temporal
embeddings of CVE-2017-9791, CVE-2018-12613 and CVE-
2018-11776 are stable across time and their cosine similarity
values are above 0.9 before their respective disclosure dates
(see criterion a). The way to interpret criterion a is that be-
fore a vulnerability is disclosed, its corresponding signature
does not exist, and therefore its context is non-existing. As
such, this context should remain constant until the vulner-
ability starts being exploited in the wild. Figure 5a shows
that the cosine similarity between the embeddings of CVE-
2017-9791 calculated daily and the original one recorded on
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day 0 is stable and above 0.95 before July 10 2017, which is
when the vulnerability was disclosed. Note that the similarity
is not strictly 1.0 because of marginal deviation incurred by
joint optimization across time slices (see Eq 3). Neverthe-
less, the high similarity before the disclosure date shows that
ATTACK2VEC obtains correct temporal embeddings. After
their public disclosure of each CVE, on the other hand, we
expect the context in which each vulnerability is exploited to
quickly change. This can be measured by ATTACK2VEC with
the fact that the cosine similarity values of CVE-2017-9791,
CVE-2018-12613, and CVE-2018-11776 decline quickly and
move away from the original non-existing context built for
those CVEs (see criterion b). This phenomenon exempli-
fies that the temporal embeddings capture the changes in the
context in which a security event is used.

It is also worth noting that the temporal embeddings of
CVE-2018-11776 show an immediate change after disclo-
sure, while those of CVE-2018-12613 are slightly delayed
for a couple of weeks (i.e., CVE-2018-12613 was officially
published on June 21 2018 and the embedding starts to drift
on July 12 2018). This phenomenon, i.e., the gap between
public disclosure dates and real world exploits was well dis-
cussed in Sabottke et al. [39], and ATTACK2VEC allows to
easily observe it.

The temporal embeddings generated by ATTACK2VEC not
only allow us to identify when a vulnerability starts being
exploited in the wild, but also how these event embeddings
change after the disclosure date. To monitor and evaluate
these changes, instead of comparing the context of a secu-
rity event with the one extracted from the first day of ob-
servation, we compare the cosine similarity of the contexts
extracted on subsequent time slices – between each event’s
current representation (i.e., at timestamp t) and its previous
representation (i.e., at timestamp t−1). In short, we calcu-
late similarity(η(t)

ei ,η
(t−1)
ei ) (see Eq 4), which enables us to

capture how the context of each event evolves between two
subsequent observations. If the use of an event remains stable,
the cosine similarity between η

(t)
ei and η

(t−1)
ei will remain high.

If, on the other hand, the event experiences a sudden change
in the way it is used in the wild, then its context will also sig-
nificantly change and the cosine similarity with the previous
observation will suddenly decrease, allowing an analyst to
identify the point in time in which this change happened. To
demonstrate this, we reuse the security event “Apache Struts
Showcase App CVE-2017-9791” from earlier in this section.
We calculate the cosine similarity between subsequent snap-
shots, where t0 starts from July 10 2017 (the public disclosure
date). This evolution is depicted in Figure 6.

We can observe the following: ¶ The cosine similarity
values decline for the first three weeks. This phenomenon im-
plies that CVE-2017-9791 started being exploited in different
attacks after its disclosure date, with attackers trying different
strategies to reliably exploit this vulnerability. · the cosine
similarity increases between the 3rd week and the 10th week.

This phenomenon implies that CVE-2017-9791 became being
exploited in less diversified attacks, indicating that attackers
were converging towards a stable way to exploit the CVE. ¸
The cosine similarity stabilizes after the 10th week, which
means that CVE-2017-9791 started being exploited in a sta-
ble context. This could indicate that attackers weaponized the
CVE into a reliable attack, and possibly developed methods
to exploit it at scale (e.g., by including it in an exploit kit).
Later in the timeline, we can see other changes in the way in
which attacks are exploited, but after each sudden change we
observe a stabilization in how the CVE is exploited, indicat-
ing that attackers keep the same modus operandi over long
periods of time.

