FASTKITTEN:
Practical Smart Contracts on Bitcoin

Poulami Das” Lisa Eckey”
Kristina Hostdkova™ Patrick Jauernig®

Tommaso Frassetto®

David Gens?®

Sebastian Faust” Ahmad-Reza Sadeghi®

Technische Universitdt Darmstadt, Germany
* first.last@ cs.tu-darmstadt.de

§ first.last@trust.tu-darmstadt.de

Abstract

Smart contracts are envisioned to be one of the killer appli-
cations of decentralized cryptocurrencies. They enable self-
enforcing payments between users depending on complex
program logic. Unfortunately, Bitcoin — the largest and by far
most widely used cryptocurrency — does not offer support for
complex smart contracts. Moreover, simple contracts that can
be executed on Bitcoin are often cumbersome to design and
very costly to execute. In this work we present FASTKITTEN,
a practical framework for executing arbitrarily complex smart
contracts at low costs over decentralized cryptocurrencies
which are designed to only support simple transactions. To
this end, FASTKITTEN leverages the power of trusted comput-
ing environments (TEEs), in which contracts are run off-chain
to enable efficient contract execution at low cost. We formally
prove that FASTKITTEN satisfies strong security properties
when all but one party are malicious. Finally, we report on
a prototype implementation which supports arbitrary con-
tracts through a scripting engine, and evaluate performance
through benchmarking a provably fair online poker game. Our
implementation illustrates that FASTKITTEN is practical for
complex multi-round applications with a very small latency.
Combining these features, FASTKITTEN is the first truly prac-
tical framework for complex smart contract execution over
Bitcoin.

1 Introduction

Starting with their invention in 2008, decentralized cryptocur-
rencies such as Bitcoin [51] currently receive broad attention
both from academia and industry. Since the rise of Bitcoin,
countless new cryptocurrencies have been launched to address
some of the shortcomings of Nakamoto’s original proposal.
Examples include Zerocash [47] which improves on Bitcoin’s
limited anonymity, and Ethereum [16] which offers complex
smart contract support. Despite these developments, Bitcoin
still remains by far the most popular and intensively stud-
ied cryptocurrency, with its current market capitalization of
$109 billion which accounts for more than 50% of the total
cryptocurrency market size [2].

A particular important shortcoming of Bitcoin is its limited
support for so-called smart contracts. Smart contracts are
(partially) self-enforcing protocols that allow emitting trans-
actions based on complex program logic. Smart contracts
enable countless novel applications in, e.g., the financial in-
dustry or for the Internet of Things, and are often quoted as
a glimpse into our future [9]. The most prominent cryptocur-
rency that currently allows to run complex smart contracts is
Ethereum [16], which has been designed to support Turing
complete smart contracts. While Ethereum is continuously
gaining popularity, integrating contracts directly into a cryp-
tocurrency has several downsides as frequently mentioned
by the advocates of Bitcoin. First, designing large-scale se-
cure distributed systems is highly complex, and increasing
complexity even further by adding support for complex smart
contracts also increases the potential for introducing bugs.
Second, in Ethereum, smart contracts are directly integrated
into the consensus mechanics of the cryptocurrency, which re-
quires in particular that all nodes of the decentralized system
execute all contracts. This makes execution of contracts very
costly and limits the number and complexity of applications
that can eventually be run over such a system. Finally, many
applications for smart contracts require confidentiality, which
is currently not supported by Ethereum.

There has been significant research effort in addressing these
challenges individually. Some works aim to extend the func-
tionality of Bitcoin by showing how to build contracts over
Bitcoin by using multiparty computation (MPC) [37,38,40],
others focus on achieving privacy-preserving contracts (e.g.,
Hawk [35], Ekiden [19]) by combining existing cryptocur-
rencies with trusted execution environments (TEEs). How-
ever, as we elaborate in Section 2, all of these solutions suf-
fer from various deficiencies: they cannot be integrated into
existing cryptocurrencies such as Bitcoin, are highly ineffi-
cient (e.g., they use heavy cryptographic techniques such as
non-interactive zero-knowledge proofs or general MPC), do
not support money mechanics, or have significant financial
costs due to complex transactions and high collateral (money
blocked by the parties in MPC-based solutions).

In this work, we propose FASTKITTEN, a novel system that
leverages trusted execution environments (TEEs) utilizing
well-established cryptocurrencies, such as Bitcoin, to offer
full support for arbitrary complex smart contracts. We empha-
size that FASTKITTEN does not only address the challenges
discussed above, but is also highly efficient. It can be easily
integrated into existing cryptocurrencies and hence is ready to
use today. FASTKITTEN achieves these goals by using a TEE
to isolate the contract execution inside an enclave, shielding
it from potentially malicious users. The main challenges of
this solution, such as for instance how to load and validate
blockchain data inside the enclave or how to prevent denial
of service attacks, are discussed in Section 3.1. Moving the
contract execution into the secure enclave guarantees correct
and private evaluation of the smart contract even if it is not
running on the blockchain and verified by the decentralized
network. This approach circumvents the efficiency shortcom-
ing of cryptocurrencies like Ethereum, where contracts have
to be executed in parallel by thousands of users. Most related
to our work is the recently introduced Ekiden system [19],
which uses a TEE to support execution of multiparty compu-
tations but does support contracts that handle coins. While
Ekiden is efficient for single round contracts, it is not de-
signed for complex reactive multi-round contracts, and their
off-chain execution. The latter is one of the main goals of
FASTKITTEN.

We summarize our main goals and contributions below.

* Smart Contracts for Bitcoin: We support arbitrary
multi-round smart contracts executed amongst any fi-
nite number of participants, where our system can be run
on top of any cryptocurrency with only limited script-
ing functionality. We emphasize that Bitcoin is only one
example over which our system can be deployed today;
even cryptocurrencies that are simpler than Bitcoin can
be used for FASTKITTEN.

 Efficient Off-Chain Execution: Our protocol is de-
signed to keep the vast majority of program execution
off-chain in the standard case if all parties follow the
protocol. Since our system incentivizes honest behavior
for most practical use cases, FASTKITTEN can thus run
in real-time at low costs.

e Formal Security Analysis: We formally analyze the
security of FASTKITTEN in a strong adversarial model.
We prove that either the contract is executed correctly,
or all honest parties get their money back that they have
initially invested into the contract, while a malicious
party loses its coins. Additionally, the service provider
who runs the TEE is provably guaranteed to not lose
money if he behaves honestly.

¢ Implementation and benchmarking: We provide an
in-depth analysis of FASTKITTEN’s performance and
costs and evaluate our framework implementation with
respect to several system parameters by offering bench-
marks on real-world use cases. Concretely, we show that

online poker can run with an overall match latency of
45ms and costs per player are in order of magnitude of
one USD, which demonstrates FASTKITTEN’s practical-
ity.
We emphasize that FASTKITTEN requires only a single TEE
which can be owned either by one of the participants or by an
external service provider which we call the operator. In addi-
tion, smart contracts running in the FASTKITTEN execution
framework support private state and secure inputs, and thus,
offer even more powerful contracts than Ethereum. Finally,
we stress that FASTKITTEN can support contracts that may
span over multiple different cryptocurrencies where each par-
ticipant may use her favorite currency for the money handled
by the contract.

2 Related Work

Support for execution of arbitrary complex smart contracts
over decentralized cryptocurrencies was first proposed and
implemented by the Ethereum cryptocurrency. As pointed
out in Section 1, running smart contracts over decentralized
cryptocurrencies results in significant overheads due to the
replicated execution of the contract. While there are currently
huge research efforts aiming at reducing these overheads
(for instance, via second layer solutions such as state chan-
nels [24,49], Arbitrum [34] or Plasma [55], outsourcing of
computation [58], or permissioned blockchains [46]), these so-
lutions work only over cryptocurrencies with support complex
smart contracts, e.g. over Ethereum. Another line of work,
which includes Hawk [36] and the “Ring of Gyges” [33], is
addressing the shortcoming that Ethereum smart contracts
cannot keep private state. However, also these solutions are
based on complex smart contracts and hence cannot be inte-
grated into popular legacy cryptocurrencies such as Bitcoin,
which is the main goal of FASTKITTEN.

In this section we will focus on related work, which con-
siders smart contract execution on Bitcoin. We separately
discuss multiparty computation based smart contracts and so-
lutions using a TEE. We provide a more detailed discussion on
how the above-mentioned Ethereum based solutions compare
to FASTKITTEN in Appendix A. Additionally, in Section 8
we discuss some exemplary contract use cases and compare
their execution inside FASTKITTEN with the execution over
Ethereum.

Multiparty computation for smart contracts An interest-
ing direction to realize complex contracts over Bitcoin is to
use so-called multiparty computation with penalties [38—40].
Similar to FASTKITTEN these works allow secure m-round
contract execution but they rely on the claim-or-refund func-
tionality [39]. Such a functionality can be instantiated over
Bitcoin and hence these works illustrate feasibility of generic
contracts over Bitcoin. Unfortunately, solutions supporting
generic contracts require complex (and expensive) Bitcoin
transactions and high collateral locked by the parties which
makes them impractical for most use-cases. Concretely, in

Minimal Generic .
Approach #TX Collateral Contracts Privacy
Ethereum contracts ~ O(m) O(n) v X
MPC [38-40] o) O(n’m) v v
Ekiden [19] O(m) no support for money v
FASTKITTEN o(1) O(n) v v

Table 1: Selected solutions for contract execution over Bitcoin
and their comparison to Ethereum smart contracts. Above, n
denotes the number of parties and m is the number of reactive
execution rounds.

all generic n-party contract solutions we are aware of, each
party needs to lock O(nm) coins, which overall results in
O(n’m) of locked collateral. In contrast, the total collateral
in FASTKITTEN is O(n), see column “Collateral” in Table 1.
It has been shown that for specific applications, concretely, a
multi-party lottery, significant improvements in the required
collateral are possible when using MPC-based solutions [48].
This however comes at the cost of an inefficient setup phase,
communication complexity of order O(2"), and O(logn) on-
chain transactions for the execution phase. Let us stress that
the approach used in [48] cannot be applied to generic con-
tracts.

Overall, while MPC-based contracts are an interesting direc-
tion for further research, we emphasize that these systems are
currently far from providing a truly practical general-purpose
platform for contract execution over Bitcoin—which is the
main goal of FASTKITTEN.

TEEs for blockchains There has recently been a large
body of work on using TEEs to improve certain features
of blockchains [10,43,59, 63, 64]. A prominent example is
Teechain [43], which enables off-chain payment channel sys-
tems over Bitcoin. Most of these prior works do not use the
TEE for smart contract execution. Some notable exceptions
include Hawk [36] and the “Ring of Gyges” [33], who pro-
pose privacy preserving off-chain contracts execution, but, as
already mentioned, do not work over Bitcoin.

