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Abstract
As the Tor network has grown in popularity and importance
as a tool for privacy-preserving online communication, it has
increasingly become a target for disruption, censorship, and
attack. A large body of existing work examines Tor’s sus-
ceptibility to attacks that attempt to block Tor users’ access
to information (e.g., via traffic filtering), identify Tor users’
communication content (e.g., via traffic fingerprinting), and
de-anonymize Tor users (e.g., via traffic correlation). This
paper focuses on the relatively understudied threat of denial-
of-service (DoS) attacks against Tor, and specifically, DoS
attacks that intelligently utilize bandwidth as a means to sig-
nificantly degrade Tor network performance and reliability.

We demonstrate the feasibility of several bandwidth DoS
attacks through live-network experimentation and high-
fidelity simulation while quantifying the cost of each attack
and its effect on Tor performance. First, we explore an at-
tack against Tor’s most commonly used default bridges (for
censorship circumvention) and estimate that flooding those
that are operational would cost $17K/mo. and could reduce
client throughput by 44% while more than doubling bridge
maintenance costs. Second, we explore attacks against the
TorFlow bandwidth measurement system and estimate that
a constant attack against all TorFlow scanners would cost
$2.8K/mo. and reduce the median client download rate by
80%. Third, we explore how an adversary could use Tor
to congest itself and estimate that such a congestion attack
against all Tor relays would cost $1.6K/mo. and increase the
median client download time by 47%. Finally, we analyze
the effects of Sybil DoS and deanonymization attacks that
have costs comparable to those of our attacks.

1 Introduction
Tor [28] is the most popular anonymous communication sys-
tem ever deployed, with an estimated eight million daily ac-
tive users [59]. These users depend on Tor to anonymize
their connections to Internet services and distributed peers,
and also to circumvent censorship by local authorities that
control network infrastructure. Tor is used by ordinary citi-

zens and businesses to protect their privacy online, by jour-
nalists and activists to more freely access and contribute dig-
ital content [7], and by criminals to perform illegal activities
while avoiding identification [67].

As a result of its popularity, open-source codebase [9], and
transparent development processes [10], Tor has gained sig-
nificant attention from researchers who explore attacks that
aim to deanonymize its users by gaining an advantageous
view of network traffic [13]. Research directions for Tor at-
tacks include website fingerprinting [18, 41, 42, 56, 69, 70,
77, 84, 85], routing [15, 16, 79, 81, 83], end-to-end cor-
relation [54, 57, 58, 65, 66], congestion [31, 34, 51, 64],
and side channels [43, 63]. Many of these attacks repre-
sent realistic threats for Tor users: some attacks are reported
to have been launched by state sponsors against Tor in the
wild [21, 22, 73, 76]. However, relatively understudied but
arguably more viable is the threat of denial-of-service (DoS).
The Threat of Denial-of-Service: Bandwidth-based DoS
against Tor is a relatively understudied but relevant threat.
Previous work has explored the exhaustion of Tor relays’
memory [51], CPU [14, 71], and socket descriptor re-
sources [35], as well as selective service refusal [16]. While
bandwidth-based DoS attacks against a single target have
been considered [31], we are the first to study the feasibil-
ity, cost, and effects of launching such attacks against the
entire Tor network of relays and other particularly vulnera-
ble Tor components. Given Tor’s limited resources and slow
performance relative to the open web, further reducing per-
formance through bandwidth DoS attacks also has the po-
tential to reduce security by driving away users who may be
unwilling to endure even slower load times [16, 25].

We argue that DoS attacks in general, and bandwidth DoS
attacks in particular, are less complex and therefore more vi-
able than many previous deanonymization attacks. Our DoS
attacks either can be outsourced to third party “stresser” ser-
vices that will flood a target with packets for an amortized
cost of $0.74/hr. per Gbit/s of attack traffic (see §3.1), or
utilize lightweight Tor clients running on dedicated servers
at an amortized cost of $0.70/hr. per Gbit/s of attack traf-



fic (see §3.2). Nation-states are known to sponsor DoS at-
tacks [60], and the ease of deployment and low cost of our
attacks suggest that state actors could reasonably run them to
disrupt Tor over both short and long timescales. We specu-
late that nation-states may, e.g., choose DoS as an alternative
to traffic filtering as Tor continues to improve its ability to
circumvent blocking and censorship [32]. Non-state actors
could also reasonably deploy the attacks since they require
only a few servers or can be completely outsourced.

Tor DoS attacks are not a hypothetical threat: existing evi-
dence indicates that DoS attacks against the network have al-
ready been successfully deployed [23, 38, 40], requiring Tor
to develop a subsystem to mitigate its effects [24, 39] (the
subsystem does not mitigate our attacks). Although it may
be challenging to detect and counter bandwidth-based DoS
attacks, especially those that are designed to mimic realistic
and plausible usage patterns, we believe that it is imperative
to better understand such a threat as we develop defenses.
Our Contributions: This paper focuses on the costs and ef-
fects of DoS attacks that intelligently utilize bandwidth as a
means to significantly degrade Tor performance and reliabil-
ity. Following a discussion of the current pricing models for
“stresser” (i.e., DoS-for-hire) services (§3.1) and dedicated
servers (§3.2), we first explore the threat of a naı̈ve flood-
ing attack in which an adversary uses multiple “stresser” ac-
counts to consume Tor relays’ bandwidth by flooding them
with packets (§4). We estimate that the cost to carry out such
an attack against the entire Tor network is $7.2M/mo.

We then demonstrate the feasibility and effects of 3 ma-
jor bandwidth DoS attacks against Tor in order of decreasing
cost. First, we explore in §5 an attack that attempts to disrupt
Tor’s censorship circumvention system by flooding Tor’s de-
fault bridges with packets, thereby causing bridge users to
migrate to non-default bridges or lose access to Tor. We esti-
mate that flooding Tor’s 12 operational default bridges would
cost $17K/mo. and would reduce bridge user throughput by
44% (if 25% of the users migrated to other bridges) while
more than doubling meek bridge maintenance costs.

Second, we explore in §6 an attack that attempts to dis-
rupt Tor’s load balancing system by flooding TorFlow band-
width scanners with packets, thereby causing inaccurate and
inconsistent relay capacity measurement results. Through
high-fidelity network simulation using Shadow [47], we find
that such an attack reduces the median client download rate
by 80%. We estimate that a constant flooding attack against
Tor’s 5 TorFlow scanners would cost $2.8K/mo.

Third, we explore in §7 an attack that uses the Tor pro-
tocol to consume relay bandwidth resources. In the attack,
a Tor client builds thousands of 8-hop circuits and congests
relays by downloading large files through the network. Us-
ing Shadow, we find that such an attack using 20k circuits
increases the median client download time by 120% at an
estimated cost of $6.3K/mo. and achieves a bandwidth am-
plification factor of 6.7. We also find that a stop reading strat-

egy [51] reduces the estimated cost of a 20k circuit attack to
$1.6K/mo., increases the median client download time by
47%, and achieves a bandwidth amplification factor of 26.

Finally, we analyze in §8 the effects of relay Sybil attacks
that have costs comparable to those of our attacks.
Ethics and Responsible Disclosure: We emphasize that we
do not carry out attacks against the live Tor network. We con-
duct some measurement experiments on Tor to better under-
stand its composition and performance characteristics. How-
ever, we neither observe nor store any information about any
Tor users (other than ourselves). We evaluate our attacks us-
ing high-fidelity Shadow simulations that are constructed to
resemble the live Tor network. Additionally, we discussed
our project with Tor developers, shared some of our results
before submission of this paper, and sent a pre-print of our
paper prior to its acceptance. We anticipate providing sup-
port as they develop any mitigations to our attacks.

2 Related Work
In this paper we focus specifically on attacks that target the
Tor network, noting that attacks that target Internet protocols
(e.g., TCP) or resources (e.g., web servers) have been rigor-
ously studied in previous work.
Anonymity Attacks against Tor: There is a large body
of work that examines attacks against Tor. The majority
of these attacks aim to compromise anonymity—that is, to
de-anonymize either targeted users or Tor users en masse.
We highlight that research directions for anonymity attacks
include website fingerprinting [18, 41, 42, 56, 69, 70, 77,
84, 85], routing [15, 16, 79, 81, 83], end-to-end correla-
tion [54, 57, 58, 65, 66], congestion [31, 34, 51, 64], and side
channels [43, 63]. (The reader may refer to previous work
for a more complete taxonomy [13].) Although anonymity
attacks are certainly problematic for Tor, the primary focus
of this paper is on bandwidth-based DoS attacks that sig-
nificantly degrade Tor network performance and reliability.
Note that we compare our attacks to Sybil attacks that can be
used for deanonymizing Tor users in §8.
Denial-of-Service Attacks against Tor: We are not the first
to explore the network’s susceptibility to DoS. In their semi-
nal work, Evans et al. [31] exploit the lack of an upper bound
on the length of Tor circuits in older Tor versions. They
show that an attacker can perform a bandwidth amplifica-
tion DoS attack by creating cyclic, arbitrary length circuits
through high bandwidth Tor relays. The congestion created
by the DoS attack affects the latency of legitimate circuits
which can be used to determine the guard relay on a circuit.
To mitigate this attack, Tor has since imposed a cap of eight
relays in circuit creation [27, §5.6].

Similarly, Pappas et al. [71] propose an asymmetric, am-
plification packet-spinning DoS attack against legitimate Tor
relays. The goal of the attack is to increase the chances of le-
gitimate clients choosing the attacker’s relays by keeping the
legitimate relays busy with expensive cryptographic opera-



tions. The attacker uses a malicious relay to create a circular
Tor circuit that starts and ends at the malicious relay. Their
focus is on de-anonymization and they do not consider DoS
attacks against the entire Tor network.

