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Abstract
OpenPGP and S/MIME are the two major standards to en-
crypt and digitally sign emails. Digital signatures are sup-
posed to guarantee authenticity and integrity of messages. In
this work we show practical forgery attacks against various
implementations of OpenPGP and S/MIME email signature
verification in five attack classes: (1) We analyze edge cases
in S/MIME’s container format. (2) We exploit in-band sig-
naling in the GnuPG API, the most widely used OpenPGP
implementation. (3) We apply MIME wrapping attacks that
abuse the email clients’ handling of partially signed mes-
sages. (4) We analyze weaknesses in the binding of signed
messages to the sender identity. (5) We systematically test
email clients for UI redressing attacks.

Our attacks allow the spoofing of digital signatures for ar-
bitrary messages in 14 out of 20 tested OpenPGP-capable
email clients and 15 out of 22 email clients supporting
S/MIME signatures. While the attacks do not target the un-
derlying cryptographic primitives of digital signatures, they
raise concerns about the actual security of OpenPGP and
S/MIME email applications. Finally, we propose mitigation
strategies to counter these attacks.

1 Introduction

Email is still the most important communication medium on
the Internet and predates the World Wide Web by roughly
one decade. At that time, message authenticity was not a ma-
jor concern, so the early SMTP and email [1, 2] standards did
not address confidentiality or the authenticity of messages.

Email Authenticity As the ARPANET evolved into the In-
ternet, email usage changed. Email is now used for sensitive
communication in business environments, by the military,
politicians and journalists. While technologies such as SPF,
DKIM, and DMARC can be used to authenticate the domain
of the sending SMTP server, these are merely helpful in mit-
igating spam and phishing attacks [3]. These technologoies,

however, do not extend to authenticating the sending person,
which is necessary to provide message authenticity.

Two competing email security standards, OpenPGP [4]
and S/MIME [5], offer end-to-end authenticity of messages
by digital signatures and are supported by many email clients
since the late 1990s. Digital signatures provide assurance
that a message was written by a specific person (i.e., au-
thentication and non-repudiation) and that it was not changed
since then (i.e., integrity of messages). Adoption is still low1

due to severe usability issues, but both technologies have
a large footprint either in the industry (S/MIME) or with
high-risk roles such as journalists, lawyers, and freedom ac-
tivists (OpenPGP). One example: Debian (a volunteer group
with over 1000 members) relies on the authenticity of signed
emails for voting on project leaders and proposals. We thus
ask: Is it possible to spoof a signed email such that it is in-
distinguishable from a valid one even by an attentive user?

Figure 1: Screenshot of a spoofed PGP signature in Apple Mail,
based on wrapping a signed email published by Phil Zimmermann.

Spoofing Valid Signatures Signature verification in the
context of email is complex. For example, emails can be
signed by an entity other than the sender or signed emails
may be forwarded (resulting in partly signed messages).

1We examined OpenPGP keyservers and measured over 20k key uploads
per month consistently over the last 4 years. We also found that Thunderbird
reports 150k daily users (on work days) for the PGP-plugin Enigmail.



Also, signatures are an optional feature of email and there-
fore generally not enforced. Most importantly, the result of
the verification must be presented to the user such that there
is no room for misinterpretation. Any failure to do so may
lead to a signature spoofing attack as shown in Figure 1. This
paper describes the results of our analysis of the most widely
used email clients supporting PGP or S/MIME signatures.

Attack Classes Our attacks do not break the cryptography
in digital signatures, but rather exploit weaknesses in the way
PGP and S/MIME signatures are verified by email clients,
and how the verification outcome is presented to the user.

We define the following five attack classes:

1. CMS attacks. Cryptographic Message Syntax (CMS)
is a versatile standard for signed and encrypted mes-
sages within the X.509 public-key infrastructure. We
found flaws in the handling of emails with contradicting
or unusual data structures (such as multiple signers) and
in the presentation of issues in the X.509 trust chain.

2. GPG API attacks. GnuPG is the most widely used
OpenPGP implementation, but it only offers a very re-
stricted command line interface for validating signa-
tures. This interface is vulnerable to injection attacks.

3. MIME attacks. The body of an email is conceptu-
ally a MIME tree, but typically the tree has only one
leaf which is signed. We construct non-standard MIME
trees that trick clients into showing an unsigned text
while verifying an unrelated signature in another part.

4. ID attacks. The goal of this attack class is to display a
valid signature from the identity (ID) of a trusted com-
munication partner located in the mail header, although
the crafted email is actually signed by the attacker.

5. UI attacks. Email clients indicate a valid signature by
showing some security indicators in the user interface
(UI), for example, a letter with a seal. However, several
clients allow the mimicking of important UI elements
by using HTML, CSS, and other embedded content.

Contributions We make the following contributions:

• We present the results of our structured analysis of
OpenPGP and S/MIME signature verification in 25
widely used email clients.

• We present three new attack classes: attacks based on
CMS evaluation, on the syntax of the GnuPG machine
interface, and on wrapping signed content within invis-
ible subtrees of the MIME tree.

• We adapt two attack classes of web security to the email
context, namely UI redressing and ID spoofing.

• We show that our attacks bypass signature validation in
about 70% of the tested email clients, including Out-
look, Thunderbird, Apple Mail, and iOS Mail.

Coordinated Disclosure We reported all our attacks and
additional findings to the affected vendors and gave advice
on appropriate countermeasures.

2 Background

2.1 End-to-End Email Authenticity
The digital signature parts of the OpenPGP and S/MIME
standards provide end-to-end authenticity for email mes-
sages. First and foremost, both technologies are configured
on the endpoints and technically-versed users can therefore
choose to use them independently of the email server config-
uration. In both standards, the keys are bound to users and
thus authenticate users independently of the transport.

OpenPGP Email Signing Phil Zimmerman invented PGP
(Pretty Good Privacy) in 1991 and due to its popularity,
PGP was standardized as OpenPGP by the IETF [6]. The
most popular implementation is GnuPG.2 There are two
common ways to use OpenPGP in emails. With Inline
PGP, the email body directly contains the OpenPGP data.
The MIME multipart standard is not used and the MIME
type is text/plain. With PGP/MIME, the email has
a multipart/signed MIME structure, where the signed
message is the first part and the detached signature is the
second part. Some email clients support PGP natively, but
most (in particular Thunderbird, Apple Mail, and Outlook)
need a plugin, which provides an intermediate layer between
the mail client and a PGP implementation like GnuPG.

S/MIME Email Signing In 1999, the IETF published
S/MIME (Secure/Multipurpose Internet Mail Extension)
version 3 as an extension to the MIME standard with
certificate-based cryptography [5]. S/MIME is the result of
a long history of secure email protocols and can be seen as
the first Internet standards-based framework to digitally sign,
authenticate, or encrypt emails. S/MIME uses the Crypto-
graphic Message Syntax (CMS) as its underlying container
format. The signatures themselves are always CMS encoded,
but the signed message can either be included in the CMS
(opaque signature) or be transmitted as the first part of a
multipart/signed message (detached signature).

2.2 Trust and Validity
Verifying the cryptographic integrity of a signature is often
not sufficient. In addition to this verification, the public key

2W. Koch, GNU Privacy Guard, https://gnupg.org/.

https://gnupg.org/


that generated the signature must be connected to some ac-
tual person or entity, such as an email address, by a certifi-
cate. S/MIME certificates are issued by certificate authorities
which are trusted by the email clients. It is easy for users to
order S/MIME certificates and sign messages which are ac-
cepted by all clients. PGP as a product of the cypherpunk
movement distrusts central authorities, so user IDs in PGP
are only self-signed by default. This does not provide any
protection against spoofing and puts responsibility for trust
management into the hands of users and applications. In fact,
no version of the OpenPGP standard defines a trust model
for user ID binding signatures. Historically, users of PGP
were encouraged to participate in the Web of Trust, a de-
centralized network of peers signing each other’s user IDs,
paired with a scoring system to establish trust paths between
two peers that want to communicate. Signatures and keys
are exchanged through a network of public keyservers. This
approach has been found difficult to use, privacy invasive,
and hard to scale, so some email clients implement their own
trust model (e.g., OpenKeychain, R2Mail2, and Horde/IMP).

3 Attacker Model and Methodology

In our scenario we assume two trustworthy communication
partners, Alice and Bob, who have securely exchanged their
public PGP keys or S/MIME certificates. The goal of our
attacker Eve is to create and send an email with arbitrary
content to Bob whose email client falsely indicates that the
email has been digitally signed by Alice.

Attacker Model We assume that Eve is able to create and
send arbitrary emails to Bob. The email’s sender is spoofed
to Alice’s address, for example, by spoofing the FROM header,
a known impersonation technique which should be prevented
by digital signatures. This is our default attacker model with
the weakest prerequisites. It is sufficient for the UI attack
class, and some CMS and GPG API attacks.

For the MIME attack class and some CMS attacks, we
also assume that the attacker has a single valid S/MIME or
OpenPGP signature from Alice which may have been ob-
tained from previous email correspondence, public mailing
lists, signed software packages, signed GitHub commits, or
other sources. This is a weak requirement as well, because
digital signatures are usually not kept secret. In fact, in
many cases digital signatures are used explicitly to give pub-
lic proof that some content was created by the signer.

