
Back to the Whiteboard: a Principled Approach
for the Assessment and Design of Memory Forensic Techniques

Fabio Pagani
EURECOM

Davide Balzarotti
EURECOM

Abstract
Today memory analysis plays a fundamental role in

computer forensics and is a very active area of research.
However, the field is still largely driven by custom rules and
heuristics handpicked by human experts. These rules describe
how to overcome the semantic gap to associate high level
structures to individual bytes contained in a physical memory
dump. Structures are then traversed by following pointers to
other objects, and the process is repeated until the required
information is located and extracted from the memory image.

A fundamental problem with this approach is that we have
no way to measure these heuristics to know precisely how well
they work, under which circumstances, how prone they are
to evasions or to errors, and how stable they are over different
versions of the OS kernel. In addition, without a method to
measure the quality and effectiveness of a given heuristic, it
is impossible to compare one approach against the others. If
a tool adopts a certain heuristic to list the sockets associated to
a program, how do we know if that is the only possible way to
extract this information? Maybe other, even better, solutions
exist, just waiting to be “discovered” by human analysts.

For this reason, we believe we need to go back to the drawing
board and rethink memory forensics from its foundations. In
this paper we propose a framework and a set of metrics we can
use as a basis to assess existing methodologies,understand their
characteristics and limitations, and propose new techniques in
a principled way. The memory of a modern operating system
is a very large and very complex network of interconnected
objects. Because of this, we argue that automated algorithms,
rather than human intuition, should play a fundamental role in
evaluating and designing future memory forensics techniques.

1 Introduction

Computer forensics is often considered an art, as the analyst
proceeds by formulating hypothesis about the cause of an inci-
dent and uses inductive reasoning to reinforce or discard them
based on clues and artifacts collected from the target system.

The way these artifacts are extracted and analyzed is largely
based on the experience and on the set of heuristics encoded
into the available tools. Memory forensics, i.e. the field focus-
ing on the analysis of snapshots of the physical memory of a ma-
chine, is no exception to this rule. Memory forensic tools needs
to recover the high-level semantic associated with sequences
of raw bytes – thus reconstructing the internal state of the oper-
ating system (OS) and its applications at the time the memory
was acquired. Unfortunately, modern OSs are very complex
software whose memory often contains millions or tens of
millions of individual objects at any moment in time. Even
worse, both the fields and the layout of these objects can change
when the kernel is updated or recompiled, and the connections
among them evolves very rapidly – with a considerable amount
of links and pointers that change every few milliseconds.

Currently memory forensics techniques rely on a large num-
ber of rules and heuristics that describe how to navigate through
this giant graph of kernel data structures to locate and extract
information relevant to an investigation. For example an ana-
lyst can use rules — commonly known as plugins in the field
terminology — to retrieve the list of processes running at acqui-
sition time (including their name, starting time, process ID, and
other related information) or the list of open sockets. The result
of the analysis depends on the number and accuracy of these
rules. However, the field today is still in its infancy and each
individual technique is manually written by researchers and
practitioners. As a result, it is often unclear why a particular ex-
ploration strategy has been chosen, except for the fact that some
developers found it reasonable based on their experience. Even
worse, how accurate a given heuristic is and how we can com-
pare it with other candidates to decide which strategy is more
suitable for a given investigation remains an open question.

In fact, we still do not even know how to properly charac-
terize the accuracy of a technique, as its quality depends on the
metric we use to evaluate it, which in turn depends on the goal
of the analyst. For instance, in an adversarial environment in
which the analyst is investigating a sophisticated attack, a good
heuristic would be one that is difficult to evade for an attacker.
In a different investigation in which there is no risk of tampered

kernel data, a heuristic that only traverses closely-related
(in physical memory) data structures may be preferable as
pages acquired far apart may otherwise contain inconsistent
information if the dump was not acquired atomically.

Contribution: The goal of this paper is to introduce a more
principled way to approach the problem of memory analysis
and forensics. Our plan is articulated around three main points.
The first intuition is that heuristics used to extract information
from memory dumps should be automatically generated by
computers and not handpicked by humans. As we will show
in our experiments, the graph of kernel objects is tightly con-
nected and there are tens of millions of different ways to reach
a given structure by starting from a global symbol. The second
point is the fact that it is very important to be able to quantita-
tively measure the properties of each heuristic, so that different
options can be compared against one another and an analyst can
decide which technique is more appropriate for her investiga-
tion. Finally, the analyst should be able to obtain some form of
guarantee about the results, to ensure that once a given quality
metric has been chosen, a certain technique is the optimal so-
lution to navigate the intricacies of runtime OS data structures.

As a step towards these goals, we constructed a complete
graph of the internal data structures used at runtime by the
Linux kernel. In our graph, nodes represent kernel objects and
edges a pointer from one object to another. We chose Linux
as the availability of its source code simplifies the creation
of our model. However, a similar graph was also extracted in
the past by Microsoft for the Windows kernel [4] and could
therefore be reused for our purpose. The resulting map of the
memory is a giant network (containing over a million nodes)
with a very dynamic topology that is constantly reshaped as
new data structures get allocated and deallocated.

Memory forensics tools adopts rules to navigate through the
data structures present in a memory dump, and these rules can
therefore be represented as paths in our kernel graph. Nodes
and edges can then be decorated with additional pieces of
information that capture different properties an analyst can
find important in an analysis routine. In our study we model
this phase by introducing and discussing five different metrics:
Atomicity, Stability, Generality, Reliability, and Consistency.
We used these metrics to compute a score associated to each
path, and therefore to existing memory analysis techniques,
as well as to compute the optimal solution according to a
chosen set of criteria. We then discuss the intricacies of
identifying such optimal paths by performing experiments
with 85 different kernel versions and 25 individual memory
snapshots acquired at regular time intervals.

Building a map of the kernel memory is a very tedious and
time-consuming process. However, we believe this map can
have many interesting uses in computer security beyond mem-
ory forensics – including virtual machine introspection (VMI),
kernel hardening,and rootkit detection. Since both the code and
the results of the previous attempts to build this graph [4,17,19]

are not publicly available, we decided to release all our data
– hoping it will help other researchers to considerably reduce
the time required to investigate and validate techniques that
require information about the content of a running kernel.

2 Motivation

Being quite in its infancy, memory forensics has still many
open problems, which have been recently summarized by Case
and Richard [6]. The authors divided them in two categories,
depending on whether they are related to the acquisition or the
analysis of a memory dump. More precisely, the first category
contains all the practical issues of acquiring memory from a
device under investigation while the second one deals with the
capabilities of memory forensics, such as malware detection
and evidence extraction.

One of the main issues belonging the first category is page
smearing, which is a consequence of the fact that while the
acquisition is performed the underlying system is not frozen
and thus the dump may contain inconsistent information [12].
While the term was coined in 2004 [5], its actual implications
are still unclear to the community. For instance, a recent study
from Le Berre [18] pointed out that in real investigations more
than the 10% of memory dumps suffer from this problem
and thus can not be properly analyzed with existing tools.
Our work can help mitigating this issue by assessing how
existing techniques are affected by non-atomic acquisitions,
and help design new heuristics which are more robust against
the presence of inconsistent information.

The second category focuses instead on challenges related
to memory analysis. For example, as of today, forensics
practitioners lack the necessary tooling for extracting a number
of interesting information such as Powershell activity and
evidences related to Office applications and private browsing
sessions, or to analyze sophisticated userland malware. Finally,
a vast range of technologies did not receive any forensics
coverage: Apple iOS, Chromebooks, and IoT devices are still
out of scope when it comes to memory forensics analysis.

While these issues are very different from one another, most
of them share the same underlying assumption: kernel objects
must be located, traversed and interpreted by a set of rules. Our
approach enables forensics practitioners and researchers to
evaluate, under different constraints, the quality of these rules
and provide them with a framework to compare and discover
new sets of rules.

3 Approach

In this section we describe the four-step approach we propose
to precisely measure and improve the quality of existing mem-
ory forensics techniques. The first step consists of building
a precise representation of all data structures that exists in a
running kernel and of the way these structures are connected

1 [init_task].tasks.prev 	 → task_struct.mm → mm_struct.mmap → vm_area_struct.vm_next
	 → vm_area_struct

2 [root_cpuacct].css.cgroup → cgroup_root.cgrp.e_csets[2].next → css_set.tasks.next →
task_struct.mm → mm_struct.mmap → vm_area_struct.vm_next 	 → vm_area_struct

Figure 1: Two different paths that reach the same vm_area_struct object.

to one another. The challenges and the process we followed to
build this kernel graph are described in details in Section 4. In
the second phase we map existing forensic analysis techniques
into our model, by representing their algorithms as paths
through the kernel graph. We then color the graph according
to different properties that are relevant for a forensic investi-
gation, and we employ graph-based algorithms to assess the
characteristics of the previously-identified paths and find new
ones that may exhibit better properties. Finally, in the fourth
and final phase of our methodology we translate our findings
back to the memory forensic space by generating improved
analysis plugins, thus increasing the number and quality of
the rules that are used today to analyze memory dumps.

