
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Leaky Images: Targeted Privacy Attacks in the Web
Cristian-Alexandru Staicu and Michael Pradel, TU Darmstadt

https://www.usenix.org/conference/usenixsecurity19/presentation/staicu

Leaky Images: Targeted Privacy Attacks in the Web

Cristian-Alexandru Staicu
Department of Computer Science

TU Darmstadt

Michael Pradel
Department of Computer Science

TU Darmstadt

Abstract
Sharing files with specific users is a popular service pro-
vided by various widely used websites, e.g., Facebook, Twit-
ter, Google, and Dropbox. A common way to ensure that a
shared file can only be accessed by a specific user is to au-
thenticate the user upon a request for the file. This paper
shows a novel way of abusing shared image files for targeted
privacy attacks. In our attack, called leaky images, an im-
age shared with a particular user reveals whether the user is
visiting a specific website. The basic idea is simple yet ef-
fective: an attacker-controlled website requests a privately
shared image, which will succeed only for the targeted user
whose browser is logged into the website through which the
image was shared. In addition to targeted privacy attacks
aimed at single users, we discuss variants of the attack that
allow an attacker to track a group of users and to link user
identities across different sites. Leaky images require nei-
ther JavaScript nor CSS, exposing even privacy-aware users,
who disable scripts in their browser, to the leak. Studying the
most popular websites shows that the privacy leak affects at
least eight of the 30 most popular websites that allow sharing
of images between users, including the three most popular of
all sites. We disclosed the problem to the affected sites, and
most of them have been fixing the privacy leak in reaction
to our reports. In particular, the two most popular affected
sites, Facebook and Twitter, have already fixed the leaky im-
ages problem. To avoid leaky images, we discuss potential
mitigation techniques that address the problem at the level of
the browser and of the image sharing website.

1 Introduction

Many popular websites allow users to privately share images
with each other. For example, email services allow attach-
ments to emails, most social networks support photo sharing,
and instant messaging systems allow files to be sent as part
of a conversation. We call websites that allow users to share
images with each other image sharing services.

This paper presents a targeted privacy attack that abuses a
vulnerability we find to be common in popular image shar-
ing services. The basic idea is simple yet effective: An at-
tacker can determine whether a specific person is visiting an
attacker-controlled website by checking whether the browser
can access an image shared with this person. We call this
attack leaky images, because a shared image leaks the pri-
vate information about the victim’s identity, which otherwise
would not be available to the attacker. To launch a leaky im-
ages attack, the attacker privately shares an image with the
victim through an image sharing service where both the at-
tacker and the victim are registered as users. Then, the at-
tacker includes a request for the image into the website for
which the attacker wants to determine whether the victim is
visiting it. Since only the victim, but no other user, is al-
lowed to successfully request the image, the attacker knows
with 100% certainty whether the victim has visited the site.

Beyond the basic idea of leaky images, we describe three
further attacks. First, we describe a targeted attack against
groups of users, which addresses the scalability issues of
the single-victim attack. Second, we show a pseudonym
linking attack that exploits leaky images shared via differ-
ent image sharing services to determine which user accounts
across these services belong to the same individual. Third,
we present a scriptless version of the attack, which uses
only HTML, and hence, works even for users who disable
JavaScript in their browsers.

Leaky images can be (ab)used for targeted attacks in var-
ious privacy-sensitive scenarios. For example, law enforce-
ment could use the attack to gather evidence that a suspect is
visiting particular websites. Similarly but perhaps less noble,
a governmental agency might use the attack to deanonymize
a political dissident. As an example of an attack against a
group, consider deanonymizing reviewers of a conference.
In this scenario, the attacker would gather the email ad-
dresses of all committee members and then share leaky im-
ages with each reviewer through some of the various web-
sites providing that service. Next, the attacker would embed
a link to an external website into a paper under review, e.g.,

USENIX Association 28th USENIX Security Symposium 923

Table 1: Leaky images vs. related web attacks. All techniques assume that the victim visits an attacker-controlled website.

Threat Who can attack? What does the attacker achieve? Usage scenario

Tracking pixels Widely used ad providers and web
tracking services

Learn that user visiting site A is the
same as user visiting site B

Large-scale creation of low-entropy user
profiles

Social media
fingerprinting

Arbitrary website provider Learn into which sites the victim is
logged in

Large-scale creation of low-entropy user
profiles

Cross-site
request forgery

Arbitrary website provider Perform side effects on a target site
into which the victim is logged in

Abuse the victim’s authorization by act-
ing on her behalf

Leaky images Arbitrary website provider Precisely identify the victim Targeted, fine-grained deanonymization

a link to a website with additional material. If and when
a reviewer visits that page, while being logged into one of
the image sharing services, the leaky image will reveal to
the attacker who is reviewing the paper. The prerequisite
for all these attacks is that the victim has an account at a
vulnerable image sharing service and that the attacker is al-
lowed to share an image with the victim. We found at least
three highly popular services (Google, Microsoft Live, and
Dropbox) that allow sharing images with any registered user,
making it straightforward to implement the above scenarios.

The leak is possible because images are exempted from
the same-origin policy, and because image sharing services
authenticate users through cookies. When the browser makes
a third-party image request, it attaches the user’s cookie of
the image sharing website to it. If the decision of whether
to authorize the image request is cookie-dependent, then the
attacker can infer the user’s identity by observing the success
of the image request. Related work discusses the dangers of
exempting JavaScript from the same-origin policy [24], but
to the best of our knowledge, there is no work discussing the
privacy implications of observing the result of cross-origin
requests to privately shared images.

Leaky images differ from previously known threats by
enabling arbitrary website providers to precisely identify a
victim (Table 1). One related technique are tracking pix-
els, which enable tracking services to determine whether
two visitors of different sites are the same user. Most third-
party tracking is done by a few major players [13], allowing
for regulating the way these trackers handle sensitive data.
In contrast, our attack enables arbitrary attackers and small
websites to perform targeted privacy attacks. Another related
technique is social media fingerprinting, where the attacker
learns whether a user is currently logged into a specific web-
site.1 In contrast, leaky images reveal not only whether a user
is logged in, but precisely which user is logged in. Leaky im-
ages resemble cross-site request forgery (CSRF) [33], where
a malicious website performs a request to a target site on be-
half of the user. CSRF attacks typically cause side effects
on the server, whereas our attack simply retrieves an image.

1See https://robinlinus.github.io/
socialmedia-leak/ or https://browserleaks.com/
social.

We discuss in Section 5 under what conditions defenses pro-
posed against CSRF, as well as other mitigation techniques,
can reduce the risk of privacy leaks due to leaky images.

To understand how widespread the leaky images problem
is, we study 30 out of the 250 most popular websites. We
create multiple user accounts on these websites and check
whether one user can share a leaky image with another user.
The attack is possible if the shared image can be accessed
through a link known to all users sharing the image, and if
access to the image is granted only to certain users. We find
that at least eight of the 30 studied sites are affected by the
leaky images privacy leak, including some of the most pop-
ular sites, such as Facebook, Google, Twitter, and Dropbox.
We carefully documented the steps for creating leaky images
and reported them as privacy violations to the security teams
of the vulnerable websites. In total, we informed eight web-
sites about the problem, and so far, six of the reports have
been confirmed, and for three of them we have been awarded
bug bounties. Most of the affected websites are in the pro-
cess of fixing the leaky images problem, and some of them,
e.g., Facebook and Twitter, have already deployed a fix.

In summary, this paper makes the following contributions:

• We present leaky images, a novel targeted privacy at-
tack that abuses image sharing services to determine
whether a victim visits an attacker-controlled website.

• We discuss variants of the attack that aim at individual
users, groups of users, that allow an attacker to link user
identities across image sharing services, and that do not
require any JavaScript.

• We show that eight popular websites, including Face-
book, Twitter, Google, and Microsoft Live are affected
by leaky images, exposing their users to be identified on
third-party websites.

• We propose several ways to mitigate the problem and
discuss their benefits and weaknesses.

2 Image Sharing in the Web

Many popular websites, including Dropbox, Google Drive,
Twitter, and Facebook, enable users to upload images and to

924 28th USENIX Security Symposium USENIX Association

share these images with a well-defined set of other users of
the same site. Let i be an image, U be the set of users of an
image sharing service, and let ui

owner ∈U be the owner of i.
By default, i is not accessible to any other users than ui

owner.
However, an owner of an image can share the image with a
selected subset of other users U i

shared ⊆U , which we define
to include the owner itself. As a result, all users u ∈U i

shared ,
but no other users of the service and no other web users, have
read access to i, i.e., can download the image via a browser.

