
Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Iframes/Popups Are Dangerous in Mobile
WebView: Studying and Mitigating Differential

Context Vulnerabilities
GuangLiang Yang, Jeff Huang, and Guofei Gu, Texas A&M University

https://www.usenix.org/conference/usenixsecurity19/presentation/yang-guangliang

This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Iframes/Popups Are Dangerous in Mobile WebView:
Studying and Mitigating Differential Context Vulnerabilities

GuangLiang Yang, Jeff Huang, Guofei Gu
Texas A&M University

{ygl, jeffhuang, guofei}@tamu.edu

Abstract
In this paper, we present a novel class of Android Web-

View vulnerabilities (called Differential Context Vulnerabili-
ties or DCVs) associated with web iframe/popup behaviors.
To demonstrate the security implications of DCVs, we de-
vise several novel concrete attacks. We show an untrusted
web iframe/popup inside WebView becomes dangerous that
it can launch these attacks to open holes on existing defense
solutions, and obtain risky privileges and abilities, such as
breaking web messaging integrity, stealthily accessing sensi-
tive mobile functionalities, and performing phishing attacks.

Then, we study and assess the security impacts of DCVs
on real-world apps. For this purpose, we develop a novel tech-
nique, DCV-Hunter, that can automatically vet Android apps
against DCVs. By applying DCV-Hunter on a large number
of most popular apps, we find DCVs are prevalent. Many high-
profile apps are verified to be impacted, such as Facebook,
Instagram, Facebook Messenger, Google News, Skype, Uber,
Yelp, and U.S. Bank. To mitigate DCVs, we design a multi-
level solution that enhances the security of WebView. Our
evaluation on real-world apps shows the mitigation solution
is effective and scalable, with negligible overhead.

1 Introduction
Nowadays, mobile app developers enjoy the benefits of the
amalgamation of web and mobile techniques. They can easily
and smoothly integrate all sorts of web services in their apps
(hybrid apps) by embedding the browser-like UI component
“WebView”. WebView is as powerful as regular web browsers
(e.g., desktop browsers), and well supports web features, in-
cluding the utilization of iframes/popups.

In the web platform, iframes/popups are frequently used,
but also often the root cause of several critical security is-
sues (e.g., frame hijacking [11] and clickjacking [23, 43]).
In past years, in regular browsers, their behaviors have been
well studied, and a variety of mature iframe/popup protec-
tion solutions (e.g., Same Origin Policy (SOP) [6], HTML5
iframe sandbox [4], and navigation policies [11]) have been
deployed.

Inconsistencies Between Browsers and WebView. How-
ever, in WebView, a totally different working environment
is provided for iframes/popups, due to WebView’s own pro-
gramming and UI features. Although these features improve
app performance and user experience, they extensively impact
iframe/popup behaviors and introduce security concerns. In
particular, WebView enables several programming APIs (Fig-
ure 1) to help developers customize iframe/popup behaviors.
For example, the setting APIs allow developers to configure
their WebView instances. In the customized web environment
(WebView), it is unclear whether existing iframe/popup pro-
tection solutions are still effective.

Furthermore, WebView UI is designed in a simple style
(Figure 2) that only one UI area for rendering web content is
provided. Due to the lack of the address bar, it is difficult for
users to learn what web content is being loaded; due to the
lack of the tab bar, it is unknown how multiple WebView UI
instances (WUIs) are managed. Therefore, if an iframe/popup
has abilities to secretly navigate the main frame (the top
frame) or put their own WUI to the foremost position for
overlaying the original WUI, phishing attacks occur and may
cause serious consequences. Consider the scenario shown in
Figure 3 and 4. The Huntington banking app (one million+
downloads) uses WebView to help users reset passwords (Fig-
ure 3-a,b). Inside WebView, the main frame contains an iframe
for isolatedly loading untrusted third-party tracking content
(Figure 4). However, if the untrusted web content inside the
iframe obtains the ability of stealthily redirecting the main
frame to a fake website (Figure 3-c), serious security risks are
posed. For example, users’ personal (e.g., SSN info and Tax
ID) and bank account information may be stolen, and further
financial losses may also be caused.

Differential Context Vulnerability (DCV). Motivated by
above security concerns, we conduct the first security study of
iframe/popup behaviors in the context of Android WebView.
In this paper, we use the term “context” to refer to a web
environment that includes GUI elements (e.g., the address
and tab bars), corresponding web management APIs (e.g., the
setting APIs in WebView), and security policies (e.g., SOP

USENIX Association 28th USENIX Security Symposium 977

Table 1: A Summary of Differential Context Vulnerabilities (DCVs)
Critical Features

& Behaviors
Different Contexts Attacks Explanations ConsequencesBrowsers WebView

Main-Frame
Creation

Address
Bar Java APIs Origin Hiding Attack Special common origins

(e.g., null) Of Main-Frame

Sensitive functionalities behind postMessage
and JavaScript Bridges can be leveraged,
which may cause the leakage of sensitive
information (e.g., location), and risky access
on Hardware (e.g., camera and microphone)

Management of
new popups

Tab Bar Android
Frameworks

WUI overlap attack No protection on the WUI
rendering sequence

Phishing attacks

WUI closure attack

Main-Frame
Navigation

Address
Bar

Java APIs

Traditional navigation
based attack

Permissive navigation
policies

Privileged navigation
attack

Harmful conflict between
WebView Customizations
and web APIs

and navigation policies).
As a consequence, our study uncovers a novel class of

vulnerabilities and design flaws in WebView. These vulner-
abilities are rooted in the inconsistencies between different
contexts of regular browsers and WebView. As summarized in
Table 1, several critical web features and behaviors (i.e., main-
frame creation, popup creation, and main-frame navigation)
are involved (see more details in Section 3). These features
and behaviors are harmless or even safe in the context of
regular browsers, but become risky and dangerous in the con-
text of WebView. To demonstrate their security implications,
we devise several concrete attacks. We show through these
attacks, remote adversaries (e.g., web or network attackers
on iframes/popups) can obtain several unexpected and risky
privileges and abilities:
1) Origin-Hiding: hiding the origin when

• breaking the integrity of web messaging (i.e., postMes-
sage) [8], which allows the communication between
mutually distrusted web frames; and

• secretly accessing web-mobile bridges [21], which link
the web layer with the mobile or native layer (e.g., Java
for Android) (Figure 1);

Existing work has shown that postMessage’s message
receivers [44, 47] and web-mobile bridges [21, 49, 53]
often carry sensitive functionalities. Thus, these function-
alities can be further stealthily accessed by the untrusted
iframe/popup through the attack. As a result, sensitive
information (e.g., GPS location) may be stolen, and impor-
tant hardware (e.g., microphone) may be unauthorizedly
accessed.

2) WebView UI Redressing: performing phishing attacks by
overlapping the foremost benign WUI with an untrusted
WUI;

3) (Privileged) Main-Frame Navigation: freely redirecting
the main frame to a fake website.

Moreover, we examine the effectiveness of existing protec-
tion solutions, which include not only the solutions designed
for regular browsers (inherited by WebView), but also the
solutions proposed for Android UI and WebView. We find
that these solutions are ineffective to defend against the above
attacks:

Figure 1: WebView Programming Features

1) For origin-hiding attacks, existing defense solutions for
postMessage [11, 44, 47, 52] and web-mobile bridges
[18, 21, 38, 45, 49] usually provide security enforcement
relying on origin validation. However, unfortunately, the
key origin information of the untrusted iframe/popup can
be hidden during attacks, which leads to the bypass of the
security enforcement.

2) For WUI redressing attacks, they are similar to Android
UI redressing attacks [15, 20, 35]. However, the associ-
ated Android UI protection solutions (e.g., [13, 41]) are
circumscribed to prevent WUI addressing attacks. This is
mainly because that these protections work by monitoring
exceptional Android UI state changes between different
apps, while the WUI state change occurs within an app
during attacks.

3) For main-frame navigation attacks, one related solution is
the iframe sandbox security mechanism, which can effec-
tively limit the navigation capability of an arbitrary iframe.
However, through DCV attacks, an untrusted iframe can
still break the above limitation and cause privilege escala-
tion.

More details about the vulnerabilities and the weakness of
existing defense solutions are presented in Section 3. For
convenience, considering the root reason of this new type of
vulnerability (i.e., the inconsistencies between the contexts of
regular browsers and WebView), we refer to the vulnerabili-
ties as Differential Context Vulnerabilities or DCVs, and the
associated attacks as DCV attacks.

DCV-Hunter & Findings. We next study and assess the se-
curity impact of DCVs on real-world hybrid apps. To achieve
the goal, we develop a novel static vulnerability detection tech-
nique, DCV-Hunter, to automatically vet given apps against

978 28th USENIX Security Symposium USENIX Association

Figure 2: UI Comparison

Figure 3: Attacking the Huntington Bank App

DCVs. Then, by applying DCV-Hunter on a number of most
popular apps, we show that DCVs are prevalent. More specif-
ically, we find 38.4% of 11,341 hybrid apps are potentially
vulnerable, including 13,384 potentially vulnerable WebView
instances and 27,754 potential vulnerabilities. Up to now, the
potentially impacted apps have been downloaded more than
19.5 Billion times in total. Furthermore, our evaluation shows
DCV-Hunter is scalable and effective, and has relatively low
false positives (~1.5%).

We also manually verify that many high-profile apps are
vulnerable (a list of video demos of our attacks can be found
online [2]), including Facebook, Instagram, Facebook Messen-
ger, Google News, Skype, Uber, Yelp, WeChat, Kayak, ESPN,
McDonald’s, Kakao Talk, and Samsung Mobile Print. Several
popular third-party development libraries, such as Facebook
Mobile Browser and Facebook React Native, are also vul-
nerable and they influence hundreds of apps. Several special
sensitive categories of apps are affected including leading
password management apps (such as dashlane, lastpass, and
1password), and popular banking apps (such as U.S. bank,
Huntington bank, and Chime mobile bank).