3.1 Memory Forensics as a Graph Exploration
Problem

The goal of memory forensics is to bridge the semantic gap
between the raw bytes that constitute a physical memory’s
snapshot and the high-level abstractions provided by modern
operating systems. This task requires the forensic tool to be
able to correctly translate virtual to physical memory addresses,
as well as to identify the data structures that contain the re-
quired information (e.g., the name of the files opened by a given
process). The latter is typically achieved in two phases. First,
the system locates a known object – either because it resides
at a fixed or predictable location, by using symbols informa-
tion generated by the compiler when the kernel was built, or by
carving a particular data structure based on a set of known prop-
erties and invariants. Starting from this entry point, the analysis
then traverses different memory regions, moving from one data
structure to the next by following pointers, until it reaches the
required piece of information. For example, we assume the
analyst found a suspicious process and she wants to extract its
executable code for further analysis. On Linux, this analysis
starts from extracting the position of the global kernel variable
init_task of type task_struct. This is one of the most im-
portant kernel object in terms of Linux memory forensics since
every kernel thread and user space process has its own and it
serves as a hub to reach several other relevant pieces of infor-
mation. After locating init_task, the processes list is walked
until the task_struct belonging to the suspicious process is
found. From here, the mm_struct is reached by dereferenc-
ing the mm field. Finally, the list of vm_area_struct, each of

which defines a virtual memory area, is retrieved — first by fol-
lowing themmap pointer, then by using thevm_nextfield. With
this information, the analyst can find the executable regions of
the process and can proceed to save their content to disk.

This procedure can be naturally represented as a path on
a graph in which every node is a kernel object, and every link
a pointer. While the final node is dictated by a given forensic
task, both the first and the intermediate nodes are often the
result of handcrafted routines based on the experience and
expert judgment of the developers of the forensic tool.

In our graph, the previously presented analysis would corre-
spond to the path 1 in Figure 1. The path contains the names
of the structures and fields that need to be traversed (in square
brackets when they refer to global symbols in the kernel) as
well as the type of transition (→: follow a pointer reference, 	:
visit multiple structures of the same type linked together). For
simplicity, we report inner structures in our paths as names in
the edge and not explicitly as standalone nodes. Also, note that
in the example 1 , since the suspicious process was freshly
spawned, the shortest path in our graph traverses the process list
backwards — contrarily to the more common forward walking.

On top of the previous solution, our approach shows that
a stunning 2.5 million different sequences of vertices exist in
the kernel graph to reach the very same target object starting
from a global variable, only counting the paths with no more
than 10 edges. For example, path 2 in Figure 1 begins
from the little-known global symbol root_cpuacct, passes
through a number of cgroup-related objects, before finding
the task_struct of the suspicious process.

The previous two “rules” are both capable of locating a given
process structure in a memory dump. The first is certainly more
intuitive and it may also traverse a lower number of data struc-
tures. However, this is purely a qualitative assessment, and it
is unclear if the first solution actually has any clear advantage
or whether it provides any better guarantee then the second.

3.2 Path Comparison

As we saw in the previous example, if we want to assess
the quality of a given solution, we first need to define what
“quality” means in our context. In other words, when two paths
exist to reach the same target data structure, we need to define
a metric that can tell us which one is better to follow from a
forensic perspective.

task_struct task_struct task_struct

next

prev

list_head
next

prev

list_head
next

prev

list_head

.

Figure 2: task_structs organized in a doubly linked list.

A developer may favor the shortest path, as it is simpler
to implement and may appear to be more robust according to
the intuition that the fewer the data structures that need to be
parsed, the less likely it is that something can go wrong while
doing that. However, this approach raises another important
issue about today’s approach for memory analysis: its ad hoc
nature and lack of a scientific foundation. In fact, it is not clear
today how different exploration techniques can be compared
and how they can be evaluated against one another in a precise
and measurable way.

A first important observation is that there is not a single, abso-
lute metric that defines the quality of a memory exploration rule.
It all depends on the goal of the analyst, the conditions under
which the memory snapshot was acquired,and the type of threat
that is investigated. For example, in the common case in which
a memory snapshot is acquired non-atomically, the analyst may
prefer to adopt an approach that only traverses structure closely
located in memory, thus minimizing the chances of inconsisten-
cies. On the opposite case in which the memory was acquired
atomically in a lab from a virtual machine used to investigate
a possible rootkit, the analyst would certainly favor a different
approach that traverses structures whose values cannot be tam-
pered with by the attacker. In yet another scenario, an investiga-
tor may try to analyze a dump for which she was not able to re-
trieve a correct OS profile, and therefore she might be interested
in paths that traverse structures that have changed very rarely
across different kernels, to maximize her probability of success.

Therefore, it is the analyst who needs to select the more
appropriate fitness function to compare paths according to any
combination of desired properties. And once this function has
been chosen, it is possible to use it to compute the optimal path
(and therefore the optimal exploration strategy) to traverse
the kernel graph. In this paper we explore different possible
scenarios by proposing several metrics to enrich the graph
(more details about this process are presented in Section 5)
and then use this information to evaluate existing approaches
and discuss other, non-conventional solutions that can provide
better guarantees for the analyst.

4 Graph Creation

The first step of our methodology consists in building a
model of the operating system kernel, that we can later use

to compare different memory forensic approaches. The model
we chose for our analysis is a graph of kernel objects, in which
nodes represent kernel data structures and edges represent
relationships between objects (for example a pointer from one
structure to another).

The core idea is simple and relies on two crucial pieces of
information extracted from the kernel debugging symbols.
The first one is the layout, in terms of the exact type and offset
of each field, of all the struct defined and used by the kernel
code. The second information is instead related to the address,
name, and type of global kernel variables that play the role
of entry points for our graph exploration. Starting from these
global pointers, our algorithm can recursively traverse other
structures, each time following a pointer and casting the target
memory to the appropriate type. While this process may seem
straightforward at first, there are many special cases that make
the construction of a kernel graph a complex procedure that
requires multiple phases and several dedicated components.

In the rest of the section we discuss in more details some
of these problems and the way we handled them in our study:
abstract data types (and the issue with non-homogeneous cir-
cular lists), opaque pointers, and the presence of uninitialized
or invalid data.

4.1 Abstract Data Types
Over the years, to maintain a reasonable quality over its code
base, the Linux kernel developers have adopted several design
patterns [20]. In particular, the kernel exports a rich set of
APIs to manipulate and create complex data structures, such
as double-linked lists and trees of various types, thus relieving
kernel developers from the burden of reinventing the wheel
every time they need to store and organize multiple objects.
For this reason, the existing APIs are not tied to a specific type
of kernel object but rely instead on predefined data types that
can be included in more complex struct objects, and in a
number of macros to manipulate them.

Figure 2 shows one of the most common example of this pat-
tern, in which several task_struct are organized in a doubly
linked list using the list_head type. While this provides a
simple and efficient way to organize data structures, it unfortu-
nately poses a serious challenge to the automated exploration
of kernel objects. In fact, if the leftmost task_struct in the
figure was already identified by other means (for example
because it was pointed to from a global variable), simply
following the next pointer would result in the discovery of the
inner list_head structure, but not of the outer task_struct.

In fact, this operation is performed in the source code by
using dedicated macros. In the case of the previous example,
a developer would invoke:
container_of(var, struct task_struct, task)

that the compiler pre-processor translates to a snippet of
code required to cast the target list_head variable var to the
requested type based on the current offset inside it (as specified

by the field task). However, in our analysis we cannot simply
mimic the same behavior by subtracting the offset of the list
field from next pointer and to cast the result to the correct
type to obtain a reference to the outer object. In fact, there are
many cases in which this approach would lead to wrong results
and it is not sufficient to look at the field type or at its value
to distinguish these problematic cases. One example is the list
rooted in the field children of a task_struct. While the
field points to another task_struct, it does so by reaching it
at a different offset (in the sibling field). Because of this and
other similar problems (explained in more details later in the
paper) it is not possible to systematically apply the “subtract
and cast” strategy.

For each pointer in a data structure we need to know where
— in terms of object type and offset in the target structure —
it points to. Other works that built a map of the Linux ker-
nel [1, 24, 35] solved the problem by manually annotating the
source code. While this was doable for old kernel versions (e.g.,
2.4), it would take many weeks of tedious work to annotate a
recent kernel – which today uses more than 6000 different data
structures and more than a thousand instances of list_heads.
Moreover, manual annotations are error prone and are tailored
to one specific code base, thus requiring to be verified and
modified whenever a new kernel version is released. The
compiler community has also already extensively studied the
points-to problem [9, 14, 15, 22, 30, 34]. Unfortunately, the
techniques they proposed are not suitable to our work as they
tend to favor speed (an important factor at compile-time) over
precision [4] (a more important factor for our analysis). Only
four previous studies automatically extracted a type graph
of a kernel [4, 17, 19, 29]. However, none of their systems is
available: in one case because the authors relied on the internal
source code of the Microsoft Windows operating system [4],
and in the other because the entire work was lost [17].

For this reason, we decided to implement our own points-to
analysis – which consists of a clang plugin that reasons on the
Abstract Syntax Tree (AST) of each kernel compilation unit.
Contrary to standard points-to analysis, our approach focuses
only on the type information. More precisely, traditional
solutions are designed to identify where each pointer points to,
while in our case we only need to extract the target structure,
and the offset inside that structure. The result is a type graph
of the kernel under analysis. To extract this information we
take advantage of the fact that the information we need can
be inferred by analyzing the source code of the kernel that
is in charge of manipulating the data structure in question.
Our plugin explores the AST until it finds a call to a kernel
API related to data structure management. At this point it
analyzes the parameters and resolves their structure type and
field name. An example of API call and respective AST is
given in Figure 3. In the example, a call to the API list_add
is used to append the new task at the beginning of the list
rooted at head->tasks. This give us the information that the

field tasks of task_struct indeed points to the very same
type. Our plugin current supports list_heads, hlist_heads
(used in the implementation of hash tables), and rb_root
(used in the implementation of red-black trees).