Secret URLs To control which users can access an image,
there are several implementation strategies. One strategy is
to create a secret URL for each shared image, and to provide
this URL only to users allowed to download the image. In
this scenario, there is a set of URLs Li (L stands for “links”)
that point to a shared image i. Any user who knows a URL
li ∈ Li can download i through it. To share an image i with
multiple users, i.e., |U i

shared | > 1, there are two variants of
implementing secret URLs. On the one hand, each user u
may obtain a personal secret URL li

u for the shared image,
which is known only to u and not supposed to be shared with
anyone. On the other hand, all users may share the same
secret URL, i.e., Li = {li

shared}. A variant of secret URLs
are URLs that expire after a given amount of time or after a
given number of uses. We call these URLs session URLs.

Authentication Another strategy to control who accesses
an image is to authenticate users. In this scenario, the image
sharing service checks for each request to i whether the re-
quest comes from a user in U i

shared . Authentication may be
used in combination with secret URLs. In this case, a user
u may access an image i only if she knows a secret URL li

and if she is authenticated as u ∈U i
shared . The most common

way to implement authentication in image sharing services
are cookies. Once a user logs into the website of an im-
age sharing service, the website stores a cookie in the user’s
browser. When the browser requests an image, the cookie
is sent along with the request to the image sharing service,
enabling the server-side of the website to identify the user.

Image Sharing in Practice Different real-world image
sharing services implement different strategies for control-
ling who may access which image. For example, Facebook
mostly uses secret URLs, which initially created confusion
among users due to the apparent lack of access control2.
Gmail relies on a combination of secret URLs and authen-
tication to access images attached to emails. Deciding how
to implement image sharing is a tradeoff between several
design goals, including security, usability, and performance.
The main advantage of using secret URLs only is that third-
party content delivery networks may deliver images, without

2https://news.ycombinator.com/item?id=13204283

any cross-domain access control checks. A drawback of se-
cret URLs is that they should not be used over non-secret
channels, such as HTTP, since these channels are unable to
protect the secrecy of requested URLs. The main advantage
of authentication is to not require links to be secret, enabling
them to be sent over insecure channels. On the downside,
authentication-based access control makes using third-party
content delivery networks harder, because cookie-based au-
thentication does not work across domains.

Same-Origin Policy The same-origin policy regulates to
what extent client-side scripts of a website can access the
document object model (DOM) of the website. As a default
policy, any script loaded from one origin is not allowed to
access parts of the DOM loaded from another origin. Ori-
gin here means the URI scheme (e.g., http), the host name
(e.g., facebook.com), and the port number (e.g., 80). For ex-
ample, the default policy implies that a website evil.com that
embeds an iframe from facebook.com cannot access those
parts of the DOM that have been loaded from facebook.com.
There are some exceptions to the default policy described
above. One of them, which is crucial for the leaky images
attack, are images loaded from third parties. In contrast to
other DOM elements, a script loaded from one origin can ac-
cess images loaded from another origin, including whether
the image has been loaded at all. For the above example,
evil.com is allowed to check whether an image requested
from facebook.com has been successfully downloaded.

3 Privacy Attacks via Leaky Images

This section presents a series of attacks that can be mounted
using leaky images. At first, we describe the conditions
under which the attack is possible (Section 3.1). Then,
we present a basic attack that targets individual users (Sec-
tion 3.2), a variant of the attack that targets groups of users
(Section 3.3), and an attack that links identities of an indi-
vidual registered at different websites (Section 3.4). Next,
we show that the attack relies neither on JavaScript nor CSS,
but can be performed by a purely HTML-based website (Sec-
tion 3.5). Finally, we discuss how leaky images compare to
previous privacy-related issues, such as web tracking (Sec-
tion 3.6).

3.1 Attack Surface
Our attack model is that an attacker wants to determine
whether a specific victim is visiting an attacker-controlled
website. This information is important from a privacy point
of view and usually not available to operators of a web-
site. An operator of a website may be able to obtain some
information about clients visiting the website, e.g., the IP
and the browser version of the client. However, this in-
formation is limited, e.g., due to multiple clients sharing

USENIX Association 28th USENIX Security Symposium 925

Table 2: Conditions that enable leaky image attacks.
URL of image

Authenti-
cation (e.g.,
cookies)

Publicly known Secret URL
shared among
users

Per-user
secret
URL

Yes (1) Leaky image (2) Leaky image (3) Secure
No (4) Irrelevant (5) Secure (6) Secure

the same IP or the same browser version, and often insuf-
ficient to identify a particular user with high confidence.
Moreover, privacy-aware clients may further obfuscate their
traces, e.g., by using the Tor browser, which hides the IP and
other details about the client. Popular tracking services, such
as Google Analytics, also obtain partial knowledge about
which users are visiting which websites. However, the use of
this information is legally regulated, available to only a few
tracking services, and shared with website operators only in
anonymized form. In contrast, the attack considered here en-
ables an arbitrary operator of a website to determine whether
a specific person is visiting the website.

Leaky image attacks are possible whenever all of the fol-
lowing four conditions hold. First, we assume that the at-
tacker and the victim are both users of the same image shar-
ing service. Since many image sharing services provide pop-
ular services beyond image sharing, such as email or a social
network, their user bases often cover a significant portion of
all web users. For example, Facebook announced that it has
more than 2 billion registered users3, while Google reported
to have more than 1 billion active Gmail users each month4.
Moreover, an attacker targeting a specific victim can simply
register at an image sharing service where the victim is reg-
istered. Second, we assume that the attacker can share an
image with the victim. For many image sharing services,
this step involves nothing more than knowing the email ad-
dress or user name of the victim, as we discuss in more de-
tail in Section 4. Third, we assume that the victim visits
the attacker-controlled website while the victim’s browser is
logged into the image sharing service. Given the popularity
of some image sharing services and the convenience of being
logged in at all times, we believe that many users fulfill this
condition for at least one image sharing service. In particular,
in Google Chrome and the Android operating system, users
are encouraged immediately after installation to login with
their Google account and to remain logged in at all times.

The fourth and final condition for leaky images concerns
the way an image sharing service determines whether a re-
quest for an image is from a user supposed to view that im-
age. Table 2 shows a two-dimensional matrix of possible

3https://techcrunch.com/2017/06/27/
facebook-2-billion-users/

4https://www.businessinsider.de/
gmail-has-1-billion-monthly-active-users-2016-2

implementation strategies, based on the description of secret
URLs and authentication-based access control in Section 2.
In one dimension, a website can either rely on authentication
or not. In the other dimension, the site can make an im-
age available through a publicly known URL, a secret URL
shared among the users allowed to access the image, or a
per-user secret URL. Out of the six cases created by these
two dimensions, five are relevant in practice. The sixth case,
sharing an image via a publicly known URL without any
authentication, would make the image available to all web
users, and therefore is out of the scope of this work. The
leaky image attack works in two of the five possible cases
in Table 2, cases 1 and 2. Specifically, leaky images are en-
abled by sites that protect shared images through authenti-
cation and that either do not use secret URLs at all or that
use a single secret URL per shared image. Section 4 shows
that these cases occur in practice, and that they affect some
of today’s most popular websites.

3.2 Targeting a Single User

After introducing the prerequisites for leaky images, we now
describe several privacy attacks based on them. We start with
a basic version of the attack, which targets a single victim
and determines whether the victim is visiting an attacker-
controlled website. To this end, the attacker uploads an im-
age i to the image sharing service and therefore becomes the
owner of the image, i.e., uattacker = ui

owner. Next, the attacker
configures the image sharing service to share i with the vic-
tim user uvictim. As a result, the set of users allowed to ac-
cess the image is U i

shared = {uattacker,uvictim}. Then, the at-
tacker embeds a request for i into the website s for which
the attacker wants to determine whether the victim is visit-
ing the site. Because images are exempted from the same-
origin policy (Section 2), the attacker-controlled parts of s
can determine whether the image gets loaded successfully
and report this information back to the attacker. Once the
victim visits s, the image request will succeed and the at-
tacker knows that the victim has visited s. If any other client
visits s, though, the image request fails because s cannot au-
thenticate the client as a user in U i

shared . We assume that the
attacker does not visit s, as this might mislead the attacker to
believe that the victim is visiting s.

Because the authentication mechanism of the image shar-
ing service ensures that only the attacker and the victim can
access the image, a leaky image attack can determine with
100% accuracy whether the targeted victim has visited the
site. At the same time, the victim may not notice that she
was tracked, because the image can be loaded in the back-
ground.

For example, Figure 1 shows a simple piece of HTML
code with embedded JavaScript. The code requests a leaky
image, checks whether the image is successfully loaded, and
sends this information back to the attacker-controlled web

926 28th USENIX Security Symposium USENIX Association

1 <script>
2 window.onload = function() {
3 var img = document.getElementById("myPic");
4 img.src = "https://imgsharing.com/leakyImg.png";
5 img.onload = function() {
6 httpReq("evil.com", "is the target");
7 }
8 img.onerror = function() {
9 httpReq("evil.com", "not the target");

10 }
11 }
12 </script>
13

Figure 1: Tracking code included in the attacker’s website.

server via another HTTP request. We assume httpReq is a
method that performs such a request using standard browser
features such as XMLHttpRequest or innerHTML to
send the value of the second argument to the domain passed
as first argument. Alternatively to using onload to detect
whether the image has been loaded, there are several varia-
tions, which, e.g., checking the width or height of the loaded
image. As we show below (Section 3.5), the attack is also
possible within a purely HTML-based website, i.e., without
JavaScript.