In our analysis, we also find that some apps implement their
own URL address and title bars, which reduce the inconsisten-
cies between regular browsers and WebView. However, these
home-brewed URL bars hardly eliminate DCVs due to several
limitations. One major limitation is that their implementation
is often error-prone. For example, Facebook Messenger (Fig-
ure 5, one billion+ downloads) is equipped with the library
“Facebook Mobile Browser” to handle URLs contained in
messages (e.g., SMS). The browser library implements its
own address bar (Figure 5-b) to reflect the change of web
content (Figure 5-c) and mitigate DCV attacks (e.g., the WUI
overlap attack). However, this address bar contains a design
flaw (race condition). By combining a couple of DCV attacks,
untrusted iframes/popups can still launch phishing attacks
(Figure 5-d). Due to the inclusion of the vulnerable library,
many high-profile apps are impacted, such as Facebook and

Figure 4: Attack Scenario

Figure 5: Attacking Facebook Messenger

Instagram. In addition to the vulnerable library, we find this
design flaw is shared by many other popular apps that are not
equipped with that library, such as Kakao Talk (100 million+
downloads).

We have reported our findings to the Android security team
and many app developers. Up to now, a number of them (e.g.,
the Android and Facebook security teams) have confirmed
our findings.

DCV Mitigation. DCVs are not caused by programming mis-
takes. It is extremely difficult for developers to eliminate the
DCV security issues, especially considering the existence of
the limitations in WebView (Section 3.6). To mitigate the
problem, we propose a multi-level protection solution by
enhancing the security of WebView programming and UI
features. Our defense solution is implemented by instrument-
ing WebView’s independent library, but without touching the
source code of Android frameworks. Our solution is easy
to use, and can simply work after developers involve our
instrumented library, and provide a list of trusted domains.
Our evaluation on real-world apps shows that our solution
is effective and scalable, and introduces negligible overhead.
Furthermore, considering the Android version fragmentation
issue, we also test the compatibility of our solution. The re-
sult shows our solution is available in many major popular
Android versions (5.0+), and covers almost 90% of Android
devices in use.

Contributions. In sum, we make the following contributions:

• We investigate the security of iframe/popup in Android
WebView, and discover several novel and fundamental
design flaws and vulnerabilities in WebView (i.e., DCVs).

• We design a novel automatic vulnerability detection tool
“DCV-Hunter” to quantify the prevalence of DCVs.

• We apply DCV-Hunter on a set of popular apps, and con-
firm that DCVs have severe security impacts.

• We further propose a multi-level solution to mitigate DCV
attacks.

USENIX Association 28th USENIX Security Symposium 979

2 Background and Threat Model
Before we dive into our study of iframe/popup security, we
first introduce necessary background information and our
threat model.

2.1 Iframes/Popups and Related Protections
Iframes/popups are frequently used in web apps, for example,
to view files in various formats (e.g., images, videos and
PDFs), or load third-party untrusted web content (e.g., ads).
They are easy to use. To create an iframe, developers can 1)
either use the HTML element <iframe>; 2) or run JavaScript
code to dynamically build an iframe DOM node.

Furthermore, to enable a popup, developers can use the
following HTML code to generate a link:

<a href="URL" target="_blank|_top|frame_name|...".

When users click the link, “URL” will be opened in the frame
that is determined by the “target” attribute. If target is “_-
blank”, a new popup window will be opened to show “URL”.
Moreover, if target is “_top” or a specific frame name, “URL”
will be loaded in the main frame or the specific frame deter-
mined by “frame_name”. Developers can also use JavaScript
code to open or close a web window:

window.open(URL, <target>, ...) or window.close().

Similar to the usage of the HTML element <a>, “win-
dow.open()” can also determine where to open popup content.
Related Protections. Up to now, several practical protection
solutions were designed and deployed in regular browsers:
• Same origin policy (SOP): SOP isolates web frames whose

origins are different. Note that SOP causes side effects that
different origins are not allowed to communicate with each
other. To mitigate the problem, the postMessage mecha-
nism is designed in HTML5.

• Built-in security policies: Several built-in policies are
available. For example, remote web code is not allowed
to create a new sub-frame for loading local files, and the
main frame is not allowed to load the data scheme URL.

• HTML5 iframe sandbox: The iframe sandbox mechanism
can limit iframes’ abilities, mainly including the enable-
ment of JavaScript, main-frame navigation (“<a>” or “win-
dow.open()”), and popup-creation. Since the security of
the popup behavior is one of our research objectives, we
assume the popup-creation ability is allowed in iframe
sandbox. Thus, in this paper, we mainly consider the abili-
ties related to JavaScript enablement and main-frame nav-
igation.

• Navigation policies: As studied in existing work [11], in
regular browsers, the main frame is often exempt from
strict navigation policies, which means any sub-frame can
directly navigate the main frame by using “<a>” or “win-
dow.open()”. There are several reasons for such a design.
First, this type of navigation is frequently used by benign
web apps, for example, for preventing framing attacks [43].
Second, even though the main frame is navigated, the con-
sequence is quite limited in consideration of the stealth-

iness: any navigation can be explicitly reflected by URL
indicators (e.g., the URL address bar).

2.2 WebView and Related Protections
WebView is an embedded, browser-like UI component. An-
droid WebView is equipped with the newest kernel of the
regular browser “Chrome/Chromium”, and performs as pow-
erful as regular browsers.

As discussed in Section 1, there are several inconsistencies
between regular browsers and WebView. First, WebView UI
is like a small and compacted version of a regular browser. It
does not contain several common UI elements, including the
address, tab, title and status bars.

Second, WebView UI is a case of view group, a collection
of multiple Android UI components. More than that, it can
also be added to an existing view group. A view group may
consist of a set of WUIs with the same size. It manages mul-
tiple WUIs with a rendering queue, and only rendering the
foremost WUI to users.

Third, the manners of initializing web content are different.
Compared to regular browsers, which allow users to manu-
ally type the address of a website, WebView initializes web
content through programming APIs (Figure 1), including
• loadUrl(URL/file/JS): loading content in the main frame;
• loadData(HTML, ...): loading code with the “null” origin;
• loadDataWithBaseURL(origin,HTML,...): loading HTML

code with a specified origin.
Last, as shown in Figure 1, developers can customize a We-

bView instance through several programming features, such
as settings, and web-mobile bridges. Settings can manage
WebView configurations, while Web-mobile bridges can link
the web and mobile layers together. Generally, the bridges
include 1) event handlers, which let mobile code handle web
events that occur inside WebView; and 2) JavaScript bridges,
which can allow JavaScript code to directly access mobile
methods.

Furthermore, as shown in Table 2, several programming
features can impact iframe/popup behaviors. To enable the cre-
ation of a popup, the setting SupportMultipleWindows should
be set as true, and the event handler onCreateWindow() is
also required to be implemented and return true. This event
handler should create or open a WUI for rendering this popup,
and also return the WUI to Android. Otherwise, the popup-
creation operation will be ignored. This also means that dif-
ferent popup windows are rendered by different WUIs at one
time. Besides, to support the closure of a WUI, the event
handler onCloseWindow() should be also implemented. Note
that when any web frame, including the main frame, loads
content, the content should be approved by the event handler

“shouldOverrideUrlLoading()”.
Summary of Related Protections. In past years, WebView
security, especially the security of web-mobile bridges, has
drawn more and more attention [12, 16, 21, 27, 30, 33, 34,
50, 53–55]. Several defense solutions [18, 21, 38, 45, 49, 50]

980 28th USENIX Security Symposium USENIX Association

Table 2: Iframe/Popup-Related Programming Features
Features Content Explanation

Settings
OpenWindowsAutomatically Enable “window.open()”

SupportMultipleWindows
Enable the event handler
“onCreateWindow()”

Event
Handlers

onCreateWindow() Handle window-creation
onCloseWindow() Handle window-closure
shouldOverrideUrlLoading() Handle URL-loading

were proposed to enhance the security of WebView by provid-
ing the security enforcement and access control mechanisms.
However, we find they are ineffective against our new attacks.
Section 7 provides a review of these existing work.

2.3 Threat Model
In this paper, we mainly focus on the hybrid app whose We-
bView contains an untrusted sub-frame. In our threat model,
we assume the native or mobile code (e.g., Java code), and
the main frame loaded in its WebView are secure and trusted.
The main frame usually loads web content from the first-party
benign domains (e.g., developer.com). For the embedded un-
trusted sub-frames, we mainly consider two possible attack
scenarios:
Network attacks. When the sub-frames use HTTP network,
attackers may perform man-in-the-middle (MITM) attacks
to inject attack code into the sub-frames, and then launch
DCV attacks. Although HTTPS have been widely adopted
in modern web apps, there is still much legacy code using
HTTP.

This scenario is feasible, especially considering many pub-
lic unsafe WiFi hotspots are available [24]. Consider a pos-
sible scenario: attackers may set up a free WiFi hotspot in a
crowded place. Nearby smartphone users may use this WiFi.
If these users open vulnerable apps (e.g.,Facebook and skype)
and click web links, apps’ WebView may load these links. If
the loaded web content embeds iframes/popups using unsafe
network channels (e.g., HTTP), attackers may inject malicious
code into the iframes/popups and launch attacks.
Web attacks. The inclusion of third-party content usually
introduces security implications [26, 36]. Hence, we assume
web attackers may be the owner of a third-party domain
(e.g., ads.com) severing an embedded untrusted iframe/popup.
Our empirical study on a set of popular hybrid apps and mo-
bile websites shows iframes/popups are frequently used to
load third-party content, especially third-party advertising
and tracking content. Existing work has demonstrated that
third-party advertising [28,56] and tracking [14,32,37,42,46]
services often causes serious security concerns. More than
that, as figured out by existing work [39, 48], a third-party
iframe may even directly work as a malicious entry point for
malware.

This scenario is also possible in practice. For example, as
demonstrated in prior work (e.g., [36]), some domains may
expire, which still commonly occurs in recent years. Attackers
may register and get the control of these domains. If these
domains are embedded by some websites in iframes/popups,

attackers may broadcast these websites to lure users to access
them using corresponding vulnerable apps (e.g., Facebook
or Facebook Messenger). In the vulnerable apps, WebView
may be started, and also access the domains controlled by
attackers. Thus, attackers obtain chances to inject malicious
code and launch attacks.

Furthermore, as discussed in Section 2.1, considering the se-
curity of the popup behavior is one of our research objectives,
we assume the popup-creation ability of an iframe/popup is
enabled in its sandbox attribute.

3 Differential Context Vulnerabilities
In this section, we mainly focus on DCVs, and also explain
why existing defense solutions are ineffective to prevent DCV
attacks. We first show the overview of our security study, and
then present the details of each vulnerability. Last, we discuss
the advantages of DCV attacks over existing attacks, also with
the analysis of the root causes of DCVs.