For the ID attack class and one attack in the GPG API
class, we assume that Bob trusts Eve’s signatures. For
S/MIME this condition always holds because Eve can eas-
ily obtain a valid certificate from a trusted CA for her own
email address. For OpenPGP, Bob must import Eve’s public
key and mark it as valid. This is a stronger condition, but
holds if Eve is a legitimate communication partner of Bob.

An overview of the attack classes and attacker models is
given in Table 1. Each attack class is described in section 4
and the subscript identifies the specific attack, i.e., M1 iden-
tifies attack 1 in the MIME attack class.

Attacker Model

Attack class Mail only Need signature Key trusted

CMS (4.1) C3, C4 C1, C2 –
GPG (4.2) G1 – G2
MIME (4.3) – M1, M2, M3, M4 –
ID (4.4) – – I1, I2, I3
UI (4.5) U1 – –

Table 1: Attacker’s capabilities for all test cases in each attack class.

Our attacker model does not include any form of social engi-
neering. The user opens and reads received emails as always,
so awareness training does not help to mitigate the attacks.

Methodology We define that the authenticity of a signed
email is broken in the context of an email client UA if the pre-
sentation of a crafted email in UA is indistinguishable from
the presentation of a “valid” signed email (either as perfect
or partial forgery). Furthermore, we document cases where
we could forge some, but not all GUI elements required for
indistinguishability (i.e., a weak forgery).

• Perfect forgery ( ) If a presentation is identical at
any number of user interactions, regardless of any addi-
tional actions the user takes within the application, we
call the forgery “perfect” (e.g., Figure 1).

• Partial forgery (G#) If a presentation is only identical at
the first user interaction (i.e., when an email is opened
and the standard GUI features are visible), we call the
forgery “partial” (e.g., Figure 14).

• Weak forgery (#) If a presentation contains contra-
dicting GUI elements at the first user interaction, with
some but not all elements indicating a valid signature,
we call this forgery “weak” (e.g., Figure 15).

We suspect that partial forgeries already go unnoticed by
unwitting users, so we classify perfect and partial forgeries
as successful attacks. Weak forgeries show signs of spoofing
at the first glance. As part of our evaluation, we provide
screenshots of interesting cases to illustrate the differences.

Selection of the Clients We evaluate our attacks against
25 widely-used email clients given in Table 2 and Table 3.
Of these, 20 support PGP and 22 are capable of S/MIME
signature verification. They were selected from a compre-
hensive list of over 50 email clients assembled from public
software directories for all major platforms (i.e., Windows,
Linux, macOS, Android, iOS, and web). Email clients were



excluded when they did not support PGP or S/MIME signa-
tures, were not updated for several years, or the cost to ob-
tain them would be prohibitive (e.g., appliances). All clients
were tested in the default settings with an additional PGP or
S/MIME plugin installed, where required.

4 Attacks

4.1 CMS Attack Class

The Cryptographic Message Syntax (CMS, the container for-
mat used by S/MIME) is a versatile standard for signed
and encrypted emails. It not only supports a broad range
of use cases (e.g., multiple signers), but also copes with
legacy problems like lack of software support and misbehav-
ing gateways. This made the standard more complex; several
values in a CMS object are optional, or may contain zero or
more values.3 Furthermore, two different signature formats
are defined. This makes it difficult for developers to test all
possible combinations (either plausible or implausible).

Opaque and Detached Signatures The CMS and
S/MIME standards define two forms of signed messages:
opaque and detached signatures [7] (also called embedded
and external signatures). The signature is always a CMS ob-
ject, but the corresponding message can either be embedded
into this object or transmitted by other means.

When signing in opaque mode, the to-be-signed content
(i.e., “the message text”) is embedded into the binary CMS
signature object via a so called eContent (or “embedded
content”) field (see Figure 2a).

In detached signatures, the eContent must be absent in
order to signal that the content will be provided by other
means. This is what the multipart/signed structure does; the
email is split into two MIME parts, the first one is the con-
tent and the second one is the CMS signature without the
eContent field (see Figure 2b).

eContent Confusion (C1) A confusing situation arises
when the eContent field is present even though the mul-
tipart/signed mechanism is used. In this case, the client can
choose which of the two contents (i.e., either the opaque or
detached contents) to verify and which of the two contents
to display. Clearly, it is a security issue when the verified
content is not equal to the content which is displayed.

The “eContent Confusion” allows perfect forgeries of ar-
bitrary signed emails for a person from which we already
have a signed email. Because opaque signatures can be trans-
formed into detached signatures and vice versa, any signed
email will work for the attack.

3Here optional means potentially absent, which is different from present
but empty.

1From: Alice
2To: Bob
3Subject: Opaque signature
4Content-Type: application/pkcs7-mime; smime-type=signed-data
5Content-Transfer-Encoding: base64
6

7<base64-encoded CMS object with eContent>

(a) A message with an opaque signature. The message is embedded
in the CMS object and is not directly readable by a human.

1From: Alice
2To: Bob
3Subject: Detached signature
4Content-Type: multipart/signed; protocol="application/pkcs7-

signature"; boundary="XXX"
5

6--XXX
7Content-Type: text/plain
8

9Hello, World! This text is signed.
10--XXX
11Content-Type: application/pkcs7-signature;
12Content-Transfer-Encoding: base64
13

14<base64-encoded CMS object without eContent>
15--XXX--

(b) A message with a detached signature. The message is in the
first MIME part and directly readable by a human. Legacy software
tended to damage line endings or encoding in such emails, which
broke the signature verification.

Figure 2: Opaque and detached signatures as used in S/MIME.

Attack Refinement. Although the eContent is not shown in
the email client, it is easily revealed under forensic analysis
that an old email was reused for this attack. Interestingly, the
attack can be refined to remove the original content entirely
without affecting the outcome of the signature verification.

Similarly to opaque and detached signatures, where an ab-
sent eContent signals that the content is provided some-
where else, CMS supports so called “signed attributes”,
whose absence or presence signals what was signed. If a
signedAttrs field is present, the signature covers the exact
byte sequence of the signedAttrs field and not the content
per se. If naively implemented, this would of course leave the
content unauthenticated. Therefore, the signedAttrs field
must contain a hash of the content [7]. If the signedAttrs
field is absent, the signature covers the eContent directly.

This indirect signing allows the replacement of the
original content with the exact byte sequence of the
signedAttrs field without affecting the signature verifi-
cation outcome. An email modified in this way will ap-
pear “empty” or contain seemingly “garbage” (because the
signedAttrs is interpreted as ASCII). In either case, this
can be used to hide where the old signature originated from.
We consider this a noteworthy curiosity.

Multiple Signers (C2) S/MIME and CMS allow multiple
signers in parallel to sign the same content [7]. Obviously,
the outcome of the verification may differ for each signer



and the user interface should make that clear. However, it
is reasonable to show a simplified version. We consider it a
forgery if an invalid signature is marked as “valid” due to the
presence of an unrelated valid signature.

No Signers (C3) A CMS signature object may contain zero
or more signers. Although RFC 5652 gives limited advice
regarding zero signers, it does not state explicitly what to do
with “signed messages” without a signer.

Trust Issues (C4) In contrast to OpenPGP, S/MIME is built
upon trust hierarchies. Certificates are authentic as long as
they can be traced back to a valid root certificate. In practice,
this means that most S/MIME certificates (in the Internet
PKI) are indirectly trusted. However, clients must check the
validity of the certificate chain. We consider it a forgery if a
client accepts invalid certificates, such as self-signed certifi-
cates or otherwise untrusted or non-conforming certificates.

4.2 GPG API Attack Class

GnuPG, a stand-alone OpenPGP implementation, provides
a stateful text-based command-line interface with approxi-
mately 380 options and commands. The complexity of the
API and the need for consumers to parse GnuPG’s string
messages provides a rich attack surface.

GnuPG Status Lines GnuPG provides a machine-
readable interface by emitting status lines in a simple text-
based format (see Figure 3), via the --status-fd option.
Each status line starts with [GNUPG:] and one of approxi-
mately 100 possible keywords (such as GOODSIG), followed
by additional text specific to the keyword.

Although some documentation exists, it does not cover all
possible sequences of status lines and their significance for
any given operation. In fact, due to streaming processing,
the complexity of the API reflects the overall complexity of
the OpenPGP message format. In particular, we note the
following risk factors:

• The API contains text under the attacker’s control (e.g.,
the <user-id> in GOODSIG), which must be escaped to
prevent injection attacks.

• The number and order of status lines depend on the
OpenPGP packet sequence, which is under the at-
tacker’s control. Applications must handle all combi-
nations correctly that are allowed by GnuPG.

• The API is stateful, i.e., the semantics of a status line
can depend on its position in the sequence. For ex-
ample, the validity indicated by a TRUST_* line applies
only to the signature started by the previous NEWSIG.

