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Abstract
In this paper we employ quantitative measurements of cog-
nitive vulnerability triggers in phishing emails to predict the
degree of success of an attack. To achieve this we rely on
the cognitive psychology literature and develop an automated
and fully quantitative method based on machine learning and
econometrics to construct a triaging mechanism built around
the cognitive features of a phishing email; we showcase our
approach relying on data from the anti-phishing division of a
large financial organization in Europe. Our evaluation shows
empirically that an effective triaging mechanism for phishing
success can be put in place by response teams to effectively
prioritize remediation efforts (e.g. domain takedowns), by
first acting on those attacks that are more likely to collect
high response rates from potential victims.

1 Introduction

Phishing attacks represent a significant threat to organizations
and their customers [36]. The problem of phishing detection
has been addressed multiple times in the literature [16,18,32],
yet classification is only part of the issue. A timely and effi-
cient reaction to phishing attempts (e.g. performing takedown
actions on phishing domains, blacklisting, or notifying cus-
tomers) could save hundreds or thousands of customers from
fraud or theft, and associated costs for all involved stakehold-
ers. For this reason, most ‘large enough’ organizations operate
a phishing-response team whose task is to promptly inves-
tigate potential impacts, identify rogue domains and attack
vectors, and act to contain or neutralize the attack [8]. The
size of this effort often requires the full time operation of
several experts within the response team [46].

Unfortunately, these teams currently lack of an objective
and quantitative way of prioritizing response activities, which
can lead to large inefficiencies in the response process. Tech-
nical mechanisms are often in place to a-posteriori quantify
the success of a phishing attack, but these are technically lim-
ited to attacks ‘in scope’ of the measuring mechanism (e.g.

evaluating the requests for internal resources received by the
organization’s servers and originating from remote domains)
and, importantly, cannot predict how successful the attack is
likely to be if no immediate mitigation is put in place.

Key to predicting phishing success is the likelihood that a
human will comply with whatever instruction is in the phish-
ing email. Cialdini pioneered the definition of ‘principles
of influence’, namely Reciprocity, Consistency, Social
Proof, Authority, Liking, and Scarcity as ‘cognitive trig-
gers’ that, once engaged, can greatly impact the likelihood of
a human’s decision to comply with what he or she is being
requested to do [6]. These principles have been used as a
theoretical framework to investigate persuasion in different
domains, such as sales and marketing [7], organizational be-
haviour [41], and wellbeing [51], as well as being linked to
phishing effectiveness [53, 54] in (synthetic) experimental
settings [55]; however no means to automatically measure
the cognitive features of a phishing email, and estimate their
relation to phishing success ‘in the wild’, currently exists.

In this paper we employ techniques from natural language
processing and econometrics to build a method and estima-
tion process to measure cognitive triggers in phishing emails,
and to build a cognitive triaging model of how successful an
attack can be expected to be. We demonstrate empirically
that the resulting estimations can be used to efficiently priori-
tize phishing response actions, by addressing first the (few)
attacks that are likely to be highly successful. To do this,
we extensively analyze more than eighty thousand phishing
emails received by the anti-phishing division of a very large
European financial organization, quantify the ‘cognitive vul-
nerability triggers’ embedded in the attacks, and relate them
to the number of accesses to the remote phish domain that the
anti-phishing division measured. This allows us to empirically
derive a triaging model that, only based on cognitive features
of the incoming phishing email, can predict how many ‘clicks’
it can be expected to generate.
Scope and contribution of this work. With this work we
aim at building a principled analysis that explains why one can
expect a certain phishing email to be successful, as opposed to
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building a method that ‘blindly’ maps mail bodies to success
of attack. Importantly, with this work we do not aim to build
a classifier to distinguish phishing from non-phishing emails;
instead, we propose a method to predict to what extent a
known phishing attack can be expected to lure users in falling
for it. Our contributions can be summarized as follows:

• we provide the first empirical analysis of cognitive vul-
nerabilities as exploited in the wild by attackers launch-
ing phishing attacks;

• we employ a robust measurement methodology to iden-
tify cognitive vulnerability triggers in phishing emails,
using supervised Latent Dirichlet Allocation, and a set
of bootstrapped econometric simulations to build robust
estimations of model coefficients and predictions;

• we show empirically the correlation between exploited
cognitive factors and spoofed From: addresses with an
objective evaluation of phishing success;

• we quantitatively show that triaging phishing emails to
prioritize remediation action is possible and effective in
an operational setting.

This paper proceeds as follows: Section 2 sets the back-
ground for this work in both the cognitive psychology and
information security literature; Section 3 details the employed
data and methodology, and Section 4 reports the exploratory
and cognitive analysis of the data. The cognitive model and
predictions are presented in Section 5. Section 6 provides a
discussion of our results, and Section 7 concludes the paper.

2 Background and Related Work

The general objective of a phishing attack is to convince a
target to comply with a request, such as clicking a link to
a phishing domain, downloading malware, or providing per-
sonal credentials. The effectiveness of these attacks signifi-
cantly relies on how quickly the message can generate the
desired response [55]. Moreover, both cognitive [54, 56] and
technical [27, 30, 42] features are employed to lure users into
falling for the phish and are known to be relevant to explain
phishing effectiveness.

2.1 Cognitive characterizations
Believability. Phishers apply several techniques to increase
believability of their phishing messages. For example, they
may craft their phishing messages to resemble communica-
tions of the impersonated organizations as closely as possi-
ble [56]. This is commonly done by duplicating the look and
feel of these communications by including logos and other
branded graphics extracted from their legitimate counterparts,
and by adopting a formal writing style [15]. Furthermore, the
context of phishing messages is generally highly personalized
to appeal to the targeted population [55]. These practices are
enhanced by more technical measures, such as spoofing of

the phishing source address, and the use of shortened URLs
to hide the destination of the embedded phishing link [24].

Persuasiveness. Persuasiveness is associated with the text
content of the email. These techniques work by exploiting fun-
damental vulnerabilities of human cognition [31] that can be
explained by ‘shortcuts’ in human cognitive processes that de-
termine decisions on the basis of previous experiences, biases,
or beliefs [48]. Despite the clear benefits of these mental-
shortcuts, they can result in irrational decision-making as
well [52]. Cialdini [6] identified several principles that explain
how these mental shortcuts can be exploited for the persuasion
of others (e.g. for marketing purposes). Indeed, these prin-
ciples are applied regularly in multiple domains, including
marketing (e.g. to purchase a product or solution) [7], organi-
zational behaviour (e.g. to comply to policies) [41], and health
and wellbeing (e.g. to adopt healthy lifestyles) [51]. As these
are foundational to human decision-making processes [33],
these principles may not be effectively applied to distinguish
legitimate from illegitimate resources (e.g. a website, email,
or conversation): any activity aiming at ‘influencing’ one’s
behaviour (that being through spam or organization policies,
phishing or advertisement) will employ some variation of
these principles. On the other hand, these provide a solid
foundation to evaluate how effective an attempt at convincing
a human can be expected to be. Table 1 provides examples
and definitions of these principles.

Cialdini’s principles of persuasion are strongly related to
the successfulness of face-to-face social engineering efforts
in the real world [44] as well. Akbar [2] performed a quan-
titative analysis on 207 unique phishing emails to identify
the application of Cialdini’s persuasion principles in phish-
ing emails. The results show the Authority, Scarcity and
Liking principles to be most popular. A similar study was
performed by Ferreira et al. [12], who found the Liking prin-
ciple to be most popularly used, followed distantly by the
principles of Scarcity and Authority. Differences can be
explained by different experimental settings and application
domains. Several other studies [3, 13, 55] have addressed the
prevalence and efficacy of Cialdini’s principles in phishing
attacks. Others have evaluated phishing campaigns against
specific users [23], discussing some of the techniques used by
phishers to lure their victims. Unlike these works, we integrate
quantitative measures of cognitive attacks and measures of
phishing success to predict attack effectiveness in operational
settings.