3.1 Study Overview
Guided by the inconsistencies between regular browsers and
WebView (Section 2.2), our security study of iframe/popup
behaviors is mainly concerned with the following three di-
mensions:

The application of common origins. As introduced in Sec-
tion 2.2, WebView content initialization APIs may create the
main frame with common origins, such as “file://” and “null”.
For example, the invocation

WebView.loadurl(’file:///android_asset/index.html’)

can load a local file with the origin “file://”, while Web-
View.loadData() and WebView.loadDataWithBaseURL() may
create a main frame to load web data with the “null” origin.

However, these common origins are not unique for the main
frame, and may be reproduced by untrusted iframes/popups
in their inside sub-frames for launching attacks. More specif-
ically, if an untrusted sub-frame can generate a new nested
sub-frame “Fnested” with above common origins, the untrusted
sub-frame may place its essential attack code inside Fnested to
make risky operations, which are aimed to attack all potential
objectives, including the main frame, other sub-frames, or We-
bView itself. In the attack process, the victims may validate
the operations by checking the corresponding origins. How-
ever, the origin information they can obtain is Fnested’s origin,
rather than the real origin (i.e., the origin of the untrusted
sub-frame). Considering Fnested have the same origin as the
main frame, the origin validation process fails. Finally, the
victims may treat untrusted operations as benign operations
and handled them as usual.

Our study confirms that a sub-frame is not allowed to gen-
erate a new sub-frame with the “file://” origin, due to built-in
security policies (Section 2.1). However, a nested sub-frame
with a “null” origin can still be generated by using the data
scheme URL (e.g., <iframe src="data://..."), which is fre-
quently used to load simple HTML code (such as images)

USENIX Association 28th USENIX Security Symposium 981

in the web platform. Although SOP can prevent cross-frame
scripting between two “null” origins (e.g., the main frame
and Fnested), untrusted sub-frames can still leverage the “null”
origin to make several nefarious actions (Section 3.2).

Concise WebView UI design. As discussed in Section 1,
WebView’s UI design causes security risks that untrusted
iframes/popups may perform phishing attacks, if they have
the abilities of 1) manipulating the rendering order of multiple
WUIs; 2) navigating the main frame. To verify the former
potential ability, we first conduct an empirical study on a set
of popular hybrid apps. This study is aimed to understand
how WUIs are managed in practice. We find Android takes
the responsibility of managing multiple WUIs. Our study also
shows when a popup is created, Android place its WUI behind
current WUI at default.

This WUI management strategy seems safe. However, it
does not meet app development requirements. Instead, some
apps manage WUIs by themselves, which is yet error-prone
due to the design flaws of the WebView event handler system
(Section 3.6). As a result, the crucial ability of manipulating
the WUI rendering order is exposed (Section 3.3.1). Thus,
an untrusted iframe/popup can get the ability of overlapping
begin WUIs with its own WUI. Our study also shows that
even when Android’s default WUI management strategy is
adopted, it is still possible for untrusted iframes/popups to
change the WUI rendering order by combining WUI creation
and closure operations (Section 3.3.2).

Second, to confirm the latter potential navigation abil-
ity, we study the navigation policies of WebView. We
find WebView inherits permissive navigation policies from
Chrome/Chromium. These navigation policies have been well
investigated in the context of regular browsers (Section 2.1),
but rarely scrutinized in the context of WebView. These navi-
gation policies allow an untrusted sub-frame to navigate the
main frame. Due to the lack of the address bar, the navigation
based attack is stealthier and more powerful in the context of
WebView (Section 3.4.1).

Note that the above navigation can be disabled by iframe
sandbox (Section 2.1). But considering iframe sandbox is
hardly used in practice, the attack is still prevalent and has
negative security impacts in real-world hybrid apps. This is
also verified in our evaluation (Section 5.2).

WebView programming features. As discussed in Section
1, WebView’s programming features may impact the effective-
ness of existing defense solutions. To verify it, we extensively
test these protection solutions’ performance, when different
programming features are enabled. Consequently, we identify
a critical conflict between WebView programming features
and web popup-creation manners. By leveraging this conflict,
untrusted iframes/popups can perform privileged main-frame
navigation attacks, even when this sub-frame’s navigation ca-
pability is disabled by iframe sandbox (Section 3.4.2).

DCVs and DCV attacks are summarized in Table 1. More

details are discussed below.

3.2 Origin Hiding Attacks
As introduced in Section 3.1, in the context of WebView, se-
curity risks are introduced that untrusted iframes/popups may
leverage the “null” origin (created through the data scheme
URL) to hide their own origins while making stealthy risky
actions. In this section, we introduce two extended attacks: at-
tacking web messaging integrity (Section 3.2.1) and stealthily
accessing web-mobile bridges (Section 3.2.2).

Figure 6: Attacking Web Messaging

3.2.1 Attacking Web Messaging

Figure 6 shows an attack scenario for web messaging. Assume
the main frame whose origin is “null” sends web messages to
a benign victim sub-frame. Meanwhile, the main frame also
contains an untrusted sub-frame. If the untrusted sub-frame
spawns a new nested sub-frame Fnested with the “null” origin,
and let Fnested send a fake message to the victim sub-frame,
the victim sub-frame may be fooled.

As shown in Listing 1, the victim sub-frame may validate
the origin of the received message to ensure the message is
from an authorized frame. However, this may not still recog-
nize the fake message because the fake message has the same
origin as the main frame. As a result, the victim sub-frame
may handle the message as normal. If the victim sub-frame
carries sensitive functionalities, these functionalities may be
leveraged, and serious consequences may be caused.

1 // Message Handler
2 onmessage = function (e) {
3 // Validating the message source origin
4 if (e.origin == "null") { // From main frame?
5 // Making sensitive actions here
6 }

Listing 1: Validating the Message Origin in the Victim Sub-frame

In addition to the above origin validation based protection,
the above attack cannot also be prevented by other defense
solutions, such as [11,44,47,52], because it is challenging for
them to distinguish between the main frame and Fnested.

3.2.2 Accessing Web-Mobile Bridges

Figure 7: Freely Accessing Web-Mobile Bridges
As shown in Figure 7, the security risks are also posed

that untrusted iframes/popups can also secretly access web-
mobile bridges by leveraging the “null” origin (Listing 2), but

982 28th USENIX Security Symposium USENIX Association

without being blocked by existing defense solutions. This is
because existing defense solutions are coarse-grained, and the
origin they can obtain is Fnested’s (i.e., “null”), rather than the
origin of the untrusted iframes/popups. Hence, they would
approve the untrusted operation.

To verify the attacks, we develop two proof-of-concept
(POC) apps that can launch the attacks. Then, we test their
performance when the-state-of-the-art protection solution
“NoFrak” [21] and “Draco” [49] are enforced respectively.
NoFrak extends SOP to the mobile layer of a third-party de-
velopment framework, while Draco implements the access
control in WebView. In the first POC app, we integrate the
popular third-party hybrid development framework “Apache
Cordova” and instrument its plugin manager to implement
NoFrak. In the second POC app, we use our instrumented
WebView library, which implements Draco’s prototype sys-
tem [49]. In both POC apps, we find that untrusted accesses
by DCV attacks on web-mobile bridges, especially JavaScript
bridges, cannot be prevented.

1 // Creating a nested sub-frame with the data scheme URL
2 var ifrm = document.createElement(’iframe’);
3 // Triggering onJsAlert()
4 ifrm.setAttribute(’src’, ’data:text/html;charset=UTF-8,<

html>...<script>alert(\I am the main frame\’, \’*\’)</
’ + ’script>’...

5 document.body.appendChild(ifrm);

Listing 2: Accessing the Event Handler onJsAlert() in the
Untrusted Iframe/Popup

3.3 WebView UI Redressing Attacks
The root cause of the attacks is that there is no protection on
the WUI rendering order and WebView UI integrity. Hence,
the security risks exist that untrusted iframes/popups can
freely manipulate it and perform phishing attacks. In this
section, we illustrate two extended attacks: the WUI overlap
attack (Figure 8-a), and the WUI closure attack (Figure 8-b).
We next describe them in detail.

Figure 8: WebView UI Redressing Attacks

3.3.1 WebView UI Overlap Attack

1 // Customizing onCreateWindow() to enable popup-creation
2 boolean onCreateWindow(WebView view, ...) {
3 // Creating a new WebView UI
4 WebView myNewWebView = new WebView(getContext());
5 // Initializing the new WebView UI
6
7 // Putting the new WebView UI before current WebView UI
8 view.addView(myNewWebView);
9

10 // Providing the new WebView UI to Android
11 ...

Listing 3: Vulnerable onCreateWindow()
Listing 3 shows a representative but vulnerable implemen-

tation of the event handler “onCreateWindow()”. When a

popup is created, the event handler is triggered and may select
to put the new WUI in the front of current benign WUI by
calling “ViewGroup.addView(new WebView)” (Line 8). Thus,
the new WUI is presented to users. However, this ability of
changing the WUI rendering order can also be obtained by
untrusted web code. This is mainly because the event handler
onCreateWindow() cannot distinguish between benign and
untrusted requests, due to its design flaws (Section 3.6).

As a result, untrusted iframes/popups obtain the ability of
performing phishing attacks by simply triggering a popup-
creation event, and letting the created WUI load fake web
content and overlap the benign WUI. Due to the lack of the
address and tab bars, this risky popup-creation operation may
be hardly noticed by users. As shown in Listing 4, the overlap
attack can be easily set up in practice.

1 // Using HTML Code
2 <a href="https://attacker.com" target="_blank" ...
3 // or Calling JavaScript code
4 window.open("https://attacker.com", "_blank" ...)

Listing 4: Exploit Code of the WUI overlap attack and the
privileged navigation attack

We note that the key API name “addView” also appears in
existing work on Android UI redressing attacks such as [35].
However, these APIs are totally different. In existing work,
“addView” means “WindowManager.addView()”, which is
used to change UI layout between different apps. In this paper,
“addView” means “ViewGroup.addView()”, which is used to
change a specific UI layout inside an app. To our knowledge,
we are the first to discuss the security risk of the latter API.

3.3.2 WebView UI Closure Attack

When apps use the default Android WUI management strat-
egy, it is still possible for an untrusted iframe/popup to change
the WUI rendering order (Section 3.1). As shown in Fig-
ure 8-b, the untrusted iframe/popup may first create a new
popup window, whose corresponding WUI is placed behind
current benign WUI. Then, the untrusted code triggers the
window-closure event, which is handled by the event handler
“onCloseWindow()”. If the event handler is vulnerable and
removes the foremost benign WUI (Line 8 in Listing 5) from
the WUI rendering order, the former untrusted WUI appears
instead and phishing attacks may occur. Similar to the WUI
overlap attack, due to the lack of the address and tab bars, such
attacks are stealthy, and can be easily launched in practice
(e.g., using the code in Listing 6).

