Datalog Disassembly

Antonio Flores Montoya and Eric Schulte
GrammaTech, Inc.
August 13, 2020

@ GRAMMATECH

Binary

vulnerability

Sometimes the source code is not available

@ GRAMMATECH

Assembly

— ~
~ o code
vulnerabilit atch

Sometimes the source code is not available
Disassembly is the first step in:

Binary

» Binary analysis

» Binary rewriting/hardening

@ GRAMMATECH

Reassembleable Disassembly

We want to obtain reassembleable assembly
» Assembly code with cross references
> We can modify it without breaking it
This involves two tasks:
» Instruction Boundary Identification

» Symbolization

@ GRAMMATECH

Instruction Boundary ldentification

A binary looks like this:

ba 08 3b 44 00 31 c9 Of
1f 80 00 00 00 00 48 39
3a ... 4883c220 4883
fO 3a 7e ee

@ GRAMMATECH
4

Instruction Boundary ldentification

A binary looks like this:

40c7f2: mov EDX, 443b08
40c7f7: xor ECX, ECX

ba 08 3b 44 00 | 31 c9 | Of 40c7f9: nop

1f 80 00 00 00 00 | 48 39 40c800: cmp [RDX], RDI
3a]...14883c220]48 ’ 5 :

830 3a| 7e ee | 40c808: add RDX, 32

40c80c: cmp RCX, 58
40c810: jle 40c800

Instruction Boundary Identification amounts to finding which addresses correspond
to which instructions.

@ GRAMMATECH
4

Instruction Boundary ldentification

Challenging because:
> X64 instructions have variable sizes

» Data interleaves with instructions

@ GRAMMATECH

Symbolization

Symbolization: Which numbers are references vs. literals

40c7f2: mov EDX, 443b08 mov EDX, Label_1
40c7f7: xor ECX,ECX xor ECX,ECX

40c7f9: nop nop

40c800: cmp [RDX],RDI Label 2: cmp [RDX],RDI

40c808: add RDX,32 add RDX,32

40c80c: cmp RCX,58 ﬁ cmp RCX,58

40c810: jle 40c800 jle Label 2

443b40: 04 04 00 00 00 00 00 00 04 04 00 00 00 00 00 00
443b48: d0 50 41 00 00 00 00 00 .quad Label_3

443b50: 85 48 44 00 00 00 00 00 .quad Label 4

@ GRAMMATECH

Symbolization

Symbolization: Which numbers are references vs. literals

40c7f2: mov EDX, 443b08 mov EDX, Label_1
40c7f7: xor ECX,ECX xor ECX,ECX
40c7f9: nop nop

Ve 4a-a0a Dol Do ~ Label 2: cmp [RDX],RDI

Symbolic references allow us to move i:lndp IEE?;?;%
and modify the code without breaking it jle Label_,2

- /
443b40: 04 04 00 00 00 00 00 00 04 04 00 00 00 00 00 00
443b48: d0 50 41 00 00 00 00 00 .quad Label_3

443b50: 85 48 44 00 00 00 00 00 .quad Label_4

GRAMMATECH

Symbolization

Symbolization: Which numbers are references vs. literals

40c7f2: mov EDX, 443b08 mov EDX, Label_1
40c7f7: xor ECX,ECX xor ECX,ECX
40c7f9: nop nop
Ve 40-00a IDOM1DOL Label 2: cmp [RDX],RDI
4 ™
Symbolic references al B B & 132
. i Relocation information is 58
2uie] [eelly die avdle v NOT enough (even for PIE) 12
~ y,
443b40: 04 04 00 00 00 00 00 OO 04 04 00 00 00 00 00 00
443b48: d0 50 41 00 00 00 00 00 .quad Label_3

443b50: 85 48 44 00 00 00 00 00 .quad Label_4

GRAMMATECH

Our approach: Use Datalog

Both instruction boundary identification and symbolization are hard problems
We want to:

» Combine different heuristics easily
» Use simple static analyses to inform our decisions

> Run it quickly

@ GRAMMATECH

Binary Disassembly with Datalog

Binaries are encoded as facts (our initial knowledge of the binary)

> We decode every possible
offset in code sections (obtaining a superset of all possible instructions in the code)

Instruction:
4000A0: mov RAX, 420020

Becomes: instruction (400040,5,””,’MOV’,1,2,0,0)

op_regdirect (1, ’RAX’)
op_immediate (2,420020)

If the decoding fails at address A, we generate invalid(A)

@ GRAMMATECH

Binary Disassembly with Datalog

Analyses and heuristics are expressed as Datalog rules:
Backward traversal that propagates invalid instructions

invalid (From) : -

(

must_fallthrough (From,To);
direct_jump (From,To) ;
direct_call (From,To)
), (

invalid (To) ;

linstruction(To, _,_,_,_,_,_,_)

) o

If there is an instruction at address From that must fallthrough, or jumps, or calls an
address To that contains an invalid instruction or no instruction at all, then the
® instruction at From is also invalid.