Except for those, the most common type that is still not
supported by our prototype is radix_tree, which however
is only used 8 times in the entire kernel code base.

As we will show in Section 4.6, our approach is very
effective and was able to resolve the type pointed by 250
global lists and by more than 1110 unique object fields in
the Linux kernel 4.8, compiled with the Ubuntu 16.04 kernel
configuration. Moreover, while our approach is tailored to the
Linux kernel, it can be adapted to work on any other operating
system, given the availability of its source code. Finally, since
the parameter resolution routine does not perform complex
analyses, our analysis does not introduce any significant
overhead at compilation time.

Circular Lists of Non Homogeneous Elements
As we already discussed in the previous section, certain

linked list can chain together object of different types. Since
the code must have a way to determine to which type the target
element belongs to, this pattern is only present in the form of
a “root” object which is the first element of a circular list of
otherwise homogeneous objects.

As a consequence, these lists can only be traversed
starting from their root node, as traversing the loop from an
intermediary objects can result into unexpectedly reaching
the root node (of a different type) when dereferencing one of
the next pointers. For example, other than the already cited
children field of task_struct, also the thread_node field
of the same structure points inside a signal_struct object.

To avoid this problem, our analysis classifies every
list_head field in one of the following three cate-
gories: root pointer, intermediate pointer or homogeneous
pointer. The first two are used to mark list_head
fields that belong to lists that contain mixed types, while
the latter describes the more common case of homo-
geneous list. For instance, task_struct.children is a
root pointer, task_struct.sibling an intermediate and
task_struct.tasks a homogeneous one. This classification
can be automatically derived from the type graph: whenever
two objects of different types are involved we label the first as
root and the second as intermediate, while all the other objects
are labeled as homogeneous. During the exploration phase, de-
pending on the type of the pointer, we adopt a different strategy:

• homogeneous pointers can be explored by our algorithm
in any order.

• root pointers require instead our algorithm to immediately
walk and retrieve the objects of the entire circular list.

• intermediate pointers are ignored since we do not know
if they point to another intermediate element or to a

int foo(..){
struct task_struct *head;
struct task_struct *new;
...
list_add(new−>tasks, head−>tasks);

}

CallExpr 'void'
|−ImplicitCastExpr 'void (*)(struct list_head *, struct list_head *)'
| `−DeclRefExpr 'void (struct list_head *, struct list_head *)'

Function 'list_add'
|−UnaryOperator 'struct list_head *' prefix '&'
| `−MemberExpr 'struct list_head':'struct list_head' lvalue −>tasks
| `−ImplicitCastExpr 'struct task_struct *' <LValueToRValue>

| `−DeclRefExpr 'struct task_struct *' lvalue ParmVar 'new
`−UnaryOperator 'struct list_head *' prefix '&'
`−MemberExpr 'struct list_head':'struct list_head' lvalue −>tasks
`−ImplicitCastExpr 'struct task_struct *' <LValueToRValue>

`−DeclRefExpr 'struct task_struct *' lvalue Var 'head'

[POINTS_TO]
struct task_struct.tasks points to
struct task_struct.tasks

Figure 3: On the left a call to list_add, in the center its simplified AST representation, and on the right the plugin output.

root head. This case happens when we enter a circular
list from one of its middle elements. This pointer will
eventually be explored when the corresponding root node
will be visited.

This classification works for every list encountered during
the exploration phase, except for global list_head variables
which are always marked as root node. In this case, during the
very first part of the exploration, these lists are walked entirely
and their elements appended to the worklist.

4.2 Uninitialized and Invalid Data

During our data structure exploration, there are cases that could
potentially introduce false nodes to our graph. This is due to
pointers that contain valid memory addresses but are not yet
initialized or that were not valid at the time the snapshot was
acquired. One common cause for these errors is the fact that
most of the memory management kernel APIs do not initialize
to zero the allocated memory. As a result, if an object contains
an array of pointers there is not way to tell if one element points
to an initialized object (except if the pointer has an invalid
value). Another source of false-positives comes from the non
quiescent state in which the kernel might be when the snapshot
is taken [16]. In other words, this means that the kernel could
have been in the middle of updating a data structure, leaving
dangling pointers in the snapshot. Finally, even if very rare,
kernel bugs can contribute to the generation of similar errors.

For these reasons we implemented two sets of heuristics
to check if an object is valid or not. The first soft rule checks
that the number of valid pointers in a kernel object is greater
or equal than the number of invalid ones (after removing null
pointers and the pointers which normally point to userspace
memory, such as the ones contained in struct sigaction).
The second, more precise, heuristic immediately flags an
object as invalid if certain conditions are not verified (such as
kernel objects that contain a negative spinlock, or those with
function pointers that do not point in the executable sections
of the kernel). Finally, we require that, whenever present, a
list_head has to be valid, i.e. its next and prev pointer

must point to addressable memory. If these rules are not met,
we consider the object invalid and discard it from our analysis.

4.3 Opaque Pointers

Opaque pointers, as represented by void* fields or by long
long integers that contain at runtime the address of other
objects, are traditionally one of the hardest obstacle to build
a complete map of kernel objects. Luckily, this is not the case
in our particular scenario. Since we are interested in using
our graph to analyze and improve existing memory forensic
techniques, opaque pointers play a very marginal role (if any at
all) in this space. As they can point to potentially any structure,
and the actual target type can change over time, traversing these
pointers can be unpredictable during a post-mortem analysis.
Even if none of the heuristics we encountered in our experience
make use of them, we decided to include them in our graph.
After the exploration ends, in case the target of an opaque
pointer was discovered by other means, we create the resulting
edge, clearly marking it. In this way, we are able to detect if any
of these edges are traversed during our experiments. Finally, it
is important to understand that these limitations cannot lead to
“wrong” results (since they cannot create erroneous paths in the
graph), but nonetheless restrict the guarantees of optimality
we discuss in the next sections to the constructed graph.

4.4 Limitations and Manual Fixes

Like all previous attempts to build a map of the kernel memory,
two particular limitations also affect our solution: unions, and
dynamically allocated arrays. Handling the latter case would
require more sophisticated code analysis techniques to identify
the variable number of elements contained in the arrays, which
are beyond the scope of this paper. Nevertheless, we identified
few cases of dynamically allocated arrays that contain
information that can be relevant for memory forensics and we
decided to handle them by hardcoding a custom logic. The first
cases are global hash tables where often the size is not inferable
from the hash table itself. For example, the pid_hash hash
table, used by the kernel to quickly locate a process given its

Kernel
Source Plugin

Type
Graph

Debug
Symbols

Exploration Script Graph

QEMU Snapshot

Clang/LLVM GDB-Python Python

Figure 4: System Overview.

process id, is implemented by using a dynamically allocated
array where the size is specified in another global variable
(pidhash_shift). The second cases are instead dynamically
allocated arrays pointed by a kernel object. For example,
the file descriptor table associated with each process, which
contains the files opened by a process (field fd of struct
fdtable). Once again, this is a dynamically allocated array
of struct file pointers, and the size can be retrieved from
the field max_fds of the same structure.

Finally, the handling of per_cpu pointers was also hard-
coded in our implementation. These are special pointers that,
thanks to a double indirection mechanism when dereferenced,
give to each processor a different copy of the same variable.

However, we want to stress that this limitation does not
invalidate our findings since the graph extracted by our
approach is not incorrect, but only potentially incomplete.

4.5 Implementation

Our final system is illustrated in Figure 4. It consists of an
LLVM compiler plugin to perform the points-to analysis on the
kernel code at compile-time and a set of python gdb extensions
that combine the information extracted in the previous step
with the information provided by kernel debug symbols to
identify all kernel objects contained in a memory snapshot
acquired using the QEMU emulator. The kernel exploration
routine starts by loading a QEMU snapshot, parsing the type
graph, and appending the global object symbols to an internal
worklist. At this point the real exploration begins: an object
is fetched from the worklist and analyzed using the heuristics
we adopted to identify invalid or uninitialized memory. If
it is well-formed, each of its field are processed to identify
structures, pointers to other structures, or arrays of either type.
All them are retrieved and appended to the worklist – paying
attention to implement the techniques described above to
handle abstract data types. These objects are then processed
by a separate component responsible to build the final kernel
graph that we will later use to carry out our experiments.

4.6 Final Kernel Graph

We built our kernel graph using graph-tool [23], a python
library designed to handle large networks. To reduce the
size of the graph, we chose to represent with one vertex each
outer structure identified during the exploration. In other
terms we decided to group together, in a single vertex, all the
nested structures (but we keep the nesting information as it
is needed when we need to move from the graph space back
to the memory analysis heuristics). This transformation also
makes the graph directed, and result in only one type of edges
that represent pointers from a structure to another. As we
will thoroughly discuss in Section 5 we assign a number of
different weights to each node and edge to allow for several
comparisons among different paths.

Figure 5 shows a kernel graph counting 109,000 nodes and
846,000 edges, plotted using Gephi [2]. This graph contains
more than 41,000 strongly connected components with the vast
majority (95%) containing only one node. On the other hand,
the largest one contains 53% of the vertices and has a diameter
of 272 nodes. As we will discuss in Section 6, this has important
consequences for memory analysis, as it results in a multitude
of available paths to move from one node to almost anything
else in the kernel memory. The vertex with the highest in-
degree is of type super_block, pointed by more than 11,000
inodes and 11,000 dentrys. If we exclude the file system, the
node with the highest degree is a vm_operations_struct,
pointed by more than 4200 vm_area_structs.