Borisov et al. [16] show that an attacker can de-anonymize
a large fraction of Tor circuits by performing selective DoS
on honest Tor relays to increase the probability that the at-
tacker’s relays will be chosen as guard and exit relays (and
thus capable of performing traffic correlation [80]). Tor has
since deployed a route manipulation (path bias) detection
system to mitigate the effects of such an attack [26, §7].

Barbera et al. [14] propose an asymmetric DoS attack
against Tor relays. The attack floods a targeted relay with
CREATE cells that require public key operations to decrypt
the cell. They show that by strategically targeting important
relays, the attacker can slow down the entire Tor network
due to overload on the remaining relays that are not under
DoS attack. This is similar in aim to our work. However, our
focus is less on protocol vulnerabilities and more on enumer-
ating hotspots in Tor that, when attacked, could disrupt the
network at large. We explore multiple avenues for causing
network-wide performance and disruption.

Geddes et al. [35] demonstrate socket exhaustion attacks
against various proposed replacements [12, 37] of Tor’s
transport protocol. They show that an attacker can disable ar-
bitrary relays by exhausting their socket file descriptors and
prevent legitimate connections from succeeding. However,
the attack does not apply to the deployed Tor network, which
does not employ the vulnerable transport protocols.

Jansen et al. [51] propose the Sniper Attack, a memory-
based DoS attack that exploits Tor’s end-to-end reliable data
transport to consume memory by filling up the application
level packet queues. Using simulation on Shadow [47], they
show that an attacker can sequentially disable 20 exit relays
in 29 minutes and make the Tor network unusable, while re-
maining undetected. The Tor Project has since rolled out
defenses against the sniper attack [45]. We use some of the
techniques from the sniper attack in our congestion attacks.

3 Threat Model and Attacker Costs
We consider an attacker who is determined to deny service
to the Tor network. We make few assumptions about the
capabilities or makeup of our adversary. In particular, our
adversary need not control large regions of the Internet or be
able to observe a large fraction of Tor traffic.

Instead, we model an adversary who has some bandwidth
and computing capacity at its disposal. Certainly, a nation-
state has such resources, but we imagine that such an adver-
sary would likely prefer to avoid attribution and not conduct
attacks from its own networks. More generally, our adver-
sary can acquire (or rent) a distributed network of machines
capable of sending traffic into the Tor network. We high-
light two potential avenues for obtaining the resources neces-
sary to carry out network-wide attacks against Tor: dedicated

DoS “stresser” services (§3.1) and the use of more traditional
(and legal) dedicated hosting services (§3.2).

We do not require that the adversary be able to position
itself in arbitrary locations on the Internet, although we do
assume that some portion of its traffic will reach its intended
targets. For some attacks, we additionally require the ad-
versary to operate a Tor relay, but as we describe below, it
is advantageous for such attacks to run a relay that provides
negligible bandwidth to the Tor network; that is, the relay
could be cheaply instantiated on a shared cloud provider or
other low-cost hosting service.
Attacker Goals: The goal of the attacker is to disrupt either
(i) the Tor network in its entirety or (ii) a portion of it that af-
fects an entire subpopulation of Tor users. The latter includes
attacks against Tor’s bridge infrastructure, the set of unpub-
lished relays that permit the participation of users who are
otherwise prevented from accessing the Tor network directly
(e.g., due to censorship).

In general, we consider an attack successful if it entirely
prevents users from accessing Tor or if it degrades perfor-
mance to such an extent that the anonymity service becomes
too burdensome to use. The latter is of course subjective,
but informally, we set a high threshold for what we con-
sider unusable performance. We also note that even in the
current (non-attacked) Tor network, its slow performance is
already perceived as an impediment to its more widespread
use [13]. Degrading performance much beyond Tor’s current
levels may cause many users to abandon the network.
Attacker Costs: One of our goals is to estimate the mon-
etary cost of performing various bandwidth DoS attacks
against different elements of Tor infrastructure. To esti-
mate such costs to the attacker, we build a cost model from
publicly available information on pricing of various online
stresser services and dedicated hosting services.

3.1 Stresser Services

There is an active online market for stresser (also called DoS-
for-hire or booter) services. These provide the capability to
launch DoS attacks against any target, using a web-based
interface, at a relatively low monthly cost. Most commonly,
the attacks use a distributed botnet of compromised hosts to
target a single victim, flooding it with requests.

We summarize the stresser service landscape in Table 1,
although this table does not likely capture all available
stresser sites. (Since such services are illegal in most ju-
risdictions, they are not widely advertised and there is sig-
nificant churn in the industry, making it difficult to obtain
a comprehensive list.) We emphasize that Table 1 reports
advertised attack strengths. Although others have empir-
ically evaluated the achieved attack strengths of these ser-
vices [74, 75], we elected not to repeat their experiments due
to ethical concerns (specifically, the strong possibility of in-
curring collateral damage). Previous work has found them



Table 1: The estimated mean hourly cost to flood a single target with 1 Gbit/s
using various online stresser services. The amortized cost is the hourly price per
Gbit/s of traffic per target.

Stresser
Service

Time
(hrs)

Num
Attks

Strength
(Gbit/s)

$/mo.
(USD)

$/target/hr.
(USD)

Amort.
(USD)

bootyou.net 3 3 45-50 $ 40 $ 4.44 $ 0.10
booter.xyz 1.67 1 150-200 $ 50 $ 30 $ 0.20
str3ssed.me 1 1 250 $ 55 $ 55 $ 0.22
cloudstress.com 1 1 750 $ 55 $ 55 $ 0.07
ragebooter.net 2 3 10+ $ 60 $ 10 $ 1.00
critical-boot.com 1 1 8-12 $ 40 $ 40 $ 5.00
fiberstresser.com 1 1 750 $ 55 $ 55 $ 0.07
netstress.org 0.67 1 320 $ 45 $ 68.25 $ 0.21
quantumbooter.net 1 2 50 $ 60 $ 30 $ 0.60
vbooter.org 1 3 48-64 $ 40 $ 13.33 $ 0.28
iddos.net 2 1 50 $ 50 $ 25 $ 0.50
downthem.org 0.22 2 200 $ 60 $ 135 $ 0.68

Mean amortized cost ($/target/hour/Gbit/s): $ 0.74

Table 2: The estimated mean hourly cost to flood a sin-
gle target with 1 Gbit/s using various dedicated server
providers. The amortized cost is the hourly price per
Gbit/s of traffic. Prices include 4 CPU cores with mini-
mum 16 GB RAM and 500 GB storage.

Service Speed
(Gbit/s)

Quota
(TB)

$/mo.
(USD)

Amort.
(USD)

Liquid Web 1.00 5 $ 249.00 $ 0.35
InMotion 1.00 10 $ 166.59 $ 0.23
DreamHost Unkn. Unmet. $ 249.00 –
GoDaddy 1.00 Unmet. $ 239.99 $ 0.33
BlueHost 0.10 15 $ 249.99 $ 3.47
1&1 1.00 Unmet. $ 130.00 $ 0.18
FatCow Unkn. 15 $ 239.99 –
OVH 0.50 Unmet. $ 119.99 $ 0.33
SiteGround 1.00 10 $ 269.00 $ 0.37
YesUpHost 1.00 100 $ 249.00 $ 0.35

Mean amortized cost ($/hour/Gbit/s): $ 0.70

capable of launching bandwidth DoS attacks with measured
attack rates in hundreds of Gigabits per second [74, 75] .

In our analysis in subsequent sections, we consider the av-
erage amortized cost of the attacker to flood a single target
(i.e., IP address) with 1 Gbit/s of attack traffic for an hour;
we found this to be $0.74. Although at first blush, this may
appear unrealistically inexpensive, we note that this is more
costly than obtaining the equivalent bandwidth from legiti-
mate dedicated hosting providers; see §3.2. In §4, we eval-
uate the cost of using stresser services to overwhelm the ca-
pacity of the Tor network en masse, and consider more effi-
cient and targeted stresser attacks in §5 and §6.

3.2 Dedicated Server Costs
Online dedicated hosting services provide customers with re-
motely located and managed physical machines. Users have
full access to the provisioned resources such as CPU, RAM,
and disk storage, at a fixed cost. Typically, providers impose
some limits on the amount of monthly traffic, and charge
different rates for the provisioned network bandwidth. Ta-
ble 2 reports the pricing schemes for several popular dedi-
cated hosting services. The average amortized hourly cost
for transferring data at 1 Gbit/s is $0.70.

Unlike stresser services, dedicated hosting services do not
cater to network attackers. They are much more likely to po-
lice their traffic and terminate service for customers who are
obviously attempting to perform flooding attacks. We thus
do not consider their use for naı̈ve flooding of Tor compo-
nents (e.g., to overwhelm their capacity).

Dedicated servers are well-suited for an attacker who is
looking to disrupt the Tor network by leveraging some as-
pects of Tor’s design or protocols. The attacker can use the
resources provided by dedicated hosting services to launch
such application layer bandwidth DoS attacks on Tor. We
explore how dedicated hosting services could serve as a plat-
form for causing severe congestion of Tor relays in §7.

4 Naı̈ve Flooding Attacks against Tor Relays
A straightforward method of attacking Tor is to flood relays
with spurious traffic. In this section, we analyze the cost of
using stresser services to disrupt the entire Tor network.
Saturating Links: To simplify our analysis, we assume a
model of the Internet in which every node i has a finite band-
width capacity Ci, measured in bits per second (bit/s). We
do not consider asymmetric bandwidth since Tor relays re-
ceive and send traffic in roughly equal proportions; if node
i has asymmetric connectivity, we can consider Ci to be the
minimum of its upstream and downstream capacities.

We assume that an adversary can effectively deny service
to a targeted node v if (i) it can cause traffic to arrive at the
target at a rate greater than Cv and (ii) such traffic cannot be
filtered upstream. Importantly, the second criterion requires
the attacker to initiate a distributed DoS attack from multiple
sources (i.e., IP addresses) that cannot easily be enumerated
or blocked. Additionally, the communication should resem-
ble legitimate traffic (e.g., be directed at a relevant TCP port).
Stresser services generally meet these requirements.