Probably most related to our work is Ekiden [19], which
proposes a system for private off-chain smart contract ex-
ecution using TEEs. While Ekiden focuses on solutions
over Ethereum, it does not require a powerful scripting lan-
guage of the underlying blockchain technology — just like
FASTKITTEN. Despite the conceptual similarities of Ekiden
and FASTKITTEN, the goals of these systems are orthogonal.
Ekiden aims at moving heavy smart contract execution off
the chain in order to reduce the cost of executing complex
contract functions. In contrast, FASTKITTEN focuses on effi-
cient off-chain execution of multi-round contracts between a
set of parties. Importantly, we require our system to natively
handle coins of the underlying blockchain. A joint goal of
both systems is to provide state privacy of the contracts.
Ekiden considers clients (contract parties) and computing

nodes which have a similar task as FASTKITTEN’s TEE oper-
ator since they also execute contracts inside a TEE. In contrast
to FASTKITTEN, Ekiden sends the encryption of the resulting
contract state to the blockchain after every function call. If
a client requests another function call, a selected computing
node takes the state from the blockchain, decrypts it inside
its enclave and performs the contract execution. This implies
that reactive multi-round contracts are very costly even in the
standard case when all participating parties are honest (c.f.
column “Minimal # TX” in Table 1).

Ekiden relies on multiple TEEs and guarantees service avail-
ability as long as at least one TEE is controlled by an honest
computing node. We note in Section 9.2 that fault tolerance
can be integrated into FASTKITTEN in a straightforward way.
Additionally, Ekiden aims to achieve forward secrecy even if a
small fraction of TEEs gets corrupted via, e.g., a side-channel
attack. Their strategy is to secret-share a long-term secret key
between the TEEs and use it to generate a short-term secret
key every “epoch”. Hence, an attacker learning the short-term
key can only decrypt state from the current epoch. While
side-channel attacks are out of scope of this work, note that
FASTKITTEN can achieve forward secrecy of states in case
of side-channel attacks using the same mechanism as Ekiden.
An important part of the FASTKITTEN construction is the
fair distribution of coins through the enclave. Ekiden does
neither model nor discuss the handling of coins. It is not
straightforward to add this feature to their model since the
contract state is encrypted and hence the money cannot be
unlocked automatically on-chain.

3 Design

FASTKITTEN allows a set of n users Py, ..., P, to execute an
arbitrary complex smart contract over a decentralized cryp-
tocurrency that only supports very simple scripts. Concretely,
FASTKITTEN considers cryptocurrencies that, in addition to
supporting simple transactions between users, offer so-called
time-locked transactions. A transaction is time-locked if it
is only processed and integrated into the blockchain after a
certain amount of time has passed. Moreover, FASTKITTEN
requires that transactions contain space for storing arbitrary
raw data. We emphasize that these are very mild require-
ments on the underlying cryptocurrency that, for instance,
are satisfied by the most prominent cryptocurrency Bitcoin.!
FASTKITTEN leverages these properties together with the
power of trusted execution environments to provide an effi-
cient general-purpose smart contract execution platform.

As discussed in the introduction, a contract is a program
that handles coins according to some—possibly complex—
program logic. In this work, we consider n-party contracts,
which are run among a group of parties Py, ..., P, and have
the following structure. During the initialization phase, the
contract receives coins from the parties and some initial in-

IBitcoin transactions can store up to 97 KB of data [44]; multiple trans-
actions can be used for bigger payloads.

puts. Next, it runs for m reactive rounds, where in each round
the contract can receive additional inputs from the parties P;,
and produces an output. Finally, after the m-th round is com-
pleted the contract pays out the coins to the parties according
to its final state and terminates.

A key feature of FASTKITTEN is very low execution cost and
high performance compared to contract execution over cryp-
tocurrencies such as Ethereum. This is achieved by not exe-
cuting contracts by all parties maintaining the cryptocurrency
but instead running the contract within a TEE which could,
e.g., be owned and operated by a single service provider which
we call the operator Q. In the standard case when all parties
are honest, FASTKITTEN runs the entire contract off-chain
within the enclave and only needs to touch the blockchain dur-
ing contract initialization and finalization. More concretely,
during initialization, the parties transfer their coins to the en-
clave by time-locking coins with deposit transactions, while
at the end of finalization the enclave produces transactions
that transfer coins back to the users according to the results of
the contract execution. These transactions are called output
transactions and can be published by the users of the system
to receive their coins.

3.1 Design Challenges of FASTKITTEN

Leveraging TEEs for building a general-purpose contract
execution platform requires us to resolve the following main
challenges.

Protection against malicious operator. The operator runs
the TEE and hence controls its interaction with the environ-
ment (e.g., with other parties or the blockchain). Thus, the
operator can abort the execution of the TEE, delay and change
inputs, or drop any ingoing or outgoing message. To protect
honest users from such an operator, the enclave program run-
ning inside the TEE must identify such malicious behavior
and punish the operator. In particular, we require that even
if the TEE execution is aborted, all parties must be able to
get their coins refunded eventually. To achieve this, we let the
operator create a so-called penalty transaction: the penalty
transaction time-locks coins of the operator, which in case of
misbehavior can be used to refund the users and punish the
operator.

Note that designing such a scheme for punishment is highly
non-trivial. Consider a situation where party P; was supposed
to send a message x to the contract. From the point of view
of the enclave that runs the contract, it is not clear whether
the operator was behaving maliciously and did not forward
a message to the enclave, or, e.g., party P; did not send the
required message to the operator. To resolve this conflict,
we leverage a challenge-response mechanism carried out via
the blockchain. We emphasize that this challenge-response
mechanism is only required when parties are malicious, and
typically will not be executed often due to the high financial
costs for an adversary.

Verification of blockchain evidence. To ensure that a ma-
licious operator cannot make up false blockchain evidence,
we need to design a secure blockchain validation algorithm
which can efficiently be executed inside a TEE. We achieve
this by simplifying the verification process typically carried
out by full blockchain nodes by using a checkpoint block to
serve as the initial starting point for verification. This drasti-
cally reduces blockchain verification time in comparison to
verification starting from the genesis block. To further speed
up the transaction verification, we only validate correctness of
block headers. Finally, when the TEE needs to verify whether
a certain transaction was integrated into a block, we set a mini-
mum number of blocks that must confirm a transaction as part
of the security parameter within our protocol. This guarantees
that faking a valid-looking chain is computationally infea-
sible for a malicious operator. Finally, it is computationally
infeasible for a malicious operator to load a fake (but valid-
looking) chain into the enclave before the penalty transaction
is published on the blockchain.

Minimizing blockchain interaction. Since blockchain in-
teractions are expensive, FASTKITTEN only requires interac-
tion with the blockchain in the initialization and finalization
phases if all parties follow the protocol. As already discussed
above, however, in case of malicious behavior FASTKITTEN
may require additional interaction with the blockchain for con-
flict resolution. This is required to allow the TEE to attribute
malicious behavior either to the operator or to some other
participant P; that provides input to the contract. We achieve
this through a novel challenge-response protocol, where the
TEE will ask the operator to challenge P; via the blockchain.
The operator can then either deliver a proof that he challenged
P; via the blockchain but did not receive a response, in which
case P; will get punished; or the operator receives P;’s input
and can continue with the protocol.

Of course, this challenge-response protocol adds to the worst-
case execution time of our system, and additionally will result
in fees for blockchain interaction. To address the latter, our
protocol ensures that both parties involved in the challenge-
response mechanism have to split the fees resulting from
blockchain interaction equally.? This incentivizes honest be-
havior if parties aim to maximize their personal profits.
Preventing denial of service attacks. Complex smart con-
tracts may take a very long time to complete, and in the
worst case not terminate. Hence, a malicious party may carry
out a denial-of-service attack against the contract execution
platform, where the platform is asked to execute a contract
that never halts. It is well known that determining whether a
program terminates is undecidable. Hence, general-purpose
contract platforms, such as Ethereum, mitigate this risk by
letting users pay via fees for every step of the contract execu-
tion. This effectively limits the amount of computation that

2In the cryptocurrency community, this is often referred to as griefing
factor 1 : 1, meaning that for every coin spent by the honest users on fees the
adversary is required to also spend one coin.

@'Operator
FasTKiTTEN Execution Platform
= ™ @ 1 host p
e Enclave ost Process
g . (13
Initial
Config
Participant
Connection

Blockchain

C

< A
- @

Pa:ticipa:‘ts. \Scripting Engine

| FASTKITTEN

~——
H——1>
~—— T Smart 2{;7

1

1

' '
! 1
! 1
!]
! 1
1
T Contract '
|

1

Figure 1: Architecture of the FASTKITTEN Smart Contract
Execution Platform. Dashed arrows indicate interaction with
the blockchain and non-dashed arrows depict communication
between parties.

can be carried out by the contract. Since FASTKITTEN allows
multiple parties to provide input to the contract in the same
round, it might be impossible to decide which party (parties)
caused the denial of service and should pay the fee. To this
end, FASTKITTEN protects against such denial-of-service at-
tacks using a time-out mechanism. As all users of the system
(including the operator) have to agree on the contract to be ex-
ecuted, we assume that this agreement includes a limit on the
maximum amount of execution steps that can be performed
inside the enclave per one execution round. See Section 6.5
for more details.

3.2 Architecture and Protocol

To enable secure off-chain contract execution, our architecture
builds on existing TEEs, which are widely available through
commercial off-the-shelf hardware. In particular, our archi-
tecture can be implemented using Intel’s Software Guard
Extensions (SGX) [4,29,45] which is a prominent TEE in-
stantiation built into most recent Intel processors. SGX in-
corporates a set of new instructions to create, control and
communicate with enclaves. While enclaves are part of a
legacy host process, SGX enforces strict isolation of compu-
tation and memory between enclave and host process on the
hardware level. Another prominent instantiation of the TEE
concept is ARM TrustZone [6], which provides similar func-
tionality for mobile devices. We note that only the operator Q
is required to own TEE-enabled hardware.

As depicted in Figure 1, our FASTKITTEN Execution Facility
is run by the operator Q and consists of a host process and an
enclave. The untrusted host process takes care of setting up
the enclave with an initial config, handles the participant con-
nections, and blockchain communication over the network.
While this means that Q has complete control over these parts,
the influence of a malicious operator on a running enclave
is limited: he can interrupt enclave execution, but not tam-

per with it. Further, the enclave will sign and hash all code
and data as part of its attestation towards parties, so they
can verify correctness of the setup before placing deposits.
To support arbitrary contract functionality, FASTKITTEN in-
cludes a scripting engine inside the enclave and several helper
libraries, such as the Crypto library to generate and verify
transactions, and an Interface library to pass data between
host process and enclave. The individual contracts are loaded
into the FASTKITTEN enclave during the initialization of
our protocol by the underlying host process and participants
can verify that contracts are loaded correctly. Our protocol
then proceeds in three phases, which we call setup phase,
round computation, and finalization phase. Figure 1 depicts
the architecture of the FASTKITTEN framework.