In the picture, the size of labels and node is adjusted ac-
cording to the betwenees centrality of a node. This type of
centrality counts how many shortest path between every pair
of nodes pass through a node. In other terms, the larger the size
the more often a node is present inside every shortest path. The
node color depends instead on the kernel subsystem the object
belongs to. By using the name of the file where the object is de-
fined we were able to classify them in roughly 7 classes, from
file system to object related to memory or process management.

5 Metrics

In the previous section we described how we extracted a
global map of a running kernel that can serve as basis for our
analysis. However, without any further information, the only
way we can compare two paths on the graph is by looking at
their length, computed by counting either the total number of
nodes or the total number of unique structures that need to be
traversed. In fact, this simple approach may resemble the one
adopted today by most of the memory forensic tools, where the
most straightforward path is often chosen by the developers.
However, this solution does not tell anything about the quality
of a given path, nor about the presence of better options to
solve the same problem. To get a solid foundation on which we
can compare different techniques we need therefore to define
a metric. And since the idea of having an absolute metric is

Figure 5: Kernel Graph

unrealistic, multiple different metrics can be plugged on our
graph to study the characteristics of each path.

For our experiments we decided to investigate and add to
our graph three numerical and two boolean weights, related to
the atomicity, stability, generality, reliability, and consistency
of a path. As described below, all of them capture different
but important aspects of what an analyst may expect from a
memory analysis routine.

Atomicity (numerical)

This weight express the distance in physical memory between
two interconnected kernel objects. While this metric is ex-

pressed in terms of distance among physical pages, for an easier
interpretation we often express it in seconds (as distance in time
between the acquisition of the two pages). The atomicity is a
very important aspect in most of today’s investigation that rely
on non-atomic dumps. In fact, moving across objects located
far apart in memory - and thus acquired far apart on the time
scale - can introduce inconsistencies. Intuitively, by using this
metric the best path between a pair of nodes is the one which
minimize the time-delta among all visited structures, thus pass-
ing only thorough objects acquired very close in time. More pre-
cisely, we can adopt three distinct ways to measure Atomicity:

• Acquisition Window (AW) – this is the total window

A B C

X Y

t0 t0+3 t0+6 t0+10 t0+13

Figure 6: Time acquisition of nodes belonging to two paths.

that covers all data structures traversed in the path. E.g.,
one path may walk fifteen objects, all of which were
acquired in a period of 23 seconds.

• Cumulative Time Gap (CTG) – this is the sum of the
time difference of each edge traversed in the path. For
instance, if a path visits three consecutive nodes (A, B,
and C) and the difference between the acquisition time of
the pointer in A and the content of B was 7 seconds and
the difference between B and C was 3, the CTG would
be 10 seconds.

• Maximum Time Gap (MTG) – this just takes into account
the longest “jump” in a path. In the previous example,
this would be 7 seconds.

All three measures are related to the Atomicity, but they
capture different aspects. If it is important than none of the
visited structures have changed during the acquisition, AW
is the best metric. CTG gives instead a cumulative probability
that things can go wrong by following links. The more edges
are traversed, and the more far apart are the objects on the end
of those edges, the more likely it is than a link can be corrupted
due to the non-atomicity of the dump. Finally, MTG provides
an estimation of the single most fragile edge in a path. This
can be an important information, as traversing 10 edges each
one a second apart can be a better option than traversing a
single link with a nine seconds delay in the acquisition.

This can lead to some counter-intuitive results. For example,
let suppose our graph analysis identifies two paths to reach
a certain target structure C namely {A → B → C} and {A
→ X → Y → B → C} (for simplicity we ignore the name of
the pointers). Both paths start from a structure A but the first
traverses a single node B before reaching the destination while
the second takes a detour through two other intermediate data
structures Y and Z before re-joining the first path. Figure 6
shows the two paths on a time scale, that represent at which
time the memory containing each data structure was collected.

While the second path is obviously a longer variation of the
first, and therefore seems logical to believe that has nothing
better to offer, it is very well possible that the detour reduces
the probability of incurring in broken links. The pointer A →
Bwas in fact collected 10 seconds before the object B, while
the longest path decreases these time gaps to a maximum of
four seconds. Whether this is an advantage or not depends

on how often those pointers are modified in a running kernel,
which we capture with our next metric.

Stability (numerical)

This weight expresses the stability over time of a given node
or edge on the graph. Some structures are allocated at boot
time and are never modified afterwards, while other parts
of the graph are very ephemeral and contain structures that
get allocated and de-allocated multiple times per second. By
computing a heat-map of the stability of each edge (extracted
by processing a number of consecutive snapshots), this weight
can provide a valuable information on how the kernel map
evolves over time, on which paths are more stable, and on
which are instead more ephemeral and may only exists for
short periods of time.

We measure Stability by computing the Minimum
Constant Time (MCT) of all links in a path. The MCT can
tell, for instance, that over a certain number of memory images
all edges traversed by a certain heuristic remain constant
for a minimum time of 30 seconds. In our experiments, we
computed this metric by taking a snapshot of the same system
at seconds 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 100,
200, 350, 700, 1000, 3000, 5000, 8000 and 12000.

Surprisingly we found that the 81% of edge are stable,
i.e., they never change across our experiments. The majority
of them are objects related to the file system (inode and
dentry), which the kernel caches for performance reasons.
But this does not mean the graph does not evolve, actually
quite the opposite. For example, we saw an increase of more
than 60% of both nodes and edges between the graph built at
t=0 and the one built at t=700.

Moreover, if we exclude the filesystem subsystem and the
paths that remained stable over all our experiments, 11% of
the edges changed in less than 10 seconds, 12.5% in less than
a minute, and 97% in the first hour.

Generality (numerical)

This weight captures another important problem of memory
forensics: the constant change in the layout of kernel objects.
This is due to several factors. First of all the kernel is always
under active development which means that fields are contin-
uously added to and removed from kernel objects definitions.
Moreover, the layout is also influenced by the configuration
options chosen at compile time. Existing tools mitigate this
problem by requiring additional compile-time information
(part of what it is normally called an OS Profile). Unfortunately,
there are cases in which this information is not available,
which today greatly complicate (if not completely preclude)
the ability of analyzing a particular memory dump. Therefore,
it would be interesting to compute analysis paths that
traverse structures which change very rarely across different
distributions, kernel versions, and enabled kernel options.

For this reason we downloaded 85 kernels from the Ubuntu
repository, spanning from version 4.4.0-21 to 4.15.0-20.
For every object defined in each of these kernels we extracted
the offset of the fields required for navigation – such as
structure pointers or array of structures. We aggregated this
information in a single Kernels Counter (KC) weight com-
puted by counting over how many of the 85 kernels an entire
path would remain constant (i.e., all its traversed link were
present at the same offsets in their corresponding structures).

Reliability (boolean)

This is a very important aspect in memory forensics and
captures how tamper-resistant is a given path on the graph,
assuming an attacker is capable of reading and writing arbitrary
kernel memory. Some paths are very easy for an attacker to
modify, and therefore cannot be trusted by an analyst whenever
she suspects the attacker might have gained admin privileges
on the machine. On the other hand, other paths are more robust,
as breaking them would make the system unstable. This can
potentially result in programs malfunction or termination and,
in the worst case, in a crash of the entire operating system.
The robustness of individual data structures has already been
studied in the past by several works [1, 10, 25]. But here we
are instead interested in the reliability of a path, i.e., not in
the fact that individual fields (such as a file name) can be
modified, but whether an attacker can tamper with the edges
that need to be traversed to prevent a certain heuristic to reach
its destination (to the best of our knowledge, this problem has
never been addressed in the literature). Being able to compute
a path on the graph that only traverses tamper-resistant edges
may have a great impact on memory forensics. While today
we still do not have enough information to color the entire
graph according to this metric, we can still compute the
reliability on demand. This means that we cannot compute the
optimal solution according to its reliability, but once we have
a candidate solution we can perform experiments to verify it.

Consistency (boolean)

As a final property in this list we want to show how metrics
can also be aggregated to capture more complex properties
of a path. For this example we chose to combine the stability
and atomicity of a path in a single measure that captures how
likely it is for a given path to traverse consistent information.
Intuitively, traversing a path whose nodes were acquired over
a period of 20 seconds may be acceptable if those structures
change very rarely, but completely unacceptable if its links
are modified every few milliseconds. We capture this aspect
by consider a path consistent if and only if the acquisition gap
of each edge is lower than the minimum change time of the
edge as computed in all our snapshots.

6 Experiments

We now discuss how our graph-based framework can be
used in different scenarios, in which we investigate existing
techniques used by Volatility [33], we discuss the intricacies
of computing optimal paths, and we discover new solutions
to reach all processes running in a system. In any case, these
are only examples of what can be achieved by adopting a more
systematic approach to memory forensics, and many more
applications can benefit from our framework.

All experiments were conducted on a QEMU machine
equipped with 2GB of RAM and 4 virtual CPUs, running
wordpress on top of a LAMP stack. Before and between the
acquisitions, we generated some activity by visiting the CMS
pages and performing basic system administration task, such
as logging in via ssh and updating the list of packages.

6.1 Scenario 1

In the first scenario we want to apply our methodology to study
the quality of current memory forensics techniques. For our
example we selected seventeen Volatility plugins that explore
different subsystems (process, network, and filesystem) and
mapped them as paths in our kernel graph. To achieve this we
manually analyzed each plugin and extracted which global
variables and kernel objects are traversed. With this informa-
tion we were able to write a python script which automatically
extracts these paths from our graph. Note that many plugins
traverse similar kernel structures (e.g linux_pslist and
linux_pstree) so, to avoid duplicates, we only report results
for a subset that rely on different information. The final list
of the plugins we analyzed is reported in Table 1.