1 $ gpg --status-fd 2 --verify
2 [GNUPG:] NEWSIG
3 [GNUPG:] GOODSIG 88B08D5A57B62140 <alice@good.com>
4 [GNUPG:] VALIDSIG 3CB0E84416AD52F7E186541888B08D5A57B62140

2018-07-05 1530779689 0 4 0 1 8 00 3
CB0E84416AD52F7E186541888B08D5A57B62140

5 [GNUPG:] TRUST_FULLY 0 classic

(a) Example output for a single trusted signature (excerpt).

1 NEWSIG [<signers-user-id>]
2 GOODSIG <key-id> <user-id>
3 BADSIG <key-id> <user-id>
4 VALIDSIG <fingerprint> <date> <create-timestamp> <expire-

timestamp> <version> <reserved> <public-key-algorithm> <
hash-algorithm> <signature-class> [<primary-key-
fingerprint>]

5 TRUST_NEVER <error-token>
6 TRUST_FULLY [0 [<validation-model>]]
7 PLAINTEXT <format> <timestamp> <filename>
8 PLAINTEXT_LENGTH <length>

(b) Important status lines for signature verification from GnuPG.

Figure 3: Status lines output by GnuPG as a side-effect of streaming
message processing.

• The use of the API requires a good understanding of
OpenPGP and trust models as implemented in GnuPG.
The GOODSIG, VALIDSIG and TRUST_* lines have very
specific technical meaning that is not always apparent
from the inconsistent terminology in the interface.

• By default, GnuPG runs in the context of the user’s
home directory, using their configuration files and
keyrings, which can influence the output of GnuPG
within, and outside of, the status line API.

We focus our work on injection attacks and applications
parsing the interface. First, we review the source code of
GnuPG to identify places where an attacker could inject un-
trusted data at trusted positions in the API. Then we review
all open source mail clients to identify exploitable mistakes
in the API parser.

In-band Injection Attacks (G1) There are various places
in the GnuPG status line API that contain untrusted data un-
der the attacker’s control. For example, the <user-id> in a
GOODSIG status line is an arbitrary string from the public key
that can be crafted by an attacker. A naive idea is to append a
newline character followed by a spoofed status line into the
user ID of a public key. Normally, GnuPG protects against
this naive attack by properly escaping special characters.

In addition to the status line API, we also review the log-
ging messages for injection attacks. This is due to a common
pattern, where applications using GnuPG conflate the status
API and the logging messages by specifying the same data
channel stdout for both (using the command line option
--status-fd 2). Best practice requires separate channels
to be used, but technical limitations can make this difficult
for some plugins and cross-platform applications.



Thunderbird Enigmail GnuPG

[GNUPG:] PLAINTEXT…

gpg: filename is '

[GNUPG:] GOODSIG…

'

[SessionKeyPacket]

[EncryptedDataPacket

 [CompressedDataPacket

  [LiteralDataPacket

   filename:

    "\n[GNUPG:] GOODSIG…\n"

   data:

    "Johnny, You are fired!"

  ]

 ]

]

signed=true

LOG

STATUS

FROM: Manager

TO: Johnny

--BEGIN PGP--

hQIMA1B0...

=xDrQ

--END PGP--

--BEGIN PGP--

hQIMA1B0...

=xDrQ

--END PGP--

Figure 4: In-band injection of GnuPG status lines via log messages.

If an injection attack is successful, it can be very pow-
erful, as the attacker can spoof the status lines entirely and
provide arbitrary data to the application. Such spoofed status
lines can include forged indications of a successful signature
validation for arbitrary public keys. A valid PGP message
containing the injection payload is showed in Figure 4.

Attacks on Email Clients Using GPG (G2) The GnuPG
interface provides only limited functionality; for example, it
is not possible to validate a signature against a single public
key in the keyring, but only against all public keys contained
therein. Since this is insufficient for validating the sender of
an email, GnuPG returns a string containing the user ID and
the result of the validation. By manipulating this string, mail
clients can be tricked into giving false validation results.

Applications using the GnuPG status line API have to
parse the status lines and direct a state machine, keeping
track of verification and decryption results under a wide
range of different inputs, user configurations and GnuPG
versions. Thus, application developers often use a common
design pattern to deal with the complexity, such as: Iterat-
ing over all status line messages, parsing the details of those
status lines that have information relevant to the task the ap-
plication is interested in, and ignoring all other unknown or
unsupported messages. This can lead to a number of serious
vulnerabilities. For example, if an application is unprepared
to handle multiple signatures, it might not reset the signa-
ture verification state at the NEWSIG status line, conflating the
verification result of multiple signatures into a single result
state. This might allow an attacker to add more signatures
to an existing message to influence the result. Another ex-
ample is the use of regular expressions that are not properly
anchored to the status line API data format, thereby allowing
an attacker to inject data that, although it is properly escaped
by GnuPG, is then misinterpreted by the application.

4.3 MIME Attack Class

In this section we discuss attacks on how email clients handle
partially signed messages in the case that the signed part is

wrapped within the MIME tree of a multipart message. For
this class of attacks, the attacker is already in possession of at
least one message and a corresponding valid signature from
the entity to be impersonated. The obtained message can be
in Inline PGP, PGP/MIME, or S/MIME as all formats can be
embedded as sub-parts within a multipart message.

Prepending Attacker’s Text (M1) Email clients may dis-
play a valid signature verification status even if only a single
MIME part is correctly signed. In such a scenario of par-
tially signed emails, the attacker can obfuscate the existence
of the correctly signed original message within a multipart
email. For example, this can be achieved by prepending the
attacker’s message to the originally signed part, separated by
a lot of newlines, resulting in a weak forgery.

Hiding Signed Part with HTML (M2) Another option is
to completely hide the original part with HTML and/or CSS,
resulting in a perfect forgery. There are several ways to do
this. One way occurs if the email client renders the out-
put of multiple MIME-parts within a single HTML docu-
ment presented to the user, then the signed part can simply
be commented out, for example, using HTML comments.
Furthermore, it can be embedded in (and therefore hidden
within) HTML tags, or wrapped into CSS properties like
display:none. An example for such a MIME-wrapping
attack based on a hidden signed part is shown in Figure 5.

1From: manager@work.com
2To: johnny@work.com
3Subject: Signed part hidden with CSS/HTML
4Content-Type: multipart/mixed; boundary="XXX"
5

6--XXX
7Content-Type: text/html
8

9Johnny, you are fired!
10<div style="display:none"><plaintext>
11

12--XXX
13––-BEGIN PGP SIGNED MESSAGE––-
14Hash: SHA512
15

16Congratulations, you have been promoted!
17––-BEGIN PGP SIGNATURE––-
18iQE/BAEBAgApBQJbW1tqIhxCcnVjZSBXYXluZSA8YnJ1Y2V3YXluZTQ1...
19––-END PGP SIGNATURE––-
20

21--XXX--

Figure 5: Signature spoofing attack based on MIME wrapping. The
signed part is hidden by HTML/CSS, while the message “Johnny,
You are fired!” is displayed by the email client.

Hiding Signed Part in Related Content (M3) Even if
there is a strict isolation between multiple MIME parts, it can
be broken using cid: references (see RFC 2392). This can
be achieved by constructing a multipart/related mes-
sage consisting of two parts. The first MIME part contains



1 From: Philip R. Zimmermann <prz@pgp.com>
2 To: johnny@work.com
3 Subject: PGP signed message
4 Content-Type: multipart/related; boundary="XXX"
5

6 --XXX
7 Content-Type: text/html
8

9 <b>Johnny, You are fired!</b>
10 <img src="cid:signed-part">
11

12 --XXX
13 Content-ID: signed-part
14

15 ––-BEGIN PGP SIGNED MESSAGE––-
16 A note to PGP users: ...
17 ––-BEGIN PGP SIGNATURE––-
18 iQA/AwUBOpDtWmPLaR3669X8EQLv0gCgs6zaYetj4JwkCiDSzQJZ1ugM...
19 ––-END PGP SIGNATURE––-
20

21 --XXX--

Figure 6: Multipart email with a cid: reference to the signed part.

an attacker-controlled text and a cid: reference to the origi-
nal signed part, which is placed into the second MIME part.
An example email to demonstrate such an attack is given in
Figure 6. It contains an HTML message part and a signed
text which was written and published by Phil Zimmermann
back in 2001.4 The cid: reference enforces the signed (but
invisible) part to be parsed by the mail client, which indicates
a valid signature for the shown message (from the first part).
This allows us to impersonate Phil Zimmermann5 for arbi-
trary messages. A corresponding screenshot of Apple Mail
(GPG Suite) is given in Figure 1 on the first page.

Hiding Signed Part in an Attachment (M4) Even without
using HTML, the originally signed part can be hidden by
defining it as an attachment. This can be done by placing it
into a sub-part with the additional header line shown below:

Content-Disposition: attachment; filename=signature.asc

4.4 ID Attack Class
In this section we discuss attacks on how email clients match
a signed message to a sender’s identity. These attacks are less
powerful than those previously discussed, because indistin-
guishability is rarely given at all levels of user interaction,
i.e., many clients allow the user to check the signature de-
tails, which may reveal signs of manipulation.