During the setup phase (Steps @—€@)) the contract is loaded
into the enclave. Using the TEE’s attestation functionality,
all parties Py, ..., P, can verify that this step was completed
correctly. Then the operator and all parties block their coins
for the contract execution. If any party aborts in this phase, the
money is refunded to all parties that deposited money and the
protocol stops. Otherwise, all parties receive a time-locked
penalty transaction, needed in case Q aborts the protocol.
Afterwards, the round computation phase (Step @) starts, in
which Q sends the previous round’s output to all parties. If
a party P; receives such an output, which is correctly signed
by the enclave, it signs and sends the input for the following
round to Q. If all parties behave honestly, Q will forward
the received round inputs to the enclave, which computes the
outputs for the next round. In case that the enclave does not
receive an input from party P; the enclave needs to determine
whether P; failed to send its input or if Q behaved maliciously
(e.g., by dropping the message). Therefore, the enclave will
punish Q unless it can prove, that it sent the last round output
to P; but did not receive a response. This proof is generated via
the blockchain: Q publicly challenges P; to respond with the
input for the next round by posting the output of the previous
round to the blockchain. As soon as this challenge transaction
is confirmed, P; needs to respond publicly by spending the
coins of the challenge transaction and include its input for
the next round. If P; responds, Q can extract P;’s input and
continue with the protocol execution. If P; did not respond, Q
forwards the respective blocks as a transcript to the enclave,
to prove that P, misbehaved.? So, while a malicious party (or
the operator) can force this on-chain challenge-response pro-
cedure without direct punishment, posting these transactions
will also act against its own financial interests by extending
the time lock of its own coins and leading to transaction fees.
Nevertheless, such malicious behavior cannot prevent the fair
termination of our protocol.

The last phase of the protocol is the payout phase (Step @). In

3 Alternatively, we could allow the operator to spend the challenge transac-
tion after a timeout has passed. While this would result in easier verification
for the TEE, the operator would need to publish an additional transaction,
increasing both fees and the overall time for the challenge-response phase.

this phase the enclave returns the output transaction generated
by the Crypto library. This transaction distributes the coins
according to the terminated contract. In case of a protocol
abort, the coins initially put by the users will be refunded to
all honest parties. If any party was caught cheating, this party
will not receive back its coins. This means the money will
stay in control of the enclave and will never be spent.

4 Adversary Model

The FASTKITTEN protocol is executed n parties Py,...,P,
and an operator Q (who owns the TEE) with the goal of exe-
cuting a smart contract C. FASTKITTEN’s design depends on
a TEE to ensure its confidentiality and integrity. Our design
is TEE-agnostic, even if our implementation is based on Intel
SGX. Recent research showed that the security and privacy
guarantees of SGX can be affected by memory-corruption
vulnerabilities [11], architectural [13] and micro-architectural
side-channel attacks [60]. For the operator, we assume that Q
has full control over the machine and consequently can exe-
cute arbitrary code with supervisor privileges. While memory
corruption vulnerabilities can exist in the enclave code, a
malicious operator must exploit such vulnerabilities through
the standard interface between the host process and the en-
clave. For the enclave code, we assume a common code-
reuse defense such as control-flow integrity (CFI) [3, 15],
or fine-grained code randomization [23,42] to be in place
and active. Architectural side-channel attacks, e.g., based on
caches, can expose access patterns [13] from SGX enclaves
(and therefore our FASTKITTEN prototype). However, this
prompted the community to develop a number of software
mitigations [12, 18,27,56,57] and new hardware-based so-
lutions [22,28,52]. Microarchitectural side-channel attacks
like Foreshadow [60] can extract plaintext data and effec-
tively undermine the attestation process FASTKITTEN relies
on, leaking secrets and enabling the enclave to run a differ-
ent application than agreed on by the parties; however, the
vulnerability enabling Foreshadow was already patched by
Intel [32]. Since existing defenses already target SGX vul-
nerabilities and since FASTKITTEN’s design is TEE agnostic
(i.e., it can also be implemented using ARM TrustZone or
next-generation TEEs), we consider mitigating side-channel
leakage as an orthogonal problem and out of scope for this
paper.

For our protocol we consider a byzantine adversary [41],
which means that corrupted parties can behave arbitrarily.
In particular, this includes aborting the execution, dropping
messages, and changing their inputs and outputs even if it
means that they will lose money. FASTKITTEN is secure even
if n parties are corrupt (including the two cases where only
the operator is honest, and only one party is honest but the
operator is corrupt). We show that no honest party will lose
coins, a corrupt party will be penalized and that no adversary
can tamper with the result of the contract execution. While
we prove security in this very strong adversarial model, we

additionally observe that incentive-driven parties (i.e., parties
that aim at maximizing their financial profits) will behave
honestly, which significantly boosts efficiency of our scheme.
We stress that security of FASTKITTEN relies on the security
of the underlying blockchain. We require that the underlying
blockchain systems satisfies three security properties: live-
ness, consistency and immutability [26]. Liveness means that
valid transactions are guaranteed to be included within the
next & blocks. Consistency guarantees that eventually all users
have the same view on the current state of the blockchain
(i.e., the transactions processed and their order). In addition,
blockchains also are immutable, which means that once trans-
actions end up in the blockchain they cannot be reverted. Most
blockchain based cryptocurrencies guarantee consistency and
immutability only after some time has passed, where time
is measured by so-called confirmations. A block b; is con-
firmed k-times if there exists a valid chain extending b; with
k further blocks. Once block b; has been sufficiently often
confirmed, we can assume that the transactions in b; cannot
be reverted and all honest parties agree on an order of the
chain (bg,b1,b2,...,b;). For most practical purposes k can be
a small constant, i.e., in Bitcoin it is generally believed that
for k = 6 a block can be assumed final.*

5 The FASTKITTEN Protocol

In this section we give a more detailed description of our pro-
tocol, which includes the specification of the protocol run by
Q and honest parties P, ..., P,, all transactions and a descrip-
tion of the enclave program FASTKITTEN. The interaction
between Q, P; and the blockchain is depicted in Figure 2. We
first describe the interactions with the blockchain and TEE.

5.1 Modeling the Blockchain

We will introduce some basic concepts of cryptocurrencies
that are relevant for our work before we describe our high-
level design. Cryptocurrencies are built using blockchains—a
distributed data structure that is maintained by special parties
called miners. The blockchain is comprised as a chain of
blocks (bg,b1,by,...) that store the transactions of the system.
The miners create new blocks by verifying new transactions
and comprising them into new blocks that extend the tail of
the chain. New blocks are created within some period of time
t, where, for instance, in Bitcoin a new valid block is created
every 10 minutes on average.

In cryptocurrencies users are identified by addresses, where an
address is represented by a public key. To send coins from one
address to another, most cryptocurrencies rely on transactions.
If a user A with address pk, wants to send x coins to user B
with address pkp, she creates a transaction tx which states
that x coins from address pk, are transferred to pkg. Such a

4We notice that in blockchain-based cryptocurrencies there is no guaran-
teed finality, and even for very large values of k blocks can be reverted in
principle. We emphasize however that even for small values of k reverting
blocks becomes impossible in practice very quickly.

transaction tx is represented by the following tuple:
tx := (tx.Input, tx.Output, tx. Time, tx.Data),

where tx.Input refers to a previously unspent transaction,
tx.Output denotes the address to which tx.Value are going
to be transferred to. Note that a transaction tx is unspent if
it is not referred to by any other transaction in its Input field.
Further, tx. Time € N, which denotes the block counter after
which this transaction will be included by miners, i.e., tx can
be integrated into blocks b;, bj11, ..., where i = tx. Time. Fi-
nally, tx.Data € {0, 1}* is a data field that can store arbitrary
raw data. Similar to [5], we will often represent transactions
by tables as shown exemplary in the table below, where the
first row of the table gives the name of the transaction.

Transaction tx
tx.Input: Coins from unspent input transaction
tx.Output: Coins to receiver address
tx.Time: Some timelock (optional)
tx.Data: Some data (optional)

Notice that a transaction tx only becomes valid if it is signed
with the corresponding secret key of the output address from
tx.Input. We emphasize that the properties described above
are very mild and are for instance achieved by the most promi-
nent cryptocurrency Bitcoin.

In order to model interaction with the cryptocurrency, we use
a simplified blockchain functionality BC, which maintains a
continuously growing chain of blocks. Internally it stores a
block counter ¢ which starts initially with 0 and is increased on
average every ¢ minutes. Every time the counter is increased,
a new block will be created and all parties are notified. To
address the uncertainty of the block creation duration we give
the adversary control over the exact time when the counter is
increased but it must not deviate more than A € [t — 1] seconds
from ¢t. Whenever any party publishes a valid transaction, it is
guaranteed to be included in any of the next & blocks.
Parties can interact with the blockchain functionality BC us-
ing the following commands.

* BC.post(tx): If the transaction tx is valid (i.e., all inputs
refer to unspent transactions assigned to creator of tx
and the sum of all output coins is not larger than the sum
of all input coins) then tx is stored in any of the blocks
{bc+17 .- abc+8}'

» BC.getAll(i): If i < c, this function returns the latest
block count ¢ — 1 and a list of blocks that extend b;:
b= (biJrla"'abc)

» BC.getlast(): The function getlLast can be called by
any party of the protocol and returns the last (finished)
block and its counter: (c,b,).

For every cryptocurrency there must exist a validation algo-
rithm for validating consistency of the blocks and transactions

therein, which we model using the function Extends. It takes
as input, a chain of blocks b and a checkpoint block b, and
outputs 1 if b= (bep11,...,bep+i) is a valid chain of blocks
extending b, and otherwise it outputs 0. In Section 6 we
give more details on the validation algorithm, and how this
function is implemented for the Bitcoin system. Recall, that
we assume an adversary which cannot compute a chain of
blocks of length k by itself (c.f. Section 4). This guarantees
that he cannot produce a false chain such that this function
outputs 1. To make the position of some transaction tx inside
a chain of blocks explicit, we write £ := Pos(b, tx) when the
transaction is part of the ¢-th block of b. If the transaction is
in none of the blocks, the function returns oo. For more details
on the transaction and block verification we refer the reader
to [7,26,51].