1 // Customizing onCloseWindow() to enable WebView UI closure
2 public void onCloseWindow(WebView window) {
3 super.onCloseWindow(window);
4 // Destroying the WebView UI being closed
5 ...
6
7 // Removing the WebView UI being closed from current

view layout
8 myRootWebViewLayout.removeView(window);
9 }

Listing 5: Vulnerable onCloseWindow()

1 // Creating a new WebView UI
2 window.open("https://attacker.com", "_blank" ...)
3 // Closing current WebView UI
4 window.close()

Listing 6: Exploit Code of the WUI Closure Attack

USENIX Association 28th USENIX Security Symposium 983

We note that as introduced in Section 1, WebView UI re-
dressing attacks cannot be defended by existing Android UI
protection solutions. These two UI redressing attacks are dif-
ferent. Android UI redressing is performed between different
apps, while WebView UI redressing occurs within one app.

3.4 Main-Frame Navigation Attacks
3.4.1 Traditional Navigation Attack

Untrusted iframes/popups can leverage traditional navigation
policies (Section 2.1) to launch phishing attacks (e.g., using
the code in Listing 7 to perform phishing attacks), when their
navigation capabilities are not disabled. Due to the lack of
URL indicators (e.g., the address bar), the attack is stealthier
and may be hardly noticed by users.

1 // Using HTML Code
2 <a href="https://attacker.com" target="_top" ...
3 // Or Calling JavaScript code
4 window.open("https://attacker.com", _top, ...

Listing 7: Leveraging Traditional Navigation Policies

3.4.2 Privileged Navigation Attack

Even when the navigation capability is disabled by iframe
sandbox (which prevents the above traditional navigation-
based attack directly), it is still possible for untrusted
iframes/popups to launch privilege escalation attacks and
obtain the ability of performing navigation attacks. This
is mainly caused by the inconsistencies between the Web-
View programming features and web regular navigation ac-
tions. When web popup creation code (e.g., <a> and win-
dow.open()) is executed in a sub-frame, Android always tries
to select a WUI to show the popup content. Note that the
WUI selection always occurs, even when popup-creation is
disabled in the mobile layer (e.g., the setting SupportMulti-
pleWindows is false). However, when popup-creation is not
allowed, there is not a new WUI for rendering. Instead, An-
droid selects current WUI for showing the popup content,
which means the main frame is navigated to the popup. Thus,
phishing attacks may occur.

In practice, the privileged navigation attack can be easily
launched by using the exploit code shown in Listing 4. Note
that this code is also used for launching the WUI overlap
attack. When popup-creation is disabled (by default), the
code may launch the navigation attack. Otherwise, the WUI
redressing attack may be available.

3.5 Advantages of DCV Attacks
Compared to existing Android attacks (such as Trojan at-
tacks [5]), DCV attacks do not require declaring permissions,
or carrying payload. Compared to other WebView-based
attacks (e.g., [21, 25, 30, 51]), which require JavaScript or
JavaScript-bridges to be enabled, DCV attacks do not have
these requirements and limitations. More importantly, DCV
attacks are more powerful that attackers may obtain abili-
ties to not only access web-mobile bridges, but also directly
leverage critical web features.

Furthermore, different from existing MITM attacks on a
sub-frame inside WebView, DCV attacks cannot be prevented
by existing web protections (e.g., SOP). Unlike existing touch
hijacking in WebView [31], DCV attacks do not need to con-
trol the mobile code, and craft the placement of multiple We-
bView components in Activity layout XML.

In addition, DCVs can be leveraged to boost other attacks.
For example, event-oriented attacks [53] rely on triggering
WebView event handlers, but it is difficult to trigger several
critical event handlers (e.g., onPageStarted() and onPageFin-
ished()). This problem can be well solved through exploit-
ing DCVs, such as the privileged navigation attack (Section
3.4.2).

3.6 Root Causes of DCVs
DCVs are rooted in the inconsistencies between WebView
and regular browsers in terms of UI and programming fea-
tures (Section 1 and 3.1). We demonstrate several critical and
frequently used web features and behaviors are harmless and
safe in the context of regular browsers, but they become risky
in the context of WebView.

In addition, we also find the design of the event handler
features is also flawed. In theory, through event handlers,
developers have chances to reject DCV attacks. However,
unfortunately, the design flaws of event handlers make it ex-
tremely difficult to achieve the goal. For example, when the
WUI overlap attack is performed, the event handler ‘‘onC
reateWindow(view,isDialog,isUserGesture,resultMsg)’’ is
always triggered. If the event handler could deny the creation
of an untrusted WUI, attackers would fail to launch the WUI
redressing attack. However, this is very difficult because the
event handler onCreateWindow() does not provide the victim
app any origin information about who is creating a popup and
what content is being loaded in the popup. Thus, the victim
app has to blindly allow or deny all popup-creation opera-
tions, no matter whether the operations are made by benign or
untrusted code. In addition to onCreateWindow(), other event
handlers such as onCloseWindow() face similar problems.

Another event handler shouldOverrideUrlLoad-
ing(view,request) (as introduced in Section 2.2) is always
triggered when a URL loading event occurs. This event
handler provides the information of the URL that is being
accessed, which may be used as a complement of other event
handlers to prevent DCV attacks (e.g., allow the victim
app to deny untrusted URLs). However, the combination is
hardly used in practice. Even when the associated URL is
identified and denied, the new WUI is already created and
still in the control of untrusted iframes/popups. Untrusted
iframes/popups may still use the new WUI to consume the
resources (such as CPU and memory) of the victim devices in
background. Hence, to avoid this, it is required for the victim
app to always explicitly destroy the new WUI.

In addition, shouldOverrideUrlLoading() often has its own
implementation problems in origin validation. For example,
our empirical study shows some hybrid apps do not even per-

984 28th USENIX Security Symposium USENIX Association

form any check, and some of them only check the domain of
the URL but ignore the scheme (e.g., “HTTP” or “HTTPS”).

4 DCV-Hunter
There are several tools for analyzing hybrid apps [22, 53, 55],
however, it is challenging to directly apply these tools to
detect DCVs. On the one hand, existing static analysis tools
are not designed for the analysis of iframe/popup behavior
(e.g., [22, 55]), and they are often coarse-grained (e.g. [33]).
More specifically, they can hardly extract and reconstruct
the context information of each WebView instance. When
there are multiple WebView instances in a hybrid app, which
is common in practice, these tools can produce high false
positives. On the other hand, existing dynamic analysis tools
(e.g., [53]) have high false negatives, as it is very difficult
to trigger a WebView instance at runtime. For example, as
shown in Figure 5, to trigger WebView inside the Facebook
Messenger app, the analysis tools need to automatically log
in and open a URL link.

We propose a novel static detection tool, DCV-Hunter, that
utilizes program analysis to automatically vet apps. As shown
in Figure 9, DCV-Hunter’s approach is four-fold. Given an
app, DCV-Hunter first generates its complete call graph (CG).
Next, DCV-Hunter leverages CG to reconstruct the context
of each WebView instance. Then, DCV-Hunter verifies if
untrusted sub-frames exists. Finally, DCV-Hunter determines
if the given app is potentially vulnerable or not.

4.1 Complete Call Graph Construction
We leverage FlowDroid [10] to generate call graphs (CG) of
the target app. However, we find FlowDroid faces challenges
to analyze WebView related function invocations. This is
mainly due to the missing of type information and semantics
related to WebView (e.g., the semantics of WebView event
handlers). To mitigate this issue, we patch the target app
during CG construction by inserting extra instructions, which
provide necessary type and semantic information of WebView.
Thus, FlowDroid can generate necessary edges and construct
complete CG.

4.2 WebView Context Reconstruction
In this phase, DCV-Hunter re-constructs the whole context for
each WebView instance. First, DCV-Hunter identifies all Web-
View instances from CG. Then, DCV-Hunter separately recon-
structs each WebView instance’s own context, which includes
1) the URL or HTML code to be loaded; 2) settings (e.g., the
enablement of popup creation); 3) implementation of event
handlers (e.g., “onCreateWindow()” and “onCloseWindow()”).
To reconstruct the WebView context, points-to analysis is ap-
plied [33]. For example, when an event handler class that
contains the implementation of event handlers is configured
through the API “setWebChromeClient(...)”, DCV-Hunter can
check the points-to information of the API’s parameter, and
retrieve the parameter’s actual class name.

However, points-to analysis does not scale well, especially
when the target app is complex. To mitigate the problem, we
also apply the data flow tracking technique (also provided by
FlowDroid) as a complement. For example, when an event
handler class is instantiated, the corresponding instance is
treated as source. Then, the event handler configuration APIs
(e.g., “setWebChromeClient(...)”) are treated as sink. Finally,
if there is a flow between above source and sink, the event han-
dler class should be a part of the context of the corresponding
WebView instance.

In addition to an event handler class, several context-related
objects (e.g., URL strings, WebView settings) can also be
analyzed using data flow tracking. These objects and their cor-
responding APIs are treated as source and sink, respectively.
More details are shown in Table 3. Note that different from
WebView settings and event handlers, which are often class
instances, the URL source may have several different formats,
such as 1) HTML code or URL string; 2) Intent messages
(inter-component communication in Android). Both formats
are often used in real-world apps. For example, as shown in
Figure 5, in Facebook Messenger, when a link is clicked, an
Intent message that includes the link is sent out to an activity
(Andrioid UI) to start WebView and show that link.

Table 3: Source and Sink APIs
Source Sink
URLs WebView content loading APIs

Settings WebView Setting APIs

Event Handlers setWebViewClient()
setWebChromeClient()

WebView
WebView content loading APIs
WebView Setting config APIs
Event handler registration APIs

4.3 Untrusted Iframe/Popup Detection
In this phase, given a WebView instance, DCV-Hunter checks
whether an untrusted iframe/popup is included in its loaded
content. To achieve the goal, DCV-Hunter first extracts the
URLs of the untrusted iframe/popup, and then examine the
event handler “shouldOverrideUrlLoading()” (Section 2.2)
through path constraint analysis to determine whether ex-
tracted URLs are approved.