The described attack works because the same-origin pol-
icy does not apply to images. That is, the attacker can in-
clude a leaky image through a cross-origin request into a
website and observe whether the image is accessible or not.
In contrast, requesting an HTML document does not cause a
similar privacy leak, since browsers implement a strict sep-
aration of HTML coming from different origins. A second
culprit for the attack’s success is that today’s browsers au-
tomatically include the victim’s cookie in third-party image
requests. As a result, the request passes the authentication
of the image sharing service, leaking the fact that the request
comes from the victim’s browser.

3.3 Targeting a Group of Users

The following describes a variant of the leaky images at-
tack that targets a group of users instead of a single user.
In this scenario, the attacker considers a group of n victims
and wants to determine which of these victims is visiting a
particular website.

As an example, consider a medium-scale spear phishing
campaign against the employees of a company. After prepar-
ing the actual phishing payload, e.g., personalized emails
or cloned websites, the attacker may include a set of leaky
images to better understand which victims interact with the
payload and in which way. In this scenario, leaky images
provide a user experience analysis tool for the attacker.

A naive approach would be to share one image ik (1 ≤
k ≤ n) with each of the n victims. However, this naive ap-

Request i1

Request i2 Request i2

Request i3 Request i3 Request i3 Request i3

u1 u2 u3 u4 u5 u6 u7 Other user

3 7

3 7 3 7

3 7 3 7 3 7 3 7

Figure 2: Binary search to identify individuals in a group of
users u1 to u7 through requests to leaky images i1 to i3.

proach does not scale well to larger sets of users: To track a
group of 10,000 users, the attacker needs 10,000 shared im-
ages and 10,000 image requests per visit of the website. In
other words, this naive attack has O(n) complexity, both in
the number of leaky images and in the number of requests.
For the above example, this naive way of performing the at-
tack might raise suspicion due to the degraded performance
of the phishing site and the increase in the number of net-
work requests.

To efficiently attack a group of users, an attacker can use
the fact that image sharing services allow sharing a single
image with multiple users. The basic idea is to encode each
victim with a bit vector and to associate each bit with one
shared image. By requesting the images associated with each
bit, the website can compute the bit vector of a user and de-
termine if the user is among the victims, and if yes, which
victim it is. This approach enables a binary search on the
group of users, as illustrated in Figure 2 for a group of seven
users. The website includes code that requests images i1, i2,
and i3, and then determines based on the availability of the
images which user among the targeted victims has visited
the website. If none of the images is available, then the user
is not among the targeted victims. In contrast to the naive
approach, the attack requires only O(log(n)) shared images
and only O(log(n)) image requests, enabling the attack on
larger groups of users.

In practice, launching a leaky image attack against a group
of users requires sharing a set of images with different sub-
sets of the targeted users. This process can be automated,
either through APIs provided by image sharing services or
through UI-level web automation scripts. However, this pro-
cess will most likely be website-specific which makes it ex-
pensive for attacking multiple websites at once.

3.4 Linking User Identities
The third attack based on leaky images aims at linking mul-
tiple identities that a single individual has at different image
sharing services. Let siteA and siteB be two image sharing
services, and let usiteA and usiteB be two user accounts, reg-
istered at the two image sharing services, respectively. The

USENIX Association 28th USENIX Security Symposium 927

1 <!-- Three users (u1, u2, u3) have access to two
2 images (i1, i2) as follows: u1 to (i1);
3 u2 to (i2); u3 to (i1, i2) -->
4 <object data="leaky-domain.com/i1.png">
5 <object data="evil.com?info=not_i1?sid=2342"/>
6 </object>
7 <object data="leaky-domain.com/i2.png">
8 <object data="evil.com?info=not_i2?sid=2342"/>
9 </object>

10
11 <object data="leaky-domain.com/invalidImg.png">
12 <object data="leaky-domain.com/invalidImg2.png">
13 <object data="leaky-domain.com/invalidImg3.png">
14 <object data="evil.com?info=loaded?sid=2342"/>
15 </object>
16 </object>
17 </object>

Figure 3: HTML-only variant of the leaky image group at-
tack. All the object tags should have the type property
set to image/png.

attacker wants to determine whether usiteA and usiteB belong
to the same individual. For example, this attack might be
performed by law enforcement entities to check whether a
user account that is involved in criminal activities matches
another user account that is known to belong to a suspect.

To link two user identities, the attacker essentially per-
forms two leaky image attacks in parallel, one for each image
sharing service. Specifically, the attacker shares an image
isiteA with usiteA through one image sharing service and an
image isiteB with usiteB through the other image sharing ser-
vice. The attacker-controlled website requests both isiteA and
isiteB. Once the targeted individual visits this site, both re-
quests will succeed and establish the fact that the users usiteA
and usiteB correspond to the same individual. For any other
visitors of the site, at least one request will fail because the
two requests only succeed if the browser is logged into both
user accounts usiteA and usiteB.

The basic idea of linking user accounts generalizes to
more than two image sharing services and to user accounts of
more than a single individual. For example, by performing
two attacks on groups of users, as described in Section 3.3,
in parallel, an attacker can establish pairwise relationships
between the two groups of users.

3.5 HTML-only Attack

The leaky image attack is based on the ability of a client-
side website to request an image and to report back to the
attacker-controlled server-side whether the request was suc-
cessful or not. One way to implement it is using client-side
JavaScript code, as shown in Figure 1. However, privacy-
aware users may disable JavaScript completely or use a se-
curity mechanism that prevents JavaScript code from reading
details about images loaded from different domains.

We present a variant of the leaky image attack imple-
mented using only HTML code, i.e., without any JavaScript
or CSS. The idea is to use the object HTML tag, which
allows a website to specify fallback content to be loaded if
there is an error in loading some previously specified con-
tent.5 When nesting such object elements, the browser
first requests the resource specified in the outer element, and
in case it fails, it performs a request to the inner element
instead. Essentially, this behavior corresponds to a logical
if-not instruction in pure HTML which an attacker may use
to implement the leaky image attack.

Figure 3 shows an example of this attack variant. We
assume that there are three users u1, u2, and u3 in the tar-
get group and that the attacker can share leaky images from
leaky-domain.com with each of them. The comment at the
beginning of Figure 3 specifies the exact sharing configu-
ration. We again need log(n) images to track n users, as
for the JavaScript-based attack against a group of users (Sec-
tion 3.3). We assume that the server-side generates the attack
code upon receiving the request, and that the generated code
contains a session ID as part of the reporting links point-
ing to evil.com. In the example, the session ID is 2342. Its
purpose is to enable the server-side code to link multiple re-
quests coming from the same client.

The main insight of this attack variant is to place a re-
quest to the attacker’s domain as fallbacks for leaky image
requests. For example, if the request to the leaky image i1
at line 4 fails, a request is made to evil.com for an alterna-
tive resource in line 5. This request leaks the information
that the current user cannot access i1, i.e., info=not i1.
By performing similar requests for all the leaky images, the
attacker leaks enough information for precisely identifying
individual users. For example, if in a given session, evil.com
receives not i1, but not not i1, the attacker can conclude
that the user is u2. Because the server-side infers the user
from the absence of requests, it is important to ensure that
the current tracking session is successfully completed before
drawing any conclusions. Specifically, we must ensure that
the user or the browser did not stop the page load before all
the nested object tags were evaluated. One way to ensure
this property is to add a sufficiently high number of nested
requests to non-existent images in lines 11 to 13 followed by
a request that informs the attacker that the tracking is com-
pleted, in line 14. The server discards every session that does
not contain this last message.

As a proof of concept, we tested the example attack and
several variants of it in the newest Firefox and Chrome
browsers and find the HTML-only attack to work as ex-
pected.

5https://html.spec.whatwg.org/multipage/
iframe-embed-object.html#the-object-element

928 28th USENIX Security Symposium USENIX Association

3.6 Discussion

Tracking pixels Leaky images are related to the widely
used tracking pixels, also called web beacons [14, 8, 47],
but both differ regarding who learns about a user’s iden-
tity. A tracking pixel is a small image that a website s loads
from a tracker website strack. The image request contains
the user’s cookie for strack, enabling the tracker to recognize
users across different page visits. As a result, the tracking
service can analyze which pages of s users visit and show
this information in aggregated form to the provider of s. If
the tracker also operates services where users register, it can
learn which user visits which site. In contrast, leaky images
enable the operator of a site s to learn that a target user is vis-
iting s, without relying on a tracker to share this information,
but by abusing an image sharing service. As for tracking pix-
els, an attacker can deploy leaky image attacks with images
of 1x1 pixel size to reduce its impact on page loading time.