5.2 Modeling the TEE

In order to model the functionality of a TEE, we follow the
work of Pass et. al. [54]. We explain here only briefly the
simplified version of the TEE functionality whose formal
definition can be found in [54, Fig. 1]. On initialization, the
TEE generates a pair of signing keys (mpk,msk) which we
call master public key and master secret key of the TEE. The
TEE functionality has two enclave operations: install and
resume. The operation TEE.install takes as input a program
p which is then stored under an enclave identifier eid. The
program stored inside an enclave can be executed via the
second enclave operation TEE.resume which takes as input
an enclave identifier eid, a function f and the function input in.
The output of TEE.resume is the output out of the program
execution and a quote g over the tuple (eid,p,out). In the
protocol description we abstract from the details how the
users verify the quote that is generated through the enclave
attestation. Since we only consider one instance E of the
specific program p, we will simplify the resume command
[out, o] := TEE.resume(eid, f,in) and write>:

[out, o] := E f(in)

For every attestable TEE there must exist a function
vrfyQuote(mpk, p,out, o) which on input of a correct quote o
outputs 1, if and only if out was outputted by an enclave with
master public key mpk and which indeed loaded p. Again,
we assume that the adversary cannot forge a quote such that
the function vrfyQuote() outputs 1. For more information on
how this verification of the attestation is done in practice we
refer the reader to [54].

5.3 Detailed Protocol Description

As explained in Section 3, our protocol TpastKiTTEN Proceeds
in three phases. During the setup phase the contract is in-
stalled in the enclave, attested, and all parties deposit their

3Since we only need the quote of the first activation of E, we will omit
this parameter from there on.

Party P2(C,S;) Party QBCTEE(1%)

1
Initialize b | bep | pby InitEnclave
1: (cp, bep) := BC.getlLast() [P.C.be, | 1: (cp,bep) := BC.getlLast()
2: Send (P, C, bep) to Q I I 2: Let mpk be the public key of the enclave
3: Frk := TEE.instaII(pFK(Q 7), K, bcp))
1, 4 [(pk1,0), 0] == Erk.genKeys()
N 5: BC.post(txq)
L __ @b | 6: wait until txg is confirmed k times
1 7: (71, b) := BC.getAll(cp)
8 cp:=T1
9: [(tXP7U)7] = EFKQdep(b)
VerfyEnclave <—| mpk.pkr O, . 0 l— 10: Send (mpk, pk, 0, t%p, 0) to P;
1: if (mpk, pk, 0, txp, 0) was not received or 11: goto LoadDepositP
VrnyUOte(mpkvaK(Cv P7 K, bCP)’ (kava)vg) 1\
1 or Vrfy(mpk; pkr,0) #1 then
2: Terminate and output setupFail £; = LoadDepositP
3: else BC.post(tx; .
ese post(txi) o b 1: wait until block 1
""""" 1 2: (m2,b) := BC.getAll(11)
1 3: [(outc, o),] := Erk.Pdep(b)
4: if outc = txout then
5: goto Finalize
’_&L‘ 6: else
outc,G 7: Send (outc, o) to P;
RoundInput; L:rl 8: goto (ExecuteTEE;)
1: if Vrfy(pk ; (outc,j);0) # 1 then abort ’_Iil_‘
2: else Send (in; j, Sign(sk;; in; ;)) to in; j,c
(i3, Sign()o@] ExecuteTEE;
1: for each i € [n] do
WhenChallenged) 1 2 if Vrfy(pk,;ini, s;)) = 1 then
Al 3 add (in), si)) to T
1: .(é’ be) = BC.getLast() ¢ Xchal 4 else BC.post(txchai (i, j, outc))
2: if txchal(i, j, outc,or) € by then 1 .
RS e 5: if |Z| = n then goto step 14
3: o = Sign(ski; ini ;)
4: BC.post(txresp (%, J, ini, 5, 0) Dresp 6: wait until txchar is confirmed 2k + 6 times
: 1 . 7: (13, b) := BC.getAll(12)
________ 8: for each tx.sp € b do
. 9: if Vrfy(pk;;ini, s;)) = 1 then
ilsal) oo bl __] T 10: add (in), si)) to T
1: (£, be) := BC.getLast() 11: if |Z| < n then
2: if txout(J, d, outc) € by then 1 12: [tXout, -] := Erxk.errorProof(b)
3: Terminate and output outc 13: goto Finalize()
14: [(outc,0),] := Erk.round(j,7)
1 15: if outc = txout then
WhenTimeout b 16: goto Finalize()
oo 17: else
M = 1\
; i(ﬁ’ge) '7_ Bi.hgsrlLast() o 18: Send (outc,o) to P;
. = Tfinal P . .
3. BC.post(tx,) %l> 19: goto (ExecuteTEE);41
4 (Thnat, b) := BC.getAll(my) PR R
5: if 3 ¢ € [n] such that tx; ¢ b then —
6: Terminate and output setupFail 1 Finalize
7 else
i 1: BC.post(t
8: Terminate and output abort ¢ e post(txou)

Figure 2: Protocol pastkirTen- Direct black arrows indicate communication between the parties and Q, gray dashed arrows
indicate reading from the blockchain and gray double arrows posting on the blockchain.

coins. Then the round execution follows for all m rounds of
the interactive contract. When the contract execution aborts
or finishes, the protocol enters the finalize phase. We now ex-
plain all phases and the detailed protocol steps for all involved
parties and the operator Q in depth. The detailed interactions
as well as the subprocedure of the parties and the operator
are displayed in Figure 2, Figure 3 describes the FASTKIT-
TEN enclave program ppg. Overall the protocol requires six
different type of transactions.

Setup phase. In the setup phase, each party P; first runs
Initialize to generate its key pairs and gets the latest block b,
which serves as a genesis block or checkpoint of the protocol.
Then P; sends the set of parties P, the b, and the contract
C to the operator Q. Upon receiving the initial values from
all n parties, Q runs the subprocedure InitEnclave to initialize
the trusted execution of the enclave program prx (P, C, X, bep)
where K is the security parameter of the scheme. This security
parameter K also determines the values for the timeout period
t and the confirmation constant k. This ensures that all parties
and the TEE agree on these fixed values. Once ppk is installed
in the enclave, it generates key pairs for the protocol execution
and in particular the blockchain public key pk;°. Now, Q can
make its deposit transaction txgp which assigns g coins to the
enclave public key.

Q’s Deposit Transaction txq

tx.Input: Some unspent tx from Q

tx.Output: Assign g coins to pky

Let block counter T; denote the time when this transaction
has been included and confirmed in the blockchain. Q loads
all blocks from cp to T; as evidence to the enclave. If this evi-
dence is correct, the execution of ppg function Qdep outputs
a penalty transaction tx,, stating that after timeout T¢n, (after
which the protocol must be terminated) the g coins of Q’s

deposit transaction txg are payed out to the parties Py, ..., P,.
Penalty Transaction txp
tx.Input: Q’s Deposit Transaction txp
Forall i € [n]:
tx.Output;: Assign ¢; coins to P;
tx.Time: Spendable after T,
0 sends the penalty transaction to all parties Py,...,P,, who

run subprocedure VerfyEnclave. This transaction is used
whenever the protocol does not finish before the final time-
out Tfinal, Which equals (3 +2m) x (8 + k) blocks after the
protocol start (recall, that we use & to bound the time until
some transaction is guaranteed to be included and it will be

SFor simplicity we omit here, that the enclave might need multiple key
pairs for signing transactions and messages.

confirmed after k blocks).” Only if participant P; received
this penalty transaction from Q during the setup and verified
that the program pgg (P,C, K, by) is installed in the enclave,
it creates and publishes its deposit transaction.

P;’s Deposit Transaction tx;

tx.Input: Some unspent tx from P;

tx.Output: Assign ¢; coins to TEE

After time T2 < 71, Q executes LoadDepositP and again pro-
vides the block evidence to the enclave execution of ppk. If all
parties published the deposit transactions, the first-round exe-
cution starts. Otherwise the enclave proceeds to the finalize
phase and outputs a refund transaction tx,.(7,¢) that returns
the deposit back to honest users and Q, where T C P is the
set of all parties that submitted the deposit transaction until
time 7. Note, that the internal state of the contract execution
is maintained by the prk program inside the enclave. This
guarantees that the contract is not executed on outdated state.

Round computation phase. When the protocol arrives to
the round computation phase, Q sends the authenticated out-
put of the enclave to every party P; and requests input for the
next round. Each party P; runs the round algorithm. Internally
it verifies whether the input request came from the enclave by
verifying the attached signature. Then it generates and signs
its round input and sends it to Q. While P; waits for the next
round, Q verifies all received inputs and their signatures in
the ExecuteTEE subprocedure. If all the parties P; responded
with correctly signed round inputs, Q triggers the execution
of the contract in the enclave. Let us emphasize that in this
simplified description of our protocol we do not focus on the
privacy aspect and hence we omit that all round inputs to the
contract could be encrypted with the public key of the enclave.
In this case the trusted enclave execution needs to decrypt
them before it evaluates the contract on them. See Section 9.3
for more details.

Note that the operator Q may be malicious and refrain from
requesting a party P; for the input to a round computation.
Instead Q may pretend that it actually did not receive any
input from the party P;. On the other hand, one can imagine
a scenario where Q is behaving honestly but the party P; is
dishonest and does not send the correctly signed round input
to Q. Note, that the program ppg cannot distinguish between
these two cases without additional information. We will next
show how an honest Q can generate a proof to attribute the
malicious behavior to P;. First, Q has to publish a challenge
transaction txch, which includes the signed output of the
previous step. tXchal spends a very small amount i of coins
from Q and assign them to party P;.

"The definition of Tf, guarantees that even if the execution is delayed
in every round, an honest operator will not be penalized.

8Cryptocurrencies like Bitcoin allow transactions with very small denom-
inations (e.g. fractions of cents).

Challenge Transaction txcn, (i, j,outc,0r)
tx.Data: Store i, j,outc,or
tx.Input: Some unspent tx from Q
tx.Output: Assign u coins to P;

Once tXcha 1S included in the blockchain, party P; can read
the correct output information from the transaction. The party
should respond with tx,esp, Which includes its signed round
input. tx,esp spends the txcha and assigns the u coins back
to Q. The action of P; is depicted via the WhenChallenged
subprocedure.

Response Transaction txresp (i, j, 7, i)
tx.Data: Store i, j,in,G;
tx.Input: Challenge Transaction txcna) (i, j, state)
tx.Output: Assign u coins to Q

If some party does not send the response after it was chal-
lenged, Q can prove this misbehavior to the FASTKITTEN pro-
gram, by providing the blockchain evidence of the challenge-
response transcript. If the enclave program identifies a cheat-
ing party, it proceeds to the finalize phase. Otherwise, if all
the parties’ inputs were received with authentication (possibly
after challenge-response phase), Q instructs the enclave to
execute the contract on the accumulated input.