2.2 Phishing effectiveness
Previous work considered the inclusion of forged quality
marks, images, and logos from trusted organizations as well as
other signals of credibility as means to increase the effective-
ness of a phishing attack [9]. Other more technical measures
are employed to enhance the credibility of phishing as well,
for example spoofing of the source email address, adoption
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Table 1: Definitions and examples of Cialdini’s principles of influence in phishing emails
Principle Definition [6] Phishing text example 2

Reciprocity Tendency to feel obliged to repay favours from others.“I do something for you,
you do something for me."

“While we work hard to keep our network secure, we’re
asking you to help us keep your account safe.”

Consistency Tendency to behave in a way consistent with past decisions and behaviours. After
committing to a certain view, company or product, people will act in accordance
with those commitments.

“You agreed to the terms and conditions before using our
service, so we ask you to stop all activities that violate them.
Click here to unflag your account for suspension.”

Social
Proof

Tendency to reference the behaviour of others, by using the majority behaviour to
guide their own actions.

“We are introducing new security features to our services.
All customers must get their accounts verified again.”

Authority Tendency to obey people in authoritative positions, following from the possibility
of punishment for not complying with the authoritative requests.

“Best regards,
Executive Vice President of <company name>”

Liking Preference for saying “yes” to the requests of people they know and like. People
are programmed to like others who like them back and who are similar to them.

“We care for our customers and their online security. Con-
firm your identity .. so we can continue protecting you."

Scarcity Tendency to assign more value to items and opportunities when their availability
is limited, not to waste the opportunity.

“If your account information is not updated within 48 hours
then your ability to access your account will be restricted."

2 Examples drawn from anti-phishing database at http://www.millersmiles.co.uk.

of HTTPS instead of HTTP to convince the user the webpage
is ‘safe’ [36], or cloning of the original webpage. Several
works have considered such visual similarities between phish-
ing landing pages and their legitimate counterparts based on
different features, including DOM tree structures [42], CSS
styling [27, 30], content signatures [1, 17], and pixel and/or
image properties [5,10]. Whereas these technical features con-
stitute additional relevant information for the identification
of a phishing attack, in this study we focus on the cogni-
tive attacks embedded in an email text (as opposed to the
visual clues included in a landing webpage) that affect the hu-
man decision making. Additionally, a number of user-studies
has been conducted on the impact of client-side detection-
assistance tools [20, 57] and how people evaluate phishing
web pages [9]. Various phishing detection mechanisms have
been proposed based on technical features such as signatures
of user email behaviour [49], email-header properties [16], im-
personation limitations of attackers [28], search engine rank-
ings [25], and botnet effects [35]. Additionally, [29] presents
a set of research guidelines for design and evaluation of such
detection systems. These works have predominantly focused
on the detection of phishing domains and emails by means
of technical traces in order to prevent phishing attacks from
happening in the first place. Unlike these studies, we focus
on the evaluation of the potential of those attacks that, despite
the countermeasures in place, make it through and must be
timely addressed.

On the cognitive-side we can consider the impact of user
demographics. Oliveira et al. [34] found age to be an impor-
tant feature, finding younger adults to be more susceptible
to Scarcity, whereas older adults were more susceptible to
Reciprocity. Other results of this study indicate the rele-
vance of gender by finding older women to be most suscep-
tible of all of the studied user groups. Furthermore, Wash
and Cooper [53] demonstrated the impact of message presen-
tation by showing how phishing training methods based on

giving facts-and-advice were more effective when presented
by an expert figure (Authority), whereas methods based on
personal stories benefited more from presentation by people
perceived as similar to the user (Liking). In the context of so-
cial media, user activity, consumption behaviour, and clicking
norms in the social network were found to be important fac-
tors for phishing success [40]. As opposed to focusing on the
characteristics of the individuals that receive the phishing (as
this information for the population of customers is generally
unknown to organizations, or may be impossible to collect
due to legal and ethical challenges), in this work we consider
the expected aggregate responses of the phishing recipients
as a function of the phishing emails.

3 Methodology and Data collection

Our analysis relies on a unique dataset from a large phishing
email database provided by Org, a large financial organization
in Europe with more than 8 million customers and a multi-
billion Euro turnover. Org customers that suspect they have
received a phishing email in their personal email accounts
are instructed by the organization to forward these emails to
an internal Org functional mailbox. In parallel, Org’s phish-
ing response team runs a service to detect phishing domains
(not necessarily linked with the received phishing emails) by
means of internal heuristics and limited to external domains
requesting resources internal to Org (e.g. images, forms, lo-
gos, CSS files/javascript, etc.). This data is generated by a
third party service hired by Org that monitors all requests
generated towards Org’s resources. Through this mechanism
Org can detect the number of visits to the detected domains
by accounting for the unique sessions opened between the
(rogue) external and the (legitimate) internal services. Access
to this data allows us to perform a rich analysis of the arrival
of phishing emails, their characteristics, and to evaluate how
often users have accessed malicious domains as a proxy mea-

USENIX Association 28th USENIX Security Symposium    1311



Victim

ORG Phishing
Abuse Inbox

Phishing

Web Page

< report email >

< click link >

< request resources >
Official ORG

Web Page

SOC

Operator

Malicious Activity

Event Alert

< analyse content > < analyse >

< redirect to >

Automated action

Human action

Malicious Domain

< start takedown procedure>

1a

1b

3a

1c

2a

3b

4

Click

Database

< analyse >

User Session

Monitoring System
2b

< store click data >

2b

< trigger >

SOC Operators collect evidence on the maliciousness of the web
domain under investigation such that an external party can perform
the notice and take-down requests for the malicious domains.

Figure 1: Overview of phishing-related activities at Org

sure of ‘phishing success’. Figure 1 depicts Org’s internal
process to handle suspect phishing emails.

Overall, we extracted 115,698 reported emails and 11,936
alerts for malicious links between February 1st, 2018 and
15 December 2018, with the exception of the period August-
September 2018 due to infrastructural limitations at Org. For
this same reason, our sample only includes data for ‘clicks’
collected from end of July onwards.

Data limitations and ethical aspects. From the data struc-
ture, the link between a clicked URL and the specific email
from which that click originated is not explicit and can only
be reconstructed by exact match of the destination URL. This
has the effect of limiting the scope of this study to the com-
parison of the effectiveness of cognitive influence techniques
between phishing emails that are likely to have generated
the click (as we cannot fully reproduce the process generat-
ing the detection of URLs that could have been clicked, but
have not). This also limits the number of matches between
URLs reported in event alerts and URLs linked in emails.
Further, the results of this work are limited to the emails that
have been reported (and therefore identified at least once) by
Org’s customers. Despite the large number of active report-
ing customers, particularly well-crafted emails may not be
represented in our dataset. Further, we can only observe data
captured by the User Session Monitoring System, i.e. related
to emails pointing to domains that ‘call back’ to Org’s sys-
tems. This may represent a limitation if emails that do not
‘call back’ also exploit different ‘cognitive vulnerabilities’,
or with different distributions. However, an analysis on the
available data does not show apparent biases between emails

for which a ‘click’ has been recorded, and those for which
we do not know of any (ref. Figure 10). These limitations
are akin to those outlined by Pitsillidis et al. [37]. Aware of
these, we compensate by means of the analysis methodology
that explicitly accounts for the potential biases in the data.
Finally, the collected data did not contain sensitive subject
information and all data handling has been performed within
allowance from Org and within the scope of work previously
approved by the department IRB.