Fingerprinting Web fingerprinting techniques [12, 29, 10,
22, 1, 2, 30] use high-entropy properties of web browsers,
such as the set of installed fonts or the size of the browser
window, to heuristically recognize users. Like fingerprint-
ing, leaky images aim at undermining the privacy of users.
Unlike fingerprinting, the attacks presented here enable an
attacker to determine specific user accounts, instead of rec-
ognizing that one visitor is likely to be the same as another
visitor. Furthermore, leaky images can determine a visitor’s
identity with 100% certainty, whereas fingerprinting heuris-
tically relies on the entropy of browser properties.

Targeted attacks versus large-scale tracking Leaky im-
ages are well suited for targeted attacks [37, 6, 26, 16], but
not for large-scale tracking of millions of users. One reason
is that leaky images require the attacker to share an image
with each victim, which is unlikely to scale beyond several
hundreds users. Another reason is that the number of image
requests that a website needs to perform increases logarith-
mically with the number of targeted users, as discussed in
Section 3.3. Hence, instead of aiming at large-scale tracking
in the spirit of tracking pixels or fingerprinting, leaky images
are better suited to target (sets of) individuals. However, this
type of targeted attacks is reported to be increasingly popu-
lar, especially when dealing with high-value victims [37].

4 Leaky Images in Popular Websites

The attacks presented in the previous section make several
assumptions. In particular, leaky images depend on how
real-world image sharing services implement access control
for shared images. To understand to what extent popular
websites are affected by the privacy problem discussed in
this paper, we systematically study the prevalence of leaky

images. The following presents our methodology (Sec-
tion 4.1), our main findings (Section 4.2), and discusses our
ongoing efforts toward disclosing the detected problems in a
responsible way (Section 4.3).

4.1 Methodology

Selection of websites To select popular image sharing ser-
vices to study, we examined the top 500 most popular web-
sites, according to the “Top Moz 500” list6. We focus on
websites that enable users to share data with each other. We
exclude sites that do not offer an English language interface
and websites that do not offer the possibility to create user
accounts. This selection yields a list of 30 websites, which
we study in more detail. Table 3 shows the studied websites,
along with their popularity rank. The list contains all of the
six most popular websites, and nine of the ten most popu-
lar websites. Many of the analyzed sites are social media
platforms, services for sharing some kind of data, and com-
munication platforms.

Image sharing One condition for our attacks is that an at-
tacker can share an image with a victim. We carefully ana-
lyze the 30 sites in Table 3 to check whether a site provides
an image sharing service. To this end, we create multiple
accounts on each site and attempt to share images between
these accounts using different channels, e.g., chat windows
or social media shares. Once an image is shared between two
accounts, we check if the two accounts indeed have access to
the image. If this requirement is met, we check that a third
account cannot access the image.

Access control mechanism For websites that act as image
sharing services, we check whether the access control of a
shared image is implemented in a way that causes leaky im-
ages, as presented in Table 2. Specifically, we check whether
the access to a shared image is protected by authentication
and whether both users access the image through a common
link, i.e., a link known to the attacker. A site that fulfills also
this condition exposes its users to leaky image attacks.

4.2 Prevalence of Leaky Images in the Wild

Among the 30 studied websites, we identify a total of eight
websites that suffer from leaky images. As shown in Table 3
(column “Leaky images”), the affected sites include the three
most popular sites, Facebook, Twitter, and Google, and rep-
resent over 25% of all sites that we study. The following
discusses each of the vulnerable sites in detail and explains
how an attacker can establish a leaky image with a target
user. Table 4 summarizes the discussion in a concise way.

6https://moz.com/top500

USENIX Association 28th USENIX Security Symposium 929

Table 3: List of analyzed websites, whether they suffer from
leaky images, and how the respective security teams have
reacted to our notifications about the privacy leak.
Rank Domain Leaky Confirmed Fix Bug

images bounty

1 facebook.com yes yes yes yes
2 twitter.com yes yes yes yes
3 google.com yes yes planned no
4 youtube.com no
5 instagram.com no
6 linkedin.com no
8 pinterest.com no
9 wikipedia.org no

10 wordpress.com yes no no no
15 tumblr.com no
18 vimeo.com no
19 flickr.com no
25 vk.com no
26 reddit.com no
33 blogger.com no
35 github.com yes no no no
39 myspace.com no
54 stumbleupon.com no
65 dropbox.com yes yes planned yes
71 msn.com no
72 slideshare.net no
91 typepad.com no

126 live.com yes yes planned no
152 spotify.com no
160 goodreads.com no
161 scribd.com no
163 imgur.com no
166 photobucket.com no
170 deviantart.com no
217 skype.com yes yes planned no

Facebook Images hosted on Facebook are in general de-
livered by content delivery networks not hosted at the face-
book.com domain, but, e.g., at fbcdn.net. Hence, the fact
that facebook.com cookie is not sent along with requests
to shared images disables the leaky image attacks. How-
ever, we identified an exception to this rule, where a leaky
image can be placed at https://m.facebook.com/
photo/view_full_size/?fbid=xxx. The fbid
is a unique identifier that is associated with each picture on
Facebook, and it is easy to retrieve this identifier from the
address bar of an image page. The attacker must gather this
identifier and concatenate it with the leaky image URL given
above. By tweaking the picture’s privacy settings, the at-
tacker can control the subset of friends that are authorized to
access the image, opening the door for individual and group
attacks. A prerequisite of creating a leaky image on Face-
book is that the victim is a “friend” of the attacker.

Twitter Every image sent in a private chat on Twitter is a
leaky image. The victim and the attacker can exchange mes-
sages on private chats, and hence send images, if one of them
checked “Receive direct messages from anyone” in their set-
tings or if one is a follower of the other. An image sent on
a private chat can only be accessed by the two participants,
based on their login state, i.e., these images are leaky images.
The attacker can easily retrieve the leaky image URL from
the conversation and include it in another page. A limitation
of the attack via Twitter is that we are currently not aware of
a way of sharing an image with multiple users at once.

Google We identified two leaky image channels on
Google’s domains: one in the thumbnails of Google Drive
documents and one in Google Hangouts conversations. To
share documents with the victim, an attacker only needs the
email address of the victim, while in order to send Hangouts
messages, the victim needs to accept the chat invitation from
the attacker. The thumbnail-based attack is more powerful
since it allows to easily add and remove users to the group
of users that have access to an image. Moreover, by unse-
lecting the “Notify people” option when sharing, the victim
users are not even aware of this operation. An advantage
of the Hangouts channel, though, is that the victim has no
way to revoke its rights to the leaky image, once the image
has been received in a chat, as opposed to Drive, where the
victim can remove a shared document from her cloud.

Wordpress To create a leaky image via Wordpress, the at-
tacker needs to convince the victim to become a reader of
his blog, or the other way around. Once this connection is
established, every image posted on the shared private blog is
a leaky image between the two users. Fulfilling this strong
prerequisite may require non-trivial social engineering.

GitHub Private repositories on GitHub enable
leaky images. Once the victim and the attacker
share such a repository, every committed image
can be accessed through a link in the web inter-
face, e.g., https://github.com/johndoe/
my-awesome-project/raw/master/car.jpg.
Only users logged into GitHub who were granted access to
the repository my-awesome-project can access the image.
To control the number of users that have access to the image,
the attacker can remove or add contributors to the project.

Dropbox Every image uploaded on Dropbox can be ac-
cessed through a leaky image endpoint by appending the
HTTP parameter dl=1 to a shared image URL. Dropbox
allows the attacker to share such images with arbitrary email
addresses and to fine-tune the permissions to access the im-
age by including and excluding users at any time. Once the
image is shared, our attack can be successfully deployed,

930 28th USENIX Security Symposium USENIX Association

Table 4: Leaky images in popular websites, the attack’s preconditions, the image sharing channel and the implemented authen-
tication mechanism as introduced in Table 2
Domain Prerequisites Image sharing channel Authentication mechanism

facebook.com Victim and attacker are ”friends” Image sharing (5), (2)
twitter.com Victim and attacker can exchange messages Private message (2)
google.com None Google Drive document (3), (2)

Private message
wordpress.com Victim is a viewer of the attacker’s private blog Posts on private blogs (2)
github.com Victim and attacker share a private repository Private repository (3), (2)
dropbox.com None Image sharing (3), (6), (2)
live.com None Shared folder on OneDrive (3), (2)
skype.com Victim and attacker can exchange messages Private message (2)

without requiring the victim to accept the shared image.
However, the victim can revoke its rights to access an image
by removing it from the “Sharing” section of her account.

