
Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

A Billion Open Interfaces for Eve and Mallory:
MitM, DoS, and Tracking Attacks on iOS and
macOS Through Apple Wireless Direct Link

Milan Stute, Technische Universität Darmstadt; Sashank Narain, Northeastern University;
Alex Mariotto, Alexander Heinrich, and David Kreitschmann, Technische Universität

Darmstadt; Guevara Noubir, Northeastern University; Matthias Hollick, Technische
Universität Darmstadt

https://www.usenix.org/conference/usenixsecurity19/presentation/stute

This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

https://www.usenix.org/conference/usenixsecurity19/presentation/stute

A Billion Open Interfaces for Eve and Mallory:
MitM, DoS, and Tracking Attacks on

iOS and macOS Through Apple Wireless Direct Link

Milan Stute
TU Darmstadt

Sashank Narain
Northeastern University

Alex Mariotto
TU Darmstadt

Alexander Heinrich
TU Darmstadt

David Kreitschmann
TU Darmstadt

Guevara Noubir
Northeastern University

Matthias Hollick
TU Darmstadt

Abstract
Apple Wireless Direct Link (AWDL) is a key protocol in
Apple’s ecosystem used by over one billion iOS and macOS
devices for device-to-device communications. AWDL is a pro-
prietary extension of the IEEE 802.11 (Wi-Fi) standard and
integrates with Bluetooth Low Energy (BLE) for providing
services such as Apple AirDrop. We conduct the first security
and privacy analysis of AWDL and its integration with BLE.
We uncover several security and privacy vulnerabilities rang-
ing from design flaws to implementation bugs leading to a
man-in-the-middle (MitM) attack enabling stealthy modifica-
tion of files transmitted via AirDrop, denial-of-service (DoS)
attacks preventing communication, privacy leaks that enable
user identification and long-term tracking undermining MAC
address randomization, and DoS attacks enabling targeted or
simultaneous crashing of all neighboring devices. The flaws
span across AirDrop’s BLE discovery mechanism, AWDL
synchronization, UI design, and Wi-Fi driver implementation.
Our analysis is based on a combination of reverse engineering
of protocols and code supported by analyzing patents. We pro-
vide proof-of-concept implementations and demonstrate that
the attacks can be mounted using a low-cost ($20) micro:bit
device and an off-the-shelf Wi-Fi card. We propose practical
and effective countermeasures. While Apple was able to issue
a fix for a DoS attack vulnerability after our responsible dis-
closure, the other security and privacy vulnerabilities require
the redesign of some of their services.

1 Introduction
With deployments on over one billion devices, spanning
several Apple operating systems (iOS, macOS, tvOS, and
watchOS) and an increasing variety of devices (Mac, iPhone,
iPad, Apple Watch, Apple TV, and HomePod), Apple Wire-
less Direct Link (AWDL) is ubiquitous and plays a key role
in enabling device-to-device communications in the Apple
ecosystem. The AWDL protocol is little understood, partially
due to its proprietary nature, especially when it comes to se-
curity and privacy. Considering the well-known rocky history
of wireless protocols’ security, with various flaws being re-

peatedly discovered in Bluetooth [7], WEP [74], WPA2 [88],
GSM [12], UMTS [57], and LTE [51], the lack of informa-
tion regarding AWDL security is a significant concern given
the increasing number of services that rely on it, particularly
Apple’s AirDrop and AirPlay. It is also noteworthy that the
design of AWDL and integration with Bluetooth Low Energy
(BLE) are (1) driven by optimizing energy and bandwidth and
(2) the devices do not require an existing Wi-Fi access point
(AP) with secure connections but are open to communicat-
ing with arbitrary devices, thus, potentially exposing various
attack vectors.

We conduct the first, to the best of our knowledge, security
analysis of AWDL and its integration with BLE, starting with
the reverse engineering of protocols and code supported by
analyzing patents. Our analysis reveals several security and
privacy vulnerabilities ranging from design flaws to imple-
mentation bugs enabling different kinds of attacks: we present
a man-in-the-middle (MitM) attack enabling stealthy modi-
fication of files transmitted via AirDrop, a denial-of-service
(DoS) attack preventing communication between devices, pri-
vacy leaks allowing user identification and long-term tracking
undermining MAC address randomization, and targeted DoS
and blackout DoS attacks (i. e., enabling simultaneous crash-
ing of all neighboring devices). The flaws span AirDrop’s
BLE discovery mechanism, AWDL synchronization, UI de-
sign, and Wi-Fi driver implementation. We demonstrate that
the attacks can be stealthy, low-cost, and launched by devices
not connected to the target Wi-Fi network. We provide proof-
of-concept (PoC) implementations and demonstrate that the
attacks can be mounted using a low-cost ($20) micro:bit de-
vice and an off-the-shelf Wi-Fi card. The impact of these find-
ings goes beyond Apple’s ecosystem as the Wi-Fi Alliance
adopted AWDL as the basis for Neighbor Awareness Network-
ing (NAN) [19, 94] which, therefore, might be susceptible to
similar attacks. Moreover, Google Android provides a NAN
API since 2017 pending manufacturer support [38].

Specifically, our contributions are threefold. First, we dis-
cover security and privacy vulnerabilities in AWDL and Air-
Drop and present four novel network-based attacks on iOS

USENIX Association 28th USENIX Security Symposium 37

and macOS. These attacks are:

(1) A long-term device tracking attack which works in spite
of MAC randomization, and may reveal personal infor-
mation such as the name of the device owner (over 75%
of experiment cases).

(2) A DoS attack aiming at the election mechanism of
AWDL to deliberately desynchronize the targets’ chan-
nel sequences effectively preventing communication.

(3) A MitM attack which intercepts and modifies files trans-
mitted via AirDrop, effectively allowing for planting
malicious files.

(4) Two DoS attack on Apple’s AWDL implementations in
the Wi-Fi driver. The attacks allow crashing Apple de-
vices in proximity by injecting specially crafted frames.
The attacks can be targeted to a single victim or affect
all neighboring devices at the same time.

Second, we propose practical mitigations for all four at-
tacks. Third, we publish open source implementations of both
AWDL and AirDrop as the byproducts of our reverse engi-
neering efforts to stimulate future research in this area.

The rest of this paper is structured as follows. Section 2
provides background information on AWDL. Section 3 shows
the results of reverse engineering AirDrop. Section 4 presents
an attack to activate AWDL on devices in proximity, while
Section 5 shows how we leverage this activation mechanism
for user tracking attacks. Sections 6 and 7 feature the desyn-
chronization DoS attack and the MitM attack, respectively.
Section 8 reports implementation security vulnerabilities and
Section 9 concludes this work. We discuss mitigation tech-
niques and related work in subsections of the respective sec-
tions describing the attacks.

2 Background on Apple Wireless Direct Link
AWDL is a proprietary wireless ad hoc protocol based on the
IEEE 802.11 standard. In this section, we rely on the reverse
engineering efforts of the Open Wireless Link project [81] and
summarize the operation of AWDL as presented in [79, 80].
At its core, AWDL uses a channel hopping mechanism to
enable “simultaneous” communication with an AP and other
AWDL nodes on different channels. This channel hopping is
implemented as a sequence of so-called Availability Windows
(AWs). For each AW, a node indicates if it is available for
direct communication and, if so, on which channel it will be.
The channel value can be the channel of its AP, one of the
dedicated AWDL social channels (6, 44, or 149), or zero indi-
cating that it will not be listening on any channel. Each node
announces its own sequence s consisting of 16 AWs1 regularly
in AWDL-specific IEEE 802.11 Action Frames (AFs). We call
the length of such a full 16-AW sequence a period τ. Each AW

1Actually, [79] differentiates between AWs, Extension Windows (EWs),
and Extended Availability Windows (EAWs) where one EAW consists of
one AW and three EWs. In this work, we abstract from the smaller entities
and simply use the term AW to refer to an EAW.

0 0

φ s2 os1

44 44 4444 00 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 00 0 0 044 0 0 00 6 44 0 044 0 00

ττ τ

time t

1

Figure 1: AWDL synchronization depicting period, phase
offset, and the overlap function of two channel sequences.

has a length of 64 Time Units (TUs) where 1 TU = 1024 µs,
so τ≈ 1 s. Figure 1 depicts these and the following concepts.

To allow nodes to meet and exchange data on the same
channel, they need to align their sequences in the time domain.
AWDL nodes elect a common master and use its AFs as
a time reference to achieve synchronization. Each master
node transmits synchronization parameters which consist of
the current AW sequence number i (0 to 216− 1) and the
time until the next AW starts based on its local clock tAW.
When receiving an AF from its master at time TRx, a node
approximates TAW, the start of the next AW i+1 in local time
as:2

TAW ≈ tAW +TRx (1)

and correct its clock accordingly. Eq. (1) does not achieve
perfect alignment as it ignores the transmission delay as well
as delays in the sender’s Tx and receiver’s Rx chains. The
phase φ denotes the effective clock offset between two nodes.
Typically, φ≤ 3 ms in practice [79].

A node transmits frames to another AWDL node during
AWs where the channels of both nodes are the same. We de-
note the overlap as the relative communication opportunities
during one period: an overlap of one means that two nodes are
on the same AWDL channel during all 16 AWs, while zero
means that they are never on the same channel. Formally, we
define the overlap O as the integral over the overlap function
o of two sequences s1 and s2 taking into account the phase
where s(t) is the τ-periodic continuation of a sequence, i. e.,
s(t +nτ) = s(t),∀n ∈ N. Then,

o(s1,s2,φ, t) =

{
1 if s1(t) = s2(t−φ) 6= 0
0 otherwise

(2)

and

O(s1,s2,φ) =
∫

τ

t=0
o(s1,s2,φ, t) . (3)

3 Reverse Engineering AirDrop
AirDrop is an application that allows iOS and macOS users
to exchange files between devices using AWDL as transport.

2Simplification of [79, Eq. (1)].

38 28th USENIX Security Symposium USENIX Association

We reverse-engineered the AirDrop protocol by employing
a MitM HTTPS proxy [20] and using a popular disassem-
bler on macOS’ sharingd daemon and Sharing framework
where AirDrop is implemented. Based on our findings, we re-
implement AirDrop in Python and make it available as open
source software [78]. Next, we discuss how different discover-
ability settings affect the user experience. Then, we describe
the technical protocol flow and, finally, explain the difference
between authenticated and unauthenticated connections.