Before looking at the individual metrics, we wanted to
investigate to which degree the structures traversed by these
heuristics are interconnected. The total number of unique
objects used by this heuristics depends on the size of the graph.
In our experiments they vary from 20 to hundreds of thousands.
As we already introduced in Section 4.6, by averaging over
the 25 graphs we created, more than 96% of the nodes used
by the heuristics belong to a single giant strongly connected
component that contains on average 53% of all the nodes
in the graph. By combining this information with the nodes
visited by Volatility, we found that this component contains
all the information related to running processes, such as their
mapped memory and open files, but also the information
related to the arp table and the ttys. The remaining 4% of the
nodes used by the Volatility rules are instead scattered among
several other components. The biggest one, which contains
only 0.5% of the heuristics nodes, contains the information
related to the installed modules and, more in general, to the
kobjects subsystem. Finally, the rest of the nodes belong
to components containing only a single node. These are the
nodes representing, for example, the global pid_hashtable
and its associate hlist_heads.

Table 1: Comparison of Volatility plugins implemented as paths in our graph

Name Description #
Nodes

Atomicity Stability Generality Consistency
AW CTG MTG MCT KC Fast S low

linux_arp Prints the ARP table 13 16.24 53.25 16.24 12,000 50/85 3 3
linux_check_afinfo Verifies the function pointers of network protocols 24 16.27 44.55 16.05 700 85/85 3 3
linux_check_creds Checks processes that share credential structures 248 16.34 453.92 16.24 2 29/85 3 3
linux_check_fop Check file operation structures for rootkit modifications 16099 16.38 142,856.15 16.38 0 29/85 7 7
linux_check_modules Compares module list to sysfs info, if available 151 16.27 54.06 16.23 700 85/85 3 3
linux_check_tty Checks tty devices for hooks 13 16.26 17.52 15.69 30 85/85 3 3
linux_find_file Lists and recovers files from memory 14955 16.33 35,627.45 16.32 0 85/85 7 7
linux_ifconfig Gathers active interfaces 12 16.25 44.19 16.25 12,000 50/85 3 3
linux_iomem Provides output similar to /proc/iomem 7 16.70 50.09 16.70 12,000 50/85 3 3
linux_lsmod Lists loaded kernel modules 12 16.23 44.27 16.05 700 85/85 3 3
linux_lsof Lists file descriptors and their path 821 16.33 19,885.52 16.26 0 29/85 7 7
linux_mount Lists mounted fs/devices 495 16.33 8488.13 16.32 10 85/85 3 7
linux_pidhashtable Enumerates processes through the PID hash table 469 16.67 451.87 16.67 30 31/85 3 7
linux_proc_maps Gathers process memory maps 4722 16.27 2629.19 16.24 0 31/85 7 7
linux_proc_maps_rb Gathers process maps through the mappings rb-tree 4722 16.27 3310.69 16.24 0 31/85 7 7
linux_pslist Lists active tasks by walking task_struct→task list 124 16.27 189.41 16.24 30 31/85 3 3
linux_threads Prints threads of processes 157 16.27 280.68 16.24 30 31/85 3 3

This is an important finding, as it means that the vast
majority of the information needed for forensic purposes is
interconnected and reachable from one another. Translated
in practical terms, the presence of this giant connected com-
ponent means that is enough to locate a single kernel object
to reach all the other interesting ones only by dereferencing
pointers. This might be beneficial in scenarios where the
position of global kernel objects is not available to the analyst.
In such cases, one entry point can often be located by memory
carving and then used as starting point for every other analysis.

By looking at the atomicity metrics (columns four-to-six in
Table 1) the first thing that stands out is that the values for the
Acquisition Window (AW) and the Maximum Time Gap (MTG)
are very similar and relatively constant across all commands.
After further investigation we discovered that this is due to the
fact that, when compiled with normal configurations, Linux
kernel global variables are located in the low part of the phys-
ical memory while kernel objects are allocated in the higher
end. Since all heuristics start from global symbols, the very
first edge already accounts for the maximum gap between two
consecutive kernel objects. This also influences the acquisition
window, since one of the two farthest objects is always the
global variable from where the heuristic starts from. On the
other hand, the Cumulative Time Gap (CTG) shows more varia-
tions as it is also influenced by the number of traversed objects.

To better understand this phenomenon, in Figure 7 we
plotted the content of the physical memory as a Hilbert curve.
In the graph, each pixel represents a physical page and its
color shows if the page is traversed by the Volatility heuristics
(red in the graph) or if it contains at least one node of our
connected component of the kernel graph (green). It is clear
that the relevant data structures are not spread equally on
the entire physical memory. Instead, they clearly aggregated
around three main clusters, which we marked respectively as
C1, C2, and C3. In our experiments the kernel global variables
are all located in C1 while other information are often stored
in C2 and C3. Therefore, most heuristics start from C1 and

Figure 7: View as Hilbert curve of physical memory.

then eventually traverse an edge towards one of the other
regions - which alone is responsible for the entire AW and MTG
metrics. This physical distribution is also very important for
the third scenario presented in Section 6.3, where we will
encounter heuristics that need to hop back and forth from the
three clusters, significantly impacting the atomicity metrics.

The second surprising result of this first scenario is the fact
that the Kernel Counters (KC) of six plugins never changed
across all the different kernel versions we used in our analysis.
This means that, even when fields were added or removed
from these object, the offsets of the fields used by the plugins
remained constant. This has important implications for current
memory forensics tools where a profile of the kernel is needed
to analyze a memory dump. Our experiment suggests that,
at least for locating certain information, a generic structure
layout can be used across almost 100 kernel versions, released

as far as 2 years apart.
Another important propriety we evaluated in this first

scenario is the consistency of the selected techniques. This
is especially useful to better understand how the continuous
modifications of kernel objects might impact memory dumps
taken in a non-atomic fashion. This was recently listed
by Case et al. [6] as “one of the most pressing issues” of
memory forensics. While Case focused on page smearing
(an inconsistency between the page tables and the referred
physical memory), with this experiment we show that this
problem does not affect only page tables but also references
among kernel objects. The most important variable that
influence the consistency of the memory is the duration of the
acquisition process. To align with real world scenarios we run
two different tests, by setting the acquisition ratio respectively
to the fastest and to the slowest tool as reported by McDown
et al. [21]. In that study, the authors compared seven different
memory acquisition tools, chosen from a survey conducted
over 41 companies specialized in memory forensics.

Interestingly, out of the 17 plugins we tested, three have
a stability of 12,000 seconds, which means that none of the
links they traversed ever changed over a period of more than
three hours. At the other end of the spectrum, eleven plugins
walked links that remained stable for less than a minute (and
in five cases even less than one second). In this case, this
may result in wrong pointers depending on how far in the
physical memory were the page containing the link and the
page containing the linked object. In fact, the last column of
Table 1 shows that our analysis found inconsistencies in five
(when the fastest tool to acquire the memory was used) or
seven (in the case of the slowest solution was used) plugins.
The affected plugins interest different parts of the kernel,
but they can be divided to three distinct categories: Memory
(linux_proc_maps, linux_proc_maps_rb), File system
(linux_check_fop, linux_find_file, linux_lsof,
linux_mount) and Process (linux_pidhashtable)

In the Memory category we found respectively 33 inconsis-
tencies that affected the connections amongvm_area_struct
of a process, which are kept both in a linked list and in a
red-black tree. These errors affected five instances of apache,
one of systemd-login and one of agetty. The filesystem
category included 40 unique inconsistencies in the hierarchy of
dentries (fields d_subdirs and d_child) 53 in the mapping
from a dentry to an inode (field d_inode). The latter object
was also involved in 43 cases of inconsistency towards its
file_operations object (field i_fop), while 23 file
object had inconsistent edges pointing to their dentry and
its mount objects. (field f_path.dentry and f_path.mnt).
The most interesting cases of inconsistencies in this category
– 10 in total – involved the array containing the pointers to
the files opened by a process. This array belonged to three
distinct instances of apache, one of systemd and one of the
mysql database. In the process category, we only detected
one case of inconsistent edge between a struct pid and the

pointed task_struct.
To systematically understand if these inconsistent paths can

be avoided, we used once again our kernel graph – this time by
filtering out all the 5,000 inconsistent edges, and searching for
alternative paths to reach the same objects used by the affected
plugins. Our graph exploration was able to discover alternative
paths for 107 out of 213 inconsistent edges. For example, in
the case of inconsistent array of opened files for the systemd
process the alternative path — which traversed 11 additional
nodes — was able to reach the target file by first locating
the task_struct of the same process, then accessing its cor-
responding files_struct and from here reaching the file
via the fd_array field (an array only used when the process
opens less than 64 files). While these detours were sufficient
in our experiments to retrieve the missing information, more
experiments are required to understand if those alternative
paths can be generalized to other scenarios. In any case, they
show once more that the giant connected component that
hosts most of the relevant data structures may allow analyst
to find alternatives solution to mitigate the presence of wrong
pointers and inconsistent information. Sadly, almost 50% of
the affected pointers did not allow for an alternative path, thus
emphasizing again the severe consequences that the lack of
atomicity can have on memory analysis.