Live.com Setting up a leaky image on One Drive, a cloud
storage platform available on a live.com subdomain, is very
similar to the other two file sharing services that we study,
Google Drive and Dropbox. The attacker can share images
with arbitrary email addresses and the victim does not need
to acknowledge the sharing. Moreover, the attacker can eas-
ily deploy a group attack due to the ease in changing the
group of users that have access to a particular image.

Skype In the Skype web interface, every image sent in a
chat is a leaky image. Note that most of the users probably
access the service through a desktop or mobile standalone
client, hence the impact of this attack is limited to the web
users. Moreover, Skype automatically logs out the user from
time to time, limiting the time window for the attack.

Our study of leaky images in real-world sites enables several
observations.

Leaky images are prevalent The first and perhaps most
important observation is that many of the most popular web-
sites allow an attacker to create leaky images. From an at-
tacker’s point of view, a single leaky image is sufficient to
track a user. If a victim is registered as a user with at least
one of the affected image sharing services, then the attacker
can create a user account at that service and share a leaky
image with the victim.

Victims may not notice sharing a leaky image Several
of the affected image sharing services enable an attacker to
share an image with a specific user without any notice given
to the user. For example, if the attacker posts an image on
her Facebook profile and tweaks the privacy settings so that
only the victim can access it, then the victim is not informed
in any way. Another example is Google Drive, which allows
sharing files with arbitrary email addresses while instructing
the website to not send an email that informs the other user.

Victims cannot “unshare” a leaky image For some ser-
vices, the victim gets informed in some way that a connec-
tion to the attacker has been established. For example, to set
up a leaky image on Twitter, the attacker needs to send a pri-
vate message to the victim, which may make the victim sus-
picious. However, even if the victim knows about the shared
image, for most websites, there is no way for a user to re-
voke its right to access the image. Specifically, let’s assume
the victim receives a cute cat picture from a Google Hang-
outs contact. Let us now assume that the victim is aware of
the leaky image attack and that she suspects the sender of the
image tracking her. We are not aware of any way in which
the victim can revoke the right to access the received image.

Image sharing services use a diverse mix of implemen-
tation strategies Secret URLs and per-user authenticated
URLs are widely implemented techniques that protects
against our attack. However, many websites use multiple
such strategies and hence, it is enough if one of the API end-
points uses leaky images. Identifying this endpoint is often
a hard task: for example, in the case of Facebook, most of
the website rigorously implements secret URLs, but one API
endpoint belonging to a mobile subdomain exposes leaky im-
ages. After identifying this endpoint we realized that it can
be accessed without any problem from a desktop browser as
well, enabling all the attacks we describe in Section 3.

The attack surface varies from site to site Some but not
all image sharing services require a trust relation between the
attacker and the victim before a leaky image can be shared.
For example, an attacker must first befriend a victim on Face-
book before sharing an image with the victim, whereas no
such requirement exists on Dropbox or Google Drive. How-
ever, considering that most users have hundreds of friends on
social networks, there is a good chance that a trust channel is
established before the attack starts. In the case of Wordpress
the prerequisite that the ”victim is a viewer of the attacker’s
private blog” appears harder to meet and may require ad-
vanced social engineering. Nonetheless, we believe that such
leaky images may still be relevant in certain targeted attacks.

USENIX Association 28th USENIX Security Symposium 931

Moreover, three of the eight vulnerable sites allow attackers
to share images with arbitrary users, without any prerequi-
sites (Table 4).

Since our study of the prevalence of leaky images is mostly
manual, we cannot guarantee that the 22 sites for which we
could not create a leaky image are not affected by the prob-
lem. For some sites, though, we are confident that they
are not affected, as these sites do not allow users to upload
images. A more detailed analysis would require in-depth
knowledge of the implementation of the studied sites, and
ideally also access to the server-side source code. We hope
that our results will spur future work on more automated
analyses that identify leaky images.

4.3 Responsible Disclosure and Feedback
from Image Sharing Services

After identifying image sharing services that suffer from
leaky images, we contacted their security teams to disclose
the problem in a responsible way. Between March 26 and
March 29, 2018, we sent a detailed description of the gen-
eral problem, how the specific website can be abused to cre-
ate leaky images, and how it may affect the privacy of users
of the site. Most security teams we contacted were very re-
sponsive and eager to collaborate upon fixing the issue.

Confirmed reports The last three columns of Table 3 sum-
marize how the security teams of the contacted companies
reacted to our reports. For most of the websites, the security
teams confirmed that the reported vulnerability is worth fix-
ing, and at least six of the sites have already fixed the prob-
lem or have decided to fix it. In particular, the top three
websites all confirmed the reported issue and all have been
working on fixing it. Given the huge user bases of these
sites and the privacy implications of leaky images for their
users, this reaction is perhaps unsurprising. As another sign
of appreciation of our reports, the authors have received bug
bounties from (so far) three of the eight affected sites.

Dismissed reports Two of our reports were flagged as
false positives. The security teams of the corresponding web-
sites replied by saying that leaky images are a “desired be-
havior” or that the impact on privacy of their user is limited.
Comparing Table 3 with Table 4 shows that the sites that dis-
miss our report are those where the prerequisites for creating
a leaky image are harder to fulfill than for the other sites:
Creating a leaky image on GitHub requires the attacker and
the victim to share a private repository, and Wordpress re-
quires that the victim is a viewer of the attacker’s private
blog. While we agree that the attack surface is relatively
small for these two sites, leaky images may nevertheless
cause surprising privacy leaks. For example, an employee

might track her colleagues or even her boss if their company
uses private GitHub repositories.

Case study: Fix by Facebook To illustrate how image
sharing services may fix a leaky images problem, we de-
scribe how Facebook addressed the problem in reaction to
our report. As mentioned earlier, Facebook employs mostly
secret URLs and uses content delivery networks to serve im-
ages. However, we were able to identify a mobile API end-
point that uses leaky images and redirects the user to the cor-
responding content delivery network link. This endpoint is
used in the mobile user interface for enabling users to down-
load the full resolution version of an image. The redirec-
tion was performed at HTTP level, hence it resulted in a suc-
cessful image request when inserted in a third-party website
using the <a> HTML tag. The fix deployed by Facebook
was to perform a redirection at JavaScript level, i.e. load an
intermediate HTML that contains a JavaScript snippet that
rewrites document.location.href. This fix enables a
benign user to still successfully download the full resolution
image through a browser request, but disables third-party im-
age inclusions. However, we believe that such a fix does not
generalize and cannot be deployed to the other identified vul-
nerabilities. Hence, we describe alternative ways to protect
against a leaky image attacks in Section 5.

Case study: Fix by Twitter A second case study of how
websites can move away from leaky images comes from
Twitter that changed its API7 in response to our report8.
First, they disabled cookie-based authentication for images.
Second, they changed the API in a way that image URLs are
only delivered on secure channels, i.e., only authenticated
HTTPS requests. Last, Twitter also changed the user inter-
face to only render images from strangers when explicit con-
sent is given. Essentially, Twitter moved from implementa-
tion strategy (2) to (5) in Table 2 in response to our report.

Overall, we conclude from our experience of disclosing
leaky images that popular websites consider it to be a serious
privacy problem, and that they are interested in detecting and
avoiding leaky images.

5 Mitigation Techniques

In this section, we describe several techniques to defend
against leaky image attacks. The mitigations range from
server-side fixes that websites can deploy, over improved pri-
vacy settings that empower users to control what is shared
with them, to browser-based mitigations.

7https://twitter.com/TwitterAPI/status/
1039631353141112832

8https://hackerone.com/reports/329957

932 28th USENIX Security Symposium USENIX Association

5.1 Server-Side Mitigations

The perhaps easiest way to defend against the attack pre-
sented in this paper is to modify the server-side implemen-
tation of an image sharing service, so that it is not possible
anymore to create leaky images. There are multiple courses
of actions to approach this issue.

First, a controversial fix to the problem is to disable au-
thenticated image requests altogether. Instead of relying on,
e.g., cookies to control who can access an image, an image
sharing service could deliver secret links only to those users
that should access an image. Once a user knows the link
she can freely get the image through the link, independent
of whether she is logged into the image sharing service or
not. This strategy corresponds to case 5 in Table 2. Multiple
websites we report about in Table 3 implement such an image
sharing strategy. The most notable examples are Facebook,
which employs this technique in most parts of their website,
and Dropbox, which implements this technique as part of
their link sharing functionality. The drawback of this fix is
that the link’s secrecy might be compromised in several ways
outside of the control of the image sharing service: by using
insecure channels, such as HTTP, through side-channel at-
tacks in the browser, such as cache attacks [20], or simply by
having the users handle the links in an insecure way because
they are not aware of the secrecy requirements.