4.3.1 Untrusted URL Extraction

Given a WebView instance, the web content loaded in Web-
View is analyzed based on its formats:
• HTML code: This format is usually used by the con-

tent loading APIs “loadData()” and “loadDataWith-
BaseURL()” (for origin-hiding attacks). Based on the pat-
terns of iframes/popups (Section 2.1), all internal asso-
ciated links can be extracted and then checked. On the
one hand, if a link is unsafe, such as using HTTP, code
injection surface should exist, and the link is untrusted.
On the other hand, if a link uses HTTPS, it is difficult to
determine if the link is third-party, considering the main
frame does not have an explicit domain (i.e., the “null”

USENIX Association 28th USENIX Security Symposium 985

Figure 9: The Overview of DCV-Hunter

origin).
To mitigate the problem (i.e., determine the first-party
URLs), we leverage several heuristics: 1) inside the target
app, WebView class name and its internal package names
are usually related with developers’ website. Hence, we
reverse them as first-party URLs. Please also note that
the reversed class and package names should not be re-
lated to third-party URLs (e.g., [3]). 2) We also check the
app information that is provided by developers in Google
Play. This information includes the links of developers’
home page, email and “privacy policy”. Finally, these links
are also treated as first-party URLs, since they are likely
trusted by developers.

• URL links: DCV-Hunter handles URL links, based on their
formats. If a URL is a network link, we build a crawler
based on Selenium [7] to automatically collect the web-
pages (the mobile version) that can be navigated to from
the URL within three depth levels. For each collected web
page, its sub-frame is checked based on our threat model
(Section 2.3).
If URL is a local file link (e.g., “file://...”), DCV-Hunter
first dumps the corresponding local file from the target
app, and then handles it like above regular HTML code.
This is mainly because the file scheme link is similar with
the null origin and does not provide any first-party domain
information.

• Intent: Our empirical study on a set of popular hybrid
apps shows that the values of the links saved in an intent
message may be arbitrary. Hence, to avoid potential false
negatives, DCV-Hunter assumes that this format of web
content contains untrusted iframes/popups.

4.3.2 URL Approval Analysis

To determine whether an extracted untrusted URL is approved
by the event handler “shouldOverrideUrlLoading()” or not, we
perform a path-sensitive constraint analysis on the event han-
dler code. The key observation behind the idea is that based
on the specification of the event handler [9], when untrusted
iframes/popups are opened or created, the event handler is
triggered, and should return false (Please note returning true
is usually used for denying the link or other purposes [53]).

Below is our solution. We construct the conditions (con-
straints over strings) of the paths to “returning false”, and
check whether the extracted URL can satisfy the conditions.
More specifically, based on the CG and control-flow graph of
the event handler, we first find all the possible paths to the key
instruction “returning false”. Then, starting from each key in-
struction, we perform a fast backward slicing along each path

Table 4: APIs for the Analysis of WUI redressing problems
Attacks Sensitive APIs
Overlap ViewGroup.addView()

Closure
ViewGroup.RemoveView()
WebView.setVisibility()
...

to construct the path constraints. The unknown variables in
the constraints are all over the string parameters (i.e., URL or
request) of “shouldOverrideUrlLoading()”. After that, based
on our threat model and the content of extracted URLs, we
add more constraints to the collected constraints, including

1) <parameter>.scheme == "HTTP"
or 2) <extracted_URL>.domain == <parameter>.domain.

The first constraint is aimed to check if attackers can freely
inject code into the sub-frame through MITM attacks. The sec-
ond constraint is used to verify if the domain of the extracted
URL is approved. Finally, we use an SMT solver (i.e., z3 [19])
to solve all constraints. If path constraints can be satisfied, it
indicates that the extracted URL should be approved.

Our path constraint analysis is implemented by embedding
and extending the symbolic execution module of our previous
work “EOEDroid” [53]. Please also note we model several fre-
quently used Java classes (e.g., WebResourceRequest, URL,
and String) to support the related operations.

4.4 Vulnerability Analysis
To determine each vulnerability, DCV-Hunter checks its con-
ditions respectively:
• Origin-hiding: DCV-Hunter first verifies whether the ori-

gin of the main frame is “null”. This is done by checking
the corresponding WebView content loading APIs and
their associated parameters. Then, for convenience, the
valuable attack targets are also checked, such as web mes-
saging or web-mobile bridges.

• WUI redressing: DCV-Hunter first verifies WebView’s
settings and event handlers to check whether WUI cre-
ation and closure are enabled. Then, DCV-Hunter checks
whether the corresponding event handlers onCreateWin-
dow() or onCloseWindow() are vulnerable or not. This is
done by checking the existence of the sensitive APIs listed
in Table 4. Based on the analysis of the design flaws of
these event handlers (Section 3.6), which have to blindly
approve or deny all requests, these simple checks can ob-
tain high accuracy.

• Main-frame navigation: For the traditional navigation
based problem, iframe sandbox is checked. If iframe sand-
box is used, DCV-Hunter then verifies if the navigation
capability is disabled. For the privileged navigation attack,

986 28th USENIX Security Symposium USENIX Association

DCV-Hunter checks whether multiple window mode is
disabled, which is done by directly checking associated
settings.

5 Security Impact Assessment
To assess DCVs’s security impacts on real-world popular
apps, we collected 17K most popular free apps from Google
Play. They are gathered from 32 categories, and each category
contains 540 most popular apps. By applying DCV-Hunter on
these collected apps, we found 11,341 apps contained at least
one path from their entry points to WebView content loading
APIs. Among them, 4,358 apps (38.4%) were potentially
vulnerable, including 13,384 potentially vulnerable WebView
instances and 27,754 potential vulnerabilities (Table 5). This
indicates DCVs widely impact real-world apps.

We evaluated the accuracy of DCV-Hunter by measuring
its false positives. We randomly selected 400 apps from the
apps flagged as “potentially vulnerable” by DCV-Hunter, and
manually checked them (see more details in Section 5.1). We
find 6 of them (1.5%) are false positives. Our further inspec-
tion revealed in four of these apps, during the reconstruction
of the URL loaded by WebView (Section 4.2), some unrelated
URLs were accounted, due to the imprecise taint analysis (i.e.,
overtaint). For the remaining two apps, “URL Approval Anal-
ysis” (Section 4.3.2) on untrusted iframe/popup links faced
difficulty in handling constraints that contained string regular
expressions. We leave addressing these weaknesses as our
future work.

All experiments were run on a high-performance computer.
We ran DCV-Hunter with 100 processes in parallel and each
process was assigned with limited resources (two regular
computing cores and 8GB memory). Our time cost showed
each process needed 144 seconds for each app.

5.1 Manual Verification
To manually verify target apps, we firstly modify Android
source code (version 6) to let it print necessary WebView
related information. Next, we install the modified Android
system in a real device (Nexus 5). Then, we test target apps.
For each app, when internal WebView instances are started,
we inject attack code to target iframes/popups. Last, based on
the web content shown in WebView and the logs printed by
Android, we determine if the attack code works and the app
is vulnerable.

Please note that different from prior work, we do not use
proxy for code injection. We find proxy has several short-
comings. For example, it is time consuming and inefficient to
locate the target iframes/popups for code injection. Instead,
we leverage Chrome’s USB debug interfaces to ease our test.
Since we run test in a real device, we connect the device with
PC using USB. Then, we open Chrome in PC to inject code
to target WebView instances. For example, we select a We-
bView instance and then open console (in Chrome) to run
extra attack code for code injection. But please always keep in
mind that before executing any code, we must select a (target)

Table 5: Potential Vulnerability Details
Potential
Attacks

Impacted
WebView

Impacted
Apps App Downloads

Origin-Hiding 1,737 1,238 3.5 Billion
WUI Overlap 138 89 8 Billion
WUI Closure 5 5 13 Million

Traditional Navigation 13,384 4,358 19.5 Billion
Privileged Navigation 12,490 4,161 17.8 Billion

Total 13,384 4,358 19.5 Billion

sub-frame as the code execution environment in console.

5.2 Findings
Many high-profile apps are impacted by DCVs. DCVs
widely exist in hybrid apps. Up to now, the potentially vul-
nerable apps have been downloaded more than 19.5 Billion
times (the fourth column of Table 5). Furthermore, these also
include many manually verified popular apps (some examples
are shown in Table 6) such as Facebook, Instagram, Facebook
Messenger, Google News, Skype, Uber, Yelp, U.S. Bank.

Almost all categories of apps are affected. Figure 10 shows
the related distribution data. The light blue line and the bars
respectively represent the distribution of potentially vulner-
able apps and each potential vulnerability in each category.
Almost all categories of apps are impacted, including several
sensitive categories (e.g., password management and banking
apps). This indicates DCVs are common.

We observe some categories are more subject to DCV at-
tacks than others, such as news, dating, and food-drink. We
manually analyze a set of apps in these categories, and find
these categories of apps use WebView more often to load
third-party untrusted content in iframes/popups. For example,
the Google News app (one billion+ downloads) provides the
news collections to users. It allows any website to be loaded in
its WebView. We manually check several news links and find
it is common for these news web pages to embed third-party
content, especially ads and tracking services.

We also find in some apps, their loaded web pages are safe,
and do not include any untrusted content. However, after the
web pages are fully loaded, these apps run extra JavaScript
code through the API “WebView.evaluateJavascript()” to cre-
ated and embedded new iframes/popups for loading ads con-
tent, which introduces security risks.

Furthermore, we find the events and news apps are more
likely to suffer from WUI redressing attacks. This is mainly
because these apps tend to manage WUIs by themselves. For
example, in some news apps, when a user scrolls down to
the bottom of the web page, the apps will directly append
and show more content, without letting the user click a “next
page” button. When the user clicks a concrete news link, a
new WUI is created and placed in the front of current WUI
to show that link. When the user finishes that web page, de-
velopers can close current WUI and show previous WUI. In
this way, the state of previous WUI is not changed, and the
dynamically appended content is also kept. This rendering

USENIX Association 28th USENIX Security Symposium 987

Table 6: Summary of Example (Manually Verified) Vulnerable Apps/Libraries
(* can be any domain, while OH, WO, WC, TN, PN, and BA respectively mean Origin-Hiding, WUI Overlap, WUI Closure,

Traditional Navigation, Privileged Navigation, and Blended attacks.)