3.1 Data sanitization and processing
As our email dataset contains messages forwarded by users,
we first sanitize the data by removing mobile text messages
(n = 18,817) that likely result from erroneous forwards to the
functional mailbox from a related banking service; as they
are irrelevant in our setting, we discarded them. Further, users
may have reported emails that target financial organizations
different from Org. To capture this, we identify targeted or-
ganizations in our dataset by a string search operation within
email bodies for the names of the most prominent financial
organizations in the country where Org is located, and remove
all records that do not belong to Org (n = 15,623). To identify
phishing email subjects, dates, and recipient/sender informa-
tion, we recursively searched through each raw email message
to find header matches of the first original email arrived in
the user’s inbox,1 and extract information on From, To, Date,
and Subject values. Table 2 reports summary statistics of
the final dataset.2

3.1.1 Identification of suspicious and landing URLs

Suspicious URLs. We check emails for the presence of sus-
picious URLs that point to any domain that does not belong
to Org, as these would not normally appear in a legitimate
email originated by the organization. We exclude from the
heuristic general-purpose domains with no direct phishing
correlation (e.g. youtube.com). Based on this classification
we flag emails that contain at least one suspicious URL as
Suspicious, whereas the remaining ones are considered un-
interesting within our scope (as we can neither count nor
estimate clicks for URLs that do not exist).
Landing URLs. These are landing URLs that load resources
internal to Org, as detected and reported by the User Session
Monitoring System (ref. Fig.1). Whereas they are related to a
click on a suspicious URL, this relation is not immediate in
the data and needs to be reconstructed.

1This is necessary as emails can be forwarded multiple times (e.g. if
originally forwarded by the customer to an Org employee) before ending up
in the phishing inbox.

2 We notice that the upper 2.5% of the distribution of email length is
disproportionally long w.r.t. the remainder of the distribution, suggesting a
few outliers in the data. Manual inspection reveals malformed email corpora
(e.g. with HTML tags embedded in the body); as no obvious ‘upper limit’
for email length is apparent, we keep these in the dataset for the sake of
transparency.
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Table 2: Descriptive statistics of the collected dataset
The column type indicates whether the variable is a factor (f) or numeric (n). The column n reports number of levels for factors, and number of records with
at least one observation for numerical variables. We do not report summary statistics for factors. The standard deviation for variable Date is reported in days.
All dates are in 2018 and in format %m�%d.

Feb-Jul 2018 Oct-Dec 2018

Variable type n Min 0.025q Median 0.975q Max n Min 0.025q Median 0.975q Max

Language f 3 2
To f 38760 2239
From f 1641 330
Date n 69800 02-02 03-07 05-30 07-28 07-31 11458 10-01 10-01 11-29 12-11 12-11
Length n 69800 160 446 1068 3973 67246 11458 173 329 1320 5480 15685

V
ul

n.
tri

gg
er

s Reciprocity n 69800 0 0 3 67 149 11458 0 0 2 37 153
Consistency n 69800 0 0 13 84 132 11458 0 0 19 88 176
Social Proof n 69800 0 0 2 17 52 11458 0 0 0 17 90
Authority n 69800 0 0 5 55 121 11458 0 0 5 27 83
Liking n 69800 0 0 0 7 504 11458 0 0 0 8 198
Scarcity n 69800 0 1 40 107 157 11458 0 0 11 91 189
Spoof dist. n 61911 0 0 7 14 23 10604 0 0 6 14 24
Clicks n 4 9 9 28.5 78 78 35 1 1 37 220 220

Em
ai

ls

Reported f 69800 11458
of which susp. f 61079 9419

Unique f 1293 424
of which susp. f 952 329

3.1.2 Landing URL extraction

To reconstruct the association between Landing URLs and
Suspicious URLs we adopt the following method:

1. First, we traverse the suspicious URL embedded in the
phishing email (suspiciousURL) multiple times by vis-
iting all URLs arriving to Org’s inbox. These typically
generate a number of redirections (generally HTTP 3xx)
that lead to a landing webpage, where the actual phish-
ing resource is located. We record the association h
suspiciousURL, landingUrl i for all visited URLs,
and for all emails; if the redirection mechanism is not
deterministic, we obtain a 1 to n association between
suspiciousURL and a set of landingURLs. As we can-
not know how many ‘redirection chains’ exist from a
single suspiciousURL, we traverse the URL opportunis-
tically every time it appears in Org’s inbox. To minimize
confoundings in the redirection, each visit session is in-
dependent from the previous. Figure 2 shows that the
number of different redirections stops growing quickly
regardless of how many time we traverse a given URL,
suggesting that the dataset of collected landingURLs
does not suffer from systematic censoring problems.

2. When landingURL is visited, a third party contractor
of Org records a ‘click’ for landingURL (see Fig 1 and
discussion in data limitations), and reports it to Org.

3. We link clicked landingURLs with the original email
body by matching them with the landingURLs we found
by traversing the suspiciousURLs in the mail corpus;
if there are multiple clicked landingURLs for a single
suspiciousURL, we keep record of all matches.

1
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The redirection count for all observed suspiciousURLs (left) shows
that new landingURLs stop appearing after only few suspiciousURL
visits. The density plot on the right shows ratio of unique landingURL
per suspiciousURL for suspiciousURLs visited more than once, and
confirms that new redirects stop appearing regardless of number of visits.

Figure 2: Redirection count (left) and density ratio (right)
from observed suspiciousURLs.

4. To aggregate clicks to a single suspiciousURL, we con-
sidered: average, sum, and max no. of clicks across all
landingURLs for a given suspiciousURL. We ran our
experiments using all aggregation strategies, and ob-
tained qualitatively identical results. In this paper we
report average clicks as it is the most conservative choice
to make (e.g. summing landingURL clicks is more sus-
ceptible to over-reporting multiple clicks by the same
user).

Figure 3 provides a bird’s eye view of the data generation
process for the landing URL extraction.

3.1.3 Duplicate detection

One complexity of our unstructured dataset is the possible oc-
currence of multiple duplicates of the same suspect phishing
email. In this paper we consider ‘similar’ emails received by
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Data generation process for an example email leading to k distinct clicked landingURLs. Users may click on the suspiciousURL link in the
email and, usually through a series of redirections, reach the phishing domain hosted at one of the landingURLs. Through the dynamics described
in Figure 1, an association between each distinct landingURL and recorded number of clicks is reported. The same email can also be reported to
Org’s phishing inbox. When it arrives, we opportunistically traverse the redirection chain and record the association between the original email
and the final landingURL(s). To reconstruct the association between suspiciousURLs and clicked landingURLs, we aggregate the two datasets.

Figure 3: Data generation process for matched URLs and click data aggregation

users over long periods of time as belonging to the same ‘cam-
paign’.3 Although the overall textual content of these dupli-
cate emails is similar, they can still contain slight differences,
for instance because of the presence of a recipient’s name in
the salutation of an email or other minor syntactic features. In
order to detect, and subsequently remove, as many of these
duplicate emails as possible, we used a fuzzy string matching
approach to determine the pairwise similarity for each of the
emails in our dataset. We employ a bag-of-words model to
calculate, for each document, the frequency of each unique
word in the document. We build the word-by-document ma-
trix of our email corpora for the term frequency values for all
emails in our dataset. As an additional pre-processing step all
input was cleaned by removing special characters, urls, email
addresses and line breaks from the text. We use L2 normaliza-
tion to the term frequencies to limit the impact of differences
in email lengths [47].

To evaluate email similarity we employ a measure of cosine
similarity. This similarity measure expresses the similarity be-
tween two vectors in terms of the cosine of the angle between
the two vectors; the evaluation results in a score between [0,1],
where 0 constitutes low similarity, and 1 constitutes high sim-
ilarity. To define the cutoff threshold for similar emails we
manually marked 300 randomly sampled emails from the
dataset and assigned them to ‘similarity IDs’ to track which
emails were replicas of which others. We then performed a
bootstrapped (n = 100,000) sensitivity analysis of the thresh-
old level to determine the optimal level for the cutoff. This
procedure tunes the categorization to very satisfactory sensi-
tivity and specificity levels higher than 90%. Full details on
procedure and results are reported in the Appendix.

The duplicate detection procedure identifies 1,293 and 424

3This is only based on the email text, and we use it as a term to group
together emails that are likely to have a common denominator (e.g. a phishing
tool, a specific market/phishing pool, or actual attacker).

Table 3: Topic model performance results
We perform LLDA using Gibbs sampling iterations for parameter
estimation and inference initialised with hyper parameters a = 1.0,
b = 0.001, klabels = 6 and Niterations = 1000.