A possible concern is that the changes in context identified
by ATTACK2VEC might be due to noise and not representa-
tive of actual changes in the modus operandi of attackers. To
demonstrate that this is not the case, we use the event co-
occurrence matrix PMIt(c,S) as defined in Section 4. This
matrix captures the co-occurrence of any two events within
the context window. For each observation time t, we select
the top events that co-occurred with CVE-2017-9791 to better
understand the phenomenon. If the changes in the use of a
CVE identified by ATTACK2VEC are meaningful, we expect
the co-occurrence matrix on that day to suddenly change, but
to later stabilize and remain similar over time. For the first
three weeks after disclosure in Figure 6 (¶), CVE-2017-9791
was used in conjunction with known attack vectors such as
Apache Struts RCE CVE-2013-2251, HTTP Apache Tomcat
UTF-8 dir traversal CVE-2008-2938, and malicious OGNL
expression upload. By the third week, while some attack
vectors were still associated with CVE-2017-9791, the vul-
nerability gradually started being used together with more
recent server attack vectors (e.g., Apache Struts RCE CVE-
2016-3087) and application vulnerabilities (e.g., WebNMS
RCE CVE-2016-6603 and Web CMS Think PHP RCE). After
·, CVE-2017-9791 started being used consistently with the
aforementioned attack vectors and with several additional at-
tack vectors (e.g., Apache Struts dynamic method invocation
RCE CVE-2016-3081, Drupal PHP RCE, and generic PHP
REC) Once CVE-2017-9791 reached ¸, its usage patterns
became reasonably stable. Note that small fluctuations still
happen when new Apache Struts related vectors were dis-
closed and exploited (e.g., . Apache Struts CVE-2017-9805
(week 11), CVE-2017-12611 (week 15) and CVE-2017-12617
(week 21), and temporary withdrawn of CVE-2017-12617
(around week 45) in the attacks. These changes are reliably
detected by ATTACK2VEC.

In summary, our method is able to capture changes in the
security event embeddings with high fidelity.
Global change detection. Recall that temporal event embed-
dings are the solution of a joint optimization problem across
all time slices (see Section 4). Therefore, such embeddings
not only encode their respective usage and context in a given
time slice, but also its history across all time slices. In this
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Rank
(by changes) Mar. 9 2017 Jan. 4 2018 Oct. 15 2018

1 ZyNOS Information Disclosure Rig Exploit Kit Website Unwanted Extension or Scam Sites Redirection

2
WordPress Mobile-Detector
Arbitrary File Upload Malicious Javascript Website Fake Tech Support Website

3
Netgear Router Remote Command
Execute Fake Tech Support Website Drupal Core RCE

4 Wordpress Arbitrary File Download Malicious Redirection Fake Browser History Injection
5 Fake Flash Player Download JSCoinminer Download Mass Injection Website

Table 1: Top 5 events with most usage changes in selective dates.

Figure 6: Temporal embedding result of Apache Struts Show-
case App CVE-2017-9791. Cosine similarity values for each
plot is calculated as similarity(η(t−1)

ei ,η
(t)
ei ) (i.e., cosine sim-

ilarity between subsequent time slices), where t starts from
July 10 2017 (the public disclosure date).

section, we show how to leverage the temporal embeddings
generated by ATTACK2VEC to find times where we observe
an anomalous high number of changes in the use of multiple
security events.

ATTACK2VEC computes a list of changes for each secu-
rity event ei in all time slices using the weighted drift metric
(see Eq 6). We use this to identify the observation periods
in which many security events exhibit most usage changes.
These points are interesting candidates for scrutiny for se-
curity analysts, since multiple changes in word embeddings
might indicate the emergence of new pervasive attacks. Note
that we remove all the security events with less than 100
observations in 2 years time (see Section 6 for a rationale
for this). Figure 7 shows a histogram of the time slices in
which security event usage changes most. As we can see,
we observe 34 security events with most usage changes be-
tween October 11 and October 18 2018. We selectively list
the top 5 events with most usage changes in different dates
(see Table 1). These changes demonstrate how security event
evolve over the time. For example, at the beginning of 2017,
we can observe many changes relating to exploits affecting
routers. This can be an indicator of a large attack campaign
targeting such devices unfolding. Across time, more attacks
change over fake tech support websites, coinminer and con-
tent management systems. This context information is usually
for analysts to improve situational awareness and be promptly
warned about emerging attacks.

Oct. 18 2018

Figure 7: Summary of the security event changes between
December 1 2016 and November 15 2018.