GRAMMATECH

Instruction Boundary ldentification

1. Backward traversal: propagate invalid instructions

2. Forward traversal: build superset of all possible basic blocks
> Hybrid between linear sweep and recursive traversal
> Use potential references in data sections

3. Assign points to candidate blocks using heuristics

> Entry point: +20

> Address appears in data section: +1
> Direct jump: +6

> ...

4. Aggregate points to resolve overlaps (Datalog extension)

@ GRAMMATECH
10

Symbolization

Naive approach
» Numbers in the binary address range — symbols

» Numbers outside the range — literals

» False positives: A literal coincides with the binary address range

> False negatives: (see paper)

@ GRAMMATECH
11

Symbolization: Reducing false positives

» Collect additional evidence (how the number is used) using supporting analyses
and heuristics
P Assign points to candidates:

> Symbol

> Symbol-Symbol

> Strings

> Other (data elements with different size)

> Aggregate points to make a decision

@ GRAMMATECH
12

Supporting Analyses: Def-Uses

Predicate: def_used(Adef,Reg,Ause)

Register Reg is defined in Adef and used in Ause
40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX

RDX 40c7f9: nop
40c800: cmp [RDX],RDI

40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800

443b28:

@ GRAMMATECH

13

Supporting Analyses: Register value analysis

Predicate: reg_val(A1l,Regl,A2,Reg2,Mult,Disp)
value(Regl@A1) = value(Reg2@A2) x Mult + Disp

40c7f2: mov EDX, 443b08

40c7f7: xor ECX,ECX

40c7f9: nop RDX=443b08
40c800: cmp [RDX],RDI

40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800

443b28:

@ GRAMMATECH
14

Supporting Analyses: Register value analysis

Predicate: reg_val(A1l,Regl,A2,Reg2,Mult,Disp)
value(Regl@A1) = value(Reg2@A2) x Mult + Disp

40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX

40c7f9: nop RDX=7*32+443b28
40c800: cmp [RDX],RDI

40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800

443b28:

@ GRAMMATECH
14

Supporting Analyses: Data access patterns

Predicate: data_access_pattern(Addr,Size,Mult,Addr2)
Addr is accessed with size Size and multiplier Mult from Addr2

40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX

40c7f9: nop RDX=7*32+443b28
40c800: cmp [RDX],RDI

40c808: add RDX,32

40c80c: cmp RCX,58 access Qword with x32 multiplier
40c810: jle 40c800

443b28:

@ GRAMMATECH
15

Assigning points

Use supporting analyses to enhance confidence

Candidates in data section

» Pointer to instruction beginning 3
» Data access match €3

» Data access conflict &)

> ...

@ GRAMMATECH
16

Experimental Evaluation

» Our tool Ddisasm supports x64 Linux ELF binaries
» We test our disassembler Ddisasm with:

> 3 benchmark sets
> 7 compiler versions (GCC, Clang and ICC).
> 6 compiler optimization flags

> A total of 7658 binaries

» Compare to Ramblr state-of-the-art tool in reassembleable disassembly

@ GRAMMATECH
17

0o Ddisasm I Ramblr

8
T
72 a7
£ 100 » 99.7 99
3 79.74
%é | 59.41
§ 60 | -
R 40 |
©
> 20 t
)
§ 0 :)
é symbolization functionality
32 information of reassembled
binary

@ GRAMMATECH
18

Disassembly Time in Seconds

150 | —
=) .) X
s100 | _z . .
[9p] -

'r—| // (<) o (<)
o]) e °
= 50 | /// 1
0 m‘ v .\ \ \ \ \
0 50 100 150 200 250 300

@ GRAMMATECH

Ramblr

19

350

Conclusion

P> Reassembleable disassembly is undecidable

» Practical solutions benefit from analysis and heuristics
» Datalog works for both:

> Express analysis concisely: less error-prone, fast development
> Easy to experiment with heuristics expressed as Datalog rules

» Ddisasm is faster and achieves better precision than the state-of-the-art.

@ GRAMMATECH
20

Questions?

» Contact: afloresmontoya@grammatech.com
» Tool: https://github.com/GrammaTech/ddisasm
P> Experimental evaluation: https://zenodo.org/record/3691736

» Rewriting tutorial using Ddisasm :
https://grammatech.github.io/gtirb/md_stack-stamp.html

@ GRAMMATECH

21

https://github.com/GrammaTech/ddisasm
https://zenodo.org/record/3691736
https://grammatech.github.io/gtirb/md_stack-stamp.html