The result of the contract execution is the output outc, the
updated state state, and a coin distribution denoted by d. If
state equals L, the contract execution is finished, and the pro-
tocol proceeds to the finalize phase. Otherwise, FASTKITTEN
internally stores the state and outputs outc to Q who sends
this output to all parties and waits for next round inputs.
Finalize phase. In the finalize phase, the enclave publishes
a final output transaction tx.,: which distributes the coins
back to all honest parties. It is parameterized by a set of par-
ties to receive coins 7, a final coin distribution € and a final
state outc. The transaction tx.. (7, €, outc), spends all de-
posit transactions tx; for all i € J and Q’s deposit transaction
txp. It includes the outc in the data field and assigns g coins
back to Q and e; coins to party P;, for every i € 7. Let us note
that J = [n] implies correct protocol termination. If 7 # [n],
then some party misbehaved and the protocol failed. Either
a party did not make a deposit in the setup phase (signaled
by outc = setupFail) or some party aborted in the round com-
putation phase (signaled by outc = abort). In both cases all
other parties get their initial deposits back. Note, that if a party
P; is caught cheating by the TEE, it will lose its deposit.

QO now has to publish this transaction to get his coins before
time Tfin, and by that also distributes coins and reveals outc
to honest parties. The participants need to constantly monitor
the blockchain for transactions which challenge them or indi-
cate final output. When they see a challenge transaction they
respond as described above. If they see an output transaction

Output Transaction txo,t (7, €, outc)
tx.Data: Store outc
tx.Input: Deposit Transactions txg, {tx;}ic 7
tx.Output;: ¢ coinsto Q
Forallie J:
tx.Output;yj: e; coins to P;

they know the protocol execution ended and output the final
contract output according to subroutine WhenFinal.

6 Execution Facility

As shown in Figure 1, we leverage a TEE for smart contract ex-
ecution. For our prototype, we implemented FASTKITTEN for
the Bitcoin blockchain using Intel SGX as a TEE. We chose
Python as our scripting engine because it’s memory safe, very
well known, and widely available. To interact with the Bitcoin
blockchain data in the enclave, we implemented our Crypto
library using the open-source breadwallet-core [14], a simpli-
fied payment verification (SPV) library for Bitcoin used by the
Breadwallet mobile wallet app. To abstract from SGX’s pe-
culiarities, and thus simplify smart contract development, we
use the Graphene Library OS [17] (referred to as “Graphene’
in the rest of the paper) as a basis. Graphene enables running
arbitrary native Linux binaries in SGX enclaves while provid-
ing compatible library interfaces for networking and other OS
services. Note that the design of the FASTKITTEN protocol
does not require a trusted time source in the TEE.

bl

6.1 The Enclave Program FASTKITTEN

An execution facility in the sense of FASTKITTEN must pro-
vide a set of abstract functionalities like key generation, trans-
action generation, smart contract execution, and error han-
dling, all executed inside the enclave. This set of procedures
is described in detail in Figure 3. We implemented each of
the procedures using equivalent Python scripts. It is parame-
terized by the set of parties P, the contract C which internally
specifies the expected deposits ¢, a security parameter K and a
genesis block bp. This does not need to be the actual genesis
block of the underlying blockchain but it can be a later block
which is used as a checkpoint. All parties must verify that this
block is indeed a block of the blockchain. The security pa-
rameter K also determines the waiting time k which is needed
for the verification of the blocks.

6.2 Blockchain Verification

Blockchain communication is important for the setup and
the finalization phase in the protocol. Thanks to the integrity
properties of blockchains, a secure connection between the
enclave and the blockchain is not needed if verification of
received data can be done in the enclave. As it is not practical
to download a complete copy of the blockchain to the enclave,
we only concentrate on transactions caused by FASTKITTEN

The execution of ppk is initialized with the secret key msk,
the set of parties (where every P; € P is identified by its key
pki), a contract C, a security parameter K (which also defines
the waiting period ¢ and confirm period k) and a checkpoint
bcp. Internally it stores the state of the contract state and the
status flag s initially set to state = 0 and s = genKeys.

procedure genKeys()
1: if s # genKeys then abort
2: (skr,pkr) := Gen(1¥)
3: 5:= Qdep
4: return pkr,Sign(msk; pky)

procedure Qdep(b)
1: if 5 # Qdep or Extends(bcp,b) # 1 or Pos(b,txg) >
|b| —k then abort
2: 5:= Pdep
3: bep := last block of b
4: return tx,

> Else, output penalty transaction

procedure Pdep(b)
1: if 5 # Pdep or Extends(bcp,b) # 1 then abort
2: set J:=0
3: foric P do
4. b= Pos(b,txi)
5 if {; <dand ¢; < |b| —k then add i to J
6: if 7 = [n] then
7: s := round;
8
9

bcp :=b.last

return 0, Sign(sk7;0,bcp)
10: else
11: s := terminated

12: return txout (7, ¢, setupFail)

procedure round(;, (in},01) ..., (iny,0,))
1: if s # round; or for any i € [n] : Vrfy(pk;;in;,s;) # 1 then
abort
. (outc,state’ ,d) := C(state, in)
. if state’ # 1 then
s:=round;
state = state’
return outc, Sign(skr; (outc, j))
else
s := terminated
return txoyt ([n],d, outc)

A A e

b

procedure errorProof, (j,b)
1: if 5 7 round; or Extends(bcp,b) # 1 then abort

2: Let ¢ := Sign(skr; (outc, j))

3 J:=1n]

4: fori e P do

5: if Pos(b, txchal (i, j,outc,0)) < |b| — & —k then
6: if Pos(b, txresp (i, j,in,G) > |b| — k then
7: delete i from J

8: else if Vrfy(pk;i;in,c) # 1 then

9: delete i from [J
10: s = terminated
11: if J # [n] then
12: return txout (7, ¢, abort)

Figure 3: FASTKITTEN enclave program pgk (P,C, X, bep)

protocol invocation. Thus, it is sufficient to verify that these
transactions are part of a valid block—without downloading
entire blocks, which can be done efficiently using simplified
payment verification (SPV). However, SPV libraries can only
prove that a transaction is part of a block on the blockchain,
but they cannot prove that a transaction is not part of any
block. As required by the challenge-response case, we added
an alternative verification mode that fully downloads every
block that could potentially contain the transaction and checks
whether its present in any of those blocks.

6.3 Participant Communication

To place the deposits and receive them later, as well for send-
ing input, communication between participants (including the
Operator Q) is needed in the off-chain phase. We secure this
communication using TLS sockets provided by Python. This
transparently encrypts participants’ communication, and thus
ensures input integrity and confidentiality of parties’ messages
towards the operator.

6.4 Enclave Setup

In the FASTKITTEN prototype, we leverage Intel SGX as a
TEE. SGX is a TEE included in recent Intel CPUs which
introduces the concept of isolated hardware enclaves that can
be created and managed using new CPU instructions. SGX
enclaves are even shielded from the operating system; only
the CPU is trusted. To support smart contract execution in
these enclaves we provide a run-time environment based on
Graphene, which replaces the Intel SDK in both the enclave
and the host process. This allows Graphene to transparently
provide services from the untrusted OS (and check the in-
tegrity of the results). To protect the enclave application from
the host process, a manifest has to be provided at enclave
initialization. The manifest includes interfaces, services, and
respective integrity checksums, e.g., hashes of files the en-
clave requires. Accesses to these files will be checked against
hashes in the manifest to guarantee integrity.

As depicted by Figure 3, the Execution Facility incorporates
a set of functionalities. For key derivation (genKeys) we lever-
age the rdrand instruction to get high-entropy randomness
inside of the enclave. After checking that txp (Qdep) is in the
blockchain, the derived private key skr is used to generate
the penalty transaction tx, using our Crypto library. tx,, is
distributed to the other participants over a TLS connection.
Other participants can generate their deposit transactions zx;
(Pdep) using a regular wallet. This concludes the setup phase,
and the smart contract gets executed (round).

The Graphene run-time environment enables FASTKITTEN to
support arbitrary Linux binaries, thus, can be used to imple-
ment smart contracts. However, instead of allowing binaries,
we use a scripting engine based on a Python interpreter in our
proof-of-concept implementation. First, this makes develop-
ment easier for contract developers, as they are not always
familiar with lower-level programming languages, and second,

this makes smart contracts less prone to memory corruption
vulnerabilities. Two use cases we implemented are presented
and evaluated in Section 8.

6.5 Denial of Service Protection

The protocol as described in Section 5 assumes instantaneous
contract execution meaning that the execution of a contract
inside a TEE takes no time. For most practical contracts, this
simplifying assumption is reasonable since executing a sim-
ple contract function inside a TEE is much faster than the
network/blockchain delay. However, this is not true when con-
sidering arbitrary contracts which might potentially contain
endless loops. Moreover, the halting problem states that it is
impossible to predict if a certain algorithm will halt within
a certain number of steps. A simple protection against end-
less loops and denial-of-service attacks, is letting the enclave
monitor the execution of the smart contract and terminate ex-
ecution if the number of execution steps exceeds a predefined
limit. If the contract execution is aborted due to an execution
timeout, the enclave signs an outputs transaction txe,: which
returns deposited coins back to parties and to the operator.

7 Security

In this section we present the underlying security considera-
tions of FASTKITTEN.

7.1 Protocol Security

Due to limited space, we present our novel model in the ex-
tended version of this paper, where we also formally state
the security properties, the formal statement of the theorem
as well as the proof. Here we will only briefly explain the
security properties.

In order to guarantee security for the protocol, we require
three security properties: correctness, fairness and operator
balance security.

Intuitively, correctness states that in case all parties behave
honestly (including the operator), every party P; € P outputs
the correct result and earns the amount of coins she is sup-
posed to get according to the correct contract execution. The
fairness property guarantees that if at least one party P; € P is
honest, then (i) either the protocol correctly completes an exe-
cution of the contract or (ii) all honest parties output setupFail
and stay financially neutral or (iii) all honest parties output
abort, stay financially neutral, and at least one corrupt party
must have been financially punished. Finally, the operator bal-
ance security property says that in case the operator behaves
honestly, he cannot lose money.

Theorem 1 (Informal statement). The protocol TpastKiTTEN
as defined in Section 5 satisfies correctness, fairness and
operator balance security property.