5.3 Trend Identification
One de facto method used in empirical studies [5, 24, 32, 46]
to analyze temporal usage changes is leveraging frequencies
to reveal patterns. That is, previous approaches often start
by determining the occurrence frequency of events across
the data, and using the event frequency time series as a cri-
terion to reveal the significance of these events. Despite its
straightforwardness in analyzing and visualizing temporal
data, one drawback of this approach is that frequencies are
prone to noise because they are only counted at a specific
timestamp. Another drawback of using temporal frequency,
especially in practical analysis, is that it is more difficult to
compare two time series when they are both trending but at
a different magnitude, and a sudden spike in the occurrence
of one security event might make it difficult to identify other
important events that are not happening as frequently. To
demonstrate this problem, we use four popular remote Web
server attack vectors (see Figure 8a). We can observe in Fig-
ure 8a (inset ¶) , that Apache Struts CVE-2017-5638 (blue
line) was overwhelmingly exploited by attackers after it was
disclosed. Its preponderant usage overshadows (see the zoom
region inset ¶ in Figure 8a) the other popular remote Web
server attack vectors (e.g., HTTP Apache Tomcat UTF-8 Dir
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(a)

(b)

Figure 8: Event frequencies (8a) and event embedding vec-
tor norms (8b). We select four CVEs relating to different
Web services to demonstrate the robustness of temporal event
embedding in trend changes (CVE-2008-2938 in green line,
CVE-2017-5638 in blue line, CVE-2017-10271 in red line,
and CVE-2017-7269 in orange line). The dashed box high-
lights the observation period discussed in Section 5.3.

Traversal CVE-2008-2938) when using event frequency time
series to comparatively study attack vector popularity.

In the rest of this section, we demonstrate that the word
embeddings calculated by ATTACK2VEC are more robust than
temporal frequencies to reveal trend changes. Recall the def-
inition of PMIt(c,S) (defined in Section 4). It contains in-
formation from W (ei,e j), the number of times ei and e j co-
occurring in a given contextual window, and W (ei) and W (e j)
respectively count the occurrences of security events ei and
e j. The norms of word embeddings ηei , as a consequence of
matrix factorization of PMIt(c,S), grow with word frequency
and are averaged by their contexts. Therefore, we can lever-
age these norms to identify event usage trends. We compare
temporal frequencies (Figure 8a) to the embedding vector
norm (Figure 8b) in the context of trend identification. It is
straightforward to see that the security event “Apache Struts
CVE-2017-5638” was predominantly leveraged by the attack-
ers for a short period of time. As we said, such sudden spike
makes other trendy CVEs used at that same period of time less
detectable (Figure 8a). However, we can see that the temporal
event embeddings (Figure 8b) reveal the real patterns behind
the frequencies, and are able to capture trends more reliably.
For example, we can clearly see in Figure 8b that CVE-2008-
2938 (“HTTP Apache Tomcat UTF-8 Dir Traversal,” green
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Figure 9: Comparison study of CVE-2017-7269 (orange line)
and CVE-2017-10271 (red line). ATTACK2VEC can trace the
emerging popularity of CVE-2017-7269 even though it is
barely observable in Figure 8.

line in Figure 8a) is a persistent vector used by the attackers.
This was not observable in Figure 8a because CVE-2017-
5638 dominates during that period of time. Nevertheless, it is
worth noting that we study the independent popularity of these
attack vectors and reveal their underlying usage trend beneath
the event frequency time series. Hence in this paper we do not
intend to study how such attack vectors influence each other.
It is coincidental that the red (CVE-2017-10271) and green
(CVE-2008-2938) lines show a similar vector norm shift. In
fact, these vector norm shifts were incurred by their similar
usage changes (e.g., dropping close to zero) during the same
period (see inset ·, Figure 8a). ATTACK2VEC still preserves
the trends of red (CVE-2017-10271) and green (CVE-2008-
2938) lines (i.e., larger than zero) in this extreme case and
their respective vector norms become stable immediately af-
ter.

Our temporal embedding can also capture how two CVEs,
CVE-2017-10271 (“Oracle WebLogic RCE,” red line in Fig-
ure 8a) and CVE-2017-7269 (“Buffer overflow in the ScStor-
agePathFromUrl function in the WebDAV service in IIS 6.0,”
orange line in Figure 8a) gradually emerge as a trendy attack
vector over time. That is, both CVE-2017-10271 (red line)
and CVE-2017-7269 (orange line), before their disclosure
dates (May 27, 2017 and Oct 17, 2017), are flat. This proves
that ATTACK2VEC faithfully captures their non-existent trend.
After their disclosure, ATTACK2VEC is able to correctly keep
track of their trends. For example, in Figure 9 we show that
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Drupal core RCE (CVE-2018-7602)
May 15 2018 Nov. 08 2018