3.1 Discoverability User Setting

When opening the sharing pane (see left screenshot in Fig. 2)
in AirDrop, nearby devices will appear in the user interface
depending on their discoverability setting [2]. In particular,
devices can be discovered (1) by everybody or (2) by contacts
only. Alternatively, (3) the receiving off setting disables any
AirDrop connection requests. AirDrop requires Wi-Fi and
Bluetooth to be enabled. By default, Wi-Fi and Bluetooth
are enabled, and AirDrop is set to contacts only. In addition,
we found that devices need to be unlocked to be discovered.
Based on a user study that we present in Section 5.2, we
found that 80 % of the participants enable AirDrop (59.4 % in
contacts only and 20.6 % in everybody mode) while the other
20 % disabled it. For the rest of the paper, we assume that a
target device has AirDrop enabled and is unlocked.

3.2 Protocol and User Interaction

We describe all mechanisms involved in AirDrop including
discovery, authentication, and data transfer with a visual aid in
Fig. 2. The sender initiates the discovery procedure and trans-
fers the data while the receiver responds to requests: (1a) The
sender emits BLE advertisements including its hashed contact
identifiers (see Section 4.1 for details), while the prospec-
tive AirDrop receiver regularly scans for BLE advertisements.
(1b) The receiver compares the sender’s contact hashes with
contact identifiers in its own address book if set to contacts-
only mode. If there is at least one match or if the receiver
is in everyone mode, the receiver activates its AWDL inter-
face. (1c) Using mDNS/DNS-SD, the sender starts to look
for AirDrop service instances via the AWDL interface. (2)
For each discovered service, the sender establishes an HTTPS
connection with the receiver and performs a full authentica-
tion handshake (Discover). If authentication is successful, the
receiver appears as an icon in the sender’s UI. (3) When the
user selects a receiver, AirDrop sends a request containing
metadata and a thumbnail of the file (Ask). The receiver de-
cides whether they want to accept. If so, the sender continues
to transfer the actual file (Upload).

Next, we discuss the client and server TLS certificates and
explain their usage in combination with the sender’s and re-
ceiver’s record data to establish an authenticated connection.

Sender Receiver

regularly
perform
BLE scans

if in everyone
mode or contact
hash matches,
activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisement
with short contact hashes

HTTP POST /Discover
with sender’s record data

HTTP POST /Ask
with sender’s record data

HTTP POST /Upload
with file

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

HTTP 200 OK
with receiver’s record data

For every service
discovered, start
HTTPS discovery

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

Receiver appears
in sharing pane
(with contact
photo if record
data is valid)

HTTP 200 OK

Start file transfer
if accepted (200)

TLS teardown

TLS teardown

HTTP 200 OK

if record data is
valid, include
own record data
in response

(1c) Ask for service AirDrop

Service available at
instance 1fa518393a98 PTR

Instance 1fa518393a98 is at

Janes-iPhone.local:8770 SRV

IP address of Janes-iPhone.local

is fe80::90b6:7ff:fecc:46 AAAA

Service discovery
via mDNS

(1) DISCOVERY

(2) AUTHENTI-
CATION

(3) DATA
TRANSFER

Figure 2: Typical AirDrop protocol workflow including
screenshots [2] where user interaction is required.

USENIX Association 28th USENIX Security Symposium 39

Apple Root CA σRA

Apple Application
Integration CA σAAI

Apple Application
Integration 2 CA σAAI2

com.apple.idms.appleid.
prd.<UUID> σUUID

Apple ID Validation
Record <X> σVR

Signed by

Apple owns private key

User owns private key

Protects TLS connection Signs record data

Figure 3: Certificates and CAs involved in AirDrop. Boxes
contain the certificates’ common names.

3.3 (Un)authenticated Connections
AirDrop will always try to set up what we call an authenti-
cated connection. Such a connection can only be established
between users with an Apple ID and that have each other in
their address books. Authentication involves multiple certifi-
cates and CAs that we depict in Fig. 3. In order to authenticate,
a device needs to prove that it “owns” a certain contact identi-
fier ci such as email address or phone number associated with
its Apple ID, while the verifying device checks whether it
has ci in its address book. When establishing a TLS connec-
tion, AirDrop uses a device-specific Apple-signed certificate
σUUID containing a UUID. σUUID is issued when a user logs
into the device with its Apple ID. The UUID is not tied to any
contact identifiers, so AirDrop uses an Apple-signed record
data “blob” RD containing the UUID and all contact identi-
fiers c1, . . . ,cn that are registered with the user’s Apple ID in
a hashed form. This record data is retrieved once from Apple
and then presented for any subsequent AirDrop connection.
Formally, RD is a tuple:

RD = UUID,SHA2(c1) , . . . ,SHA2(cn) . (4)

The signed record data RDσ additionally includes a signature
and a certificate chain (Fig. 3):

RDσ = RD,sign(σVR,RD) ,σVR,σAAI2 , (5)

where sign(σ,X) is the signature of σ over X . When authenti-
cating, a node computes SHA2 over each contact identifier in
its address book and compares them with the hashes contained
in the presented RDσ and verifies that the UUID matches the
certificate of the current TLS connection. The latter effec-
tively prevents reuse of RDσ by an attacker using a different
TLS certificate.

AirDrop transparently treats a connection as unauthenti-
cated if the sender or receiver fails to provide an Apple-signed
TLS certificate or valid record data. This means that AirDrop
will establish an unauthenticated connection with devices that
use a self-signed certificate and provide no record data. While
AirDrop’s authentication mechanism appears to be crypto-

0 1 2 3

Length (2) Type (0x01) Flags (0x1b) Length (23)

Type (0xff) Apple (0x4c00) Subtype (0x05)

Length (18) Zero bytes (0x00)

. . .

. . . 0x01 Contact Identifier 1

Contact Identifier 2 Contact Identifier 3

Contact Identifier 4 0x00

Figure 4: AirDrop BLE advertisement format showing seman-
tics and values of individual bytes.

graphically well-designed, we show in Section 7 how to down-
grade an authenticated connection to an unauthenticated one
and launch a MitM attack on the data transfer.

4 Activating AWDL on Devices in Proximity
Some of the attacks demonstrated in this work require the
targets’ AWDL interface to be active, which is typically not
the case since an application has to request activation explic-
itly [79]. We have found that the BLE discovery mechanism
integrated with AirDrop (see Section 3) can be exploited to
activate all AWDL devices in proximity. Devices in everyone
mode will enable AWDL immediately after receiving any
AirDrop BLE advertisement. We analyze the theoretical per-
formance of brute forcing the truncated contact hash values in
AirDrop’s BLE advertisements (Fig. 2) to activate the AWDL
interfaces of targets in the default contacts-only mode. Finally,
we build a PoC leveraging a low-cost ($20) BBC micro:bit
device and experimentally confirm that the attack is feasible
in practice with a target response time of about one second
for devices that have 100 contact identifiers in their address
book.

4.1 AirDrop BLE Advertisements
We show the actual BLE advertisement frames [17, Vol. 3,
Sec. 11] that AirDrop uses including four contact identifier
hashes in Fig. 4. They are broadcast as non-connectable
undirected advertising (ADV_NONCONN_IND). The frames use
manufacturer-specific data fields that have fixed values except
for the contact hashes. In fact, we found that the contact hashes
are the first two bytes of the SHA2 digest of the sender’s con-
tact identifiers that are also included in the record data (see
Section 3.3). If the sender has less than four identifiers, the
remaining contact hash fields are set to zero. Due to the short
length, it appears feasible to use brute force to try all possible
values.3

3Note that the sender still has to provide the complete hash during the
HTTPS handshake before the receiver accepts the data on an authenticated
connection.

40 28th USENIX Security Symposium USENIX Association

Table 1: Symbols

SYMBOL DESCRIPTION

S Contact hash search space
C Contacts in the target’s address book
w Target’s BLE scan window
i Target’s BLE scan interval

iPHY Attacker’s BLE PHY injection interval
r Effective contact hash brute force rate
n Tried hash values per scan window

p (p j) Hit probability after one (or j) scans

4.2 Brute Force Analysis
We assume that the attacker does not know the target’s con-
tacts and, thus, attempts to enable the target’s AWDL interface
using brute force. As the target has at least one contact identi-
fier (the address book contains at least the user’s own Apple
ID), the attacker needs to try S= 216 = 65536 hashes in the
worst case. Thus, the challenge for the attacker is to quickly
send a large number of BLE advertisements while the target is
conducting a BLE scan. In the following, we analyze how fast
the attacker can deplete the search space and how successful
they would be. We start investigating the results for a single
BLE scan window and then extend our analysis to multiple
scan intervals.

One Scan Window. Let the attacker inject BLE advertise-
ment frames at the physical layer with an interval of iPHY.
Further, consider that the attacker has a single radio and that
BLE uses three advertisement channels [17]. Also, recall that
an AirDrop BLE frame has room for four contact hashes.
Then, the attacker’s effective brute force rate r can be calcu-
lated as:

r =
4

3 · iPHY
. (6)

Now, we can compute the number of hash values n that the
attacker can inject per scan window w [17] as:

n = w · r . (7)

Let X be a random variable, and P(X = k) denote the proba-
bility that the target “sees” k known contact hashes during one
scan window. Since the attacker moves through the search
space sequentially, we can formulate the problem using the
urn model in drawing without replacement mode which re-
sults in a hypergeometric distribution. We get:

P(X = k) =

(n
k

)(S−n
C−k

)(S
C
) . (8)

In particular, the attacker only requires one hit to activate the

target’s AWDL interface whose probability we call p:

p = P(X ≥ 1) = 1−P(X = 0)

= 1−
(n

0

)(S−n
C−0

)(S
C
) = 1−

(S−n
C
)(S

C
) . (9)

Using the Stirling’s approximation
(n

k

)
≈ nk

k! for k << n, we
can simplify Eq. (9) as:

p≈ 1−
(S−n)C

C!
SC
C!