Our first assumption—i.e., a node v effectively becomes
unusable if it receives attack traffic at a rate greater than Cv—
is admittedly an oversimplification. However, we speculate
that saturating v’s link would induce a high packet loss rate of
50% or more for legitimate clients, since such clients would
have to compete for v’s connectivity. TCP performs poorly
at such high packet loss rates [61, 68].1 Stresser services
offer attack rates that vastly exceed the estimated bandwidth
capacities of Tor relays.
Estimating Tor Relay Link Capacity: For a successful
flooding attack, the rate at which the attack traffic arrives at

1Computing TCP’s performance for a given packet loss rate is complex
since there are a variety of TCP congestion control algorithms (e.g., Tahoe,
Reno, etc.). However, we can derive the theoretical network limit based on
the Mathis et al. [61] formula: assuming an average RTT of 40ms, an MSS
of 1460B, and a 50% loss rate, the maximum possible throughput achievable
by TCP is just (MSS/RTT) · (1/

√
loss) = 0.41 MiB/s.



the target should be equal to or greater than the target’s net-
work link capacity. Importantly, we distinguish between the
link capacity Cv of a victim relay and its effective through-
put, the latter of which depends on rate limiting, its selec-
tion probability, etc. The flooding attack instead depends on
overwhelming the victim’s actual connectivity, i.e., Cv.

Unfortunately, Tor relays do not publish their link capac-
ities. To estimate a given relay’s link capacity, we consider
its bandwidth history as recorded in the previous year (from
2017-11-01 to 2018-11-01) by the Tor Metrics Portal [11].
For each day, we find the maximum observed bandwidth for
the relay and map this bandwidth to the next highest value in
a fixed set of bandwidth offerings that are commonly avail-
able: 1, 10, 100, 200, 500, 1,000 and 10,000 Mbit/s. For
example, a relay with a maximum observed bandwidth of
1,200 Mbit/s will be considered to have 10 Gbit/s network
link. We thus assume that an attacker must direct 10 Gbit/s
of attack traffic to overwhelm the relay’s capacity. We again
emphasize that this is an estimate; the actual capacity at any
given time may vary significantly if relay operators configure
Tor bandwidth limitation options (operators can set instanta-
neous bandwidth rate limits and total monthly usage limits).
Attack Cost: We estimate that the total link capacity across
the Tor network ranged from 429 to 575 Gbit/s over the year;
for our analysis, we use the average of 512.73 Gbit/s. We
require that at least one stresser account be used for each
Tor relay (since stresser services usually restrict the number
of targets to one). Additional stresser accounts are needed
to saturate relays with high bandwidth capacities. Applying
our cost model, an attacker can use stresser services to flood
all relays in the Tor network at a cost of about $10K/hr. (or
$7.2M/mo.). An adversary can roughly halve its costs by tar-
geting only exit relays, which are required for traffic exiting
the network. Overall, however, we find that disrupting Tor
by renting stresser services is an expensive proposition, only
potentially viable for a nation-state adversary.
Limitations: A limitation of our analysis is that it is not
based on empirical evidence (since we were not willing to
use such services) and relies on advertised attack rates. Al-
though Santanna et al. have found such services to reason-
ably deliver high-bandwidth [74, 75], it is possible that they
provide a much lower attack strength than advertised. We
also rely on the assumption that packets are not filtered up-
stream, which may not always be valid (as discussed below).
Mitigation: It is possible that ISPs could render such attacks
ineffective by filtering traffic. For example, ISPs could dis-
cover hosts belonging to the stresser services and filter traffic
originating at those hosts. However, such rules may be diffi-
cult to maintain given the dynamic nature of the Internet.

Filtering all incoming requests to Tor relays that do not
originate at other relays would be an ineffective strategy. In
particular, entry relays must allow for clients anywhere on
the Internet to initiate a circuit, and any relay may be chosen
as an entry by clients implementing non-default path selec-

tion algorithms. Filtering attempts may also be complicated
by the churn rate of Tor relays and would interfere with the
process of bootstrapping new relays to the network. Finally,
dropping packets on the relay is an ineffective defense since
the dropped packets have already consumed bandwidth.

Traditional DoS defenses such as the use of CDNs are not
compatible with Tor since aggregating relays onto a small
number of CDN providers would diminish anonymity; it is
also unclear how a relay could operate within a CDN. Relay
operators may consider migrating to popular cloud services
that offer DoS protection services [1, 2]. However, the secu-
rity and privacy implications of migrating to such services is
unknown and may risk exposure to traffic correlation attacks.

Perhaps the most tractable mitigation strategy is to in-
crease the total relay bandwidth capacity of the network.

5 Congesting Tor Bridges
Tor provides anonymous communication to clients, but does
not conceal the network locations of its relays, subjecting
them to trivial blocking. To counter censors that block access
to Tor relays, Tor logically separates anonymity (accessing
the Internet without revealing network location) from un-
blockability (gaining access to the Tor network). The lat-
ter is achieved through the use of bridge relays that are not
published in the Tor directories. Bridges serve as alterna-
tive ingress points into the Tor network for users who cannot
directly connect to Tor entry guards.

In this section, we explore the effects of using stresser ser-
vices (§3.1) to flood Tor bridge relays. We differentiate be-
tween three classes of bridges:
Default Bridges: The Tor Browser Bundle (TBB) includes
a set of 38 hard-coded default bridges (as of version 8.0.3).
Users who cannot directly access Tor relays can configure
TBB to connect via one of these default bridges.

A special case of default bridges is meek bridges [4, 6] that
reside on popular cloud providers and communicate with Tor
clients via HTTPS. Censors cannot easily distinguish meek
traffic from more typical HTTPS traffic entering the cloud.
Disrupting meek thus entails entirely blocking access to the
cloud provider, which is presumed to impose too high a col-
lateral cost to the censor. Meek bridges, however, are ex-
pensive to operate (since cloud services are not free) and are
susceptible to cloud providers disallowing their use [17, 33].
Unlisted Bridges: Users can also request an unlisted bridge
either directly from TBB, via bridges.torproject.org, or
through email. To prevent a censor from trivially enumerat-
ing the bridges, Tor limits the amount of bridges it dissemi-
nates to a single requesting IP or email address. However,
such protections are obviously brittle and numerous tech-
niques exist for discovering unlisted bridges [20, 30].
Private Bridges: Finally, private bridges are not dissemi-
nated by the Tor Project, either because their operators did
not notify the Tor Project that they exist or because the Tor
Project opted not to disseminate them.

https://bridges.torproject.org/


5.1 The State of Tor’s Bridges
We first examine the performance of the network’s bridges.
We focus on the 25 default bridges that use the obfs4 ob-
fuscation protocol2 since 90% of all bridge users use default
bridges [62] and obfs4 is the bridge type recommended by
Tor. To test their performance, we use a modified version
of Tor to download a 6 MiB file through each bridge. Sur-
prisingly, we find that only 48% (12/25) of the obfs4 default
bridges included in TBB are operational.

Figure 1 plots the cumulative distribution (y-axis) of the
throughput of the functioning obfs4 default bridges (blue
line) when downloading a 6 MiB file on 2018-04-10. Each
default obfs4 bridge downloaded the 6 MiB file three times;
the CDF plots the average of these downloads. For consis-
tency, we fixed the middle and exit relays, choosing relays
with high selection probabilities (and thus high bandwidths).
The median throughput of the default bridges is 368 KiB/s;
there is a large variation over the default bridges however,
ranging from 67 KiB/s to 1,190 KiB/s.

To compare against the performance of unlisted bridges,
we requested 135 unlisted obfs4 bridges from the Tor
Project’s bridge authority via its web and email interfaces.
Roughly 70% (95/135) of the acquired unlisted bridges were
found to be functional. As shown in Figure 1 (orange
line), the unlisted bridges generally outperformed the de-
fault bridges, which is expected given Matic et al.’s find-
ing [62] that suggests approximately 90% of bridge traffic is
conducted through default bridges. We suspect that the high
demand on the few operational default bridges leads to worse
performance than the less frequently used unlisted bridges.

As a point of comparison, historical data from the Tor
Metrics Portal reveals that non-bridge circuits on Tor dur-
ing the same time period yielded an average throughput of
786 KiB/s and experienced negligible failure rates [11].

In summary, Tor’s bridges are generally far more brittle
compared to the network’s advertised relays, offering much
greater failure rates for default (52%) and unlisted (30%)
bridges (compared to 0% for Tor relays) and lower average
throughput (545 KiB/s and 681 KiB/s for default and unlisted
bridges, respectively, versus 786 KiB/s without bridges).

5.2 Attacking Default Bridges
Ninety percent of bridge users use default bridges [62], and
only 12 working default obfs4 bridges are included in the
TBB. We first estimate how costly it would be for an at-
tacker to disrupt all of the default bridges. Then, for vari-
ous migration models in which some percentage of affected
bridge users switch to unlisted bridges, we estimate the per-
formance and pricing effects of the migration.
Denying Access to the Default Bridges: Since bridge re-
lays do not publish their bandwidth capacities, our analysis
assumes that the distribution of link capacities for n default

2obfs4 obfuscates Tor traffic to appear as a random sequence of bytes,
making it hard for DPI systems to classify.

bridge relays is the same as the distribution of link capaci-
ties for the fastest n non-bridge Tor relays. Thus, saturating
one default bridge’s Internet connectivity requires an amount
of bandwidth equal to the link capacity of the fastest Tor re-
lay, and saturating 10 default bridges’ requires bandwidth
equal to the combined link capacity of the fastest 10 Tor re-
lays. Following the link capacity estimates based on band-
width offerings as described in §4, we estimate that the set
of 12 operational default bridges consists of two 10 Gbit/s
links and ten 1 Gbit/s links (a total of 30 Gbit/s) and that
the full set of 38 default bridges consists of two 10 Gbit/s
links and thirty-six 1 Gbit/s links (a total of 56 Gbit/s). Re-
call from the pricing model in §3.1 that a 1 Gbit/s stresser
account costs $0.74/hr. Attacking the 12 operational obfs4
bridges thus requires 30 of such stresser accounts at a cost
of $0.74·30=$22.20 for each hour of downtime (or roughly
$22.20·24·31≈$17K per month). Repairing the remaining
default bridges offers only a small improvement: denying
service to 38 bridges requires 56 stresser accounts at a cost of
$0.74·56=$41.44/hr. ($41.44·24·31≈$31K/mo.) which we
posit is well within the budget of a nation-state adversary.
We emphasize that these are estimates since bridges’ true
link capacities are unknown.

