
Datalog Disassembly

Antonio Flores Montoya and Eric Schulte
GrammaTech, Inc.
August 13, 2020

1

Motivation

Binary

vulnerability

Assembler

Disassembler

Assembly
code

patch

Sometimes the source code is not available

Disassembly is the first step in:

I Binary analysis

I Binary rewriting/hardening

2

Motivation

Binary

vulnerability

Assembler

Disassembler

Assembly
code

patch

Sometimes the source code is not available
Disassembly is the first step in:

I Binary analysis

I Binary rewriting/hardening

2

Reassembleable Disassembly

We want to obtain reassembleable assembly

I Assembly code with cross references

I We can modify it without breaking it

This involves two tasks:

I Instruction Boundary Identification

I Symbolization

3

Instruction Boundary Identification

A binary looks like this:

ba 08 3b 44 00 31 c9 0f
1f 80 00 00 00 00 48 39
3a ... 48 83 c2 20 48 83
f9 3a 7e ee

40c7f2: mov EDX, 443b08
40c7f7: xor ECX, ECX
40c7f9: nop
40c800: cmp [RDX], RDI
...

...
40c808: add RDX, 32
40c80c: cmp RCX, 58
40c810: jle 40c800

Instruction Boundary Identification amounts to finding which addresses correspond
to which instructions.

4

Instruction Boundary Identification

A binary looks like this:

ba 08 3b 44 00 | 31 c9 | 0f
1f 80 00 00 00 00 | 48 39
3a | ... | 48 83 c2 20 | 48
83 f9 3a | 7e ee |

40c7f2: mov EDX, 443b08
40c7f7: xor ECX, ECX
40c7f9: nop
40c800: cmp [RDX], RDI
...

...
40c808: add RDX, 32
40c80c: cmp RCX, 58
40c810: jle 40c800

Instruction Boundary Identification amounts to finding which addresses correspond
to which instructions.

4

Instruction Boundary Identification

Challenging because:

I X64 instructions have variable sizes

I Data interleaves with instructions

5

Symbolization

Symbolization: Which numbers are references vs. literals

40c7f2: mov EDX, 443b08 mov EDX, Label 1
40c7f7: xor ECX,ECX xor ECX,ECX
40c7f9: nop nop
40c800: cmp [RDX],RDI Label 2: cmp [RDX],RDI
...

...
...

40c808: add RDX,32 add RDX,32
40c80c: cmp RCX,58 cmp RCX,58
40c810: jle 40c800 jle Label 2
...

...
...

443b40: 04 04 00 00 00 00 00 00 04 04 00 00 00 00 00 00
443b48: d0 50 41 00 00 00 00 00 .quad Label 3
443b50: 85 48 44 00 00 00 00 00 .quad Label 4

Symbolic references allow us to move
and modify the code without breaking it

Relocation information is
NOT enough (even for PIE)

6

Symbolization

Symbolization: Which numbers are references vs. literals

40c7f2: mov EDX, 443b08 mov EDX, Label 1
40c7f7: xor ECX,ECX xor ECX,ECX
40c7f9: nop nop
40c800: cmp [RDX],RDI Label 2: cmp [RDX],RDI
...

...
...

40c808: add RDX,32 add RDX,32
40c80c: cmp RCX,58 cmp RCX,58
40c810: jle 40c800 jle Label 2
...

...
...

443b40: 04 04 00 00 00 00 00 00 04 04 00 00 00 00 00 00
443b48: d0 50 41 00 00 00 00 00 .quad Label 3
443b50: 85 48 44 00 00 00 00 00 .quad Label 4

Symbolic references allow us to move
and modify the code without breaking it

Relocation information is
NOT enough (even for PIE)

6

Symbolization

Symbolization: Which numbers are references vs. literals

40c7f2: mov EDX, 443b08 mov EDX, Label 1
40c7f7: xor ECX,ECX xor ECX,ECX
40c7f9: nop nop
40c800: cmp [RDX],RDI Label 2: cmp [RDX],RDI
...

...
...

40c808: add RDX,32 add RDX,32
40c80c: cmp RCX,58 cmp RCX,58
40c810: jle 40c800 jle Label 2
...

...
...

443b40: 04 04 00 00 00 00 00 00 04 04 00 00 00 00 00 00
443b48: d0 50 41 00 00 00 00 00 .quad Label 3
443b50: 85 48 44 00 00 00 00 00 .quad Label 4

Symbolic references allow us to move
and modify the code without breaking it

Relocation information is
NOT enough (even for PIE)

6

Our approach: Use Datalog

Both instruction boundary identification and symbolization are hard problems
We want to:

I Combine different heuristics easily

I Use simple static analyses to inform our decisions

I Run it quickly

7

Binary Disassembly with Datalog

Binaries are encoded as facts (our initial knowledge of the binary)

I We decode every possible
offset in code sections (obtaining a superset of all possible instructions in the code)

Instruction:
4000A0: mov RAX, 420020

Becomes:
instruction (4000A0 ,5,’’,’MOV ’,1,2,0,0)

op_regdirect(1,’RAX ’)

op_immediate (2 ,420020)

If the decoding fails at address A, we generate invalid(A)

8

Binary Disassembly with Datalog

Analyses and heuristics are expressed as Datalog rules:

Backward traversal that propagates invalid instructions

invalid(From):-

(

must_fallthrough(From ,To);

direct_jump(From ,To);

direct_call(From ,To)

),(

invalid(To);

!instruction(To ,_,_,_,_,_,_,_)

).