Macro (sd) Micro (sd)

Sensitivity 0.709 (±0.016) 0.807 (±0.016)
Specificity 0.714 (±0.042) 0.813 (±0.038)
Precision 0.718 (±0.025) 0.755 (±0.024)
F1 0.725 (±0.020) 0.760 (±0.020)

unique emails in the data collection of Feb-Jul 2018 and Oct-
Dec 2018 respectively (ref. Table 2). Of these 952 and 329
respectively are classified as ‘suspicious’.4

3.2 Cognitive evaluation
To identify the presence of cognitive vulnerabilities in email
bodies and the intensity of the employed cognitive attacks,
we construct a supervised topic model based on Labeled
LDA [39] (LLDA). LLDA models each input document as
a mixture of topics inferred from labeled input data and out-
puts probabilistic estimates of label-document distributions,
i.e P(labelt |documentm), and word counts of label-specific
triggers for each input document. In our application the labels
correspond to Cialdini’s principles of influence, detailed in
Table 1, whereas documents correspond to the emails.

For model training, we randomly sampled 99 emails (38
with clicks and 61 suspicious) out of the set of unique and
suspicious emails in the dataset (n = 1,281),5 and manually

4Note that otherwise identical emails may lead to different phishing
domains.

5To have an indication of the effect of sample size on model performance,
we first ran the training on 70 emails and added 29 (+40%) at a second time,
obtaining virtually identical results. To rule out sampling issues, we also
performed a cross-validation procedure (reported) which suggested stable
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labelled them for presence of cognitive vulnerabilities. Due to
language restrictions, we adopted a mixed approach whereby
one author performed the labelling on the original data, and
the second author blindly re-performed the labelling on an
automatically-translated random sample (20 emails) of the
labelled data. To assess model performance we performed a 5
times repeated 5-fold cross validation over the data. Numer-
ous approaches exist to evaluate the performance of multilabel
classification problems like ours. Following [43], we consider
our problem as a label-pivoted binary classification problem,
where the aim is to generate for each label strict yes/no predic-
tions based on the document ranking for that label. For each
label, we sort on the per document prediction values, and use
the PROPORTIONAL method [14, 43] to define a rank-cutoff
value that determines the top N ranked items that will receive
a positive prediction. For each label, we set TOPNi equal to
the expected number of positive predictions based on training-
data frequencies: For label li, TOPNi = ceil

⇣
Nd

test
Nd

train
⇤Ntrain

i

⌘

where Nd
train and Nd

test refer to the total number of training
and testing documents and Ntrain

i is the number of training
documents assigned label li.

We have aggregated the performance results of our topic
model using the PROPORTIONAL rank-cutoff method in Ta-
ble 3. Unlike other rank-cutoff methods, this approach relies
solely on labeling information from the training set, which
makes it appropriate for use in real-world production settings
as well. We report both macro scores (averages computed
over each result of the cross-validation procedure), and micro
scores (computed over the aggregate of all cross-validation
results). The obtained scores indicate a satisfactory fit over
both projections. A manual analysis on randomly sampled
emails confirms that the procedure appropriately assigns ‘top-
ics’ to emails. The final model is trained on the complete set
of 99 labeled training documents that were previously used in
cross-validation, and then applied to the unseen and unlabeled
remainder of the full dataset. Standard text cleaning proce-
dures have been applied for removal of special characters and
stop-words, sentence tokenization, and word stemming.

In this paper we refer to the ‘topics’ assigned by LLDA
to an email as the cognitive vulnerabilities exploited in that
text, and to the words associated with that topic and present
in the text as the vulnerability triggers for that cognitive
vulnerability. With this we aim at distinguishing the presence
of a cognitive attack from its intensity in the email text.

Example of training results We report below an example
of a phishing email (translated to English) and its associa-
tion with different cognitive vulnerabilities. We have indi-
cated the relevant vulnerability triggers in italics and refer
to (1) Liking, (2) Consistency, (3) Authority, (4) Social
Proof, (5) Reciprocity and (6) Scarcity:

results. Finally, manual checks on a random sample from the dataset of
predicted labels found no obvious miscategorization.

Table 4: Example of extracted keywords for each topic
Reciprocity Consistency Social Proof

Word p Word p Word p

free 0.024 update 0.026 all 0.035
participate 0.016 improve 0.024 customer 0.011
program 0.011 recycle 0.018 current 0.005
request 0.010 renew 0.015 require 0.004

Authority Liking Scarcity

Word p Word p Word p

safety 0.017 valued 0.022 after 0.031
regulate 0.013 friendly 0.012 charge 0.027
european 0.010 strive 0.008 direct 0.020
must 0.007 environment 0.005 debit 0.019

(1) As a valued customer of Org we always want to inform
you of the latest updates and innovations in our system.
We have recently switched to a new system that requires
(4) all current customers to replace their (2) current debit
cards by our newly-produced ones.

In connection with the new changes to the (3) European
Safety Regulations, Org wishes to alert all its customers to
the availability of the new and improved debit cards that
adhere to all (3) environmental and safety regulations.

(1) Org strives to be environmentally friendly. Therefore,
our service team will recycle all current debit cards by
mounting your (2) current AES Encryption Chip on your
renewed biological RFID payment card. For this reason,
all current payment cards must be replaced. (5) By partici-
pating in our recycling program, the new debit card can
be requested free of charge. (6) After October 19th, 2018,
a direct debit will be charged.

From the example we can observe that the different cogni-
tive vulnerabilities often appear alongside each other, and that
a single vulnerability can even occur multiple times within
an email body. Table 4 reports an excerpt of the classifica-
tion results for the above message, and the learned keywords
(translated in English) for each topic.6

4 Exploratory analysis

In this section we provide an exploratory analysis of the
obtained email data set reported in Table 2.

We first give a look at the time of suspicious email arrivals
in victims’ inboxes. Figure 4 reports the CDF distribution of
email arrivals to Org’s phishing inbox. We observe a steady
arrival rate through April and the first cutoff date in July
2018, suggesting that email arrival is approximately constant
and uniformly distributed in time. As per the time of day of
their arrival (not depicted here for brevity) we observe that
few suspicious emails arrive in the users’ inboxes during the

6As the original text is not in English, to provide an accurate translation
we report keyword matches for an example.
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Figure 4: Arrival of notified emails to Org’s inbox
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Figure 5: CDF of emails reported by victim addresses

weekend, with most phishing activity happening during the
working days. This may suggest a strategic aspect of these
campaigns aimed at increasing the credibility of the email
source. On this same line, we find that most emails arrive
between 9am and 5pm (business hours), and most arriving
between 9am and 11am. Interestingly, these findings are all in
line with optimal email send days and times for newsletters
as reported by analyses from multiple popular online email
marketing services [4, 26, 38, 45], and is an indication that
attackers may follow similar strategies.

4.1 Spoofing and victimization
Figure 5 depicts the distribution of suspicious and non sus-
picious reported emails. The CDF is on a log scale to better
represent the distribution’s log tail. The vast majority of users
report only one email, with almost all reporting less than 10
emails. This suggests that the distribution of phishing emails
is uniform across victims, as is generally the case with un-
targeted phishing attacks [23, 36]. Only 122 addresses out of
about 40 thousand report more than 10 emails, and only nine
report more than 100 emails.

Figure 6 reports the distribution of spoofed and non-
spoofed From: domains for reported emails with and with-
out a suspicious URL in the body. An email is classified as
spoofed based on the Levenshtein distance of the (spoofed)
From: domain the original attack was sent to, w.r.t. the actual
name of the organization. This captures exact string matches
as well as small variations that may remain undetected by
the user [50]. We find attacks employing a range of domains
resembling Org’s: from less similar (e.g. org-safety.com,

No suspicious link Suspicious link(s)
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Figure 6: CDF of spoofed and non-spoofed From: domains
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For visualization purposes we report random samples per week of
10% of the emails received in that week. Red represent high sim-
ilaries above the threshold. We do not observe specific cycles of
similar emails, suggesting that any sufficiently long period of time
(3-4 weeks) would cover a diverse set of phishing attacks.