If the default bridges are successfully attacked, there are
several potential consequences. In the worst case, the set of
default bridges will not be updated and the users who had de-
pended on them will abandon Tor altogether. The Tor Project
could also update its list of default bridges (e.g., by pushing
an update to TBB), but such a solution is only temporary
since an attacker could simply retarget its DoS efforts.

Users who are dependent on bridges may switch to us-
ing either unlisted bridges (since they are more plentiful and
more difficult to enumerate) or to meek bridges.
The Cost of Migrating to Unlisted Bridges: We base our
analysis on (i) the distribution of throughput we measure
from unlisted bridges (Figure 1), (ii) the simplifying assump-
tion that how Tor is used by bridge users is independent
of the particular type of bridge used to gain entry to the
network, and (iii) Matic et al.’s observation that suggests
approximately 90% of bridge traffic traverses through de-
fault bridges [62]. If all default bridge users switched to
unlisted bridges, applying our simplifying assumption, we
would therefore expect the load on the unlisted bridges to in-
crease by a factor of nine (since they previously carried just
10% of bridge traffic). More generally, when a fraction f of
default bridge users shift to using unlisted bridges, the un-
listed bridges should expect to see a corresponding increase
in traffic of a factor of 9 · f . This trend is plotted in Figure 2.

Given that most (90%) of bridge traffic that is handled by
the default bridges, even a small migration of default bridge
traffic to unlisted bridges has performance consequences.
Even if a quarter of previously default bridge users switch
to unlisted bridges, their performance will significantly suf-
fer, decreasing from 762 KiB/s to 338 KiB/s in the median.
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Figure 1: Cumulative distribution of bridge
throughput when downloading 6 MiB files.
The vertical line at 786 KiB/s shows the
throughput for clients that directly connect to
Tor to download a 5 MiB file.
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Figure 2: Throughput of Tor users who use
unlisted bridges, as a function of the percent-
age of default bridge users who switch to us-
ing unlisted bridges.

0 20 40 60 80 100

Percentage of migrating non-meek bridge users

0

2,000

4,000

6,000

8,000

M
on

th
ly

C
os

t
(U

S
D

)

Cloudfront + Azure Max Cost
Cloudfront + Azure Average Cost
Cloudfront + Azure Min Cost
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erage cost of maintaining meek when some
fraction of users switch to meek, based on
meek usage data and CloudFront and Azure
pricing models.

The Cost of Switching to Meek Bridges: If the non-meek
default bridges become unavailable, we expect some frac-
tion of users to switch to meek bridges. Censors cannot eas-
ily disrupt meek bridges without inflicting significant col-
lateral damage since it cannot easily distinguish meek traf-
fic from more typical HTTPS traffic that accesses the cloud
provider. However, the increased use of meek incurs a cost
(since cloud services are not free).

To estimate the resulting monthly cost of maintaining
meek bridges as non-meek users switch over, we estimate the
bandwidth consumption of migrating users by constructing a
regression model. The bandwidth consumption estimate is
required to calculate the cost of operating the meek frontend
as cloud providers charge their users based on the bandwidth
consumption. To construct the regression model, we first use
the statistics from the Tor Metrics Portal to estimate (i) the
number of meek users and (ii) the traffic transferred by the
meek frontend as reported by meek frontend operators [5]
over this same timespan. We use this regression model to
estimate the consumed bandwidth as a function of increased
traffic from users migrating to meek bridges. We then use
the estimated bandwidth usage to derive the expected meek
operational cost by applying the current pricing model of
the cloud service providers. Unfortunately, the Tor Project
stopped providing usage statistics for meek bridges, so we
restrict our analysis to usage that occurred between March
2016 and March 2017 (where such data is available [5]).
We also note that Amazon and Google stopped supporting
the use of domain fronting on their respective cloud ser-
vices [17, 33]3. Given these limitations, our analysis rep-
resents a rough approximation.

Figure 3 shows the monthly cost of operating meek
bridges as a function of the fraction of non-meek bridge users
who switch to using meek bridges. We plot the ranges of es-
timated monthly costs, since cloud providers charge differ-
ent amounts based on the locations of clients. We note that

3This highlights a particular brittle aspect of meek bridges—they are
completely dependent upon the cloud service on which they reside.

if half of non-meek users begin using meek bridges, then
in the best case, the operational cost of maintaining meek
bridges will double. If clients are disproportionately in loca-
tions in which providers charge higher rates, then the opera-
tional costs could be as high as six times the current amount.
Mitigation: Meek bridges offer the best protection against
DoS. Unfortunately, supporting a large user base is expen-
sive. One potential strategy for reducing costs is to require
bridge users to watch ads or perform small tasks (akin to Me-
chanical Turk) to finance the cost of their bridge use. Addi-
tionally, the recent proliferation of encrypted Server Name
Identification (SNI) parameters [36, 44] may enable new
methods of domain fronting [32] that are compatible with
lower-cost hosting providers.

6 Unbalancing Load
In this section, we seek to better understand the extent to
which an adversary can disrupt Tor by using stresser services
(§3.1) to launch bandwidth DoS attacks on TorFlow [72], a
critical component in Tor’s load balancing process.

6.1 Relay Performance and Path Selection
As of 2018-11-01, the Tor network contains 6,436 volun-
tarily operated relays, the status of which is maintained by
9 Tor directory authorities in a signed network consensus
document. When using Tor, clients download and verify a
recent consensus, and use it to select paths of relays through
which they build circuits and tunnel Internet connections.

Tor uses a load-balancing system in order to provide low-
latency anonymous communication (i.e., suitable for brows-
ing websites) due to high client resource demand and a large
variance in the bandwidth capacities offered by relays (see
§4). The load balancing system is composed of two primary
components: a relay performance estimation mechanism and
a performance-aware path selection algorithm.
Relay Performance Estimation: Although Tor initially es-
timated relay performance according to self-reported adver-
tised bandwidth capacities, Bauer et al. showed how a low-
resource adversary could attract significant traffic to mali-



cious relays (to improve end-to-end correlation attacks) by
lying about their available bandwidth [15]. Perry subse-
quently designed and published the TorFlow relay measure-
ment system to reduce the extent to which Tor trusts relays
to honestly report their bandwidth capacity [72], and Tor has
been using it to measure relays for nearly a decade (despite
alternative designs [19, 55, 78]).

TorFlow is a measurement tool that scans Tor relays to
measure their relative performance. To measure Tor re-
lays, TorFlow (i) sorts the consensus list of relays by their
previously-expected performance, (ii) partitions the sorted
list into slices of 50 relays each, (iii) distributes the slices
among 9 subprocesses that run in parallel, (iv) creates 2-hop
circuits using pairs of relays that belong to the same slice
(and so can provide similar performance), and (v) downloads
one of a set of 13 fixed-sized files (2i for i∈ [4,16] KiB) from
a known destination through each circuit. TorFlow repeats
this process until it has attempted to download through each
relay at least 5 times, after which it uses the mean of the
measured download completion times to compute a weight
for each relay that represents its performance relative to the
other measured relays.

The output of the TorFlow measurement process is a ver-
sion 3 bandwidth (V3BW) file specifying the weights and
other information about each scanned relay. Currently, 5
of the 9 directory authorities also act as bandwidth authori-
ties [3]: they obtain a V3BW file and participate in a voting
protocol to determine an authoritative set of relay weights
that will appear in the next network consensus. Note that
a bandwidth authority operator may obtain a V3BW file by
running TorFlow (potentially on a distinct machine from that
which runs their directory authority) or by obtaining one
from another trusted source that is running TorFlow.
Performance-Aware Path Selection: Tor’s path selection
algorithm biases relay selection to favor those providing
more resources and better performance. Clients using the
default selection algorithm will choose relays roughly pro-
portional to the weights assigned to them (via the bandwidth
authority voting procedure) and listed in the consensus. As
a result, client traffic will be driven to the better performing
relays. Previous work has shown that Tor’s relay selection
strategy does a reasonable job of balancing load [82].

6.2 Detecting TorFlow Scanners
The TorFlow relay scanners constitute attractive targets for
DoS attacks: disrupting the scanners may result in signifi-
cant variation in relays’ weights which could degrade load-
balancing and security. If the bandwidth authorities were
taken offline, Tor would eventually fall back to an equal
weighting (uniformly at random) strategy, which would have
a detrimental effect on client performance [82]. Previous
work observed the ability to detect TorFlow scanners due to
their connection patterns and fixed-size file downloads [55],
which we further explore.

TorFlow scanners stand out from normal Tor clients be-
cause: (i) they download one of a set of 13 fixed-size files,
(ii) they choose new entry relays for each circuit (disabling
the guard feature), and (iii) they use two-hop circuits.