Apps/Libraries Possible Attack Scenarios Vulnerabilities DownloadsMain-Frame Untrusted Sub-frame OH WO WC TN PN BA
Facebook * * 3 3 3 1 Billion+
Instagram * * 3 3 3 1 Billion+

Facebook Messenger * * 3 3 3 1 Billion+
Kakao Talk * * 3 3 3 1 Billion+

Google News * * 3 3 1 Billion+
Skype * * 3 3 1 Billion+

WeChat * * 3 3 100 Million+
Yelp * * 3 3 10 Million+

Kayak * * 3 3 10 Million+
Uber uber.com third-party tracking 3 3 100 Million+
ESPN espn.com third-party tracking 3 3 10 Million+

McDonald’s mcdonalds.com third-party tracking 3 3 10 Million+
Samsung Mobile Print * * 3 3 5 Million+

lastpass * * 3 5 Million+
dashlane * * 3 3 1 Million+

1password * * 3 3 1 Million+

U.S. bank * * 3 3 1 Million+
Huntington bank huntington.com third-party tracking 3 3 1 Million+

Chime mobile bank * * 3 3 1 Million+

Facebook Mobile Browser Library * * 3 3 3

Facebook React Native Library * * 3 3

strategy improves user experience. However, as described
in Section 3.6, due to the design flaws of the event handler
system, such a WUI management strategy is also exposed to
untrusted iframes/popups, and cause security issues.

Traditional and privileged navigation attacks impact
more apps than other DCV attacks. As summarized in the
second and third columns of Table 5, navigation based attacks
are more popular than the other vulnerabilities. It is mainly
because the security assumptions of these two attacks are
more easily satisfied. For example, many WebView instances
prefer using the default configuration (e.g., disabling popup-
creation), and suffer from privileged navigation attacks.

The traditional navigation based attack causes more se-
rious consequences in the context of WebView. This type
attack almost affects all potentially vulnerable apps. One im-
portant reason is that the effective defense solution “iframe
sandbox” is hardly used in practice. There are several rea-
sons. First, it may be difficult to add the sandbox attribute to
an iframe, especially considering developers have to find the
corresponding web code of that frame from a large amount
of web files and code. Second, it is difficult to manage the
sandbox configurations for each iframe. Each iframe has
its own specific security configurations, including disabling
JavaScript or navigation. When the iframe number rapidly
rises, the configuration management may become quite diffi-
cult. Third, iframe sandbox is not flexible. Its configurations
are often bound with iframes, rather than origins. If an iframe
is navigated to a different origin, it is hard for developers to

update the sandbox restriction policies.

5.3 Case Studies
We have successfully manually launched DCV attacks in
many popular apps (some examples are shown in Table 6).
Readers can find also several video demos at [2] (the website
is anonymized). In this section, we present two example apps
(Skype and Kayak) in detail, and also briefly discuss other
examples listed in Table 6.

5.3.1 Skype

This is a very popular communication app (one billion+ down-
loads). Our study shows it suffers from traditional and privi-
leged main-frame navigation attacks. A possible attack sce-
nario is shown in Figure 11. An attacker sends the victim
user a message containing a benign but vulnerable link (e.g.,
ebay.com). When the user clicks the link, a WebView in-
stance is started to render that link (Figure 11-b). However,
the loaded web page includes third-party untrusted tracking
web content (e.g., double-click) in iframes. The embedded
untrusted content has the ability to secretly navigate the main
frame through traditional or privileged navigation attacks,
which may result in stealthy phishing attacks (Figure 11-d).

We also observe when a web page is opened, its URL (e.g.,
ebay.com) is shown in the top of the app. This is relatively
helpful to mitigate DCV attacks. However, after the web con-
tent is fully loaded by WebView (Figure 11-c), we find the
URL is replaced by the title of the loaded web page. After
that, the URL will not be shown again, even when a naviga-

988 28th USENIX Security Symposium USENIX Association

Figure 10: Distribution of Potentially Vulnerable Apps and Potential Vulnerabilities

Figure 11: Attacking Skype

Figure 12: Attacking Kayak

tion event occurs. Hence, when the phishing attack occurs,
the victim user may hardly be aware of it.

5.3.2 Kayak

It is a leading app (ten million+ downloads) for providing
traveling-relevant searching services, which are aimed to help
users find better prices of flights, hotels, rental cars, and so
on. However, as shown in Figure 12, it suffers from WebView
UI redressing attacks, which may cause account information
leakage and financial losses. Consider a possible scenario
that a user is searching a flight. The user clicks one of the
searching results (Figure 12-a), such as the AA flight, and then
clicks the "View" button to get more details (Figure 12-b).

Next, a customized WebView instance is triggered to show
more flight details from “aa.com” (Figure 12-c). However,
in the AA web page, an extra iframe is embedded to load
third-party tracking content (tag management). In the Kayak

app, the untrusted iframe obtains the ability of performing
phishing attacks by leveraging the WUI overlap issue (Figure
12-d).

In addition, similar with the Skype app, the Kayak app also
provides a title bar to reduce the UI inconsistencies. However,
this is limited to defend against DCV attacks, since the opened
fake web pages often have the same title content.

5.3.3 More Examples

In addition to Skype and Kayak, more examples listed in
Table 6 are discussed below.
• Facebook Mobile Browser, Facebook, Instagram, and

Facebook Messenger: The Facebook Mobile Browser li-
brary is frequently used in Android apps, such as Face-
book, Instagram, and Facebook Messenger. In our study,
the traditional navigation and WUI overlap vulnerabilities
exist. As shown in Section 1 and Figure 5, an address bar
is provided in the library and is helpful to mitigate DCV
attacks. However, as discussed in Section 5.4, the address
bar may face pixel and race condition flaws. By leverag-
ing these flaws, untrusted sub-frames can still obtain the
ability of launching phishing attacks.

• Kakao Talk: Kakao Talk is a popular instant messaging
app. Although Kakao Talk is not equipped with the Face-
book Mobile Browser library, it is also impacted by the
above race condition flaw (Section 5.4).

• Google News: As introduced in Section 5.2, the Google
News app can show any news websites. When there is
an untrusted sub-frame in the rendered news web page,
which is common in practice, the untrusted sub-frame can
perform traditional or privileged navigation attacks.

• WeChat: WeChat is another popular instant messaging app.
Similar with Skype (Section 5.3.1), WeChat also faces
traditional and privileged navigation vulnerabilities.

• Yelp: The Yelp app are also impacted by traditional and
privileged navigation vulnerabilities. Different with Skype
and WeChat, Yelp’s WebView is triggered by clicking the

USENIX Association 28th USENIX Security Symposium 989

homepage link of a restaurant or a store. When the opened
“homepage” web page contains an untrusted sub-frame, the
untrusted sub-frame can launch traditional or privileged
navigation attacks.

• Uber: Uber’s WebView can be started to show “Terms and
Conditions” from its own website by sequentially clicking
the buttons “menu”, “legal” and “terms&conditions”. Our
analysis shows the term and condition webpage contains
an untrusted iframe for loading third-party tracking con-
tent (market analyst). The untrusted iframe can launch
traditional or privileged navigation attacks.

• ESPN: The ESPN app shows news from its own website.
However, its web pages load third-party tracking content
from Google in an iframe. Hence, the untrusted sub-frame
can also do phishing attacks by leveraging traditional nav-
igation and WUI overlap vulnerabilities.

• McDonald’s: In the app, several events are listed. When
an event link (such as “trick n’ treat”) is clicked, WebView
is started to show more details from its own website. How-
ever, an untrusted sub-frame is also contained that it may
exploit traditional or privileged navigation vulnerabilities.

• Samsung Mobile Print, lastpass, dashlane: These apps
provide an internal web browser to improve user expe-
rience. These internal browsers suffer from main-frame
navigation attacks. Although they also offer address bars,
unfortunately, the length of their address bars is much
short than the average length “29 letters” (Section 5.4.
For example, in the same environment (Nexus 5), Sam-
sung Mobile Print only shows 23 letters, and lastpass only
display 18 letters.

• 1password: DCV-Hunter finds several paths to WebView
content loading APIs. Because we do not have an account
to login, this app is not fully tested. However, when we
click its discount link, we still find a vulnerable WebView
instance is launched. The WebView instance can show any
content, and suffers from traditional or privileged naviga-
tion attacks.

• The U.S., Huntington and Chime Mobile Bank apps: These
bank apps provide WebView to load content from their
websites. Note that some of their WebView can be nav-
igated to any websites. The loaded content can include
third-party (tracking) content, which can launch traditional
or privileged navigation attacks.

• The Facebook React Native library: This library is de-
signed to help JavaScript developers implement cross-
platform mobile apps. In its WebView, the related default
configurations are applied. It suffers from traditional and
privileged navigation vulnerabilities.

5.4 Security Impacts of Home-Brewed URL
Address Bars

Our study shows that some hybrid apps implement their own
URL address and title bars (such as those in our case studies),
which could reduce the UI inconsistencies between WebView

and regular browsers. To better evaluate the security impacts,
we conducted an empirical study of 100 apps that contain
home-brewed address bars. These apps are collected by fil-
tering the DCV-Hunter analysis results (by checking if there
is a path or flow from WebView’s real-time URLs (such as
the API “WebView.getUrl()” and the second parameter of the
event handler “onPageFinished(view, url)”) to UI components’
updating APIs such as “TextView.setText()”).

We find that the home-brewed address bars are ineffective
to prevent DCV attacks, for two main reasons: limited address
bar lengths, and implementation errors.

Limited Address Bar Lengths. In our study on a real phone
(Nexus 5), which has the representative screen width, we find
that typical address bars averagely show 29 letters. When
domains, including sub-domains, being accessed exceed that
length, security risks could be caused, even when some ex-
isting solutions such as showing the rightmost/leftmost of
origin/URL are in use (e.g., Chrome/Chromium). This is also
partially verified by existing work (e.g., [29]).

Implementation Errors. Some apps/libraries, such as "Face-
book Mobile Browser", use very small fonts to show origins
(Figure 5). This mitigates the above length limitation problem.
As Figure 5-c shows, this address bar can effectively mitigate
a DCV attack, such as the WUI overlap attack, since the ad-
dress bar can show the origin of the fake web page in real
time. However, it also has several flaws. First, due to the small
font, it faces the pixel problem. Attackers may build a fake
and confusing URL by replacing few letters of the benign
URL with confusing letters (such as replacing the letter “O”
with the number “0”). The fake URL may still spoof users.