If there is an instruction at address From that must fallthrough, or jumps, or calls an
address To that contains an invalid instruction or no instruction at all, then the
instruction at From is also invalid.

9

Instruction Boundary Identification

1. Backward traversal: propagate invalid instructions

2. Forward traversal: build superset of all possible basic blocks

. Hybrid between linear sweep and recursive traversal

. Use potential references in data sections

3. Assign points to candidate blocks using heuristics

. Entry point: +20

. Address appears in data section: +1

. Direct jump: +6

. . . .

4. Aggregate points to resolve overlaps (Datalog extension)

10

Symbolization

Naive approach

I Numbers in the binary address range → symbols

I Numbers outside the range → literals

I False positives: A literal coincides with the binary address range

I False negatives: (see paper)

11

Symbolization: Reducing false positives

I Collect additional evidence (how the number is used) using supporting analyses
and heuristics

I Assign points to candidates:

. Symbol

. Symbol-Symbol

. Strings

. Other (data elements with different size)

I Aggregate points to make a decision

12

Supporting Analyses: Def-Uses

Predicate: def_used(Adef,Reg,Ause)

Register Reg is defined in Adef and used in Ause

40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX
40c7f9: nop
40c800: cmp [RDX],RDI
...

...
40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800
...

...
443b28: · · ·

RDX

13

Supporting Analyses: Register value analysis

Predicate: reg_val(A1,Reg1,A2,Reg2,Mult,Disp)

value(Reg1@A1) = value(Reg2@A2) × Mult + Disp

40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX
40c7f9: nop
40c800: cmp [RDX],RDI
...

...
40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800
...

...
443b28: · · ·

RDX=443b08

RDX=?*32+443b28

14

Supporting Analyses: Register value analysis

Predicate: reg_val(A1,Reg1,A2,Reg2,Mult,Disp)

value(Reg1@A1) = value(Reg2@A2) × Mult + Disp

40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX
40c7f9: nop
40c800: cmp [RDX],RDI
...

...
40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800
...

...
443b28: · · ·

RDX=443b08

RDX=?*32+443b28

14

Supporting Analyses: Data access patterns

Predicate: data_access_pattern(Addr,Size,Mult,Addr2)

Addr is accessed with size Size and multiplier Mult from Addr2

40c7f2: mov EDX, 443b08
40c7f7: xor ECX,ECX
40c7f9: nop
40c800: cmp [RDX],RDI
...

...
40c808: add RDX,32
40c80c: cmp RCX,58
40c810: jle 40c800
...

...
443b28: · · ·

RDX=?*32+443b28

access Qword with x32 multiplier

15

Assigning points

Use supporting analyses to enhance confidence

Candidates in data section

I Pointer to instruction beginning -

I Data access match -

I Data access conflict ,

I ...

16

Experimental Evaluation

I Our tool Ddisasm supports x64 Linux ELF binaries
I We test our disassembler Ddisasm with:

. 3 benchmark sets

. 7 compiler versions (GCC, Clang and ICC).

. 6 compiler optimization flags

I A total of 7658 binaries

I Compare to Ramblr state-of-the-art tool in reassembleable disassembly

17

Results

symbolization
information

functionality
of reassembled
binary

0

20

40

60

80

100
99.72 99.77

79.74

59.41

%
co

rr
ec

tl
y

d
is

as
se

m
b

le
d

b
in

ar
ie

s

Ddisasm Ramblr

18

Disassembly Time in Seconds

0 50 100 150 200 250 300 350
0

50

100

150

Ramblr

Dd
is
as
m

19

Conclusion

I Reassembleable disassembly is undecidable

I Practical solutions benefit from analysis and heuristics
I Datalog works for both:

. Express analysis concisely: less error-prone, fast development

. Easy to experiment with heuristics expressed as Datalog rules

I Ddisasm is faster and achieves better precision than the state-of-the-art.

20

Questions?

I Contact: afloresmontoya@grammatech.com

I Tool: https://github.com/GrammaTech/ddisasm

I Experimental evaluation: https://zenodo.org/record/3691736

I Rewriting tutorial using Ddisasm :
https://grammatech.github.io/gtirb/md_stack-stamp.html

21

https://github.com/GrammaTech/ddisasm
https://zenodo.org/record/3691736
https://grammatech.github.io/gtirb/md_stack-stamp.html