= 1− (S−n)C

SC

= 1−
(
S−n
S

)C
= 1−

(
1− n

S

)C
. (10)

Multiple Scan Intervals. BLE devices perform scans regu-
larly at a fixed interval i [17]. Let Y be a random variable
indicating that the attacker has a hit (Y = 1) or not (Y = 0)
during one scan. We assume that the attacker does not know
when the target’s scan window starts and, therefore, that Y
is i.i.d. between scans.4 Let j indicate the target’s jth scan
since the attacker started their brute force attack. Then, the
probability that the attacker had k hits after j scans is given
by a binomial distribution:

P(Y = k) =
(

j
k

)
pk(1− p) j−k . (11)

Again, the attacker needs at least one hit whose probability
we denote as p j (note that p1 = p):

p j = P(Y ≥ 1) = 1−P(Y = 0) = 1− (1− p) j . (12)

With Eq. (10), we get:

p j ≈ 1−
(

1− n
S

) jC
. (13)

We know that j depends on the time since the attack started
and the target’s BLE scan interval i (the target performs one
BLE scan of length w per interval). Let t denote the attack
duration, then j ≤ bt/ic. Finally, we denote the success prob-
ability at time t as

p(t)≈ 1−
(

1− wr
S

)tC/i
. (14)

4.3 Jailbreaking BLE Advertisements
The Bluetooth standard imposes a minimum advertisement
interval5 of 100 ms for non-connectable undirected adver-
tising [17, Vol. 6, Sec. 4.4.2.2], which we found is usually

4If the attacker knew the start of each scan window, they could follow a
better strategy by only sending advertisements while the target is performing
a scan. This way, they would deterministically succeed after they had gone
through S once.

5The BLE advertisement interval accounts for a frame transmission on
each of the three advertisement channels.

USENIX Association 28th USENIX Security Symposium 41

uint8_t *le_adv = airdrop_init_template()
for (uint16_t h = 0; /* loop */; h += 4) {
airdrop_set_hashes(le_adv, h, h+1, h+2, h+3);
for (uint16_t chan = 37; chan < 40; chan++) {
le_adv_tx(le_adv, chan);
sleep(0.625 /* in milliseconds */); } }

Figure 5: C pseudo code of our BLE brute force attack

enforced in the BLE firmware. By complying to the stan-
dard, the attacker would need at least 216 = 27 minutes to
iterate through the entire search space once. If the attacker
had access to the BLE physical layer to control and sched-
ule individual transmissions, they could circumvent the stan-
dard’s restrictions and, thus, iterate through the search space
much faster. To this end, we extend an open source BLE
firmware [65] for the Nordic nRF51822 [63] chipset to im-
plement our brute force attack. In principle, our attack imple-
mentation is very simple and shown in Fig. 5. We use a send
interval of iPHY = 0.625 ms resulting in r = 2133.3 s-1 which
allows the attack to iterate through S in only 216/ f = 30.72 s.
By using three BLE radios (one for each advertisement chan-
nel), we could reduce this time to 10.24 s. However, we show
that using one radio is sufficient in practice.

4.4 Target Response Times Micro Benchmark
We measure the target response time, i. e., the time it takes for
a target to turn on its AWDL interface when being exposed
to our attack. In particular, we measure the response time for
a contacts-only receiver that has 10, 100, and 1000 contact
identifiers in their address book. In addition, we include ref-
erence measurements for a receiver in everyone mode under
the same attack.

Setup. For the experiment, we use a Wi-Fi sniffer (Broadcom
BCM4360) to receive AWDL AFs and a $20 micro:bit de-
vice [58] to inject BLE advertisements. To get the response
times, we start a brute force attack and measure the time until
we receive the first AF from the target. We then stop the attack
and wait until the target stops sending AFs which means that
the AWDL interface has turned off. Then, we start over to
collect 50 measurements per setting.

Results. We show the results for an iPhone 8 (iOS 12) in
Fig. 6. The plot also includes the analytical response time
distribution based on Eq. (14), assuming a BLE scan window
w and interval i of 30 ms and 300 ms, respectively.6. We can
make several observations: (1) Our analytical model does not
capture our experimental results precisely but approximates
them within an order of magnitude which is sufficient for our
purposes. (2) The median response time of targets with only
10 contact identifiers in their address book is 10 seconds and

6https://lists.apple.com/archives/bluetooth-dev/2014/
Sep/msg00001.html

10 100 1000 Everyone

Contact Identifiers

10−2

10−1

100

101

102

R
es

p
on

se
T

im
e

[s
]

Experiment

Analysis

Figure 6: Time it takes until target turns on its AWDL inter-
face after being exposed to our brute force attack.

decreases to about 1 second when more contacts are available.
We found that a user has more than 136 contacts on average
based on a user study that we describe in Section 5.2. (3)
This means that the brute force attack is feasible for scenarios
where the target will be in the attacker’s communication range
for a few seconds.

5 Privacy: Tracking Apple Device Users
In this section, we assess privacy issues in AWDL and find
that AWDL devices are easily trackable. First, we discuss
protocol fields that enable tracking. Then, we leverage the
attack presented in Section 4 to perform an experimental
vulnerability assessment at different locations and compare
the results with a user study spanning 500 participants. Finally,
we discuss possible mitigations.

5.1 Identifying Devices and Users via AWDL
Protocol Fields

Even though AWDL implements MAC randomization for the
IEEE 802.11 header, AWDL-specific fields contain long-term
device identifiers that disclose sensitive information about the
user, undermining MAC randomization. In particular, AWDL
includes the following sensitive fields in the AFs which de-
vices broadcast in the clear multiple times per second when
the AWDL interface is active:

• The hostname may include parts of the user’s name, e. g.,
“Janes-iPhone,” which is the default when setting up a
new device.

• The real MAC address as well as the AP the device is
currently connected to.

• The device class differentiates between devices running
macOS, iOS/watchOS, and tvOS.

• In combination with the protocol version, this can be
used to infer the OS version, e. g., AWDL v2 is used in
macOS 10.12 while AWDL v3 is used in macOS 10.13.
The attacker could exploit the OS information during

42 28th USENIX Security Symposium USENIX Association

https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html
https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html

reconnaissance to mount attacks on vulnerable driver
implementations.

Targets need to broadcast AFs to make these vulnerabilities ex-
ploitable, which an attacker can practically enforce by mount-
ing the attack presented in Section 4.

5.2 A Survey on the Potential of Apple Device
User Tracking

The hostname set by default during Apple iOS and macOS
device installation includes the user’s name [3]. Due to its
frame structure, the AWDL protocol aids an adversary in map-
ping a hostname with the MAC address of the device. This
enables them to track users even if users change this hostname
on their device. The combination also enables more sophis-
ticated threats as the person’s name can be combined with
information from public databases (e. g., US census [86]) to
infer their home and work locations, while the MAC address
can be used to track them in real-time. To assess what percent-
age of device hostnames contain parts of the owner’s name,
we conducted a survey among 500 Apple device users on
Amazon Mechanical Turk. This survey contained questions7

relevant to the attacks demonstrated in this paper, and we re-
port the statistics in the relevant sections. In particular, in the
context of tracking, we asked the surveyors if it was easy for
other users to find their device because their hostname con-
tained parts of their real name. We report the results of this
question along with the results of an experimental evaluation
in the next section.

5.3 Experimental Vulnerability Analysis
To demonstrate the feasibility of user tracking using AWDL,
we collect the number of discovered devices and check
whether that device’s hostname includes a person’s name
in four different locations within the US. We selected the
locations to reflect static as well as dynamic environments. In
particular, we recorded at a departure gate of an airport, in the
reading section of a public library, in a moving metro train,
and in the food court of a university.

Determining Whether a Hostname Contains a Person’s
Name. We use two databases to determine whether a host-
name contains a person’s name: the 2010 US Census [85]
containing 162 253 family names, and the 1918–2017 baby
names from the US Social Security Administration [87] con-
taining 96 743 given names. When detecting a new AWDL
node, we check string segments separated by hyphens against
these two databases.8 Note that when one segment matches

7The survey questionnaire is available at https://goo.gl/forms/
0okC4UphTQBnQ0FB3

8If a segment ends with the letter “s,” we also check the segment with-
out a trailing “s.” In addition, we ignore segments containing common de-
vice names such as “iPhone,” “Mac,” etc. For example, for the hostname
“Johns-iPhone,” we try to match the strings “Johns” and “John” to our name
databases.

Airport Library Metro University

Location

0

25

50

75

100

125

C
ou

n
t

Advertisements

Brute Force

Static

None

Figure 7: Discovered AWDL devices at one location during
one minute.

Given and Family

12.6 %

None 24.1 %

Only Family

2.3 % Only Given
61.0 %

Given and Family

None

Only Family

Only Given

Figure 8: Persons’ names distribution in hostnames.

the given name database, it is not matched again as a fam-
ily name because it is more likely that an Apple device will
include a person’s given name [3].
Ethical Statement. To preserve user privacy and not having
to store any sensitive user information, we fully automated
the name matching procedure. In particular, we only stored
salted hashes of the discovered hostnames (to differentiate
between devices) together with two bits indicating whether
the hostname contained a given or a family name. The salt
was generated randomly, kept in memory only, and discarded
after the completion of each experiment.
Setup. We do the measurements (a) without an attack (pas-
sive), (b) with static BLE advertisements containing only the
“zero” contact hash, and (c) with our BLE brute force ap-
proach. With (b), only devices in the everyone mode should
respond, with (c) we also capture those that are in contacts-
only mode. We run each setting for 60 seconds and repeat
it 10 times per location. To avoid statistical bias, we cycle
through the (a) to (c) settings back to back in each iteration
and use a cooldown time of 40 seconds between them. The
cooldown ensures that all devices in proximity have turned
off their AWDL interfaces again.
Experimental Results. Fig. 7 shows the number of discov-
ered AWDL devices in the different locations. By using the

USENIX Association 28th USENIX Security Symposium 43

https://goo.gl/forms/0okC4UphTQBnQ0FB3
https://goo.gl/forms/0okC4UphTQBnQ0FB3

brute force approach, we can discover about twice as many de-
vices compared to sending only regular advertisements. This
means that in our experiments, approximately 50 % of the
Apple devices are in AirDrop’s everyone mode. Our survey
complements our experimental results by indicating that 20 %
of Apple device users have AirDrop turned off and, thus, are
not trackable via AWDL. It is interesting to note that we are
able to pick up AWDL devices even when not sending any
advertisements. This can happen if a device (not controlled
by us) sends out advertisements itself, for example, when a
user opens the AirDrop sharing pane which apparently oc-
curred regularly at the university location. Finally, we found
that among all discovered devices, more than 75 % contain
a person’s name in the hostname. Most devices contain only
a given name which is the default for freshly set up Apple
devices [3], some contain a combination of a given and family
name, and very few contain only a family name. Our survey
confirms these results as 68 % answered that it was “easy”
or “very easy” for others to recognize their device because it
contained their name.