Joomla JCE Vulnerability phpMyAdmin RFI (CVE-2018-12613)
Wordpress RevSlider/ShowBiz Bypass
(CVE-2014-9735)

Drupal SQL Injection
(CVE-2014-3704)

WordPress Symposium Plugin Shell Upload Adobe Flex BlazeDS RCE (CVE-2017-3066)

Table 2: Top 3 security events associated with CVE-2018-
7602 at the beginning (May 15 2018) and the end (November
18 2018) of our time span.

our approach can reliably trace the trends of CVE-2017-7269
(orange line) from approximately week 19 in the figure. Al-
though its usage (e.g., frequency) is less observable than CVE-
2008-2938 and CVE-2017-5638 during the same period of
time (see Figure 8), its emerging trend is still recognized
by the increase in vector norm as we can see in Figure 9b.
Additionally, despite the five times of frequency difference
between it initial disclosure (week 19 in Figure 9a) and later
weeks (after week 51 in Figure 9a), ATTACK2VEC captures
the trend changes with a small fluctuation of less than 0.6.
ATTACK2VEC also reliably captures CVE-2017-10271 (red
line) non-existent trend before its public disclosure.

5.4 Event Evolution
Another useful functionality for which ATTACK2VEC can be
used is understanding how attacks evolve in the wild, and in
particular monitoring which attack steps are often performed
together by attackers. In a nutshell, security events that are
often used together will have similar contexts. Identifying
events with such similar contexts could help detecting emerg-
ing threats such as new botnets scanning for specific vulnera-
bilities (e.g., Mirai or WannaCry) or new exploit kits that are
probing for specific weaknesses in victim systems [3, 33].

To evaluate ATTACK2VEC’s capability of tracking the evo-
lution of security event contexts over time in relation to each
other we use the same CVE from Section 2, “Drupal core
RCE (CVE-2018-7602).” This CVE is for a highly critical
remote code execution (RCE) vulnerability that exists within
multiple subsystems of Drupal 7.x and 8.x, enabling attackers
to compromise a machine running a Drupal website. This
vulnerability was first disclosed on April 23 2018, and we ob-
serve its activities in the our data starting from May 15 2018.
Due to its high severity, it is interesting to see how such a crit-
ical vulnerability was exploited in different contexts across
time.

We use Eq 5 to identify the top 3 security events associated
with CVE-2018-7602 at the beginning and the end of our time
span. These events are the ones that have the closest context to
CVE-2018-7602, and are therefore used in association with it.
Table 2 shows a detailed description of these events. It is inter-
esting to note that the top 3 attack vectors used together with
CVE-2018-7602 at the beginning resemble a reconnaissance
attack aiming at all three major content management systems
- Joomla, Wordpress, and Drupal. Toward the end of the time

span, however, we notice that CVE-2018-7602 migrates to be
part of a more specific multi-step attack, aiming at the ecosys-
tem surrounding the Drupal CMS - php (phpMyAdmin), SQL
(Drupal SQL Injection), and Flex (BlazeDS RCE).

Leveraging Eq 4, we show in Figure 10a that the tem-
poral security event embedding computed by ATTACK2VEC
can meaningfully capture the aforementioned usage changes
across time. “Joomla JCE Vulnerability,” CVE-2014-9735,
CVE-2014-10021 (blue dashed lines), and CVE-2018-12613,
CVE-2017-3066, CVE-2014-3704 (red solid lines) respec-
tively are the top three closest security events associated with
“Drupal core RCE (CVE-2018-7602)” at the beginning (end)
of the observation span (starting from May 15 2018). We can
clearly see that the red lines are rising (i.e., these security
events are used more closely with CVE-2018-7602), and the
blue lines are moving away from CVE-2018-7602. In general,
we can see that the attackers change their modus operandi,
using CVE-2018-7602 as part of a more targeted attack on
Drupal, 8 weeks after its initial observation in the teleme-
try data. This can be indicative of the old reconnaissance
campaign fading and of the new one more targeted towards
Drupal emerging, or of an attacker changing their behavior.
Note that such usage changes can be automatically detected
using various change point detection algorithms [2].
Trajectory visualization. The trajectory of a security event
in the embedded latent space can assist security analysts to
understand its context changes over time. To show this, we
collect the top k security events associated with CVE-2018-
7602 using Eq 5 in each time slice to form our trajectory
data Dei = {Nk(e