Figure 7: Pair-wise cosine similarity between email samples

org-customersupport.com), to more closely spoofed do-
main variations (e.g. theorg.com, 0rg.com). We observe a
clear differentiation, whereby emails with no suspicious URL
are approximately as likely to have a spoofed From: address
as a non-spoofed one. On the other hand, emails with suspi-
cious URLs are more likely to be delivered from non-spoofed
than from spoofed addresses, as can observed from the areas
under the two curves. This is compatible with a model of a
relatively unsophisticated attacker. Here it is also relevant to
consider that the pool of ‘spoofed’ addresses is much smaller
than the pool of ‘non-spoofed’ addresses (as there are many
fewer viable choices similar to Org than otherwise), suggest-
ing that as spoofed domains get blacklisted, attackers may be
forced to move to less well-spoofed From: addresses.

4.2 Phishing campaigns
Figure 7 reports a visualization of the similarity scores be-
tween emails received during the observation period. Dark red
indicates high similarity.7 We do not observe specific and sys-

7For details on the identification of similar emails see the Appendix.
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As phishing campaigns progress, the spoofed From: domains appear
to be more dissimilar w.r.t. the original domain.

Figure 9: Average weekly decrease in similarity between
spoofed domains and name of target organization

tematic cycles of campaigns emerging with repeating patterns
across several weeks. This also suggests that any sufficiently
long observation period (in the order of 3-4 weeks) may suf-
fice to collect a diverse set of attacks for analysis. A first
look suggests that some attacks seem to re-appear after a few
weeks in slightly different forms, perhaps to increase chances
of passing updated spam filters (see for example emails from
week 21 reappearing slightly modified in week 26, or those
from week 18 reappearing in week 24). To evaluate this, Fig-
ure 8 reports the distribution of suspicious emails that likely
belong to the same campaign. Most campaigns are relatively
long, with approximately 50% of similar emails arriving more
than 120 days apart, and 25% of emails arriving more than
150 days apart with a relatively long left tail. From the dis-
tribution it appears that single-day campaigns are relatively
common, whereas long campaigns extend for more than 100
days. Mid-range campaigns lasting between 2 and 100 days
are by comparison only few, suggesting that attacks may ei-
ther be extremely quick and disappear the next day, or last for
long periods. Table 5 reports summary statistics of suspected
phishing campaigns. We identify 38 distinct campaigns last-
ing on average 150 days (approx 5 months) and up to 175
days in the observation period.

To investigate how address spoofing evolves during cam-
paigns, Figure 9 reports the weekly average similarity be-
tween the domain of the attacker From: address and the do-
main of the victim organization (measured as their Leven-
shtein distance) for LONG campaigns. Lower scores indicate

more closely spoofed domains. We observe an average in-
crease in dissimilarity between spoofed From: addresses and
organization domain, which suggests an overall deteriora-
tion of a phishing campaign as it progresses or is replicated
by phishers (cor = 0.31, p = 0.08). This is in line with the
intuition that spoofed domains are limited in number, and
attackers may therefore run out of options as domains get
blacklisted as the campaign progresses.

4.3 Cognitive effects
Figure 10 reports the distribution of triggered cognitive vul-
nerabilities in each unique email (left) and the corresponding
vulnerability triggers identified in the corpus (right). We ob-
serve a clear relation between the two plots: the most common
vulnerabilities and triggers in emails appear to be linked to
the Consistency and Scarcity vulnerabilities, regardless
of whether a ‘click’ has been recorded for that link or not.
Liking and Social proof triggers appear to be particularly
rare on the average, with most emails targeting none.8 This
is consistent with the intuition that in one-shot interactions
(as opposed to prolonged or repeated exchanges as in spear-
phishing attacks [23]) cognitive attacks linked to the target’s
social context and personal preferences (ref. Table 1) are rare.
By contrast, exploiting Consistency may only require refer-
ence to previous actions that the group of potential victims
will have likely performed, such as buying an insurance or
receiving a debit card from the organization. Authority ap-
pears to be a relatively common trigger in our sample, albeit
not for all emails. Common triggers here refer to European
and national-level legislation and often come together with
the threat of a punishment if certain actions are not completed.
Overall, we find that few cognitive triggers are present in
the median email, suggesting that the median reported attack
may not be highly effective, whereas few emails embed more
‘intense’ cognitive attacks.

Effect of cognitive vulnerablities on phishing success.
To evaluate the effect of the cognitive features of the email(s)
embedding the ‘clicked’ URL links, we first report in Fig-
ure 11 the distribution of average clicks generated by emails
for which at least one click has been recorded (n = 40). Most
emails generate fewer than 150 clicks, with two emails gen-
erating more than 200 clicks (min = 1, median = 37, max =
220, sd = 51.9). Figure 12 displays the relation between trig-
gered cognitive vulnerabilities and generated clicks, for which
we observe a clear positive relation.9 Following common prac-

8The descriptive statistics reported in Table 2 also suggest stable distribu-
tions between the collection periods; for Liking we observe more extreme
values (upper 97.5% = 7, max = 504 in the Feb-Jul data collection); this is
caused by the outliers in the email corpora for which we measure dispropor-
tionate email lengths.

9A possibility is that some emails may be distributed to substantially
more users than other emails, generating greater aggregate click counts. As
we have no access to the victim’s inboxes, we cannot directly measure this.
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Table 5: Descriptive statistics of duration and intensity of phishing campaigns
SINGLE-DAY campaigns last up to one day; SHORT campaigns up to 100 days; LONG campaigns more than 100 days. Most phishing campaigns
are either very short (one day) or long, with only a handful lasting more than one day but less than 100.

Phishing samples (#reported emails) Campaign duration (days)

Type n Min 1stQ Mean Med 3rdQ Max sd Min 1stQ Mean Med 3rdQ Max sd

SING. 10 1 1.0 1.3 1.0 1.0 3 0.7 0.0 0.0 0.1 0.0 0.0 1.0 0.3
SHORT 4 2 2.0 36.0 3.0 37.0 136 66.7 18.1 18.2 53.3 52.1 87.2 90.8 40.6
LONG 24 46 86.2 783.4 226.5 929.5 4827 1207.5 116.1 145.2 150.9 150.6 164.2 175.6 17.3
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Liking are the least common. Relative frequency of cognitive vulnerabilities is reflected in the distribution of vulnerability
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a ‘click’ has been registerd, and emails for which it has not (i.e. that received an unknown number of clicks).

Figure 10: Distribution of triggered cognitive vulns. (left), and of vuln. triggers (right) for emails
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tice [21], to avoid dispersion we here only consider URLs
clicked at least ten times, removing six emails. A simple Pois-
son regression of the form log(clicksi) = a+ b(cogvulnsi)
reveals a strong positive correlation between the variables
(b = 0.12, p < 0.001). This suggests that the more cognitive
vulnerabilities are exploited in an email body, the more that
email can be expected to generate compliant user behaviour,
even when not considering the type of cognitive attack, or its
intensity.

However, the data does not show specific biases in the likelihood of users
reporting emails (Figure 5), suggesting that major skews are not realistic.
This is consistent with previous findings in the literature [36, 58]. Further,
due to the very low click-through rates of spam and phishing campaigns [19],
this difference should be of several orders of magnitude to have a visible
effect (as opposed to be undetectable noise in the data generation process).
Regardless, in the Appendix we build a data generation model to evaluate
the effect this bias would have in the data if present; our analysis finds no
evidence.
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We observe a clear relation between the presence of exploited
cognitive vulnerabilities and the clicks generated by the embed-
ded URL(s). The shifted position of points in the pictures is to
clear overlaps and is only presentational.