Outlook for Large-Scale Attack. In this analysis, we show
what kind of information a motivated attacker would be able
to collect. We used a single fixed physical location for each
experiment and did not attempt to track any user movement.
However, given that we can receive unique identifiers of Ap-
ple devices (Wi-Fi MAC address and hostname), mounting
a large-scale tracking attack should be trivial for an adver-
sary that can deploy multiple low-cost Wi-Fi and BLE nodes
throughout an area.

5.4 Mitigation
We present a short-term solution and then propose two mit-
igation techniques that remove stable device identifiers to
prevent user tracking via AWDL.

Disable AirDrop. Until Apple fixes the problem, the only
way to thwart user tracking is to disable AirDrop completely.
This presents a countermeasure to our attack presented in Sec-
tion 4, i. e., the AWDL interface cannot be remotely activated
via BLE advertisements.

Hide Real MAC Address When Not Connected to an AP.
When a device connects to an AP it uses its real MAC address
for communication, in which case AWDL does not disclose
new information. However, we have found that the MAC
address is occasionally included in AFs even when the device
is not connected to an AP. This appears to be unintended
behavior and should be fixed via a software update.

Randomize Hostname for AWDL. Apple devices transmit
their hostname in AWDL AFs as well as the mDNS responses
during service discovery that are used to find AirDrop in-
stances (see Section 3). As a countermeasure, we propose
to use randomized hostname with AWDL similar to MAC
address randomization. If an application such as AirDrop
needs the real hostname for identification, it should only be

transmitted via an encrypted and authenticated channel such
as TLS. In fact, AirDrop already transmits the device name in
the HTTPS handshake and uses this name in the UI ignoring
the hostname from mDNS responses. Therefore, hostname
randomization would not require any changes to the AirDrop
implementation which would retain backward compatibility.

5.5 Related Work: User Tracking
Several related works have studied the topic of user tracking
from mobile devices. Some common attack vectors include us-
ing the GPS sensor [35, 48, 55, 83, 95], cellular [5, 44, 50, 67],
Wi-Fi [15, 40, 69, 96, 97], radio interface fingerprinting [90],
and motion sensors [25, 39, 59, 61, 62]. We believe that the
above works are orthogonal to our approach, and could be
used in conjunction with our approach to improve tracking
performance. Many countermeasures have also been pro-
posed to prevent tracking from the above vectors. Some
of them include recommending new location frameworks
and privacy metrics [9, 28, 29, 30, 49, 64], location obfusca-
tion [1, 6, 18, 72, 92], location cloaking [42, 43], synthesizing
locations [16, 46, 53, 82, 98], sensor data obfuscation [22, 23],
and permission analysis [32, 45, 68]. Along with resource per-
missions on mobile devices, these countermeasures limit the
practicality of some of the above attacks.

Some device-specific identifiers have also been used for
tracking, e. g., IMEI [36, 93], BLE addresses [24, 31, 47], and
MAC addresses [21, 33, 54, 60]. While IMEI-based tracking
can be easily mitigated by protecting access to this infor-
mation, BLE is a dominant standard for fitness trackers and
smartphone communication and their addresses must be ex-
posed. Tracking using BLE identifiers has been demonstrated
to be easy. However, our approach has the added benefit for an
attacker that the hostname is exposed. This allows inferring
additional user information such as home and work locations,
family members, or movement patterns, which are useful for
more targeted tracking [34, 84]. Like BLE addresses, MAC
addresses are also essential as they form the backbone of layer
2 network communication and must be exposed for network-
ing (e. g., Wi-Fi probe requests).

MAC address randomization has been proposed to prevent
device tracking through Wi-Fi probe requests [11, 26]. Today,
both Apple and Google implement MAC address randomiza-
tion in their mobile operating systems. Randomization does
improve user privacy; however, some works have demon-
strated that devices are still trackable. For example, [89] im-
plemented an algorithm using probe request fingerprinting
that has a 50 percent success rate for tracking users for 20
minutes. Another work [56] demonstrated that MAC random-
ization could be defeated through timing attacks, where a
signature based on inter-frame arrival times of probe requests
can be used to group frames coming from the same device
with distinct MAC addresses. Their framework could group
random MAC addresses of the same device up to 75% of
cases for about 500 devices. Our work advances the scalabil-

44 28th USENIX Security Symposium USENIX Association

s2

s1

44 44 4444 044 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 0 044 0 0 00 6 44 0 044 0 00

ττ

(a) In normal operation, two channel sequences result in non-zero
overlap, allowing two nodes to communicate. In this example, they
can communicate during four out of 16 EAWs.

s2

s1

440 0 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 0 044 0 0 00 6 44 0 044 0 00

ττ

φ = τ/4

(b) A phase shift of a quarter period (φ = τ/4) results in zero overlap
preventing the two nodes from communicating with each other.

Figure 9: Sketch of the desynchronization attack.

ity, tracking time and accuracy of the prior works. We show
that, owing to implementation nuances in the AWDL proto-
col, an adversary can track millions of Apple device owners
globally with 100 % accuracy.

6 DoS: Impairing Communication with
Desynchronization

AWDL does not employ any security mechanisms. Instead,
Apple decided to leave security mechanisms to the upper lay-
ers. Thus, while end-to-end confidentiality and integrity can
be achieved using a secure transport protocol such as TLS,
AWDL frames are vulnerable to forgery which renders any
upper layer using AWDL susceptible to attacks on availability.
In this section, we present a novel DoS attack that targets
AWDL’s synchronization mechanism (Section 2) to prevent
two nodes from communication with each other. In the fol-
lowing, we describe a novel desynchronization attack which
aims to minimize the channel sequence overlap of two targets.
Next, we evaluate the attack’s performance and present an
effective mitigation method. Finally, we discuss related work.

6.1 Desynchronizing Two Targets
We exploit AWDL’s synchronization mechanism to reduce
the channel overlap by inducing an artificial phase offset be-
tween two targets. In order to succeed, the attacker needs to
(1) get recognized as the master by both targets, (2) commu-
nicate with each target separately to (3) send different sets
of synchronization parameters that result in zero (or mini-
mal) channel overlap. Figure 9 depicts the non-zero overlap
in normal operation and the zero overlap as the result of the
desynchronization attack. We describe the three steps in the
following.
(1) Winning the Master Election. The master election in
AWDL is based on a numeric comparison of two values that
are transmitted in the election parameters. The first value

0 5 10 15 20 25 30

Time [s]

0

2

4

P
h

as
e

O
ff

se
t

[π
/
16

]

John–Jane

Attack Start

Figure 10: Phase offset between two targets before and after
mounting a desynchronization attack which induces a phase
shift of φ = τ/4.

is called metric, and each node draws one randomly upon
initialization. The numeric range of the metric is bounded
and depends on the AWDL version that runs on the node [79].
The second value is called counter which is initialized to a
random value and increases linearly over time while the node
is elected as a master. Given the metric and counter values
of two nodes A and B as (mA,cA) and (mB,cB), respectively,
then, A wins the master election if

cA > cB∨ (cA = cB∧mA > mB) (15)

and loses otherwise. To consistently win the election, the
attacker sets c and m to their maximum values.

(2) Unicasting AFs. The attacker needs to send the synchro-
nization parameters to each target without the other one notic-
ing. We have found that while AFs are typically sent to the
broadcast MAC address ff:ff:ff:ff:ff:ff, AWDL nodes
also accept unicast AFs. Therefore, the attacker can unicast
their AFs to make sure that only the intended target receives
them.

(3) Phase Shift: Different Synchronization Parameters.
To desynchronize two targets, the attacker needs to send in-
compatible synchronization parameters that will result in a
controllable offset. We explain how the attacker calculates the
relevant parameters i and tAW for both targets. Let us assume
that the attack starts at some time Ts. An AF sent to the first
target at some time TTx with t =

⌊
TTx−Ts

1024

⌋
(in TU) will include

the following parameters:

i =
(⌊

t mod 64
16

⌋
+4
⌊ t

64

⌋)
mod 216 and, (16)

tAW = 64− t mod 64 . (17)

For the second target, the attacker will calculate t as tφ =⌊
TTx−Ts−φ

1024

⌋
and compute iφ, tφ

AW analogously to Eqs. (16)
and (17). We verify the correctness of these calculations ex-
perimentally and show the resulting phase offset between two
targets for a target phase φ = τ/4 in Fig. 10.

USENIX Association 28th USENIX Security Symposium 45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Phase Shift φ [π/16]

0.00

0.25

0.50

0.75

1.00

Overlap (inverse)

Packet Loss

Figure 11: Packet loss for different phase shifts.

6.2 Evaluating Packet Loss
We evaluate the impact of our desynchronization attack by
measuring the packet loss via the ping program. In particu-
lar, we use an APU board [66] equipped with a Qualcomm
Atheros AR928X Wi-Fi card to act as an attacker which can
inject AWDL AFs. The ICMP echo requests are sent from
a MacBook Pro (Late 2015, macOS 10.13) to an iPhone 8
(iOS 12). The attacker induces different phase shifts spanning
one period. The sender emits 100 ICMP echo requests per
experiment which we repeat 10 times and plot the resulting
packet loss in Fig. 11. The error bars indicate the standard
deviation. In addition, we include the inverse channel overlap
(see Section 2) which is calculated for two identical sequences
which we have observed were the most common ones during
our experiment: 44,44,44,0,0,0,0,0,6,44,44,0,0,0,0,0.

At φ = 0, there is no attack, while at φ = 16, the targets are
desynchronized by a full period which unsurprisingly does
impair communication reliability. The other results indicate
that the desynchronization attack significantly degrades com-
munication between the targets, peaking at phase shifts where
the targets are off by a quarter (φ= 4) and three-quarter period
(φ = 12) which is where the channel overlap has its minima
(and the inverse overlap its maxima). At these settings, the
packet loss is almost 100 %. Surprisingly, some phase shifts
(e. g., φ = 6,7,9,10,15) result in less packet loss than the
overlap predicts. We suspect the reason to be retransmissions
on the MAC layer (up to 7 times in Wi-Fi [73]) which, at the
cost of longer latency, increase the chance that a frame will
be received in a subsequent AW.