Not Checking If Sender= Signer (I1) When dealing with
digital signatures, the question Signed by whom? is impor-
tant. If Bob’s email client simply displayed “valid signature”
for any PGP or S/MIME signed message, Eve could sign her

4P. Zimmermann, A (Inline PGP signed) note to PGP users,
https://philzimmermann.com/text/PRZ_leaves_NAI.txt

5PGP key ID 17AFBAAF21064E513F037E6E63CB691DFAEBD5FC

From: Alice <eve@evil.com>

(a) Display name and email address in FROM header.

From: alice@good.com <eve@evil.com>

(b) Display name set to email address FROM header.

From: alice@good.com
From: eve@evil.com

(c) Multiple FROM header.

Sender: alice@good.com
From: eve@evil.com

(d) SENDER and FROM headers.

Figure 7: Examples how to fool signature verification logic if the
PGP user ID or the Internet mail address in the signer’s S/MIME
certificate is compared to sender address in the email header.

message and send it to Bob with Alice set as the sender. This
is due to a lack of binding between the user ID from the sig-
nature and the address given in the FROM header.

Display Name Shown as Signer (I2) There are two op-
tions to handle this problem. First, a mail client can ex-
plicitly display the signer’s identity somewhere in the UI
and let the user compare it to the sender address. Second,
the email client can check whether the signer’s identity (i.e.,
email address) equals the sender’s address, and show a warn-
ing if this is not the case. The second option gives a lot of
room for attacks; RFC 2632 for S/MIME signed messages
states that “receiving agents must check that the address in
the From or Sender header of a mail message matches an
Internet mail address in the signer’s certificate”. However,
in practice email clients can only check if the FROM header
contains the signer’s email address because RFC 5322 al-
lows additional display names to be associated with a mail-
box (e.g., Name <foo@bar>). If an email client only shows
the display name to the user, Eve can simply set Alice as dis-
play name for her own sender address (see Figure 7a). Also,
in such a scenario the display name itself could be set to an
email address such as alice@good.com that is presented to
the user, see Figure 7b.

An example screenshot for Outlook, which required ad-
ditional effort, is given in Figure 8a. The source code of
this mail can be found in Figure 8b. While Outlook always
shows the full sender address (eve@evil.com), it can simply
be “pushed out of the display” by appending a lot of whites-
paces to the display name (manager@work.com).

From/Sender Header Confusion (I3) Another problem is
how email clients deal with multiple FROM fields in the mail
header—especially if PGP or S/MIME support is not imple-
mented directly by the email client, but offered through a

https://philzimmermann.com/text/PRZ_leaves_NAI.txt


(a) Screenshot of a spoofed PGP signed message in Outlook which
was actually signed by the attacker (eve@evil.com).

1 From: manager@work.com [whitespaces] x <eve@evil.com>
2 To: johnny@work.com
3 Reply-to: manager@work.com
4 Subject: Signed by whom?
5 Content-Type: multipart/signed; boundary="XXX";
6 protocol="application/pgp-signature"
7

8 --XXX
9

10 Johnny, you are fired!
11

12 --XXX
13 Content-Type: application/pgp-signature
14

15 [valid signature by eve@evil.com]
16 --XXX--

(b) Proof-of-concept email source code to forge PGP signatures.

Figure 8: PGP signature spoofing attack against Outlook/GpgOL,
based on the RFC 5322 display name shown as the signer’s identity.

third-party plugin—as there may be different implementa-
tions on how to obtain the sender address of an email. For ex-
ample, the email client could display the email address given
in the first FROM header while the plugin would perform its
checks against any occurrence of this header field (see Fig-
ure 7c). Also, the plugin could respect the SENDER header in
its checks which “specifies the mailbox of the agent respon-
sible for the actual transmission of the message” [8] while
the mail client would display the email address taken from
the FROM email header (see Figure 7d). Note that if Eve sets
an additional Reply-to: alice@good.com header, which
instructs the email client to reply to Alice, such attacks go
unnoticed by Bob when replying to the email. They can,
however, be detected in most clients by reviewing the signa-
ture details and spotting Eve as the real signer.

4.5 UI Attack Class (U1)

In this section, we discuss UI redressing attacks that exploit
the presentation of signature verification results to the user.
The attacks are successful if the spoofed message is indistin-
guishable from a message with a real valid signature.

This attack class exploits that various email clients dis-
play the status of the signature within the email content it-
self. This part of the UI is under the control of the attacker.

With HTML, CSS, or inline images it is easy to reproduce
security-critical UI elements displaying a “valid signature”.

Figure 9a shows a signed and a spoofed email in Round-
cube. The spoofed email is based on displaying a valid sig-
nature indicator with HTML and CSS (an example of UI re-
dressing). The HTML code is provided in Figure 9b.

(a) Two emails with visually indistinguishable signature indicators.
One is PGP-signed, the other is a specially crafted HTML email.

1From: manager@work.com
2To: johnny@work.com
3Subject: UI redressing
4Content-Type: text/html
5

6<div class="message-part">
7<div id="enigma-message1" class="enigma-notice1" style="margin-

left: -0.25em; margin-bottom: 5px; padding: 6px 12px 6px
30px; font-weight: bold; background: url(enigma_icons.png
) 3px -171px no-repeat #c9e6d3; border: 1px solid #008a2e
; color: #008a2e">

8Verified signature from Manager <manager@work.com>.
9</div><div class="pre">Johnny, You are fired!</div></div>

(b) Forging a PGP signature in Roundcube with UI redressing.

Figure 9: Security indicators in Roundcube. The indicator is in the
attacker-controlled HTML area, which allows trivial spoofing.

5 Evaluation

Of the tested 20 clients with PGP support, 15 use GnuPG to
verify signatures and call it either directly, or through some
kind of plugin such as Enigmail6 or GPG Suite,7 or by us-
ing the GPGME8 wrapper library. The remaining clients use
OpenPGP.js,9 OpenKeychain,10 or a proprietary solution. Of
the tested 22 clients with S/MIME support, only five require
third party plugins. The results of signature spoofing attacks
tested on the various email clients are shown in Table 2 for
OpenPGP and in Table 3 for S/MIME.

The results of our evaluation show a poor performance of
the overall PGP and S/MIME ecosystems when it comes to
trustworthiness of digital signatures; for ten OpenPGP capa-
ble clients and seven clients supporting S/MIME we could
spoof visually indistinguishable signatures on all UI levels
(resulting in perfect forgeries). On four additional OpenPGP

6P. Brunschwig, Enigmail, https://enigmail.net/
7L. Pitschl GPG Suite, https://gpgtools.org/
8W. Koch, GPGME, https://github.com/gpg/gpgme
9ProtonMail, OpenPGP.js https://openpgpjs.org/

10Cotech, OpenKeychain, https://openkeychain.org/

https://enigmail.net/
https://gpgtools.org/
https://github.com/gpg/gpgme
https://openpgpjs.org/
https://openkeychain.org/


capable clients and eight clients supporting S/MIME, we
could spoof visually indistinguishable signatures on the first
UI level (resulting in partial forgeries). While none of the at-
tacks directly target the underlying cryptographic primitives,
the high success rate raises concerns about the practical se-
curity of email applications. We discuss the results for each
class of attack in this section. We also published proof-of-
concept attack emails and screenshots of partial and weak
forgeries in a public repository.11

5.1 CMS Attack Class
eContent Confusion (C1) We found that Thunderbird,
Postbox, MailMate, and iOS Mail are vulnerable to eCon-
tent confusion. Given a valid S/MIME signature for a spe-
cific user, this allows a perfect forgery for any message of
this user. Note that opaque signed emails can be transformed
into detached signed emails and vice versa. Thus, having
any signed email from a target is enough to forge an arbi-
trary number of new messages. Mozilla assigned CVE-2018-
18509 to this issue.

Multiple Signers (C2) Evolution coerces multiple signers
into one “valid signature” UI element (see Figure 10). How-
ever, the UI reveals the erroneous signature upon further in-
spection of the UI. By definition, this is a partial forgery.

Figure 10: This email has two signers. The first signer did not
sign this email. Evolution coerced both signers into one security
indicator showing “valid signature”. (Minor details were removed
from the screenshot to make it smaller.)

No Signers (C3) In the case of no signers, three email
clients, namely Outlook, Mutt, and MailDroid, show some
UI elements suggesting a valid signature and some UI ele-
ments doing the opposite. We consider this a weak forgery,
because there is no clear indication that signature validation
has succeeded/failed. In Outlook an otherwise very promi-
nent red error bar is not shown and a seal indicates a valid
signature (although it should show a warning sign), see Fig-
ure 11. Interestingly, clicking through the UI in Outlook may
strengthen the illusion of a validly signed message because
of the wording in the subdialogs.

11https://github.com/RUB-NDS/Johnny-You-Are-Fired

Figure 11: “Signed email” in Outlook with no signers at all.

Trust Issues (C4) Although none of the clients accepted
“extended certificates”, i.e., certificates re-signed by a leaf
certificate with no CA=true flag, we observed that Trojitá
and Claws display conflicting UI elements on untrusted cer-
tificates (i.e., “success: bad signature”). Nine and MailDroid
do not display information about the origin of a certificate on
the first level of the UI. This means that, although there are
security indicators suggesting a signed email, the origin may
be completely untrustworthy, resulting in partial forgery.