(t)
i )},where t starts from May 15, 2018. We

accordingly plot the 2-D t-SNE projection of the temporal
embeddings of CVE-2018-7602 (and the aforementioned se-
curity events) in Figure 10b to visualize its context change
over time. In Figure 10b, each blue dot represents the 2-D
location in the latent space at a given timestamp. We can
observe a considerable drift in Figure 10b between the fourth
and the fifth blue dot. This is correlated to the trend we ob-
served in Figure 10a. The top 3 security events associated
with CVE-2018-7602 at the beginning and the end of our time
span are closer to the respectively locations in Figure 10b.
Note that such changes in Figure 10b can be quantitatively
detected as these locations are bounded in a Euclidean space.

5.5 System Performance
ATTACK2VEC is implemented in Python 3.7.3 and tested on
a server with dual Xeon E5-2630 CPUs and 256GB memory
running Ubuntu Linux 14.04. In this setup, ATTACK2VEC
takes 859.86 seconds to construct the PPMI matrices for
all 102 snapshots. Once the PPMI matrices are constructed,
ATTACK2VEC takes 3014.18 seconds per epoch to optimize
the temporal embeddings (see Section 4). We empirically
run 5 epochs for ATTACK2VEC to reach the optimum em-
bedding results. This leads to approximately 4.18 hours for
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(a) Joomla JCE Vulnerability, CVE-2014-9735, CVE-
2014-10021 (blue dashed lines) and CVE-2018-12613,
CVE-2017-3066, CVE-2014-3704 (red solid lines) re-
spectively are the top three closest security events asso-
ciated with Drupal core RCE (CVE-2018-7602) at the
beginning (end) of the observation span (starting from
May 15 2018).

CVE-2018-7602 (May 15 2018)

CVE-2014-10021

CVE-2015-1397

Joomla JCE security bypass and XSS

CVE-2018-7602 (Nov 08 2018)

CVE-2018-12613

CVE-2017-3066

CVE-2014-3704

Significant location shift
Between two time slices 

(b) Temporal t-SNE trajectory of Drupal core RCE (CVE-
2018-7602). The significant shift in this figure can be
indicative of the old reconnaissance campaign fading and
of the new one more targeted towards Drupal emerging,
or of an attacker changing their behavior.

Figure 10: Drupal core RCE (CVE-2018-7602) Evolution between May 15 2018 and November 8 2018.

Apache Struts Jakarta Multipart parser RCE (CVE-2017-5638)
Mar. 23 2017 Nov. 08 2018

WifiCam Authentication Bypass Malicious OGNL Expression Upload
CCTV-DVR Remote Code Execution Apache Struts CVE-2017-12611
ZyNOS Information Disclosure Malicious Serialized Object Upload

Table 3: Top 3 security events associated with CVE-2017-
5638 at the beginning (March 9 2017) and the end (November
8 2018) of our time span.

ATTACK2VEC to generate final temporal embeddings for all
8,087 security events across 102 snapshots. This enables us to
deploy ATTACK2VEC to understand the long term evolution
of different security events at scale by security analysts.

5.6 End-to-end Evaluation of ATTACK2VEC

In the previous sections we evaluated the ability of AT-
TACK2VEC to study various aspects of how a security event is
exploited in the wild. We envision that ATTACK2VEC could
be used by security analysts to understand the evolution of
the use of a security event (e.g., a vulnerability) over time. In
this section we provide an end-to-end example to show how
an analyst could be using our tool to better understanding
the context surrounding a security vulnerability and its evolu-
tion. To this end, we study the evolution of the security event
“Apache Struts Jakarta Content-Type RCE (CVE-2017-5638),”
a remote code execution vulnerability targeting Apache Struts.
This vulnerability is classified by NVD as a critical bug with
CVSS score 10.0, and was the culprit of the Equifax data

breach [11].