6.3 Mitigating Desynchronization
Devices can mitigate our desynchronization attack by discard-
ing unicast AFs. Not accepting unicast frames is an extremely
effective and practical countermeasure because it will cause
all nodes in range to process the same information exclu-
sively. While this does not prevent an attacker from winning
the master election and, thus, sending invalid synchronization
parameters, as all nodes process the same frames, it becomes
much harder to create a deterministic offset between two tar-

gets. A more sophisticated attacker could employ attacks on
the PHY layer (e. g., using directional antennæ) to achieve a
similar effect as that of unicasting. However, such attacks are
difficult to carry out in practice.

6.4 Related Work: Reactive Jamming
At first glance, our desynchronization attack achieves a simi-
lar effect as a reactive jammer [37, 52, 70, 91]. However, the
desynchronization attack can be more attractive for two rea-
sons: first, desynchronization in principle needs less energy
than a jamming attack. The desynchronization attacker only
needs to emit one frame every 1.5 s to maintain their position
as a master node because AWDL nodes elect a new master if
they have not received an AF for more than 1.5 s from their
current one. In contrast, a reactive jammer needs to emit a
jamming signal for every packet that the target sends. Second,
it allows intercepting frames from its targets which enables
to mount more sophisticated MitM attacks as presented in
Section 7. In contrast, a normal jammer kills the frame in
transit disallowing anyone (even the attacker themselves) to
decode the frame [70]. There exist more sophisticated receiver
designs that cancel out the jammer’s own signal, but this typi-
cally requires special hardware [37]. Our desynchronization
attack only requires a system with an off-the-shelf Wi-Fi chip
and, thus, could even be implemented in a smartphone [71].

7 MitM: Planting Malware via AirDrop
This section describes a MitM attack on the popular AirDrop
service which allows iOS and macOS devices to exchange
files directly via AWDL. First, we assess the security of Air-
Drop and find that poor UI design choices enable an attacker
to masquerade as a valid receiver. Then, we describe a com-
plete MitM attack on AirDrop which prevents any sender to
discover a valid receiver using a DoS attack and subsequently
can intercept and modify any AirDrop file transmission. Fi-
nally, we discuss possible mitigations for the attack.

7.1 Ambiguous Receiver Authentication State
We have observed that AirDrop employs two different kinds
of connections which we term authenticated and unauthenti-
cated (see Section 3). Further, the user can set its device to be
discoverable by contacts only or everyone. Counter-intuitively,
the discoverability setting only applies to the receiver side. In
particular, while a receiver in contacts-only mode will only
accept files from authenticated senders, a sender will see all
discoverable receivers irrespective of whether they are au-
thentic or not. This ambiguity has profound implications for
security because it is up to the user of the sending device to
decide whether a connection is authenticated or not which can
be non-trivial. The only visual cue to differentiate between
an authenticated and unauthenticated connection is that an
authenticated connection will show the receiver’s name and
photo from the sender’s address book. Neither provides suffi-
cient evidence to unambiguously decide whether a receiver

46 28th USENIX Security Symposium USENIX Association

authentic
(a) Sender has
John’s contact
photo

authentic
(b) Sender does
not have John’s
contact photo

unauthentic
(c) Sender does
not have John
as a contact

unauthentic
(d) Attacker
spoofs John’s
identity

Figure 12: UI representation of a receiver.

is authentic. First, if no contact photo is available (users aug-
ment only 27 % of their contacts with a photo according to
our survey), the icon contains the receiver’s initials in a grey
circle which is similar to that of an unauthenticated receiver
(a grey circle with a head’s silhouette). Second, the name
that is displayed underneath unauthenticated receivers is the
receiver’s device name. Based on our results in Section 5, a
device name contains the user’s given name in the majority of
the cases (more than 70 % according to our experimental eval-
uation in Section 5), which the attacker can exploit to create
a trustworthy-looking device name. Unless users are sensi-
tive to such subtle UI changes, an attacker can easily trick
them into sending files via an unauthenticated connection.
Figure 12 compares the different receiver icons including a
spoofed identity by the attacker. We want to highlight the
similarity between an authenticated identity (Fig. 12b) and a
spoofed identity (Fig. 12d).

7.2 The Complete AirDrop MitM Attack
Our MitM attack on AirDrop is carried out in three phases.
First, we break the discovery process to put ourselves in a
privileged position. Second, we wait until the target receiver
becomes discoverable by everyone, effectively forcing the
user to downgrade the connection. Third, we relay and ma-
nipulate the actual data transfer to plant arbitrary files at the
receiver. We illustrate the attack in Fig. 13 and explain each
phase in more detail below. Also, we provide a video PoC of
the attack [77].

(1) Breaking Discovery via DoS. The most crucial part of the
attack is preventing the sender to discover the receiver such
that it appears as an icon in the sharing pane. In particular,
we need to prevent that the Discovery handshake via HTTPS
completes successfully. In principle, such a DoS attack could
be carried out via our desynchronization attack (Section 6).
However, we found that it could not reliably prevent the short
Discovery request and responses from being received. This
is due to the fact that AirDrop senders increase the channel
allocation when starting the discovery process, thus, increas-
ing the overlap with the receiver even when desynchronized.

As an alternative, we used the well-known TCP reset attack
which sends TCP segments including an RST flag to the tar-
gets which, in turn, immediately drops the connection. For
this attack, the attacker sends out an RST reply for every TCP
segment that is not addressed to itself and effectively prevents
any reconnection attempts from the sender to the receiver.

(2) Downgrading an Authenticated Connection. For a com-
plete MitM attack, we need to authenticate to the receiver.
Otherwise, it will deny any Ask or Upload requests. If the
receiver is discoverable by everyone, this is trivial, since it
accepts all authentication attempts, even those with a self-
signed certificate which the attacker can easily generate (see
Section 3.3). The receiver indicates a successful authentica-
tion attempt from a non-contact by including its device name
in the Discover response. However, we have found that in
most cases (59.4 % in our survey), users set their device to
contacts only. In such cases, we leverage the ongoing DoS
attack to force the receiver to try the everyone setting.

(3) Relaying and Modifying Data Transfer. Once the re-
ceiver becomes discoverable (we can check when a receiver is
discoverable by everyone by periodically sending Discovery
requests), we advertise our own AirDrop identity via mDNS
and wait until the sender tries to perform the authentication
handshake via HTTPS for discovery which we let succeed.
We relay the sender’s Ask request to the receiver including
the original file thumbnail to make the request appear valid.
After the receiver accepts the transmission request, we relay
the answer back to the sender which—in turn—starts to send
the actual file. We can now decide whether to relay a modi-
fied version of the file or send an entirely new one possibly
containing malware to the receiver.

7.3 Implementation
Our PoC of the MitM attack consists of two components.
First, we re-implement AWDL such that we were able to
overhear and parse data frames not addressed to us which is
required to mount a TCP reset attack. Second, we implement
an AirDrop-compatible client and server which we use to
probe the discoverability status of the receiver target and
finally implement the MitM attack as depicted in Fig. 13. We
make both projects available as open source software [76, 78].

AWDL. Our AWDL implementation [76] is written in C and
runs on Linux as well as on macOS. On macOS, the imple-
mentation can be used as a drop-in replacement for Apple’s
own AWDL interface. We use the monitor mode and frame
injection of the system’s Wi-Fi card to receive and inject raw
IEEE 802.11 frames. In addition, we provide a virtual network
interface (via tuntap) to the system such that any IPv6-capable
application can use AWDL. Internally, our implementation
takes care of frame parsing, synchronization, election, and
scheduling data frames in the correct AWs.

AirDrop. Our AirDrop implementation [78] is written in
Python and implements an unauthenticated AirDrop sender

USENIX Association 28th USENIX Security Symposium 47

Sender “Jane” Receiver “John”Attacker

HTTPS POST /Discover

Jane selects “John” as the receiver.
Attacker forwards request with
original thumbnail and device name
“Jane”; forwards response as is.

(2) AUTHENTICATION

(1) DISCOVERY (as in Figure 2)

TCP RSTTCP RST

DoS. Attacker disrupts all overheard
connections by mounting a TCP
reset attack, thereby preventing Jane
from discovering John.

Only while John is not
discoverable by everyone, the
attacker periodically tries to
authenticate to John.

HTTPS POST /Discover

HTTPS OK 200
without device name

When John already is or becomes
discoverable by everyone, the
attacker successfully authenticates
to John.

HTTPS POST /Discover

HTTPS OK 200
with device name “John’s iPhone”

Attacker advertises
AirDrop service as in (1)
HTTPS POST /Discover

HTTPS OK 200
with device name “John”

The attacker immediately starts
advertising a service using “John”
as its computer name.
Jane authenticates and displays
the attacker’s identity “John” in
the sharing pane.

(3) DATA TRANSFER HTTPS POST /Ask
with device name “Jane’s iPhone”

HTTPS OK 200

HTTPS POST /Ask
with device name “Jane”

HTTPS OK 200

HTTPS POST /Upload
HTTPS POST /Upload

HTTPS OK 200
HTTPS OK 200

Attacker receives original file and
forwards a modified copy to John

Figure 13: Protocol flow and user interaction of our MitM attack on AirDrop.

and receiver. The code exposes a command line interface
which allows to find discoverable receivers, send files to them,
and receive files from any sender.

7.4 Mitigation
We discuss possible mitigation strategies. We examine them
according to complexity to implement, starting with the miti-
gation requiring the least number of changes to existing Air-
Drop implementations.

Provide Stronger Visual Cues for Authenticated Re-
ceivers. One of the core problems of the current design of
AirDrop is that a user might have a hard time to differenti-
ate between authenticated and unauthenticated receivers (see
Section 7.1 and Fig. 12). Currently, the only cues to decide

whether a receiver is authenticated are the display of a contact
photo and contact name. We have shown that the former is not
commonly available (users augment 27.4 % of their contacts
with photos) and the latter can be spoofed. Therefore, we pro-
pose to provide stronger visual cues that unambiguously tell
the user if a receiver is authenticated or not. This is already
customary in web browsers where HTTPS-protected websites
are augmented with a green (lock) symbol telling the user that
the website they are visiting is authentic.
Reset Everyone to Contacts Only After a Timeout. Users
might set the discoverability setting of their device to every-
one for convenience or if they used it for one occasion and
then forgot to reset it. In either case, we believe that the ev-
eryone setting should only be used except when it is required,

48 28th USENIX Security Symposium USENIX Association

i. e., if one wants to receive a file from a non-contact. To pro-
tect negligent users, we propose to use a timeout after which
the discoverability setting is reset to contacts only. Alterna-
tively, one could reset the setting the next time the device
is locked. This would also prevent past cases where people
would receive inappropriate photographs from strangers in
public places [13, 41] because, in contacts-only mode, de-
vices will transparently reject all request from unauthenticated
senders.