5.2 GPG API Attack Class
We found an injection attack for the “embedded filename”
log message in GnuPG, as well as several issues in Enig-
mail’s status line parser and state machine.

Status Line Injection through Embedded Filename (G1).
OpenPGP Literal Data Packets, which contain the actual
plaintext of a message, contain some metadata, in particu-
lar an embedded filename that is usually set by the sender
to the original filename of a signed or encrypted file. We
found that GnuPG’s logging message for the embedded file-
name does not escape newline and other special characters.
If an application combines the logging messages with the
status line API in a single data channel, an attacker can use
the embedded filename to inject arbitrary status lines (up to
255 bytes, which can be sufficient to spoof the GOODSIG,
VALIDSIG and TRUST_FULLY lines for a single signature).
Figure 12b shows the injected text highlighted. The success-
ful attack is shown in Figure 12a.

Using this attack, we were able to spoof arbitrary signature
verification results in Enigmail, GPG Suite, and Mailpile.12

The attack only assumes our weakest attacker model, as all
relevant status lines can be injected into the embedded file-
name. In fact, the message does not even need to be signed
at all; the attack, however, has the additional requirement

12Manual signature verification using GnuPG on the command line is
also affected; the embedded filename can contain arbitrary terminal escape
sequences, allowing the attacker to overwrite any part of the terminal.

https://github.com/RUB-NDS/Johnny-You-Are-Fired


(a) Screenshot of a spoofed PGP signature in Thunderbird.

1 $ gpg --status-fd=2 --verbose message.gpg
2 gpg: original file name=’’
3 [GNUPG:] GOODSIG 88B08D5A57B62140 Manager <manager@work.com>
4 [GNUPG:] VALIDSIG 3CB0E84416AD52F7E186541888B08D5A57B62140

2018-07-05 1530779689 0 4 0 1 8 00
3CB0E84416AD52F7E186541888B08D5A57B62140

5 [GNUPG:] TRUST_FULLY 0 classic
6 gpg: ’’
7 [GNUPG:] PLAINTEXT 62 1528297411 ’%0A[GNUPG:]%20GOODSIG[...]
8 [GNUPG:] PLAINTEXT_LENGTH 56

(b) Example output for GnuPG status line injection (excerpt).

Figure 12: Status line injection attack on GnuPG.

that the user has enabled the verbose configuration option.
This option is not enabled by default, but it is often used by
experts and part of several recommended GnuPG settings.

The vulnerability is present in all versions of GnuPG until
2.2.8. Our finding is documented as CVE-2018-12020. Due
to the severity of the attack, we also reviewed non-email ap-
plications for similar vulnerabilities, see subsection 7.5.

State Confusion and Regular Expressions in Enigmail
(G2). We found two flaws in the way Enigmail handles sta-
tus messages for multiple signatures:

• If the status of the last signature is GOODSIG,
EXPKEYSIG, or REVKEYSIG, Enigmail will overwrite
the signature details (e.g., fingerprint, creation time, al-
gorithms) with those from the first VALIDSIG, confus-
ing the metadata of two signatures. The attacker can
change the state of a signature to good, expired, or re-
voked by adding a corresponding second signature.

• If any of the signatures is TRUST_FULLY or
TRUST_ULTIMATE, and the last signature is good,
expired, or revoked, then Enigmail will display the
information from the first VALIDSIG as trusted.

We also found regular expressions that were not anchored
to the beginning of status lines. This allows for injection of
fake VALIDSIG and other status lines in malicious user ID
strings. Combining this with the above, this allows an at-
tacker to control the signature details completely. The attack
involves two signatures on a single message, which Enig-
mail combines in a complex way to a single signature that is
shown to the user. We assume that the attacker is trusted, and
further assume that the attacker can poison the user’s keyring
with arbitrary untrusted keys. This is not a strong assumption

because in PGP the local keyring is just an insecure cache of
public keys. For example, the attacker might rely on auto-
matic key retrieval from public keyservers or include the key
as extra payload when sending her regular public key to Bob.

The first signature in the attack is by a key with a mali-
cious user ID, crafted by the attacker, that injects a spoofed
VALIDSIG status line. Because Enigmail processes this line
twice using different parsers, some information needs to be
duplicated to make the attack work. The second signature
is a regular valid signature over the same message by the
trusted attacker’s key. This signature sets the global flag
in Enigmail indicating that a signature is made by a trusted
key, but otherwise it is completely ignored. Figure 13 shows
which data in the attack is used by Enigmail. The fingerprint
will be used to resolve further details such as the user ID of
the (spoofed) signing key. The vulnerability is present in all
versions of Enigmail until 2.0.7, affecting Thunderbird and
Postbox. Our finding is documented as CVE-2018-12019.

1[GNUPG:] NEWSIG
2[GNUPG:] GOODSIG 8DA07D5E58B3A622 x 1527763815 x x x 1 10 x

4F9F89F5505AC1D1A260631CDB1187B9DD5F693B VALIDSIG x x 0 4
F9F89F5505AC1D1A260631CDB1187B9DD5F693B

3[GNUPG:] TRUST_UNDEFINED
4[GNUPG:] NEWSIG
5[GNUPG:] GOODSIG 88B08D5A57B62140 <eve@evil.com>
6[GNUPG:] TRUST_FULLY

Figure 13: The status line API as seen by Enigmail (abbreviated).

5.3 MIME Attack Class
On five PGP email clients, including popular products such
as Thunderbird and Apple Mail, we could completely hide
the original signed part (resulting in perfect forgeries) us-
ing multiple techniques, such as wrapping it into attacker-
controlled HTML/CSS (M1), referencing it as an “image”
(M2), or hiding it as an “attachment” (M3). On another three
clients we could only obfuscate the original signed message
part (resulting in weak forgeries) by appending it and us-
ing a multitude of newlines to cover its existence (M4). Our
findings are documented as CVE-2017-17848, CVE-2018-
15586, CVE-2018-15587, and CVE-2018-15588.

Our evaluation shows that S/MIME is less vulnerable to
signature wrapping attacks by design; all but one tested
email clients only show a valid signature verification if the
whole email including all sub-parts is correctly signed (i.e.,
Content-Type: multipart/signed is the root element
in the MIME tree). Unfortunately, it seems hard to get rid
of partially signed emails or mark them as suspicious, as can
be done for partially encrypted messages – a countermeasure
Enigmail applied to the EFAIL attacks [9] – because in the
PGP world, partially signed is quite common (e.g., mailing
lists, forwards, etc.). There seems to be a different philoso-
phy in the S/MIME world; for example, S/MIME forwarding



Figure 14: Partial forgery in the Windows 10 mail app. The email is
actually signed by Eve which is only visible in the signature details.

intentionally breaks the signature because the forwarding en-
tity should re-sign the message.

5.4 ID Class
Eleven PGP email clients and twelve S/MIME clients explic-
itly show the signer’s identity (i.e., PGP user ID or Internet
mail address in the signer’s S/MIME certificate) when re-
ceiving a signed email. This can be considered safe because
a user gets direct feedback regarding the signed by whom?
question. The other clients do not show the signer’s iden-
tity on the first level of the UI. Of those, two PGP email and
three S/MIME mail clients, such as the Windows 10 mail app
(see Figure 14), do not perform any correlation between the
sender address and the signer’s identity at all. They only
show “signed” with no further information, making them
easy targets for ID attacks (resulting in partial forgeries).
The other seven PGP email clients and eight S/MIME clients
compare the sender’s address to the email address found in
the public key or certificate matching the signature. This
process is error-prone. For four PGP email clients, including
GpgOL for Outlook, and eight S/MIME email clients, the
correlation could be fully bypassed using the various tech-
niques described in subsection 4.4. If Bob does not manu-
ally view the signature details, there is no indicator that the
email was signed by Eve instead of Alice (resulting in par-
tial forgery). For two of these clients (GpgOL for Outlook
and Airmail) no signature details were available, resulting in
perfect forgery.

5.5 UI Attack Class
Five tested PGP email clients and four S/MIME clients dis-
play the status of signatures within the email body, which is
a UI component controlled by the attacker. This allowed us
to create fake text or graphics implying a valid signature us-
ing HTML, CSS and inline images visually indistinguishable
from a real signed message. Only further investigation of the
email, such as viewing signature details, could reveal the at-
tack (resulting in partial forgery). Three of these clients do
not not even have an option for further signature details, re-

sulting in perfect forgery. Spoofing signatures was especially
easy for clients where the PGP or S/MIME plugin simply in-
jects HTML code into the email body. We could just copy
the original HTML snippet of a valid signature and re-send
it within the body of our spoofed email.

Another seven PGP clients and nine S/MIME clients show
the results of signature verification in, or very close to, the
email body and could be attacked with limitations (causing
weak forgeries). Some of these clients have additional indi-
cators in other parts of the UI pointing out that the email is
actually signed, but those indicators are missing in the case
of spoofed signatures based on UI redressing (see Figure 15).
Furthermore, in some of these clients the spoofed signature
was not 100% visually indistinguishable.