6.2 Scenario 2
In our second case study we want to understand if we can
employ the kernel graph to find new heuristics for common
forensics tasks. In particular, we focus on the starting point
of many forensics investigation: listing the processes running
at the acquisition time. Currently Volatility implements
three different plugins1 to list the processes, respectively by
walking the process list, by using the pidhash hashtable,
and by parsing the kernel memory allocator. However, the
latter is only applicable if the kernel uses the SLAB allocator.
Unfortunately, many distributions, such as Ubuntu and
Debian, ships by default with the SLUB allocator, which is not
supported by Volatility and which does not keep track of full
slabs – thus making this technique not applicable anymore.

The main reason for looking for alternative solutions is that
previous research already pointed out that rootkits are already
capable of removing a process from the process list, but also to
unlink a process from the pid hashtable [19,26,27] thus leaving
the forensic analyst without a reliable method to list processes.
Moreover, as we already discussed in the previous scenario, the
lack of atomicity of a memory dump can introduce inconsis-
tencies and result in broken pointers also in the list of running
processes. For these reason, it is important to find new ways
to locate processes, so that their output can be compared with
other techniques to spot inconsistencies or hidden processes.

1Volatility also includes a plugin to carve task_struct objects by using
a signature, but this is a parallel approach that does not require exploring
memory but relies instead on pattern-matching.

Table 2: Comparison between different heuristics used to find processes

Category Root Node New #
Nodes

#
task_struct

Atomicity Stability Generality Reliability Consistency
AW CTG MTG MCT KC

scheduling runqueues 3 9 4 16.71 20.08 16.70 0.00 34/85 — 7
root_task_group 3 10 4 16.65 21.14 16.27 0.00 18/85 — 7

cgroup css_set_table 3 172 156 16.27 433.32 16.24 10.00 29/85 7 7
cgrp_dfl_root 3 186 156 16.30 369.10 16.30 10.00 29/85 7 3

memory/fs dentry_hashtable 3 58383 23 16.31 58120.38 16.30 0.00 36/85 7 7
inode_hashtable 3 14999 23 16.32 31594.48 16.31 1.00 36/85 7 7

workers wq_workqueues 3 427 69 16.68 1727.89 16.24 200.00 39/85 7 3

process
init_task (linux_pslist) 7 124 124 16.27 189.41 16.24 30.00 31/85 7 3
init_task (linux_threads) 7 156 156 16.27 280.68 16.24 30.00 31/85 7 3

pid_hash (linux_pidhashtable) 7 469 156 16.67 451.87 16.67 30.00 30/85 7 3

This scenario is also interesting as it is harder to translate
into a graph exploration problem. In fact, since we are looking
for techniques to list all (or a part of) the running processes,
this is equivalent to a collection of, possibly not homogeneous,
paths. As a result, listing all processes is not simply equivalent
to a path, but more to an algorithm to explore the graph.

Our approach to find new heuristics is the following. First,
we discarded all the global roots that do not have a path to
reach all the task_structs in every graph we created. As a
result, we were left with 621 global roots (out of more than
8000 we started with). Second, we modified the graph to
remove the edges already used by known techniques, such
as the tasks field. This helps removing all those paths that
would just find a different way to reach a single process, and
then walk the list like the existing plugins already do. While
not useless per se, our goal is to find new solutions and not
variations of the existing ones.

By only considering the shortest paths from every root node
to every task structure, our system found more than 100 million
distinct paths, generated from a set of more than 966,000
sequences of vertices. This is possible because, as we later dis-
covered, the graph contained many parallel edges connecting
the same nodes. In fact, by putting things in perspective, on
average every sequence of vertices from a root node to a target
object generates more than 100 unique paths. The good news
is that this makes extremely difficult for attackers to modify
all edges required to completely hide a process. On the other
hand though, this also makes very hard the task of identifying
interesting patterns in this multitude of options. For simplicity,
we first decided to filter out all similar edges – i.e., parallel
edges that shares the same metrics (and that therefore are
equivalent for our purpose). This operation removed more
than 300,000 edges, some of which played an important role
in the path explosion. For example, many entries of the array
e_cset_node of the css_set object pointed multiple times
to the same vertex. After this operation the number of different
paths decreased to about 7.5 millions paths.

We then merged similar paths into templates, constructed
by keeping only the type of the objects present in the path,
and by also removing adjacent nodes with the same type

(which capture the 	 link discussed in Section 3). Finally,
we removed templates that were subset of other templates,
resulting in a final set of 4067 path templates.

By manually exploring these options, we soon realized
that they belong to only four main families, depending on
the kernel subsystem they live in. The first one is related to
the cgroup subsystem, the second to the memory subsystem
through the mm_struct structure, the third passes through the
work queues to reach kernel workers, and the last traverses the
struct rq and follows the curr field, a per-cpu runqueue.
The results are summarized in Table 2.

Unfortunately, there are no alternative paths that can
improve the atomicity. In fact, the bulk of the time gap (16.24
seconds) is due to the difference in the acquisition time of the
global entry points (located in C1 in Figure 7) and the first task
structure (located in C2 and C3). However, all these edges are
very stable and in only one case (for the css_set_table) the
value of this first connection ever changed during our memory
acquisition.

The memory-based heuristics walked a red-black tree
(i_mmap) that is very ephemeral and, while exploring it, we
found more than 30 edges that could be inconsistent if the mem-
ory dump is not taken atomically. A similar problem affects
the scheduler, whose structures also contain links that change
very rapidly. We observed an interesting phenomenon in the
cgroup-related heuristics. The first is inconsistent as it traverses
a pointer with a very large time gap. However, the second avoid
this problem by reaching the same css_set structures by tak-
ing a detour through several intermediate objects which act as a
bridge to lower the time gap. This is an example of the counter-
intuitive behavior we introduced in Section 5 (Figure 6), where
we predicted that the most direct path might not always be
the best in term of consistency. The worker-related approach
was the best in terms of stability, consistency, and general-
ity. However, its goal is to list all active kernel workers and
therefore this heuristic is unable to capture normal userspace
processes. Finally, the two heuristics in the process category,
which represent the Volatility plugins linux_pslist and
linux_threads, had both a stability of 30 seconds. This is
strange, as several processes should have started during this

time frame. However, new processes were all appended to the
tail of the process list without altering the intermediate nodes.

To test the Reliability of the heuristics we wrote a kernel
module that tries to hide an userspace process by unlinking
it from the path required by each heuristic. As a result, each
case required a custom hiding technique. For the cgroup
heuristics we deleted the processes from the cg_list linked
list. For the memory we first found every non-anonymous,
i.e. backed by a file, vm_area_structs. We then delete all
this structures from the red black tree rooted in the inode,
which keeps track of all the vm_area_struct which are
currently mapping this file. For the first two process heuristics,
we removed the process from the process list (by unlinking
task_struct.tasks), while for the pid_hashwe removed
the struct pid from the hashtable. For the workqueue we
instead created a custom workqueue and queued a simple work
function that mimicked the behavior of the userspace process
we used in our test. We then proceeded by unlinking the
worker from the linked list rooted at worker_pool.workers.

In all the cases our program continued to run without
observable side-effects – showing that each path we listed so
far can be tampered with by a properly written rootkit. As we
also discussed in Section 5, we believe that more experiments
are needed to improve the assessment of a path’s reliability.
While it is true that our program continued to run, there can be
a multitude of events (e.g. the kernel starting to swap memory)
that might compromise the stability of the altered system.

6.3 Scenario 3

In the third scenario we show how we can compute optimal
paths, with respect to the different metrics we proposed in this
work. As running example, we picked this time the problem
of finding the files opened by a given process (identified by
its task_struct).

To run our experiments we collected all the task_struct
and all the associated file objects and analyzed the paths
Volatility would take to move from the first to the second.
However, we immediately run into a strange behavior, as the
metrics were returning very different results for different files.
To understand the reason we had to look closer at how the
physical pages were assigned to the different kernel objects.

Figure 7 explains very well the three classes of behavior we
identified in our experiments. Since the clusters (C1, C2 and
C3) are located far apart in memory (and therefore they can be
acquired far apart in time), whenever a heuristic moves from
one structure contained in one cluster to another contained in a
different one, it needs to take a “jump” with associated a consid-
erable time gap. If a task_struct and all the intermediate ob-
jects needed to reach the open files are located inside the same
cluster, then time gaps are extremely small and path are always
consistent. In this case paths are already optimal and there is no
much room for improvement. If they are instead located in two
different clusters, then the atomicity increase by almost nine

seconds. However, the picture shows that also in this case it is
not possible to find better alternatives, as all paths would need
to cross the gap between the clusters– incurring in the same
penalty. Finally, there are examples in which thetask_struct
and thefile objects were located in the same cluster, but the in-
termediate structures traversed by Volatility resided in the other
one. In this case the Volatility heuristic needs to jump across
clusters twice, incurring twice in the risk of inconsistent links.
But in this third case it might be possible to use our graph to find
an alternative path that is fully contained in the same cluster.

An example of each of these three cases is shown in Table 3,
along with the metrics computed on the Volatility heuristic and
those computed on the optimal paths extracted from our graph.
Regarding the cumulative time gap (CTG), our insight was
correct and only paths belonging to the third category could be
considerably improved. In fact, the table shows that from more
than 17 seconds in the Volatility case, the optimal path had
a CTG of less than 0.01 seconds. Accordingly, also the MTG
decreased with the same magnitude. As we discussed in the
previous scenario, finding a consistent path for this particular
problem is sometimes possible. Indeed, when this is the case,
we were able to find a path that remained stable for all our
experiments. Interestingly, for the second case, one of the
paths with maximum stability has also higher generality than
the one used by Volatility but, since it passes through more
nodes, it has an higher CTG. On the other hand, maximizing
the generality of a path has a serious impact to its consistency
and stability. In fact, while we were able to find paths which
are constant over 50 kernels, none of them was consistent,
independently to the speed of acquisition.