Introduce Secure AirDrop Mode for Non-Contacts. Our
last proposal involves deprecating unauthenticated connec-
tions and instead establish authentication with a non-contact
via an out-of-band (OOB) channel. AirDrop could transmit
one-time cookies with similar functionality as the record
data (see Section 3.3) during the initial HTTPS authentication
handshake (see Section 3.2). The one-time cookies could be
validated via an OOB channel such as NFC or via QR codes.
After one transfer (or after a specific timeout), each device
deletes its one-time cookie. By committing to the one-time
cookie in the TLS handshake, a MitM attack on the OOB
channel would be fruitless because the attacker could not es-
tablish a TLS connection with the same key. Unfortunately,
such a mode would require one more manual step by both
parties and, therefore, would impair usability.

7.5 Related Work: Attacks on AirDrop
Other attacks on AirDrop have been presented before. An im-
personation attack [10] exploits mDNS/DNS-SD to redirect
file transmissions to an attacker for unauthenticated connec-
tions. In particular, the attack uses forged SRV and AAAA
responses to redirect an AirDrop ID to the attacker. In contrast
to our work, [10] does not differentiate between authenticated
and unauthenticated connections and claims that the UUID
certificate (see Section 3.3) could not be bound to any con-
tact identifiers, which we have found to be untrue. Also, the
attack only works on unauthenticated connections, while our
attack also targets authenticated connections via a downgrade
attack and we present a complete MitM attack which allows
an attacker to send malicious files to the receiver stealthily.
Finally, [10] proposes a conflict detection mechanism for Mul-
ticast DNS (mDNS) to prevent their attack, which is based on
the assumption that “disrupting two parties’ communication
through a Wi-Fi direct link or a local network is difficult for
the adversary without access to the routing infrastructure of
the network.” In this work, we show that it is indeed practical
to mount a DoS on the link layer since AWDL does not em-
ploy any security mechanisms. An earlier work [27] targeted a
vulnerability in AirDrop’s implementation which allowed the
attacker to install files in arbitrary directories on the target’s
system. Apple fixed this bug in 2015.

8 Implementation Security
During our AWDL analysis and building an AWDL prototype,
we found two implementation flaws in Apple’s OSes that

allow an attacker to crash devices in proximity.

DoS: Kernel Panic and System Crash. These flaws can be
exploited by sending corrupt AFs. In particular, we can trigger
kernel panics by setting invalid values in the synchronization
parameters (affecting macOS 10.12) and the channel sequence
(affecting macOS 10.14, iOS 12, watchOS 12, and tvOS 5),
respectively. To showcase our findings, we provide a video
of our PoC which exploits the second vulnerability on iOS
devices [75]. The video demonstrates how an attacker mounts
a targeted DoS attack that crashes a single device and a black-
out DoS attack that crashes all devices in range of the attacker
at the same time.

Outlook: Remote Code Execution. While not critical by
themselves, the mere existence of these vulnerabilities creates
a new class of threats to Wi-Fi devices as an attacker can
exploit them without any authentication towards the target,
i. e., they do not have to be on the same network. In light of
past discovered remote code execution in implementations
of standardized Wi-Fi procedures [8, 14], we think that a
determined attacker can find similar flaws for AWDL.

9 Conclusion
The deployment of open Wi-Fi interfaces enables new types
of applications for mobile devices. They allow devices in
proximity to communicate with each other without being con-
nected to the same Wi-Fi network. On the downside, this also
opens new opportunities for an attacker as they no longer have
to provide any kind of authentication (e. g., access to a secure
Wi-Fi network). In this paper, we investigate the first protocol
of this kind, i. e., Apple’s proprietary AWDL. In particular, we
find three distinct protocol-level vulnerabilities that allow for
DoS, user tracking, and MitM attacks. In addition, we dis-
covered two implementation bugs in Apple’s OSes that cause
DoS. Given the complexity of the protocol and implementa-
tions, we conjecture that more severe vulnerabilities will be
found in the future. To build PoCs for these attacks, we have
reverse-engineered AirDrop, a system service that runs on
top of AWDL, and have implemented open versions of both
AWDL and AirDrop which we make available as open source
software. Finally, our findings have implications for the non-
Apple world: NAN, commonly known as Wi-Fi Aware, is a
new standard supported by Android which draws on AWDL’s
design and, thus, might be vulnerable to the similar attacks as
presented in this work. This is pending further investigation.

Responsible Disclosure
We have contacted Apple about our findings on December 17,
2018. We have shared a draft of this paper as well as our PoC
code and support Apple in fixing the privacy leaks (Section 5)
and desynchronization issue (Section 6) in AWDL as well as
the ambiguous authentication state in AirDrop (Section 7).
We have reported the two implementation vulnerabilities (Sec-
tion 8) earlier on August 14 and 27, 2018, respectively. Apple
will not fix the first one affecting only macOS 10.12, but

USENIX Association 28th USENIX Security Symposium 49

has released software updates addressing the second one on
October 30, 2018, for all Apple OSes [4].

Acknowledgements
This work is funded by the LOEWE initiative (Hesse, Ger-
many) within the NICER project and by the German Federal
Ministry of Education and Research (BMBF) and the State of
Hesse within CRISP-DA. The work was partially supported
by NSF grant 1740907. We thank the Apple Product Security
team for feedback on the paper.

Availability
We release the source code of our AWDL [76] and Air-
Drop [78] implementations as part of the Open Wireless Link
project [81] (https://owlink.org).

References
[1] Miguel E. Andrés, Nicolás E. Bordenabe, Konstanti-

nos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential Privacy for Location-
based Systems. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), November
2013. doi: 10.1145/2508859.2516735.

[2] Apple Inc. Use AirDrop on your iPhone, iPad, or
iPod touch, June 2018. URL https://support.
apple.com/en-us/HT204144. [Accessed September
20, 2018].

[3] Apple Inc. Change the name of your iPhone, iPad,
or iPod, October 2018. URL https://support.
apple.com/en-us/HT201997. [Accessed November
14, 2018].

[4] Apple Inc. About the security content of iOS 12.1,
2018. URL https://support.apple.com/en-in/
HT209192. [Accessed Feburary 14, 2019].

[5] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and
Mark Dermot Ryan. Analysis of Privacy in Mobile Tele-
phony Systems. International Journal of Information Se-
curity, October 2017. doi: 10.1007/s10207-016-0338-9.

[6] Claudio A. Ardagna, Marco Cremonini, Sabrina De Cap-
itani di Vimercati, and Pierangela Samarati. An
Obfuscation-Based Approach for Protecting Location
Privacy. IEEE Transactions on Dependable and Secure
Computing, 8, January 2011. doi: 10.1109/TDSC.2009.
25.

[7] Armis Inc. BlueBorne, 2018. URL https://armis.
com/blueborne/. [Accessed November 14, 2018].

[8] Nitay Artenstein. Broadpwn: Remotely Compro-
mising Android and iOS via a Bug in Broadcom’s
Wi-Fi Chipsets, July 2017. URL https://blog.

exodusintel.com/2017/07/26/broadpwn/. [Ac-
cessed June 28, 2018].

[9] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-
fledged App Sandboxing for Stock Android. In USENIX
Security Symposium, August 2015.

[10] Xiaolong Bai, Luyi Xing, Nan Zhang, Xiaofeng Wang,
Xiaojing Liao, Tongxin Li, and Shi-Min Hu. Staying
Secure and Unprepared: Understanding and Mitigating
the Security Risks of Apple ZeroConf. In IEEE Sympo-
sium on Security and Privacy (S&P), May 2016. doi:
10.1109/SP.2016.45.

[11] Marco V. Barbera, Alessandro Epasto, Alessandro Mei,
Vasile C. Perta, and Julinda Stefa. Signals from the
Crowd: Uncovering Social Relationships through Smart-
phone Probes. In ACM Internet Measurement Con-
ference (IMC), October 2013. doi: 10.1145/2504730.
2504742.

[12] Elad Barkan, Eli Biham, and Nathan Keller. Instant
Ciphertext-Only Cryptanalysis of GSM Encrypted Com-
munication. In Advances in Cryptology (CRYPTO),
August 2003. doi: 10.1007/978-3-540-45146-4_35.

[13] Sarah Bell. Police investigate ’first cyber-flashing’
case, 2015. URL https://www.bbc.com/news/
technology-33889225. [Accessed September 25,
2018].

[14] Gal Beniamini. Over The Air: Exploiting Broad-
com’s Wi-Fi Stack (Part 2), April 2017. URL
https://googleprojectzero.blogspot.com/
2017/04/over-air-exploiting-broadcoms-wi-
fi_11.html. [Accessed June 28, 2018].

[15] Laurent Bindschaedler, Murtuza Jadliwala, Igor Bilogre-
vic, Imad Aad, Philip Ginzboorg, Valtteri Niemi, and
Jean-Pierre Hubaux. Track Me If You Can: On the
Effectiveness of Context-based Identifier Changes in
Deployed Mobile Networks. In Network & Distributed
System Security Symposium (NDSS), 2012.

[16] Vincent Bindschaedler and Reza Shokri. Synthesizing
Plausible Privacy-Preserving Location Traces. In IEEE
Symposium on Security and Privacy (S&P), May 2016.
doi: 10.1109/SP.2016.39.

[17] Bluetooth Special Interest Group (SIG). Bluetooth Spec-
ification Version 4.1. Technical report, December 2013.

[18] Nicolás E. Bordenabe, Konstantinos Chatzikoko-
lakis, and Catuscia Palamidessi. Optimal Geo-
Indistinguishable Mechanisms for Location Privacy.
In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), November 2014. doi:
10.1145/2660267.2660345.

50 28th USENIX Security Symposium USENIX Association

https://owlink.org
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-in/HT209192
https://support.apple.com/en-in/HT209192
https://armis.com/blueborne/
https://armis.com/blueborne/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://www.bbc.com/news/technology-33889225
https://www.bbc.com/news/technology-33889225
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

[19] Stuart D. Cheshire. Proximity Wi-Fi. U.S.
Patent Application, (US 2018/0083858 A1), March
2018. URL https://patents.google.com/patent/
US20180083858A1.

[20] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer,
and contributors. mitmproxy: A free and open source
interactive HTTPS proxy, 2010–. URL https://
mitmproxy.org. [Version 3].