6 Countermeasures

Similarly to other RFC documents, S/MIME [10] and
OpenPGP [6] contain a section on security considerations.
While these sections discuss cryptographic best practices
(e.g., key sizes and cryptographic algorithms), they do not
discuss how to design secure validation routines and inter-
faces. In this section, we discuss several possible counter-
measures against the presented attacks in order to give guid-
ance for implementing secure email clients.

6.1 CMS Attack Class

eContent Confusion (C1) Both S/MIME signing variants
are commonly used13 and standard compliant clients are ex-
pected to support them. Thus, special care must be taken to
only display the content which was subject to verification.

The relevant standards, RFC 5652 (CMS) and RFC 5751
(S/MIME), do not give any advice on how to handle the case
were both variants are present. We recommend to display
neither of them and show an error instead. In fact, Claws
reports a “conflicting use”.

13Outlook 2016 sends opaque signed messages by default and Thunder-
bird sends detached messages by default.

Figure 15: “Weak” forgery in KMail. The check mark UI indicatior
in the upper right cannot be spoofed using simple UI redressing.



OS Client Plugin GPG MIME ID UI Weaknesses
W

in
do

w
s Thunderbird (52.5.2) Enigmail (1.9.8)   – # G1, G2, M2, M3, U1

Outlook (16.0.4266) GpgOL (2.0.1) – –  # I2, U1
The Bat! (8.2.0) GnuPG (2.1.18) – # # – M1, I1
eM Client (7.1.31849) native – – – G# U1
Postbox (5.0.20) Enigmail 1.2.3  – – – G1, G2

L
in

ux

KMail (5.2.3) GPGME (1.2.0) – – – # U1
Evolution (3.22.6) GnuPG (2.1.18) –  – # M4, U1
Trojitá (0.7-278) GPGME (1.2.0) – – G#  I2, I3, U1
Claws (3.14.1) GPG plugin (3.14.1) – # – – M1
Mutt (1.7.2) GPGME (1.2.0) – – – # U1

m
ac

O
S Apple Mail (11.2) GPG Suite (2018.1)   – # G1, M1, M2, M3, U1

MailMate (1.10) GPG Suite (2018.1) –  #  M1, M2, M3, I2, U1
Airmail (3.5.3) GPG-PGP (1.0-4) –   – M3, I2

A
nd

ro
id K-9 Mail (5.403) OpenKeychain (5.2) – – G# – I2

R2Mail2 (2.30) native – – G# # I1, U1
MailDroid (4.81) Flipdog (1.07) – # – G# M1, U1

W
eb

Roundcube (1.3.4) Enigma (git:48417c5) – – –  U1
Horde/IMP (7.7.9) GnuPG (2.1.18) – – – – –
Mailpile (1.0.0rc2) GnuPG (2.1.18)  – G# – G1, I1
Mailfence (2.6.007) OpenPGP.js (2.5.3) – – – – –

 Indistinguishable signature on all UI levels (perfect forgery) # Signature can be spoofed with limitations (weak forgery)
G# Indistinguishable signature on first UI level (partial forgery) – No vulnerabilities found

Table 2: Out of 20 tested email clients 14 were vulnerable to our OpenPGP signature spoofing attacks (perfect or partial forgery).

Disallow Multiple Signers (C2) It is difficult to give good
advice on the presentation of multiple signers, as different
clients may implement different UI concepts. Furthermore,
introducing UI elements might worsen the usability or intro-
duce security problems on its own (e.g., UI redressing).

However, a simple solution is to not implement multiple
signer support at all. Many up-to-date clients do not support
multiple signers, e.g., Thunderbird and Outlook 2016. Ad-
ditionally, we know of no client which is able to produce a
message with multiple signers. Thus, it seems reasonable to
us to not support this feature.

Error Out If No Signers (C3) Messages with no signer
should be treated as errorneous or as not signed. In either
case there should be no UI element indicating a signed mes-
sage. We recommend to not show the message and show
an error instead. This is due to the possible application of
signature stripping attacks as demonstrated by [11] and [9].

Redesign Trust Management and Workflow (C4) Clients
must validate the complete certification path and fail the sig-
nature verification on trust issues. Furthermore, certificates
should be checked automatically. Clients must not accept
self-signed certificates. If needed, a separate trust chain
should be configured on the device or in the application.

6.2 GPG API Attack Class

GnuPG developers can improve the documentation and the
API, but they have to consider backwards compatibility and
extensibility. GnuPG must track attacker controlled data
and always escape newlines and other special characters in
all outputs. GnuPG should also validate the structure of
OpenPGP messages and provide clear guidelines on how to
achieve common tasks such as certificate pinning.

Frontend developers can harden the invocation of the
backend (e.g. by using dedicated channels for log and status
lines or adding --no-verbose to disable logging), their sta-
tus line parsers (e.g., by anchoring all regular expressions),
and the state machine aggregating the results (e.g., by keep-
ing track of multiple signatures, as indicated by NEWSIG).
However, applications that are too strict risk incompatibil-
ities with future backend upgrades or unconventional user
configurations.

The OpenPGP standard should be updated to provide a
strict grammar for valid message composition, as the present
flexibility (such as arbitrary nesting of encrypted, signed,
and compressed messages) is unjustified in practice and puts
the burden on implementations to define reasonable limits.
Specifically, the OpenPGP standard should only allow one
optional encryption layer, one optional compression layer,
and one possibly signed literal data packet. More complex
message composition (e.g., sign+encrypt+sign to allow for



OS Client Plugin CMS MIME ID UI Weaknesses
W

in
do

w
s

Thunderbird (52.5.2) native  – # – C1, I3
Outlook (16.0.4266) native # – – # C3, U1
Win. 10 Mail (17.8730.21865) native – – G# # I1, U1
Win. Live Mail (16.4.3528) native – – G# # I2, U1
The Bat! (8.2.0) native – – G# – I1
eM Client (7.1.31849) native – – – G# U1
Postbox (5.0.20) native  – G# – C1, I3

L
in

ux

KMail (5.2.3) native – – – # U1
Evolution (3.22.6) native G# – – # C2, U1
Trojitá (0.7-278) native # – G#  C4, I2, I3, U1
Claws (3.14.1) GnuPG (gpgsm) (2.1.18) # – – – C4
Mutt (1.7.2) native # – – # C3, U1

m
ac

O
S Apple Mail (11.2) native – – – # U1

MailMate (1.10) native   # # C1, M1, M2, M3, I2, U1
Airmail (3.5.3) S/MIME (1.0-10) – –  – I2

A
nd

ro
id R2Mail2 (2.30) native – – G# # I2, I3, U1

MailDroid (4.81) FlipDog (1.07) G# – – G# C3, C4, U1
Nine (4.1.3a) native G# – G# # C4, I1, U1

iOS Mail App (12.01) native  – – – C1

W
eb

Roundcube (1.3.4) rc_smime (git:f294cde) – – –  U1
Horde/IMP (6.2.21) native – – – – –
Exchange/OWA (15.1.1034.32) Control (4.0500.15.1) – – – # U1

 Indistinguishable signature on all UI levels (perfect forgery) # Signature can be spoofed with limitations (weak forgery)
G# Indistinguishable signature on first UI level (partial forgery) – No vulnerabilities found

Table 3: Out of 22 tested email clients 15 were vulnerable to our S/MIME signature spoofing attacks (perfect or partial forgery). Some clients
with weak forgery, conflicting UI elements or unusual workflows are documented in more detail in the appendix.

early spam mitigation) may be desirable for certain applica-
tions in the future. These should then be covered in future
standard revisions to ensure that they can be supported with-
out introducing new risk factors. Until then, they can be sup-
ported either by nesting several distinct messages explicitly
or as non-standard extensions that are disabled by default in
compliant implementations.

6.3 MIME Attack Class

There are two approaches to counter signature spoofing at-
tacks on partially signed messages which are hidden in the
MIME tree. Either email clients should show exactly which
part of the message was signed, for example, by using a
green frame. However, note that this is hard to implement in
a secure way because all edge cases and potential bypasses,
such as internal cid: references, need to be considered, and
it must be made sure that the frame cannot be drawn by the
attacker using HTML/CSS. Or email clients should be con-
servative and only show a message as correctly signed if the
whole message (i.e., the MIME root) was correctly signed.
While this will break digital signatures in some mailing lists
and in forwarded emails, such an all-or-nothing approach

can be considered as more secure and is preferred by the au-
thors of this paper. Furthermore, if the signature contains a
timestamp, it should be shown to the user to draw suspicion
on re-used and wrapped old signatures. For incoming new
messages the timestamp could be compared to the current
system time and an alert could be given if the signature con-
tains a timestamp older than a certain threshold. This can
also protect from attacks such as non-realtime surreptitious
forwarding.

6.4 ID Attack Class

Approaches to encrypted and digitally signed email headers
like Memory Hole [12] (a non-standard OpenPGP extension)
or RFC 7508 (Securing Header Fields with S/MIME) aim to
guarantee a cryptographic binding between the signature and
the sender address. However, few email clients support these
standards. Furthermore, clients supporting Memory Hole
(Thunderbird/Enigmail, R2Mail2) still accept signed emails
without header protection for backwards compatibility.