To discover the network addresses of the TorFlow scan-
ners, we first determined the range in the number of Tor cells
required to download each of the fixed-size files. We then op-
erated a low-bandwidth relay and patched it with a small pro-
gram that looked for connecting clients (potential candidates
for TorFlow scanners) that exhibited similar telltale fetches.
To provide some ground truth, we also operated our own Tor-
Flow scanner. Within 48 hours, we were able to identify six
IP addresses that fetched files through our relay and fit the
pattern of a TorFlow scanner. We operated our TorFlow scan-
ner detection software for 5.5 days, during which it did not
identify any additional potential scanners. Although we tem-
porarily stored candidate scanner IP addresses in memory (in
order to determine uniqueness), we did not write them to std-
out or the filesystem (in order to avoid accidentally recording
the IP of a human Tor user). We did, however, record that one
of the six identified candidate TorFlow scanners was indeed
our own; we posit that the other five correspond to the five
scanners operated by the Tor Project.

6.3 Attacking TorFlow Scanners
Given that an adversary can identify TorFlow scanners by
their IP address, they can use bandwidth DoS attacks to dis-
rupt the relay scanning process and therefore degrade the ac-
curacy of the relay weights produced by TorFlow. A band-
width DoS attack will clog the TorFlow scanners’ links, in-
creasing latency and packet loss on those links and extend-
ing the time it takes the scanners to successfully complete
file downloads through Tor relays. Therefore, the adversary
may effectively manipulate the scanner into believing that re-
lays provide worse performance than they can actually pro-
vide. Since TorFlow weights relays by their performance,
the adversary can effectively reduce the accuracy of the re-
lay weights which may disrupt the load balancing process.

6.3.1 Attack Strategies
We explore several strategies that an adversary may use to
conduct bandwidth DoS attacks on TorFlow scanners with
a goal of increasing the file download times measured by
TorFlow and disrupting the load balancing process. Each
strategy will come at a different cost due to the bandwidth
required to conduct the attack and the length at which the
attack must be sustained.
Constant: The most straightforward strategy is to simply
flood each TorFlow scanner with bandwidth at a constant rate
over time. This brute-force strategy is the easiest to set up
and should require minimal monitoring and maintenance by
the adversary throughout the duration of attack.
Periodic: Since TorFlow produces weights that represent re-
lay performance relative to other relays, and because a con-
stant attack strategy may similarly affect all relay measure-



ments, a constant strategy may be suboptimal. Therefore, we
also consider a periodic strategy where the adversary floods
the victim with bandwidth for a duration of time λ while pe-
riodically pausing the attack for a duration of time π . The
reasoning behind this strategy is that the scanner will mea-
sure normal download times for some relays but significantly
reduced download times for others, and the large difference
will have a greater impact on the final set of relay weights.
Targeted: We also consider a targeted strategy where the ad-
versary carefully selects periods of time during which to run
the DoS attack and otherwise does not alter the victim scan-
ner’s network conditions. In particular, we observe that the
greatest impact in performance will likely result from signifi-
cantly depressing the relative weights of the best performing
relays. Therefore, the adversary targets the scanner with a
bandwidth DoS attack while it is measuring the fastest re-
lays. We discuss below how to determine when the fastest
relays are being measured.

6.3.2 Attack Strength and Other Assumptions

For any strategy used by the adversary, we assume that it can
utilize a stresser service (see §3.1) to limit the victim’s ef-
fective bandwidth to rate γ while increasing packet loss on
the victim’s link by ρ . We assume that the adversary can
increase or decrease the attack strength to achieve these ef-
fects. (See §6.5 for a discussion of cost.) We also assume that
the adversary can receive feedback on the attack by closely
monitoring the consensus weights and checking how relays’
weights are changing over time. It can monitor the Tor met-
rics website and data to observe changes in Tor performance.
It can iteratively adjust the attack strength and strategy over
time in an attempt to produce a greater effect. We also as-
sume that the adversary is capable of setting up and running
its own TorFlow scanner instance (the code is open-source),
and use it to directly observe how an ongoing attack is af-
fecting the TorFlow measurements and outputs.

The Targeted attack strategy depends on being able to tar-
get the slice containing the fastest relays. We speculate that
the adversary would be able to detect when the fastest slice is
being measured by running a fast relay itself and observing
when its relay is first measured by a TorFlow scanner. Once
detected, the adversary could enable the attack for the time
required to measure the slice, which it could estimate empir-
ically by running a TorFlow scanner itself and observing the
times to measure the fastest slice over several scan periods.
(We ran a TorFlow instance, analyzed its output, and com-
puted the time to measure the fastest slice over 20 scans. We
found that the median time to scan the fastest slice was 249
minutes, with an interquartile range of 73 minutes.) Note
that these techniques would require additional time, band-
width, and skill compared to a brute-force attack, and that
scan times may be inconsistent over time and network loca-
tion. See §6.6 for further discussion.

6.4 Evaluation
We evaluated the DoS attack strategies and effects in
Shadow [47], a high-fidelity network simulation framework
that directly executes Tor. We used Shadow to create a pri-
vate Tor network that is completely contained inside of our
lab environment in order to guarantee that our attacks do not
harm the safety or privacy of real Tor users or the network.
All of the experiments that we present in this section use
Shadow v1.13.0 and Tor v0.3.0.10.
Network Setup: We used standard Shadow and Tor network
generation tools and methods [48] to generate a private Tor
network with 100 Tor relays, 3,000 Tor clients, and 1,000
server, and to generate background traffic [53]. 2,619 of the
clients are web clients that download a 320 KiB file, “think”
by pausing for a time selected uniformly at random in the
range [1,60] seconds, and then repeat. 81 of the clients are
bulk clients that repeatedly download a 5 MiB file without
pausing between successive downloads. We also run 300
benchmark clients that reproduce Tor’s performance bench-
marks by occasionally downloading 50 KiB, 1 MiB, and
5 MiB files using fresh circuits throughout each experiment.
We use the most recently published Shadow network topol-
ogy graph [53] to model inter-host latency.

We implemented a TorFlow plugin for Shadow by signif-
icantly refactoring and extending previous work [55]. We
used the plugin to scan the relays in our network and pro-
duce V3BW files which were then added to the consensus
and used by the clients to build paths. We first ran one longer
experiment allowing TorFlow time to scan through all relays
several times, and then we used the final V3BW file that Tor-
Flow produced as the starting point for all other experiments.
Parameter Settings: We simulated a bandwidth attack by
adjusting TorFlow’s available bandwidth γ and added packet
loss ρ . During each phase where the attack is active, we limit
TorFlow’s bandwidth to γ = 500 Kbit/s (62.5 KiB/s) and we
add a ρ = 2% chance of packet loss occurring independently
on all incoming and outgoing packets. We set our TorFlow
instance to conduct 4 parallel probes (2-hop relay measure-
ments), to partition the relays into 10 slices of 10 relays each,
and to probe each relay at least 3 times per round before pro-
ducing a new V3BW file.

We ran a baseline No Attack experiment and experiments
with each attack strategy. When running the Constant attack
strategy, the attack is active (the γ and ρ rates applied) for
the duration of the experiment. In the Periodic attack strat-
egy, the attack cycles through an active period lasting λ = 60
seconds and an inactive period lasting π = 20 seconds. In the
Targeted attack strategy, the attack is active while relays in
the slice containing the fastest guard relay in the network are
being measured, and inactive otherwise.
TorFlow Scanner Performance: The performance of the
TorFlow measurement probe downloads across our experi-
ments is shown in Table 3. As shown in the table, our results
indicate that the Constant attack is the most effective at caus-



Table 3: The failure rate of TorFlow probe downloads, and the
mean (± standard deviation) download rate for each TorFlow probe
download and time to complete a full network scan.

Strategy Fail Rate Download Rate Scan Time

No Attack 6.0% 390±381 KiB/s 47±21 min.

Periodic 8.6% 256±292 KiB/s 59±20 min.
Targeted 14% 275±293 KiB/s 80±19 min.
Constant 22% 8.7±5.1 KiB/s 173∗ min.

∗Only a single scan completed in our 300 minute simulation.

ing TorFlow download errors (which increased to 22% from
6% with No Attack). The Constant attack is also the most
effective at limiting the probe download rate, achieving a re-
duction in mean download rate of about 381 KiB/s, and in-
tuitively increasing the time to scan all relays in the network
by about 126 minutes. We find that the Periodic and Tar-
geted strategies are less effective than the Constant strategy,
but still do have a measurable effect on the scanner.
Relay Performance: Figure 4(a) shows the relay perfor-
mance in terms of the distribution of total relay goodput
(summed across all relays in the network) over every sec-
ond during the simulation. We notice a similar trend as with
TorFlow performance: in the medians, total relay goodput
drops by 86 MiB/s (56%) from 153 MiB/s with No Attack to
67 MiB/s with the Constant strategy, and relay utilization
gets progressively lower with the Periodic, Targeted, and
Constant strategies, respectively. Such significant drops in
throughput indicates that the new weights produced by Tor-
Flow during the attacks no longer do a good job of balancing
client load across relays, and the network is less capable of
utilizing its available bandwidth resources.
Client Performance: The effects of our attacks on the
mean download rate (during active downloads) per client are
shown in Figure 4(b). Every attack has a significant effect,
with the mean download rate of the median client being re-
duced by 45 KiB/s from 56 KiB/s with No Attack to 11 KiB/s
with the Constant attack. Client performance also suffers in
terms of the download failure rate per client as shown in Fig-
ure 4(c): the failure rate for the median client increases by
about 23% from about 3% with No Attack to about 26% with
the Constant attack.

Overall, our results show the extent to which an adversary
may disrupt Tor performance using straightforward DoS at-
tacks on easy-to-detect TorFlow scanners, and that the sim-
plest constant attack strategy was the most effective.

6.5 Attack Cost
We assume that our TorFlow DoS attacks could be launched
using a stresser service. In §3.1 we describe that the amor-
tized cost of a stresser service to provide 1 Gbit/s of at-
tack traffic is $0.74/hr. The Constant attack strategy requires
that we constantly run the DoS attack on each scanner. Tor
runs 5 TorFlow scanners of unknown capacity. If we as-
sume that they all run on 1 Gbit/s links, then the cost to run

the DoS attack on all 5 scanners for one month would be
$0.74·5·24·31≈$2.8K.