Figure 12: Relation between number of cognitive vulnerabili-
ties in an email and average clicks (log10)

Effect of vulnerability triggers. We now consider the rela-
tion of the intensity of each cognitive attack (i.e. measured by
the presence of vulnerability triggers) with the measured ‘suc-
cess’ of the phishing email. Figure 13 reports the results. The
data reports a clear positive relation between Consistency,
and Scarcity vulnerability triggers with the expected (log)
number of clicks. Reciprocity shows a negative relation-
ship. Additionally Social proof, Liking and Authority
show no evident effect, whereby the majority of emails have
relatively small counts of associated vulnerability triggers
(see also Figure 10). On the other hand, looking at the right
extreme of the scale, the few available data points are always
related to highly-clicked emails; this may indicate that trig-
gering these vulnerabilities (in this application domain) may
be particularly difficult, for example as decisions related to
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The data shows the effect of different cognitive vulnerability triggers on expected number of clicks. Consistency and Scarcity have a clear
positive association with the expected number of clicks they generate. Social proof, Authority and Liking do not show any evident trend.
Interestingly, we find that Reciprocity appears to be counterproductive.

Figure 13: Correlation between vulnerability triggers and observed clicks
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We identify a negative relation between the dissimilarity of the
spoofed From: domain in an email against the original one, and
the expected number of clicks the email entices.

Figure 14: Relation between spoofing dissimilarity and aver-
age clicks (log10)

personal finance may have a smaller attached ‘social’ com-
ponent, or as adding additional ‘authoritative’ effects in the
banking domain may be challenging for an attacker.

Effect of spoofing distance. Apart from the cognitive vul-
nerabilities exploited in the text, a second relevant factor could
be the similarity between the From: address displayed to
a user and Org’s legitimate one. Figure 14 reports the re-
lation between Levenshtein distance of the spoofed From:
domain and the expected number of clicks. We find an in-
verse relation between the two variables, suggesting that the
greater the dissimilarity between the spoofed and the original
domain, the lower the average number of generated clicks
(b = �0.13, p < 0.001). This suggests that both cognitive
attacks and the degree of spoofing in an email may have an
effect on the relative success of a phishing email and could
be considered to build a triaging model for phishing emails.

5 Modelling phishing success

We now evaluate the relative impact of each cognitive variable
in the collected dataset. We estimate coefficients for a Poisson
process of the (aggregate) form:

log(clicksi) = a+b1cogvulnsi +b2spoo f disti + ei (1)

whereby, for each email i, clicks represents the number of
measured clicks, cogvulns is the array of counts of the vul-
nerability triggers identified in the email body, and spoo f dist
indicates the degree of (dis-)similarity between the spoofed
From: address and the original Org domain. ei is the error
term. To monitor and account for overfitting problems related
to the few available datapoints, we combine a step analysis of
each model (M1..M7) with regression bootstrapping to gener-
ate robust confidence intervals for the coefficient estimations.
For model selection we report coefficients, 95% confidence
intervals, residual deviance, and Adjusted McFadden Pseudo-
R2, to reduce the statistical bias in the performance metrics
for model selection.10 Results are reported in Table 6.

All models have relatively stable coefficient estimations
showing no evident interaction effects between the regressors
(correlation matrix presented in Table 9 in the Appendix).
Coefficients should be interpreted relative to each other as
opposed to in absolute terms. Because of the relatively small
sample size, we refrain from drawing direct conclusions on
the model coefficients. For this reason statistical significance
is better served in the analysis reported in Figure 13 and is
only detailed in Table 6 for the reader’s reference. Within our
sample, model coefficients can be interpreted as the relative
change in number of clicks for every additional vulnerability
trigger of that type in an email. For example, the M7 coef-
ficient for Scarcity (0.02) indicates an increase of 2% in
the number of expected clicks for every new trigger of that
category. Likewise, an increase in one point on the Leven-
shtein distance scale is related to a decrease in clicks of
10%. A first informal look at the McFadden’s Pseudo�R2s,
Reciprocity, Consistency, and Spoof dist. appear to
have the strongest effect in increasing the explanatory power

10Importantly, with this procedure we do not aim at identifying a defini-
tive model and coefficients to forecast phishing success: regardless of the
amount of observations in the dataset, that would not be possible because the
‘click generation process’ generating the observations necessarily varies from
domain to domain (e.g. finance vs health), from organization to organization
(e.g. national vs international), and from customer base to customer base
(e.g. sensibility of application domain). Therefore, coefficient estimations
out of this type of models cannot be ‘plug-and-play’ across organizations
and domains and will require tuning before being applied in-house.
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Table 6: Regression results for Eq. 1
All model coefficients estimations are relatively stable across the seven models. Coefficients for the Poisson models are presented with
95% confidence intervals in parentheses. Social proof and Spoof distance of From: addresses appear to have the largest effects on
predicted number of clicks. Higher spoof distances (i.e. higher dissimilarity between From: domain and original domain) result in a lower
number of expected clicks. We only report coefficient significance (indicated by a ? for significance at the 0.1% level) for the reader’s
reference; however due to the relatively small sample size coefficient estimations should only be interpreted relative to each other as opposed
to in absolute terms. Model power w.r.t. the baseline model is reported by the adjusted McFadden Pseudo-R2; a c2 test is employed for
model comparison (? : p  0.001; † : 0.001 < p  0.01). Standard model checks do not reveal issues or biases in the model fit.

M1 M2 M3 M4 M5 M6 M7

a 4.38? 3.89? 3.79? 3.63? 3.37? 3.37? 4.22?
(4.33, 4.42) (3.81, 3.97) (3.71, 3.87) (3.54, 3.73) (3.17, 3.44) (3.23, 3.51) (4.02, 4.42)

Reciprocity -0.02? -0.01? -0.02? -0.02? -0.02 -0.02? -0.02?
(-0.02, -0.02) (-0.02, -0.01) (-0.03, -0.02) (-0.02, -0.01) (-0.02, -0.01) (-0.02, -0.01) (-0.02, -0.01)

Consistency 0.02? 0.02? 0.02? 0.03? 0.03? 0.01?
(0.02, 0.02) (0.02, 0.02) (0.02, 0.02) (0.02, 0.03) (0.02, 0.03) ( 0.01, 0.02)

Social proof 0.14? 0.11? 0.04 0.04 0.10?
(0.11, 0.16) (0.08, 0.14) (0.01, 0.08) (0.01, 0.07) (0.06, 0.13)

Authority 0.01? 0.02? 0.02? 0.00
(0.01, 0.02) (0.02, 0.03) (0.02, 0.02) (0.00, 0.01)

Scarcity 0.02? 0.02? 0.02?
(0.02, 0.03) (0.02, 0.03) (0.01, 0.02)

Liking -0.02? 0.04?
(-0.04, -0.01) (0.02, 0.06)

Spoof dist. -0.10?
(-0.12, -0.08)

Adj. Pseudo-R2 0.09 0.23 0.28 0.30 0.33 0.33 0.41
Res. Dev. 1390? 1136? 1054? 1012? 958? 951† 814?
N 38 38 38 38 38 38 38

of the model. Scarcity appears to contribute modestly,
whereas Liking appears to have the smallest effect on the
model. The negative effect of Reciprocity as shown in Fig-
ure 13 is confirmed in the model as well.

5.1 Cognitive triaging of phishing success

We now extend the model evaluation to estimate the amount
of clicks generated by other emails for which Org has detected
no click (e.g. because no call-back to Org resources has origi-
nated from the phishing website, remaining therefore invisible
to Org’s detection infrastructure, ref. Fig 1). Recall however
that our model estimates are likely subject to overfitting issues
due to the inevitably small sample size. This only means that
predicted outcomes could be unreliable over arbitrarily di-
verse email corpora (i.e. not represented in the training data);
on the other hand, predictions over similar emails to those
provided to the fitted models will not suffer from unmodelled
biases and will generate reliable estimations. For this reason
we only limit our analysis to emails with a distribution of
vulnerability triggers within plus or minus one standard devi-
ation from the mean for that trigger in the model’s respective
training set.