Second, an alternative fix is to enforce an even stricter
cookie-based access control on the server-side. In this case,
the image sharing service enforces that each user accesses a
shared image through a secret, user-specific link that is not
shared between users. As a result, the attacker does not know
which link the victim could use to access a shared image, and
therefore the attacker cannot embed such a link in any web-
site. This implementation strategy corresponds to case 3 in
Table 2. On the downside, implementing this defense may
prove challenging due to the additional requirement of guar-
anteeing the mapping between users and URLs, especially
when content delivery networks are involved. Additionally,
it may cause a slowdown for each image request due to the
added access control mechanism.

Third, one may deploy mitigations against CSRF.9 One of
them is to use the origin HTTP header to ensure that the
given image can only be embedded on specific websites. The
origin HTTP header is sent automatically by the browser
with every request, and it precisely identifies the page that
requests a resource. The server-side can check the request’s
origin and refuse to respond with an authenticated image
to unknown third-party request. For example, facebook.com
could refuse to respond with a valid image to an HTTP re-
quest with the origin set to evil.com. However, this mit-
igation cannot defend against tracking code injected into a
trusted domain. For example, until recently Facebook al-

9https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

lowed users to post custom HTML code on their profile page.
If a user decides to insert leaky image-based tracking code on
the profile page, to be notified when a target user visits the
profile page, then the CSRF-style mitigation does not pre-
vent the attack. The reason for this is that the request’s ori-
gin would be set to facebook.com, and hence the server-side
code will trust the page and serve the image.

Similarly, the server-side can set the
Cross-Origin-Resource-Policy response header
on authenticated image requests and thus limit which
websites can include a specific image. Browsers will only
render images for which the origin of the request matches
the origin of the embedding website or if they correspond
to the same site. This solution is more coarse-grained than
the previously discussed origin checking since it does not
allow for cross-origin integration of authenticated images,
but it is easier to deploy since it only requires a header set
instead of a header check. The From-Origin header
was proposed for allowing a more fine-grained integration
policy, but to this date there is no interest from browser
vendors side to implement such a feature.

Another applicable CSRF mitigation is the SameSite
cookie attribute. When set to “strict” for a cookie, the at-
tribute prevents the browser from sending the cookie along
with cross-site requests, which effectively prevents leaky im-
ages. However, the “strict” setting may be too strict for most
image sharing services, because it affects all links to the ser-
vice’s website. For example, a link in a corporate email to a
private GitHub project or to a private Google Doc would not
work anymore, because when clicking the link, the session
cookie is not sent along with the request. The less restric-
tive “lax” setting of the SameSite attribute does not suffer
from these problems, but it also does not prevent leaky im-
ages attacks, as it does not affect GET requests.

A challenge with all the described server-side defenses is
that they require the developers to be aware of the vulner-
ability in the first place. From our experience, a complex
website may allow sharing images in several ways, possibly
spanning different UI-level user interactions and different
API endpoints supported by the image sharing service. Since
rigorously inspecting all possible ways to share an image is
non-trivial, we see a need for future work on automatically
identifying leaky images. At least parts of the methodology
we propose could be automated with limited effort. To check
whether an image request requires authentication, one can
perform the request in one browser where the user is logged
in, and then try the same request in another instance of the
browser in “private” or “incognito” mode, i.e., without being
logged in. Comparing the success of the two requests reveals
whether the image request relies in any form of authentica-
tion, such as cookies. Automating the rest of our method-
ology requires some support by image sharing services. In
particular, automatically checking that a leaky image is ac-
cessible only by a subset of a website’s users, requires APIs

USENIX Association 28th USENIX Security Symposium 933

to handle user accounts and to share images between users.
Despite the challenges in identifying leaky images, we

believe that server-side mitigations are the most straightfor-
ward solution, at least in the short term. In the long term,
a more complete solution would be desirable, such as those
described in the following.

5.2 Browser Mitigations
The current HTTP standard does not specify a policy for
third-party cookies10, but it encourages browser vendors to
experiment with different such policies. More precisely, the
current standard lets the browser decide whether to automat-
ically attach the user’s cookie to third-party requests. Most
browsers decide to attach third-party cookies, but there are
certain counter-examples, such as the Tor browser. In Tor,
cookies are sent only to the domain typed by the user in the
address bar.

Considering the possible privacy implications of leaky im-
ages and other previously reported tracking techniques [8],
one possible mitigation would be that browsers specify as
default behavior to not send cookies with third-party (image)
requests. If this behavior is overwritten, possibly using a spe-
cial HTTP header or tag, the user should be informed through
a transparent mechanism. Moreover, the user should be of-
fered the possibility to prevent the website from overwriting
the default behavior. We believe this measure would be in
the spirit of the newly adopted European Union’s General
Data Protection Regulation which requires data protection
by design and by default. However, such an extreme move
may impact certain players in the web ecosystem, such as the
advertisement ecosystem. To address this issue, advertisers
may decide to move towards safer distribution mechanisms,
such as the one popularized by the Brave browser.

An alternative to the previously discussed policy is to al-
low authenticated image requests, but only render them if the
browser is confident that there are no observable differences
between an authenticated request and a non-authenticated
one. To this end, the browser could perform two image re-
quests instead of one: one request with third-party cookies
and one request without. If the browser receives two equiv-
alent responses, it can safely render the content, since no
sensitive information is leaked about the authenticated user.
This solution would still allow most of the usages of third-
party cookies, e.g. tracking pixels, but prevent the leaky im-
age attack described here. A possible downside might be the
false positives due to strategy (3) in Table 2, but we hypoth-
esize that requests to such images rarely appear in benign
third-party image requests. A second possible drawback of
this solution may be the increase in web traffic and the po-
tential performance penalties. Future work should test the
benefits of this defense and the cost imposed by the addi-
tional image request.

10https://tools.ietf.org/html/rfc6265#page-28

To reduce the cost imposed by an additional image re-
quest, a hybrid mechanism could disable authenticated im-
age requests by default, and allow them only for the re-
sources specified by a CSP directive. For the allowed au-
thenticated images, the browser deploys the double image
requests mechanism described earlier. We advocate this as
our preferred browser-level defense since it can also defend
against other privacy attacks, e.g. reading third-party image
pixels through a side channel [21], while still permitting be-
nign uses.

Similarly to ShareMeNot [32], one can also implement a
browser mechanism in which all third-party image requests
are blocked unless the user authorizes them by providing ex-
plicit consent. To release the burden from the user, a hybrid
mechanism can be deployed in which the website requires
authenticated requests only for a subset of images for which
the user needs to provide consent.

Another solution for when third-party cookies are allowed
is for browsers to implement some form of information flow
control to ensure that the fact whether a third-party request
was successfully loaded or not, cannot be sent outside of
the browser. A similar approach is deployed in tainted can-
vas11, which disallows pixel reads after a third-party image
is painted on the canvas. Implementing such an information
flow control for third-party images may, however, be chal-
lenging in practice, since the fact whether an image has suc-
cessfully loaded or not can be retrieved through multiple side
channels, such as the object tag or by reading the size of
the contained div.

The mechanisms described in this section vary both in
terms of implementation effort required for deploying them
and in terms of their possible impact on the existing state of
the web, i.e., incompatibility with existing websites. There-
fore, to aid the browser vendors to take an informed decision,
future work should perform an in-depth analysis of all these
defenses in terms of usability, compatibility and deployment
cost, in the style of Calzavara et al. [9], and possibly propose
additional solutions.

5.3 Better Privacy Control for Users
A worrisome finding of our prevalence study is that a user
has little control over the image sharing process. For exam-
ple, for some image sharing services, the user does not have
any option to restrict which other users can privately share an
image with her. In others, there is no way for a user to revoke
her right to access a specific image. Moreover, in most of the
websites we analyzed, it is difficult to even obtain a complete
list of images privately shared with the current account. For
example, a motivated user who wants to obtain this list must
check all the conversations in a messaging platform, or all
the images of all friends on a social network.

11https://html.spec.whatwg.org/multipage/canvas.
html#security-with-canvas-elements

934 28th USENIX Security Symposium USENIX Association

We believe that image sharing services should provide
users more control over image sharing policies, to enable
privacy-aware users to protect their privacy. Specifically, a
user should be allowed to decide who has the right to share
an image with her and she should be granted the right to re-
voke her access to a given image. Ideally, websites would
also offer the user a list of all the images shared with her and
a transparent notification mechanism that announces the user
when certain changes are made to this list. Empowering the
users with these tools may help mitigate some of the leaky
image attacks by attracting user’s attention to suspicious im-
age sharing, allowing users to revoke access to leaky images.

The privacy controls for web users presented in this sec-
tion will be useful mostly for advanced users, while the ma-
jority of the users are unlikely to take advantage of such fine-
grained controls. Therefore, we believe that the most effec-
tive mitigations against leaky images are at the server side or
browser level.