6.6 Discussion
Limitations: A limitation of our study of the effects of
bandwidth DoS on the TorFlow scanners is that we used a
smaller-scale Tor network than that which is publicly acces-
sible (100 relays compared to 6,436). We used a smaller
network primarily due to resource limitations and because
TorFlow takes a significant amount of time to scan all relays.
Using a smaller network allowed us to (i) run longer exper-
iments, (ii) scan the network faster because there are fewer
relays to measure, and (iii) complete more scanning rounds.

Due to scale we configured a single TorFlow instance in
our experiments measuring 10 relays per slice, using 4 par-
allel probe subprocesses, and collecting at least 3 probe mea-
surements per relay; Tor runs 5 TorFlow instances measuring
50 relays per slice while using 9 parallel probe subprocesses
and collecting at least 5 probe measurements per relay. The
process of partitioning a larger set of relays among more
slices and more parallel subprocesses could lead to different
inconsistencies than those captured by our simulations. We
believe that running additional parallel subprocesses would
increase the average bandwidth rate of the TorFlow scanner,
which may increase the effectiveness of a constant attack
strategy. However, the adversary would require additional
bandwidth to attack all or a majority of scanners in parallel.

The Targeted attack requires the ability to estimate when
the fastest slice is being measured and the amount of time re-
quired to measure that slice. These estimates may be compli-
cated by TorFlow’s inconsistent relay partitioning and sub-
process assignment functions and its parallel measurement
processes. In the worst case, the Targeted attack would de-
grade to a Constant attack, which performed best in our ex-
periments anyway and for which we estimated cost in §6.5.

The attacks depend on stresser services delivering a high
rate of traffic to the target, which is not a stealthy operation.
This could potentially trigger automated or manual DoS mit-
igation techniques, and we did not consider how such de-
fenses would affect the attacks. We rely on the assumption
that packets are not filtered upstream from the target scanner,
which may not always be valid (as we will discuss below).
Attack Extension: Our focus in this paper is on relatively
simple and straightforward bandwidth-based DoS attacks.
However, it is possible to extend the attack if we consider a
more powerful adversary. For example, a network-level ad-
versary that can observe connections from a TorFlow scan-
ner can selectively disrupt TorFlow as it is scanning a target
set of relay IP addresses. This would allow an adversary
to selectively increase the time to scan the target set of re-
lays, causing the scanner to detect that those relays are “over-
loaded” and reduce their weights (and therefore the probabil-
ity that those relays are used by clients) accordingly. Such an
attack could be used to drive additional traffic to other mali-
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Figure 4: Performance metrics as measured when the network is not under attack (No Attack) and when the bandwidth authorities are attacked
using different strategies (Periodic, Targeted, and Constant): (a) the distribution of aggregate Tor relay goodput per second (summed across
all relays for every second); (b) the distribution of mean download rates per client; and (c) the distribution of download failure rates per client.

cious relays, improving the ability of an adversary to conduct
attacks on anonymity, e.g., traffic correlation attacks [66].
Mitigation: Since the attacks rely on stresser services, the
mitigation strategies discussed in §4 also apply here. Specif-
ically, it is possible that ISPs could render attacks against
the bandwidth authorities ineffective by filtering traffic en
route. For example, ISPs could discover hosts belonging
to the stresser services and filter traffic originating at those
hosts, or ISPs could install custom rules to filter incoming
traffic to the bandwidth authorities since they need only make
outgoing connections (in case they are not run alongside Tor
relays). However, filtering attempts may be complicated by
packet spoofing. (Note that dropping packets on the band-
width authority is an ineffective defense since the dropped
packets already consumed bandwidth.)

Perhaps the best mitigation is to migrate to a decentral-
ized bandwidth measurement system that does not share Tor-
Flow’s security problems. For example, TorFlow’s central-
ized scanning approach can be easily detected because it uses
fingerprintable traffic signatures from a small set of static IP
addresses. While it may be difficult to obfuscate the source,
destination, and traffic signature while still providing accu-
rate results [55], a system that utilizes distributed trust may
help thwart malicious behavior. For example, a peer-based
measurement system run by existing relays would preclude
the need for centralized measurement infrastructure that is
vulnerable to DoS and could complicate scanner and mea-
surement detection [55, 78].

7 Congesting Tor Relays
In §4, §5, and §6 we evaluated the effects of using stresser
services (§3.1) to flood Tor relays, Tor bridges, and Tor band-
width authorities, respectively. In this section, we move
away from stresser services and explore the extent to which
an adversary might degrade Tor network performance by us-
ing the Tor protocol itself to congest Tor relays. The attack
strategies that we discuss in this section utilize dedicated
servers (§3.2) and modified Tor clients.

7.1 Relay Usage
All non-bridge Tor relays are publicly known and distributed
to Tor clients in network consensus documents in order to fa-
cilitate the Tor client path selection and circuit building pro-
cesses. By default, clients select 3-hop Tor paths and use
them to build circuits that are usable for 10 minutes. Clients
must use an exit relay that allows exiting the Tor network
on the desired TCP port as the last relay in their Tor cir-
cuits in order to communicate with Internet peers that are
not Tor-aware. Additionally, by default, clients use guard re-
lays as their entry into the Tor network, and guard or middle
relays (i.e., non-guard, non-exit relays) in the middle posi-
tion of their circuits. As discussed in §6, each relay is as-
signed a weight by the directory authorities corresponding
to its performance relative to all other relays as measured
by TorFlow [72]. Clients use these weights during path se-
lection to bias their choice of relays toward those providing
better performance.

7.2 Abusing Relay Bandwidth
The Tor protocol contains features that offer protocol flexi-
bility, but also allow for abuse. Although exits are required to
be used in the last position of circuits exiting Tor, the Tor pro-
tocol technically allows any relay to be used in any non-exit
position. Additionally, the Tor protocol technically allows
circuits containing up to 8 relays. To utilize these features, a
client may select its own custom path of relays and build cir-
cuits through them either by modifying their Tor client code
directly, or by interacting with Tor using the Tor control in-
terface and protocol. Note that building custom circuits is al-
ready supported by existing Tor control clients like stem [8].

7.2.1 Attack Strategies
Given the above features, an adversary may conduct a con-
certed bandwidth consumption DoS attack by building cus-
tom circuits and downloading large files through them.
Long Paths: The most basic form of our Tor bandwidth DoS
attack makes use of the ability to create 8-hop Tor circuits.



For every byte of data downloaded by a client through such
a long path, relays in the Tor network will download and
upload that byte 8 times in total. This amplification works
significantly in favor of the adversary.
Tunneling: Tor previously allowed infinite-length circuits
until it was shown that long paths (e.g., 24 hops) could be
used to congest Tor relays and deanonymize clients [31]. Al-
though the Tor protocol now restricts circuits to 8 relays in
length [27, §5.6], paths of unrestricted length are still tech-
nically possible by using multiple Tor clients and tunneling
each client’s TCP onion connection to its entry relay through
another client’s circuit4 [51].
Stop Reading: In order to decrease the cost of downloading
large files, the adversary may use a Stop Reading strategy.
Using this strategy, the adversary first creates a new TCP
onion connection to the first-hop relay in its chosen long
path, even if a connection to that relay already exists. The
adversary then builds an attack circuit using its chosen path
and waits for it to complete successfully, making sure to as-
sign the circuit to the new TCP connection. Once the circuit
is built, the adversary sends a request for a large data blob
from some public server (e.g., the Internet Archive), mea-
sures the time to download the first 25 KiB, and then instructs
Tor to stop reading from the circuit’s TCP connection to the
entry relay (immediately after receiving 25 KiB). Although
the client stopped reading, it can still write: the adversary
uses the measured time to download the first 25 KiB to esti-
mate the frequency with which it should send Tor circuit and
stream SENDME flow control cells5 which instruct the exit re-
lay to continue to send data toward the client. (Estimating the
circuit throughput rate is important, because sending more
SENDME cells than is expected by the exit will cause the exit
to abort the circuit.)

A stop reading strategy was first described and used as part
of the Sniper Attack [51], but we are the first to observe that
each attack circuit should use a new and unique TCP connec-
tion in order to limit interference with other circuits built in
parallel. This requires minor modifications to the Tor client
code since Tor by default multiplexes circuits over existing
TCP connections. We show in §7.3 that our bandwidth DoS
attack scales to thousands of circuits using this approach.

7.2.2 Attack Targets

Single Relay: An adversary may use an 8-hop long path
to conduct a congestion attack on a target victim relay by
including the victim in the same circuit multiple times. Since
an honest relay will not extend a circuit to the same relay
that extended to it, the victim v must be placed in circuit
positions such that two distinct honest relays h1 and h2 are
placed in subsequent positions before repeating the victim

4Tor will tunnel TCP onion connections through a proxy (e.g., another
Tor client) when using the Socks4Proxy or Socks5Proxy torrc options.

5A stream SENDME cell is sent for every 50 received cells (25 KiB) and
a circuit SENDME for every 100 received cells (50 KiB).

(i.e., v!h1!h2!v, etc.). Therefore, a victim may appear
in the same circuit a maximum of 3 times (either in positions
1, 4, and 7, or 2, 5, and 8).
Relay Subgroups: An adversary may also target specific
subgroups of relays that represent particularly attractive tar-
gets. Such subgroups may include the group of all exit relays
(since their resources are the most scarce), the group of all
publicly known bridges (we explored the impact of such an
attack in §5), hidden service directories, and the group of 9
directory authorities (which also serve as relays).
All Relays: An adversary may also attempt to congest the
entire Tor network with the goal of degrading performance
to the extent that Tor becomes unusable to a majority of its
user base, which would significantly reduce Tor’s security
in addition to its performance [25]. In order to congest all
relays, the adversary makes a weighted selection of relays
following the weights published in the network consensus.
In other words, the adversary uses the same path selection
policy as honest clients do by default. This will ensure that
the adversary will choose and congest relays with the same
distribution that clients attempt to use them: the DoS attack
will cause more congestion on relays that are chosen more
often by clients, and should therefore impact more users.