To choose the model for the prediction we perform a set
of ANOVA tests (c2), which indicate all factors add signifi-
cant information to the model, albeit Liking only marginally.
However, due to the statistical limitations of estimations in our

Table 7: Bootstrapped regression coefficients
PM1 PM2

0.025q Med 0.975q 0.025q Med 0.975q

a 3.37 4.35 4.90 2.84 4.22 5.17
Recip. -0.05 -0.01 0.00 -0.08 -0.02 0.00
Cons. 0.00 0.01 0.04 0.00 0.01 0.05
Soc.Pr. -0.18 0.10 0.37
Auth -0.03 0.00 0.05
Scar. 0.00 0.02 0.04 -0.03 0.02 0.05
Liking -0.02 0.04 0.05
Sp.dist. -0.17 -0.09 0.03 -0.12 -0.10 0.18

dataset, we also consider a second model that considers only
isolated factors for which we observe a clear effect as reported
in Figure 13. Based on these observations we consider two dif-
ferent prediction models (PM), each with different regressors,
namely: PM1: Reciprocity, Consistency, Scarcity and
Spoofing distance; PM2 all six cognitive vulnerabilities
+ Spoofing distance (i.e. equal to M7 as suggested by the
ANOVA tests). This leaves us with n = 334 and n = 189 sus-
picious emails on which to run the predictions for PM1 and
PM2 respectively. To build robust confidence intervals around
the estimations, we run a bootstrap simulation (n = 5,000).
Table 7 reports median coefficients and 95% confidence inter-
vals of the estimations. Notice that the estimated coefficients
remain largely similar to those of the original models for most
coefficients. PM1 shows much tighter confidence intervals
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Table 8: Descriptive statistics of average predicted clicks
Estimations are generated from 50,000 simulations run on the boot-
strapped model coefficients (Table 7).

PM1
Min. 1st Qu. Median Mean 3rd Qu. Max.

30 48 54 56 62 99

PM2
Min. 1st Qu. Median Mean 3rd Qu. Max.

26 43 50 53 60 129

for the estimated coefficients in comparison with PM2, sug-
gesting more reliable predictions. Notice that the distribution
of the coefficient estimations in PM1 tends to remain on the
same side of zero, again suggesting statistically robust re-
sults for this model. This suggests the exclusion of Liking,
Authority and Social proof in PM1 may lead to more
realistic estimations.

We simulate model predictions for the undetected clicks
by randomly sampling (n = 50,000) model coefficients from
the two distributions and report aggregate statistics (Table
8) of the estimated number of generated clicks. Figure 15
reports the results. The simulation results indicate that the
average ‘undetected’ email has potentially generated 50 -
55 clicks, with a long tail of (few) emails generating up to
100 clicks.11 This suggests that prioritization efforts based
on the cognitive characteristics of a phishing email could
help in more efficiently addressing attacks (e.g. by means
of takedown actions), by targeting first attacker resources
that are likely to generate more impact on the organization’s
customer base: by targeting first the emails that are most
likely to engage users in compliant behaviour, organizations
can effectively triage the stream of incoming phishing attacks
to minimize the impact on their customer base.

6 Discussion

The previous sections have demonstrated how quantitative
measurements of cognitive vulnerabilities employed in phish-
ing attacks can be used to develop a model to make predictions
about the expected efficacy of these attacks. This character-
ization allows one to assess the threat of these attacks in an
automated way such that instant prioritization of phishing in-
cident responses becomes possible. This paper’s contributions
go beyond the scope of earlier works on cognitive factors for
phishing by providing an empirical estimation and operable
implementation to estimate phishing success.

11Notice that additional organization-specific features of the email (e.g.
presence of the company logo), may also have an effect on the number of
clicks. Whereas this is out of the scope of this paper, which only looks at the
cognitive effects, a fully-operative model within an organization can easily
integrate other factors in the prediction.

In this work we identified several correlations between dif-
ferent cognitive vulnerabilities and the average number of
clicks an email can be expected to generate. In line with the
hypothesis that the presence of any individual cognitive vul-
nerability increases user response to the phish, we found that
Consistency and Scarcity exercise a clear positive effect
on the number of generated clicks. We find no evident ef-
fect from Social proof and Liking, whereas Authority
appears to have a positive effect albeit driven by only a few
non-zero data points. Interestingly, Reciprocity even shows
a counterproductive effect, albeit only marginal. This differ-
ence may well be explained by the specific application do-
main, as corporate customers subject to financial threats from
phishing can generally be expected to have different sensitiv-
ity to specific principles of influence than other groups [22].
Although this suggests that full generalizability can not be
expected for any one set of results, conclusions similar to
ours could be drawn for specific contexts close in nature to
the one in which Org operates. In particular, our finding of
the reduced effect of Authority in the banking domain is
in contrast with results from Wash and Cooper [53], who
found Authority to be the most effective strategy for the
presentation of certain phishing education materials. This dif-
ference may illustrate the context-dependency of the relative
efficacy of these influence tactics, and indicates a need for
careful consideration of such differences across domains. For
example, the effect of Authority can be mediated here by
the already relatively high authoritive position a bank has on
its customers; this suggests that, on one side, depending on
the domain it may be more difficult for an attacker to devise
effective attacks adding to baseline cognitive effects; on the
other, this also suggest that a relevant metric to evaluate could
be the relative increase (or decrease) in the cognitive effect
w.r.t. the baseline. A similar consideration could be drawn for
Reciprocity, whereby we observe a negative effect on the
generated ‘clicks’. An explanation could be that these type of
triggers rise a red flag in the context of banking operations,
for example as a bank’s ‘environmental friendliness’ may not
be a convincing-enough reason to act on a request (e.g. to
renew one’s debit card).

These observations also provide useful input to training
campaigns regularly run by medium and large organizations
in an attempt to increase their customers and employee’s
awareness of the social engineering threat. Replications of
this study in specific domains could reveal which principles
of influence the ‘average’ customer of an organization is more
vulnerable to; awareness campaigns run by the organization
could then target those specific traits by providing specific ex-
amples or information material built ad-hoc for the consumer
base (or targeting sections of it). For example, consumers
particularly vulnerable to Scarcity may benefit from know-
ing the organization’s policies in terms of change deadlines
and processes, such that an email stating unrealistic and short
cutoff dates to react lose credibility.
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Figure 15: Distribution of predicted average clicks

Operationally, the presented procedure could be applied
both client and server side to automate the risk evaluation
of potential phishing emails for the enforcement of security
policies; for example, mail client plugins or server-side pro-
cesses could automatically divert or forward high-risk emails
to phishing investigation and response teams for further eval-
uation, while delaying the delivery of messages waiting for
a diagnosis. Furthermore, we have described how these ob-
served effects can be used in the construction of a prediction
model for the triaging of incoming phishing attacks. By en-
abling the triaging of incoming phishing attacks, our results
will enable incident response teams to focus on the most
prominent threats immediately, without having to manually
filter out the noise from the bulk of low priority emails in
their phishing abuse inbox, thereby minimizing reaction costs
and increasing response effectiveness. The practicality of this
is evidenced in Figure 15, where by addressing the small
fraction of emails associated with the highest expected click
counts one can mitigate a large fraction of potential attacks.
This is critical to minimize overall victimization rates, as the
short-lived nature of phishing domains stresses a need for
prompt identification of which domains are most likely to
be reached by customers falling for the phish. By contrast,
addressing attacks in no particular order would most likely
result in wasting valuable time and resources by addressing
first the vast majority of attacks that are likely to generate few
clicks only (ref. Figure 15 and Table 8).

Finally, our method opens up new opportunities in terms of
automated incident handling and security orchestration, e.g.
by enabling incident handlers to apply automated follow up
procedures to incoming phishing attacks that fall within a
certain threat range; for example, reported measures on the
vulnerability triggers could be used to implement dynamic
risk-based access control policies to limit immediate follow-
up actions. Similarly, CSIRTs (Computer Security Incident
Response Team) could implement automated network-level
containment procedures based on the profile of incoming
emails, and avoid additional (and unnecessary) victimization
by delaying follow-up actions by the users until the risk is
cleared.