[21] Mathieu Cunche. I Know Your MAC Address: Targeted
Tracking of Individual Using Wi-Fi. Journal of Com-
puter Virology and Hacking Techniques, 10, November
2013.

[22] Anupam Das, Nikita Borisov, and Matthew Caesar.
Tracking Mobile Web Users Through Motion Sensors:
Attacks and Defenses. In Network and Distributed Sys-
tem Security Symposium (NDSS), February 2016.

[23] Anupam Das, Nikita Borisov, and Edward Chou. Every
Move You Make: Exploring Practical Issues in Smart-
phone Motion Sensor Fingerprinting and Countermea-
sures. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2018, January 2018. doi: 10.1515/popets-
2018-0005.

[24] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah,
and Prasant Mohapatra. Uncovering Privacy Leakage
in BLE Network Traffic of Wearable Fitness Track-
ers. In ACM Workshop on Mobile Computing Sys-
tems and Applications (HotMobile), February 2016. doi:
10.1145/2873587.2873594.

[25] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy
Choudhury, and Srihari Nelakuditi. AccelPrint: Imper-
fections of Accelerometers Make Smartphones Track-
able. In Network and Distributed System Security Sym-
posium (NDSS), February 2014.

[26] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa.
Mind Your Probes: De-Anonymization of Large Crowds
Through Smartphone WiFi Probe Requests. In IEEE In-
ternational Conference on Computer Communications
(INFOCOM), April 2016. doi: 10.1109/INFOCOM.
2016.7524459.

[27] Mark Dowd. MalwAirDrop: Compromising iDevices
via AirDrop. In Ruxcon, October 2015. URL http:
//2015.ruxcon.org.au/slides/.

[28] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In USENIX Conference on Operating Systems
Design and Implementation (OSDI), October 2010.

[29] Kassem Fawaz and Kang G. Shin. Location Privacy Pro-
tection for Smartphone Users. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
November 2014. doi: 10.1145/2660267.2660270.

[30] Kassem Fawaz, Huan Feng, and Kang G. Shin. Anato-
mization and Protection of Mobile Apps’ Location Pri-
vacy Threats. In USENIX Security Symposium, August
2015.

[31] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Pro-
tecting Privacy of BLE Device Users. In USENIX Secu-
rity Symposium, August 2016.

[32] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android Permissions De-
mystified. In ACM Conference on Computer and
Communications Security (CCS), October 2011. doi:
10.1145/2046707.2046779.

[33] Julien Freudiger. How Talkative is Your Mobile Device?:
An Experimental Study of Wi-Fi Probe Requests. In
ACM Conference on Security & Privacy in Wireless and
Mobile Networks (WiSec), June 2015. doi: 10.1145/
2766498.2766517.

[34] Sébastien Gambs, Marc-Olivier Killijian, and Miguel
Núñez del Prado Cortez. Show Me How You Move and I
Will Tell You Who You Are. In ACM SIGSPATIAL Inter-
national Workshop on Security and Privacy in GIS and
LBS (SPRINGL), 2010. doi: 10.1145/1868470.1868479.

[35] Sébastien Gambs, Marc-Olivier Killijian, and Miguel
Núñez Del Prado Cortez. De-anonymization Attack
on Geolocated Data. Journal of Computer and System
Sciences, 80, December 2014. doi: 10.1016/j.jcss.2014.
04.024.

[36] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and
Hao Chen. AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a
Large Scale. In International Conference on Trust and
Trustworthy Computing (TRUST). Springer, June 2012.
doi: 10.1007/978-3-642-30921-2_17.

[37] Shyamnath Gollakota, Haitham Hassanieh, Benjamin
Ransford, Dina Katabi, and Kevin Fu. They Can
Hear Your Heartbeats: Non-Invasive Security for Im-
plantable Medical Devices. In ACM SIGCOMM Com-
puter Communication Review, October 2011. doi:
10.1145/2043164.2018438.

[38] Google. Wi-Fi Aware, 2017. URL https:
//developer.android.com/guide/topics/
connectivity/wifi-aware. [Accessed June
28, 2018].

USENIX Association 28th USENIX Security Symposium 51

https://patents.google.com/patent/US20180083858A1
https://patents.google.com/patent/US20180083858A1
https://mitmproxy.org
https://mitmproxy.org
http://2015.ruxcon.org.au/slides/
http://2015.ruxcon.org.au/slides/
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware

[39] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian
Perrig, and Joy Zhang. ACComplice: Location In-
ference Using Accelerometers on Smartphones. In
IEEE International Conference on Communication Sys-
tems and Networks (COMSNETS), January 2012. doi:
10.1109/COMSNETS.2012.6151305.

[40] Xiuping Han, Zhi Wang, and Dan Pei. Preventing Wi-
Fi Privacy Leakage: A User Behavioral Similarity Ap-
proach. In IEEE International Conference on Commu-
nications (ICC), May 2018. doi: 10.1109/ICC.2018.
8422764.

[41] Harry Harris. Oakland-Maui flight: Pepper spray
emergency follows disturbing photo, 2018. URL https:
//www.eastbaytimes.com/2018/09/01/oakland-
maui-pepper-spray-disturbing-photo-delay/.
[Accessed September 25, 2018].

[42] Benjamin Henne, Christian Kater, Matthew Smith, and
Michael Brenner. Selective Cloaking: Need-to-Know
for Location-based Apps. In IEEE Conference on Pri-
vacy, Security and Trust, July 2013. doi: 10.1109/PST.
2013.6596032.

[43] Baik Hoh and Marco Gruteser. Preserving Privacy in
GPS Traces via Uncertainty-aware Path Cloaking. In
ACM Conference on Computer and Communications
Security (CCS), October 2007. doi: 10.1145/1315245.
1315266.

[44] Byeongdo Hong, Sangwook Bae, and Yongdae Kim.
GUTI Reallocation Demystified: Cellular Location
Tracking with Changing Temporary Identifier. In
Network and Distributed System Security Symposium
(NDSS), February 2018. doi: 10.14722/ndss.2018.
23349.

[45] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.
Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Fos-
ter, and Todd Millstein. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In
ACM Workshop on Security and Privacy in Smart-
phones and Mobile Devices (SPSM), October 2012. doi:
10.1145/2381934.2381938.

[46] Ryo Kato, Mayu Iwata, Takahiro Hara, Akiyoshi Suzuki,
Xing Xie, Yuki Arase, and Shojiro Nishio. A Dummy-
based Anonymization Method Based on User Trajectory
with Pauses. In ACM Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL), November
2012. doi: 10.1145/2424321.2424354.

[47] Constantinos Kolias, Lucas Copi, Fengwei Zhang, and
Angelos Stavrou. Breaking BLE Beacons For Fun But
Mostly Profit. In ACM European Workshop on Systems
Security (EuroSec), April 2017. doi: 10.1145/3065913.
3065923.

[48] John Krumm. Inference Attacks on Location Tracks.
In International Conference on Pervasive Computing
(PERVASIVE). Springer, 2007.

[49] B. Krupp, N. Sridhar, and W. Zhao. SPE: Security and
Privacy Enhancement Framework for Mobile Devices.
IEEE Transactions on Dependable and Secure Comput-
ing, 14, July 2015. doi: 10.1109/TDSC.2015.2465965.

[50] Denis F. Kune, John Koelndorfer, Nicholas Hopper, and
Yongdae Kim. Location Leaks Over the GSM Air Inter-
face. In Network & Distributed System Security Sympo-
sium (NDSS), February 2012.

[51] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan,
Yuanjie Li, Songwu Lu, and Xinbing Wang. Insecurity
of Voice Solution VoLTE in LTE Mobile Networks. In
ACM Conference on Computer and Communications
Security (CCS), October 2015. doi: 10.1145/2810103.
2813618.

[52] Guolong Lin and Guevara Noubir. On Link Layer Denial
of Service in Data Wireless LANs. Wiley Journal on
Wireless Communications and Mobile Computing, 5,
May 2005.

[53] Hua Lu, Christian S. Jensen, and Man Lung Yiu. PAD:
Privacy-area Aware, Dummy-based Location Privacy
in Mobile Services. In ACM International Workshop
on Data Engineering for Wireless and Mobile Access
(MobiDE), June 2008. doi: 10.1145/1626536.1626540.

[54] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa.
Mind Your Probes: De-anonymization of Large Crowds
Through Smartphone WiFi Probe Requests. In IEEE
INFOCOM, April 2016. doi: 10.1109/INFOCOM.2016.
7524459.

[55] Sathiamoorthy Manoharan. On GPS Tracking of Mo-
bile Devices. In IEEE International Conference on
Networking and Services (ICNS), April 2009. doi:
10.1109/ICNS.2009.103.

[56] Célestin Matte, Mathieu Cunche, Franck Rousseau, and
Mathy Vanhoef. Defeating MAC Address Randomiza-
tion Through Timing Attacks. In ACM Conference on
Security & Privacy in Wireless and Mobile Networks
(WiSec), July 2016. doi: 10.1145/2939918.2939930.

[57] Ulrike Meyer and Susanne Wetzel. A Man-in-the-
Middle Attack on UMTS. In ACM Workshop on Wire-
less Security (WiSe), October 2004. doi: 10.1145/
1023646.1023662.

[58] Micro:bit Educational Foundation. Micro:bit website,
2018. URL https://microbit.org. [Accessed
September 20, 2018].

52 28th USENIX Security Symposium USENIX Association

https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://microbit.org

[59] Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, and
Niraj K. Jha. PinMe: Tracking a Smartphone User
Around the World. IEEE Transactions on Multi-Scale
Computing Systems, 3, 2017. doi: 10.1109/TMSCS.
2017.2751462.

[60] A. B. M. Musa and Jakob Eriksson. Tracking Unmodi-
fied Smartphones Using Wi-fi Monitors. In ACM Con-
ference on Embedded Network Sensor Systems (SenSys),
November 2012. doi: 10.1145/2426656.2426685.

[61] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and
Guevara Noubir. Inferring User Routes and Locations
Using Zero-Permission Mobile Sensors. In IEEE Sym-
posium on Security and Privacy (S&P), May 2016. doi:
10.1109/SP.2016.31.

[62] Sarfraz Nawaz and Cecilia Mascolo. Mining Users’ Sig-
nificant Driving Routes with Low-power Sensors. In
ACM Conference on Embedded Network Sensor Sys-
tems (SenSys), November 2014. doi: 10.1145/2668332.
2668348.