The most challenging part of the proof is the fairness prop-
erty. We need to show how honest parties reach consensus
on the result of the execution and prove that coins are always

distributed between parties according to this result (even if
malicious parties collude with the operator). In order to prove
the operator balance security, we show that an honest operator
has always enough time to publish a valid output transac-
tion which pays him back his deposit, before the time-locked
penalty transaction can be posted on the blockchain.

Incentive-driven adversary If we consider only incentive-
driven adversaries, then statement (iii) of the fairness property
is never true. Hence, if the setup phase completes successfully,
then the result of the protocol is a correct contract execution.
This follows directly from the fact, that when the protocol
aborts the misbehaving parties lose coins. By definition of
incentive-driven parties, losing coins is against their interest.
This is why the only possible outcome of the protocol is
correct execution of the contract. Moreover, when we consider
fees for positing transaction on the blockchain, parties are
additionally incentivized to prevent the challenge-response
transactions. These additional incentives enforce fast and
protocol compliant behavior of the parties.

7.2 Architecture Security

The main goal of FASTKITTEN is to enable efficient execution
of general multi-round smart contracts. Hence, we analyze
the security of FASTKITTEN with regards to its system ar-
chitecture and implementation. Possible adversaries can be
malicious participants, a malicious operator, or a combination
of both.

We note that participating clients are only required to send
and receive transactions from the blockchain (e.g., to enter an
execution) and the ability to exchange protocol messages (e.g.,
to play rounds). Hence, client implementations can be based
on a diverse set of entirely different code bases in practice,
possibly using memory-safe languages such as Python, Go, or
Rust. Malicious participants are further limited to interacting
with other parties and the operator through the exchange of
messages as specified within our protocol, and hence, we
focus on the TEE-based execution facility in the following.
A malicious operator could deny execution, however, he is
incentivized to adhere to the protocol or lose money. Thus,
we assume that the goal of a malicious operator is to try
and exploit the execution facility at runtime. Since the opera-
tor already controls the host process, the main target would
be the enclave that executes the contract. Enclaves have a
well-defined interface with the rest of the system, and any
attack has to be launched using this interface. By provid-
ing fake data through this interface, the attacker could try to
exploit a memory-corruption vulnerability in the low-level
enclave code to launch (a) a code-reuse attack, e.g., by ma-
nipulating enclave stack memory, or (b) a data-only attack,
e.g., to leak information about the game state or manipulate
Bitcoin addresses in contracts. As mentioned in Section 4,
for (a) we assume a standard code-reuse defense such as
control-flow integrity [3, 15,50, 62,65] or fine-grained code
randomization [21,23,30,42,53,61]. The core functionality of

FASTKITTEN additionally tackles both attack vectors by im-
plementing the main enclave code in Python, which provides
memory-safety features such as implicit bounds checking.
The only parts that are implemented in unsafe languages are
the initialization code of Graphene [17] and the Simple Pay-
ment Verification (SPV) library [14]. FASTKITTEN actually
has no strong dependency on Graphene in principle, it was
mainly used to simplify and speed up prototype implementa-
tion. Finally, SPV represents a standard library used by most
blockchain clients and an adversary that is able to construct
a data-only attack against it would be able to exploit any of
those clients connected to the Bitcoin network using the same
data-only attack.

8 FASTKITTEN Contracts

In this section we take a look at applications and performance
through a number of benchmarks.

8.1 Complexity

The FASTKITTEN protocol consists of setup, round computa-
tion and finalize phases. During the setup phase, each party P;
deposits a constant amount of coins c;. The operator needs to
deposit an amount) ;c,) ¢; which equals the sum of all other
deposits from P together. To post the deposit transactions tx;s
and txg, a total of n+ 1 transactions is necessary.

During the round computation phase, in the optimistic case
FASTKITTEN can operate completely off-chain without any
blockchain interaction. Any user can force that challenge re-
sponse transactions are posted to attribute misbehavior of a
party, in any given round. If this (pessimistic) case occurs,
it can add 2 to another 2#n transactions. In the worst case, a
challenge response transaction pair needs to be posted on the
blockchain for every party P; at every round j € [m] leading to
O(nm) blockchain interactions. In finalize phase, FASTKIT-
TEN requires one additional payout transaction tx,,: to settle
money distribution among parties. Scenarios of missing de-
posit at the Setup phase or an abort by a party at the round
computation phase are dealt with by posting the refund trans-
action txo,; and the penalty transaction tx, respectively.
Setup time In the optimistic case (which we have shown is
the standard case when considering incentive-driven parties)
the overall execution of the protocol only requires n + 2 trans-
actions on the blockchain. This also indicates at what speed
the protocol can be executed in this case. If all parties agree,
the setup phase can be finished in 2 blockchain rounds and
from that point on the protocol can be played off-chain. In the
next subsection we give some indication how fast this second
part can be achieved. Running the protocol as fast as possible
is in the interest of every party since it shortens the locking
time of the deposits.

8.2 Performance Evaluation

We performed a number of performance measurements to
demonstrate the practicality of FASTKITTEN using our lab

setup, which consists of three machines: First, an SGX-
enabled machine running Ubuntu 16.04.5 LTS with an In-
tel i7-7700 CPU clocked at 3.60GHz and 8GB RAM, where
we installed FASTKITTEN’s contract execution facility to
play the role of the operator’s server. Second, a machine run-
ning Ubuntu 14.04.4 LTS on an Intel i7-6700 CPU clocked
at 3.40GHz with 32GB RAM, which provides unmodified
blockchain nodes in a local test network using Bitcoin Core
version 0.16.1. Third, a laptop machine with macOS 10.13.6
on with Intel 17-4850HQ CPU clocked at 2.30GHz and 16GB
of RAM, which takes the role of the participants in the pro-
tocol. All three machines are connected through a Gigabit
Ethernet LAN. For tests involving the real Bitcoin network
the individual machines are connected through the Internet
using our Internet connection.

Block validation In our experiments, the enclave takes ap-
proximately 5 s to validate one block from the Bitcoin main
network, thus proving that it is capable of validating real
blocks in real time.

Enclave Startup The time to setup an enclave until it is
ready is 2 s, proving that instantiating enclaves on the fly is
feasible.

End-to-end Time Assuming all parties are incentive-driven
and, thus, comply with the protocol, the total time required
by FASTKITTEN is the time of 2 blockchain interactions (see
Section 8.1), plus the computation time (a few milliseconds in
our use cases), plus the time required by the parties to choose
the next inputs.

8.3 Applications

FASTKITTEN allows to run complex smart contracts on top
of cryptocurrencies that would not natively support such con-
tracts, like Bitcoin. But in contrast to Turing-complete con-
tract execution platforms like Ethereum, a secure off-chain
execution such as FASTKITTEN puts some restrictions on the
contracts it can run:

e The number of parties interacting with the contract must
be known at the start of the protocol.

* It must be possible to estimate an upper bound on the
number of rounds and the maximum run time of any
round.

All of these restrictions make FASTKITTEN contracts differ-
ent from smart contracts running on Ethereum itself. The
restrictions above come from the fact that the contract can
be completely (and repeatedly) executed without blockchain
interactions. Other off-chain solutions (like state channels
[20,24,49]) come with similar caveats. By allowing additional
blockchain interaction we could get around those restrictions
but we would lose efficiency in the optimistic case (which is
also similar to state channel constructions).

FASTKITTEN has important features which are supported by
neither Bitcoin nor Ethereum — FASTKITTEN allows private
inputs and batched execution of user inputs. Overall, this leads
to cheaper, faster and private contract execution than what

is possible with on-chain contracts in Ethereum. Below, we
highlight these efficiency gains by presenting four concrete
use-cases in which FASTKITTEN outperforms contracts run
over Ethereum or in Ethereum state channels.

Lottery A lottery contract takes coins from every involved
party as input, and randomly selects one winner, who gets all
the coins. The key challenge for such a contract is to fairly
generate randomness to select the winner. In Ethereum or
Bitcoin the randomness is computed from user inputs through
an expensive commit-reveal scheme [48]. In FASTKITTEN,
all parties can immediately send their random inputs to the
enclave which will securely determine a winner. Hence, we
reduce the round complexity from O(logn) [48] to O(1).

Auctions Another interesting use-case for smart contracts
are auctions, where parties place bids on how much they are
willing to pay and the contract determines the final price. In
a straightforward auction, the bids can be public, but more
fair versions, like second bid auctions, require the users not to
learn the other bids before they place their own. The privacy
features of FASTKITTEN can be used to reduce the round
complexity for such auctions which would otherwise require
complex cryptographic protocols [25].

Rock-paper-scissors We implemented the popular two-
party game rock-paper-scissors to show the feasibility of
FASTKITTEN contracts. Again, the privacy features allow
one match to be executed in a single round, which would
have required at least 3 rounds in Ethereum. The pure exe-
cution time in the optimistic case, excluding delays due to
human reaction times, is 12ms for one round (averaged over
100 matches). This demonstrates that off-chain protocols, like
FASTKITTEN, are highly efficient when the same set of par-
ties wants to run complex contracts (like multiple matches of
a game).

Poker We also implemented a Texas Hold’em Poker game,
to prove that multi-party contracts which inherently require
multiple rounds can also be efficiently executed in FASTKIT-
TEN. In our implementation, each player starts with an equal
chip stack and participates in an initial betting round and in
additional rounds after the flop, river, and turn have been dealt
by the enclave. If more than two players remain in the game
after the final bets, the enclave reveals the winner and dis-
tributes the chips in the current pot to the winner. The game
continues until only one player remains. We measured 50
matches between 10 players resulting in an average time of
45ms per match (multiple betting rounds are included in each
match). The run time was measured starting from the moment
all deposits are committed to the blockchain.

Real-world Fees We generated examples of the transac-
tion types used in our protocol for a 10-player poker match.
In Table 2 we estimate the fees required to commit to the
blockchain our transactions, in addition to a typical deposit
transaction. Assuming all parties comply with the protocol,
each party (including Q) must pay between 0.05 USD and

Transaction Size (Bytes) Fees (BTC) Fees (USD)
Deposit (typical) 250 0.000007-0.000073 0.05-0.46
Penalty (tx,) 504 0.000015-0.000148 0.09-0.93
Challenge (tXchar) 293 0.000009-0.000086 0.05-0.54
Response (txresp) 266 0.000008-0.000078 0.05-0.49
Output (tXout) 1986 0.000058-0.000582 0.36-3.65

Table 2: Estimated fees for a typical deposit transaction and
the FASTKITTEN transactions, using data from CoinMarket-
Cap [2] and BlockCypher [1] retrieved on Nov. 14, 2018.