7 Discussion and Future Directions

The goal of our work is to provide a principled way to think
about memory forensics as a graph-related optimization
task. This way of modeling the problem opens the door to a
multitude of different possibilities to evaluate and compare
existing techniques, design algorithms to compute new
alternative solutions, validate the consistency of kernel
structures, or propose heuristics customized to different
experiments setup and acquired dump.

We tried to discuss some of these opportunities through
our experiments, but we are aware that many questions are
still open and new research is needed to shed light to each
individual use case. For this reason, we decided to release
our code and data to other researchers, hoping that this will
facilitate new experiments in this field and accelerate new
findings based on our methodology.

In this paper we focused on the analysis of traditional
computers. This choice was simply dictated by the fact that
this is the area where memory forensics is more mature and
for which most of the heuristics have been designed so far.
Nevertheless, we believe that our system could be used to help
researchers to better design and implement future forensic

Table 3: Optimal paths compared with Volatility paths

Name #
Nodes

Atomicity Stability Generality Consistency
AW CTG MTG MCT KC Fast S low

File A – all structures in one cluster

Volatility 4 0.01 0.01 0.01 700 29/85 3 3
Opt-MTG 4 0.01 0.01 0.01 700 29/85 3 3
Opt-CTG 4 0.01 0.01 0.01 700 29/85 3 3
Opt-MCT 4 0.54 0.54 0.54 12000 29/85 3 3
Opt-KC 4 0.01 0.01 0.01 700 29/85 3 3

File B – structures located in two clusters

Volatility 4 8.72 8.72 8.72 12000 29/85 3 3
Opt-MTG 4 8.72 8.72 8.72 12000 29/85 3 3
Opt-CTG 4 8.72 8.72 8.72 12000 29/85 3 3
Opt-MCT 11 16.23 72.84 16.21 12000 36/85 3 3
Opt-KC 8 9.71 46.15 9.71 0 50/85 7 7

File C – structures located in one cluster, with intermediate steps in the other

Volatility 4 8.73 17.45 8.73 12000 29/85 3 3
Opt-MTG 3 0.003 0.003 0.003 12000 29/85 3 3
Opt-CTG 3 0.003 0.003 0.003 12000 29/85 3 3
Opt-MCT 3 16.23 82 16.20 12000 36/85 3 3
Opt-KC 10 9.71 55.56 9.71 0 50/85 7 7

frameworks tailored to emerging technologies such as mobile
devices and the Internet of Things (IoT).

Main findings: our experiments show that a large part of the
kernel graph belongs to a giant connected component. This
means there are thousands, or even millions of possible paths
that allow an analyst to move from one node to another. It also
means that it is very difficult for an attacker to completely hide
some piece of information from all possible paths.

Another consequence of the interconnected topology of
the graph is that it is hard for an analyst to simply inspect
all possible paths, looking for new techniques to implement
in memory forensic tools. We tried to do this in our second
scenario, and run into a path explosion problem even by
considering only all shortest paths. However, this effort
allowed us to discover two new promising techniques (one
based on cgroups and one on workrqueues) that can
complement those used today by Volatility 2.

Sadly, the problem of finding an optimal path turned out
to be very delicate and dependent on multiple factors. In fact,
the exact memory layout when the snapshot is acquired may
affect the metrics associated to different links (e.g., one path
may be optimal for one dump but poor in another). This may
suggest that maybe, instead of relaying on a single solution,
new techniques should try to explore the graph by following
many parallel paths.

Moreover, we are aware that some of the metrics we
proposed in this paper turned out to be ineffective in the
evaluation. However, we decided to include them anyway in
the paper for two reasons. First, because we did not know in
advance that (for example the Maximum Time Gap) would be

2We implemented both as Volatility plugins

irrelevant in the analysis of common Linux kernels. This has
nothing to do with the heuristic itself, but with the fact that the
kernel allocates global variables (entry points) very far from
other objects. We believe this fact to be an interesting finding
which came as a consequence of applying our framework.
Second, while this is true in our experiments, it is probably
not the case on other operating systems or OS kernels. So, we
believe it is still interesting to implement and discuss those
ineffective metrics in our framework.

Finally, we want to stress the fact that our main contribution
is not the discovery of new technique, but the introduction of
a model that can be used to reason about memory analysis, ex-
plore its complexity, and perform quantitative measurements.

Future Work: In this paper we discuss a number of metrics an
analyst can use to compare different solutions. However, the
list is certainly not exhaustive and we expect more to be defined
in the future. More work is also needed to understand which
metric is better at capturing certain aspects of an investigation.

Reliability is certainly one of the most important character-
istic of an analysis technique. Unfortunately, it is also the only
one we discussed that cannot be extracted with automated
experiments. More research is needed to fill this gap and
enable to compute the reliability of a large amount of links
among kernel objects.

Finally, to be useful in practice, our prototype should be
applied to a larger number of memory dumps taken from
different systems. This could help generalize the results and
customize the analysis to an environment that resemble the
one under investigation.

8 Related Work

The analysis of kernel objects and their inter-dependencies
has attracted the interest of both the security and the forensics
community. While the common goal, namely ensuring the
integrity of the kernel against malware attacks using the
inter-dependencies between kernel object, is shared by the
majority of works on this topic, the methods and the tools
used to achieve it are often different. Several research papers
have also been published on reconstructing and analyzing
data structure graphs of user-space applications [3, 7, 28, 31].
However, most of these techniques are not directly applicable
to kernel-level data structures, because they do not take in
account the intricacies present in the kernel, such as resolution
of ambiguous pointers to handle custom data structures. For
this reason they will not be discussed in this Section.

To better highlight the different approaches, we decided
to divide them in two distinct categories. The first one covers
approaches which presented the analysis of a running kernel.
The second category is focusing instead on static approaches,
which require only a memory snapshot or the OS binary.

Dynamic Analysis
One of the first example of dynamic kernel memory analysis

was presented by Rhee et al. in 2010 [26]. The tool, named
LiveDM, places hooks at the beginning and at the end of every
memory-related kernel functions, to keep track of every allo-
cation and deallocation event. When these hooks are triggered,
the hypervisor notes the address and the size of the allocated
kernel object and the call site. The latter information is used,
along with the result of an offline static analysis of the kernel
source code, to determine the type of the allocated object. A
work built on top of LiveDM isSigGraph [19]. In this paper the
authors generate a signature for each kernel object, based on the
pointers contained in the data structure. These signatures are
then further refined during a profiling phase,where problematic
pointers - such as null pointers - are pruned. The result can then
be used by the final user to search for a kernel object in a mem-
ory dump. The major concern about signature-based scheme is
their uniqueness, that avoids problems related to isomorphism
of signatures. The authors found that nearly the 40% of kernel
object contains pointers and - among this objects - nearly 88%
have unique SigGraph signatures. Unfortunately the unique-
ness was reported prior the dynamic refinement, so it is unclear
the percentage of non-isomorphic signatures. For this reasons
a kernel graph built using the approach adopted by SigGraph
would only retrieve a partial view of the entire memory graph.

Another work focused on signatures to match kernel objects
in memory was done by Dolan-Gavitt et al in 2009 [10]. The
main insight of this work is that while kernel rootkits can
modify certain fields of a structure - i.e. to unlink the malicious
process from the process list - other fields (called invariants)
can not be tampered without stopping the malicious behavior
or causing a kernel crash. The invariant are determined in a
two steps approach. During the first one every access to a data

structure is logged, using the stealth breakpoint hypervisor
technique [32]. Then, the most accessed field identified in the
previous step are fuzzed and the kernel behavior is observed.
If the kernel crashes then there are high chances that this field
can not be modified by a rootkit. On the other hand, if no crash
is observed, than the field is susceptible to malicious alteration.
The direct results of these two phases is that highly accessed
field which result in a crash when fuzzed are good candidates
to be used as strong signatures. While this approach looks very
promising is not easily adaptable to our context since, as also
noted by the authors, creating a signature for small structures
can be difficult. Furthermore, generating a signature requires
to locate at least one instance of a structure in memory, which
might not be straightforward.

Xuan et al. [35] proposed Rkprofiler. This tool combine a
trace of read and write operations of malicious kernel code with
a pre-processed kernel type graph, to identify the tampered
data. The problem of ambiguous pointers is overcome by
annotating the type graph with the real target of a list pointer.
While it is not clearly stated in the paper, it seems the anno-
tation was manually done. As we discussed in Section 4 the
Linux kernel uses a large amount of ambiguous pointers, thus
making the manual annotation approach not feasible anymore.

While more focused on kernel integrity checks, OSck [16]
uses information from the kernel memory allocator (slab) to
correctly label kernel address with their type. The integrity
check are run in a kernel thread, separated by the hypervisor.
This two components allow OSck to write custom checkers
that are periodically run. While this approach seems promising,
only a small subset of frequently-used structures are allocated
using slab (such as task_struct or vm_area_struct), and
thus is unsuitable for our needs.

Another approach to create a Windows kernel object graph
is MACE [11]. Using a pointer-constrain model generated
from dynamic analysis on the memory allocation functions
and unsupervised learning on kernel pointers, MACE is able to
correctly label kernel objects found in a memory dump. Once
again, while the output of the work is a kernel object graph for
Windows, the application only focuses on rootkit detection.