7 Conclusions

In this work we presented an empirical method and evaluation
of the effect of cognitive vulnerability triggers in phishing
emails on the expected ‘success’ of an attack. We employed
a unique dataset from a large European financial organiza-
tion with data from their phishing response division. Our
results indicate that response teams’ operations, such as take-
down actions against rogue phishing domains, could largely
benefit from a (fully automated) cognitive assessment of the
email body to predict relative success of the attack, given the
relevant user base. Our findings and method could also be
employed to deploy more effective training and awareness
campaigns in response to the more prominent threats suffered
by the potential victims. Future work could explore automated
response strategies to contain potential attacks and/or delay
user response where needed.
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Appendix

Table 9: Correlations between regression variables
We find no evident correlations between regressors. Only Scarcity
and Social proof, and Liking and Spoof dist. show a higher than
average correlation of 0.50 and 0.57 respectively, which is unlikely to
affect estimation results.

(1) (2) (3) (4) (5) (6) (7)

(1) Reciprocity 1.00 -0.19 0.13 -0.06 -0.11 -0.09 -0.17
(2) Consistency 1.00 -0.08 -0.24 0.10 -0.09 -0.41
(3) Social proof 1.00 0.25 -0.04 0.50 0.13
(4) Authority 1.00 0.06 -0.08 -0.10
(5) Liking 1.00 0.09 0.57
(6) Scarcity 1.00 0.24
(7) Spoof dist. 1.00

Bootstrap analysis for similar email detection
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The optimal threshold was found at 0.91 based on the intersection of the
mean sensitivity and specificity metrics at all decimal thresholds in [0,1]
across 10,000 bootstrap simulations with sample size 300.

Figure 16: Simulated optimal cosine similarity threshold for
duplicate detection

After computation of the full pairwise similarity matrix for all
suspect emails in our dataset, a threshold value was used to
determine the lower-bound for the similarity score of emails
we consider to be duplicates. In order to determine the most
optimal threshold value for our specific dataset we performed
a bootstrap analysis [11]. A bootstrap analysis generally in-
volves repeatedly running simulations on samples drawn with
replacement from an original sample set in order to estimate
statistics on a larger population. This is a fitting solution for
problems concerning dataset of large sizes like ours, which
do not generally allow for efficient derivation of the full set
of results that qualify as “ground-truth”.

We started our bootstrap analysis with a random sample
of 300 suspect phishing emails for which we made a manual
assessment of all pairwise similarities to test the performance
of our cosine similarity algorithm across different thresholds.
Then, we repeatedly (n = 10,000) drew samples with replace-
ment of size 300 from our manually classified sample and
computed the pairwise cosine similarity matrix for all deci-
mal thresholds in the interval [0,1]. For each combination of
bootstrap sample and threshold value we computed the perfor-
mance using the sensitivity (true positive rate) and specificity

metrics (true negative rate). A high sensitivity score refers
to a high probability of duplicate detection, measured by the
proportion of actual duplicates that are correctly identified
as being similar, whereas a high specificity score refers to a
high probability of non-duplicate rejection, measured by the
proportion of actual non-duplicates that are correctly identi-
fied as not being similar. The intersections of the mean results
for these two performance measures indicate that 0.91 is the
optimal threshold value for our dataset, as is visualized more
elaborately in Figure 16.

We use this threshold to calculate the pairwise similarity
matrix for all emails in our dataset and assign emails that are
found to be similar the same duplicate ID to allow us to filter
for unique emails.

Distribution of phishing emails by user
We perform a robustness check to evaluate the robustness of
our results against large biases in the distribution of phish-
ing emails across potential victims (whereby higher reported
clicks may relate to higher email delivery volumes). We base
the following on the sole assumption that attackers “sample”
victims from the same pool (i.e. Org customers). As we of
course cannot measure email delivery rates in user inboxes,
our aim is to ask how would the dataset look like if large
sample biases were present, and look for evidence in the data.

We developed the following data generation model to for-
malize and test this: a phishing email e 2 E can reach a user
u 2U with probability Pe(u). A suspicious email will be de-
tected by a user with a certain probability Pdet

u,e = Pu(DET |e).
Notice that this depends on the email and the specific user
that receives it, as different users may have different sensibili-
ties to emails with different characteristics. The probability
of remaining undetected is simply the complement, and is
defined as Pund

u,e = 1�Pu(DET |e).
Further, each user has a certain probability

Pu(noti f y|DET,e) and Pu(click|¬DET,e) of, respec-
tively, notifying a detected email, and clicking on a link if the
email is not detected. Hence, the probability of an email being
reported by a user is Pe(u) ·Pu(DET |e) ·Pu(noti f y|DET,e).
Conversely, Pe(u) · (1 � Pu(DET |e)) · Pu(click|¬DET,e) is
the probability of a click for each e 2 E and u 2U .

Let C be the set of clicked emails, and D the set of reported
emails, we’d then have:

|C| = |E| Â
8e2E

Â
8u2U

Pe(u) ·Pund
u,e ·Pu(click|¬DET,e)(2)

|D| = |E| Â
8e2E

Â
8u2U

Pe(u) ·Pdet
u,e ·Pu(noti f y|DET,e) (3)

|D| corresponds to the whole set of suspicious emails re-
ported in the organization’s phishing inbox. |C| corresponds
to the set of emails clicked (of which we observe C0 = D\C).
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The distribution is calculated over similar emails (as per their cosine similarity, left), and over emails that share the same cognitive attacks
(right). We observe a stable ratio across all emails, suggesting no significant skew in the probability of an email reaching a user’s inbox.

Figure 17: Estimation of rates of arrival of phishing emails to users

Log_10 of potential phishing emails notified by a user

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5

0
10

00
0

25
00

0

Figure 18: Number of users reporting |Du| emails (log10)

Notice that Pe(u) (i.e. the probability of an email arriv-
ing to a user’s inbox) is the only variable that is outside of
the direct influence of the user. On the contrary, Pdet

u,e , Pund
u,e ,

Pu(noti f y|DET,e) and Pu(click|¬DET,e) directly depend on
the characteristics of the user and of the email. Hence, we
would expect them to be approximately constant as long as
within the comparison the users are the same, and the emails
are similar to each other. As we can control for ‘similar’
emails (Section 3.1.3) and users are all pooled from the set of
Org’s clients, we can isolate large effects on |C0| and |D| as
being caused by large fluctuations in Pe(u).

Specifically, we would expect |C0
similar|/|Dsimilar| ⇡

constant iff also Pe(u) ⇡ constant 8e 2 Esimilar as all other
terms in the two equations will remain approximately the

same for similar emails and the users sampled from the same
pool. Hence, we measure the ratio of |C0

similar|/|Dsimilar| as a
proxy to estimate how much Pe(u) can be expected to vary
across emails. This holds under the sole assumption that
emails in D\C are indistinguishable (from the perspective of
the user) from those in D\C =C0; this is uncontroversial as
the detection mechanism for the inclusion of an email in C0

only depends on the phishing webpage and not on the email
per se.

Figure 17 reports the ratio distribution calculated over
emails with cosine similarity above the defined threshold
(left), and over emails employing the same cognitive attacks
(right). The ratios are small (i.e. only a small fraction of re-
ported emails of a certain type can be expected to generate
at least one click). This is qualitatively and quantitatively in
line with previous findings in the literature [19]. Importantly,
we observe that under both measures of similarity the rate is
essentially constant and settles around 1-5% for all emails.
This observation is incompatible with a significantly skewed
distribution of emails per user. Breaking down the figure by
users receiving the phishing email does not reveal any addi-
tional pattern as most users report only a few emails each (ref
Figure 5 and Figure 18).

This is in line with previous literature on phishing at-
tacks [9, 16] suggesting that no specific pre-selection of users
charcterizes untargeted phishing attacks. We therefore do not
expect significant biases in the analysis to emerge by the oth-
erwise unmeasurable distribution of emails in users’ inboxes.
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