Moreover, in these apps, our analysis finds a race condition
flaw, which can be utilized to show fake web content in Web-
View, while still presenting the benign URL (e.g., ebay.com)
in the address bar (Figure 5-d). This issue is rooted in the
design flaw that several WUIs share only one address bar,
while all these WUIs have abilities to update the content of
the address bar. Hence, attackers can still perform phishing
attacks by combining a couple of DCV attacks. For exam-
ple, in the Facebook Mobile Browser library, which suffers
from the WUI overlap attack, attackers may open a WUI
to load fake content, and then immediately update the over-
lapped benign WUI in background. As a result, the address
bar only show attackers’ URL in a very short time and is
quickly updated to display the benign URL. In our test, we
find sometimes the bad URL may not even appear (see our
online demo [2]). This indicates the blended attack is stealthy.
In practice, the blended attack can be easily launched by using
the code shown in Listing 8.

1 // Opening a fake web page (WUI overlap attack)
2 window.open("https://attacker.com", "_blank")
3 // Refreshing the address bar (Traditional navigation attack)
4 window.open("https://eaby.com", "_top")

Listing 8: Exploit Code of Blended Attacks

990 28th USENIX Security Symposium USENIX Association

6 Vulnerability Mitigation
6.1 Mitigation Solution
To mitigate DCV attacks, we propose a multi-level solution
that enhances the security of WebView. First, we enhance the
security of event handlers by addressing their design flaws
(Section 3.6). For example, in onCreateWindow(), necessary
information is provided, including the operator origin who is
creating a popup, and the URL the created popup is going to
load. Thus, based on the provided information, developers can
reject an unauthorized request. To ease the deployment of our
solution, we also provide security enforcement. If developers
provide the list of trusted URLs in a configuration file inside
their apps (located in the app folder “assets”), the untrusted
requests can be automatically denied.

Second, we also mitigate the UI inconsistencies by pro-
viding floating URL indicators. For example, when the main
frame is navigated to a different domain by an iframe/popup,
the URL indicator can provide users an alert. Furthermore,
when users longly press a WebView instance, the origin of
the main frame being loaded by the WebView instance is
presented.

Note this URL indicator is locally bound with a WUI,
which is helpful to avoid the race condition flaw (Section
5.4). When there are multiple WUIs available, only the fore-
most WUI’s URL indicator is visible.

Third, to mitigate origin-hiding attacks, in critical opera-
tions (e.g., accessing web-mobile bridges), we replace the
“null” origin with the origin who creates the “null” origin.
This makes existing defense solutions effective again, since
they can enforce security checks or policies on the new origin.

Fourth, to counter the WebView UI redressing problem,
changes of the WUI rendering order are monitored. When a
change is performed by an iframe/popup, an alert is offered.
Last, to limit the navigation based attacks, we introduce same
origin restrictions into navigation, and also fix the conflict.

6.2 Mitigation Solution Implementation
Our implementation is mainly done by instrumenting the We-
bView library, without modifying the source code of Android
frameworks.

6.2.1 Enhanced Event Handlers

To achieve the goal, event handlers related implementation is
instrumented. Take the event handler onCreateWindow() as
the example. To obtain the origin who is creating a popup, the
call site is scanned to locate the last popup-creation operation.
Next, the corresponding operator’s web frame information
(e.g., origin) is retrieved. However, if the web frame’s origin is
“null”, DCV-Hunter checks the web frame tree to get the real
frame who create the “null” frame. Then, to learn the URL the
created popup is going to load, the parameter of the related
API (e.g., window.open()) is also extracted. Furthermore, to
implement the security enforcement of denying untrusted
requests, the default implement of onCreateWindow() is also

instrumented. When the configuration file (providing the list
of trusted domains) exists, the trusted URLs are extracted
and also used to match the URLs that trigger popup-creation
requests.

6.2.2 URL Indicators

To present current origin loaded in a WebView instance, the
long-click event of the WebView instance is handled. When
the event occurs, the origin of the main frame is presented as
a notification. However, the long-click event may also be used
by developers. To avoid potential conflicts, we create an event
handler wrapper, which first shows the origin information, and
then calls the essential event handler registered by developers.

To monitor the main-frame navigation, the event handler
“shouldOverrideUrlLoading()” is leveraged. When the event
handler is triggered, the URL is checked. If the main frame
is redirected to a different domain by a sub-frame, an alert
can be given. Furthermore, considering WebView is also a
view group (Section 2.2), we make the indicator local: we
temporary add a text view to WebView as the indicator.

6.2.3 Replacing the “null” Origin

Since the “null” origin is meaningless, we replace it with
the origin who creates the “null” origin. To achieve the goal,
we scan the frame tree from bottom to top, and get the root
frame, or the last frame whose origin is not “null”. Then, the
corresponding origin O is extracted for the replacement.

Next, to replace the “null” origin with O in postMessage,
we instrument the associated methods of the class “Web-
DOMMessageEvent” and “MessageEvent”. If the source ori-
gin is specified as “null”, it will be replaced. Then, the security
of web-mobile bridges is enhanced as follows. Take the event
handler onJsAlert(view, url, ...) as the example. We instrument
the event handler’s relevant caller (i.e., “AwJavaScriptDialog-
Manager::RunJavaScriptDialog”) inside WebView. In the
caller, if url is the data scheme URL, it will be replaced by O.

6.2.4 Popup Indicator

To mitigate the WebView UI redressing problem, all associ-
ated key APIs are monitored, such as addView(). When the
WUI rendering order is changing by a sub-frame, an alert will
be offered (implemented in the associated enhanced event
handlers).

6.2.5 Safe Navigation

To avoid traditional navigation problem, we narrow down
the navigation policy that navigation occurs only when two
frames have the same origins. To achieve the goal, we instru-
ment the key method “LocalDOMWindow::open()” to add
the origin checks.

Furthermore, to fix privileged navigation problem, the con-
flict between WebView features and web APIs is handled.
More specifically, in the key method “RenderFrameHost
Impl::CreateNewWindow”, we add more security restric-
tions. When the setting “SupportMultipleWindows” is false,

USENIX Association 28th USENIX Security Symposium 991

the popup behavior will be ignored.

6.3 Mitigation Evaluation
In our evaluation, we first test the usability of our defense
solution, especially about how easy to deploy and apply our
solution in practice. To do that, we select 10 real-world vul-
nerable apps for testing. We find our solution can simply
work, if developers involve our own WebView header files,
including the declarations of new function prototypes (e.g.,
onCreateWindow()), and also provide the configuration file
with the list of third-party domains. Please note that because
these real apps lack source code, we repackage them to in-
volve necessary files.

Next, we verify the correctness of our mitigation solution
by testing above ten apps. We test them in stock (vulnerable)
WebView and the WebView that implements our mitigation
solution, respectively. We find that 1) there are no errors
introduced by our mitigation solution. Apps work well as
usual; 2) DCV attacks are mitigated.

Then, we measure the overhead to check if our mitigation
solution impacts user experience. We create a vulnerable app
for testing. In the app, we call the WebView API loadUrl() to
run associate HTML/JavaScript code to trigger all vulnerabili-
ties. Meanwhile, all time costs are recorded. Similarly, we run
the app in stock (vulnerable) WebView and the WebView that
implements our mitigation solution. By comparing time costs,
we find our mitigation solution only introduces tiny overhead:
2ms on average.

Last, considering the Android version fragmentation issue,
we also test the compatibility of our mitigation solution by
installing our own WebView library and running above the
created app in major Android versions. The result shows our
solution is available in many major popular Android versions
(5.0+), and covers 89.3% of Android devices in use (based on
the Android version distribution data of May 2019 [1]).

7 Related Work
Iframe/popup Security. In web apps, iframes/popups are of-
ten the cause of security issues, such as frame hijacking [11],
clickjacking [43], and double-click clickjacking [23]. In past
years, in the context of regular browsers, iframe/popup be-
haviors and these security issues were well studied. Many
defense solutions were proposed. For example, the HTTP
header “X-Frame-Options” and the frame busting [43] solu-
tion can prevent being framed. In this work, we mainly focus
on the exploration of the abilities of untrusted iframes/pop-
ups. The more related security mechanisms, such as SOP, and
navigation policies, are discussed in Section 2.1. As shown
in Section 1 and 3, existing solutions are circumscribed to
prevent DCV attacks.

WebView security. WebView security has attracted more
and more attention. [17,30,33] generically studied WebView
security. [21, 25, 27, 40, 49, 53] explored the security of web-
mobile bridges, and also discovered several extended attacks.

In Section 3.5, we compare DCV attacks with several related
attacks, and show DCV attacks may have a set of advantages.

Several static analysis based approaches [22, 55] were pro-
posed to vet hybrid apps. However, they were limited to an-
alyze iframe/popup behaviors and event handlers (also see
our discussion in Section 4). Several defense solutions were
designed to provide protection for WebView and web-mobile
bridges, such as NoFrak [21], Draco [49], MobileIFC [45],
WIREframe [18], and HybridGuard [38]. NoFrak and Mo-
bileIFC extended SOP into the mobile layer, while other solu-
tions provided security enforcement on web-mobile bridges.
However, as discussed in Section 1 and 3, they were quite
limited to prevent DCV attacks.

In addition, many solutions [13, 41] are also designed to
mitigate the Android UI deception problems [15,20,35]. How-
ever, as discussed in Section 1 and 3.3, they cannot monitor
the state change of WebView UI, and circumscribed to prevent
WUI redressing attacks.

8 Discussion

Research scope. In this work, we mainly focus on Android,
which is currently the most popular mobile OS. However,
there are also other WebView formats in other platforms (e.g.,
WKWebView for iOS). The research on other platforms would
be complementary to our work, and we leave this as our future
work.

False negatives. DCV-Hunter faces false negatives in some
situations. For example, in mobile apps, some URLs loaded in
WebView are encrypted, some URL related data goes through
implicit flows, and some WebView related code is dynami-
cally loaded. Some of these issues can be simply partially
mitigated. For example, apps can be dynamically tested for
collecting and downloading dynamically loaded code. We
leave the improvement of our tool to reduce all false negatives
as our future work.

9 Conclusion

Iframes/popups are often the root cause of several critical
web security issues, and have been well studied in regular
browsers. However, their behaviors are rarely understood and
scrutinized in WebView, which has a totally new working
environment. In this paper, we fill the gap and identify several
fundamental design flaws and vulnerabilities, named differen-
tial context vulnerabilities (DCVs). We find that by exploiting
DCVs, an untrusted iframe/popup becomes very dangerous in
Android WebView. We have designed a novel detection tech-
nique, DCV-Hunter, to assess the security impacts of DCVs
on real-world apps. Our measurement on a large number of
popular apps shows that DCVs are prevalent. We have also
presented a multi-level protection solution to mitigate DCVs,
which is shown to be scalable and effective.