6 Related Work

Previous work shows risks associated with images on
the web, such as malicious JavaScript code embedded in
SVGs [17], image-based fingerprinting of browser exten-
sions [35], and leaking sensitive information, such as the
gender or the location of a user uploading an image [11].
This work introduces a new risk: privacy leaks due to shared
images. Lekies et al. [24] describe privacy leaks resulting
from dynamically generated JavaScript. The source of this
problem is the same as for leaky images: both JavaScript
code and images are excepted from the same-origin policy.
While privacy leaks in dynamic JavaScript reveal confiden-
tial information about the user, such as credentials, leaky im-
ages allow for tracking specific users on third-party websites.
Heiderich et al. [18] introduce a scriptless, CSS-based web
attacks. The HTML-only variant of leaky images does not
rely on CSS and also differ in the kinds of leaked informa-
tion: While the attack by Heiderich et al. leaks content of the
current website, our attacks leak the identity of the user.

Wondracek et al. [46] present a privacy leak in social net-
works related to our group attack. In their work, the attacker
neither has control over the group structure nor can she easily
track individuals. A more recent attack [41] deanonymizes
social media users by correlating links on their profiles with
browsing histories. In contrast, our attack does not require
such histories. Another recent attack [44] retrieves sensi-
tive information of social media accounts using the adver-
tisement API provided by a social network. However, their
attack cannot be used to track users on third-party websites.

Cross-Site Request Forgery (CSRF) is similar in spirit to
leaky image attacks: both rely on the fact that browsers send
cookies with third-party requests. For CSRF, this behav-
ior results in an unauthorized action on a third-party web-
site, whereas for leaky images, it results in deanonymizing

the user. Existing techniques for defending [5] and detect-
ing [31] CSRF partially address but do not fully solve the
problem of leaky images (Section 5).

Browser fingerprinting is a widely deployed [1, 2, 30] per-
sistent tracking mechanism. Various APIs have been pro-
posed for fingerprinting: user agent and fonts [12], can-
vas [29, 10], ad blocker usage, and WebGL Renderer [22].
Empirical studies [12, 22] suggest that these technique have
enough entropy to identify most of the users, or at least, to
place a user in a small set of possible users, sometimes even
across browsers [10]. The leaky image attack is complemen-
tary to fingerprinting, as discussed in detail in Section 3.6.

Another web tracking mechanism is through third-party
requests, such as tracking pixels. Mayer and Mitchell [27]
describe the tracking ecosystem and the privacy costs as-
sociated with these practices. Lerner et al. [25] show how
tracking in popular websites evolves over time. Several other
studies [42, 47, 13, 32, 8, 14] present a snapshot of the third-
party tracking on the web at various moments in time. One
of the recurring conclusion of these studies was that few big
players can track most of the traffic on the Internet. We
present the first image-based attack that allows a less pow-
erful attacker to deanonymize visitors of a website.

Targeted attacks or advanced persistent threats are an in-
creasingly popular class of cybersecurity incidents [37, 26].
Known attacks include spear phishing attacks [6] and tar-
geted malware campaigns [26, 16]. Leaky images adds a
privacy-related attack to the set of existing targeted attacks.

Several empirical studies analyze different security and
privacy aspects of websites in production: postMes-
sages [36], cookie stealing [4, 34], credentials theft [3],
cross-site scripting [28, 23], browser fingerprinting [30, 1],
deployment of CSP policies [45], and ReDoS vulnerabili-
ties [38]. User privacy can also be impacted by security
issues in browsers, such as JavaScript bindings bugs [7],
micro-architectural bugs [20], and insufficient isolation of
web content [19]. Neither of these studies explores privacy
leaks caused by authenticated cross-origin image requests.

Van Goethem et al. [43] propose the use of timing chan-
nels for estimating the file size of a cross-origin resource.
One could combine leaky images with such a channel to
check if a privately shared image is accessible for a particu-
lar user, enabling the use of leaky images even if the browser
would block cross-origin image requests. One difference
between our attack and theirs is that leaky images provide
100% certainty that a victim has visited a website, which a a
probabilistic timing channel cannot provide.

Several researchers document the difficulty of notifying
the maintainers of websites or open-source projects about se-
curity bugs in software [24, 40, 39]. We experienced quick
and helpful responses by all websites we contacted, with an
initial response within less than a week. One reason for this
difference may be that we used the bug bounty channels pro-
vided by the websites to report the problems [15, 48].

USENIX Association 28th USENIX Security Symposium 935

7 Conclusions

This paper presents leaky images, a targeted deanonymiza-
tion attack that leverages specific access control practices
employed in popular websites. The main insight of the at-
tack is a simple yet effective observation: Privately shared
resources that are exempted from the same origin policy can
be exploited to reveal whether a specific user is visiting an
attacker-controlled website. We describe several flavors of
this attack: targeted tracking of single users, group tracking,
pseudonym linking, and an HTML-only attack.

We show that some of the most popular websites suffer
from leaky images, and that the problem often affects any
registered users of these websites. We reported all the identi-
fied vulnerabilities to the security teams of the affected web-
sites. Most of them acknowledge the problem and some
already proceeded to fixing it. This feedback shows that
the problem we identified is important to practitioners. Our
paper helps raising awareness among developers and re-
searchers to avoid this privacy issue in the future.

Acknowledgments
Thanks to Stefano Calzavara and the anonymous reviewers for their
feedback on this paper. This work was supported by the German
Federal Ministry of Education and Research and by the Hessian
Ministry of Science and the Arts within CRISP, by the German Re-
search Foundation within the ConcSys and Perf4JS projects, and
by the Hessian LOEWE initiative within the Software-Factory 4.0
project.

References

[1] G. Acar, C. Eubank, S. Englehardt, M. Juárez,
A. Narayanan, and C. Dı́az, “The web never forgets:
Persistent tracking mechanisms in the wild,” in
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, 2014, pp. 674–
689. [Online]. Available: http://doi.acm.org/10.1145/
2660267.2660347

[2] G. Acar, M. Juárez, N. Nikiforakis, C. Dı́az, S. F.
Gürses, F. Piessens, and B. Preneel, “Fpdetective:
dusting the web for fingerprinters,” in 2013 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS’13, Berlin, Germany, November
4-8, 2013, 2013, pp. 1129–1140. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516674

[3] S. V. Acker, D. Hausknecht, and A. Sabelfeld,
“Measuring login webpage security,” in Proceedings
of the Symposium on Applied Computing, SAC 2017,
Marrakech, Morocco, April 3-7, 2017, 2017, pp.
1753–1760. [Online]. Available: http://doi.acm.org/10.
1145/3019612.3019798

[4] D. J. andZhaoGL15 Ranjit Jhala, S. Lerner, and
H. Shacham, “An empirical study of privacy-violating
information flows in javascript web applications,” in
Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, 2010, pp. 270–
283. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866339

[5] A. Barth, C. Jackson, and J. C. Mitchell, “Robust
defenses for cross-site request forgery,” in Proceedings
of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, 2008, pp. 75–
88. [Online]. Available: http://doi.acm.org/10.1145/
1455770.1455782

[6] S. L. Blond, A. Uritesc, C. Gilbert, Z. L.
Chua, P. Saxena, and E. Kirda, “A look at
targeted attacks through the lense of an NGO,”
in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22,
2014., 2014, pp. 543–558. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/le-blond

[7] F. Brown, S. Narayan, R. S. Wahby, D. R. Engler,
R. Jhala, and D. Stefan, “Finding and preventing
bugs in javascript bindings,” in 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, 2017, pp. 559–578. [Online].
Available: https://doi.org/10.1109/SP.2017.68

[8] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan,
“An empirical study of web cookies,” in Proceedings
of the 25th International Conference on World Wide
Web, WWW 2016, Montreal, Canada, April 11 -
15, 2016, 2016, pp. 891–901. [Online]. Available:
http://doi.acm.org/10.1145/2872427.2882991

[9] S. Calzavara, R. Focardi, M. Squarcina, and M. Tem-
pesta, “Surviving the web: A journey into web
session security,” ACM Comput. Surv., vol. 50,
no. 1, pp. 13:1–13:34, 2017. [Online]. Available:
https://doi.org/10.1145/3038923

[10] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser
fingerprinting via OS and hardware level features,” in
24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017, 2017. [On-
line]. Available: https://www.ndss-symposium.
org/ndss2017/ndss-2017-programme/
cross-browser-fingerprinting-os-and-hardware-level-features/

[11] M. Cheung and J. She, “Evaluating the privacy risk
of user-shared images,” ACM Transactions on Multi-

936 28th USENIX Security Symposium USENIX Association

media Computing, Communications, and Applications
(TOMM), vol. 12, no. 4s, p. 58, 2016.