7.2.3 Attack Strength
The strength of our attack can be described in terms of the
number of long path circuits φ that the adversary builds in
parallel. Each circuit should use at least 2 parallel streams
(i.e., downloads) in order to fully utilize the circuit flow con-
trol mechanism (the circuit window is 1,000 cells, twice that
of the stream window). Whenever circuits close or down-
loads finish (complete or time out), circuits are replaced with
new ones in order to maintain the attack strength over time.

7.3 Evaluation
As in §6.4, we use Shadow [47] to safely measure the effects
of our DoS attacks in a private Tor network. All experiments
in this section use Shadow v1.13.0 and Tor v0.3.1.10.
Network Setup: We use the same tools and methods as de-
scribed in §6.4 to generate a Tor network containing 634 re-
lays (10% of the size and capacity of the public network),
15,000 clients (14,259 web clients, 441 bulk clients, and 300
benchmark clients), and 2,000 servers. Node behaviors are
also as described in §6.4.

We implemented our DoS attacks in a C program con-
taining 3,265 lines of code (LoC) which we compiled as a
Shadow plugin. Our attacks utilize a Tor v0.3.1.10 client
that we modified (409 LoC) to support creating new TCP
connections for attack circuits as well as commands to stop
reading and for sending SENDME cells.
Parameter Settings: Throughout our experiments, we ex-
plore the effects of the Long Path strategy across attack
strengths (number of circuits φ ) on performance. We par-
allelize our attack by running φ/1,000 identical processes
on new attack hosts (i.e., 1,000 circuits per host), each of
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Figure 5: Performance metrics as measured throughout our network-wide DoS attack on Tor relays: (a) the distribution of attacker throughput
rates; (b) the distribution of aggregate Tor relay goodput rates (summed over all relays for each second); and (c) the distribution of benchmark
client download times to first byte (TTFB) and last byte (TTFB) for files of sizes 50 KiB, 1 MiB, and 5 MiB (the box shows the interquartile
range, the N shows the mean, and the lower and upper whiskers extend to the minimum and the 99th percentile values, respectively).

which is configured with a 1 Gbit/s network link to ensure
that we could measure the full bandwidth cost of the attack.
We attach 2 streams that each request 10 MiB of data to each
8-hop attack circuit whose path is chosen depending on the
target (we explore a single relay and all relays as targets). We
set each attack circuit to time out if any of its streams either
have not completed within 5 minutes, or have not received a
byte in the most recent 60 seconds. Finally, we run experi-
ments with and without the Stop Reading strategy in order to
understand the cost and impact of DoS with and without it.
(We did not evaluate the Tunneling strategy or a strategy that
targets Relay Subgroups.)
Single Relay Attack: We evaluated the Long Path strategy
in a Single Relay attack against the most highly weighted
middle relay in our network. We evaluated attack strengths
of 100, 500, and 1,000 circuits. In all cases, the attacker
required less than 2.6 MiB/s of throughput to conduct the
attack. The victim relay’s throughput increased from 978
KiB/s with no attack to 3.8 MiB/s with 100 attack circuits
and 5 MiB/s with both 500 and 1,000 attack circuits (in the
medians). Interestingly, 500 circuits was enough to consume
all of the victim’s 5 MiB/s capacity. In the medians, the time
to download 1 MiB through the victim increased from 3.3
seconds with no attack to 28 seconds with 1,000 circuits,
while the download failure rate increased from 0% with no
attack to 63% with 1,000 attack circuits. Our results indicate
that the attack has a clear effect on both relay throughput and
client performance on a small scale.
All Relays Attack: We evaluated the Long Path strategy in
an All Relays attack using φ = 1k, 5k, 10k, and 20k attack
circuits. The performance measured during the attacks and
compared to a no attack baseline experiment is shown in Fig-
ure 5. Figure 5(a) shows the cumulative distribution of the
total attacker throughput used during each attack. Intuitively,
the throughput used by the adversary increases with the num-
ber of attack circuits: from a median of 61 MiB/s in a φ=1k

circuit attack to a median of 197 MiB/s in a φ=20k circuit
attack. Note that the increase in attacker throughput is not
linear in φ , indicating that we may be reaching relay band-
width resource limits. Figure 5(b) supports this claim, show-
ing the distribution over each second of Tor network goodput
(summed over all relays). In the medians, aggregate relay
goodput increases from 802 MiB/s with no attack to 1,297
MiB/s for φ=1k (an increase of 495 MiB/s) and 2,120 MiB/s
for φ=20k (an increase of 1,318 MiB/s). Interestingly, we
can see from these results that the effect of φ=10k circuits is
much greater than the effect of doubling the attack strength to
φ=20k circuits, suggesting diminishing returns. Finally, the
effect of our attack on client performance is shown in Fig-
ure 5(c) across a range of download time metrics. Generally,
the time to complete downloads of various sizes increases
significantly with the attack strength (e.g., TTFB increases
by 138% and TTLB increases by 120% in the medians across
all downloads for φ=20k), and the variance in performance
also increases as attack circuits are added to the network.

Figure 6 shows the effect of the Stop Reading strategy on
performance. Compared to the regular Long Path strategy
in the φ=20k attack, Figure 6(a) shows that the Stop Read-
ing strategy consumed only 36 MiB/s of attacker bandwidth
in the median while Figure 6(b) shows that the attack was
still able to consume 1,755 MiB/s of total relay bandwidth
in the median (an increase of 953 MiB/s over no attack).
Figure 6(c) shows that the effect on client performance is
also slightly less pronounced (TTFB increases by 48% and
TTLB increases by 47% in the medians across all down-
loads), which is to be expected given that relays are less
congested. We expect that we could further increase conges-
tion by scaling up the Stop Reading attack at relatively little
bandwidth cost to the attacker. A summary of our results in
Table 4 shows that the Stop Reading strategy achieved the
highest bandwidth amplification factor of 26 primarily due
to the reduction in attacker bandwidth usage.
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Figure 6: The effects of the Stop Reading attack on the performance metrics as measured throughout our network-wide 20,000 circuit DoS
attacks on Tor relays: (a) the distribution of attacker throughput rates; (b) the distribution of aggregate Tor relay goodput rates (summed over
all relays for each second); and (c) the distribution of benchmark client download times to first byte (TTFB) and last byte (TTFB) for files of
sizes 50 KiB, 1 MiB, and 5 MiB (the box shows the interquartile range, the N shows the mean, and the lower and upper whiskers extend to
the minimum and the 99th percentile values, respectively).

Table 4: Summary of the total increase in relay bandwidth usage
our attack achieved with the given attacker bandwidth usage (all in
MiB/s) and the resulting bandwidth amplification factors.

φ=1k φ=5k φ=10k φ=20k Stop∗

Relay Bandwidth 495 1,035 1,221 1,318 953
Attacker Bandwidth 61 143 177 197 36

Amplification Factor 8.1 7.2 6.9 6.7 26
∗ Stop is a φ=20k attack using the Stop Reading strategy.

7.4 Attack Cost
We assume that our DoS attacks could be launched on a ded-
icated server. In §3.2 we describe that the amortized cost in
the dedicated server model for 1 Gbit/s of traffic is $0.70/hr.
(which includes the monthly hardware rental and any band-
width costs). Our φ=20k attack with the Stop Reading strat-
egy requires only 288 Mbit/s (36 MiB/s) in our scaled down
private Tor network which contains about 10% of both the
number of relays in and the bandwidth capacity of the public
Tor network (due to the relay sampling approach of Jansen
et al. [48]). If we assume that the attack scales linearly
with Tor’s bandwidth capacity, then our attack would require
10·288 Mbit/s≈3 Gbit/s. The cost to rent three dedicated
servers supporting 1 Gbit/s of traffic for one month would
then be $0.70·3·24·31≈$1.6K. (The regular version of the
attack consumes ≈4 times as much bandwidth, requiring 12
dedicated servers and costing $0.70·12·24·31≈$6.3K/mo.)

Our attack additionally utilizes multiple client IP ad-
dresses, each of which is used to maintain an average
of 1,000/634≈1.6 circuits per relay. If (i) the public
Tor network contains 10·634=6,340 relays, (ii) we create
10·20,000=200,000 circuits, and (iii) we maintain the av-
erage 1.6 circuits per relay per client IP address rate, then we
would require 200,000/6,340/1.6≈20 client IP addresses. If
we assume that one IP address is provided for each of our
three dedicated servers, and the cost is $5 per additional IP

address, then the additional monthly cost for purchasing 17
more IP addresses is 17·$5=$85.

Thus, we estimate that the total cost to run a φ=200k cir-
cuit attack using the Stop Reading strategy against the public
Tor network is still $1.6K/mo. due to rounding. (We esti-
mate that the cost of the regular version of the attack is still
$6.3K/mo. due to rounding.)

7.5 Discussion
Limitations: We used Shadow in order to ethically con-
duct full-network Tor simulations, and simulation inherently
incurs some inaccuracy. However, while no simulator is
perfect, Shadow has been shown to exhibit network behav-
ior and performance that is very similar to Linux [50, 52].
Additionally, Shadow has been used to measure perfor-
mance when Tor is generally overloaded (as in our evalua-
tion) [47, 49, 52], and it has been used to measure the effects
of specific DoS attacks against Tor [51].