Static Analysis
One of the most prominent work in this field is KOP [4],

and its subsequent refinement MAS [8]. Very similarly to our
approach, the authors use a combination of static and memory
analysis techniques respectively on the kernel code and on a
memory snapshot. In the first step they build a precise field-
sensitive points-to graph,which is then used during the memory
analysis phase to explore and build the kernel objects graph.
Contrary to this solution, ours does not make any assumption
about the kernel memory allocator. While the Windows kernel
has only one allocator, the Linux kernel has three different
ones (slab, slub, and slob). Moreover, only a predefined
subset of kernel objects are allocated in custom slabs, while
the vast majority is sorted in generic slabs based on their size.

Gu et al. [13] presented OS-Sommelier+, a series of tech-

niques to fingerprint an operating system from a memory snap-
shot. In particular, one of these techniques is based on the no-
tion of loop-invariants: a chain of pointers rooted at a given ker-
nel object that, when dereferenced, points back to the initial ob-
ject. Once a ground truth is generated from a set of known ker-
nels, this loop invariant signatures can be used to fingerprint un-
known kernels. Unfortunately the paper does not mention the
problem of ambiguous pointers, and we believe our graph gen-
eration approach could improve OS-Sommelier+ detection.

Finally, as we already discussed, none of the tools to auto-
matically build a graph of kernel objects was publicly available.

9 Conclusion

Memory forensics focuses on locating and extracting artifacts
from a memory snapshots, using a broad set of custom rules.
However, the quality of the existing heuristics is difficult to
measure and it is largely based on the experience of the re-
searchers who wrote them. As a result, analysts are left without
any clear guidelines on how to compare and evaluate different
approaches and how to assess the results they produce.

For these reasons, in this paper we proposed a method to
study memory forensics techniques in a principled way. Our
solution is based on a graph representation that captures the
relationships between all kernel objects, enriched with a set of
metrics that covers different aspects of memory forensics. We
believe that our framework can help researchers to measure
the quality of existing memory forensics techniques, but also
to extract qualitatively better heuristics.

Acknowledgments

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
771844 – BitCrumbs).

References

[1] Baliga, A., Ganapathy, V.,and Iftode, L. Automatic infer-
ence and enforcement of kernel data structure invariants.
In Computer Security Applications Conference, 2008.
ACSAC 2008. Annual (2008), IEEE, pp. 77–86.

[2] Bastian, M., Heymann, S., Jacomy, M., et al. Gephi: an
open source software for exploring and manipulating
networks. Icwsm 8 (2009), 361–362.

[3] Bursztein, E., Hamburg, M., Lagarenne, J., and Boneh,
D. Openconflict: Preventing real time map hacks in
online games. In Security and Privacy (SP), 2011 IEEE
Symposium on (2011), IEEE, pp. 506–520.

[4] Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., and
Jiang, X. Mapping kernel objects to enable systematic
integrity checking. In Proceedings of the 16th ACM
conference on Computer and communications security
(2009), ACM, pp. 555–565.

[5] Carvey, H. Digital forensics of the physical memory.

[6] Case, A., and Richard III, G. G. Memory forensics: The
path forward. Digital Investigation 20 (2017), 23–33.

[7] Cozzie, A., Stratton, F., Xue, H., andKing, S. T. Digging
for data structures. In OSDI (2008), vol. 8, pp. 255–266.

[8] Cui, W., Peinado, M., Xu, Z., and Chan, E. Tracking
rootkit footprints with a practical memory analysis sys-
tem. In USENIX Security Symposium (2012), pp. 601–
615.

[9] Das, M. Unification-based pointer analysis with direc-
tional assignments. Acm Sigplan Notices 35, 5 (2000),
35–46.

[10] Dolan-Gavitt, B., Srivastava, A., Traynor, P.,andGiffin,
J. Robust signatures for kernel data structures. In Pro-
ceedings of the 16th ACM conference on Computer and
communications security (2009), ACM, pp. 566–577.

[11] Feng, Q., Prakash, A., Yin, H., and Lin, Z. Mace: High-
coverage and robust memory analysis for commodity
operating systems. In Proceedings of the 30th annual
computer security applications conference (2014), ACM,
pp. 196–205.

[12] Gruhn, M., and Freiling, F. C. Evaluating atomicity, and
integrity of correct memory acquisition methods. Digital
Investigation 16 (2016), S1–S10.

[13] Gu, Y., Fu, Y., Prakash, A., Lin, Z., andYin, H. Multi-
aspect, robust, and memory exclusive guest os fingerprint-
ing. IEEE Transactions on Cloud Computing 2, 4 (2014),
380–394.

[14] Hardekopf, B., and Lin, C. The ant and the grasshopper:
fast and accurate pointer analysis for millions of lines of
code. In ACM SIGPLAN Notices (2007), vol. 42, ACM,
pp. 290–299.

[15] Heintze, N., and Tardieu, O. Ultra-fast aliasing analysis
using cla: A million lines of c code in a second. In ACM
SIGPLAN Notices (2001), vol. 36, ACM, pp. 254–263.

[16] Hofmann, O. S., Dunn, A. M., Kim, S., Roy, I., and
Witchel, E. Ensuring operating system kernel integrity
with osck. In ACM SIGARCH Computer Architecture
News (2011), vol. 39, ACM, pp. 279–290.

[17] Ibrahim, A. S., Hamlyn-Harris, J., Grundy, J., and Al-
morsy, M. Digger: Identifying os kernel objects for run-
time security analysis. International Journal on Internet
and Distributed Computing Systems 3, 1 (2013), 184–
194.

[18] Le Berre, S. From corrupted memory dump to
rootkit detection. https://exatrack.com/public/
Memdump_NDH_2018.pdf, 2018.

[19] Lin, Z., Rhee, J., Zhang, X., Xu, D., and Jiang, X. Sig-
graph: Brute force scanning of kernel data structure in-
stances using graph-based signatures. In NDSS (2011).

[20] LWN. Linux kernel design patterns - part 2. https:
//lwn.net/Articles/336255/, 2009.

[21] McDown, R. J., Varol, C., Carvajal, L., and Chen, L. In-
depth analysis of computer memory acquisition software
for forensic purposes. Journal of forensic sciences 61
(2016), S110–S116.

[22] Pearce, D. J., Kelly, P. H., andHankin, C. Efficient field-
sensitive pointer analysis of c. ACM Transactions on
Programming Languages and Systems (TOPLAS) 30, 1
(2007), 4.

[23] Peixoto, T. P. The graph-tool python library. figshare
(2014).

[24] Petroni Jr, N. L., andHicks, M. Automated detection of
persistent kernel control-flow attacks. In Proceedings of
the 14th ACM conference on Computer and communica-
tions security (2007), ACM, pp. 103–115.

[25] Prakash, A., Venkataramani, E., Yin, H., andLin, Z. Ma-
nipulating semantic values in kernel data structures: At-
tack assessments and implications. In Dependable Sys-
tems and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on (2013), IEEE, pp. 1–12.

[26] Rhee, J., Riley, R., Xu, D., and Jiang, X. Kernel mal-
ware analysis with un-tampered and temporal views of

dynamic kernel memory. In International Workshop on
Recent Advances in Intrusion Detection (2010), Springer,
pp. 178–197.

[27] Riley, R., Jiang, X., and Xu, D. Multi-aspect profiling
of kernel rootkit behavior. In Proceedings of the 4th
ACM European conference on Computer systems (2009),
ACM, pp. 47–60.

[28] Saltaformaggio, B., Gu, Z., Zhang, X., and Xu, D.
Dscrete: Automatic rendering of forensic information
from memory images via application logic reuse. In
USENIX Security Symposium (2014), pp. 255–269.

[29] Schneider, C., Pfoh, J., and Eckert, C. Bridging the
semantic gap through static code analysis. Proceedings
of EuroSec 12 (2012).

[30] Steensgaard, B. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages (1996),
ACM, pp. 32–41.

[31] Urbina, D., Gu, Y., Caballero, J., and Lin, Z. Sigpath:
A memory graph based approach for program data intro-
spection and modification. In European Symposium on
Research in Computer Security (2014), Springer, pp. 237–
256.

[32] Vasudevan, A., andYerraballi, R. Stealth breakpoints.
In Computer security applications conference, 21st An-
nual (2005), IEEE, pp. 10–pp.

[33] Walters, A. The volatility framework: Volatile memory
artifact extraction utility framework, 2007.

[34] Wilson, R. P., and Lam, M. S. Efficient context-sensitive
pointer analysis for C programs, vol. 30. ACM, 1995.

[35] Xuan, C., Copeland, J. A., and Beyah, R. A. Toward
revealing kernel malware behavior in virtual execution
environments. In RAID (2009), vol. 9, Springer, pp. 304–

325.

https://exatrack.com/public/Memdump_NDH_2018.pdf
https://exatrack.com/public/Memdump_NDH_2018.pdf
https://lwn.net/Articles/336255/
https://lwn.net/Articles/336255/

	Introduction
	Motivation
	Approach
	Memory Forensics as a Graph Exploration Problem
	Path Comparison

	Graph Creation
	Abstract Data Types
	Uninitialized and Invalid Data
	Opaque Pointers
	Limitations and Manual Fixes
	Implementation
	Final Kernel Graph

	Metrics
	Experiments
	Scenario 1
	Scenario 2
	Scenario 3

	Discussion and Future Directions
	Related Work
	Conclusion