Even worse, Enigmail did not guarantee consistency be-
tween unprotected email headers and headers protected by
Memory Hole in our tests. Clients remain vulnerable to ID



attacks unless further mitigations are applied. Hence, it can
be considered a good practice to explicitly show the signer
user IDs when displaying a PGP signed message. A com-
parison to the FROM or SENDER header fields may not be suf-
ficient because—as our evaluation shows—that approach is
error prone and hard to implement in a secure way.

6.5 UI Attack Class
The results of signature verification should not be shown in
attacker-controlled parts of the UI, such as the message con-
tent itself, which may contain arbitrary graphics. In the con-
text of webmail and native email clients using HTML5 for
their UI, such as Electron14 or XUL,15 it must be ensured
that there is a strict isolation (e.g., separate DOM) between
the message content and the rest of the UI. Otherwise, it may
be possible to influence the appearance of the UI, for ex-
ample by injecting CSS properties into the message content.
Following the example of browsers with regard to HTTPS,
the trend is to avoid positive UI indicators and only show
indicators if something is wrong. These systems aim to be
secure by default. However, this is obviously infeasible for
email signatures as long as most emails are unsigned.

7 Additional Findings

7.1 Crashes
We discovered multiple crashes during testing. For example,
we found a nullpointer dereference in Mozilla’s NSS library,
which is also used in Evolution and Postbox. Although the
security impact is rather low, sending a specifically crafted
email does lead to a permanent denial of service, as email
clients will cache this email and crash upon startup. We ex-
perienced a similar issue with iOS Mail, but did not evaluate
the origin of the crash. Additionally, we observed crashes
in MailMate, R2Mail2, Maildroid (Exception), Roundcube,
and Windows 10 Mail.

7.2 Airmail Accepts Invalid PGP Signatures
We found that the Airmail GPG-PGP plugin does not prop-
erly validate OpenPGP signatures, accepting even invalid
ones, irregardless of their status. This makes signature spoof-
ing attacks trivial.

Also, Airmail does not correctly verify the validity of the
signing key even for good signatures, allowing imperson-
ation attacks by injecting public keys into the user’s keyring
with the email address that should be spoofed.

The vulnerability is present in all versions of Airmail
GPG-PGP until "1.0 (9)". Our finding is documented as
CVE-2019-8338.

14GitHub Inc., Electron, https://electronjs.org/
15Mozilla Foundation, XUL, https://developer.mozilla.org/XUL

7.3 OpenPGP Message Composition Attacks

OpenPGP messages and keys are sequences of (possibly
nested) packets (see Fig. 16). This structure is under control
of the attacker, so it must be validated by the implementation.
According to the OpenPGP standard, any arbitrary nesting
of encryption, compression, and signatures is allowed with-
out restrictions. This flexibility is unjustified, and seems to
be an oversight in the specification, as only a small num-
ber of combinations are actually meaningful in practice. It
also opens PGP up to vulnerabilities such as decompression
attacks [13]. In practice, implementations must enforce ad-
ditional limits; for example, GnuPG allows up to 32 levels of
nesting.

[SessionKeyPacket]
[EncryptedDataPacket
[CompressedDataPacket
[OnePassSignaturePacket]
[LiteralDataPacket]
[SignaturePacket]
]
]

(a) Example structure of an OpenPGP message that is signed with
one signing key, compressed, and encrypted to one recipient key.

message :- encrypted | signed | compressed | literal.
encrypted :- SessionKeyPacket*, EncryptedDataPacket(message).
signed :- OnePassSignaturePacket, message, SignaturePacket.
compressed :- CompressedDataPacket(message).
literal :- LiteralDataPacket.

(b) Grammar for OpenPGP message composition from RFC 4880
(simplified excerpt). This grammar does not include rules for com-
patibility with older PGP versions.

Figure 16: Valid OpenPGP message and its grammar specification.

Status lines are emitted by GnuPG as packets are pro-
cessed recursively. However, the status lines do not repre-
sent packet boundaries nor the depth of nesting. As a conse-
quence, the status interface is a flat projection of the nested
structure, and some information is lost in the process.

Message Composition Attacks GnuPG outputs status
lines as a side-effect of recursive processing of packets in
OpenPGP messages. This has led to signature spoofing at-
tacks in the past, where an attacker can prepend or append
additional unsigned plaintext to a message [14]. We veri-
fied that current versions of GnuPG handle this correctly, and
could not find any similar issues for signature verification.

Encryption Spoofing Some attacks to spoof signature ver-
ification can also be used to spoof decryption results, caus-
ing the email client to indicate an encrypted message where
in fact the plaintext was transmitted in the clear. Although
by itself this is not a security violation, it is concerning and
might be a precursor or building stone for other attacks.

https://electronjs.org/
https://developer.mozilla.org/XUL


Besides the obvious adaptation of our UI redressing and
status line injection attacks, we found a flaw in the mes-
sage composition verification of GnuPG. Since 2006 [14],
GnuPG only allows at most one plaintext (i.e., one Literal
Data Packet) in a message. However, GnuPG does not verify
that the plaintext of an encrypted (non-conforming) message
is actually contained within the encrypted part of the mes-
sage. By replacing the plaintext in an Encrypted Data Packet
with a dummy packet ignored by GnuPG (the OpenPGP
standard makes a provision for private/experimental packet
types), and prepending or appending the (unencrypted) Lit-
eral Data Packet, we can cause GnuPG to output the same
status lines as for a properly encrypted message, excluding
the order. The following output shows the result for a prop-
erly encrypted message (differences in red and bold):

1 [GNUPG:] BEGIN_DECRYPTION
2 [GNUPG:] PLAINTEXT 62 0
3 [GNUPG:] DECRYPTION_OKAY
4 [GNUPG:] END_DECRYPTION

The next output shows the result for an empty Encrypted
Data Packet, followed by a Literal Data Packet in the clear:

1 [GNUPG:] BEGIN_DECRYPTION
2 [GNUPG:] DECRYPTION_OKAY
3 [GNUPG:] END_DECRYPTION
4 [GNUPG:] PLAINTEXT 62 0

Both messages are displayed identically (resulting in a
perfect forgery) in Thunderbird, Evolution, Mutt, and Out-
look, revealing the flexibility of the PGP message format,
GnuPG’s parser, and the GnuPG status line parsers in email
client applications.

7.4 Short Key PGP IDs
Short key IDs of 32 bit (the least significant 4 bytes of the
fingerprint) were used in the PGP user interface, on business
cards, by key servers, and other PGP-related utilities in the
past until pre-image collisions were demonstrated to be effi-
cient in practice [15]. Unfortunately, the Horde/IMP email
client still uses short key IDs internally to identify public
keys and automatically downloads them from key servers to
cache them in internal data structures. Our attempts to ex-
ploit these collisions for ID attacks were inconsistent due to
caching effects, which is why we did not include these at-
tacks in the evaluation. Horde/IMP should mitigate these at-
tacks by using full-length fingerprints to identify PGP keys.

7.5 GPG API Attacks Beyond Email
Based on source code searches on GitHub16 and Debian,17

we looked for software applications or libraries other than
email clients which might be susceptible to API signature
spoofing attacks. Candidates were programs that invoke

16GitHub Code Search, https://github.com/search
17Debian Code Search, https://codesearch.debian.net/

GnuPG with --status-fd 2, thereby conflating the log-
ging messages with the status line API, and programs that
do not correctly anchor regular expressions for status lines
(involving [GNUPG:]). We identified three broad classes of
programs using the GnuPG status line API: (1) Wrapper li-
braries that provide an abstraction layer to GnuPG, usually
for particular programming languages. (2) Applications us-
ing certificate pinning to verify the integrity of files when
stored under external control (cloud storage), including ver-
sion control systems like Git. (3) Package managers that use
GnuPG for integrity protection of software packages.

We found vulnerable software in all three categories, but
due to the large number of libraries and applications using
GnuPG, we could not yet perform an extensive review. Also,
we found that the available code search engines are not a
good match for the task of identifying applications calling an
external application through a shell interface. We therefore
fear that there may still be a significant number of vulnerable
applications using GnuPG out there.

Python-GnuPG Python-gnupg18 is a library interface to
GnuPG for the Python language. It uses the status line inter-
face and conflates it with the logging messages, making 717
applications using it19 potentially susceptible to the embed-
ded filename injection attack described above, depending on
how and in which context they use the Python library.

Bitcoin Source Code Repository Integrity The Bitcoin
project uses the Git version control system, which supports
signatures on individual software patches to verify the in-
tegrity of the whole repository as it changes over time. A
shell script using GnuPG to verify the integrity of all com-
mits is included in the distribution.20 This script uses the
status line API and does not anchor the regular expressions,
making it susceptible to the malicious user ID injection at-
tack described above. An attacker who can inject arbitrary
keys into the keyring of the user can simply re-sign modified
source code commits and thus bypass the verification script.

The Bitcoin source code is frequently used as the basis for
other crypto-currencies,21 and thus this error may propagate
to many other similar projects such as Litecoin.