0.46 USD for the deposit. Additionally, the output transaction
txout requires between 0.36 USD and 3.65 USD in fees.
Other Well-known Contracts Certain well-known con-
tracts like ERC20 token and CryptoKitties inherently need
to be publicly available on the blockchain, since they are ac-
cessed frequently by participants which are not previously
known. In contrast, contracts resembling our examples above,
which rely on private data and where a fixed set of participants
sends a large number of transactions, are highly efficient when
moved off-chain using a system like FASTKITTEN. The na-
ture of off-chain solutions like FASTKITTEN or state channels
requires advance knowledge of the participants. Open con-
tracts like ERC20 and CryptoKitties that require continuous
synchronization with the blockchain and are meant to be pub-
licly accessible would eliminate the advantages of off-chain
solutions.

9 Discussion and Extensions

In order to explain and analyze the FASTKITTEN protocol, we
presented a simplified protocol version which only includes
the building blocks required to guarantee security. Depending
on the use case one might be interested in further properties.
Possible extensions discussed in this section include the op-
tion to pay the operator for his service, protect the operator
against TEE faults, hide the contract output from through a
layer of output encryption and allow cross-currency smart
contracts. In the following, we explain how to achieve these
features and at what cost they can be added to the simplified
protocol.

9.1 Fees for the Operator

The owner of the TEE provides a service to the users who
want to run a smart contract and, naturally, he wants to be
paid for it. In addition to the costs of buying, maintaining
and running the trusted hardware, he also needs to block the
security deposit g for the duration of the protocol. While the
security of FASTKITTEN ensures that he will never lose this
money, he still cannot use it for other purposes. The goal of
the operator-fees is to make both investments attractive for Q.
We assume that the operator will be paid & coins for each
protocol round for each party. Since the maximum number
of rounds m is fixed at the protocol start, Q will receive & x

n x m coins if the protocol succeeds (even if the contract
terminated in less than m rounds). If the operator proves to
the TEE in round x that another party did not respond to the
round challenge, he will only receive a fee for the passed x
number of rounds (namely & x x x n). This pay-per-round
model ensures that the operator does not have any incentive
to end the protocol too early. If the protocol setup does not
succeed or the operator cheats, he will not receive any coins.
The extended protocol with operator fees requires each party
to lock ¢; +m x & coins and the operator needs to level this
investment with gc; +m x & coins.

9.2 Fault Tolerance

In order to ensure that the execution of the smart contract
can proceed even in the presence of software or hardware
faults, the enclave can save a snapshot of the current state in
an encrypted format, e.g., after every round of inputs. This
encrypted state would be sent to the operator and stored on
redundant storage. If the enclave fails, the operator can instan-
tiate a new enclave which will restart the computation starting
from the encrypted snapshot. If the TEE uses SGX, snapshots
would leverage SGX’s sealing functionality [31] to protect
the data from the operator while making it available to future
enclave instances.

9.3 Privacy

As mentioned in the introduction, traditional smart contracts
cannot preserve privacy of user inputs and thus always leak
internal data to the public. In contrast to common smart con-
tract technologies, the FASTKITTEN protocol supports privacy
preserving smart contracts as proposed in Hawk [36]. This
requires private contract state to hide the internal execution
of the contract and input privacy, which means that no party
(including the operator) sees any other parties’ round input
before sending its own.

It is straightforward to see that FASTKITTEN has a secret
state, since it is stored and maintained inside the enclave.
Input privacy can easily be achieved by encrypting all inputs
with the public key of the enclave. This guarantees that only
the FASTKITTEN execution facility and the party itself knows
the inputs. If required, FASTKITTEN could also be extended
to support privacy of outputs from the contract to the parties,
by letting the enclave encrypt the individual outputs with the
parties’ public keys. But this additional layer should only be
used when the contract requires it, since in the worst case this
increases the output complexity of the challenge and output
transaction.

9.4 Multi-currency Contracts

FASTKITTEN requires from the underlying blockchain tech-
nology that transactions can contain additional data and can
be timelocked. Any blockchain like Bitcoin, Ethereum, Light-
coin and many others which allow these transaction types
can be used for the FASTKITTEN protocol. With some minor

modifications FASTKITTEN can even support contracts which
can be funded via multiple different currencies. This allows
parties that own coins in different currencies to still execute
a contract (play a game) together. The main modification to
the FASTKITTEN protocol is that the operator and the enclave
need to simultaneously handle multiple blockchains in par-
allel. In particular, for each of the considered currencies, Q
needs to deposit the sum of all coins that were deposited by
parties in that currency. This is in order to guarantee that if the
operator cheats, players get back their invested coins in the
correct currency. In addition, the operator is obliged to chal-
lenge each party via its blockchain. If the execution completes
(or the operator proves to the enclave that one of the players
cheated), the enclave signs one output transaction for each
of the currencies. While this extension adds complexity to
the enclave program and leads to more transactions and thus
transaction-fees, the overall deposit amount stays identical to
the single blockchain use case.” A complete design and proof
of correctness of a cross-ledger FASTKITTEN is left to future
work.

10 Conclusion

In this paper we have shown that efficient smart contracts
are possible using only standard transactions by combining
blockchain technology with trusted hardware. We present
FASTKITTEN, our Bitcoin-based smart contract execution
framework that can be executed off-chain. Since FASTKIT-
TEN is the first work that supports efficient multi-round con-
tracts handling coins, for the first time, this enables real-time
application scenarios, like interactive online gaming, with mil-
lisecond round latencies between participants. We formally
prove and thoroughly analyze the security of our general
framework, also extensively evaluating its performance in a
number of use cases and benchmarks.

Additionally, we discuss multiple extensions to our protocol,
such as adding output privacy or operator fees, which enrich
the set of features provided by our system.

Acknowledgments

We are grateful to our anonymous reviewers and our shepherd
Mihai Christodorescu for their constructive feedback.

This work has been supported by the German Research Foun-
dation (DFG) as part of projects HWSec, P3 and S7 within the
CRC 1119 CROSSING and the Emmy Noether Program FA
1320/1-1, by the German Federal Ministry of Education and
Research (BMBF) and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP,
by BMBF within the iBlockchain project, by the Intel Collab-
orative Research Institute for Collaborative Autonomous &
Resilient Systems (ICRI-CARS).

9This solution assumes that any party can receive coins in any of the
considered currencies.

Availability

An extended version of this paper, which includes the byte-
code of our sample Bitcoin transactions, will be publicly avail-
able at the Cryptology ePrint Archive at https://eprint.
iacr.org.

References

[1]
[2]
[3]

[4

=

[5]

[6]

[7

—

[8

[10

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

BlockCypher, Nov 2018. https://live.blockcypher.com/btc/.

CoinMarketCap, Nov 14 2018. https://coinmarketcap.com.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Transac-
tions on Information System Security, 13, 2009.

1. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative
Technology for CPU Based Attestation and Sealing. In Workshop on
Hardware and Architectural Support for Security and Privacy (HASP).
ACM, 2013.

M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.
Secure multiparty computations on bitcoin. In 2074 IEEE Symposium
on Security and Privacy, 2014.

ARM Limited. Security technology: building a secure system
using TrustZone technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2008.

C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a
transaction ledger: A composable treatment. In CRYPTO, 2017.

J. Barbie. Why smart contracts are not feasible on plasma, Jul 2018.
https://ethresear.ch/t/why-smart-contracts-are-not-
feasible-on-plasma/2598.

G. Belisle. A glimpse into the future of blockchain, 2018. Avail-
able at https://the-blockchain-journal.com/2018/03/29/a-
glimpse-into-the-future-of-blockchain/.

I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels. Tesseract: Real-time cryptocurrency exchange using trusted
hardware. IACR Cryptology ePrint Archive, 2017.

A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi. The
guard’s dilemma: Efficient code-reuse attacks against intel sgx. In
Proceedings of the 27th USENIX Conference on Security Symposium.
USENIX Association, 2018.

F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
U. Miiller, and A. Sadeghi. DR.SGX: hardening SGX enclaves against
cache attacks with data location randomization. CoRR, abs/1709.09917,
2017.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi. Software grand exposure: SGX cache attacks are practical.
In USENIX Workshop on Offensive Technologies, 2017.

Breadwallet. Breadwallet-core - spv bitcoin c library, 2018.

N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and
M. Franz. Control-flow integrity: Precision, security, and performance.
CoRR, 2016.

V. Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 2014.

C. che Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library
OS for unmodified applications on SGX. In 2017 USENIX Annual
Technical Conference, 2017.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged
side-channel attacks in shielded execution with Déja Vu. In ACM
Symposium on Information, Computer and Communications Security,
2017.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution. arXiv
preprint arXiv:1804.05141, 2018.

J. Coleman, L. Horne, and L. Xuanji. Counterfactual: General-
ized state channels, Jun 2018. https://14.ventures/papers/
statechannels. pdf.

M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi. Selfrando: Securing the tor
browser against de-anonymization exploits. Proceedings on Privacy
Enhancing Technologies, 2016.

V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation. In USENIX Security
Symposium, 2016.

L. Davi, A. Dmitrienko, S. Niirnberger, and A. Sadeghi. Gadge me if
you can: secure and efficient ad-hoc instruction-level randomization
for x86 and ARM. In 8th ACM Symposium on Information, Computer
and Communications Security, ASIACCS, 2013.

S. Dziembowski, S. Faust, and K. Hostdkovd. General state chan-
nel networks. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, 2018.

H. Galal and A. Youssef. Verifiable sealed-bid auction on the ethereum
blockchain. In International Conference on Financial Cryptography
and Data Security, Trusted Smart Contracts Workshop. Springer, 2018.

J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In CRYPTO. Springer, 2017.

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa.
Strong and Efficient Cache Side-Channel Protection using Hardware
Transactional Memory. In 26th USENIX Security Symposium, 2017.

M. Hachman. Intel’s plan to fix meltdown in silicon raises
more questions than answers. https://www. pcworld. com/
article/3251171/components-processors/intels-plan-to-
fix-meltdown-in-silicon-raises-more-questions- than-
answers.html, 2018.

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
Using Innovative Instructions to Create Trustworthy Software Solutions.
In Workshop on Hardware and Architectural Support for Security and
Privacy (HASP). ACM, 2013.

A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: trans-
parent code randomization for just-in-time compilers. In ACM SIGSAC
Conference on Computer and Communications Security, CCS, 2013.

Intel. Intel Software Guard Extensions developer guide, 2016.
https://download.@1.org/intel-sgx/linux-1.7/docs/Intel_
SGX_Developer_Guide.pdf.

Intel. Resources and Response to Side Channel L1 Terminal Fault.
https://www.intel.com/content/www/us/en/architecture-
and-technology/11tf.html, 2018.

A. Juels, A. E. Kosba, and E. Shi. The ring of gyges: Investigating
the future of criminal smart contracts. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, 2016.

H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security
Symposium, 2018.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016.