[63] Nordic Semiconductor. nRF51822, 2018. URL
https://www.nordicsemi.com/eng/Products/
Bluetooth-low-energy/nRF51822. [Accessed
September 20, 2018].

[64] Simon Oya, Carmela Troncoso, and Fernando Pérez-
González. Back to the Drawing Board: Revisiting the
Design of Optimal Location Privacy-preserving Mecha-
nisms. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), October 2017. doi:
10.1145/3133956.3134004.

[65] Paulo Borges. BLESSED, 2014. URL https:
//github.com/pauloborges/blessed. [Accessed
September 20, 2018].

[66] PC Engines. APU2 platform, 2018. URL https://
www.pcengines.ch/apu2.htm. [Accessed November
14, 2018].

[67] Zhiyun Qian, Zhaoguang Wang, Qiang Xu, Z. Morley
Mao, Ming Zhang, and Yi-Min Wang. You Can Run, but
You Can’t Hide: Exposing Network Location for Tar-
geted DoS Attacks in Cellular Networks. In Network &
Distributed System Security Symposium (NDSS), Febru-
ary 2012.

[68] Franziska Roesner. Designing Application Permission
Models that Meet User Expectations. IEEE Security &
Privacy, 15, February 2017. doi: 10.1109/MSP.2017.3.

[69] Piotr Sapiezynski, Arkadiusz Stopczynski, David Ko-
foed Wind, Jure Leskovec, and Sune Lehmann. Inferring
Person-to-Person Proximity Using WiFi Signals. ACM
Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, 1, June 2017. doi: 10.1145/3090089.

[70] Matthias Schulz, Francesco Gringoli, Daniel Steinmet-
zer, Michael Koch, and Matthias Hollick. Massive Reac-
tive Smartphone-based Jamming Using Arbitrary Wave-
forms and Adaptive Power Control. In ACM Confer-
ence on Security and Privacy in Wireless and Mobile
Networks (WiSec), July 2017. doi: 10.1145/3098243.
3098253.

[71] Matthias Schulz, Daniel Wegemer, and Matthias Hol-
lick. The Nexmon Firmware Analysis and Modification
Framework: Empowering Researchers to Enhance Wi-
Fi Devices. Computer Communications, 2018. doi:
10.1016/j.comcom.2018.05.015.

[72] Reza Shokri, George Theodorakopoulos, Carmela Tron-
coso, Jean-Pierre Hubaux, and Jean-Yves Le Boudec.
Protecting Location Privacy: Optimal Strategy Against
Localization Attacks. In ACM Conference on Computer
and Communications Security (CCS), October 2012. doi:
10.1145/2382196.2382261.

[73] IEEE Computer Society. Wireless LAN medium access
control (MAC) and physical layer (PHY) specification,
December 2016.

[74] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
Using the Fluhrer, Mantin, and Shamir Attack to Break
WEP. In Network and Distributed System Security Sym-
posium (NDSS), February 2002.

[75] Milan Stute. Video of Proof-of-Concept Denial-of-
Service Attack Crashing iOS Devices, 2018. URL
https://youtu.be/M5D9NeKapUo.

[76] Milan Stute. Open Apple Wireless Direct Link Imple-
mentation in C, 2019. URL https://seemoo.de/owl.

[77] Milan Stute. Video of Proof-of-Concept Man-in-the-
Middle Attack on AirDrop, 2019. URL https://
youtu.be/5T7Qatoh0Vo.

[78] Milan Stute and Alexander Heinrich. Open AirDrop Im-
plementation in Python, 2019. URL https://seemoo.
de/opendrop.

[79] Milan Stute, David Kreitschmann, and Matthias Hollick.
One Billion Apples’ Secret Sauce: Recipe for the Apple
Wireless Direct Link Ad hoc Protocol. In ACM Confer-
ence on Mobile Computing and Networking (MobiCom),
October 2018. doi: 10.1145/3241539.3241566.

[80] Milan Stute, David Kreitschmann, and Matthias Hollick.
Demo: Linux Goes Apple Picking: Cross-Platform Ad
hoc Communication with Apple Wireless Direct Link.
In ACM Conference on Mobile Computing and Network-
ing (MobiCom), October 2018. doi: 10.1145/3241539.
3267716.

USENIX Association 28th USENIX Security Symposium 53

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://github.com/pauloborges/blessed
https://github.com/pauloborges/blessed
https://www.pcengines.ch/apu2.htm
https://www.pcengines.ch/apu2.htm
https://youtu.be/M5D9NeKapUo
https://seemoo.de/owl
https://youtu.be/5T7Qatoh0Vo
https://youtu.be/5T7Qatoh0Vo
https://seemoo.de/opendrop
https://seemoo.de/opendrop

[81] Milan Stute, David Kreitschmann, and Matthias Hollick.
The Open Wireless Link Project, 2018. URL https:
//owlink.org.

[82] Akiyoshi Suzuki, Mayu Iwata, Yuki Arase, Takahiro
Hara, Xing Xie, and Shojiro Nishio. A User Location
Anonymization Method for Location Based Services in a
Real Environment. In ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems (GIS), November 2010. doi: 10.1145/1869790.
1869846.

[83] Galini Tsoukaneri, George Theodorakopoulos, Hugh
Leather, and Mahesh K. Marina. On the Inference
of User Paths from Anonymized Mobility Data. In
IEEE European Symposium on Security and Privacy
(EuroS&P), March 2016. doi: 10.1109/EuroSP.2016.25.

[84] Jayakrishnan Unnikrishnan and Farid Movahedi Naini.
De-anonymizing Private Data by Matching Statistics. In
IEEE Allerton Conference on Communication, Control,
and Computing (Allerton), October 2013. doi: 10.1109/
Allerton.2013.6736722.

[85] US Census Bureau. Frequently Occurring
Surnames from the 2010 Census. URL
https://www.census.gov/topics/population/
genealogy/data/2010_surnames.html. [Accessed
September 25, 2018].

[86] US Department of Commerce. US Census Bureau. URL
https://www.census.gov. [Accessed September 25,
2018].

[87] US Social Security Administration. Popular Baby
Names: Beyond the Top 1000 Names. URL https://
www.ssa.gov/oact/babynames/index.html. [Ac-
cessed September 25, 2018].

[88] Mathy Vanhoef and Frank Piessens. Key Reinstalla-
tion Attacks: Forcing Nonce Reuse in WPA2. In ACM
Conference on Computer and Communications Security
(CCS), October 2017. doi: 10.1145/3133956.3134027.

[89] Mathy Vanhoef, Célestin Matte, Mathieu Cunche,
Leonardo S. Cardoso, and Frank Piessens. Why MAC
Address Randomization is not Enough: An Analysis
of Wi-Fi Network Discovery Mechanisms. In ACM
Asia Conference on Computer and Communications Se-
curity (ASIA CCS), May 2016. doi: 10.1145/2897845.
2897883.

[90] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara
Noubir. Fingerprinting Wi-Fi Devices Using Software
Defined Radios. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), July
2016. doi: 10.1145/2939918.2939936.

[91] Triet Dang Vo-Huu, Tien Dang Vo-Huu, and Guevara
Noubir. Interleaving Jamming in Wi-Fi Networks. In
ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), July 2016. doi: 10.1145/
2939918.2939935.

[92] Yu Wang, Dingbang Xu, Xiao He, Chao Zhang, Fan
Li, and Bin Xu. L2P2: Location-aware Location Pri-
vacy Protection for Location-based Services. In IEEE
INFOCOM, March 2012. doi: 10.1109/INFCOM.2012.
6195577.

[93] Te-En Wei, Albert B. Jeng, Hahn-Ming Lee, Chih-How
Chen, and Chin-Wei Tien. Android Privacy. In IEEE
Conference on Machine Learning and Cybernetics, July
2012. doi: 10.1109/ICMLC.2012.6359654.

[94] Wi-Fi Alliance. Neighbor Awareness Networking Tech-
nical Specification Version 2.0. Technical report, 2017.

[95] Hao Wu, Weiwei Sun, and Baihua Zheng. Is Only One
Gps Position Sufficient to Locate You to the Road Net-
work Accurately? In ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing (Ubi-
Comp), 2016. doi: 10.1145/2971648.2971702.

[96] Yunze Zeng, Parth H. Pathak, and Prasant Mohapa-
tra. WiWho: Wifi-based Person Identification in Smart
Spaces. In ACM/IEEE International Conference on In-
formation Processing in Sensor Networks (IPSN), April
2016. doi: 10.1109/IPSN.2016.7460727.

[97] Jin Zhang, Bo Wei, Wen Hu, and Salil S. Kanhere. WiFi-
ID: Human Identification Using WiFi Signal. In IEEE
International Conference on Distributed Computing in
Sensor Systems (DCOSS), May 2016. doi: 10.1109/
DCOSS.2016.30.

[98] Lichen Zhang, Zhipeng Cai, and Xiaoming Wang. Fake-
Mask: A Novel Privacy Preserving Approach for Smart-
phones. IEEE Transactions on Network and Service
Management, 13, June 2016. doi: 10.1109/TNSM.2016.
2559448.

54 28th USENIX Security Symposium USENIX Association

https://owlink.org
https://owlink.org
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov
https://www.ssa.gov/oact/babynames/index.html
https://www.ssa.gov/oact/babynames/index.html

	Introduction
	Background on Apple Wireless Direct Link
	Reverse Engineering AirDrop
	Discoverability User Setting
	Protocol and User Interaction
	(Un)authenticated Connections

	Activating AWDL on Devices in Proximity
	AirDrop BLE Advertisements
	Brute Force Analysis
	Jailbreaking BLE Advertisements
	Target Response Times Micro Benchmark

	Privacy: Tracking Apple Device Users
	Identifying Devices and Users via AWDL Protocol Fields
	A Survey on the Potential of Apple Device User Tracking
	Experimental Vulnerability Analysis
	Mitigation
	Related Work: User Tracking

	DoS: Impairing Communication with Desynchronization
	Desynchronizing Two Targets
	Evaluating Packet Loss
	Mitigating Desynchronization
	Related Work: Reactive Jamming

	MitM: Planting Malware via AirDrop
	Ambiguous Receiver Authentication State
	The Complete AirDrop MitM Attack
	Implementation
	Mitigation
	Related Work: Attacks on AirDrop

	Implementation Security
	Conclusion