992 28th USENIX Security Symposium USENIX Association

Acknowledgments
We want to thank our shepherd Yinzhi Cao and the anony-
mous reviewers for their valuable comments. This material is
based upon work supported in part by the National Science
Foundation (NSF) under Grant no. 1642129 and 1700544.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF. We also thank Cong
Zheng and Yuchen Zhou for the helpful discussions about our
threat model and the design of DCV-Hunter.

References
[1] Android version distribution dashboard. https://

developer.android.com/about/dashboards.

[2] Dcv-attacks. https://sites.google.com/view/
dcv-attacks.

[3] Easyprivacy tracking protection list. https:
//easylist.to/tag/tracking-protection-
lists.html.

[4] iframe - html standard. https://html.spec.
whatwg.org/dev/iframe-embed-object.html#
attr-iframe-sandbox.

[5] Mcafee mobile threat report. https://www.mcafee.
com/us/resources/reports/rp-mobile-
threat-report-2016.pdf.

[6] Same origin policy. https://en.wikipedia.org/
wiki/Same-origin_policy.

[7] Selenium - web browser automation. https://www.
seleniumhq.org.

[8] Web messaging standard. https://html.spec.
whatwg.org/multipage/web-messaging.html.

[9] Webview client. https://developer.
android.com/reference/android/webkit/
WebViewClient.html.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In PLDI,
2014.

[11] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. In USENIX Security, 2009.

[12] A. B. Bhavani. Cross-site Scripting Attacks on Android
WebView. IJCSN International Journal of Computer
Science and Network, 2(2):1–5, 2013.

[13] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that? decep-
tion and countermeasures in the android user interface.
In IEEE Symposium on Security and Privacy, 2015.

[14] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and
P. Barlet-Ros. A survey on web tracking: Mechanisms,

implications, and defenses. Proceedings of the IEEE,
2017.

[15] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your
app without actually seeing it: Ui state inference and
novel android attacks. In USENIX Security, 2014.

[16] E. Chin and D. Wagner. Bifocals: Analyzing webview
vulnerabilities in android applications. In International
Workshop on Information Security Applications, 2013.

[17] E. Chin and D. Wagner. Bifocals: Analyzing webview
vulnerabilities in android applications. In WISA. 2013.

[18] D. Davidson, Y. Chen, F. George, L. Lu, and S. Jha.
Secure integration of web content and applications on
commodity mobile operating systems. In ASIA CCS,
2017.

[19] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS/ETAPS, pages 337–340. Springer-Verlag, 2008.

[20] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee. Cloak
and dagger: from two permissions to complete control
of the ui feedback loop. In IEEE Symposium on Security
and Privacy, 2017.

[21] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and
fixing origin-based access control in hybrid web/mobile
application frameworks. In NDSS, 2014.

[22] B. Hassanshahi, Y. Jia, R. H. C. Yap, P. Saxena, and
Z. Liang. Web-to-application injection attacks on an-
droid: Characterization and detection. In ESORICS,
2015.

[23] L. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and
C. Jackson. Clickjacking: Attacks and defenses. In
USENIX Security, 2012.

[24] InfoSecurity. Public wifi hotspots ripe for mitm attacks.
https://www.infosecurity-magazine.com/
news/public-wifi-hotspots-ripe-for-mitm-
attacks/.

[25] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri.
Code injection attacks on html5-based mobile apps:
Characterization, detection and mitigation. In CCS,
2014.

[26] A. Lerner, T. Kohno, and F. Roesner. Rewriting history:
Changing the archived web from the present. CCS,
2017.

[27] T. Li, X. Wang, M. Zha, K. Chen, X. Wang, L. Xing,
X. Bai, N. Zhang, and X. Han. Unleashing the walking
dead: Understanding cross-app remote infections on
mobile webviews. In CCS, 2017.

[28] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing
your enemy: Understanding and detecting malicious
web advertising. In CCS, 2012.

USENIX Association 28th USENIX Security Symposium 993

https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://sites.google.com/view/dcv-attacks
https://sites.google.com/view/dcv-attacks
https://easylist.to/tag/tracking-protection-lists.html
https://easylist.to/tag/tracking-protection-lists.html
https://easylist.to/tag/tracking-protection-lists.html
https://html.spec.whatwg.org/dev/iframe-embed-object.html#attr-iframe-sandbox
https://html.spec.whatwg.org/dev/iframe-embed-object.html#attr-iframe-sandbox
https://html.spec.whatwg.org/dev/iframe-embed-object.html#attr-iframe-sandbox
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://en.wikipedia.org/wiki/Same-origin_policy
https://en.wikipedia.org/wiki/Same-origin_policy
https://www.seleniumhq.org
https://www.seleniumhq.org
https://html.spec.whatwg.org/multipage/web-messaging.html
https://html.spec.whatwg.org/multipage/web-messaging.html
https://developer.android.com/reference/android/webkit/WebViewClient.html
https://developer.android.com/reference/android/webkit/WebViewClient.html
https://developer.android.com/reference/android/webkit/WebViewClient.html
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/

[29] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis.
Hindsight: Understanding the evolution of ui vulnerabil-
ities in mobile browsers. CCS, 2017.

[30] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks
on webview in the android system. In ACSAC, 2011.

[31] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du. Touch-
jacking attacks on web in android, iOS, and windows
phone. In Foundations and Practice of Security. 2013.

[32] J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In IEEE Symposium on Security
and Privacy, 2012.

[33] P. Mutchler, A. DoupÃ, J. Mitchell, C. Kruegel, G. Vi-
gna, A. Doup, J. Mitchell, C. Kruegel, and G. Vigna.
A Large-Scale Study of Mobile Web App Security. In
MoST, 2015.

[34] M. Neugschwandtner, M. Lindorfer, and C. Platzer. A
view to a kill: Webview exploitation. In LEET, 2013.

[35] M. Niemietz and J. Schwenk. Ui redressing attacks on
android devices. Black Hat, 2012.

[36] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. CCS, 2012.

[37] X. Pan, Y. Cao, and Y. Chen. I do not know what you
visited last summer - protecting users from third-party
web tracking with trackingfree browser. In NDSS, 2015.

[38] P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar.
Hybridguard: A principal-based permission and fine-
grained policy enforcement framework for web-based
mobile applications. In MoST, 2017.

[39] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Mon-
rose. All your iframes point to us. Usenix Security,
2008.

[40] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Ri-
ley. Are these Ads Safe: Detecting Hidden Attacks
through the Mobile App-Web Interfaces. NDSS, 2016.

[41] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu. Towards
discovering and understanding task hijacking in android.
In USENIX Security, 2015.

[42] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
defending against third-party tracking on the web. In
NSDI), 2012.

[43] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking vulner-

abilities at popular sites. In IEEE Oakland Web 2.0
Security and Privacy, 2010.

[44] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax:
Systematic discovery of client-side validation vulnera-
bilities in rich web applications. In NDSS, 2010.

[45] K. Singh. Practical context-aware permission control
for hybrid mobile applications. In RAID. 2013.

[46] D. F. Somé, N. Bielova, and T. Rezk. Control what you
include! - server-side protection against third party web
tracking. In Engineering Secure Software and Systems,
2017.

[47] S. Son and V. Shmatikov. The postman always rings
twice: Attacking and defending postmessage in html5
websites. In NDSS, 2013.

[48] K. Tian, Z. Li, K. D Bowers, and D. Yao. Framehanger:
Evaluating and classifying iframe injection at large scale.
In SecureComm, 2018.

[49] G. S. Tuncay, S. Demetriou, and C. A. Gunter. Draco:
A system for uniform and fine-grained access control
for web code on android. In CCS, 2016.

[50] R. Wang, L. Xing, X. Wang, and S. Chen. Unautho-
rized origin crossing on mobile platforms: Threats and
mitigation. In CCS, 2013.

[51] T. Wei, Y. Zhang, H. Xue, M. Zheng, C. Ren, and
D. Song. Sidewinder targeted attack against android
in the golden age of ad libraries. In Black Hat. 2014.

[52] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna. Zigzag: Automatically hardening web
applications against client-side validation vulnerabilities.
In USENIX Security, 2015.

[53] G. Yang, J. Huang, and G. Gu. Automated generation
of event-oriented exploits in android hybrid apps. In
NDSS, 2018.

[54] G. Yang, J. Huang, G. Gu, and A. Mendoza. Study and
mitigation of origin stripping vulnerabilities in hybrid-
postmessage enabled mobile applications. In IEEE Sym-
posium on Security and Privacy, 2018.

[55] G. Yang, A. Mendoza, J. Zhang, and G. Gu. Precisely
and scalably vetting javascript bridge in android hybrid
apps. In RAID, 2017.

[56] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz,
C. Kruegel, and G. Vigna. The dark alleys of madi-
son avenue: Understanding malicious advertisements.

In IMC, 2014.

994 28th USENIX Security Symposium USENIX Association

	Introduction
	Background and Threat Model
	Iframes/Popups and Related Protections
	WebView and Related Protections
	Threat Model

	Differential Context Vulnerabilities
	Study Overview
	Origin Hiding Attacks
	Attacking Web Messaging
	Accessing Web-Mobile Bridges

	WebView UI Redressing Attacks
	WebView UI Overlap Attack
	WebView UI Closure Attack

	Main-Frame Navigation Attacks
	Traditional Navigation Attack
	Privileged Navigation Attack

	Advantages of DCV Attacks
	Root Causes of DCVs

	DCV-Hunter
	Complete Call Graph Construction
	WebView Context Reconstruction
	Untrusted Iframe/Popup Detection
	Untrusted URL Extraction
	URL Approval Analysis

	Vulnerability Analysis

	Security Impact Assessment
	Manual Verification
	Findings
	Case Studies
	Skype
	Kayak
	More Examples

	Security Impacts of Home-Brewed URL Address Bars

	Vulnerability Mitigation
	Mitigation Solution
	Mitigation Solution Implementation
	Enhanced Event Handlers
	URL Indicators
	Replacing the ``null'' Origin
	Popup Indicator
	Safe Navigation

	Mitigation Evaluation

	Related Work
	Discussion
	Conclusion