A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In IEEE Symposium on Security and Privacy, 2016.

https://eprint.iacr.org
https://eprint.iacr.org
https://live.blockcypher.com/btc/
https://coinmarketcap.com
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://ethresear.ch/t/why-smart-contracts-are-not-feasible-on-plasma/2598
https://ethresear.ch/t/why-smart-contracts-are-not-feasible-on-plasma/2598
https://the-blockchain-journal.com/2018/03/29/a-glimpse-into-the-future-of-blockchain/
https://the-blockchain-journal.com/2018/03/29/a-glimpse-into-the-future-of-blockchain/
https://l4.ventures/papers/statechannels.pdf
https://l4.ventures/papers/statechannels.pdf
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct
computations. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014.

R. Kumaresan and I. Bentov. Amortizing secure computation with
penalties. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2016.

R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play
decentralized poker. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2015.

R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan. Improvements
to secure computation with penalties. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, 2016.

L. Lamport, R. Shostak, and M. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1982.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated
software diversity. In 35th IEEE Symposium on Security and Privacy,
S&P, 2014.

J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G. Sirer.
Teechain: Reducing storage costs on the blockchain with offline pay-
ment channels. In /1th ACM International Systems and Storage Con-
ference, 2018.

R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Miillmann,
O. Hohlfeld, and K. Wehrle. A quantitative analysis of the impact
of arbitrary blockchain content on bitcoin. In Proceedings of the 22nd
International Conference on Financial Cryptography and Data Security
(FC). Springer, 2018.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In Workshop on Hardware and
Architectural Support for Security and Privacy (HASP). ACM, 2013.

Microsoft. The coco framework, 2018. GIT repository available at
https://github.com/Azure/coco-framework.

I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013.

A. Miller and 1. Bentov. Zero-collateral lotteries in bitcoin and
ethereum. In Security and Privacy Workshops (EuroS&PW), 2017
IEEE European Symposium on. IEEE, 2017.

A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment
channels that go faster than lightning. CoRR, abs/1702.05812, 2017.

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque control-flow integrity. In NDSS, 2015.

>

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2008.

J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. San-
cus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In 22nd USENIX Security symposium,
USENIX Sec, 2013.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization. In 33rd IEEE Symposium on Security and Privacy,
S&P, 2012.

R. Pass, E. Shi, and F. Tramer. Formal abstractions for attested execu-
tion secure processors. JACR Cryptology ePrint Archive, 2016.

J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts,
Aug 2017. Plasma, https://plasma.io/plasma.pdf/.

J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. SGX-
Shield: Enabling address space layout randomization for SGX pro-
grams. In Annual Network and Distributed System Security Symposium,
2017.

[57] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In Annual Net-
work and Distributed System Security Symposium, 2017,

[58] J. Teutsch and C. ReitwieBner. A scalable verification solution for
blockchains, Nov 2017. https://people.cs.uchicago.edu/
~teutsch/papers/truebit.pdf.

[59] F. Tramer, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi. Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge.
In 2017 IEEE European Symposium on Security and Privacy, EuroS&P,
2017.

[60] J. Van Bulck, F. Piessens, and R. Strackx. Foreshadow: Extracting the
keys to the intel sgx kingdom with transient out-of-order execution. In
27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[61] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
self-randomizing instruction addresses of legacy x86 binary code. In
ACM SIGSAC Conference on Computer and Communications Security,
CCS, 2012.

[62] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and random-
ization for binary executables. In 34th IEEE Symposium on Security
and Privacy, S&P, 2013.

[63] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security.
ACM, 2016.

[64] F.Zhang, P. Daian, I. Bentov, and A. Juels. Paralysis proofs: Safe access-
structure updates for cryptocurrencies and more. TACR Cryptology
ePrint Archive, 2018.

[65] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
22nd USENIX Security Symposium, USENIX Sec, 2013.

A Further Related Work

There is a large body of work trying to improve the scalabil-
ity of blockchains by moving a major part of smart contract
executions off the blockchain (for example, via second layer
solutions [24,34,49, 55] or outsourcing of computation [58]).
As discussed in the main body of this paper, all of these so-
lutions run on top of blockchains with sufficiently complex
scripting language, e.g., on Ethereum. However, they cannot
be integrated into popular legacy cryptocurrencies such as
Bitcoin, which is their main difference compared to our work.
Recall that one of the main goals of FASTKITTEN is make
minimal assumption on the underlying blockchain technology
and in particular, to run over the Bitcoin blockchain.
Another motivation for off-chain contract execution might be
the goal of protecting privacy. Hawk [36] and the “Ring of
Gyges” [33] are examples of works that do keep the state,
all inputs and outputs private. It is also true for the scaling
solutions mentioned above; These techniques work only over
cryptocurrencies with support for complex smart contracts,
e.g. over Ethereum.

Below we discuss the differences between these solutions and
FASTKITTEN when run on top of Ethereum.

A.1 Second-layer Scaling Solutions

State Channels State channels [20,24,49] are a prominent
second layer scaling solution. They allow a set of parties

https://github.com/Azure/coco-framework
https://github.com/Azure/coco-framework
https://plasma.io/plasma.pdf/
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

to execute complex smart contracts off-chain. As long as
all parties are honest and agree on the state transitions, the
blockchain is contacted only during the channel creation,
when parties lock funds in the channel, and during channel
closure, when the locked funds are distributed back to the
parties according to the result of contract execution. However,
once parties run into disagreement off-chain, they have to
resolve their dispute on-chain and perform the state transition
via the blockchain.

While in the optimistic case when all parties are honest, state
channels are very efficient, a potentially heavy computation
might need to be done on-chain in case of disagreement. This
is in contrast to the FASTKITTEN protocol which does not
require any computation to be performed on the blockchain
even in case of disputes.

Plasma Another promising second-layer scaling solution is
Plasma, first introduced by Poon and Buterin [55]. The main
idea of Plasma is to build new chains (Plasma chains) on
top of the Ethereum blockchain. Each Plasma chain has its
own operator that is responsible for validating transactions
and regularly posting a short commitment about the current
state of the Plasma chain to a smart contract on the Ethereum
blockchain. The regular commitments guarantee to the partic-
ipants of the Plasma chain that in case the operator cheats, his
misbehavior can be proven to the Ethereum smart contract
and parties can exit the Plasma chain with all their funds.
While the original goal of Plasma [55] was to support arbi-
trary complex smart contracts, to the best of our knowledge,
there is no concrete protocol that would achieve this goal
(the existing Plasma designs support only payment transac-
tions). Moreover, the plasma research community currently
conjectures that Plasma with general smart contracts might
be impossible to construct [8].

A.2 Incentive-driven Verification

Arbitrum The disadvantage of state channels, i.e., the po-
tentially heavy on-chain execution in case of dispute, is being
addressed by the work Arbitrum [34]. Every smart contract,
which Arbitrum models as a virtual machine (VM), to be
executed off-chain has a set of “manager” parties responsi-
ble for correct VM execution. As long as managers reach
consensus on the VM state transitions, execution progresses
off-chain similarly as in state channels. In case of dispute,
managers do not perform the VM state transition on-chain as
in state channel. Instead, one manager can propose the next
VM state which other managers can challenge. If the newly
posted state is challenged, the proposer and the challenger
run an interactive protocol via the blockchain, so-called “bi-
section” protocol, in which one disputable computation step
is eventually identified and whose correct execution is ver-
ified on-chain. Hence, instead of executing the entire state
transition on-chain (which might potentially require a lot of
time/space), only one computation step of the state transition

has to be performed on-chain in addition to the bisection pro-
tocol (which might require O(log(s)) blockchain transactions,
where s is the number of computations steps in the state tran-
sition). The Arbitrum protocol works under the assumption
that at least one manager of the VM is honest and challenges
false states if they are posted by other managers. Since the
blockchain interaction during the bisection protocol is rather
expensive, Arbitrum uses monetary incentives to motivate
managers to behave honestly and follow the protocol.

TrueBit Another solution that supports off-chain execution
of smart contracts using incentive verification is TrueBit [58].
For each off-chain execution, the TrueBit system selects (us-
ing a lottery) one party, called the “Solver”, that is responsible
for performing the state transition and inform all other parties
about the new contract state. The TrueBit system incentives
parties to become so called “verifiers” and check the correct-
ness of the computation performed by the Solver. In case they
detect misbehavior, they are supposed to challenge the Solver
on the blockchain and run the “verification game” which
works similarly as the “bisection protocol” of Arbitrum. Sim-
ilar to Arbitrum, TrueBit relies on the assumption that there
is at least one honest verifier which correctly performs all
the validations and challenges malicious Solvers. In contrast
to Arbitrum, all inputs and the contract state are inherently
public even in the optimistic case when everyone is honest.
Apart from the different trust model and lower requirement
on the underlying blockchain technology, FASTKITTEN dif-
fers from Arbitrum and TrueBit by providing stronger privacy
guarantees, meaning that in both the optimistic and the pes-
simistic case, inputs of honest parties as well as the state of
the smart contract remains private.

A.3 TEE:s for privacy

None of the solutions discussed above achieves privacy pre-
serving off-chain contract execution. This is tackled by the
work Hawk [36] which keeps the state, all inputs and all out-
puts private. Hawk contracts [35] achieve these properties
using Ethereum smart contracts that judge computations done
by a third party (a manager), who executes the contract on
private inputs and is trusted not to reveal any secrets. First all
parties submit their encrypted inputs to the contract, then the
manager computes the result and proves its correctness with a
zero knowledge proof. If the proof is correct, the contract pays
out money accordingly. While the authors of Hawk discuss
the possibility to use SGX for instantiating the manager and
reducing the trust assumptions in this party, it still leverages
the blockchain for every user input, and it only supports single
round protocols which is their main difference to FASTKIT-
TEN. A possible extension to multi-round protocols would be
difficult to achieve without letting the smart contract verify
the correctness of every round individually, and thus create a
large blockchain communication overhead.

	Introduction
	Related Work
	Design
	Design Challenges of FastKitten
	Architecture and Protocol

	Adversary Model
	The FastKitten Protocol
	Modeling the Blockchain
	Modeling the TEE
	Detailed Protocol Description

	Execution Facility
	The Enclave Program FastKitten
	Blockchain Verification
	Participant Communication
	Enclave Setup
	Denial of Service Protection

	Security
	Protocol Security
	Architecture Security

	FastKitten Contracts
	Complexity
	Performance Evaluation
	Applications

	Discussion and Extensions
	Fees for the Operator
	Fault Tolerance
	Privacy
	Multi-currency Contracts

	Conclusion
	Further Related Work
	Second-layer Scaling Solutions
	Incentive-driven Verification
	TEEs for privacy