Figure 11a shows that CVE-2017-5638 experienced a
change in the way it is being exploited between April 5,
2017 and April 13, 2017. ATTACK2VEC is able to identify
this change in the way the vulnerability is exploited, and an
analyst could easily identify this. We then want to understand
what these two contexts looked like, and evaluate whether
this information can help us understand the types of attacks
that CVE-2017-5638 was used in. To this end we perform the
analysis described in Section 5.4, whose results are shown in
Figure 11b. In particular, we trace the top three security events
with the closest context to CVE-2017-5638 at the beginning
and at the end of our analysis period (see Table 3 for a detailed
description of these events). The top 3 security events tightly
associated with CVE-2017-5638 at the beginning of our obser-
vation span are IoT specific attack vectors. Figure 11b shows
that these three IoT attack vectors maintain similar contexts to
CVE-2017-5638 for approximately 10 weeks, indicating that
the four vulnerabilities were frequently exploited together in
the wild as part of a multi-step attack. Later in the analysis
period (starting from May 8, 2017) we see that this attack is
substituted by another attack that is targeted at the Apache
Struts ecosystem, consisting of Malicious OGNL expression
upload, CVE-2017-12611 and Malicious Serialized Object
Upload. Figure 11c shows a similar pattern, with CVE-2017-
5638 migrating from being close to the IoT security events to
the Apache Struts related ones. This information could inform
an analyst about the change in which CVE-2017-5638 was
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(a) Temporal embedding result of Apache Struts Jakarta Multi-
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(b) WifiCam Authentication Bypass, CCTV-DVR Re-
mote Code Execution, ZyNOS Information Disclosure
(blue dashed lines) and Malicious OGNL expression
upload, CVE-2017-12611 and Malicious Serialized
Object Upload (red solid lines) are the top three closest
security events associated with CVE-2017-5638 at the
beginning (end) of the observation span (starting from
March 9 2017), respectively.

CVE-2017-5638 
(Mar. 23 2017)

CVE-2017-5638 
(Nov. 08 2018)

WifiCam auth bypass

ZyNOS info. dis.
CCTV-DVR RCE

CVE-2017-12611

malicious. OGNL expr.

malicious ser. obj. upload

Significant location shift
Between two time slices 

(c) Temporal t-SNE trajectory of Apache Struts Jakarta
Multipart parser RCE (CVE-2017-5638).

Figure 11: Apache Struts Jakarta Multi- part parser RCE
(CVE-2017-5638) evolution between March 9 2017 and
November 8 2018.

exploited in the wild, switching from an attack step as part
of an IoT-centered attack to part of an attack centered around
Apache Struts.

To further evaluate the accuracy of the embeddings calcu-
lated by ATTACK2VEC, and the meaningfulness of our anal-
ysis, we further investigate the contexts calculated at the be-
ginning of our analysis period, when CVE-2017-5638 was
exploited in conjunction with IoT-related vulnerabilities.To
this end, we retrieve the remote IP addresses from which the
security events originated on selected dates. We find that in
many cases these four (including CVE-2017-5638) security
events were generated from connections originating from the
same IP addresses (for example, 701 unique IP addresses on
March 23 2018), indicating that the relation depicted by the
context is not an artifact of ATTACK2VEC, but it is indeed a
large scale attack performed by the same malicious actors.
These IP addresses were often located in residential ISPs,
indicating a potential botnet infection.

We later found confirmation that a variant of the Mirai
IoT malware was active during that period and was explicitly
exploiting CVE-2017-5638, “WifiCam auth bypass,” “CCTV-
DVR RCE,” and “ZyNOS information disclosure,” the same
vulnerabilities picked up by ATTACK2VEC as being related
(see Table 3) [1]. This shows that ATTACK2VEC can help
identifying complex attacks in an effective way. An additional
advantage of our approach is that our system was able to flag
this attack as emerging in the wild 72 weeks before it was
actually discussed by security researchers, highlighting the
potential of the use of temporal embeddings for early warning
and situational awareness.

6 Limitations and Discussion

Rare events. The temporal security event embedding used
in this paper builds on top of event frequency and event co-
occurrence (see Section 4). By design the learned temporal
event embeddings are biased towards word frequency per
observation time. When analyzing the security events us-
ing the proposed method, we need to pay attention to the
events that appear less frequently. Broadly speaking, these
rare events can be grouped into two categories - i) the new se-
curity events associated with recently disclosed vulnerabilities
and ii) those rarely observed in the IPS. For the new events,
their corresponding disclosure dates are good indicators when
interpreting the embedding results. For the events that rarely
observed, frequency and popularity are two good reference
points when interpreting the embedding results. Take “CVE-
2018-0101 (Cisco Adaptive Security Appliance (ASA) RCE
vulnerability)” for example (see Figure 12). ATTACK2VEC
faithfully identifies its changes over time (see Figure 12a).
However, when referring to event frequency (see Figure 12b),
we can see that these changes do not represent that the attack-
ers are changing their attack campaign strategy. Moreover,
it is important to notice that our proposed system is robust
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Figure 12: Rare event CVE-2018-0101 (Cisco Adaptive Security Appliance (ASA) RCE vulnerability).