Our experiments are limited in scale. We simulated a pri-
vate Tor network with about 10% of both the number of re-
lays in and the bandwidth capacity of the public Tor network.
The cost to the adversary to conduct our attack may not scale
linearly with the amount of Tor capacity as we assumed in
§7.4, or there may be other issues that arise when scaling up
our attack. We note that we are limited by the capabilities of
our tools and resources and highlight that it would be uneth-
ical to conduct this work at scale on the public Tor network.
Attack Extensions: We did not evaluate the effects of onion
connection tunneling on DoS (i) because Tor could prevent
the attack by updating the default exit policy to prevent ex-
iting to a Tor relay, and (ii) in order to provide a more con-
servative estimate of the bandwidth and monetary costs of
performing our bandwidth DoS attack. However, we believe
that the technique would be simple to deploy. Additionally,
it would be interesting to explore the effects of our attacks
on performance when targeting subgroups of relays.



Mitigations: It is extremely challenging to mitigate band-
width DoS attacks on Tor because the circuits that we build
in our attack download an amount of traffic that a reasonable
client could realistically download. The Long Path part of
the attack could be mitigated if Tor changes its protocol to
further restrict the length of circuits, however, in this case
an adversary could switch to using hidden service circuits
which are 6 hops by default.

The Stop Reading part of our attack uses a separate TCP
connection to the entry relay for each attack circuit, and
builds many such connections and circuits in parallel. Tor
implemented mitigations to this kind of DoS attack and
merged them in early 2018 [24, 39] in response to reports
of DoS against relays [23, 38, 40]. In the new subsystem,
relays will refuse new TCP connections from any IP address
that creates more than 3 concurrent connections, and they
will refuse new circuits from the IP address if it also creates
more than 3 circuits per second with an allowable burst of
90 circuits (these were the default settings on 2018-11-01).
Our Tor experiments were configured to run with these DoS
mitigations in place, and our attacks did not trigger the DoS
defense on any relay. Our attacks were able to stay under
the connection threshold because we utilize every relay in
the network as an entry relay and we maintain only 1,000
circuits per client IP address (1.6 circuits per relay per client
IP address on average). While we do believe that the im-
plemented mitigations are effective against some attacks, we
note that the proliferation of IPv6 addressing may further re-
duce their effectiveness.

A defense against the Sniper Attack [45, 51] was merged
in Tor v0.2.4.14-alpha (released on 2013-06-13). The
defense detects and kills the circuit with the longest waiting
cell at the head of the queue if the relay is under memory
(RAM) pressure. The defense was active but was not trig-
gered in our experiments since we only download 20 MiB of
data through each circuit before abandoning it (our goal is
to consume bandwidth rather than a victim’s RAM as in the
Sniper Attack, so we do not require long queues).

In order to further limit the impact of the Stop Read-
ing strategy, we recommend the implementation and deploy-
ment of the authenticated SENDME design as previously de-
scribed [51] and specified [46]. With authenticated SENDMEs,
a client would need to continue reading data in order to con-
tinue producing authentic SENDME cells, and the exit would
destroy circuits on which it received invalid SENDMEs. This
defense would limit a stop reading DoS strategy to 1,000
cells (500 KiB) per circuit, effectively mitigating it.

8 Sybil Attacks
We previously explored several bandwidth-based DoS at-
tacks against Tor while estimating the cost to conduct each
attack and their effects on Tor performance; we summarize
our cost estimates in Table 5. In this section, we compare
our DoS attacks with a Sybil attack in which an adversary

Table 5: A summary of the costs of our main attacks.

Attack (Section) Service Bandwidth Cost

Bridge Congestion (§5) stresser 30 Gbit/s $17K/mo.
Load Unbalancing (§6) stresser 5 Gbit/s $2.8K/mo.
Relay Congestion (§7) ded. server 3 Gbit/s $1.6K/mo.

Table 6: The effective mean aggregate bandwidth resources of Tor
relays from 2017-11-01 to 2018-11-01 (in Gbit/s), computed us-
ing positional bandwidth weights from 2018-11-01.

Bandwidth Entry Middle Exit Total

Usage 42.4 (36.0%) 42.9 (36.4%) 32.5 (27.6%) 118
Capacity 86.7 (35.0%) 96.7 (39.1%) 64.0 (25.9%) 247

instead uses its budget to run several high-bandwidth Tor re-
lays in order to affect as much Tor user traffic as possible.
Relay Resources: To determine which type of relays would
be most advantageous, we computed the effective positional
bandwidth usage by and capacity of Tor relays over the year
preceding 2018-11-01. The effective bandwidth accounts
for relay flags and position weights, both of which are used
to determine in which position a relay will be selected. From
the results shown in Table 6, we can see that exit bandwidth
is the scarcest, with only 27.6% of the total bandwidth used
and 25.9% of the total bandwidth capacity.
Sybil DoS Attack: An adversary could run Sybil relays and
then arbitrarily degrade the performance of all traffic for-
warded through its Sybils, or deny service by dropping cir-
cuits. Note that for such an attack to work, the adversary
must (i) maintain a high selection probability by providing
high performance during periods in which it is measured by
Tor’s bandwidth measurement system, and (ii) not trigger
Tor’s abusive relay detection systems (e.g., exit scanners) to
avoid getting ejected from the network. We assume that these
requirements can be met for the purposes of this analysis.

Due to exit bandwidth scarcity, an adversary can maxi-
mize its probability of appearing at least once in a circuit by
running all exit relays. We assume that the aggregate band-
width usage (i.e., network load) will remain constant as the
adversary adds additional bandwidth capacity (i.e., Sybil re-
lays), and that the probability that the adversary serves as the
exit in a circuit is approximately equal to its fractional exit
capacity (Table 6). Then, Sybil DoS attacks with bandwidth
budgets of 30, 5, and 3 Gbit/s (Table 5) could arbitrarily de-
grade performance for 30/(30+64)≈32%, 5/(5+64)≈7.2%,
and 3/(3+64)≈4.5% of exit circuits, respectively. Compara-
tively, our attack in §5 affects all non-private bridge circuits,
and our attacks in §6 and §7 affect all circuits.
Sybil Deanonymization Attack: If an adversary is able
to observe both the entry and exit points in a circuit (its
relays are chosen in the first and last circuit positions),
then it is generally assumed that the circuit is vulnerable to
compromise because traffic correlation can be performed to
deanonymize the user with high probability [65, 66]. Note



Table 7: The fraction of circuits affected by Sybil attacks.

Bandwidth Sybil DoS Sybil Deanonymization

30 Gbit/s 32% degraded 21% entry · 5.3% exit ≈ 1.1% total
5 Gbit/s 7.2% degraded 4.5% entry · 1.2% exit ≈ 0.06% total
3 Gbit/s 4.5% degraded 2.8% entry · 0.8% exit ≈ 0.02% total

that a selective service refusal attack, where an adversary re-
fuses to forward traffic on any circuit it is not in a position to
compromise [16], could be mitigated by Tor’s route manipu-
lation (path bias) detection system [26, §7].

In order to observe both ends, an adversary must operate
at least one entry guard and at least one exit relay. The entry
position is more difficult to obtain since Tor clients use the
same guard relay for months at a time [29]. Therefore, previ-
ous work has found that a 5:1 guard-to-exit relay bandwidth
allocation maximizes the probability of observing both sides
of a circuit at least once [54].

A Sybil deanonymization attack with a bandwidth bud-
get of 3 Gbit/s (Table 5) and a 5:1 guard-to-exit relay band-
width allocation would allow the adversary to observe the
entry for 5

6 ·3/( 5
6 ·3+86.7)≈2.8% of Tor clients and observe

the exit for 1
6 ·3/( 1

6 ·3+64.0)≈0.8% of circuits built by those
clients. Thus, approximately 0.02% of circuits would be vul-
nerable. Table 7 shows results for other bandwidth budgets
and summarizes our Sybil attack analysis.
Discussion: Note that Sybil attacks require fixed costs, be-
cause relays must generally be fast and reliable in order to be
properly utilized by the network. Additionally, attacks that
require guard relays can take months to observe a full set of
some clients (due to guard rotation times), and much longer
to observe a set containing specific clients. Conversely, our
attacks are more flexible because they do not require fixed
costs, can be run with clients rather than service providers
(relays), and can be repeatedly started and stopped as nec-
essary. Further, our attacks immediately affect all clients
(rather than some sample), and our relay congestion attack
(§7) benefits from the anonymity that Tor provides.

9 Conclusion

This paper performs a multifaceted examination of Tor’s vul-
nerability to DoS, considering both the efficacy of DoS at-
tacks as well as the adversary’s cost of performing them. On
the positive side, we find that Tor’s growth has made it more
resilient at least to simple attacks: disrupting the service by
naı̈vely flooding Tor relays using stresser services is an ex-
pensive proposition and requires $7.2M/month.

Unfortunately, however, several aspects of Tor’s design
and rollout make it susceptible to more advanced attacks. We
find that Tor’s bridge infrastructure is heavily dependent on
a small set of fixed default bridges, the operational of which
can be disrupted at a cost of $17K/month. Additionally, Tor’s
mechanism for measuring load is too centralized and brittle,

and even inexpensive techniques (e.g., costing $2.8K/month)
can significantly perturb these processes and cause dramatic
performance degradation across the network. Finally, attack-
ers can saturate Tor’s capacity by constructing long paths in
the network, and exploit protocol vulnerabilities to decrease
the costs of such attacks; for example, we find that an at-
tacker can significantly degrade the performance of the net-
work for as little as $1.6K/month. We also compare our at-
tacks to Sybil attacks and highlight that our load balancing
and relay congestion attacks are more effective and flexible
than Sybil attacks with the same budget.

For each attack, we describe mitigation strategies that
Tor could adopt to improve its resiliency. In particular, we
recommend additional financing for meek bridges, moving
away from load balancing approaches that rely on central-
ized scanning, and Tor protocol improvements (in particular,
the use of authenticated SENDME cells).
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