[12] P. Eckersley, “How unique is your web browser?” in
Privacy Enhancing Technologies, 10th International
Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings, 2010, pp. 1–18. [Online]. Avail-
able: https://doi.org/10.1007/978-3-642-14527-8 1

[13] S. Englehardt and A. Narayanan, “Online tracking:
A 1-million-site measurement and analysis,” in
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 1388–
1401. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978313

[14] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,
J. Mayer, A. Narayanan, and E. W. Felten, “Cookies
that give you away: The surveillance implications
of web tracking,” in Proceedings of the 24th
International Conference on World Wide Web, WWW
2015, Florence, Italy, May 18-22, 2015, 2015, pp.
289–299. [Online]. Available: http://doi.acm.org/10.
1145/2736277.2741679

[15] M. Finifter, D. Akhawe, and D. A. Wagner, “An
empirical study of vulnerability rewards programs,”
in Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16,
2013, 2013, pp. 273–288. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/finifter

[16] S. Hardy, M. Crete-Nishihata, K. Kleemola,
A. Senft, B. Sonne, G. Wiseman, P. Gill, and R. J.
Deibert, “Targeted threat index: Characterizing and
quantifying politically-motivated targeted malware,”
in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22,
2014., 2014, pp. 527–541. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/hardy

[17] M. Heiderich, T. Frosch, M. Jensen, and T. Holz,
“Crouching tiger - hidden payload: security risks of
scalable vectors graphics,” in Proceedings of the 18th
ACM Conference on Computer and Communications
Security, CCS 2011, Chicago, Illinois, USA, October
17-21, 2011, 2011, pp. 239–250. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046735

[18] M. Heiderich, M. Niemietz, F. Schuster, T. Holz,
and J. Schwenk, “Scriptless attacks: Stealing more
pie without touching the sill,” Journal of Computer
Security, vol. 22, no. 4, pp. 567–599, 2014. [Online].
Available: https://doi.org/10.3233/JCS-130494

[19] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and
Z. Liang, “”the web/local” boundary is fuzzy: A
security study of chrome’s process-based sandboxing,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 791–
804. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978414

[20] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” arXiv preprint arXiv:1801.01203, 2018.

[21] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson,
“Cross-origin pixel stealing: timing attacks using
CSS filters,” in 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, A. Sadeghi,
V. D. Gligor, and M. Yung, Eds. ACM, 2013, pp.
1055–1062. [Online]. Available: http://doi.acm.org/10.
1145/2508859.2516712

[22] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty
and the beast: Diverting modern web browsers to build
unique browser fingerprints,” in IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, 2016, pp. 878–894. [Online].
Available: https://doi.org/10.1109/SP.2016.57

[23] S. Lekies, B. Stock, and M. Johns, “25 million flows
later: large-scale detection of dom-based XSS,” in 2013
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’13, Berlin, Germany, November
4-8, 2013, 2013, pp. 1193–1204. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516703

[24] S. Lekies, B. Stock, M. Wentzel, and M. Johns,
“The unexpected dangers of dynamic javascript,”
in 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14,
2015., 2015, pp. 723–735. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/lekies

[25] A. Lerner, A. K. Simpson, T. Kohno, and
F. Roesner, “Internet jones and the raiders of the lost
trackers: An archaeological study of web tracking
from 1996 to 2016,” in 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., 2016. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/lerner

[26] W. R. Marczak, J. Scott-Railton, M. Marquis-
Boire, and V. Paxson, “When governments hack
opponents: A look at actors and technology,”

USENIX Association 28th USENIX Security Symposium 937

in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22,
2014., 2014, pp. 511–525. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/marczak

[27] J. R. Mayer and J. C. Mitchell, “Third-party
web tracking: Policy and technology,” in IEEE
Symposium on Security and Privacy, SP 2012, 21-
23 May 2012, San Francisco, California, USA,
2012, pp. 413–427. [Online]. Available: https:
//doi.org/10.1109/SP.2012.47

[28] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia,
“Riding out domsday: Toward detecting and preventing
dom cross-site scripting,” 2018.

[29] K. Mowery and H. Shacham, “Pixel perfect: Finger-
printing canvas in html5,” Proceedings of W2SP, pp.
1–12, 2012.

[30] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “Cookieless monster:
Exploring the ecosystem of web-based device fin-
gerprinting,” in 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, 2013, pp. 541–555. [Online]. Available:
https://doi.org/10.1109/SP.2013.43

[31] G. Pellegrino, M. Johns, S. Koch, M. Backes, and
C. Rossow, “Deemon: Detecting CSRF with dynamic
analysis and property graphs,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, 2017, pp.
1757–1771. [Online]. Available: http://doi.acm.org/10.
1145/3133956.3133959

[32] F. Roesner, T. Kohno, and D. Wetherall, “De-
tecting and defending against third-party tracking
on the web,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Im-
plementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, 2012, pp. 155–168. [Online].
Available: https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/roesner

[33] C. Shiflett, “Cross-site request forgeries,” http://shiflett.
org/articles/cross-site-request-forgeries.

[34] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The
cracked cookie jar: HTTP cookie hijacking and the
exposure of private information,” in IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, 2016, pp. 724–742. [Online].
Available: https://doi.org/10.1109/SP.2016.49

[35] A. Sjösten, S. V. Acker, and A. Sabelfeld, “Discovering
browser extensions via web accessible resources,” in
Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy,
CODASPY 2017, Scottsdale, AZ, USA, March 22-
24, 2017, 2017, pp. 329–336. [Online]. Available:
http://doi.acm.org/10.1145/3029806.3029820

[36] S. Son and V. Shmatikov, “The postman always
rings twice: Attacking and defending postmessage
in HTML5 websites,” in 20th Annual Network and
Distributed System Security Symposium, NDSS 2013,
San Diego, California, USA, February 24-27, 2013,
2013. [Online]. Available: https://www.cs.utexas.edu/
∼shmat/shmat ndss13postman.pdf

[37] A. K. Sood and R. J. Enbody, “Targeted cyberattacks:
A superset of advanced persistent threats,” IEEE
Security & Privacy, vol. 11, no. 1, pp. 54–61,
2013. [Online]. Available: https://doi.org/10.1109/
MSP.2012.90

[38] C. Staicu and M. Pradel, “Freezing the web: A
study of ReDoS vulnerabilities in JavaScript-based web
servers,” in USENIX Security Symposium, 2018, pp.
361–376.

[39] C.-A. Staicu, M. Pradel, and B. Livshits, “Understand-
ing and automatically preventing injection attacks on
Node.js,” in 25th Annual Network and Distributed Sys-
tem Security Symposium, NDSS, 2018.

[40] B. Stock, G. Pellegrino, C. Rossow, M. Johns,
and M. Backes, “Hey, you have a problem:
On the feasibility of large-scale web vulnerabil-
ity notification,” in 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., 2016, pp. 1015–1032. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/stock

[41] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-
anonymizing web browsing data with social networks,”
in Proceedings of the 26th International Conference on
World Wide Web, WWW 2017, Perth, Australia, April
3-7, 2017, 2017, pp. 1261–1269. [Online]. Available:
http://doi.acm.org/10.1145/3038912.3052714

[42] M. Tran, X. Dong, Z. Liang, and X. Jiang,
“Tracking the trackers: Fast and scalable dynamic
analysis of web content for privacy violations,” in
Applied Cryptography and Network Security - 10th
International Conference, ACNS 2012, Singapore,
June 26-29, 2012. Proceedings, 2012, pp. 418–
435. [Online]. Available: https://doi.org/10.1007/
978-3-642-31284-7 25

938 28th USENIX Security Symposium USENIX Association

[43] T. van Goethem, W. Joosen, and N. Nikiforakis,
“The clock is still ticking: Timing attacks in the
modern web,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-6,
2015, 2015, pp. 1382–1393. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813632

[44] G. Venkatadri, A. Andreou, Y. Liu, A. Mislove, K. P.
Gummadi, P. Loiseau, and O. Goga, “Privacy risks with
Facebook’s pii-based targeting: Auditing a data Bro-
ker’s advertising interface,” 2018.

[45] L. Weichselbaum, M. Spagnuolo, S. Lekies, and
A. Janc, “CSP is dead, long live csp! on the insecurity
of whitelists and the future of content security policy,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 1376–
1387. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978363

[46] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A
practical attack to de-anonymize social network users,”
in 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, 2010, pp. 223–238. [Online].
Available: https://doi.org/10.1109/SP.2010.21

[47] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol,
“Tracking the trackers,” in Proceedings of the
25th International Conference on World Wide Web,
WWW 2016, Montreal, Canada, April 11 - 15,
2016, 2016, pp. 121–132. [Online]. Available: http:
//doi.acm.org/10.1145/2872427.2883028

[48] M. Zhao, J. Grossklags, and P. Liu, “An empirical
study of web vulnerability discovery ecosystems,” in
Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, 2015, pp. 1105–
1117. [Online]. Available: http://doi.acm.org/10.1145/
2810103.2813704

USENIX Association 28th USENIX Security Symposium 939