Signature Bypass in Simple Password Store Pass22, a
popular password manager for UNIX, uses the GnuPG status
line API to encrypt password files and digitally sign config-
uration files and extension plugins. It does not anchor the
regular expressions, making it susceptible to the malicious

18V. Sajip, python-gnupg – A Python wrapper for GnuPG,
https://pythonhosted.org/python-gnupg/

19According to libraries.io, https://libraries.io/pypi/python-gnupg/usage
20Bitcoin Source Code, https://github.com/bitcoin/bitcoin/

blob/master/contrib/verify-commits/gpg.sh
21According to GitHub the Bitcoin code has 21379 forks as of Nov. 2018
22J. A. Donenfeld, pass, https://www.passwordstore.org/

https://github.com/search
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https://github.com/bitcoin/bitcoin/blob/master/contrib/verify-commits/gpg.sh
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user ID injection attack described above. If pass is used to
synchronize passwords over untrusted cloud storage, an at-
tacker with control over that storage can add their public key
to the configuration, which causes pass to transparently re-
encrypt the passwords to the attackers key (in addition to the
user’s key) over time. Also, if extension plugins are enabled,
the attacker can get remote code execution. This finding is
documented as CVE-2018-12356.

Yarn Package Manager Yarn is a package manager by
Facebook for the JavaScript runtime Node.js. The Yarn in-
staller script23 primarily relies on TLS to secure the integrity
of the installation package itself. However, it also attempts to
use GnuPG signature verification, presumably to secure the
integrity of the installer from the build server to the down-
load server, which can be different from the server that hosts
the installer script (e.g., for nightly builds).

Unfortunately, Yarn fails to do any form of certificate pin-
ning or trust management, and will accept any valid signature
by any key in the local keyring, even by untrusted keys. If
the attacker can inject a public key into the user’s keyring,
and perform a MiTM attack against one of Yarn’s download
servers, the attacker can replace the installation package with
one containing a backdoor, thereby gaining remote code ex-
ecution on the user’s machine. This finding is documented
as CVE-2018-12556.

7.6 Unsuccessful Cryptograpic Attacks

We analyzed 19 of 20 OpenPGP email clients from Table 2
(all but Airmail, which we could not test, see subsection 7.2)
and all 22 email clients supporting S/MIME signatures from
Table 3 if they are vulnerable to well-known attacks on the
PKCS#1v1.5 signature scheme for RSA with exponent e= 3.
Specifically, we checked for mistakes in the handling of the
padding [16] and ASN.1 structures [17]. All tested clients
resisted our attempts.

8 Related Work

The OpenPGP standard [6] only defines how to sign the
email body. Critical headers such as SUBJECT and FROM are
not signed if no further extensions, such as Memory Hole
[12], Secure Header Fields [18] or XML-based techniques
as described in [19], are applied. Levi et al. [20] developed a
GUI for users to better understand the limitations of S/MIME
digital signatures for emails, i.e., showing which parts of the
email are actually signed by whom. Usability papers such
as [21] discuss the difficulties that inexperienced users have
to manually verify the validity of a signature and understand
the different PGP trust levels.

23Yarn installer script, https://yarnpkg.com/install.sh

It is well known that messages signed by a certain en-
tity can be reused in another context. For example, a ma-
licious former employer in possession of a signed “I quit
my job” message by Alice can simply re-send this mes-
sage to Alice’s new employer. Such attacks have been re-
ferred to as “surreptitious forwarding” in 2001 by Davis [22]
who also showed how to strip signatures in various encryp-
tion schemes. Gillmor [23] touches upon the problems of
partially-signed Inline PGP messages as well as non-signed
attachments and the UI challenge such constructs present for
MUAs. Furthermore, he demonstrates a message tampering
attack through header substitution: by changing the encod-
ing, a signed message with the content e13/week can be pre-
sented as £13/week, while the signature remains valid.

Recently, Poddebniak et al. [9] described two attacks to
directly exfiltrate the plaintext of OpenPGP encrypted mes-
sages. One works by wrapping the ciphertexts into attacker-
controlled MIME parts. This is related to our MIME wrap-
ping attacks on signatures, as both techniques exploit miss-
ing isolation between multiple MIME parts. However, we
present attacks which do not require mail clients to put
trusted and untrusted input into the same DOM, using ad-
vanced approaches such as cid: URI scheme references.

GnuPG had signature spoofing bugs in the past. In 2006,
it was shown that arbitrary unsigned data can be injected into
signed messages [14]. Until 2007, GnuPG returned a valid
signature status for a message with arbitrary text prepended
or appended to an Inline PGP signature, allowing an attacker
to forge the contents of a message without detection [24].

In 2014, Klafter et al. [15] showed practical collisions in
32-bit PGP key IDs, named the “Evil 32” attack, which can
be dangerous in case a client requests a PGP key from a key-
server using the 32-bit ID. Collisions with 64-bit IDs are also
feasible but require more computing power, therefore only
full 160-bit fingerprints should be used.

“Mailsploit” [25] enables attackers to send spoofed
emails, even if additional protection mechanism like DKIM
are applied, by abusing techniques to encode non-ASCII
chars inside email headers as described in RFC 1342. In
2017, Ribeiro [26] demonstrated that CSS rules included in
HTML emails can be loaded from a remote source, leading
to changes in the appearance of—potentially signed—emails
after delivery.

Our partial (G#) and weak (#) forgery attacks can poten-
tially be detected by carefully inspecting the GUI or manu-
ally clicking to receive more signature details. A user study
analyzing user behavior would be necessary to reveal the real
impact of such inconsistencies. Lausch et al. [27] reviewed
existing cryptographic indicators used in email clients and
performed a usability study. With their 164 “privacy-aware”
participants they were able to select the most important in-
dicators. They argue that further research with participants
with general skills should be performed in the future work.
It would be intersting to extend this user study with specific

https://yarnpkg.com/install.sh


corner cases from our paper. Similar studies were performed
to analyze the usage of TLS indicators in web browsers.
Schechter et al. performed laboratory experiments where
they analyzed user behavior in respect to different browser
warnings [28]. For example, they found out that all 63 tested
users used their banking credentials on banking websites de-
livered over pure HTTP. Sunshine et al. [29] performed a
study on SSL warning effectiveness. Their conclusion is that
blocking unsafe connections and minimizing TLS warnings
would improve the warning effectiveness and user security.
Felt et al. studied TLS indicators in different browsers, in-
cluding Chrome, Firefox, Edge, and Safari [30]. They per-
formed a user study with 1329 participants to select the most
appropriate indicators reporting positive as well as negative
TLS status. The selected indicators have then been adopted
by Google Chrome. Other researchers concentrated on spe-
cial cases like the evaluation of Extended Validation certifi-
cates [31] or TLS indicators in mobile browsers [32].

9 Future Work

User Study On most clients the evaluation results were ob-
vious. In the case of perfect or partial forgery, little to no
discussion is needed because it should be clear that a user
can not distinguish between a valid and a spoofed signature.
However, some clients displayed conflicting information, for
example, an erroneous seal and a success dialog. Other
clients expect a more elaborate workflow from the user, such
as clicking through the UI.

We currently classify a weak forgery as "not vulnerable"
because the user has at least a chance to detect it and we did
not measure if users actually detected it. A user study could
clarify whether our weak forgery findings (e.g., conflicting
security indicators) would convince email users, and answer
the following research questions: Do users pay attention to
email security indicators in general? Do users examine digi-
tal signature details (in particular for partial forgeries)? How
do users react once they detect broken signatures?

We believe that such a study would help to understand the
current email security ecosystem and our paper lays the foun-
dations for such a study.

S/MIME Signatures in AS2 Applicability Statement 2
(AS2) as described in RFC 4130 is an industry standard for
secure Electronic Data Interchange (EDI) over the Internet.
It relies on HTTP(S) for data transport and S/MIME to guar-
antee the authenticity and integrity of exchanged messages.
As critical sectors such as the energy industry heavily rely
on AS2 for their business processes, it would be interesting
to evaluate if our attacks (e.g., in the CMS class) can be ap-
plied to AS2. Unfortunately, we did not have the opportunity
to test commercial AS2 gateways yet.

Email Security Fuzzing As described in subsection 7.1,
our tests with different attack vectors led to unintentional
crashes in several email applications. More rigorous test-
ing and systematic fuzzing with MIME, S/MIME and PGP
structures could uncover further vulnerabilities.

10 Conclusion

We demonstrated practical email signature spoofing attacks
against many OpenPGP and S/MIME capable email clients
and libraries. Our results show that email signature checking
and correctly communicating the result to the user is sur-
prisingly hard and currently most clients do not withstand a
rigorous security analysis. While none of the attacks directly
target the OpenPGP or S/MIME standards, or the underlying
cryptographic primitives, they raise concerns about the prac-
tical security of email applications and show that when deal-
ing with applied cryptography, even if the cryptosystem itself
is considered secure, the overall system needs to be looked
at and carefully analyzed for vulnerabilities. Implementing
countermeasures against these vulnerabilities is very chal-
lenging and, thus, we recommend that OpenPGP, MIME,
and S/MIME offer more concrete implementation advices
and security best practices for developing secure applications
in the future.
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