and can correctly indicate that such event is not actively be-
ing exploited by attackers (see Figure 12c), and therefore the
changes flagged at the previous steps are spurious.
Distraction from attackers. Our proposed temporal event
embedding may be subject to distraction from malicious at-
tackers, leading to inaccurate insights. For example, attackers
could generate large amounts of fake events by targeting a
considerable number of machines (e.g., hundreds of thou-
sands) over a certain period of time (e.g., weeks). However,
we argue that this would make the attackers more visible
to the security companies who could track such malicious
activities and block them accordingly. Additionally, such dis-
traction operations would not bring financial incentive to the
attackers. Note that once they switch back to real campaigns,
our method would faithfully capture the new trend.
Limitations. ATTACK2VEC relies on a dataset of pre-labeled
security events to generate insights and understand their evo-
lution. An inherent limitation of this type of data is that an
event can be detected only if it belongs to a known attack
vector. If, for example, a new zero-day vulnerability started
being exploited in the wild, this would not be reflected in the
data until its signature is created. Our method is data-driven
hence it can not deduce insights before an event was detected.
However, such delay can be reduced since security companies
typically use threat intelligence systems and employ human
specialists to analyze intrusion data identifying new attack
trends. We refer interested readers to Bilge et al. [5] for a
detailed study on zero-day vulnerabilities.

7 Related Work

7.1 Embedding Applications in Security
Xu et al. [47] proposed to use network-based graph embed-
ding to accomplish cross-platform binary code similarity de-
tection task. The authors adopted the structure2vec approach
to effectively compute embedding vectors for the control flow
graph of binary functions. This allows for efficient similarity
detection by comparing the embeddings for two functions.
Song et al. [42] propose DeepMem, a graph-based deep learn-
ing approach to automatically generate abstract representa-
tions for kernel objects and recognize these objects from raw
memory dumps. The key idea is building a memory graph and
embed the graph nodes into a low-dimensional vector space

using a node’s actual content and the embeddings of its four
kinds of neighboring nodes. These embeddings are then used
as features for classification. Ding et al. [9] developed an as-
sembly code representation learning model called Asm2Vec.
The key idea is to encode assembly code syntax and con-
trol flow graph into a feature vector. At the query/estimation
stage, the previously unknown assembly code is encoded into
a lower-dimensional vector and compared using cosine sim-
ilarity. Li et al. [23] introduced a data poisoning attack on
matrix factorization. The authors demonstrated that, with the
full knowledge of the learner, several attacks can be achieved.

7.2 Other Related Work

Concept drift. Concept drift refers to the phenomenon that
the statistical properties of the target variable change over
time. Such causes less accurate predictions across time.
Within the context of security research, Maggi et al. [27]
addressed concept drift in Web application security, while
Kantchelian et al. [20] discussed adversarial drift. In recent
years, Jordaney et al. [18] proposed Transcend, a statistical
framework to identify aging classification models. The au-
thors used a statistical comparison of samples seen during
deployment with those used to train the model, thereby build-
ing metrics for prediction quality. They then combine both
decision assessment (i.e., the robustness of the prediction
results) and alpha assessment (i.e., the quality of the non-
conformity measure) to detect concept drift.
Empirical studies on cyberattacks. Bilge et al. [5] con-
ducted a systematic study of the characteristics of zero-day
attacks through the data collected from 11 million endpoints.
Nappa et al. [32] conducted a systematic analysis of the patch-
ing process of 1,593 vulnerabilities in 10 client-side appli-
cations over 5 year time, especially on measuring the patch-
ing delay and several patch deployment milestones for each
vulnerability. Nayak et al. [33] carried an empirical study
on vulnerability using field data and proposed several count-
based metrics for attack surface evaluation. Vervier et al. [46]
analyzed 18 months of data collected by an infrastructure
specifically built to address BGP hijacks. The author charac-
terized the BGP hijacks in this longitudinal study and provide
a thorough investigation and validation of the candidate ma-
licious BGP hijacks. Li et al. [24] conducted a large-scale
empirical study of security patches that affected 862 open-
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source projects.
Vulnerability prediction. Vulnerability prediction tech-
niques learn the attack history from previous events (e.g.,
historical compromise data) and use the acquired knowledge
to predict future ones. What learned in the history can offer
insights to evolution and is therefore relevant to our work.
Sabottke et al. [39] conducted a quantitative and qualitative
exploration of the vulnerability-related information dissem-
inated on Twitter. The authors built a twitter-based exploit
detector, which was capable of providing early warnings for
the existence of real-world exploits. Similarly, Bozorgi et
al. [6] showed how to train linear support vector machines
(SVMs) that predict whether and how soon a vulnerability is
likely to be exploited (i.e., predict time to exploit). Recently,
Shen et al. [40] demonstrated that recurrent neural networks
(RNNs) can be leveraged to predict the specific steps (i.e.,
vulnerability that may be exploited) that would be taken by an
adversary when performing an attack. Liu et al. [26] explored
the effectiveness of forecasting security incidents. This study
collected 258 externally measurable features about an orga-
nization’s network covering two main categories: misman-
agement symptoms (e.g., misconfigured DNS) and malicious
activities (e.g., spam, scanning activities originated from this
organization’s network). Based on the data, the study trained
and tested a Random Forest classifier on these features, and
are able to achieve with 90% True Positive (TP) rate, 10%
False Positive (FP) rate and an overall accuracy of 90% in
forecasting security incidents. In summary, these approaches
learn the attack history from previous events (e.g., historical
compromise data) and use the acquired knowledge to predict
future ones. They don’t provide thorough investigations on
how security events evolve over time.
Alert correlation. Alert correlation [7, 45] refers to a pro-
cess that analyzes the alert logs produced by IDS and forms
higher-level information on attempted intrusions. Once alerts
are correlated among multiple monitors, the results can pro-
vide IDS a holistic view of the network monitored. A lot of
work has been done in this areas such CRIM [7], DIDMA [19],
ACARM [44], INDRA [17], etc. Vasilomanolakis et al. [45]
summarized the current state of the art in the area of dis-
tributed and collaborative intrusion detection. In contrast to
this previous work, this paper focuses on understanding the
emergence, the evolution, and the characteristics of attack
steps in relation to the wider context in which they are ex-
ploited.
Automated causality analysis. Causality is an orthogo-
nal but interesting problem relating to ATTACK2VEC. Her-
cule [34] uses tainted path s from t to model the causality.
SteamSpot [28] uses a new similarity function to compare
graphs and builds information flow graph clusters to detect
anomalies. NoDoze [15] builds provenance graph of a given
event and use a novel diffusion algorithm to efficiently prop-
agate and aggregate the anomalous scores. HOLMES [31]
also leverages provenance graph and identify APT attacks

via information flow graphs. Conversely, our goal is to pro-
vide a reliable new method for analyzing attack trends than
frequency analysis.
Closest work. One of the closest work to this paper is Dark-
Embed [43]. It used paragraph vector to learn low dimen-
sional distributed representations, i.e., embeddings, of dark-
web/deepweb discussions. These embeddings effectively cap-
tured the meaning of these discussions and their other charac-
teristics, such as language, and indicator words. DarkEmbed
then trained a classifier to recognize posts discussing vul-
nerabilities that would be exploited in the wild. DarkEmbed
is essentially a NLP analysis. Different from DarkEmbed,
our work focuses on using representation vectors to param-
eterize the conditional probabilities of security events in the
context of other events, and study how these security events
evolve from a temporal perspective. Another closest work
is [29]. The authors carried out a longitudinal analysis of
a large corpus of cyber threat descriptions. It quantifies the
severity and types (e.g., worms, viruses and trojans) of 12,400
threats detected by Symantec’s AV and 2,700 attacks detected
by Symantec’s IPS. Different from [29], our work focuses
on how the security events evolve and monitor how security
events are exploited in the wild from real-world intrusion
prevention data.

8 Conclusion

In this paper, we showed that techniques that were devel-
oped in the area of natural language processing can be used
to effectively model and monitor the evolution of cyberat-
tacks. To demonstrate this, we developed ATTACK2VEC, a
tool that leverages word embeddings to understand the con-
text in which attack steps are exploited. We showed that AT-
TACK2VEC is effective in flagging changes in the way attacks
unfold. In future work we plan to investigate how the use of
ATTACK2VEC could make the work of security analysts easier
in studying emerging attacks.
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